This field is a duplicate of the inode->i_generation, so just kill it
Signed-off-by: Nikolay Borisov <n.borisov.lkml@gmail.com>
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Closes#4538
Linux 4.0 introduces lazytime. The idea is that when we update the atime, we
delay writing it to disk for as long as it is reasonably possible.
When lazytime is enabled, dirty_inode will be called with only I_DIRTY_TIME
flag whenever i_atime is updated. So under such condition, we will set
z_atime_dirty. We will only write it to disk if file is closed, inode is
evicted or setattr is called. Ideally, we should also write it whenever SA
is going to be updated, but it is left for future improvement.
There's one thing that we should take care of now that we allow i_atime to be
dirty. In original implementation, whenever SA is modified, zfs_inode_update
will be called to overwrite every thing in inode. This will cause dirty
i_atime to be discarded. We fix this by don't overwrite i_atime in
zfs_inode_update. We only overwrite i_atime when allocating new inode or doing
zfs_rezget with zfs_inode_update_new.
Signed-off-by: Chunwei Chen <david.chen@osnexus.com>
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Issue #4482
The problem for atime:
We have 3 places for atime: inode->i_atime, znode->z_atime and SA. And its
handling is a mess. A huge part of mess regarding atime comes from
zfs_tstamp_update_setup, zfs_inode_update, and zfs_getattr, which behave
inconsistently with those three values.
zfs_tstamp_update_setup clears z_atime_dirty unconditionally as long as you
don't pass ATTR_ATIME. Which means every write(2) operation which only updates
ctime and mtime will cause atime changes to not be written to disk.
Also zfs_inode_update from write(2) will replace inode->i_atime with what's
inside SA(stale). But doesn't touch z_atime. So after read(2) and write(2).
You'll have i_atime(stale), z_atime(new), SA(stale) and z_atime_dirty=0.
Now, if you do stat(2), zfs_getattr will actually replace i_atime with what's
inside, z_atime. So you will have now you'll have i_atime(new), z_atime(new),
SA(stale) and z_atime_dirty=0. These will all gone after umount. And you'll
leave with a stale atime.
The problem for relatime:
We do have a relatime config inside ZFS dataset, but how it should interact
with the mount flag MS_RELATIME is not well defined. It seems it wanted
relatime mount option to override the dataset config by showing it as
temporary in `zfs get`. But at the same time, `zfs set relatime=on|off` would
also seems to want to override the mount option. Not to mention that
MS_RELATIME flag is actually never passed into ZFS, so it never really worked.
How Linux handles atime:
The Linux kernel actually handles atime completely in VFS, except for writing
it to disk. So if we remove the atime handling in ZFS, things would just work,
no matter it's strictatime, relatime, noatime, or even O_NOATIME. And whenever
VFS updates the i_atime, it will notify the underlying filesystem via
sb->dirty_inode().
And also there's one thing to note about atime flags like MS_RELATIME and
other flags like MS_NODEV, etc. They are mount point flags rather than
filesystem(sb) flags. Since native linux filesystem can be mounted at multiple
places at the same time, they can all have different atime settings. So these
flags are never passed down to filesystem drivers.
What this patch tries to do:
We remove znode->z_atime, since we won't gain anything from it. We remove most
of the atime handling and leave it to VFS. The only thing we do with atime is
to write it when dirty_inode() or setattr() is called. We also add
file_accessed() in zpl_read() since it's not provided in vfs_read().
After this patch, only the MS_RELATIME flag will have effect. The setting in
dataset won't do anything. We will make zfstuil to mount ZFS with MS_RELATIME
set according to the setting in dataset in future patch.
Signed-off-by: Chunwei Chen <david.chen@osnexus.com>
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Issue #4482
As described in torvalds/linux@4a2d057e the macros
PAGE_CACHE_{SIZE,SHIFT,MASK,ALIGN} macros were originally introduced
to make it possible to add bigger chunks to the page cache. This
never panned out and it has therefore been removed from the kernel.
ZFS has been updated to use the PAGE_{SIZE,SHIFT,MASK,ALIGN} macros
and calls to page_cache_release() have been replaced with put_page().
There was no need to introduce a configure check for this because
these interfaces have existed for a very long time.
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Chunwei Chen <tuxoko@gmail.com>
Closes#4489
4950 files sometimes can't be removed from a full filesystem
Reviewed by: Adam Leventhal <adam.leventhal@delphix.com>
Reviewed by: George Wilson <george.wilson@delphix.com>
Reviewed by: Sebastien Roy <sebastien.roy@delphix.com>
Reviewed by: Boris Protopopov <bprotopopov@hotmail.com>
Approved by: Dan McDonald <danmcd@omniti.com>
References:
https://www.illumos.org/issues/4950https://github.com/illumos/illumos-gate/commit/4bb7380
Porting notes:
- ZoL currently does not log discards to zvols, so the portion of
this patch that modifies the discard logging to mark it as
freeing space has been discarded.
