Commit Graph

66 Commits

Author SHA1 Message Date
Brian Behlendorf
165f13c33a Improved vmem cached deadlock detection
The entire goal of performing the slab allocations asynchronously
is to be able to detect when a vmalloc() deadlocks.  In this case,
and only this case, do we want to start allocating emergency objects.
The trick here is to minimize false positives because the overhead
of tracking emergency objects is far higher than normal slab objects.

With that goal in mind the code was reworked to be less sensitive
to slow allocations by increasing the wait time.  Once a cache is
is marked deadlocked all subsequent allocations which can not be
satisfied with existing cache objects will immediately allocate new
emergency objects.  This behavior persists until the asynchronous
allocation completes and clears the deadlocked flag.

The result of these tweaks is that far fewer emergency objects
get created which is important because this minimizes the cost of
releasing them latter in kmem_cache_free().

Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
2012-11-06 14:54:15 -08:00
Brian Behlendorf
cb5c2acebb Add KMC_NOEMERGENCY slab flag
Provide a flag to disable the use of emergency objects for a
specific kmem cache.  There may be instances where under no
circumstances should you kmalloc() an emergency object.  For
example, when you cache contains very large objects (>128k).

Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
2012-09-07 14:27:03 -07:00
Brian Behlendorf
500e95c884 Revert "Disable vmalloc() direct reclaim"
This reverts commit 2092cf68d8.  The
use of the PF_MEMALLOC flag was always a hack to work around memory
reclaim deadlocks.  Those issues are believed to be resolved so this
workaround can be safely reverted.

Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
2012-08-27 12:00:55 -07:00
Brian Behlendorf
617f79de6a Revert "Fix NULL deref in balance_pgdat()"
This reverts commit b8b6e4c453.  The
use of the PF_MEMALLOC flag was always a hack to work around memory
reclaim deadlocks.  Those issues are believed to be resolved so this
workaround can be safely reverted.

Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
2012-08-27 12:00:55 -07:00
Brian Behlendorf
bc03e07a7c Revert "Detect kernels that honor gfp flags passed to vmalloc()"
This reverts commit 36811b4430.
Which is no longer required because there is now SPL code in
place to safely handle the deadlocks the kernel patch was designed
to address.  Therefore we can unconditionally use vmalloc() and
drop all the PF_MEMALLOC code.

Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
2012-08-27 12:00:55 -07:00
Brian Behlendorf
e2dcc6e2b8 Emergency slab objects
This patch is designed to resolve a deadlock which can occur with
__vmalloc() based slabs.  The issue is that the Linux kernel does
not honor the flags passed to __vmalloc().  This makes it unsafe
to use in a writeback context.  Unfortunately, this is a use case
ZFS depends on for correct operation.

Fixing this issue in the upstream kernel was pursued and patches
are available which resolve the issue.

  https://bugs.gentoo.org/show_bug.cgi?id=416685

However, these changes were rejected because upstream felt that
using __vmalloc() in the context of writeback should never be done.
Their solution was for us to rewrite parts of ZFS to accomidate
the Linux VM.

While that is probably the right long term solution, and it is
something we want to pursue, it is not a trivial task and will
likely destabilize the existing code.  This work has been planned
for the 0.7.0 release but in the meanwhile we want to improve the
SPL slab implementation to accomidate this expected ZFS usage.

This is accomplished by performing the __vmalloc() asynchronously
in the context of a work queue.  This doesn't prevent the posibility
of the worker thread from deadlocking.  However, the caller can now
safely block on a wait queue for the slab allocation to complete.

Normally this will occur in a reasonable amount of time and the
caller will be woken up when the new slab is available,.  The objects
will then get cached in the per-cpu magazines and everything will
proceed as usual.

However, if the __vmalloc() deadlocks for the reasons described
above, or is just very slow, then the callers on the wait queues
will timeout out.  When this rare situation occurs they will attempt
to kmalloc() a single minimally sized object using the GFP_NOIO flags.
This allocation will not deadlock because kmalloc() will honor the
passed flags and the caller will be able to make forward progress.

As long as forward progress can be maintained then even if the
worker thread is deadlocked the critical thread will make progress.
This will eventually allow the deadlocked worker thread to complete
and normal operation will resume.

