ICP: gcm: Allocate hash subkey table separately

While evaluating other assembler implementations it turns out that
the precomputed hash subkey tables vary in size, from 8*16 bytes
(avx2/avx512) up to 48*16 bytes (avx512-vaes), depending on the
implementation.

To be able to handle the size differences later, allocate
`gcm_Htable` dynamically rather then having a fixed size array, and
adapt consumers.

Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Attila Fülöp <attila@fueloep.org>
Closes #11102
This commit is contained in:
Attila Fülöp 2020-10-30 23:24:21 +01:00 committed by Brian Behlendorf
parent 2c37e1416b
commit c6b0680d9b
5 changed files with 93 additions and 13 deletions

View File

@ -59,10 +59,12 @@ boolean_t gcm_avx_can_use_movbe = B_FALSE;
static boolean_t gcm_use_avx = B_FALSE; static boolean_t gcm_use_avx = B_FALSE;
#define GCM_IMPL_USE_AVX (*(volatile boolean_t *)&gcm_use_avx) #define GCM_IMPL_USE_AVX (*(volatile boolean_t *)&gcm_use_avx)
extern boolean_t atomic_toggle_boolean_nv(volatile boolean_t *);
static inline boolean_t gcm_avx_will_work(void); static inline boolean_t gcm_avx_will_work(void);
static inline void gcm_set_avx(boolean_t); static inline void gcm_set_avx(boolean_t);
static inline boolean_t gcm_toggle_avx(void); static inline boolean_t gcm_toggle_avx(void);
extern boolean_t atomic_toggle_boolean_nv(volatile boolean_t *); static inline size_t gcm_simd_get_htab_size(boolean_t);
static int gcm_mode_encrypt_contiguous_blocks_avx(gcm_ctx_t *, char *, size_t, static int gcm_mode_encrypt_contiguous_blocks_avx(gcm_ctx_t *, char *, size_t,
crypto_data_t *, size_t); crypto_data_t *, size_t);
@ -629,6 +631,21 @@ gcm_init_ctx(gcm_ctx_t *gcm_ctx, char *param, size_t block_size,
(volatile boolean_t *)&gcm_avx_can_use_movbe); (volatile boolean_t *)&gcm_avx_can_use_movbe);
} }
} }
/* Allocate Htab memory as needed. */
if (gcm_ctx->gcm_use_avx == B_TRUE) {
size_t htab_len = gcm_simd_get_htab_size(gcm_ctx->gcm_use_avx);
if (htab_len == 0) {
return (CRYPTO_MECHANISM_PARAM_INVALID);
}
gcm_ctx->gcm_htab_len = htab_len;
gcm_ctx->gcm_Htable =
(uint64_t *)kmem_alloc(htab_len, gcm_ctx->gcm_kmflag);
if (gcm_ctx->gcm_Htable == NULL) {
return (CRYPTO_HOST_MEMORY);
}
}
/* Avx and non avx context initialization differs from here on. */ /* Avx and non avx context initialization differs from here on. */
if (gcm_ctx->gcm_use_avx == B_FALSE) { if (gcm_ctx->gcm_use_avx == B_FALSE) {
#endif /* ifdef CAN_USE_GCM_ASM */ #endif /* ifdef CAN_USE_GCM_ASM */
@ -689,6 +706,22 @@ gmac_init_ctx(gcm_ctx_t *gcm_ctx, char *param, size_t block_size,
if (ks->ops->needs_byteswap == B_TRUE) { if (ks->ops->needs_byteswap == B_TRUE) {
gcm_ctx->gcm_use_avx = B_FALSE; gcm_ctx->gcm_use_avx = B_FALSE;
} }
/* Allocate Htab memory as needed. */
if (gcm_ctx->gcm_use_avx == B_TRUE) {
