We don't need to include stdio_ext.h
Reviewed-by: Igor Kozhukhov <igor@dilos.org>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Matt Macy <mmacy@FreeBSD.org>
Closes#9483
Not all versions of sed have the --in-place flag. Detect support for
the flag during ./configure and provide a fallback mechanism for those
systems where sed's behavior differs. The autoconf variable
${ac_inplace} can be used to choose the correct flags for editing a
file in place with sed.
Replace violating usages in Makefile.am with ${ac_inplace}.
Reviewed-by: Chris Dunlop <chris@onthe.net.au>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Ryan Moeller <ryan@ixsystems.com>
Closes#9463
In the FreeBSD kernel the strdup signature is:
```
char *strdup(const char *__restrict, struct malloc_type *);
```
It's unfortunate that the developers have chosen to change
the signature of libc functions - but it's what I have to
deal with.
Reviewed-by: Jorgen Lundman <lundman@lundman.net>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Matt Macy <mmacy@FreeBSD.org>
Closes#9433
This patch implements a new tree structure for ZFS, and uses it to
store range trees more efficiently.
The new structure is approximately a B-tree, though there are some
small differences from the usual characterizations. The tree has core
nodes and leaf nodes; each contain data elements, which the elements
in the core nodes acting as separators between its children. The
difference between core and leaf nodes is that the core nodes have an
array of children, while leaf nodes don't. Every node in the tree may
be only partially full; in most cases, they are all at least 50% full
(in terms of element count) except for the root node, which can be
less full. Underfull nodes will steal from their neighbors or merge to
remain full enough, while overfull nodes will split in two. The data
elements are contained in tree-controlled buffers; they are copied
into these on insertion, and overwritten on deletion. This means that
the elements are not independently allocated, which reduces overhead,
but also means they can't be shared between trees (and also that
pointers to them are only valid until a side-effectful tree operation
occurs). The overhead varies based on how dense the tree is, but is
usually on the order of about 50% of the element size; the per-node
overheads are very small, and so don't make a significant difference.
The trees can accept arbitrary records; they accept a size and a
comparator to allow them to be used for a variety of purposes.
The new trees replace the AVL trees used in the range trees today.
Currently, the range_seg_t structure contains three 8 byte integers
of payload and two 24 byte avl_tree_node_ts to handle its storage in
both an offset-sorted tree and a size-sorted tree (total size: 64
bytes). In the new model, the range seg structures are usually two 4
byte integers, but a separate one needs to exist for the size-sorted
and offset-sorted tree. Between the raw size, the 50% overhead, and
the double storage, the new btrees are expected to use 8*1.5*2 = 24
bytes per record, or 33.3% as much memory as the AVL trees (this is
for the purposes of storing metaslab range trees; for other purposes,
like scrubs, they use ~50% as much memory).
We reduced the size of the payload in the range segments by teaching
range trees about starting offsets and shifts; since metaslabs have a
fixed starting offset, and they all operate in terms of disk sectors,
we can store the ranges using 4-byte integers as long as the size of
the metaslab divided by the sector size is less than 2^32. For 512-byte
sectors, this is a 2^41 (or 2TB) metaslab, which with the default
settings corresponds to a 256PB disk. 4k sector disks can handle
metaslabs up to 2^46 bytes, or 2^63 byte disks. Since we do not
anticipate disks of this size in the near future, there should be
almost no cases where metaslabs need 64-byte integers to store their
ranges. We do still have the capability to store 64-byte integer ranges
to account for cases where we are storing per-vdev (or per-dnode) trees,
which could reasonably go above the limits discussed. We also do not
store fill information in the compact version of the node, since it
is only used for sorted scrub.
We also optimized the metaslab loading process in various other ways
to offset some inefficiencies in the btree model. While individual
operations (find, insert, remove_from) are faster for the btree than
they are for the avl tree, remove usually requires a find operation,
while in the AVL tree model the element itself suffices. Some clever
changes actually caused an overall speedup in metaslab loading; we use
approximately 40% less cpu to load metaslabs in our tests on Illumos.
Another memory and performance optimization was achieved by changing
what is stored in the size-sorted trees. When a disk is heavily
fragmented, the df algorithm used by default in ZFS will almost always
find a number of small regions in its initial cursor-based search; it
will usually only fall back to the size-sorted tree to find larger
regions. If we increase the size of the cursor-based search slightly,
and don't store segments that are smaller than a tunable size floor
in the size-sorted tree, we can further cut memory usage down to
below 20% of what the AVL trees store. This also results in further
reductions in CPU time spent loading metaslabs.
The 16KiB size floor was chosen because it results in substantial memory
usage reduction while not usually resulting in situations where we can't
find an appropriate chunk with the cursor and are forced to use an
oversized chunk from the size-sorted tree. In addition, even if we do
have to use an oversized chunk from the size-sorted tree, the chunk
would be too small to use for ZIL allocations, so it isn't as big of a
loss as it might otherwise be. And often, more small allocations will
follow the initial one, and the cursor search will now find the
remainder of the chunk we didn't use all of and use it for subsequent
allocations. Practical testing has shown little or no change in
fragmentation as a result of this change.