2. may_delete_now had been removed from zfs_remove() in ZoL.
It has been reintroduced.
3. We do not try to emulate vnodes, so the following lines are
not valid on Linux:
mutex_enter(&vp->v_lock);
may_delete_now = vp->v_count == 1 && !vn_has_cached_data(vp);
mutex_exit(&vp->v_lock);
This has been replaced with:
mutex_enter(&zp->z_lock);
may_delete_now = atomic_read(&ip->i_count) == 1 && !(zp->z_is_mapped);
mutex_exit(&zp->z_lock);
Ported-by: Richard Yao <richard.yao@clusterhq.com>
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Check if the lock is held while holding the z_hold_locks() lock.
This prevents a possible use-after-free bug for callers which are
not holding the lock. There currently are no such callers so this
can't cause a problem today but it has been fixed regardless.
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Chunwei Chen <tuxoko@gmail.com>
Closes#4244
Issue #4124
The zfs_znode_hold_enter() / zfs_znode_hold_exit() functions are used to
serialize access to a znode and its SA buffer while the object is being
created or destroyed. This kind of locking would normally reside in the
znode itself but in this case that's impossible because the znode and SA
buffer may not yet exist. Therefore the locking is handled externally
with an array of mutexs and AVLs trees which contain per-object locks.
In zfs_znode_hold_enter() a per-object lock is created as needed, inserted
in to the correct AVL tree and finally the per-object lock is held. In
zfs_znode_hold_exit() the process is reversed. The per-object lock is
released, removed from the AVL tree and destroyed if there are no waiters.
This scheme has two important properties:
1) No memory allocations are performed while holding one of the z_hold_locks.
This ensures evict(), which can be called from direct memory reclaim, will
never block waiting on a z_hold_locks which just happens to have hashed
to the same index.
2) All locks used to serialize access to an object are per-object and never
shared. This minimizes lock contention without creating a large number
of dedicated locks.
On the downside it does require znode_lock_t structures to be frequently
allocated and freed. However, because these are backed by a kmem cache
and very short lived this cost is minimal.
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Issue #4106
Add a zfs_object_mutex_size module option to facilitate resizing the
the per-dataset znode mutex array. Increasing this value may help
make the deadlock described in #4106 less common, but this is not a
proper fix. This patch is primarily to aid debugging and analysis.
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Tim Chase <tim@chase2k.com>
Issue #4106
3139 zdb dies when it tries to determine path of unlinked file
Reviewed by: Matt Ahrens <matthew.ahrens@delphix.com>
Reviewed by: Christopher Siden <chris.siden@delphix.com>
Reviewed by: Eric Schrock <eric.schrock@delphix.com>
Approved by: Dan McDonald <danmcd@nexenta.com>
References:
https://github.com/illumos/illumos-gate/commit/1ce39b5https://www.illumos.org/issues/3139
Ported-by: kernelOfTruth kerneloftruth@gmail.com
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
When running a kernel with CONFIG_LOCKDEP=y, lockdep reports possible
recursive locking in some cases and possible circular locking dependency
in others, within the SPL and ZFS modules.
This patch uses a mutex type defined in SPL, MUTEX_NOLOCKDEP, to mark
such mutexes when they are initialized. This mutex type causes
attempts to take or release those locks to be wrapped in lockdep_off()
and lockdep_on() calls to silence the dependency checker and allow the
use of lock_stats to examine contention.
For RW locks, it uses an analogous lock type, RW_NOLOCKDEP.
The goal is that these locks are ultimately changed back to type
MUTEX_DEFAULT or RW_DEFAULT, after the locks are annotated to reflect
their relationship (e.g. z_name_lock below) or any real problem with the
lock dependencies are fixed.
Some of the affected locks are:
tc_open_lock:
=============
This is an array of locks, all with same name, which txg_quiesce must
take all of in order to move txg to next state. All default to the same
lockdep class, and so to lockdep appears recursive.
zp->z_name_lock:
================
In zfs_rmdir,
dzp = znode for the directory (input to zfs_dirent_lock)
zp = znode for the entry being removed (output of zfs_dirent_lock)
zfs_rmdir()->zfs_dirent_lock() takes z_name_lock in dzp
zfs_rmdir() takes z_name_lock in zp
Since both dzp and zp are type znode_t, the locks have the same default
class, and lockdep considers it a possible recursive lock attempt.
l->l_rwlock:
============
zap_expand_leaf() sometimes creates two new zap leaf structures, via
these call paths:
zap_deref_leaf()->zap_get_leaf_byblk()->zap_leaf_open()
zap_expand_leaf()->zap_create_leaf()->zap_expand_leaf()->zap_create_leaf()
Because both zap_leaf_open() and zap_create_leaf() initialize
l->l_rwlock in their (separate) leaf structures, the lockdep class is
the same, and the linux kernel believes these might both be the same
lock, and emits a possible recursive lock warning.