size_t htab_len = gcm_simd_get_htab_size(gcm_ctx->gcm_use_avx);
if (htab_len == 0) {
return (CRYPTO_MECHANISM_PARAM_INVALID);
}
gcm_ctx->gcm_htab_len = htab_len;
gcm_ctx->gcm_Htable =
(uint64_t *)kmem_alloc(htab_len, gcm_ctx->gcm_kmflag);
if (gcm_ctx->gcm_Htable == NULL) {
return (CRYPTO_HOST_MEMORY);
}
}
/* Avx and non avx context initialization differs from here on. */ /* Avx and non avx context initialization differs from here on. */
if (gcm_ctx->gcm_use_avx == B_FALSE) { if (gcm_ctx->gcm_use_avx == B_FALSE) {
#endif /* ifdef CAN_USE_GCM_ASM */ #endif /* ifdef CAN_USE_GCM_ASM */
@ -1018,7 +1051,7 @@ MODULE_PARM_DESC(icp_gcm_impl, "Select gcm implementation.");
/* Clear the FPU registers since they hold sensitive internal state. */ /* Clear the FPU registers since they hold sensitive internal state. */
#define clear_fpu_regs() clear_fpu_regs_avx() #define clear_fpu_regs() clear_fpu_regs_avx()
#define GHASH_AVX(ctx, in, len) \ #define GHASH_AVX(ctx, in, len) \
gcm_ghash_avx((ctx)->gcm_ghash, (const uint64_t (*)[2])(ctx)->gcm_Htable, \ gcm_ghash_avx((ctx)->gcm_ghash, (const uint64_t *)(ctx)->gcm_Htable, \
in, len) in, len)
#define gcm_incr_counter_block(ctx) gcm_incr_counter_block_by(ctx, 1) #define gcm_incr_counter_block(ctx) gcm_incr_counter_block_by(ctx, 1)
@ -1036,8 +1069,8 @@ extern void gcm_xor_avx(const uint8_t *src, uint8_t *dst);
extern void aes_encrypt_intel(const uint32_t rk[], int nr, extern void aes_encrypt_intel(const uint32_t rk[], int nr,
const uint32_t pt[4], uint32_t ct[4]); const uint32_t pt[4], uint32_t ct[4]);
extern void gcm_init_htab_avx(uint64_t Htable[16][2], const uint64_t H[2]); extern void gcm_init_htab_avx(uint64_t *Htable, const uint64_t H[2]);
extern void gcm_ghash_avx(uint64_t ghash[2], const uint64_t Htable[16][2], extern void gcm_ghash_avx(uint64_t ghash[2], const uint64_t *Htable,
const uint8_t *in, size_t len); const uint8_t *in, size_t len);
extern size_t aesni_gcm_encrypt(const uint8_t *, uint8_t *, size_t, extern size_t aesni_gcm_encrypt(const uint8_t *, uint8_t *, size_t,
@ -1073,6 +1106,18 @@ gcm_toggle_avx(void)
} }
} }
static inline size_t
gcm_simd_get_htab_size(boolean_t simd_mode)
{
switch (simd_mode) {
case B_TRUE:
return (2 * 6 * 2 * sizeof (uint64_t));
default:
return (0);
}
}
/* /*
* Clear sensitive data in the context. * Clear sensitive data in the context.
* *
@ -1088,7 +1133,6 @@ gcm_clear_ctx(gcm_ctx_t *ctx)
{ {
bzero(ctx->gcm_remainder, sizeof (ctx->gcm_remainder)); bzero(ctx->gcm_remainder, sizeof (ctx->gcm_remainder));
bzero(ctx->gcm_H, sizeof (ctx->gcm_H)); bzero(ctx->gcm_H, sizeof (ctx->gcm_H));
bzero(ctx->gcm_Htable, sizeof (ctx->gcm_Htable));
bzero(ctx->gcm_J0, sizeof (ctx->gcm_J0)); bzero(ctx->gcm_J0, sizeof (ctx->gcm_J0));
bzero(ctx->gcm_tmp, sizeof (ctx->gcm_tmp)); bzero(ctx->gcm_tmp, sizeof (ctx->gcm_tmp));
} }

