mirror of
https://git.proxmox.com/git/mirror_zfs.git
synced 2024-11-18 02:20:59 +03:00
14b56624c8
4 Commits
Author | SHA1 | Message | Date | |
---|---|---|---|---|
Matthew Ahrens
|
325d288c5d |
Add fast path for zfs_ioc_space_snaps() handling of empty_bpobj
When there are many snapshots, calls to zfs_ioc_space_snaps() (e.g. from `zfs destroy -nv pool/fs@snap1%snap10000`) can be very slow, resulting in poor performance because we are holding the dp_config_rwlock the entire time, blocking spa_sync() from continuing. With around ten thousand snapshots, we've seen up to 500 seconds in this ioctl, iterating over up to 50,000,000 bpobjs, ~99% of which are the empty bpobj. By creating a fast path for zfs_ioc_space_snaps() handling of the empty_bpobj, we can achieve a ~5x performance improvement of this ioctl (when there are many snapshots, and the deadlist is mostly empty_bpobj's). Reviewed-by: Pavel Zakharov <pavel.zakharov@delphix.com> Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov> Reviewed-by: Paul Dagnelie <pcd@delphix.com> Signed-off-by: Matthew Ahrens <mahrens@delphix.com> External-issue: DLPX-58348 Closes #8744 |
||
Sara Hartse
|
37f03da8ba |
Fast Clone Deletion
Deleting a clone requires finding blocks are clone-only, not shared with the snapshot. This was done by traversing the entire block tree which results in a large performance penalty for sparsely written clones. This is new method keeps track of clone blocks when they are modified in a "Livelist" so that, when it’s time to delete, the clone-specific blocks are already at hand. We see performance improvements because now deletion work is proportional to the number of clone-modified blocks, not the size of the original dataset. Reviewed-by: Sean Eric Fagan <sef@ixsystems.com> Reviewed-by: Matt Ahrens <matt@delphix.com> Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov> Reviewed-by: Serapheim Dimitropoulos <serapheim@delphix.com> Signed-off-by: Sara Hartse <sara.hartse@delphix.com> Closes #8416 |
||
Matthew Ahrens
|
a1d477c24c |
OpenZFS 7614, 9064 - zfs device evacuation/removal
OpenZFS 7614 - zfs device evacuation/removal OpenZFS 9064 - remove_mirror should wait for device removal to complete This project allows top-level vdevs to be removed from the storage pool with "zpool remove", reducing the total amount of storage in the pool. This operation copies all allocated regions of the device to be removed onto other devices, recording the mapping from old to new location. After the removal is complete, read and free operations to the removed (now "indirect") vdev must be remapped and performed at the new location on disk. The indirect mapping table is kept in memory whenever the pool is loaded, so there is minimal performance overhead when doing operations on the indirect vdev. The size of the in-memory mapping table will be reduced when its entries become "obsolete" because they are no longer used by any block pointers in the pool. An entry becomes obsolete when all the blocks that use it are freed. An entry can also become obsolete when all the snapshots that reference it are deleted, and the block pointers that reference it have been "remapped" in all filesystems/zvols (and clones). Whenever an indirect block is written, all the block pointers in it will be "remapped" to their new (concrete) locations if possible. This process can be accelerated by using the "zfs remap" command to proactively rewrite all indirect blocks that reference indirect (removed) vdevs. Note that when a device is removed, we do not verify the checksum of the data that is copied. This makes the process much faster, but if it were used on redundant vdevs (i.e. mirror or raidz vdevs), it would be possible to copy the wrong data, when we have the correct data on e.g. the other side of the mirror. At the moment, only mirrors and simple top-level vdevs can be removed and no removal is allowed if any of the top-level vdevs are raidz. Porting Notes: * Avoid zero-sized kmem_alloc() in vdev_compact_children(). The device evacuation code adds a dependency that vdev_compact_children() be able to properly empty the vdev_child array by setting it to NULL and zeroing vdev_children. Under Linux, kmem_alloc() and