These emergency allocations will likely be slow since they require
contiguous pages.  However, their use should be rare so the impact
is expected to be minimal.  If that turns out not to be the case in
practice further optimizations are possible.

One additional concern is if these emergency objects are long lived.
Right now they are simply tracked on a list which must be walked when
an object is freed.  Is they accumulate on a system and the list
grows freeing objects will become more expensive.  This could be
handled relatively easily by using a hash instead of a list, but that
optimization (if needed) is left for a follow up patch.

Additionally, these emeregency objects could be repacked in to existing
slabs as objects are freed if the kmem_cache_set_move() functionality
was implemented.  See issue https://github.com/zfsonlinux/spl/issues/26
for full details.  This work would also help reduce ZFS's memory
fragmentation problems.

The /proc/spl/kmem/slab file has had two new columns added at the
end.  The 'emerg' column reports the current number of these emergency
objects in use for the cache, and the following 'max' column shows
the historical worst case.  These value should give us a good idea
of how often these objects are needed.  Based on these values under
real use cases we can tune the default behavior.

Lastly, as a side benefit using a single work queue for the slab
allocations should reduce cpu contention on the global virtual address
space lock.   This should manifest itself as reduced cpu usage for
the system.

Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
2012-08-27 12:00:42 -07:00
Prakash Surya
08850eddcb Avoid calling smp_processor_id in spl_magazine_age
The spl_magazine_age function had the implied assumption that it will
remain on its current cpu through its execution. In order to support
preempt enabled kernels, this assumption had to be removed.

The spl_kmem_magazine structure now holds the cpu id of the cpu it is
local to. This allows spl_magazine_age to use this field when scheduling
work to be done by the magazine's local cpu.

Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Issue #98
2012-08-24 09:43:22 -07:00
Richard Yao
6576a1a70d Fix incorrect type in spl_kmem_cache_set_move() parameter
A preprocessor definition renders this harmless. However, it is a good
idea to change this to be consistent.

Signed-off-by: Richard Yao <ryao@cs.stonybrook.edu>
2012-08-01 16:35:18 -07:00
Richard Yao
36811b4430 Detect kernels that honor gfp flags passed to vmalloc()
zfsonlinux/spl@2092cf68d8 used
PF_MEMALLOC to workaround a bug in the Linux kernel where
allocations did not honor the gfp flags passed to vmalloc().
Unfortunately, PF_MEMALLOC has the side effect of permitting
allocations to allocate pages outside of ZONE_NORMAL. This
has been observed to result in the depletion of ZONE_DMA32.

A kernel patch is available in the Gentoo bug tracker for
this issue.

  https://bugs.gentoo.org/show_bug.cgi?id=416685

This negates any benefit PF_MEMALLOC provides, so we introduce
an autotools check to disable the use of PF_MEMALLOC on
systems with patched kernels.

Signed-off-by: Richard Yao <ryao@cs.stonybrook.edu>
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Closes #126
2012-07-11 11:44:27 -07:00
Richard Yao
973e8269bd Constify memory management functions
This prevents warnings in ZFS that were caused by changes necessary to
support PaX patched kernels. When debugging is enabled, these warnings
become build failures.

Signed-off-by: Richard Yao <ryao@cs.stonybrook.edu>
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Closes #131
2012-07-03 16:07:27 -07:00
Brian Behlendorf
b78d4b9d98 Ensure a minimum of one slab is reclaimed
To minimize the chance of triggering an OOM during direct reclaim.
The kmem caches have been improved to make a best effort to reclaim
at least one slab when a reclaim function is registered.  This helps
avoid the case where objects are released but they are spread over
multiple slabs so no memory gets reclaimed.

Care has been taken to avoid deadlocking if the reclaim function
is unable to make forward progress.  Additionally, the reclaim
function may be skipped entirely if there are already free slabs
which can be safely reaped.