View File

@ -152,6 +152,14 @@ crypto_free_mode_ctx(void *ctx)
vmem_free(((gcm_ctx_t *)ctx)->gcm_pt_buf, vmem_free(((gcm_ctx_t *)ctx)->gcm_pt_buf,
((gcm_ctx_t *)ctx)->gcm_pt_buf_len); ((gcm_ctx_t *)ctx)->gcm_pt_buf_len);
#ifdef CAN_USE_GCM_ASM
if (((gcm_ctx_t *)ctx)->gcm_Htable != NULL) {
gcm_ctx_t *gcm_ctx = (gcm_ctx_t *)ctx;
bzero(gcm_ctx->gcm_Htable, gcm_ctx->gcm_htab_len);
kmem_free(gcm_ctx->gcm_Htable, gcm_ctx->gcm_htab_len);
}
#endif
kmem_free(ctx, sizeof (gcm_ctx_t)); kmem_free(ctx, sizeof (gcm_ctx_t));
} }
} }

View File

@ -718,6 +718,8 @@ aesni_gcm_decrypt:
.cfi_offset %r14,-48 .cfi_offset %r14,-48
pushq %r15 pushq %r15
.cfi_offset %r15,-56 .cfi_offset %r15,-56
pushq %r9
.cfi_offset %r9,-64
vzeroupper vzeroupper
vmovdqu (%r8),%xmm1 vmovdqu (%r8),%xmm1
@ -730,7 +732,8 @@ aesni_gcm_decrypt:
andq $-128,%rsp andq $-128,%rsp
vmovdqu (%r11),%xmm0 vmovdqu (%r11),%xmm0
leaq 128(%rcx),%rcx leaq 128(%rcx),%rcx
leaq 32+32(%r9),%r9 movq 32(%r9),%r9
leaq 32(%r9),%r9
movl 504-128(%rcx),%ebp // ICP has a larger offset for rounds. movl 504-128(%rcx),%ebp // ICP has a larger offset for rounds.
vpshufb %xmm0,%xmm8,%xmm8 vpshufb %xmm0,%xmm8,%xmm8
@ -786,7 +789,9 @@ aesni_gcm_decrypt:
vmovups %xmm14,-16(%rsi) vmovups %xmm14,-16(%rsi)
vpshufb (%r11),%xmm8,%xmm8 vpshufb (%r11),%xmm8,%xmm8
vmovdqu %xmm8,-64(%r9) movq -56(%rax),%r9
.cfi_restore %r9
vmovdqu %xmm8,(%r9)
vzeroupper vzeroupper
movq -48(%rax),%r15 movq -48(%rax),%r15
@ -924,6 +929,8 @@ aesni_gcm_encrypt:
.cfi_offset %r14,-48 .cfi_offset %r14,-48
pushq %r15 pushq %r15
.cfi_offset %r15,-56 .cfi_offset %r15,-56
pushq %r9
.cfi_offset %r9,-64
vzeroupper vzeroupper
vmovdqu (%r8),%xmm1 vmovdqu (%r8),%xmm1
@ -966,7 +973,8 @@ aesni_gcm_encrypt:
call _aesni_ctr32_6x call _aesni_ctr32_6x
vmovdqu (%r9),%xmm8 vmovdqu (%r9),%xmm8
leaq 32+32(%r9),%r9 movq 32(%r9),%r9
leaq 32(%r9),%r9
subq $12,%rdx subq $12,%rdx
movq $192,%r10 movq $192,%r10
vpshufb %xmm0,%xmm8,%xmm8 vpshufb %xmm0,%xmm8,%xmm8
@ -1157,7 +1165,9 @@ aesni_gcm_encrypt:
vpxor %xmm7,%xmm2,%xmm2 vpxor %xmm7,%xmm2,%xmm2
vpxor %xmm2,%xmm8,%xmm8 vpxor %xmm2,%xmm8,%xmm8
vpshufb (%r11),%xmm8,%xmm8 vpshufb (%r11),%xmm8,%xmm8
vmovdqu %xmm8,-64(%r9) movq -56(%rax),%r9
.cfi_restore %r9
vmovdqu %xmm8,(%r9)
vzeroupper vzeroupper
movq -48(%rax),%r15 movq -48(%rax),%r15

View File

@ -219,14 +219,14 @@ typedef struct gcm_ctx {
size_t gcm_pt_buf_len; size_t gcm_pt_buf_len;
uint32_t gcm_tmp[4]; uint32_t gcm_tmp[4];
/* /*
* The relative positions of gcm_ghash, gcm_H and pre-computed * The offset of gcm_Htable relative to gcm_ghash, (32), is hard coded
* gcm_Htable are hard coded in aesni-gcm-x86_64.S and ghash-x86_64.S, * in aesni-gcm-x86_64.S, so please don't change (or adjust there).
* so please don't change (or adjust accordingly).
*/ */
uint64_t gcm_ghash[2]; uint64_t gcm_ghash[2];
uint64_t gcm_H[2]; uint64_t gcm_H[2];
#ifdef CAN_USE_GCM_ASM #ifdef CAN_USE_GCM_ASM
uint64_t gcm_Htable[12][2]; uint64_t *gcm_Htable;
size_t gcm_htab_len;
#endif #endif
uint64_t gcm_J0[2]; uint64_t gcm_J0[2];
uint64_t gcm_len_a_len_c[2]; uint64_t gcm_len_a_len_c[2];

View File

@ -1051,6 +1051,16 @@ out:
bzero(aes_ctx.ac_keysched, aes_ctx.ac_keysched_len); bzero(aes_ctx.ac_keysched, aes_ctx.ac_keysched_len);
kmem_free(aes_ctx.ac_keysched, aes_ctx.ac_keysched_len); kmem_free(aes_ctx.ac_keysched, aes_ctx.ac_keysched_len);
} }
#ifdef CAN_USE_GCM_ASM
if (aes_ctx.ac_flags & (GCM_MODE|GMAC_MODE) &&
((gcm_ctx_t *)&aes_ctx)->gcm_Htable != NULL) {
gcm_ctx_t *ctx = (gcm_ctx_t *)&aes_ctx;
bzero(ctx->gcm_Htable, ctx->gcm_htab_len);
kmem_free(ctx->gcm_Htable, ctx->gcm_htab_len);
}
#endif
return (ret); return (ret);
} }
@ -1209,6 +1219,14 @@ out:
vmem_free(((gcm_ctx_t *)&aes_ctx)->gcm_pt_buf, vmem_free(((gcm_ctx_t *)&aes_ctx)->gcm_pt_buf,
((gcm_ctx_t *)&aes_ctx)->gcm_pt_buf_len); ((gcm_ctx_t *)&aes_ctx)->gcm_pt_buf_len);
} }
#ifdef CAN_USE_GCM_ASM
if (((gcm_ctx_t *)&aes_ctx)->gcm_Htable != NULL) {
gcm_ctx_t *ctx = (gcm_ctx_t *)&aes_ctx;
bzero(ctx->gcm_Htable, ctx->gcm_htab_len);
kmem_free(ctx->gcm_Htable, ctx->gcm_htab_len);
}
#endif
} }
return (ret); return (ret);