Signed-off-by: Olaf Faaland <faaland1@llnl.gov>
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Closes#3895
There exists a lock inversion between the z_xattr_lock and the
z_teardown_lock. Detect this case and return EBUSY so zfs_resume_fs()
will mark the inode stale and it can be safely revalidated on next
access.
* process-1
zpl_xattr_get -> Takes zp->z_xattr_lock
__zpl_xattr_get
zfs_lookup -> Takes zsb->z_teardown_lock in ZFS_ENTER macro
* process-2
zfs_ioc_recv -> Takes zsb->z_teardown_lock in zfs_suspend_fs()
zfs_resume_fs
zfs_rezget -> Takes zp->z_xattr_lock
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Chunwei Chen <david.chen@osnexus.com>
Closes#3969
When sa_bulk_lookup() fails, unlock_new_inode() will spit out a WARNING. It
will also recursive deadlock on ZFS_OBJ_HOLD_ENTER in zfs_zinactive().
Since we never call insert_inode_locked in fail path, I_NEW is never set, the
inode is never hashed. So unlock_new_inode() can be safely remove it.
We set z_sa_hdl to NULL in fail path so that iput path will stop at
zfs_inactive() without entering zfs_zinactive(). This way we can avoid the
deadlock and prevent double sa_handle_destroy().
Signed-off-by: Chunwei Chen <david.chen@osnexus.com>
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Issue #3899
We should never block when holding a spin lock, but zfs_inode_update can
block in the critical section of a spin lock in zfs_inode_update:
zfs_inode_update -> dmu_object_size_from_db -> zrl_add -> mutex_enter
Signed-off-by: Richard Yao <ryao@gentoo.org>
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Issue #3858
Re-factor the .zfs/snapshot auto-mouting code to take in to account
changes made to the upstream kernels. And to lay the groundwork for
enabling access to .zfs snapshots via NFS clients. This patch makes
the following core improvements.
* All actively auto-mounted snapshots are now tracked in two global
trees which are indexed by snapshot name and objset id respectively.
This allows for fast lookups of any auto-mounted snapshot regardless
without needing access to the parent dataset.
* Snapshot entries are added to the tree in zfsctl_snapshot_mount().
However, they are now removed from the tree in the context of the
unmount process. This eliminates the need complicated error logic
in zfsctl_snapshot_unmount() to handle unmount failures.
* References are now taken on the snapshot entries in the tree to
ensure they always remain valid while a task is outstanding.
* The MNT_SHRINKABLE flag is set on the snapshot vfsmount_t right
after the auto-mount succeeds. This allows to kernel to unmount
idle auto-mounted snapshots if needed removing the need for the
zfsctl_unmount_snapshots() function.
* Snapshots in active use will not be automatically unmounted. As
long as at least one dentry is revalidated every zfs_expire_snapshot/2
seconds the auto-unmount expiration timer will be extended.
* Commit torvalds/linux@bafc9b7 caused snapshots auto-mounted by ZFS
to be immediately unmounted when the dentry was revalidated. This
was a consequence of ZFS invaliding all snapdir dentries to ensure that
negative dentries didn't mask new snapshots. This patch modifies the
behavior such that only negative dentries are invalidated. This solves
the issue and may result in a performance improvement.
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Closes#3589Closes#3344Closes#3295Closes#3257Closes#3243Closes#3030Closes#2841
When an inode is detected with invalid mode bits the safe thing to
do is panic the system. This indicates a problem with the contents
of a dnode and it should never be possible. This is the default
behavior.
Unfortunately, due to flaws in the system attribute (SA) implementation
(on all platforms) it was possible that ZFS could create a damaged dnode.
This was a rare issue which only impacted dnodes which used a spill
block. Normally only symlinks and files with ACLs would require a
spill block. However, if the dataset had the xattr=sa property set
and extended attributes were used this problem could occur.
As of the 0.6.4 tag the root cause of this issue has been fixed. For
pools which are exhibiting this damage the 'zfs_recover=1' module option
may be set. This will cause ZFS to interpret the dnode with invalid
mode bits as a normal file. This may allow the files to be accessed
for recovery purposes.