Signed-off-by: Prakash Surya <surya1@llnl.gov>
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Closes #107
2012-05-07 11:54:28 -07:00
Brian Behlendorf
06089b9e19 Ensure direct reclaim forward progress
The Linux direct reclaim path uses this out of band value to
determine if forward progress is being made.  Normally this is
incremented by kmem_freepages() which is part of the various
Linux slab implementations.  However, since we are using none
of that infrastructure we're responsible for incrementing this
count.

If no forward progress is detected and a subsequent allocation
fails the OOM killer will be invoked.  If there was forward
progress additional reclaim will be attempted via the page
cache and registerd shrinker until the allocation succeeds.

Signed-off-by: Prakash Surya <surya1@llnl.gov>
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Closes #107
2012-05-07 11:54:19 -07:00
Prakash Surya
c0e0fc14e3 Ignore slab cache age and delay in direct reclaim
When memory pressure triggers direct memory reclaim, a slabs age
and delay should not prevent it from being freed. This patch ensures
these values are ignored, allowing an empty slab to be freed in this
code path no matter the value of its age and delay.

This prevents needless scanning of the partial slabs and has been
observed to significantly reduce the total cpu usage.  In addition,
it should allow for snappier reclaim under memory pressure.

Signed-off-by: Prakash Surya <surya1@llnl.gov>
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Closes #102
2012-05-07 11:50:04 -07:00
Prakash Surya
cef7605c34 Throttle number of freed slabs based on nr_to_scan
Previously, the SPL tried to maintain Solaris semantics by freeing
all available (empty) slabs from its slab caches when the shrinker
was called. This is not desirable when running on Linux. To make
the SPL shrinker more Linux friendly, the actual number of freed
slabs from each of the slab caches is now derived from nr_to_scan
and skc_slab_objs.

Additionally, an accounting bug was fixed in spl_slab_reclaim()
which could cause us to reclaim one more slab than requested.

Signed-off-by: Prakash Surya <surya1@llnl.gov>
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Closes #101
2012-05-07 11:46:15 -07:00
Brian Behlendorf
4b2220f0b9 Add --enable-debug-log configure option
Until now the notion of an internal debug logging infrastructure
was conflated with enabling ASSERT()s.  This patch clarifies things
by cleanly breaking the two subsystem apart.  The result of this
is the following behavior.

--enable-debug      - Enable/disable code wrapped in ASSERT()s.
--disable-debug       ASSERT()s are used to check invariants and
                      are never required for correct operation.
                      They are disabled by default because they
                      may impact performance.

--enable-debug-log  - Enable/disable the debug log infrastructure.
--disable-debug-log   This infrastructure allows the spl code and
                      its consumer to log messages to an in-kernel
                      log.  The granularity of the logging can be
                      controlled by a debug mask.  By default the
                      mask disables most debug messages resulting
                      in a negligible performance impact.  Because
                      of this the debug log is enabled by default.

Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
2012-02-02 11:27:54 -08:00
Brian Behlendorf
5f6c14b1ed Proxmox VE kernel compat, invalidate_inodes()
The Proxmox VE kernel contains a patch which renames the function
invalidate_inodes() to invalidate_inodes_check().  In the process
it adds a 'check' argument and a '#define invalidate_inodes(x)'
compatibility wrapper for legacy callers.  Therefore, if either
of these functions are exported invalidate_inodes() can be
safely used.

Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Closes #58
2011-12-21 14:29:45 -08:00
Brian Behlendorf
fe71c0e567 Linux 3.1 compat, shrink_*cache_memory
As of Linux 3.1 the shrink_dcache_memory and shrink_icache_memory
functions have been removed.  This same task is now accomplished
more cleanly with per super block shrinkers.  This unfortunately
leaves us no easy way to support the dnlc_reduce_cache() function.

This support has always been entirely optional.  So when no
reasonable interface is available allow the dnlc_reduce_cache()
function to effectively become a no-op.

The downside of this change is that it will prevent the zfs arc
meta data limts from being enforced.  However, the current zfs
implementation in this regard is already flawed and needs to
be reworked.  If the arc needs to enfore a meta data limit it
will need to be extended to coordinate directly with the zpl.
This will allow us to drop all this compatibility code and get
more fine grained control over the cache management.

Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Issue #52
2011-11-09 19:36:30 -08:00
Brian Behlendorf
b8b6e4c453 Fix NULL deref in balance_pgdat()
Be careful not to unconditionally clear the PF_MEMALLOC bit in
the task structure.  It may have already been set when entering
kv_alloc() in which case it must remain set on exit.  In
particular the kswapd thread will have PF_MEMALLOC set in
order to prevent it from entering direct reclaim.  By clearing
it we allow the following NULL deref to potentially occur.

  BUG: unable to handle kernel NULL pointer dereference at (null)
  IP: [<ffffffff8109c7ab>] balance_pgdat+0x25b/0x4ff

Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Closes ZFS issue #287
2011-11-03 09:50:22 -07:00
Brian Behlendorf
ecc3981007 Fix various typos in comments
Just clean up some of the typos and spelling mistakes in the
comments of spl-kmem.c.

Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
2011-10-11 10:32:49 -07:00
Gunnar Beutner
8d177c181f Fixed typo in spl_slab_alloc()
The typo did not have any effect (apart from a negligible performance
impact) because skc->skc_flags * KMC_OFFSLAB is always non-null when
at least one bit in skc->skc_flags is set.

Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
2011-10-11 10:03:43 -07:00
Gunnar Beutner
64c075c3f4 Properly destroy work items in spl_kmem_cache_destroy()
In a non-debug build the ASSERT() would be optimized away
which could cause pending work items to not be cancelled.

We must also use cancel_delayed_work_sync() rather than just
cancel_delayed_work() to actually wait until work items have
completed.  Otherwise they might accidentally access free'd
memory.

Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Closes ZFS bugs #279, #62, #363, #418
2011-10-11 09:59:19 -07:00
Brian Behlendorf
a55bcaad18 Linux 3.0: Shrinker compatibility
Update the the wrapper macros for the memory shrinker to handle
this 4th API change.  The callback function now takes a
shrink_control structure.  This is certainly a step in the
right direction but it's annoying to have to accomidate yet
another version of the API.
2011-06-21 14:02:39 -07:00
Brian Behlendorf
9b0f9079d2 Linux 2.6.39 compat, invalidate_inodes()
To resolve a potiential filesystem corruption issue a second
argument was added to invalidate_inodes().  This argument controls
whether dirty inodes are dropped or treated as busy when invalidating
a super block.  When only the legacy API is available the second
argument will be dropped for compatibility.
2011-04-19 09:08:08 -07:00
Brian Behlendorf
e76f4bf11d Add dnlc_reduce_cache() support
Provide the dnlc_reduce_cache() function which attempts to prune
cached entries from the dcache and icache.  After the entries are
pruned any slabs which they may have been using are reaped.

Note the API takes a reclaim percentage but we don't have easy
access to the total number of cache entries to calculate the
reclaim count.  However, in practice this doesn't need to be
exactly correct.  We simply need to reclaim some useful fraction
(but not all) of the cache.  The caller can determine if more
needs to be done.
2011-04-06 20:06:03 -07:00
Brian Behlendorf
495bd532ab Linux shrinker compat
The Linux shrinker has gone through three API changes since 2.6.22.
Rather than force every caller to understand all three APIs this
change consolidates the compatibility code in to the mm-compat.h
header.  The caller then can then use a single spl provided
shrinker API which does the right thing for your kernel.

SPL_SHRINKER_CALLBACK_PROTO(shrinker_callback, cb, nr_to_scan, gfp_mask);
SPL_SHRINKER_DECLARE(shrinker_struct, shrinker_callback, seeks);
spl_register_shrinker(&shrinker_struct);
spl_unregister_shrinker(&&shrinker_struct);
spl_exec_shrinker(&shrinker_struct, nr_to_scan, gfp_mask);
2011-04-06 20:06:03 -07:00
Brian Behlendorf
2092cf68d8 Disable vmalloc() direct reclaim
As part of vmalloc() a __pte_alloc_kernel() allocation may occur.  This
internal allocation does not honor the gfp flags passed to vmalloc().
This means even when vmalloc(GFP_NOFS) is called it is possible that a
synchronous reclaim will occur.  This reclaim can trigger file IO which
can result in a deadlock.  This issue can be avoided by explicitly
setting PF_MEMALLOC on the process to subvert synchronous reclaim when
vmalloc() is called with !__GFP_FS.