If the size-sorted tree becomes empty while the offset sorted one still
has entries, it will load all the entries from the offset sorted tree
and disregard the size floor until it is unloaded again. This operation
occurs rarely with the default setting, only on incredibly thoroughly
fragmented pools.
There are some other small changes to zdb to teach it to handle btrees,
but nothing major.
Reviewed-by: George Wilson <gwilson@delphix.com>
Reviewed-by: Matt Ahrens <matt@delphix.com>
Reviewed by: Sebastien Roy seb@delphix.com
Reviewed-by: Igor Kozhukhov <igor@dilos.org>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Paul Dagnelie <pcd@delphix.com>
Closes#9181
Factor Linux specific functionality out of libzutil.
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Matt Macy <mmacy@FreeBSD.org>
Signed-off-by: Ryan Moeller <ryan@ixsystems.com>
Closes#9356
Factor Linux specific pieces out of libspl.
Reviewed-by: Ryan Moeller <ryan@ixsystems.com>
Reviewed-by: Sean Eric Fagan <sef@ixsystems.com>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Matt Macy <mmacy@FreeBSD.org>
Closes#9336
Factor Linux specific functions out of the zpool command.
Reviewed-by: Allan Jude <allanjude@freebsd.org>
Reviewed-by: Ryan Moeller <ryan@ixsystems.com>
Reviewed-by: Sean Eric Fagan <sef@ixsystems.com>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Reviewed-by: loli10K <ezomori.nozomu@gmail.com>
Signed-off-by: Matt Macy <mmacy@FreeBSD.org>
Closes#9333
Allow ZED notification via slack incoming webhook.
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Reviewed-by: Ryan Moeller <ryan@ixsystems.com>
Reviewed-by: Richard Elling <Richard.Elling@RichardElling.com>
Signed-off-by: Ben McGough <bmcgough@fredhutch.org>
Closes#9076Closes#9350
The difference between the sizes could be positive or negative. Leaving
the types as unsigned means the result overflows when the difference is
negative and removing the labs() means we'll have introduced a bug. The
subtraction results in the correct value when the unsigned integer is
interpreted as a signed integer by labs().
Clang doesn't see that we're doing a subtraction and abusing the types.
It sees the result of the subtraction, an unsigned value, being passed
to an absolute value function and emits a warning which we treat as an
error.
Reviewed by: Youzhong Yang <youzhong@gmail.com>
Reviewed-by: Igor Kozhukhov <igor@dilos.org>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Ryan Moeller <ryan@ixsystems.com>
Closes#9355
Move the trailing newlines from the error message strings to the format
strings to more closely match the other error messages.
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Reviewed-by: George Melikov <mail@gmelikov.ru>
Signed-off-by: Ryan Moeller <ryan@ixsystems.com>
Closes#9330
Currently the best way to wait for the completion of a long-running
operation in a pool, like a scrub or device removal, is to poll 'zpool
status' and parse its output, which is neither efficient nor convenient.
This change adds a 'wait' subcommand to the zpool command. When invoked,
'zpool wait' will block until a specified type of background activity
completes. Currently, this subcommand can wait for any of the following:
- Scrubs or resilvers to complete
- Devices to initialized
- Devices to be replaced
- Devices to be removed
- Checkpoints to be discarded
- Background freeing to complete
For example, a scrub that is in progress could be waited for by running
zpool wait -t scrub <pool>
This also adds a -w flag to the attach, checkpoint, initialize, replace,
remove, and scrub subcommands. When used, this flag makes the operations
kicked off by these subcommands synchronous instead of asynchronous.
This functionality is implemented using a new ioctl. The type of
activity to wait for is provided as input to the ioctl, and the ioctl
blocks until all activity of that type has completed. An ioctl was used
over other methods of kernel-userspace communiction primarily for the
sake of portability.
Porting Notes:
This is ported from Delphix OS change DLPX-44432. The following changes
were made while porting:
- Added ZoL-style ioctl input declaration.
- Reorganized error handling in zpool_initialize in libzfs to integrate
better with changes made for TRIM support.
- Fixed check for whether a checkpoint discard is in progress.
Previously it also waited if the pool had a checkpoint, instead of
just if a checkpoint was being discarded.
- Exposed zfs_initialize_chunk_size as a ZoL-style tunable.
- Updated more existing tests to make use of new 'zpool wait'
functionality, tests that don't exist in Delphix OS.
- Used existing ZoL tunable zfs_scan_suspend_progress, together with
zinject, in place of a new tunable zfs_scan_max_blks_per_txg.
- Added support for a non-integral interval argument to zpool wait.
Future work:
ZoL has support for trimming devices, which Delphix OS does not. In the
future, 'zpool wait' could be extended to add the ability to wait for
trim operations to complete.
Reviewed-by: Matt Ahrens <matt@delphix.com>
Reviewed-by: John Kennedy <john.kennedy@delphix.com>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: John Gallagher <john.gallagher@delphix.com>
Closes#9162
/usr/bin/env python3 is the suggested[1] shebang for Python in general
(likewise for python2) and is conventional across platforms. This eases
development on systems where python is not installed in /usr/bin
(FreeBSD for example) and makes it possible to develop in virtual
environments (venv) for isolating dependencies.