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Closes#3548
5027 zfs large block support
Reviewed by: Alek Pinchuk <pinchuk.alek@gmail.com>
Reviewed by: George Wilson <george.wilson@delphix.com>
Reviewed by: Josef 'Jeff' Sipek <josef.sipek@nexenta.com>
Reviewed by: Richard Elling <richard.elling@richardelling.com>
Reviewed by: Saso Kiselkov <skiselkov.ml@gmail.com>
Reviewed by: Brian Behlendorf <behlendorf1@llnl.gov>
Approved by: Dan McDonald <danmcd@omniti.com>
References:
https://www.illumos.org/issues/5027https://github.com/illumos/illumos-gate/commit/b515258
Porting Notes:
* Included in this patch is a tiny ISP2() cleanup in zio_init() from
Illumos 5255.
* Unlike the upstream Illumos commit this patch does not impose an
arbitrary 128K block size limit on volumes. Volumes, like filesystems,
are limited by the zfs_max_recordsize=1M module option.
* By default the maximum record size is limited to 1M by the module
option zfs_max_recordsize. This value may be safely increased up to
16M which is the largest block size supported by the on-disk format.
At the moment, 1M blocks clearly offer a significant performance
improvement but the benefits of going beyond this for the majority
of workloads are less clear.
* The illumos version of this patch increased DMU_MAX_ACCESS to 32M.
This was determined not to be large enough when using 16M blocks
because the zfs_make_xattrdir() function will fail (EFBIG) when
assigning a TX. This was immediately observed under Linux because
all newly created files must have a security xattr created and
that was failing. Therefore, we've set DMU_MAX_ACCESS to 64M.
* On 32-bit platforms a hard limit of 1M is set for blocks due
to the limited virtual address space. We should be able to relax
this one the ABD patches are merged.
Ported-by: Brian Behlendorf <behlendorf1@llnl.gov>
Closes#354
It's been reported that threads would loop infinitely inside zfs_zget. The
speculated cause for this is that if an inode is marked for evict, zfs_zget
would see that and loop. However, if the looping thread doesn't yield, the
inode may not have a chance to finish evict, thus causing a infinite loop.
This patch solve this issue by add cond_resched to zfs_zget, making the
looping thread to yield when needed.
Tested-by: jlavoy <jalavoy@gmail.com>
Signed-off-by: Chunwei Chen <tuxoko@gmail.com>
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Closes#3349
The Linux slab, in general, performs better than the SPl slab in cases
where a lot of objects are allocated and fragmentation is likely present.
This patch fixes pathologically bad behavior in cases where the ARC is
filled with mostly metadata and a user program needs to allocate and
dirty enough memory which would require an insignificant amount of the
ARC to be reclaimed.
If zfs_znode_cache is on the SPL slab, the system may spin for a very
long time trying to reclaim sufficient memory. If it is on the Linux
slab, the behavior has been observed to be much more predictible; the
memory is reclaimed more efficiently.
Signed-off-by: Tim Chase <tim@chase2k.com>
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Issue #3283
Prevent deadlocks by disabling direct reclaim during all ZPL and ioctl
calls as well as the l2arc and adapt ARC threads.
This obviates the need for MUTEX_FSTRANS so its previous uses and
definition have been eliminated.
Signed-off-by: Tim Chase <tim@chase2k.com>
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Closes#3225
zfs_sb_t has grown to the point where using kmem_zalloc() for allocations
is triggering the 32k warning threshold.
We can't safely convert this entire allocation to use vmem_alloc() instead
of kmem_alloc() because the backing_dev_info structure is embedded here.
It depends on the bit_waitqueue() function which won't behave properly
when given a virtual address.
Instead, use vmem_alloc() to allocate the z_hold_mtx array separately.
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Chris Dunlop <chris@onthe.net.au>
Closes#3178
By marking DMU transaction processing contexts with PF_FSTRANS
we can revert the KM_PUSHPAGE -> KM_SLEEP changes. This brings
us back in line with upstream. In some cases this means simply
swapping the flags back. For others fnvlist_alloc() was replaced
by nvlist_alloc(..., KM_PUSHPAGE) and must be reverted back to
fnvlist_alloc() which assumes KM_SLEEP.
The one place KM_PUSHPAGE is kept is when allocating ARC buffers
which allows us to dip in to reserved memory. This is again the
same as upstream.
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Callers of kmem_alloc() which passed the KM_NODEBUG flag to suppress
the large allocation warning have been replaced by vmem_alloc() as
appropriate. The updated vmem_alloc() call will not print a warning
regardless of the size of the allocation.
A careful reader will notice that not all callers have been changed
to vmem_alloc(). Some have only had the KM_NODEBUG flag removed.
This was possible because the default warning threshold has been
increased to 32k. This is desirable because it minimizes the need
for Linux specific code changes.
