Previously the primarycache property was handled only in the dbuf
layer. Since the speculative prefetcher is implemented in the ARC,
it had to be disabled for uncacheable buffers.
This change gives the ARC knowledge about uncacheable buffers
via arc_read() and arc_write(). So when remove_reference() drops
the last reference on the ARC header, it can either immediately destroy
it, or if it is marked as prefetch, put it into a new arc_uncached state.
That state is scanned every second, evicting stale buffers that were
not demand read.
This change also tracks dbufs that were read from the beginning,
but not to the end. It is assumed that such buffers may receive further
reads, and so they are stored in dbuf cache. If a following
reads reaches the end of the buffer, it is immediately evicted.
Otherwise it will follow regular dbuf cache eviction. Since the dbuf
layer does not know actual file sizes, this logic is not applied to
the final buffer of a dnode.
Since uncacheable buffers should no longer stay in the ARC for long,
this patch also tries to optimize I/O by allocating ARC physical
buffers as linear to allow buffer sharing.
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Reviewed-by: George Wilson <george.wilson@delphix.com>
Reviewed-by: Ryan Moeller <ryan@iXsystems.com>
Signed-off-by: Alexander Motin <mav@FreeBSD.org>
Sponsored by: iXsystems, Inc.
Closes#14243
Various module parameters such as `zfs_arc_max` were originally
`uint64_t` on OpenSolaris/Illumos, but were changed to `unsigned long`
for Linux compatibility because Linux's kernel default module parameter
implementation did not support 64-bit types on 32-bit platforms. This
caused problems when porting OpenZFS to Windows because its LLP64 memory
model made `unsigned long` a 32-bit type on 64-bit, which created the
undesireable situation that parameters that should accept 64-bit values
could not on 64-bit Windows.
Upon inspection, it turns out that the Linux kernel module parameter
interface is extensible, such that we are allowed to define our own
types. Rather than maintaining the original type change via hacks to to
continue shrinking module parameters on 32-bit Linux, we implement
support for 64-bit module parameters on Linux.
After doing a review of all 64-bit kernel parameters (found via the man
page and also proposed changes by Andrew Innes), the kernel module
parameters fell into a few groups:
Parameters that were originally 64-bit on Illumos:
* dbuf_cache_max_bytes
* dbuf_metadata_cache_max_bytes
* l2arc_feed_min_ms
* l2arc_feed_secs
* l2arc_headroom
* l2arc_headroom_boost
* l2arc_write_boost
* l2arc_write_max
* metaslab_aliquot
* metaslab_force_ganging
* zfetch_array_rd_sz
* zfs_arc_max
* zfs_arc_meta_limit
* zfs_arc_meta_min
* zfs_arc_min
* zfs_async_block_max_blocks
* zfs_condense_max_obsolete_bytes
* zfs_condense_min_mapping_bytes
* zfs_deadman_checktime_ms
* zfs_deadman_synctime_ms
* zfs_initialize_chunk_size
* zfs_initialize_value
* zfs_lua_max_instrlimit
* zfs_lua_max_memlimit
* zil_slog_bulk
Parameters that were originally 32-bit on Illumos:
* zfs_per_txg_dirty_frees_percent
Parameters that were originally `ssize_t` on Illumos:
* zfs_immediate_write_sz
Note that `ssize_t` is `int32_t` on 32-bit and `int64_t` on 64-bit. It
has been upgraded to 64-bit.
