Adding O_DIRECT support to ZFS to bypass the ARC for writes/reads.
O_DIRECT support in ZFS will always ensure there is coherency between
buffered and O_DIRECT IO requests. This ensures that all IO requests,
whether buffered or direct, will see the same file contents at all
times. Just as in other FS's , O_DIRECT does not imply O_SYNC. While
data is written directly to VDEV disks, metadata will not be synced
until the associated TXG is synced.
For both O_DIRECT read and write request the offset and request sizes,
at a minimum, must be PAGE_SIZE aligned. In the event they are not,
then EINVAL is returned unless the direct property is set to always (see
below).
For O_DIRECT writes:
The request also must be block aligned (recordsize) or the write
request will take the normal (buffered) write path. In the event that
request is block aligned and a cached copy of the buffer in the ARC,
then it will be discarded from the ARC forcing all further reads to
retrieve the data from disk.
For O_DIRECT reads:
The only alignment restrictions are PAGE_SIZE alignment. In the event
that the requested data is in buffered (in the ARC) it will just be
copied from the ARC into the user buffer.
For both O_DIRECT writes and reads the O_DIRECT flag will be ignored in
the event that file contents are mmap'ed. In this case, all requests
that are at least PAGE_SIZE aligned will just fall back to the buffered
paths. If the request however is not PAGE_SIZE aligned, EINVAL will
be returned as always regardless if the file's contents are mmap'ed.
Since O_DIRECT writes go through the normal ZIO pipeline, the
following operations are supported just as with normal buffered writes:
Checksum
Compression
Encryption
Erasure Coding
There is one caveat for the data integrity of O_DIRECT writes that is
distinct for each of the OS's supported by ZFS.
FreeBSD - FreeBSD is able to place user pages under write protection so
any data in the user buffers and written directly down to the
VDEV disks is guaranteed to not change. There is no concern
with data integrity and O_DIRECT writes.
Linux - Linux is not able to place anonymous user pages under write
protection. Because of this, if the user decides to manipulate
the page contents while the write operation is occurring, data
integrity can not be guaranteed. However, there is a module
parameter `zfs_vdev_direct_write_verify` that controls the
if a O_DIRECT writes that can occur to a top-level VDEV before
a checksum verify is run before the contents of the I/O buffer
are committed to disk. In the event of a checksum verification
failure the write will return EIO. The number of O_DIRECT write
checksum verification errors can be observed by doing
`zpool status -d`, which will list all verification errors that
have occurred on a top-level VDEV. Along with `zpool status`, a
ZED event will be issues as `dio_verify` when a checksum
verification error occurs.
ZVOLs and dedup is not currently supported with Direct I/O.
A new dataset property `direct` has been added with the following 3
allowable values:
disabled - Accepts O_DIRECT flag, but silently ignores it and treats
the request as a buffered IO request.
standard - Follows the alignment restrictions outlined above for
write/read IO requests when the O_DIRECT flag is used.
always - Treats every write/read IO request as though it passed
O_DIRECT and will do O_DIRECT if the alignment restrictions
are met otherwise will redirect through the ARC. This
property will not allow a request to fail.
There is also a module parameter zfs_dio_enabled that can be used to
force all reads and writes through the ARC. By setting this module
parameter to 0, it mimics as if the direct dataset property is set to
disabled.
Reviewed-by: Brian Behlendorf <behlendorf@llnl.gov>
Reviewed-by: Alexander Motin <mav@FreeBSD.org>
Reviewed-by: Tony Hutter <hutter2@llnl.gov>
Signed-off-by: Brian Atkinson <batkinson@lanl.gov>
Co-authored-by: Mark Maybee <mark.maybee@delphix.com>
Co-authored-by: Matt Macy <mmacy@FreeBSD.org>
Co-authored-by: Brian Behlendorf <behlendorf@llnl.gov>
Closes#10018
There has been a bugzilla PR#147881 requesting this
for a long time (14 years!). It extends the syntax of
the ZFS shanenfs property (for FreeBSD only) to allow
multiple sets of options for different hosts/nets,
separated by ';'s.
Signed-off-by: Rick Macklem <rmacklem@FreeBSD.org>
Reviewed-by: Alexander Motin <mav@FreeBSD.org>
Reviewed-by: Tino Reichardt <milky-zfs@mcmilk.de>
Reviewed-by: Tony Hutter <hutter2@llnl.gov>
The ZFS module parameter name is zfs_prefetch_disable, not
zfs_disable_prefetch.