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
The Linux VFS handles mandatory locks generically so we shouldn't
need to check for conflicting locks in zfs_read(), zfs_write(), or
zfs_freesp(). Linux 3.18 removed the lock_may_read() and
lock_may_write() interfaces which we were relying on for this
purpose. Rather than emulating those interfaces we remove the
redundant checks.
Signed-off-by: Ned Bass <bass6@llnl.gov>
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Closes#2804
As an attempt to perform the page truncation more optimally, the
hole-punching support added in 223df0161f
truncated performed the operation in two steps: first, sub-page "stubs"
were zeroed under the range lock in zfs_free_range() using the new
zfs_zero_partial_page() function and then the whole pages were truncated
within zfs_freesp(). This left a window of opportunity during which
the full pages could be touched.
This patch closes the window by moving the whole-page truncation into
zfs_free_range() under the range lock.
Signed-off-by: Tim Chase <tim@chase2k.com>
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Closes#2733
When rolling back a mounted filesystem zfs_suspend() is called
which acquires the z_teardown_inactive_lock. This lock can not
be dropped until the filesystem has been rolled back and resumed
in zfs_resume_fs().
Therefore, we must not call iput() under this lock because it
may result in the inode->evict() handler being called which also
takes this lock. Instead use zfs_iput_async() to ensure dropping
the last reference is deferred and runs in a safe context.
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Closes#2670
Add support for the FALLOC_FL_PUNCH_HOLE | FALLOC_FL_KEEP_SIZE mode of
fallocate(2). Mimic the behavior of other native file systems such as
ext4 in cases where the file might be extended. If the offset is beyond
the end of the file, return success without changing the file. If the
extent of the punched hole would extend the file, only the existing tail
of the file is punched.
Add the zfs_zero_partial_page() function, modeled after update_page(),
to handle zeroing partial pages in a hole-punching operation. It must
be used under a range lock for the requested region in order that the
ARC and page cache stay in sync.
Move the existing page cache truncation via truncate_setsize() into
zfs_freesp() for better source structure compatibility with upstream code.
Add page cache truncation to zfs_freesp() and zfs_free_range() to handle
hole punching.
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Tim Chase <tim@chase2k.com>
Closes#2619
Handle all iputs in zfs_purgedir() and zfs_inode_destroy()
asynchronously to prevent deadlocks. When the iputs are allowed
to run synchronously in the destroy call path deadlocks between
xattr directory inodes and their parent file inodes are possible.
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Richard Yao <ryao@gentoo.org>
Closes#457
4370 avoid transmitting holes during zfs send
4371 DMU code clean up
Reviewed by: Matthew Ahrens <mahrens@delphix.com>
Reviewed by: George Wilson <george.wilson@delphix.com>
Reviewed by: Christopher Siden <christopher.siden@delphix.com>
Reviewed by: Josef 'Jeff' Sipek <jeffpc@josefsipek.net>
Approved by: Garrett D'Amore <garrett@damore.org>a
References:
https://www.illumos.org/issues/4370https://www.illumos.org/issues/4371https://github.com/illumos/illumos-gate/commit/43466aa
Ported by: Tim Chase <tim@chase2k.com>
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Closes#2529
As part of the write throttle & i/o schedule performance work the
zfs_trunc() function should have been updated to use TXG_WAIT.
Using TXG_WAIT ensures that the tx will be part of the next txg.
If TXG_NOWAIT is used and retried for ERESTART errors then the
tx can suffer from starvation.
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Ned Bass <bass6@llnl.gov>
Closes#2488
Update the current code to ensure inodes are never dirtied if they are
part of a read-only file system or snapshot. If they do somehow get
dirtied an attempt will make made to write them to disk. In the case
of snapshots, which don't have a ZIL, this will result in a NULL
dereference in zil_commit().
Signed-off-by: Richard Yao <ryao@gentoo.org>
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Closes#2405
We add support for lsattr and chattr to resolve a regression caused
by 88c283952f that broke Python's
xattr.list(). That changet broke Gentoo Portage's FEATURES=xattr,
which depended on Python's xattr.list().
Only attributes common to both Solaris and Linux are supported. These
are 'a', 'd' and 'i' in Linux's lsattr and chattr commands. File
attributes exclusive to Solaris are present in the ZFS code, but cannot
be accessed or modified through this method. That was the case prior to
this patch. The resolution of issue zfsonlinux/zfs#229 should implement
some method to permit access and modification of Solaris-specific
attributes.