Many packaging guidelines discourage the use of /usr/bin/env, but since
this is the canonical way of writing shebangs in the Python community,
many packaging scripts are already equipped to handle substituting the
appropriate absolute path to python automatically.
Some RPM package builders lacking brp-mangle-shebangs need a small
fallback mechanism in the package spec to stamp the appropriate shebang
on installed Python scripts.
[1]: https://docs.python.org/3/using/unix.html?#miscellaneous
Reviewed-by: Richard Laager <rlaager@wiktel.com>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Reviewed-by: George Melikov <mail@gmelikov.ru>
Signed-off-by: Ryan Moeller <ryan@ixsystems.com>
Closes#9314
Code for interfacing with procfs for kstats and tunables is Linux-
specific. A more generic interface can be used for the abstractions of
loading kstats and various tunable parameters, allowing other platforms
to implement the functions cleanly. In a similar vein, determining the
ZFS/SPL version can be abstracted away in order for other platforms to
provide their own implementations of this function.
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Reviewed-by: Matt Macy <mmacy@FreeBSD.org>
Signed-off-by: Ryan Moeller <ryan@ixsystems.com>
Closes#9279
A more generic interface can be used for the abstraction of loading
kstats, allowing other platforms to implement the function cleanly.
In a similar vein, loading tunables can be abstracted away in order for
other platforms to provide their own implementations of this function.
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Reviewed-by: Matt Macy <mmacy@FreeBSD.org>
Signed-off-by: Ryan Moeller <ryan@ixsystems.com>
Closes#9277
Both 'detach' and 'online' zpool subcommands, when provided with an
unsupported option, forget to print it in the error message:
# zpool online -t rpool vda3
invalid option ''
usage:
online [-e] <pool> <device> ...
This changes fixes the error message in order to include the actual
option that is not supported.
Reviewed-by: Ryan Moeller <ryan@ixsystems.com>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: loli10K <ezomori.nozomu@gmail.com>
Closes#9270
Partially received zvols won't have links in /dev/zvol.
Reviewed-by: Sebastien Roy <sebastien.roy@delphix.com>
Reviewed-by: Paul Dagnelie <pcd@delphix.com>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Pavel Zakharov <pavel.zakharov@delphix.com>
Closes#9260
Reviewed-by: Ryan Moeller <ryan@ixsystems.com>
Reviewed-by: Richard Laager <rlaager@wiktel.com>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Andrea Gelmini <andrea.gelmini@gelma.net>
Closes#9234
Automake can perform program name transformations at install time.
However, arc_summary has its own name transformation taking place,
which interferes with the automake transforms. The automake transforms
must be taken into account in order to resolve the conflict.
Signed-off-by: Ryan Moeller <ryan@ixsystems.com>
When a pool is imported it will scan the pool to verify the integrity
of the data and metadata. The amount it scans will depend on the
import flags provided. On systems with small amounts of memory or
when importing a pool from the crash kernel, it's possible for
spa_load_verify to issue too many I/Os that it consumes all the memory
of the system resulting in an OOM message or a hang.
To prevent this, we limit the amount of memory that the initial pool
scan can consume. This change will, by default, use 1/16th of the ARC
for scan I/Os to prevent running the system out of memory during import.
Reviewed-by: Matt Ahrens <matt@delphix.com>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Reviewed-by: Serapheim Dimitropoulos <serapheim@delphix.com>
Signed-off-by: George Wilson george.wilson@delphix.com
External-issue: DLPX-65237
External-issue: DLPX-65238
Closes#9146
When we unload metaslabs today in ZFS, the cached max_size value is
discarded. We instead use the histogram to determine whether or not we
think we can satisfy an allocation from the metaslab. This can result in
situations where, if we're doing I/Os of a size not aligned to a
histogram bucket, a metaslab is loaded even though it cannot satisfy the
allocation we think it can. For example, a metaslab with 16 entries in
the 16k-32k bucket may have entirely 16kB entries. If we try to allocate
a 24kB buffer, we will load that metaslab because we think it should be
able to handle the allocation. Doing so is expensive in CPU time, disk
reads, and average IO latency. This is exacerbated if the write being
attempted is a sync write.
This change makes ZFS cache the max_size after the metaslab is
unloaded. If we ever get a free (or a coalesced group of frees) larger
than the max_size, we will update it. Otherwise, we leave it as is. When
attempting to allocate, we use the max_size as a lower bound, and
respect it unless we are in try_hard. However, we do age the max_size
out at some point, since we expect the actual max_size to increase as we
do more frees. A more sophisticated algorithm here might be helpful, but
this works reasonably well.
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Reviewed-by: Matt Ahrens <mahrens@delphix.com>
Signed-off-by: Paul Dagnelie <pcd@delphix.com>
Closes#9055
zed core dumps due to a NULL pointer in zfs_agent_iter_vdev(). The
gs_devid is NULL, but the nvl has a "devid" entry.
zfs_agent_post_event() checks that ZFS_EV_VDEV_GUID or DEV_IDENTIFIER is
present in nvl, but then later it and zfs_agent_iter_vdev() assume that
DEV_IDENTIFIER is present and thus gs_devid is set.
Typically this is not a problem because usually either all vdevs have
devid's, or none of them do. Since zfs_agent_iter_vdev() first checks if
the vdev has devid before dereferencing gs_devid, the problem isn't
typically encountered. However, if some vdevs have devid's and some do
not, then the problem is easily reproduced. This can happen if the pool
has been moved from a system that has devid's to one that does not.
