Fixes and enhancements of SIMD raidz parity

- Implementation lock replaced with atomic variable

- Trailing whitespace is removed from user specified parameter, to enhance
experience when using commands that add newline, e.g. `echo`

- raidz_test: remove dependency on `getrusage()` and RUSAGE_THREAD, Issue #4813

- silence `cppcheck` in vdev_raidz, partial solution of Issue #1392

- Minor fixes and cleanups

- Enable use of original parity methods in [fastest] configuration.
New opaque original ops structure, representing native methods, is added
to supported raidz methods. Original parity methods are executed if selected
implementation has NULL fn pointer.

Signed-off-by: Gvozden Neskovic <neskovic@gmail.com>
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Issue #4813
Issue #1392
This commit is contained in:
Gvozden Neskovic 2016-07-17 19:41:11 +02:00 committed by Brian Behlendorf
parent 1d9b3bd8fb
commit c9187d867f
9 changed files with 191 additions and 178 deletions

View File

@ -32,7 +32,6 @@
#include <stdio.h>
#include <sys/time.h>
#include <sys/resource.h>
#include "raidz_test.h"
@ -42,7 +41,6 @@
#define MIN_CS_SHIFT BENCH_ASHIFT
#define MAX_CS_SHIFT SPA_MAXBLOCKSHIFT
static zio_t zio_bench;
static raidz_map_t *rm_bench;
static size_t max_data_size = SPA_MAXBLOCKSIZE;
@ -70,28 +68,18 @@ bench_fini_raidz_maps(void)
bzero(&zio_bench, sizeof (zio_t));
}
static double
get_time_diff(struct rusage *start, struct rusage *stop)
{
return (((double)stop->ru_utime.tv_sec * (double)MICROSEC +
(double)stop->ru_utime.tv_usec) -
((double)start->ru_utime.tv_sec * (double)MICROSEC +
(double)start->ru_utime.tv_usec)) / (double)MICROSEC;
}
static inline void
run_gen_bench_impl(const char *impl)
{
int fn, ncols;
uint64_t ds, iter_cnt, iter, disksize;
struct rusage start, stop;
hrtime_t start;
double elapsed, d_bw;
/* Benchmark generate functions */
for (fn = 0; fn < RAIDZ_GEN_NUM; fn++) {
for (ds = MIN_CS_SHIFT; ds <= MAX_CS_SHIFT; ds++) {
/* create suitable raidz_map */
ncols = rto_opts.rto_dcols + fn + 1;
zio_bench.io_size = 1ULL << ds;
@ -102,12 +90,11 @@ run_gen_bench_impl(const char *impl)
iter_cnt = GEN_BENCH_MEMORY;
iter_cnt /= zio_bench.io_size;
getrusage(RUSAGE_THREAD, &start);
start = gethrtime();
for (iter = 0; iter < iter_cnt; iter++)
vdev_raidz_generate_parity(rm_bench);
getrusage(RUSAGE_THREAD, &stop);
elapsed = NSEC2SEC((double) (gethrtime() - start));
elapsed = get_time_diff(&start, &stop);
disksize = (1ULL << ds) / rto_opts.rto_dcols;
d_bw = (double)iter_cnt * (double)disksize;
d_bw /= (1024.0 * 1024.0 * elapsed);
@ -147,9 +134,9 @@ run_gen_bench(void)
static void
run_rec_bench_impl(const char *impl)
{
struct rusage start, stop;
int fn, ncols, nbad;
uint64_t ds, iter_cnt, iter, disksize;
hrtime_t start;
double elapsed, d_bw;
static const int tgt[7][3] = {
{1, 2, 3}, /* rec_p: bad QR & D[0] */
@ -187,12 +174,11 @@ run_rec_bench_impl(const char *impl)
nbad = MIN(3, raidz_ncols(rm_bench) -
raidz_parity(rm_bench));
getrusage(RUSAGE_THREAD, &start);
start = gethrtime();
for (iter = 0; iter < iter_cnt; iter++)
vdev_raidz_reconstruct(rm_bench, tgt[fn], nbad);
getrusage(RUSAGE_THREAD, &stop);
elapsed = NSEC2SEC((double) (gethrtime() - start));
elapsed = get_time_diff(&start, &stop);
disksize = (1ULL << ds) / rto_opts.rto_dcols;
d_bw = (double)iter_cnt * (double)(disksize);
d_bw /= (1024.0 * 1024.0 * elapsed);