related functions return a sentinel pointer rather than NULL for zero-sized allocations. * Remove comment regarding "mpt" driver where zfs_remove_max_segment is initialized to SPA_MAXBLOCKSIZE. Change zfs_condense_indirect_commit_entry_delay_ticks to zfs_condense_indirect_commit_entry_delay_ms for consistency with most other tunables in which delays are specified in ms. * ZTS changes: Use set_tunable rather than mdb Use zpool sync as appropriate Use sync_pool instead of sync Kill jobs during test_removal_with_operation to allow unmount/export Don't add non-disk names such as "mirror" or "raidz" to $DISKS Use $TEST_BASE_DIR instead of /tmp Increase HZ from 100 to 1000 which is more common on Linux removal_multiple_indirection.ksh Reduce iterations in order to not time out on the code coverage builders. removal_resume_export: Functionally, the test case is correct but there exists a race where the kernel thread hasn't been fully started yet and is not visible. Wait for up to 1 second for the removal thread to be started before giving up on it. Also, increase the amount of data copied in order that the removal not finish before the export has a chance to fail. * MMP compatibility, the concept of concrete versus non-concrete devices has slightly changed the semantics of vdev_writeable(). Update mmp_random_leaf_impl() accordingly. * Updated dbuf_remap() to handle the org.zfsonlinux:large_dnode pool feature which is not supported by OpenZFS. * Added support for new vdev removal tracepoints. * Test cases removal_with_zdb and removal_condense_export have been intentionally disabled. When run manually they pass as intended, but when running in the automated test environment they produce unreliable results on the latest Fedora release. They may work better once the upstream pool import refectoring is merged into ZoL at which point they will be re-enabled. Authored by: Matthew Ahrens <mahrens@delphix.com> Reviewed-by: Alex Reece <alex@delphix.com> Reviewed-by: George Wilson <george.wilson@delphix.com> Reviewed-by: John Kennedy <john.kennedy@delphix.com> Reviewed-by: Prakash Surya <prakash.surya@delphix.com> Reviewed by: Richard Laager <rlaager@wiktel.com> Reviewed by: Tim Chase <tim@chase2k.com> Reviewed by: Brian Behlendorf <behlendorf1@llnl.gov> Approved by: Garrett D'Amore <garrett@damore.org> Ported-by: Tim Chase <tim@chase2k.com> Signed-off-by: Tim Chase <tim@chase2k.com> OpenZFS-issue: https://www.illumos.org/issues/7614 OpenZFS-commit: https://github.com/openzfs/openzfs/commit/f539f1eb Closes #6900 |
||
Brian Behlendorf
|
6283f55ea1 |
Support custom build directories and move includes
One of the neat tricks an autoconf style project is capable of is allow configurion/building in a directory other than the source directory. The major advantage to this is that you can build the project various different ways while making changes in a single source tree. For example, this project is designed to work on various different Linux distributions each of which work slightly differently. This means that changes need to verified on each of those supported distributions perferably before the change is committed to the public git repo. Using nfs and custom build directories makes this much easier. I now have a single source tree in nfs mounted on several different systems each running a supported distribution. When I make a change to the source base I suspect may break things I can concurrently build from the same source on all the systems each in their own subdirectory. wget -c http://github.com/downloads/behlendorf/zfs/zfs-x.y.z.tar.gz tar -xzf zfs-x.y.z.tar.gz cd zfs-x-y-z ------------------------- run concurrently ---------------------- <ubuntu system> <fedora system> <debian system> <rhel6 system> mkdir ubuntu mkdir fedora mkdir debian mkdir rhel6 cd ubuntu cd fedora cd debian cd rhel6 ../configure ../configure ../configure ../configure make make make make make check make check make check make check This change also moves many of the include headers from individual incude/sys directories under the modules directory in to a single top level include directory. This has the advantage of making the build rules cleaner and logically it makes a bit more sense. |