The fix is for zfs_agent_iter_vdev() to only try to match the devid's if
both nvl and gsp have devid's present.
Reviewed-by: Prashanth Sreenivasa <pks@delphix.com>
Reviewed-by: Don Brady <don.brady@delphix.com>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Reviewed-by: loli10K <ezomori.nozomu@gmail.com>
Signed-off-by: Matthew Ahrens <mahrens@delphix.com>
External-issue: DLPX-65090
Closes#9054Closes#9060
Deleting a clone requires finding blocks are clone-only, not shared
with the snapshot. This was done by traversing the entire block tree
which results in a large performance penalty for sparsely
written clones.
This is new method keeps track of clone blocks when they are
modified in a "Livelist" so that, when it’s time to delete,
the clone-specific blocks are already at hand.
We see performance improvements because now deletion work is
proportional to the number of clone-modified blocks, not the size
of the original dataset.
Reviewed-by: Sean Eric Fagan <sef@ixsystems.com>
Reviewed-by: Matt Ahrens <matt@delphix.com>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Reviewed-by: Serapheim Dimitropoulos <serapheim@delphix.com>
Signed-off-by: Sara Hartse <sara.hartse@delphix.com>
Closes#8416
In the past we've seen multiple race conditions that have
to do with open-context threads async threads and concurrent
calls to spa_export()/spa_destroy() (including the one
referenced in issue #9015).
This patch ensures that only one thread can execute the
main body of spa_export_common() at a time, with subsequent
threads returning with a new error code created just for
this situation, eliminating this way any race condition
bugs introduced by concurrent calls to this function.
Reviewed by: Matt Ahrens <matt@delphix.com>
Reviewed by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Serapheim Dimitropoulos <serapheim@delphix.com>
Closes#9015Closes#9044
Creating a pool with not features enabled and running
`zdb -mmmmmm on` it before the patch:
```
Log Space Maps in Pool:
Log Space Map Obsolete Entry Statistics:
0 valid entries out of 0 - txg 0
0 valid entries out of 0 - total
```
After this patch the above output goes away.
Reviewed by: Matt Ahrens <matt@delphix.com>
Reviewed by: Sara Hartse <sara.hartse@delphix.com>
Reviewed by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Serapheim Dimitropoulos <serapheim@delphix.com>
Closes#9048
The zfs-volume-wait.service scans existing zvols and waits for their
links under /dev to be created. Any service that depends on zvol
links to be there should add a dependency on zfs-volumes.target.
By default, this target is not enabled.
Reviewed-by: Fabian Grünbichler <f.gruenbichler@proxmox.com>
Reviewed-by: Antonio Russo <antonio.e.russo@gmail.com>
Reviewed-by: Richard Laager <rlaager@wiktel.com>
Reviewed-by: loli10K <ezomori.nozomu@gmail.com>
Reviewed-by: John Gallagher <john.gallagher@delphix.com>
Reviewed-by: George Wilson <gwilson@delphix.com>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Pavel Zakharov <pzakharov@delphix.com>
Closes#8975
Adds the ability to sanity check zfs create arguments and to see the
value of any additional properties that will local to the dataset. For
example, automation that may need to adjust quota on a parent filesystem
before creating a volume may call `zfs create -nP -V <size> <volume>` to
obtain the value of refreservation. This adds the following options to
zfs create:
- -n dry-run (no-op)
- -v verbose
- -P parseable (implies verbose)
Reviewed-by: Ryan Moeller <ryan@ixsystems.com>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Reviewed-by: Matt Ahrens <matt@delphix.com>
Reviewed-by: Jerry Jelinek <jerry.jelinek@joyent.com>
Signed-off-by: Mike Gerdts <mike.gerdts@joyent.com>
Closes#8974
= Motivation
At Delphix we've seen a lot of customer systems where fragmentation
is over 75% and random writes take a performance hit because a lot
of time is spend on I/Os that update on-disk space accounting metadata.
Specifically, we seen cases where 20% to 40% of sync time is spend
after sync pass 1 and ~30% of the I/Os on the system is spent updating
spacemaps.
The problem is that these pools have existed long enough that we've
touched almost every metaslab at least once, and random writes
scatter frees across all metaslabs every TXG, thus appending to
their spacemaps and resulting in many I/Os. To give an example,
assuming that every VDEV has 200 metaslabs and our writes fit within
a single spacemap block (generally 4K) we have 200 I/Os. Then if we
assume 2 levels of indirection, we need 400 additional I/Os and
since we are talking about metadata for which we keep 2 extra copies
for redundancy we need to triple that number, leading to a total of
1800 I/Os per VDEV every TXG.
We could try and decrease the number of metaslabs so we have less
I/Os per TXG but then each metaslab would cover a wider range on
disk and thus would take more time to be loaded in memory from disk.
In addition, after it's loaded, it's range tree would consume more
memory.
Another idea would be to just increase the spacemap block size
which would allow us to fit more entries within an I/O block
resulting in fewer I/Os per metaslab and a speedup in loading time.