Parameters that were `long`/`unsigned long` because of Linux/FreeBSD
influence:
* l2arc_rebuild_blocks_min_l2size
* zfs_key_max_salt_uses
* zfs_max_log_walking
* zfs_max_logsm_summary_length
* zfs_metaslab_max_size_cache_sec
* zfs_min_metaslabs_to_flush
* zfs_multihost_interval
* zfs_unflushed_log_block_max
* zfs_unflushed_log_block_min
* zfs_unflushed_log_block_pct
* zfs_unflushed_max_mem_amt
* zfs_unflushed_max_mem_ppm
New parameters that do not exist in Illumos:
* l2arc_trim_ahead
* vdev_file_logical_ashift
* vdev_file_physical_ashift
* zfs_arc_dnode_limit
* zfs_arc_dnode_limit_percent
* zfs_arc_dnode_reduce_percent
* zfs_arc_meta_limit_percent
* zfs_arc_sys_free
* zfs_deadman_ziotime_ms
* zfs_delete_blocks
* zfs_history_output_max
* zfs_livelist_max_entries
* zfs_max_async_dedup_frees
* zfs_max_nvlist_src_size
* zfs_rebuild_max_segment
* zfs_rebuild_vdev_limit
* zfs_unflushed_log_txg_max
* zfs_vdev_max_auto_ashift
* zfs_vdev_min_auto_ashift
* zfs_vnops_read_chunk_size
* zvol_max_discard_blocks
Rather than clutter the lists with commentary, the module parameters
that need comments are repeated below.
A few parameters were defined in Linux/FreeBSD specific code, where the
use of ulong/long is not an issue for portability, so we leave them
alone:
* zfs_delete_blocks
* zfs_key_max_salt_uses
* zvol_max_discard_blocks
The documentation for a few parameters was found to be incorrect:
* zfs_deadman_checktime_ms - incorrectly documented as int
* zfs_delete_blocks - not documented as Linux only
* zfs_history_output_max - incorrectly documented as int
* zfs_vnops_read_chunk_size - incorrectly documented as long
* zvol_max_discard_blocks - incorrectly documented as ulong
The documentation for these has been fixed, alongside the changes to
document the switch to fixed width types.
In addition, several kernel module parameters were percentages or held
ashift values, so being 64-bit never made sense for them. They have been
downgraded to 32-bit:
* vdev_file_logical_ashift
* vdev_file_physical_ashift
* zfs_arc_dnode_limit_percent
* zfs_arc_dnode_reduce_percent
* zfs_arc_meta_limit_percent
* zfs_per_txg_dirty_frees_percent
* zfs_unflushed_log_block_pct
* zfs_vdev_max_auto_ashift
* zfs_vdev_min_auto_ashift
Of special note are `zfs_vdev_max_auto_ashift` and
`zfs_vdev_min_auto_ashift`, which were already defined as `uint64_t`,
and passed to the kernel as `ulong`. This is inherently buggy on big
endian 32-bit Linux, since the values would not be written to the
correct locations. 32-bit FreeBSD was unaffected because its sysctl code
correctly treated this as a `uint64_t`.
Lastly, a code comment suggests that `zfs_arc_sys_free` is
Linux-specific, but there is nothing to indicate to me that it is
Linux-specific. Nothing was done about that.
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Reviewed-by: Jorgen Lundman <lundman@lundman.net>
Reviewed-by: Ryan Moeller <ryan@iXsystems.com>
Reviewed-by: Alexander Motin <mav@FreeBSD.org>
Original-patch-by: Andrew Innes <andrew.c12@gmail.com>
Original-patch-by: Jorgen Lundman <lundman@lundman.net>
Signed-off-by: Richard Yao <richard.yao@alumni.stonybrook.edu>
Closes#13984Closes#14004
In #13871, zfs_vdev_aggregation_limit_non_rotating and
zfs_vdev_aggregation_limit being signed was pointed out as a possible
reason not to eliminate an unnecessary MAX(unsigned, 0) since the
unsigned value was assigned from them.
There is no reason for these module parameters to be signed and upon
inspection, it was found that there are a number of other module
parameters that are signed, but should not be, so we make them unsigned.
Making them unsigned made it clear that some other variables in the code
should also be unsigned, so we also make those unsigned. This prevents
users from setting negative values that could potentially cause bad
behaviors. It also makes the code slightly easier to understand.
Mostly module parameters that deal with timeouts, limits, bitshifts and
percentages are made unsigned by this. Any that are boolean are left
signed, since whether booleans should be considered signed or unsigned
does not matter.
Making zfs_arc_lotsfree_percent unsigned caused a
`zfs_arc_lotsfree_percent >= 0` check to become redundant, so it was
removed. Removing the check was also necessary to prevent a compiler
error from -Werror=type-limits.