An example stack of the deadlock can be found here (1), along with the
upstream kernel bug (2), and the original bug discussion on the
linux-mm mailing list (3).  This code can be properly autoconf'ed
when the upstream bug is fixed.

1) http://github.com/behlendorf/zfs/issues/labels/Vmalloc#issue/133
2) http://bugzilla.kernel.org/show_bug.cgi?id=30702
3) http://marc.info/?l=linux-mm&m=128942194520631&w=4
2011-03-20 15:12:08 -07:00
Brian Behlendorf
914b063133 Linux compat 2.6.37, invalidate_inodes()
In the 2.6.37 kernel the function invalidate_inodes() is no longer
exported for use by modules.  This memory management functionality
is needed to invalidate the inodes attached to a super block without
unmounting the filesystem.

Because this function still exists in the kernel and the prototype
is available is a common header all we strictly need is the symbol
address.  The address is obtained using spl_kallsyms_lookup_name()
and assigned to the variable invalidate_inodes_fn.  Then a #define
is used to replace all instances of invalidate_inodes() with a
call to the acquired address.  All the complexity is hidden behind
HAVE_INVALIDATE_INODES and invalidate_inodes() can be used as usual.

Long term we should try to get this, or another, interface made
available to modules again.
2011-02-23 12:44:32 -08:00
Brian Behlendorf
23aa63cbf5 Fix 2.6.35 shrinker callback API change
As of linux-2.6.35 the shrinker callback API now takes an additional
argument.  The shrinker struct is passed to the callback so that users
can embed the shrinker structure in private data and use container_of()
to access it.  This removes the need to always use global state for the
shrinker.

To handle this we add the SPL_AC_3ARGS_SHRINKER_CALLBACK autoconf
check to properly detect the API.  Then we simply setup a callback
function with the correct number of arguments.  For now we do not make
use of the new 3rd argument.
2010-10-22 14:51:26 -07:00
Brian Behlendorf
2b3543025c Stub out kmem cache defrag API
At some point we are going to need to implement the kmem cache
move callbacks to allow for kmem cache defragmentation.  This
commit simply lays a small part of the API ground work, it does
not actually implement any of this feature.  This is safe for
now because the move callbacks are just an optimization.  Even
if they are registered we don't ever really have to call them.
2010-08-27 14:23:42 -07:00
Brian Behlendorf
41f84a8d56 Strfree() should call kfree() not kmem_free()
Using kmem_free() results in deducting X bytes from the memory
accounting when --enable-debug is set.  Unfortunately, currently
the counterpart kmem_asprintf() and friends do not properly
account for memory allocated, so we must do the same on free.
If we don't then we end up with a negative number of lost bytes
reported when the module is unloaded.

A better long term fix would be to add the accounting in to the
allocation side but that's a project for another day.
2010-07-30 22:20:58 -07:00
Brian Behlendorf
10129680f8 Ensure kmem_alloc() and vmem_alloc() never fail
The Solaris semantics for kmem_alloc() and vmem_alloc() are that they
must never fail when called with KM_SLEEP.  They may only fail if
called with KM_NOSLEEP otherwise they must block until memory is
available.  This is quite different from how the Linux memory
allocators work, under Linux a memory allocation failure is always
possible and must be dealt with.

At one point in the past the kmem code did properly implement this
behavior, however as the code evolved this behavior was overlooked
in places.  This patch goes through all three implementations of
the kmem/vmem allocation functions and ensures that they will all
block in the KM_SLEEP case when memory is not available.  They
may still fail in the KM_NOSLEEP case in which case the caller
is responsible for handling the failure.

Special care is taken in vmalloc_nofail() to avoid thrashing the
system on the virtual address space spin lock.  The down side of
course is if you do see a failure here, which is unlikely for
64-bit systems, your allocation will delay for an entire second.
Still this is preferable to locking up your system and it is the
best we can do given the constraints.