Signed-off-by: Peter Doherty <peterd@acranox.org>
Reviewed-by: Alexander Motin <mav@FreeBSD.org>
Reviewed-by: Tino Reichardt <milky-zfs@mcmilk.de>
Reviewed-by: Tony Hutter <hutter2@llnl.gov>
Currently, zvol threading can be switched through the zvol_request_sync
module parameter system-wide. By making it a zvol property, zvol
threading can be switched per zvol.
Reviewed-by: Tony Hutter <hutter2@llnl.gov>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Reviewed-by: Alexander Motin <mav@FreeBSD.org>
Signed-off-by: Ameer Hamza <ahamza@ixsystems.com>
Closes#15409
ZFS prefetch is currently governed by the zfs_prefetch_disable
tunable. However, this is a module-wide settings - if a specific
dataset benefits from prefetch, while others have issue with it,
an optimal solution does not exists.
This commit introduce the "prefetch" tri-state property, which enable
granular control (at dataset/volume level) for prefetching.
This patch does not remove the zfs_prefetch_disable, which remains
a system-wide switch for enable/disable prefetch. However, to avoid
duplication, it would be preferable to deprecate and then remove
the module tunable.
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Reviewed-by: Alexander Motin <mav@FreeBSD.org>
Reviewed-by: Ameer Hamza <ahamza@ixsystems.com>
Signed-off-by: Gionatan Danti <g.danti@assyoma.it>
Co-authored-by: Gionatan Danti <g.danti@assyoma.it>
Closes#15237Closes#15436
This commit adds '-u' flag for zfs set operation. With this flag,
mountpoint, sharenfs and sharesmb properties can be updated
without actually mounting or sharing the dataset.
Previously, if dataset was unmounted, and mountpoint property was
updated, dataset was not mounted after the update. This behavior
is changed in #15240. We mount the dataset whenever mountpoint
property is updated, regardless if it's mounted or not.
To provide the user with option to keep the dataset unmounted and
still update the mountpoint without mounting the dataset, '-u'
flag can be used.
If any of mountpoint, sharenfs or sharesmb properties are updated
with '-u' flag, the property is set to desired value but the
operation to (re/un)mount and/or (re/un)share the dataset is not
performed and dataset remains as it was before.
Reviewed-by: Alexander Motin <mav@FreeBSD.org>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Umer Saleem <usaleem@ixsystems.com>
Closes#15322
- Distribute zfs-[un]jail.8 on FreeBSD and zfs-[un]zone.8 on Linux
- zfsprops.7: mirror zoned/jailed, only available on respective platforms
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Ahelenia Ziemiańska <nabijaczleweli@nabijaczleweli.xyz>
Closes#15161
Correct new mandoc errors.
```
STYLE: input text line longer than 80 bytes
STYLE: no blank before trailing delimiter
```
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Reviewed-by: Richard Yao <richard.yao@alumni.stonybrook.edu>
Reviewed-by: George Melikov <mail@gmelikov.ru>
Signed-off-by: szubersk <szuberskidamian@gmail.com>
Closes#14148
Currently, additional/extra copies are created for metadata in
addition to the redundancy provided by the pool(mirror/raidz/draid),
due to this 2 times more space is utilized per inode and this decreases
the total number of inodes that can be created in the filesystem. By
setting redundant_metadata to none, no additional copies of metadata
are created, hence can reduce the space consumed by the additional
metadata copies and increase the total number of inodes that can be
created in the filesystem. Additionally, this can improve file create
performance due to the reduced amount of metadata which needs
to be written.
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Reviewed-by: Dipak Ghosh <dipak.ghosh@hpe.com>
Signed-off-by: Akash B <akash-b@hpe.com>
Closes#13680
Currently, snapshots_changed property is stored in dd_props_zapobj, due
to which the property is assumed to be local. This causes a difference
in behavior with respect to other readonly properties.
This commit stores the snapshots_changed property in dd_object. Source
is not set to local in this case, which makes it consistent with other
readonly properties.
This commit also updates the date string format to include seconds.