View File

@ -51,10 +51,10 @@ int vdev_raidz_reconstruct(struct raidz_map *, const int *, int);
*/
void vdev_raidz_math_init(void);
void vdev_raidz_math_fini(void);
void vdev_raidz_math_get_ops(struct raidz_map *);
void vdev_raidz_math_generate(struct raidz_map *);
int vdev_raidz_math_reconstruct(struct raidz_map *, const int *,
const int *, const int);
struct raidz_impl_ops * vdev_raidz_math_get_ops(void);
int vdev_raidz_math_generate(struct raidz_map *);
int vdev_raidz_math_reconstruct(struct raidz_map *,
const int *, const int *, const int);
int vdev_raidz_impl_set(const char *);
#ifdef __cplusplus

View File

@ -89,13 +89,15 @@ typedef boolean_t (*will_work_f)(void);
typedef void (*init_impl_f)(void);
typedef void (*fini_impl_f)(void);
#define RAIDZ_IMPL_NAME_MAX (16)
typedef struct raidz_impl_ops {
init_impl_f init;
fini_impl_f fini;
raidz_gen_f gen[RAIDZ_GEN_NUM]; /* Parity generate functions */
raidz_rec_f rec[RAIDZ_REC_NUM]; /* Data reconstruction functions */
will_work_f is_supported; /* Support check function */
char *name; /* Name of the implementation */
char name[RAIDZ_IMPL_NAME_MAX]; /* Name of the implementation */
} raidz_impl_ops_t;
typedef struct raidz_col {
@ -127,6 +129,8 @@ typedef struct raidz_map {
raidz_col_t rm_col[1]; /* Flexible array of I/O columns */
} raidz_map_t;
#define RAIDZ_ORIGINAL_IMPL (INT_MAX)
extern const raidz_impl_ops_t vdev_raidz_scalar_impl;
#if defined(__x86_64) && defined(HAVE_SSE2) /* only x86_64 for now */
extern const raidz_impl_ops_t vdev_raidz_sse2_impl;

View File

@ -1684,7 +1684,7 @@ Default value: \fB4,096\fR.
\fBzfs_vdev_raidz_impl\fR (string)
.ad
.RS 12n
Parameter for selecting raidz implementation to use.
Parameter for selecting raidz parity implementation to use.
Options marked (always) below may be selected on module load as they are
supported on all systems.

View File

@ -458,8 +458,8 @@ vdev_raidz_map_alloc(zio_t *zio, uint64_t unit_shift, uint64_t dcols,
zio->io_vsd = rm;
zio->io_vsd_ops = &vdev_raidz_vsd_ops;
/* RAIDZ ops init */
vdev_raidz_math_get_ops(rm);
/* init RAIDZ parity ops */
rm->rm_ops = vdev_raidz_math_get_ops();
return (rm);
}
@ -611,10 +611,9 @@ vdev_raidz_generate_parity_pqr(raidz_map_t *rm)
void
vdev_raidz_generate_parity(raidz_map_t *rm)
{
if (rm->rm_ops) {
vdev_raidz_math_generate(rm);
/* Generate using the new math implementation */
if (vdev_raidz_math_generate(rm) != RAIDZ_ORIGINAL_IMPL)
return;
}
switch (rm->rm_firstdatacol) {
case 1:
@ -1284,7 +1283,7 @@ vdev_raidz_reconstruct(raidz_map_t *rm, const int *t, int nt)
{
int tgts[VDEV_RAIDZ_MAXPARITY], *dt;
int ntgts;
int i, c;
int i, c, ret;
int code;
int nbadparity, nbaddata;
int parity_valid[VDEV_RAIDZ_MAXPARITY];
@ -1322,14 +1321,11 @@ vdev_raidz_reconstruct(raidz_map_t *rm, const int *t, int nt)
dt = &tgts[nbadparity];
/*
* Reconstruct using the new math implementation if
* rm_ops is set.
*/
if (rm->rm_ops) {
return (vdev_raidz_math_reconstruct(rm, parity_valid, dt,
nbaddata));
}
/* Reconstruct using the new math implementation */
ret = vdev_raidz_math_reconstruct(rm, parity_valid, dt, nbaddata);
if (ret != RAIDZ_ORIGINAL_IMPL)
return (ret);
/*
* See if we can use any of our optimized reconstruction routines.