Additionally, the code was cleaned up to be much more readable
and comments were added to describe the various kmem-debug-*
configure options.  The default configure options remain:
"--enable-debug-kmem --disable-debug-kmem-tracking"
2010-07-26 15:47:55 -07:00
Ricardo M. Correia
2c762de830 Fix buggy kmem_{v}asprintf() functions
When the kvasprintf() call fails they should reset the arguments
by calling va_start()/va_copy() and va_end() inside the loop,
otherwise they'll try to read more arguments rather than starting
over and reading them from the beginning.

Signed-off-by: Ricardo M. Correia <ricardo.correia@oracle.com>
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
2010-07-20 13:51:46 -07:00
Brian Behlendorf
b17edc10a9 Prefix all SPL debug macros with 'S'
To avoid conflicts with symbols defined by dependent packages
all debugging symbols have been prefixed with a 'S' for SPL.
Any dependent package needing to integrate with the SPL debug
should include the spl-debug.h header and use the 'S' prefixed
macros.  They must also build with DEBUG defined.
2010-07-20 13:30:40 -07:00
Brian Behlendorf
55abb0929e Split <sys/debug.h> header
To avoid symbol conflicts with dependent packages the debug
header must be split in to several parts.  The <sys/debug.h>
header now only contains the Solaris macro's such as ASSERT
and VERIFY.  The spl-debug.h header contain the spl specific
debugging infrastructure and should be included by any package
which needs to use the spl logging.  Finally the spl-trace.h
header contains internal data structures only used for the log
facility and should not be included by anythign by spl-debug.c.

This way dependent packages can include the standard Solaris
headers without picking up any SPL debug macros.  However, if
the dependant package want to integrate with the SPL debugging
subsystem they can then explicitly include spl-debug.h.

Along with this change I have dropped the CHECK_STACK macros
because the upstream Linux kernel now has much better stack
depth checking built in and we don't need this complexity.

Additionally SBUG has been replaced with PANIC and provided as
part of the Solaris macro set.  While the Solaris version is
really panic() that conflicts with the Linux kernel so we'll
just have to make due to PANIC.  It should rarely be called
directly, the prefered usage would be an ASSERT or VERIFY.

There's lots of change here but this cleanup was overdue.
2010-07-20 13:29:35 -07:00
Brian Behlendorf
e6de04b73c Add kmem_vasprintf function
We might as well have both asprintf() variants.  This allows us
to safely pass a va_list through several levels of the stack
using va_copy() instead of va_start().
2010-06-24 09:41:59 -07:00
Brian Behlendorf
3cb77549d1 Update warnings in kmem debug code
This fix was long overdue.  Most of the ground work was laid long
ago to include the exact function and line number in the error message
which there was an issue with a memory allocation call.  However,
probably due to lack of time at the moment that informatin never
made it in to the error message.  This patch fixes that and trys
to standardize the kmem debug messages as well.
2010-06-16 16:01:16 -07:00
Brian Behlendorf
b868e22f05 Add kmem_asprintf(), strfree(), strdup(), and minor cleanup.
This patch adds three missing Solaris functions: kmem_asprintf(), strfree(),
and strdup().  They are all implemented as a thin layer which just calls
their Linux counterparts.  As part of this an autoconf check for kvasprintf
was added because it does not appear in older kernels.  If the kernel does
not provide it then spl-generic implements it.

Additionally the dead DEBUG_KMEM_UNIMPLEMENTED code was removed to clean
things up and make the kmem.h a little more readable.
2010-06-11 15:57:25 -07:00
Brian Behlendorf
23d91792ef Use KM_NODEBUG macro in preference to __GFP_NOWARN. 2010-05-20 14:16:59 -07:00
Brian Behlendorf
5198ea0e71 Remove kmem_set_warning() interface replace with __GFP_NOWARN flag.
Remove the kmem_set_warning() hack used by the kmem-splat regression
tests with a per-allocation flag called __GFP_NOWARN.  This matches
the lower level linux flag of similar by slightly different function.
The idea is you can then explicitly set this flag on requests where
you know your breaking the max 8k rule but you need/want to do it
anyway.

This is currently used by the regression tests where we intentionally
push things to the limit but don't want the log noise.  Additionally,
we are forced to use it in spl_kmem_cache_create() because by default
NR_CPUS is very large and theres no easy way to handle that.