References:
https://bugs.gentoo.org/show_bug.cgi?id=483516
Original-patch-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Richard Yao <ryao@gentoo.org>
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Closes#1691
zfsonlinux/zfs#180 occurred because of a race between inode eviction and
zfs_zget(). zfsonlinux/zfs@36df284 tried to address it by making a call
to the VFS to learn whether an inode is being evicted. If it was being
evicted the operation was retried after dropping and reacquiring the
relevant resources. Unfortunately, this introduced another deadlock.
INFO: task kworker/u24:6:891 blocked for more than 120 seconds.
Tainted: P O 3.13.6 #1
"echo 0 > /proc/sys/kernel/hung_task_timeout_secs" disables this message.
kworker/u24:6 D ffff88107fcd2e80 0 891 2 0x00000000
Workqueue: writeback bdi_writeback_workfn (flush-zfs-5)
ffff8810370ff950 0000000000000002 ffff88103853d940 0000000000012e80
ffff8810370fffd8 0000000000012e80 ffff88103853d940 ffff880f5c8be098
ffff88107ffb6950 ffff8810370ff980 ffff88103a9a5b78 0000000000000000
Call Trace:
[<ffffffff813dd1d4>] schedule+0x24/0x70
[<ffffffff8115fc09>] __wait_on_freeing_inode+0x99/0xc0
[<ffffffff8115fdd8>] find_inode_fast+0x78/0xb0
[<ffffffff811608c5>] ilookup+0x65/0xd0
[<ffffffffa035c5ab>] zfs_zget+0xdb/0x260 [zfs]
[<ffffffffa03589d6>] zfs_get_data+0x46/0x340 [zfs]
[<ffffffffa035fee1>] zil_add_block+0xa31/0xc00 [zfs]
[<ffffffffa0360642>] zil_commit+0x12/0x20 [zfs]
[<ffffffffa036a6e4>] zpl_putpage+0x174/0x840 [zfs]
[<ffffffff811071ec>] do_writepages+0x1c/0x40
[<ffffffff8116df2b>] __writeback_single_inode+0x3b/0x2b0
[<ffffffff8116ecf7>] writeback_sb_inodes+0x247/0x420
[<ffffffff8116f5f3>] wb_writeback+0xe3/0x320
[<ffffffff81170b8e>] bdi_writeback_workfn+0xfe/0x490
[<ffffffff8106072c>] process_one_work+0x16c/0x490
[<ffffffff810613f3>] worker_thread+0x113/0x390
[<ffffffff81066edf>] kthread+0xdf/0x100
This patch implements the original fix in a slightly different manner in
order to avoid both deadlocks. Instead of relying on a call to ilookup()
which can block in __wait_on_freeing_inode() the return value from igrab()
is used. This gives us the information that ilookup() provided without
the risk of a deadlock.
Alternately, this race could be closed by registering an sops->drop_inode()
callback. The callback would need to detect the active SA hold thereby
informing the VFS that this inode should not be evicted.
Signed-off-by: Richard Yao <ryao@gentoo.org>
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Issue #180
Add the "relatime" property. When set to "on", a file's atime will only
be updated if the existing atime at least a day old or if the existing
ctime or mtime has been updated since the last access. This behavior
is compatible with the Linux "relatime" mount option.
Signed-off-by: Tim Chase <tim@chase2k.com>
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Closes#2064Closes#1917
When accessing the zp->z_mode through the SA bulk interface we
expect that 64-bits are available to hold the result. However,
on 32-bit platforms mode_t will only be 32-bits so we cannot
pass it to SA_ADD_BULK_ATTR(). Instead a local uint64_t variable
must be used and the result assigned to zp->z_mode.
This went unnoticed on 32-bit little endian platforms because
the bytes happen to end up in the correct 32-bits. But on big
endian platforms like Sparc the zp->z_mode will always end up
set to zero.
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Ned Bass <bass6@llnl.gov>
Signed-off-by: marku89 <mar42@kola.li>
Issue #1700
The vast majority of these changes are in Linux specific code.
They are the result of not having an automated style checker to
validate the code when it was originally written. Others were
caused when the common code was slightly adjusted for Linux.
This patch contains no functional changes. It only refreshes
the code to conform to style guide.
Everyone submitting patches for inclusion upstream should now
run 'make checkstyle' and resolve any warning prior to opening
a pull request. The automated builders have been updated to
fail a build if when 'make checkstyle' detects an issue.
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Closes#1821
Previously, the atime-modifying vnops called ZFS_ACCESSTIME_STAMP()
followed by zfs_inode_update() to update the atime. However, since atimes
are cached in the znode for delayed writing, the zfs_inode_update()
function would effectively ignore the cached atime by reading it from
the SA.
This commit moves the updating of the atime in the inode into
zfs_tstamp_update_setup() which is called by the ZFS_ACCESSTIME_STAMP()
macro and eliminates the call to zfs_inode_update() in the atime-modifying
vnops.