View File

@ -31,8 +31,22 @@
#include <sys/vdev_raidz.h>
#include <sys/vdev_raidz_impl.h>
extern boolean_t raidz_will_scalar_work(void);
/* Opaque implementation with NULL methods to represent original methods */
static const raidz_impl_ops_t vdev_raidz_original_impl = {
.name = "original",
.is_supported = raidz_will_scalar_work,
};
/* RAIDZ parity op that contain the fastest methods */
static raidz_impl_ops_t vdev_raidz_fastest_impl = {
.name = "fastest"
};
/* All compiled in implementations */
const raidz_impl_ops_t *raidz_all_maths[] = {
&vdev_raidz_original_impl,
&vdev_raidz_scalar_impl,
#if defined(__x86_64) && defined(HAVE_SSE2) /* only x86_64 for now */
&vdev_raidz_sse2_impl,
@ -49,30 +63,19 @@ const raidz_impl_ops_t *raidz_all_maths[] = {
static boolean_t raidz_math_initialized = B_FALSE;
/* Select raidz implementation */
static enum vdev_raidz_impl_sel {
IMPL_FASTEST = -1,
IMPL_ORIGINAL = -2,
IMPL_CYCLE = -3,
IMPL_SCALAR = 0,
} zfs_vdev_raidz_impl = IMPL_SCALAR;
#define IMPL_FASTEST (UINT32_MAX)
#define IMPL_CYCLE (UINT32_MAX - 1)
#define IMPL_ORIGINAL (0)
#define IMPL_SCALAR (1)
/* selected implementation and its lock */
static krwlock_t vdev_raidz_impl_lock;
static raidz_impl_ops_t *vdev_raidz_used_impl =
(raidz_impl_ops_t *) &vdev_raidz_scalar_impl;
static boolean_t vdev_raidz_impl_user_set = B_FALSE;
#define RAIDZ_IMPL_READ(i) (*(volatile uint32_t *) &(i))
/* RAIDZ op that contain the fastest routines */
static raidz_impl_ops_t vdev_raidz_fastest_impl = {
.name = "fastest"
};
static uint32_t zfs_vdev_raidz_impl = IMPL_SCALAR;
static uint32_t user_sel_impl = IMPL_FASTEST;
/* Hold all supported implementations */
size_t raidz_supp_impl_cnt = 1;
raidz_impl_ops_t *raidz_supp_impl[ARRAY_SIZE(raidz_all_maths) + 1] = {
(raidz_impl_ops_t *) &vdev_raidz_scalar_impl, /* scalar is supported */
NULL
};
static size_t raidz_supp_impl_cnt = 0;
static raidz_impl_ops_t *raidz_supp_impl[ARRAY_SIZE(raidz_all_maths)];
/*
* kstats values for supported impl & original methods
@ -87,33 +90,52 @@ static kstat_t *raidz_math_kstat = NULL;
* Selects the raidz operation for raidz_map
* If rm_ops is set to NULL original raidz implementation will be used
*/
void
vdev_raidz_math_get_ops(raidz_map_t *rm)
raidz_impl_ops_t *
vdev_raidz_math_get_ops()
{
rw_enter(&vdev_raidz_impl_lock, RW_READER);
rm->rm_ops = vdev_raidz_used_impl;
raidz_impl_ops_t *ops = NULL;
const uint32_t impl = RAIDZ_IMPL_READ(zfs_vdev_raidz_impl);
switch (impl) {
case IMPL_FASTEST:
ASSERT(raidz_math_initialized);
ops = &vdev_raidz_fastest_impl;
break;
#if !defined(_KERNEL)
if (zfs_vdev_raidz_impl == IMPL_CYCLE) {
case IMPL_CYCLE:
{
ASSERT(raidz_math_initialized);
ASSERT3U(raidz_supp_impl_cnt, >, 0);
/* Cycle through all supported implementations */
static size_t cycle_impl_idx = 0;
size_t idx;
/*
* Cycle through all supported new implementations, and
* when idx == raidz_supp_impl_cnt, use the original
*/
idx = (++cycle_impl_idx) % (raidz_supp_impl_cnt + 1);
rm->rm_ops = raidz_supp_impl[idx];
size_t idx = (++cycle_impl_idx) % raidz_supp_impl_cnt;
ops = raidz_supp_impl[idx];
}
break;
#endif
case IMPL_ORIGINAL:
ops = (raidz_impl_ops_t *) &vdev_raidz_original_impl;
break;
case IMPL_SCALAR:
ops = (raidz_impl_ops_t *) &vdev_raidz_scalar_impl;
break;
default:
ASSERT(raidz_math_initialized);
ASSERT3U(impl, <, raidz_supp_impl_cnt);
ASSERT3U(raidz_supp_impl_cnt, >, 0);
ops = raidz_supp_impl[impl];
break;
}
rw_exit(&vdev_raidz_impl_lock);
ASSERT3P(ops, !=, NULL);
return (ops);
}
/*
* Select parity generation method for raidz_map
*/
void
int
vdev_raidz_math_generate(raidz_map_t *rm)
{
raidz_gen_f gen_parity = NULL;
@ -135,13 +157,17 @@ vdev_raidz_math_generate(raidz_map_t *rm)
break;
}
ASSERT(gen_parity != NULL);
/* if method is NULL execute the original implementation */
if (gen_parity == NULL)
return (RAIDZ_ORIGINAL_IMPL);
gen_parity(rm);
return (0);
}
static raidz_rec_f
_reconstruct_fun_raidz1(raidz_map_t *rm, const int *parity_valid,
reconstruct_fun_p_sel(raidz_map_t *rm, const int *parity_valid,
const int nbaddata)
{
if (nbaddata == 1 && parity_valid[CODE_P]) {
@ -151,7 +177,7 @@ _reconstruct_fun_raidz1(raidz_map_t *rm, const int *parity_valid,
}
static raidz_rec_f
_reconstruct_fun_raidz2(raidz_map_t *rm, const int *parity_valid,
reconstruct_fun_pq_sel(raidz_map_t *rm, const int *parity_valid,
const int nbaddata)
{
if (nbaddata == 1) {
@ -168,7 +194,7 @@ _reconstruct_fun_raidz2(raidz_map_t *rm, const int *parity_valid,
}
static raidz_rec_f
_reconstruct_fun_raidz3(raidz_map_t *rm, const int *parity_valid,
reconstruct_fun_pqr_sel(raidz_map_t *rm, const int *parity_valid,
const int nbaddata)
{
if (nbaddata == 1) {
@ -208,17 +234,14 @@ vdev_raidz_math_reconstruct(raidz_map_t *rm, const int *parity_valid,
raidz_rec_f rec_data = NULL;
switch (raidz_parity(rm)) {
case 1:
rec_data = _reconstruct_fun_raidz1(rm, parity_valid,
nbaddata);
case PARITY_P:
rec_data = reconstruct_fun_p_sel(rm, parity_valid, nbaddata);
break;
case 2:
rec_data = _reconstruct_fun_raidz2(rm, parity_valid,
nbaddata);
case PARITY_PQ:
rec_data = reconstruct_fun_pq_sel(rm, parity_valid, nbaddata);
break;
case 3:
rec_data = _reconstruct_fun_raidz3(rm, parity_valid,
nbaddata);
case PARITY_PQR:
rec_data = reconstruct_fun_pqr_sel(rm, parity_valid, nbaddata);
break;
default:
cmn_err(CE_PANIC, "invalid RAID-Z configuration %d",
@ -226,8 +249,9 @@ vdev_raidz_math_reconstruct(raidz_map_t *rm, const int *parity_valid,
break;
}
ASSERT(rec_data != NULL);
if (rec_data == NULL)
return (RAIDZ_ORIGINAL_IMPL);
else
return (rec_data(rm, dt));
}
@ -309,13 +333,10 @@ benchmark_raidz_impl(raidz_map_t *bench_rm, const int fn, benchmark_fn bench_fn)
uint64_t run_cnt, speed, best_speed = 0;
hrtime_t t_start, t_diff;
raidz_impl_ops_t *curr_impl;
raidz_impl_kstat_t * fstat = &raidz_impl_kstats[raidz_supp_impl_cnt];
int impl, i;
/*
* Use the sentinel (NULL) from the end of raidz_supp_impl_cnt
* to run "original" implementation (bench_rm->rm_ops = NULL)
*/
for (impl = 0; impl <= raidz_supp_impl_cnt; impl++) {
for (impl = 0; impl < raidz_supp_impl_cnt; impl++) {
/* set an implementation to benchmark */
curr_impl = raidz_supp_impl[impl];
bench_rm->rm_ops = curr_impl;
@ -338,16 +359,19 @@ benchmark_raidz_impl(raidz_map_t *bench_rm, const int fn, benchmark_fn bench_fn)
else
raidz_impl_kstats[impl].rec[fn].value.ui64 = speed;
/* if curr_impl==NULL the original impl is benchmarked */
if (curr_impl != NULL && speed > best_speed) {