Several end of line comments had to be moved to their own lines because
replacing int with uint_t caused us to exceed the 80 character limit
enforced by cstyle.pl.
The following were kept signed because they are passed to
taskq_create(), which expects signed values and modifying the
OpenSolaris/Illumos DDI is out of scope of this patch:
* metaslab_load_pct
* zfs_sync_taskq_batch_pct
* zfs_zil_clean_taskq_nthr_pct
* zfs_zil_clean_taskq_minalloc
* zfs_zil_clean_taskq_maxalloc
* zfs_arc_prune_task_threads
Also, negative values in those parameters was found to be harmless.
The following were left signed because either negative values make
sense, or more analysis was needed to determine whether negative values
should be disallowed:
* zfs_metaslab_switch_threshold
* zfs_pd_bytes_max
* zfs_livelist_min_percent_shared
zfs_multihost_history was made static to be consistent with other
parameters.
A number of module parameters were marked as signed, but in reality
referenced unsigned variables. upgrade_errlog_limit is one of the
numerous examples. In the case of zfs_vdev_async_read_max_active, it was
already uint32_t, but zdb had an extern int declaration for it.
Interestingly, the documentation in zfs.4 was right for
upgrade_errlog_limit despite the module parameter being wrongly marked,
while the documentation for zfs_vdev_async_read_max_active (and friends)
was wrong. It was also wrong for zstd_abort_size, which was unsigned,
but was documented as signed.
Also, the documentation in zfs.4 incorrectly described the following
parameters as ulong when they were int:
* zfs_arc_meta_adjust_restarts
* zfs_override_estimate_recordsize
They are now uint_t as of this patch and thus the man page has been
updated to describe them as uint.
dbuf_state_index was left alone since it does nothing and perhaps should
be removed in another patch.
If any module parameters were missed, they were not found by `grep -r
'ZFS_MODULE_PARAM' | grep ', INT'`. I did find a few that grep missed,
but only because they were in files that had hits.
This patch intentionally did not attempt to address whether some of
these module parameters should be elevated to 64-bit parameters, because
the length of a long on 32-bit is 32-bit.
Lastly, it was pointed out during review that uint_t is a better match
for these variables than uint32_t because FreeBSD kernel parameter
definitions are designed for uint_t, whose bit width can change in
future memory models. As a result, we change the existing parameters
that are uint32_t to use uint_t.
Reviewed-by: Alexander Motin <mav@FreeBSD.org>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Reviewed-by: Neal Gompa <ngompa@datto.com>
Signed-off-by: Richard Yao <richard.yao@alumni.stonybrook.edu>
Closes#13875
param_set_arc_free_target(SYSCTL_HANDLER_ARGS) and
param_set_arc_no_grow_shift(SYSCTL_HANDLER_ARGS) defined in
sysctl_os.c must be made available to arc_os.c.
Reviewed-by: Alexander Motin <mav@FreeBSD.org>
Reviewed-by: Ryan Moeller <ryan@iXsystems.com>
Signed-off-by: Martin Matuska <mm@FreeBSD.org>
Closes#13915
FreeBSD had a few platform-specific ARC tunables in the wrong place:
- Move FreeBSD-specifc ARC tunables into the same vfs.zfs.arc node as
the rest of the ARC tunables.
- Move the handlers from arc_os.c to sysctl_os.c and add compat sysctls
for the legacy names.
While here, some additional clean up:
- Most handlers are specific to a particular variable and don't need a
pointer passed through the args.
- Group blocks of related variables, handlers, and sysctl declarations
into logical sections.
- Match variable types for temporaries in handlers with the type of the
global variable.
- Remove leftover comments.
Reviewed-by: Alexander Motin <mav@FreeBSD.org>
Signed-off-by: Ryan Moeller <ryan@iXsystems.com>
Closes#13756
69 CSTYLED BEGINs remain, appx. 30 of which can be removed if cstyle(1)
had a useful policy regarding
CALL(ARG1,
ARG2,
ARG3);
above 2 lines. As it stands, it spits out *both*
sysctl_os.c: 385: continuation line should be indented by 4 spaces
sysctl_os.c: 385: indent by spaces instead of tabs
which is very cool
Another >10 could be fixed by removing "ulong" &al. handling.