Reviewed-by: Ryan Moeller <ryan@iXsystems.com>
Reviewed-by: Alexander Motin <mav@FreeBSD.org>
Signed-off-by: Umer Saleem <usaleem@ixsystems.com>
Closes#13785
Linux sets relatime on mount by default for any file system,
but relatime=off in ZFS disables it explicitly.
Let's be consistent with other file systems on Linux.
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: George Melikov <mail@gmelikov.ru>
Closes#13614
Make dd_snap_cmtime property persistent across mount and unmount
operations by storing in ZAP and restore the value from ZAP on hold
into dd_snap_cmtime instead of updating it.
Expose dd_snap_cmtime as 'snapshots_changed' property that provides a
mechanism to quickly determine whether snapshot list for dataset has
changed without having to mount a dataset or iterate the snapshot list.
It specifies the time at which a snapshot for a dataset was last
created or deleted. This allows us to be more efficient how often we
query snapshots.
Reviewed-by: Ryan Moeller <ryan@iXsystems.com>
Reviewed-by: Alexander Motin <mav@FreeBSD.org>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Umer Saleem <usaleem@ixsystems.com>
Closes#13635
This allows ZFS datasets to be delegated to a user/mount namespace
Within that namespace, only the delegated datasets are visible
Works very similarly to Zones/Jailes on other ZFS OSes
As a user:
```
$ unshare -Um
$ zfs list
no datasets available
$ echo $$
1234
```
As root:
```
# zfs list
NAME ZONED MOUNTPOINT
containers off /containers
containers/host off /containers/host
containers/host/child off /containers/host/child
containers/host/child/gchild off /containers/host/child/gchild
containers/unpriv on /unpriv
containers/unpriv/child on /unpriv/child
containers/unpriv/child/gchild on /unpriv/child/gchild
# zfs zone /proc/1234/ns/user containers/unpriv
```
Back to the user namespace:
```
$ zfs list
NAME USED AVAIL REFER MOUNTPOINT
containers 129M 47.8G 24K /containers
containers/unpriv 128M 47.8G 24K /unpriv
containers/unpriv/child 128M 47.8G 128M /unpriv/child
```
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Will Andrews <will.andrews@klarasystems.com>
Signed-off-by: Allan Jude <allan@klarasystems.com>
Signed-off-by: Mateusz Piotrowski <mateusz.piotrowski@klarasystems.com>
Co-authored-by: Allan Jude <allan@klarasystems.com>
Co-authored-by: Mateusz Piotrowski <mateusz.piotrowski@klarasystems.com>
Sponsored-by: Buddy <https://buddy.works>
Closes#12263
This commit adds BLAKE3 checksums to OpenZFS, it has similar
performance to Edon-R, but without the caveats around the latter.
Homepage of BLAKE3: https://github.com/BLAKE3-team/BLAKE3
Wikipedia: https://en.wikipedia.org/wiki/BLAKE_(hash_function)#BLAKE3
Short description of Wikipedia:
BLAKE3 is a cryptographic hash function based on Bao and BLAKE2,
created by Jack O'Connor, Jean-Philippe Aumasson, Samuel Neves, and
Zooko Wilcox-O'Hearn. It was announced on January 9, 2020, at Real
World Crypto. BLAKE3 is a single algorithm with many desirable
features (parallelism, XOF, KDF, PRF and MAC), in contrast to BLAKE
and BLAKE2, which are algorithm families with multiple variants.
BLAKE3 has a binary tree structure, so it supports a practically
unlimited degree of parallelism (both SIMD and multithreading) given
enough input. The official Rust and C implementations are
dual-licensed as public domain (CC0) and the Apache License.
Along with adding the BLAKE3 hash into the OpenZFS infrastructure a
new benchmarking file called chksum_bench was introduced. When read
it reports the speed of the available checksum functions.