/* Update fastest implementation method */
if (speed > best_speed) {
best_speed = speed;
if (bench_fn == benchmark_gen_impl)
if (bench_fn == benchmark_gen_impl) {
vdev_raidz_fastest_impl.gen[fn] =
curr_impl->gen[fn];
else
fstat->gen[fn].value.ui64 = speed;
} else {
vdev_raidz_fastest_impl.rec[fn] =
curr_impl->rec[fn];
fstat->rec[fn].value.ui64 = speed;
}
}
}
}
@ -361,9 +385,6 @@ vdev_raidz_math_init(void)
uint64_t bench_parity;
int i, c, fn;
/* init & vdev_raidz_impl_lock */
rw_init(&vdev_raidz_impl_lock, NULL, RW_DEFAULT, NULL);
/* move supported impl into raidz_supp_impl */
for (i = 0, c = 0; i < ARRAY_SIZE(raidz_all_maths); i++) {
curr_impl = (raidz_impl_ops_t *) raidz_all_maths[i];
@ -379,20 +400,16 @@ vdev_raidz_math_init(void)
raidz_supp_impl[c++] = (raidz_impl_ops_t *) curr_impl;
}
}
membar_producer(); /* complete raidz_supp_impl[] init */
raidz_supp_impl_cnt = c; /* number of supported impl */
raidz_supp_impl[c] = NULL; /* sentinel */
/* init kstat for original routines */
init_raidz_kstat(&(raidz_impl_kstats[raidz_supp_impl_cnt]), "original");
init_raidz_kstat(&(raidz_impl_kstats[raidz_supp_impl_cnt]), "fastest");
#if !defined(_KERNEL)
/*
* Skip benchmarking and use last implementation as fastest
*/
/* Skip benchmarking and use last implementation as fastest */
memcpy(&vdev_raidz_fastest_impl, raidz_supp_impl[raidz_supp_impl_cnt-1],
sizeof (vdev_raidz_fastest_impl));
vdev_raidz_fastest_impl.name = "fastest";
strcpy(vdev_raidz_fastest_impl.name, "fastest");
raidz_math_initialized = B_TRUE;
@ -407,12 +424,13 @@ vdev_raidz_math_init(void)
bench_zio->io_size = BENCH_ZIO_SIZE; /* only data columns */
bench_zio->io_data = zio_data_buf_alloc(BENCH_ZIO_SIZE);
VERIFY(bench_zio->io_data);
memset(bench_zio->io_data, 0xAA, BENCH_ZIO_SIZE); /* warm up */
/* Benchmark parity generation methods */
for (fn = 0; fn < RAIDZ_GEN_NUM; fn++) {
bench_parity = fn + 1;
/* New raidz_map is needed for each generate_p/q/r */
bench_rm = vdev_raidz_map_alloc(bench_zio, 9,
bench_rm = vdev_raidz_map_alloc(bench_zio, SPA_MINBLOCKSHIFT,
BENCH_D_COLS + bench_parity, bench_parity);
benchmark_raidz_impl(bench_rm, fn, benchmark_gen_impl);
@ -421,7 +439,8 @@ vdev_raidz_math_init(void)
}
/* Benchmark data reconstruction methods */
bench_rm = vdev_raidz_map_alloc(bench_zio, 9, BENCH_COLS, PARITY_PQR);
bench_rm = vdev_raidz_map_alloc(bench_zio, SPA_MINBLOCKSHIFT,
BENCH_COLS, PARITY_PQR);
for (fn = 0; fn < RAIDZ_REC_NUM; fn++)
benchmark_raidz_impl(bench_rm, fn, benchmark_rec_impl);
@ -444,9 +463,8 @@ vdev_raidz_math_init(void)
}
/* Finish initialization */
atomic_swap_32(&zfs_vdev_raidz_impl, user_sel_impl);
raidz_math_initialized = B_TRUE;
if (!vdev_raidz_impl_user_set)
VERIFY0(vdev_raidz_impl_set("fastest"));
}
void
@ -460,33 +478,33 @@ vdev_raidz_math_fini(void)
raidz_math_kstat = NULL;
}
rw_destroy(&vdev_raidz_impl_lock);
/* fini impl */
for (i = 0; i < ARRAY_SIZE(raidz_all_maths); i++) {
curr_impl = raidz_all_maths[i];
if (curr_impl->fini)
curr_impl->fini();
}
}
static const
struct {
static const struct {
char *name;
raidz_impl_ops_t *impl;
enum vdev_raidz_impl_sel sel;
uint32_t sel;
} math_impl_opts[] = {
{ "fastest", &vdev_raidz_fastest_impl, IMPL_FASTEST },
{ "original", NULL, IMPL_ORIGINAL },