Finally, I've added a stack_dump() call to the warning when it is
trigger to make to clear exactly where the allocation is taking place.
2010-05-19 16:53:13 -07:00
Brian Behlendorf
716154c592 Public Release Prep
Updated AUTHORS, COPYING, DISCLAIMER, and INSTALL files.  Added
standardized headers to all source file to clearly indicate the
copyright, license, and to give credit where credit is due.
2010-05-17 15:18:00 -07:00
Brian Behlendorf
aa600d8a38 Reduce max kmem based slab size
Allowing MAX_ORDER-1 sized allocations for kmem based slabs have
been observed to result in deadlocks.  To help prvent this limit
max kmem based slab size to MAX_ORDER-3.  Just for the record
callers should not be creating slabs like this, but if they do
we should still handle it as safely as we can.
2010-03-18 13:39:51 -07:00
Brian Behlendorf
ef1c7a0691 Strip __GFP_ZERO from kmalloc it is not available for older kernels.
This is needed to avoid a BUG_ON() on RHEL5.4 kernel 2.6.18-164.6.1,
since __GFP_ZERO is not a valid flag for kmalloc().
2009-12-23 12:57:10 -08:00
Brian Behlendorf
d04c8a563c Atomic64 compatibility for 32-bit systems without kernel support.
This patch is another step towards updating the code to handle the
32-bit kernels which I have not been regularly testing.  This changes
do not really impact the common case I'm expected which is the latest
kernel running on an x86_64 arch.

Until the linux-2.6.31 kernel the x86 arch did not have support for
64-bit atomic operations.  Additionally, the new atomic_compat.h support
for this case was wrong because it embedded a spinlock in the atomic
variable which must always and only be 64-bits total.  To handle these
32-bit issues we now simply fall back to the --enable-atomic-spinlock
implementation if the kernel does not provide the 64-bit atomic funcs.

The second issue this patch addresses is the DEBUG_KMEM assumption that
there will always be atomic64 funcs available.  On 32-bit archs this may
not be true, and actually that's just fine.  In that case the kernel will
will never be able to allocate more the 32-bits worth anyway.  So just
check if atomic64 funcs are available, if they are not it means this
is a 32-bit machine and we can safely use atomic_t's instead.
2009-12-04 15:54:12 -08:00
Brian Behlendorf
8b45dda2bc Linux 2.6.31 kmem cache alignment fixes and cleanup.
The big fix here is the removal of kmalloc() in kv_alloc().  It used
to be true in previous kernels that kmallocs over PAGE_SIZE would
always be pages aligned.  This is no longer true atleast in 2.6.31
there are no longer any alignment expectations.  Since kv_alloc()
requires the resulting address to be page align we no only either
directly allocate pages in the KMC_KMEM case, or directly call
__vmalloc() both of which will always return a page aligned address.
Additionally, to avoid wasting memory size is always a power of two.

As for cleanup several helper functions were introduced to calculate
the aligned sizes of various data structures.  This helps ensure no
case is accidentally missed where the alignment needs to be taken in
to account.  The helpers now use P2ROUNDUP_TYPE instead of P2ROUNDUP
which is safer since the type will be explict and we no longer count
on the compiler to auto promote types hopefully as we expected.

Always wnforce minimum (SPL_KMEM_CACHE_ALIGN) and maximum (PAGE_SIZE)
alignment restrictions at cache creation time.

Use SPL_KMEM_CACHE_ALIGN in splat alignment test.
2009-11-13 11:12:43 -08:00
Brian Behlendorf
c89fdee4d3 Remove __GFP_NOFAIL in kmem and retry internally.
As of 2.6.31 it's clear __GFP_NOFAIL should no longer be used and it
may disappear from the kernel at any time.  To handle this I have simply
added *_nofail wrappers in the kmem implementation which perform the
retry for non-atomic allocations.