It's possible the same thing could have been done directly in
zfs_inode_update() but I wasn't sure that it was safe in all cases where
it is called.
The effect is that atime handling is as if "strictatime" were selected;
even if the filesystem is mounted with "relatime".
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Issue #1949
Fix a lock contention issue by allowing threads not holding
ZPL locks to block when waiting to assign a transaction.
Porting Notes:
zfs_putpage() still uses TXG_NOWAIT, unlike the upstream version. This
case may be a contention point just like zfs_write(), however it is not
safe to block here since it may be called during memory reclaim.
Reviewed by: George Wilson <george.wilson@delphix.com>
Reviewed by: Adam Leventhal <ahl@delphix.com>
Reviewed by: Dan McDonald <danmcd@nexenta.com>
Reviewed by: Boris Protopopov <boris.protopopov@nexenta.com>
Approved by: Dan McDonald <danmcd@nexenta.com>
References:
https://www.illumos.org/issues/4347illumos/illumos-gate@e722410c49
Ported-by: Ned Bass <bass6@llnl.gov>
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
3742 zfs comments need cleaner, more consistent style
Reviewed by: Matthew Ahrens <mahrens@delphix.com>
Reviewed by: George Wilson <george.wilson@delphix.com>
Reviewed by: Eric Schrock <eric.schrock@delphix.com>
Approved by: Christopher Siden <christopher.siden@delphix.com>
References:
https://www.illumos.org/issues/3742illumos/illumos-gate@f717074149
Ported-by: Richard Yao <ryao@gentoo.org>
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Issue #1775
Porting notes:
1. The change to zfs_vfsops.c was dropped because it involves
zfs_mount_label_policy, which does not exist in the Linux port.
3598 want to dtrace when errors are generated in zfs
Reviewed by: Dan Kimmel <dan.kimmel@delphix.com>
Reviewed by: Adam Leventhal <ahl@delphix.com>
Reviewed by: Christopher Siden <christopher.siden@delphix.com>
Approved by: Garrett D'Amore <garrett@damore.org>
References:
https://www.illumos.org/issues/3598illumos/illumos-gate@be6fd75a69
Ported-by: Richard Yao <ryao@gentoo.org>
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Issue #1775
Porting notes:
1. include/sys/zfs_context.h has been modified to render some new
macros inert until dtrace is available on Linux.
2. Linux-specific changes have been adapted to use SET_ERROR().
3. I'm NOT happy about this change. It does nothing but ugly
up the code under Linux. Unfortunately we need to take it to
avoid more merge conflicts in the future. -Brian
When compiling on an ARM device using gcc 4.7.3 several variables
in the zfs_obj_to_path_impl() function were flagged as uninitialized.
To resolve the warnings explicitly initialize them to zero.
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Closes#1716
When CONFIG_UIDGID_STRICT_TYPE_CHECKS is enabled uid_t/git_t are
replaced by kuid_t/kgid_t, which are structures instead of integral
types. This causes any code that uses an integral type to fail to build.
The User Namespace functionality introduced in Linux 3.8 requires
CONFIG_UIDGID_STRICT_TYPE_CHECKS, so we could not build against any
kernel that supported it.
We resolve this by converting between the new kuid_t/kgid_t structures
and the original uid_t/gid_t types.
Signed-off-by: Richard Yao <ryao@gentoo.org>
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Closes#1589
3006 VERIFY[S,U,P] and ASSERT[S,U,P] frequently check if first
argument is zero
Reviewed by Matt Ahrens <matthew.ahrens@delphix.com>
Reviewed by George Wilson <george.wilson@delphix.com>
Approved by Eric Schrock <eric.schrock@delphix.com>
References:
illumos/illumos-gate@fb09f5aad4https://illumos.org/issues/3006
Requires:
zfsonlinux/spl@1c6d149feb
Ported-by: Tim Chase <tim@chase2k.com>
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Closes#1509
Rolling back a mounted filesystem with open file handles and
cached dentries+inodes never worked properly in ZoL. The
major issue was that Linux provides no easy mechanism for
modules to invalidate the inode cache for a file system.
Because of this it was possible that an inode from the previous
filesystem would not get properly dropped from the cache during
rolling back. Then a new inode with the same inode number would
be create and collide with the existing cached inode. Ideally
this would trigger an VERIFY() but in practice the error wasn't
handled and it would just NULL reference.
Luckily, this issue can be resolved by sprucing up the existing
Solaris zfs_rezget() functionality for the Linux VFS.
The way it works now is that when a file system is rolled back
all the cached inodes will be traversed and refetched from disk.