I don't foresee anyone actually using it intentionally
(does it even exist in modern headers? why did it in the first place?).
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Ahelenia Ziemiańska <nabijaczleweli@nabijaczleweli.xyz>
Closes#12993
Before OpenZFS 2.0, trying to set the FreeBSD sysctl vfs.zfs.arc_max
to a disallowed value would return an error.
Since the switch, it instead only generates WARN_IF_TUNING_IGNORED
Keep the ability to set the sysctl's specifically to 0, even though
that is less than the minimum, because some tests depend on this.
Also lost, was the ability to set vfs.zfs.arc_max to a value less
than the default vfs.zfs.arc_min at boot time. Restore this as well.
Reviewed-by: Tony Nguyen <tony.nguyen@delphix.com>
Reviewed-by: Ryan Moeller <ryan@ixsystems.com>
Signed-off-by: Allan Jude <allan@klarasystems.com>
Closes#12161
To make use of zfs_refcount_held tunable it should be a module
parameter in open-zfs. Also, since the macros will auto-generate OS
specific tunables, removed the existing zfs_refcount_held reference
in module/os/freebsd/zfs/sysctl_os.c.
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Reviewed-by: Ryan Moeller <ryan@iXsystems.com>
Reviewed-by: Allan Jude <allan@klarasystems.com>
Signed-off-by: Don Brady <don.brady@delphix.com>
Closes#11753
vfs.zfs.arc_no_grow_shift has an invalid type (15) and this causes
py-sysctl to format it as a bytearray when it should be an integer.
"U" is not a valid format, it should be "I" and the type should match
the variable type, int. We can return EINVAL if the value is set below
zero.
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Ryan Moeller <ryan@iXsystems.com>
Closes#11318
The zfs_fsync, zfs_read, and zfs_write function are almost identical
between Linux and FreeBSD. With a little refactoring they can be
moved to the common code which is what is done by this commit.
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Reviewed-by: Ryan Moeller <ryan@iXsystems.com>
Signed-off-by: Matt Macy <mmacy@FreeBSD.org>
Closes#11078
FreeBSD had this value tunable before the switch to the new OpenZFS.
The tunable name has changed, breaking legacy compat.
Restore legacy compat for this tunable, properly expose the tunable
with the new name on all platforms, and document it in
zfs-module-parameters(5).
While here, clean up the documentation for zfetch_max_distance a bit.
Reviewed-by: Alexander Motin <mav@FreeBSD.org>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Ryan Moeller <ryan@iXsystems.com>
Closes#11038
Without this, the sysctl system calls will acquire a global lock before
invoking the handler. This is noticeable in some situations when
running top(1). The global lock is mostly vestigal but continues to see
some use and so contention is still a problem; until the default sense
of the MPSAFE flag changes, we have to annotate each and every handler.
Reviewed-by: Allan Jude <allan@klarasystems.com>
Reviewed-by: Ryan Moeller <ryan@ixsystems.com>
Signed-off-by: Mark Johnston <markj@FreeBSD.org>
Closes#10836
== Motivation and Context
The new vdev ashift optimization prevents the removal of devices when
a zfs configuration is comprised of disks which have different logical
and physical block sizes. This is caused because we set 'spa_min_ashift'
in vdev_open and then later call 'vdev_ashift_optimize'. This would
result in an inconsistency between spa's ashift calculations and that
of the top-level vdev.
In addition, the optimization logical ignores the overridden ashift
value that would be provided by '-o ashift=<val>'.
== Description
This change reworks the vdev ashift optimization so that it's only
set the first time the device is configured. It still allows the
physical and logical ahsift values to be set every time the device
is opened but those values are only consulted on first open.