#if !defined(_KERNEL)
{ "cycle", NULL, IMPL_CYCLE },
{ "cycle", IMPL_CYCLE },
#endif
{ "fastest", IMPL_FASTEST },
{ "original", IMPL_ORIGINAL },
{ "scalar", IMPL_SCALAR }
};
/*
* Function sets desired raidz implementation.
* If called after module_init(), vdev_raidz_impl_lock must be held for writing.
*
* If we are called before init(), user preference will be saved in
* user_sel_impl, and applied in later init() call. This occurs when module
* parameter is specified on module load. Otherwise, directly update
* zfs_vdev_raidz_impl.
*
* @val Name of raidz implementation to use
* @param Unused.
@ -494,42 +512,58 @@ struct {
static int
zfs_vdev_raidz_impl_set(const char *val, struct kernel_param *kp)
{
int err = -EINVAL;
char req_name[RAIDZ_IMPL_NAME_MAX];
uint32_t impl = RAIDZ_IMPL_READ(user_sel_impl);
size_t i;
/* sanitize input */
i = strnlen(val, RAIDZ_IMPL_NAME_MAX);
if (i == 0 || i == RAIDZ_IMPL_NAME_MAX)
return (err);
strlcpy(req_name, val, RAIDZ_IMPL_NAME_MAX);
while (i > 0 && !!isspace(req_name[i-1]))
i--;
req_name[i] = '\0';
/* Check mandatory options */
for (i = 0; i < ARRAY_SIZE(math_impl_opts); i++) {
if (strcmp(val, math_impl_opts[i].name) == 0) {
zfs_vdev_raidz_impl = math_impl_opts[i].sel;
vdev_raidz_used_impl = math_impl_opts[i].impl;
vdev_raidz_impl_user_set = B_TRUE;
return (0);
if (strcmp(req_name, math_impl_opts[i].name) == 0) {
impl = math_impl_opts[i].sel;
err = 0;
break;
}
}
/* check all supported impl if init() was already called */
if (err != 0 && raidz_math_initialized) {
/* check all supported implementations */
for (i = 0; i < raidz_supp_impl_cnt; i++) {
if (strcmp(val, raidz_supp_impl[i]->name) == 0) {
zfs_vdev_raidz_impl = i;
vdev_raidz_used_impl = raidz_supp_impl[i];
vdev_raidz_impl_user_set = B_TRUE;
return (0);
if (strcmp(req_name, raidz_supp_impl[i]->name) == 0) {
impl = i;
err = 0;
break;
}
}
}
return (-EINVAL);
if (err == 0) {
if (raidz_math_initialized)
atomic_swap_32(&zfs_vdev_raidz_impl, impl);
else
atomic_swap_32(&user_sel_impl, impl);
}
return (err);
}
int
vdev_raidz_impl_set(const char *val)
{
int err;
ASSERT(raidz_math_initialized);
rw_enter(&vdev_raidz_impl_lock, RW_WRITER);
err = zfs_vdev_raidz_impl_set(val, NULL);
rw_exit(&vdev_raidz_impl_lock);
return (err);
return (zfs_vdev_raidz_impl_set(val, NULL));
}
#if defined(_KERNEL) && defined(HAVE_SPL)
@ -538,29 +572,22 @@ zfs_vdev_raidz_impl_get(char *buffer, struct kernel_param *kp)
{
int i, cnt = 0;
char *fmt;
const uint32_t impl = RAIDZ_IMPL_READ(zfs_vdev_raidz_impl);
ASSERT(raidz_math_initialized);
rw_enter(&vdev_raidz_impl_lock, RW_READER);
/* list mandatory options */
for (i = 0; i < ARRAY_SIZE(math_impl_opts); i++) {
if (math_impl_opts[i].sel == zfs_vdev_raidz_impl)
fmt = "[%s] ";
else
fmt = "%s ";
for (i = 0; i < ARRAY_SIZE(math_impl_opts) - 2; i++) {
fmt = (impl == math_impl_opts[i].sel) ? "[%s] " : "%s ";
cnt += sprintf(buffer + cnt, fmt, math_impl_opts[i].name);
}
/* list all supported implementations */
for (i = 0; i < raidz_supp_impl_cnt; i++) {
fmt = (i == zfs_vdev_raidz_impl) ? "[%s] " : "%s ";
fmt = (i == impl) ? "[%s] " : "%s ";
cnt += sprintf(buffer + cnt, fmt, raidz_supp_impl[i]->name);
}
rw_exit(&vdev_raidz_impl_lock);
return (cnt);
}