The problem is still that we don't deal with the number of I/Os
going up as the number of metaslabs is increasing and the fact
is that we generally write a lot to a few metaslabs and a little
to the rest of them. Thus, just increasing the block size would
actually waste bandwidth because we won't be utilizing our bigger
block size.
= About this patch
This patch introduces the Log Spacemap project which provides the
solution to the above problem while taking into account all the
aforementioned tradeoffs. The details on how it achieves that can
be found in the references sections below and in the code (see
Big Theory Statement in spa_log_spacemap.c).
Even though the change is fairly constraint within the metaslab
and lower-level SPA codepaths, there is a side-change that is
user-facing. The change is that VDEV IDs from VDEV holes will no
longer be reused. To give some background and reasoning for this,
when a log device is removed and its VDEV structure was replaced
with a hole (or was compacted; if at the end of the vdev array),
its vdev_id could be reused by devices added after that. Now
with the pool-wide space maps recording the vdev ID, this behavior
can cause problems (e.g. is this entry referring to a segment in
the new vdev or the removed log?). Thus, to simplify things the
ID reuse behavior is gone and now vdev IDs for top-level vdevs
are truly unique within a pool.
= Testing
The illumos implementation of this feature has been used internally
for a year and has been in production for ~6 months. For this patch
specifically there don't seem to be any regressions introduced to
ZTS and I have been running zloop for a week without any related
problems.
= Performance Analysis (Linux Specific)
All performance results and analysis for illumos can be found in
the links of the references. Redoing the same experiments in Linux
gave similar results. Below are the specifics of the Linux run.
After the pool reached stable state the percentage of the time
spent in pass 1 per TXG was 64% on average for the stock bits
while the log spacemap bits stayed at 95% during the experiment
(graph: sdimitro.github.io/img/linux-lsm/PercOfSyncInPassOne.png).
Sync times per TXG were 37.6 seconds on average for the stock
bits and 22.7 seconds for the log spacemap bits (related graph:
sdimitro.github.io/img/linux-lsm/SyncTimePerTXG.png). As a result
the log spacemap bits were able to push more TXGs, which is also
the reason why all graphs quantified per TXG have more entries for
the log spacemap bits.
Another interesting aspect in terms of txg syncs is that the stock
bits had 22% of their TXGs reach sync pass 7, 55% reach sync pass 8,
and 20% reach 9. The log space map bits reached sync pass 4 in 79%
of their TXGs, sync pass 7 in 19%, and sync pass 8 at 1%. This
emphasizes the fact that not only we spend less time on metadata
but we also iterate less times to convergence in spa_sync() dirtying
objects.
[related graphs:
stock- sdimitro.github.io/img/linux-lsm/NumberOfPassesPerTXGStock.png
lsm- sdimitro.github.io/img/linux-lsm/NumberOfPassesPerTXGLSM.png]
Finally, the improvement in IOPs that the userland gains from the
change is approximately 40%. There is a consistent win in IOPS as
you can see from the graphs below but the absolute amount of
improvement that the log spacemap gives varies within each minute
interval.
sdimitro.github.io/img/linux-lsm/StockVsLog3Days.png
sdimitro.github.io/img/linux-lsm/StockVsLog10Hours.png
= Porting to Other Platforms
For people that want to port this commit to other platforms below
is a list of ZoL commits that this patch depends on:
Make zdb results for checkpoint tests consistent
db587941c5
Update vdev_is_spacemap_addressable() for new spacemap encoding
419ba59145
Simplify spa_sync by breaking it up to smaller functions
8dc2197b7b
Factor metaslab_load_wait() in metaslab_load()
b194fab0fb
Rename range_tree_verify to range_tree_verify_not_present
df72b8bebe
Change target size of metaslabs from 256GB to 16GB
c853f382db
zdb -L should skip leak detection altogether
21e7cf5da8
vs_alloc can underflow in L2ARC vdevs
7558997d2f
Simplify log vdev removal code
6c926f426a
Get rid of space_map_update() for ms_synced_length
425d3237ee
Introduce auxiliary metaslab histograms
928e8ad47d
Error path in metaslab_load_impl() forgets to drop ms_sync_lock
8eef997679
= References
Background, Motivation, and Internals of the Feature
- OpenZFS 2017 Presentation:
youtu.be/jj2IxRkl5bQ
- Slides:
slideshare.net/SerapheimNikolaosDim/zfs-log-spacemaps-project
Flushing Algorithm Internals & Performance Results
(Illumos Specific)
- Blogpost:
sdimitro.github.io/post/zfs-lsm-flushing/
- OpenZFS 2018 Presentation:
youtu.be/x6D2dHRjkxw
- Slides:
slideshare.net/SerapheimNikolaosDim/zfs-log-spacemap-flushing-algorithm
Upstream Delphix Issues:
DLPX-51539, DLPX-59659, DLPX-57783, DLPX-61438, DLPX-41227, DLPX-59320
DLPX-63385
Reviewed-by: Sean Eric Fagan <sef@ixsystems.com>
Reviewed-by: Matt Ahrens <matt@delphix.com>
Reviewed-by: George Wilson <gwilson@delphix.com>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Serapheim Dimitropoulos <serapheim@delphix.com>
Closes#8442
Modify zfs-mount-generator to produce a dependency on new
zfs-import-key-*.service units, dynamically created at boot to call
zfs load-key for the encryption root, before attempting to mount any
encrypted datasets.