If a version of the cached inode exists on disk the in-core
copy will be updated accordingly. If there is no match for that
object on disk it will be unhashed from the inode cache and
marked as stale.
This will effectively make the inode unfindable for lookups
allowing the inode number to be immediately recycled. The inode
will then only be accessible from the cached dentries. Subsequent
dentry lookups which reference a stale inode will result in the
dentry being invalidated. Once invalidated the dentry will drop
its reference on the inode allowing it to be safely pruned from
the cache.
Special care is taken for negative dentries since they do not
reference any inode. These dentires will be invalidate based
on when they were added to the dentry cache. Entries added
before the last rollback will be invalidate to prevent them
from masking real files in the dataset.
Two nice side effects of this fix are:
* Removes the dependency on spl_invalidate_inodes(), it can now
be safely removed from the SPL when we choose to do so.
* zfs_znode_alloc() no longer requires a dentry to be passed.
This effectively reverts this portition of the code to its
upstream counterpart. The dentry is not instantiated more
correctly in the Linux ZPL layer.
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Ned Bass <bass6@llnl.gov>
Closes#795
Unlike normal file or directory znodes, an xattr znode is
guaranteed to only have a single parent. Therefore, we can
take a refernce on that parent if it is provided at create
time and cache it. Additionally, we take care to cache it
on any subsequent zfs_zaccess() where the parent is provided
as an optimization.
This allows us to avoid needing to do a zfs_zget() when
setting up the SELinux security xattr in the create path.
This is critical because a hash lookup on the directory
will deadlock since it is locked.
The zpl_xattr_security_init() call has also been moved up
to the zpl layer to ensure TXs to create the required
xattrs are performed after the create TX. Otherwise we
run the risk of deadlocking on the open create TX.
Ideally the security xattr should be fully constructed
before the new inode is unlocked. However, doing so would
require far more extensive changes to ZFS.
This change may also have the benefitial side effect of
ensuring xattr directory znodes are evicted from the cache
before normal file or directory znodes due to the extra
reference.
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Closes#671
Due to the slightly increased size of the ZFS super block
caused by 30315d2 there are now allocation warnings. The
allocation size is still small (just over 8k) and super
blocks are rarely allocated so we suppress the warning.
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Issue #1101
Differences between how paging is done on Solaris and Linux can cause
deadlocks if KM_SLEEP is used in any the following contexts.
* The txg_sync thread
* The zvol write/discard threads
* The zpl_putpage() VFS callback
This is because KM_SLEEP will allow for direct reclaim which may result
in the VM calling back in to the filesystem or block layer to write out
pages. If a lock is held over this operation the potential exists to
deadlock the system. To ensure forward progress all memory allocations
in these contexts must us KM_PUSHPAGE which disables performing any I/O
to accomplish the memory allocation.
Previously, this behavior was acheived by setting PF_MEMALLOC on the
thread. However, that resulted in unexpected side effects such as the
exhaustion of pages in ZONE_DMA. This approach touchs more of the zfs
code, but it is more consistent with the right way to handle these cases
under Linux.
This is patch lays the ground work for being able to safely revert the
following commits which used PF_MEMALLOC:
21ade34 Disable direct reclaim for z_wr_* threads
cfc9a5c Fix zpl_writepage() deadlock
eec8164 Fix ASSERTION(!dsl_pool_sync_context(tx->tx_pool))
Signed-off-by: Richard Yao <ryao@cs.stonybrook.edu>
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Issue #726
Add support for the .zfs control directory. This was accomplished
by leveraging as much of the existing ZFS infrastructure as posible
and updating it for Linux as required. The bulk of the core
functionality is now all there with the following limitations.
*) The .zfs/snapshot directory automount support requires a 2.6.37
or newer kernel. The exception is RHEL6.2 which has backported
the d_automount patches.
*) Creating/destroying/renaming snapshots with mkdir/rmdir/mv
in the .zfs/snapshot directory works as expected. However,
this functionality is only available to root until zfs
delegations are finished.
* mkdir - create a snapshot
* rmdir - destroy a snapshot
* mv - rename a snapshot
The following issues are known defeciences, but we expect them to
be addressed by future commits.
*) Add automount support for kernels older the 2.6.37. This should
be possible using follow_link() which is what Linux did before.
*) Accessing the .zfs/snapshot directory via NFS is not yet possible.
The majority of the ground work for this is complete. However,
finishing this work will require resolving some lingering
integration issues with the Linux NFS kernel server.
*) The .zfs/shares directory exists but no futher smb functionality
has yet been implemented.
Contributions-by: Rohan Puri <rohan.puri15@gmail.com>
Contributiobs-by: Andrew Barnes <barnes333@gmail.com>
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Closes#173