View File

@ -47,10 +47,10 @@
#define VR1(r...) VR1_(r)
#define VR2(r...) VR2_(r, 1)
#define VR3(r...) VR3_(r, 1, 2)
#define VR4(r...) VR4_(r, 1)
#define VR5(r...) VR5_(r, 1, 2)
#define VR6(r...) VR6_(r, 1, 2, 3)
#define VR7(r...) VR7_(r, 1, 2, 3, 4)
#define VR4(r...) VR4_(r, 1, 2)
#define VR5(r...) VR5_(r, 1, 2, 3)
#define VR6(r...) VR6_(r, 1, 2, 3, 4)
#define VR7(r...) VR7_(r, 1, 2, 3, 4, 5)
#define R_01(REG1, REG2, ...) REG1, REG2
#define _R_23(_0, _1, REG2, REG3, ...) REG2, REG3

View File

@ -222,7 +222,7 @@ static const struct {
DEFINE_GEN_METHODS(scalar);
DEFINE_REC_METHODS(scalar);
static boolean_t
boolean_t
raidz_will_scalar_work(void)
{
return (B_TRUE); /* always */

View File

@ -47,10 +47,10 @@
#define VR1(r...) VR1_(r)
#define VR2(r...) VR2_(r, 1)
#define VR3(r...) VR3_(r, 1, 2)
#define VR4(r...) VR4_(r, 1)
#define VR5(r...) VR5_(r, 1, 2)
#define VR6(r...) VR6_(r, 1, 2, 3)
#define VR7(r...) VR7_(r, 1, 2, 3, 4)
#define VR4(r...) VR4_(r, 1, 2)
#define VR5(r...) VR5_(r, 1, 2, 3)
#define VR6(r...) VR6_(r, 1, 2, 3, 4)
#define VR7(r...) VR7_(r, 1, 2, 3, 4, 5)
#define R_01(REG1, REG2, ...) REG1, REG2
#define _R_23(_0, _1, REG2, REG3, ...) REG2, REG3