Reviewed-by: Matthew Ahrens <mahrens@delphix.com>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Reviewed-by: Cedric Berger <cedric@precidata.com>
Signed-off-by: George Wilson <gwilson@delphix.com>
External-Issue: DLPX-71831
Closes#10932
Many modern devices use physical allocation units that are much
larger than the minimum logical allocation size accessible by
external commands. Two prevalent examples of this are 512e disk
drives (512b logical sector, 4K physical sector) and flash devices
(512b logical sector, 4K or larger allocation block size, and 128k
or larger erase block size). Operations that modify less than the
physical sector size result in a costly read-modify-write or garbage
collection sequence on these devices.
Simply exporting the true physical sector of the device to ZFS would
yield optimal performance, but has two serious drawbacks:
1. Existing pools created with devices that have different logical
and physical block sizes, but were configured to use the logical
block size (e.g. because the OS version used for pool construction
reported the logical block size instead of the physical block
size) will suddenly find that the vdev allocation size has
increased. This can be easily tolerated for active members of
the array, but ZFS would prevent replacement of a vdev with
another identical device because it now appears that the smaller
allocation size required by the pool is not supported by the new
device.
2. The device's physical block size may be too large to be supported
by ZFS. The optimal allocation size for the vdev may be quite
large. For example, a RAID controller may export a vdev that
requires read-modify-write cycles unless accessed using 64k
aligned/sized requests. ZFS currently has an 8k minimum block
size limit.
Reporting both the logical and physical allocation sizes for vdevs
solves these problems. A device may be used so long as the logical
block size is compatible with the configuration. By comparing the
logical and physical block sizes, new configurations can be optimized
and administrators can be notified of any existing pools that are
sub-optimal.
Reviewed-by: Ryan Moeller <ryan@iXsystems.com>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Co-authored-by: Matthew Macy <mmacy@freebsd.org>
Signed-off-by: Matt Macy <mmacy@FreeBSD.org>
Closes#10619
A collection of header changes to enable FreeBSD to build
with vendored OpenZFS.
Reviewed-by: Ryan Moeller <ryan@ixsystems.com>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Matt Macy <mmacy@FreeBSD.org>
Closes#10635
Drop unnecessary redefinition's of several arcstat values.
Put missing extern declaration of arc_no_grow_shift in arc_impl.h.
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Ryan Moeller <ryan@iXsystems.com>
Closes#10609
These tunables were renamed from vfs.zfs.arc_min and
vfs.zfs.arc_max to vfs.zfs.arc.min and vfs.zfs.arc.max.
Add legacy compat tunables for the old names.
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Ryan Moeller <ryan@iXsystems.com>
Closes#10579
Fix header conflicts when building zfs with openzfs as a vendor import.
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Reviewed-by: Ryan Moeller <ryan@ixsystems.com>
Signed-off-by: Matt Macy <mmacy@FreeBSD.org>
Closes#10497
This tunable required a handler to be implemented for
ZFS_MODULE_PARAM_CALL.
Add the handler so the tunable can be declared in common code.
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Ryan Moeller <ryan@iXsystems.com>
Closes#10490
Remove some obsolete legacy compat, rename some misnamed, and add some
missing tunables for FreeBSD.
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Ryan Moeller <ryan@iXsystems.com>
Closes#10203
Add the FreeBSD platform code to the OpenZFS repository. As of this
commit the source can be compiled and tested on FreeBSD 11 and 12.
Subsequent commits are now required to compile on FreeBSD and Linux.
Additionally, they must pass the ZFS Test Suite on FreeBSD which is
being run by the CI. As of this commit 1230 tests pass on FreeBSD
and there are no unexpected failures.
Reviewed-by: Sean Eric Fagan <sef@ixsystems.com>
Reviewed-by: Jorgen Lundman <lundman@lundman.net>
Reviewed-by: Richard Laager <rlaager@wiktel.com>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Co-authored-by: Ryan Moeller <ryan@iXsystems.com>
Signed-off-by: Matt Macy <mmacy@FreeBSD.org>
Signed-off-by: Ryan Moeller <ryan@iXsystems.com>
Closes#898Closes#8987