On Linux: cat /proc/spl/kstat/zfs/chksum_bench
On FreeBSD: sysctl kstat.zfs.misc.chksum_bench
This is an example output of an i3-1005G1 test system with Debian 11:
implementation 1k 4k 16k 64k 256k 1m 4m
edonr-generic 1196 1602 1761 1749 1762 1759 1751
skein-generic 546 591 608 615 619 612 616
sha256-generic 240 300 316 314 304 285 276
sha512-generic 353 441 467 476 472 467 426
blake3-generic 308 313 313 313 312 313 312
blake3-sse2 402 1289 1423 1446 1432 1458 1413
blake3-sse41 427 1470 1625 1704 1679 1607 1629
blake3-avx2 428 1920 3095 3343 3356 3318 3204
blake3-avx512 473 2687 4905 5836 5844 5643 5374
Output on Debian 5.10.0-10-amd64 system: (Ryzen 7 5800X)
implementation 1k 4k 16k 64k 256k 1m 4m
edonr-generic 1840 2458 2665 2719 2711 2723 2693
skein-generic 870 966 996 992 1003 1005 1009
sha256-generic 415 442 453 455 457 457 457
sha512-generic 608 690 711 718 719 720 721
blake3-generic 301 313 311 309 309 310 310
blake3-sse2 343 1865 2124 2188 2180 2181 2186
blake3-sse41 364 2091 2396 2509 2463 2482 2488
blake3-avx2 365 2590 4399 4971 4915 4802 4764
Output on Debian 5.10.0-9-powerpc64le system: (POWER 9)
implementation 1k 4k 16k 64k 256k 1m 4m
edonr-generic 1213 1703 1889 1918 1957 1902 1907
skein-generic 434 492 520 522 511 525 525
sha256-generic 167 183 187 188 188 187 188
sha512-generic 186 216 222 221 225 224 224
blake3-generic 153 152 154 153 151 153 153
blake3-sse2 391 1170 1366 1406 1428 1426 1414
blake3-sse41 352 1049 1212 1174 1262 1258 1259
Output on Debian 5.10.0-11-arm64 system: (Pi400)
implementation 1k 4k 16k 64k 256k 1m 4m
edonr-generic 487 603 629 639 643 641 641
skein-generic 271 299 303 308 309 309 307
sha256-generic 117 127 128 130 130 129 130
sha512-generic 145 165 170 172 173 174 175
blake3-generic 81 29 71 89 89 89 89
blake3-sse2 112 323 368 379 380 371 374
blake3-sse41 101 315 357 368 369 364 360
Structurally, the new code is mainly split into these parts:
- 1x cross platform generic c variant: blake3_generic.c
- 4x assembly for X86-64 (SSE2, SSE4.1, AVX2, AVX512)
- 2x assembly for ARMv8 (NEON converted from SSE2)
- 2x assembly for PPC64-LE (POWER8 converted from SSE2)
- one file for switching between the implementations
Note the PPC64 assembly requires the VSX instruction set and the
kfpu_begin() / kfpu_end() calls on PowerPC were updated accordingly.
Reviewed-by: Felix Dörre <felix@dogcraft.de>
Reviewed-by: Ahelenia Ziemiańska <nabijaczleweli@nabijaczleweli.xyz>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Tino Reichardt <milky-zfs@mcmilk.de>
Co-authored-by: Rich Ercolani <rincebrain@gmail.com>
Closes#10058Closes#12918
A simple change, but so many tests break with it,
and those are the majority of this.
Reviewed-by: George Melikov <mail@gmelikov.ru>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Rich Ercolani <rincebrain@gmail.com>
Closes#13078
The code is integrated, builds fine, runs fine, there's not really
any reason not to.
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Reviewed-by: Ryan Moeller <ryan@ixsystems.com>
Reviewed-by: Allan Jude <allan@klarasystems.com>
Reviewed-by: Tony Nguyen <tony.nguyen@delphix.com>
Signed-off-by: Rich Ercolani <rincebrain@gmail.com>
Closes#12735
This change primarily seeks to make implicit documentation explicit, as
it is not outright stated that options should be comma-separated, nor is
there a reason given for it.
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Daniel Ebdrup Jensen <debdrup@FreeBSD.org>
Closes#12579
Many things has changed since previous default was set many years ago.
Nowadays 8KB does not allow adequate compression or even decent space
efficiency on many of pools due to 4KB disk physical block rounding,
especially on RAIDZ and DRAID. It effectively limits write throughput
to only 2-3GB/s (250-350K blocks/s) due to sync thread, allocation,
vdev queue and other block rate bottlenecks. It keeps L2ARC expensive
despite many optimizations and dedup just unrealistic.
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Reviewed-by: George Melikov <mail@gmelikov.ru>
Signed-off-by: Alexander Motin <mav@FreeBSD.org>
Closes#12406