Commit Graph

2 Commits

Author SHA1 Message Date
Brian Behlendorf
608f8749a1
Perform KABI checks in parallel
Reduce the time required for ./configure to perform the needed
KABI checks by allowing kbuild to compile multiple test cases in
parallel.  This was accomplished by splitting each test's source
code from the logic handling whether that code could be compiled
or not.

By introducing this split it's possible to minimize the number of
times kbuild needs to be invoked.  As importantly, it means all of
the tests can be built in parallel.  This does require a little extra
care since we expect some tests to fail, so the --keep-going (-k)
option must be provided otherwise some tests may not get compiled.
Furthermore, since a failure during the kbuild modpost phase will
result in an early exit; the final linking phase is limited to tests
which passed the initial compilation and produced an object file.

Once everything has been built the configure script proceeds as
previously.  The only significant difference is that it now merely
needs to test for the existence of a .ko file to determine the
result of a given test.  This vastly speeds up the entire process.

New test cases should use ZFS_LINUX_TEST_SRC to declare their test
source code and ZFS_LINUX_TEST_RESULT to check the result.  All of
the existing kernel-*.m4 files have been updated accordingly, see
config/kernel-current-time.m4 for a basic example.  The legacy
ZFS_LINUX_TRY_COMPILE macro has been kept to handle special cases
but it's use is not encouraged.

                  master (secs)   patched (secs)
                  -------------   ----------------
autogen.sh        61              68
configure         137             24  (~17% of current run time)
make -j $(nproc)  44              44
make rpms         287             150

Reviewed-by: Tony Hutter <hutter2@llnl.gov>
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Closes #8547 
Closes #9132
Closes #9341
2019-10-01 12:50:34 -07:00
Seth Forshee
93b43af10d Allow mounting datasets more than once
Currently mounting an already mounted zfs dataset results in an
error, whereas it is typically allowed with other filesystems.
This causes some bad interactions with mount namespaces. Take
this sequence for example:

- Create a dataset
- Create a snapshot of the dataset
- Create a clone of the snapshot
- Create a new mount namespace
- Rename the original dataset

The rename results in unmounting and remounting the clone in the
original mount namespace, however the remount fails because the
dataset is still mounted in the new mount namespace. (Note that
this means the mount in the new mount namespace is never being
unmounted, so perhaps the unmount/remount of the clone isn't
actually necessary.)

The problem here is a result of the way mounting is implemented
in the kernel module. Since it is not mounting block devices it
uses mount_nodev() instead of the usual mount_bdev(). However,
mount_nodev() is written for filesystems for which each mount is
a new instance (i.e. a new super block), and zfs should be able
to detect when a mount request can be satisfied using an existing
super block.

Change zpl_mount() to call sget() directly with it's own test
callback. Passing the objset_t object as the fs data allows
checking if a superblock already exists for the dataset, and in
that case we just need to return a new reference for the sb's
root dentry.

Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Reviewed-by: Tom Caputi <tcaputi@datto.com>
Signed-off-by: Alek Pinchuk <apinchuk@datto.com>
Signed-off-by: Seth Forshee <seth.forshee@canonical.com>
Closes #5796
Closes #7207
2018-04-13 10:44:05 -07:00