These units are created by zfs-mount-generator, and RequiresMountsFor on
the keyfile, if present, or call systemd-ask-password if a passphrase is
requested.
This patch includes suggestions from @Fabian-Gruenbichler, @ryanjaeb and
@rlaager, as well an adaptation of @rlaager's script to retry on
incorrect password entry.
Reviewed-by: Richard Laager <rlaager@wiktel.com>
Reviewed-by: Fabian Grünbichler <f.gruenbichler@proxmox.com>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Antonio Russo <antonio.e.russo@gmail.com>
Closes#8750Closes#8848
Restore the SIMD optimization for 4.19.38 LTS, 4.14.120 LTS,
and 5.0 and newer kernels. This is accomplished by leveraging
the fact that by definition dedicated kernel threads never need
to concern themselves with saving and restoring the user FPU state.
Therefore, they may use the FPU as long as we can guarantee user
tasks always restore their FPU state before context switching back
to user space.
For the 5.0 and 5.1 kernels disabling preemption and local
interrupts is sufficient to allow the FPU to be used. All non-kernel
threads will restore the preserved user FPU state.
For 5.2 and latter kernels the user FPU state restoration will be
skipped if the kernel determines the registers have not changed.
Therefore, for these kernels we need to perform the additional
step of saving and restoring the FPU registers. Invalidating the
per-cpu global tracking the FPU state would force a restore but
that functionality is private to the core x86 FPU implementation
and unavailable.
In practice, restricting SIMD to kernel threads is not a major
restriction for ZFS. The vast majority of SIMD operations are
already performed by the IO pipeline. The remaining cases are
relatively infrequent and can be handled by the generic code
without significant impact. The two most noteworthy cases are:
1) Decrypting the wrapping key for an encrypted dataset,
i.e. `zfs load-key`. All other encryption and decryption
operations will use the SIMD optimized implementations.
2) Generating the payload checksums for a `zfs send` stream.
In order to avoid making any changes to the higher layers of ZFS
all of the `*_get_ops()` functions were updated to take in to
consideration the calling context. This allows for the fastest
implementation to be used as appropriate (see kfpu_allowed()).
The only other notable instance of SIMD operations being used
outside a kernel thread was at module load time. This code
was moved in to a taskq in order to accommodate the new kernel
thread restriction.
Finally, a few other modifications were made in order to further
harden this code and facilitate testing. They include updating
each implementations operations structure to be declared as a
constant. And allowing "cycle" to be set when selecting the
preferred ops in the kernel as well as user space.
Reviewed-by: Tony Hutter <hutter2@llnl.gov>
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Closes#8754Closes#8793Closes#8965
Due to some changes introduced in 30af21b 'zfs send' can crash when
provided with invalid inputs: this change attempts to add more checks
to the affected code paths.
Reviewed-by: Attila Fülöp <attila@fueloep.org>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Reviewed-by: Tony Hutter <hutter2@llnl.gov>
Signed-off-by: loli10K <ezomori.nozomu@gmail.com>
Closes#9001
* zfs redact error messages do not end with newline character
* 30af21b0 inadvertently removed some ZFS_PROP comments
* man/zfs: zfs redact <redaction_snapshot> is not optional
Reviewed-by: Giuseppe Di Natale <guss80@gmail.com>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Reviewed-by: George Melikov <mail@gmelikov.ru>
Signed-off-by: loli10K <ezomori.nozomu@gmail.com>
Closes#8988
When a volume is created in a pool with raidz vdevs and
volblocksize != 128k, the volume can reference more space than is
reserved with the automatically calculated refreservation. There
are two deficiencies in vol_volsize_to_reservation that contribute
to this:
1) Skip blocks may be added to keep each allocation a multiple
of parity + 1. This is the dominating factor when volblocksize
is close to 2^ashift.
2) raidz deflation for 128 KB blocks is different for most other
block sizes.
See "The theory of raidz space accounting" comment in
libzfs_dataset.c for a full explanation.
Authored by: Mike Gerdts <mike.gerdts@joyent.com>
Reviewed by: Richard Elling <Richard.Elling@RichardElling.com>
Reviewed by: Sanjay Nadkarni <sanjay.nadkarni@nexenta.com>
Reviewed by: Jerry Jelinek <jerry.jelinek@joyent.com>
Reviewed by: Matt Ahrens <matt@delphix.com>
Reviewed by: Kody Kantor <kody.kantor@joyent.com>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Approved by: Dan McDonald <danmcd@joyent.com>
Ported-by: Mike Gerdts <mike.gerdts@joyent.com>
Porting Notes:
* ZTS: wait for zvols to exist before writing
* ZTS: use log_must_busy with {zpool|zfs} destroy
OpenZFS-issue: https://www.illumos.org/issues/9318
OpenZFS-commit: https://github.com/illumos/illumos-gate/commit/b73ccab0Closes#8973
This patch adds the ability for the user to unload keys for
datasets as they are being unmounted. This is analogous to
'zfs mount -l'.