From linux-2.6.31 mm/page_alloc.c:1166
/*
 * __GFP_NOFAIL is not to be used in new code.
 *
 * All __GFP_NOFAIL callers should be fixed so that they
 * properly detect and handle allocation failures.
 *
 * We most definitely don't want callers attempting to
 * allocate greater than order-1 page units with
 * __GFP_NOFAIL.
 */
WARN_ON_ONCE(order > 1);
2009-11-12 15:11:24 -08:00
Brian Behlendorf
baf2979ed3 Linux 2.6.31 Compatibility Updates
SPL_AC_2ARGS_SET_FS_PWD macro updated to explicitly include
linux/fs_struct.h which was dropped from linux/sched.h.

min_wmark_pages, low_wmark_pages, high_wmark_pages macros
introduced in newer kernels.  For older kernels mm_compat.h
was introduced to define them as needed as direct mappings
to per zone min_pages, low_pages, max_pages.
2009-11-10 14:06:57 -08:00
Brian Behlendorf
055ffd98cf Autoconf --enable-debug-* cleanup
Cleanup the --enable-debug-* configure options, this has been pending
for quite some time and I am glad I finally got to it.  To summerize:

1) All SPL_AC_DEBUG_* macros were updated to be a more autoconf
friendly.  This mainly involved shift to the GNU approved usage of
AC_ARG_ENABLE and ensuring AS_IF is used rather than directly using
an if [ test ] construct.

2) --enable-debug-kmem=yes by default.  This simply enabled keeping
a running tally of total memory allocated and freed and reporting a
memory leak if there was one at module unload.  Additionally, it
ensure /proc/spl/kmem/slab will exist by default which is handy.
The overhead is low for this and it should not impact performance.

3) --enable-debug-kmem-tracking=no by default.  This option was added
to provide a configure option to enable to detailed memory allocation
tracking.  This support was always there but you had to know where to
turn it on.  By default this support is disabled because it is known
to badly hurt performence, however it is invaluable when chasing a
memory leak.

4) --enable-debug-kstat removed.  After further reflection I can't see
why you would ever really want to turn this support off.  It is now
always on which had the nice side effect of simplifying the proc handling
code in spl-proc.c.  We can now always assume the top level directory
will be there.

5) --enable-debug-callb removed.  This never really did anything, it was
put in provisionally because it might have been needed.  It turns out
it was not so I am just removing it to prevent confusion.
2009-10-30 13:58:51 -07:00
Brian Behlendorf
6ae7fef5b9 Update global_page_state() support for 2.6.29 kernels.
Basically everything we need to monitor the global memory state of
the system is now cleanly available via global_page_state().  The
problem is that this interface is still fairly recent, and there
has been one change in the page state enum which we need to handle.
These changes basically boil down to the following:
- If global_page_state() is available we should use it.  Several
  autoconf checks have been added to detect the correct enum names.
- If global_page_state() is not available check to see if
  get_zone_counts() symbol is available and use that.
- If the get_zone_counts() symbol is not exported we have no choice
  be to dynamically aquire it at load time.  This is an absolute
  last resort for old kernel which we don't want to patch to
  cleanly export the symbol.
2009-07-28 15:06:42 -07:00
Brian Behlendorf
124ca8a5a9 SLES10 Fixes (part 7)
- Initial SLES testing uncovered a long standing bug in the debug
  tracing.  The tcd_for_each() macro expected a NULL to terminate
  the trace_data[i] array but this was only ever true due to luck.
  All trace_data[] iterators are now properly capped by TCD_TYPE_MAX.
- SPLAT_MAJOR 229 conflicted with a 'hvc' device on my SLES system.
  Since this was always an arbitrary choice I picked something else.
- The HAVE_PGDAT_LIST case should set pgdat_list_addr to the value stored
  at the address of the memory location returned by kallsyms_lookup_name().
2009-05-20 15:30:13 -07:00
Brian Behlendorf
5232d256b4 SLES10 Fixes (part 6)
- Prior to 2.6.17 there were no *_pgdat helper functions in mm/mmzone.c.
  Instead for_each_zone() operated directly on pgdat_list which may or
  may not have been exported depending on how your kernel was compiled.
  Now new configure checks determine if you have the helpers or not, and
  if the needed symbols are exported.  If they are not exported then they
  are dynamically aquired at runtime by kallsyms_lookup_name().
2009-05-20 14:23:13 -07:00