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Reviewed-by: Alek Pinchuk <apinchuk@datto.com>
Signed-off-by: Tom Caputi <tcaputi@datto.com>
Closes: #8917Closes: #8952
ztest creates some extremely large files as part of its
operation. When zdb tries to dump a large enough file, it
can run out of memory or spend an extremely long time
attempting to print millions or billions of uint64_ts.
We cap the amount of data from a uint64 object that we
are willing to read and print.
Reviewed-by: Don Brady <don.brady@delphix.com>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Paul Dagnelie <pcd@delphix.com>
External-issue: DLPX-53814
Closes#8947
When used with verbosity >= 4 zdb fails an assertion in dump_bookmarks()
because it expects snprintf() to retun 0 on success.
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Reviewed-by: Paul Dagnelie <pcd@delphix.com>
Signed-off-by: loli10K <ezomori.nozomu@gmail.com>
Closes#8948
The "zfs remap" command was disabled by
6e91a72fe3, because it has little utility
and introduced some tricky bugs. This commit removes the code for it,
the associated ZFS_IOC_REMAP ioctl, and tests.
Note that the ioctl and property will remain, but have no functionality.
This allows older software to fail gracefully if it attempts to use
these, and avoids a backwards incompatibility that would be introduced if
we renumbered the later ioctls/props.
Reviewed-by: Tom Caputi <tcaputi@datto.com>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Matthew Ahrens <mahrens@delphix.com>
Closes#8944
Resolve the incorrect use of srcdir and builddir references for
various files in the build system. These have crept in over time
and went unnoticed because when building in the top level directory
srcdir and builddir are identical.
With this change it's again possible to build in a subdirectory.
$ mkdir obj
$ cd obj
$ ../configure
$ make
Reviewed-by: loli10K <ezomori.nozomu@gmail.com>
Reviewed-by: Tony Hutter <hutter2@llnl.gov>
Reviewed-by: Don Brady <don.brady@delphix.com>
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Closes#8921Closes#8943
The zfs-mount service can unexpectedly fail to start when zfs
encounters a mount that is in progress. This service uses
zfs mount -a, which has a window between the time it checks if
the dataset was mounted and when the actual mount (via mount.zfs
binary) occurs.
The reason for the racing mounts is that both zfs-mount.target
and zfs-share.target are allowed to execute concurrently after
the import. This is more of an issue with the relatively recent
addition of parallel mounting, and we should consider serializing
the mount and share targets.
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Reviewed by: John Kennedy <john.kennedy@delphix.com>
Reviewed-by: Allan Jude <allanjude@freebsd.org>
Signed-off-by: Don Brady <don.brady@delphix.com>
Closes#8881
Count the bytes of payload for each replication record type
Count the bytes of overhead (replication records themselves)
Include these counters in the output summary at the end of the run.
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Reviewed-by: Matt Ahrens <mahrens@delphix.com>
Signed-off-by: Allan Jude <allanjude@freebsd.org>
Sponsored-By: Klara Systems and Catalogic
Closes#8432
Since 30af21b0 was merged 'zfs send' help message format is broken
and lists "-r" as a valid option: this commit corrects these
small issues.
Reviewed-by: George Melikov <mail@gmelikov.ru>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Reviewed-by: Paul Dagnelie <pcd@delphix.com>
Signed-off-by: loli10K <ezomori.nozomu@gmail.com>
Closes#8942
If dedup is in use, the `dedupditto` property can be set, causing ZFS to
keep an extra copy of data that is referenced many times (>100x). The
idea was that this data is more important than other data and thus we
want to be really sure that it is not lost if the disk experiences a
small amount of random corruption.
ZFS (and system administrators) rely on the pool-level redundancy to
protect their data (e.g. mirroring or RAIDZ). Since the user/sysadmin
doesn't have control over what data will be offered extra redundancy by
dedupditto, this extra redundancy is not very useful. The bulk of the
data is still vulnerable to loss based on the pool-level redundancy.
For example, if particle strikes corrupt 0.1% of blocks, you will either
be saved by mirror/raidz, or you will be sad. This is true even if
dedupditto saved another 0.01% of blocks from being corrupted.
Therefore, the dedupditto functionality is rarely enabled (i.e. the
property is rarely set), and it fulfills its promise of increased
redundancy even more rarely.
Additionally, this feature does not work as advertised (on existing
releases), because scrub/resilver did not repair the extra (dedupditto)
copy (see https://github.com/zfsonlinux/zfs/pull/8270).
In summary, this seldom-used feature doesn't work, and even if it did it
wouldn't provide useful data protection. It has a non-trivial
maintenance burden (again see https://github.com/zfsonlinux/zfs/pull/8270).
We should remove the dedupditto functionality. For backwards
compatibility with the existing CLI, "zpool set dedupditto" will still
"succeed" (exit code zero), but won't have any effect. For backwards
compatibility with existing pools that had dedupditto enabled at some
point, the code will still be able to understand dedupditto blocks and
free them when appropriate. However, ZFS won't write any new dedupditto
blocks.
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Reviewed-by: Igor Kozhukhov <igor@dilos.org>
Reviewed-by: Alek Pinchuk <apinchuk@datto.com>
Issue #8270Closes#8310
Reviewed-by: Allan Jude <allanjude@freebsd.org>
Reviewed-by: Tony Hutter <hutter2@llnl.gov>
Reviewed-by: Richard Elling <Richard.Elling@RichardElling.com>
Signed-off-by: Michael Niewöhner <foss@mniewoehner.de>
Closes#8897Closes#8911
Redacted send/receive allows users to send subsets of their data to
a target system. One possible use case for this feature is to not
transmit sensitive information to a data warehousing, test/dev, or
analytics environment. Another is to save space by not replicating
unimportant data within a given dataset, for example in backup tools
like zrepl.
Redacted send/receive is a three-stage process. First, a clone (or
clones) is made of the snapshot to be sent to the target. In this
clone (or clones), all unnecessary or unwanted data is removed or
modified. This clone is then snapshotted to create the "redaction
snapshot" (or snapshots). Second, the new zfs redact command is used
to create a redaction bookmark. The redaction bookmark stores the
list of blocks in a snapshot that were modified by the redaction
snapshot(s). Finally, the redaction bookmark is passed as a parameter
to zfs send. When sending to the snapshot that was redacted, the
redaction bookmark is used to filter out blocks that contain sensitive
or unwanted information, and those blocks are not included in the send
stream. When sending from the redaction bookmark, the blocks it
contains are considered as candidate blocks in addition to those
blocks in the destination snapshot that were modified since the
creation_txg of the redaction bookmark. This step is necessary to
allow the target to rehydrate data in the case where some blocks are
accidentally or unnecessarily modified in the redaction snapshot.
The changes to bookmarks to enable fast space estimation involve
adding deadlists to bookmarks. There is also logic to manage the
life cycles of these deadlists.
The new size estimation process operates in cases where previously
an accurate estimate could not be provided. In those cases, a send
is performed where no data blocks are read, reducing the runtime
significantly and providing a byte-accurate size estimate.
Reviewed-by: Dan Kimmel <dan.kimmel@delphix.com>
Reviewed-by: Matt Ahrens <mahrens@delphix.com>
Reviewed-by: Prashanth Sreenivasa <pks@delphix.com>
Reviewed-by: John Kennedy <john.kennedy@delphix.com>
Reviewed-by: George Wilson <george.wilson@delphix.com>
Reviewed-by: Chris Williamson <chris.williamson@delphix.com>
Reviewed-by: Pavel Zhakarov <pavel.zakharov@delphix.com>
Reviewed-by: Sebastien Roy <sebastien.roy@delphix.com>
Reviewed-by: Prakash Surya <prakash.surya@delphix.com>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Paul Dagnelie <pcd@delphix.com>
Closes#7958
We've observed that on some highly fragmented pools, most metaslab
allocations are small (~2-8KB), but there are some large, 128K
allocations. The large allocations are for ZIL blocks. If there is a
lot of fragmentation, the large allocations can be hard to satisfy.
The most common impact of this is that we need to check (and thus load)
lots of metaslabs from the ZIL allocation code path, causing sync writes
to wait for metaslabs to load, which can take a second or more. In the
worst case, we may not be able to satisfy the allocation, in which case
the ZIL will resort to txg_wait_synced() to ensure the change is on
disk.
To provide a workaround for this, this change adds a tunable that can
reduce the size of ZIL blocks.
External-issue: DLPX-61719
Reviewed-by: George Wilson <george.wilson@delphix.com>
Reviewed-by: Paul Dagnelie <pcd@delphix.com>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Matthew Ahrens <mahrens@delphix.com>
Closes#8865
This matches the behavior of other python scripts, such as arcstat and
dbufstat, which are always installed but whose install-exec-hook actions
will simply touch up the shebang if a python interpreter was configured
*and* that interpreter is a python2 interpreter.
Fixes installation in a minimal build chroot without python available.
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Reviewed-by: Ryan Moeller <ryan@freqlabs.com>
Signed-off-by: Eli Schwartz <eschwartz@archlinux.org>
Closes#8851
Previously, --without-python would cause ./configure to fail. Now it is
able to proceed, and the Python scripts will not be built.
Use portable parameter expansion matching instead of nonstandard
substring matching to detect the Python version. This test is
duplicated in several places, so define a function for it.
Don't assume the full path to binaries, since different platforms do
install things in different places. Use AC_CHECK_PROGS instead.
When building without Python, also build without pyzfs.
Sponsored by: iXsystems, Inc.
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Reviewed-by: Richard Laager <rlaager@wiktel.com>
Reviewed-by: Eli Schwartz <eschwartz93@gmail.com>
Signed-off-by: Ryan Moeller <ryan@freqlabs.com>
Closes#8809Closes#8731
s/get_vdev_spec/make_root_vdev
The former doesn't exist anymore.
Sponsored by: iXsystems, Inc.
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Reviewed-by: Tom Caputi <tcaputi@datto.com>
Signed-off-by: Ryan Moeller <ryan@freqlabs.com>
Closes#8759
On systems where "char" is an unsigned type the value returned by
getopt() will never be negative (-1), leading to an endless loop:
this issue prevents both 'zpool remove' and 'zstreamdump' for
working on some systems.
Reviewed-by: Igor Kozhukhov <igor@dilos.org>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Reviewed-by: Chris Dunlop <chris@onthe.net.au>
Signed-off-by: loli10K <ezomori.nozomu@gmail.com>
Closes#8789