mirror of
https://git.proxmox.com/git/mirror_zfs.git
synced 2025-01-27 02:14:28 +03:00
Add mmap(2) support
It's worth taking a moment to describe how mmap is implemented for zfs because it differs considerably from other Linux filesystems. However, this issue is handled the same way under OpenSolaris. The issue is that by design zfs bypasses the Linux page cache and leaves all caching up to the ARC. This has been shown to work well for the common read(2)/write(2) case. However, mmap(2) is problem because it relies on being tightly integrated with the page cache. To handle this we cache mmap'ed files twice, once in the ARC and a second time in the page cache. The code is careful to keep both copies synchronized. When a file with an mmap'ed region is written to using write(2) both the data in the ARC and existing pages in the page cache are updated. For a read(2) data will be read first from the page cache then the ARC if needed. Neither a write(2) or read(2) will will ever result in new pages being added to the page cache. New pages are added to the page cache only via .readpage() which is called when the vfs needs to read a page off disk to back the virtual memory region. These pages may be modified without notifying the ARC and will be written out periodically via .writepage(). This will occur due to either a sync or the usual page aging behavior. Note because a read(2) of a mmap'ed file will always check the page cache first even when the ARC is out of date correct data will still be returned. While this implementation ensures correct behavior it does have have some drawbacks. The most obvious of which is that it increases the required memory footprint when access mmap'ed files. It also adds additional complexity to the code keeping both caches synchronized. Longer term it may be possible to cleanly resolve this wart by mapping page cache pages directly on to the ARC buffers. The Linux address space operations are flexible enough to allow selection of which pages back a particular index. The trick would be working out the details of which subsystem is in charge, the ARC, the page cache, or both. It may also prove helpful to move the ARC buffers to a scatter-gather lists rather than a vmalloc'ed region. Additionally, zfs_write/read_common() were used in the readpage and writepage hooks because it was fairly easy. However, it would be better to update zfs_fillpage and zfs_putapage to be Linux friendly and use them instead.
This commit is contained in:
parent
cc5f931cfd
commit
c0d35759c5
@ -210,6 +210,7 @@ typedef struct znode {
|
||||
sa_handle_t *z_sa_hdl; /* handle to sa data */
|
||||
boolean_t z_is_sa; /* are we native sa? */
|
||||
boolean_t z_is_zvol; /* are we used by the zvol */
|
||||
boolean_t z_is_mapped; /* are we mmap'ed */
|
||||
struct inode z_inode; /* generic vfs inode */
|
||||
} znode_t;
|
||||
|
||||
|
@ -163,32 +163,7 @@
|
||||
* return (error); // done, report error
|
||||
*/
|
||||
|
||||
#if defined(_KERNEL) && defined(HAVE_MMAP)
|
||||
/*
|
||||
* Utility functions to map and unmap a single physical page. These
|
||||
* are used to manage the mappable copies of ZFS file data, and therefore
|
||||
* do not update ref/mod bits.
|
||||
*/
|
||||
caddr_t
|
||||
zfs_map_page(page_t *pp, enum seg_rw rw)
|
||||
{
|
||||
if (kpm_enable)
|
||||
return (hat_kpm_mapin(pp, 0));
|
||||
ASSERT(rw == S_READ || rw == S_WRITE);
|
||||
return (ppmapin(pp, PROT_READ | ((rw == S_WRITE) ? PROT_WRITE : 0),
|
||||
(caddr_t)-1));
|
||||
}
|
||||
|
||||
void
|
||||
zfs_unmap_page(page_t *pp, caddr_t addr)
|
||||
{
|
||||
if (kpm_enable) {
|
||||
hat_kpm_mapout(pp, 0, addr);
|
||||
} else {
|
||||
ppmapout(addr);
|
||||
}
|
||||
}
|
||||
|
||||
#if defined(_KERNEL)
|
||||
/*
|
||||
* When a file is memory mapped, we must keep the IO data synchronized
|
||||
* between the DMU cache and the memory mapped pages. What this means:
|
||||
@ -197,25 +172,39 @@ zfs_unmap_page(page_t *pp, caddr_t addr)
|
||||
* the page and the dmu buffer.
|
||||
*/
|
||||
static void
|
||||
update_pages(struct inode *ip, int64_t start, int len, objset_t *os,
|
||||
uint64_t oid)
|
||||
update_pages(struct inode *ip, int64_t start, int len,
|
||||
objset_t *os, uint64_t oid)
|
||||
{
|
||||
struct address_space *mp = ip->i_mapping;
|
||||
struct page *pp;
|
||||
uint64_t nbytes;
|
||||
int64_t off;
|
||||
void *pb;
|
||||
|
||||
off = start & PAGEOFFSET;
|
||||
for (start &= PAGEMASK; len > 0; start += PAGESIZE) {
|
||||
page_t *pp;
|
||||
uint64_t nbytes = MIN(PAGESIZE - off, len);
|
||||
off = start & (PAGE_CACHE_SIZE-1);
|
||||
for (start &= PAGE_CACHE_MASK; len > 0; start += PAGE_CACHE_SIZE) {
|
||||
nbytes = MIN(PAGE_CACHE_SIZE - off, len);
|
||||
|
||||
if (pp = page_lookup(ip, start, SE_SHARED)) {
|
||||
caddr_t va;
|
||||
pp = find_lock_page(mp, start >> PAGE_CACHE_SHIFT);
|
||||
if (pp) {
|
||||
if (mapping_writably_mapped(mp))
|
||||
flush_dcache_page(pp);
|
||||
|
||||
va = zfs_map_page(pp, S_WRITE);
|
||||
(void) dmu_read(os, oid, start+off, nbytes, va+off,
|
||||
pb = kmap(pp);
|
||||
(void) dmu_read(os, oid, start+off, nbytes, pb+off,
|
||||
DMU_READ_PREFETCH);
|
||||
zfs_unmap_page(pp, va);
|
||||
page_unlock(pp);
|
||||
kunmap(pp);
|
||||
|
||||
if (mapping_writably_mapped(mp))
|
||||
flush_dcache_page(pp);
|
||||
|
||||
mark_page_accessed(pp);
|
||||
SetPageUptodate(pp);
|
||||
ClearPageError(pp);
|
||||
unlock_page(pp);
|
||||
page_cache_release(pp);
|
||||
}
|
||||
|
||||
len -= nbytes;
|
||||
off = 0;
|
||||
}
|
||||
@ -234,28 +223,39 @@ update_pages(struct inode *ip, int64_t start, int len, objset_t *os,
|
||||
static int
|
||||
mappedread(struct inode *ip, int nbytes, uio_t *uio)
|
||||
{
|
||||
struct address_space *mp = ip->i_mapping;
|
||||
struct page *pp;
|
||||
znode_t *zp = ITOZ(ip);
|
||||
objset_t *os = ITOZSB(ip)->z_os;
|
||||
int64_t start, off;
|
||||
uint64_t bytes;
|
||||
int len = nbytes;
|
||||
int error = 0;
|
||||
void *pb;
|
||||
|
||||
start = uio->uio_loffset;
|
||||
off = start & PAGEOFFSET;
|
||||
for (start &= PAGEMASK; len > 0; start += PAGESIZE) {
|
||||
page_t *pp;
|
||||
uint64_t bytes = MIN(PAGESIZE - off, len);
|
||||
off = start & (PAGE_CACHE_SIZE-1);
|
||||
for (start &= PAGE_CACHE_MASK; len > 0; start += PAGE_CACHE_SIZE) {
|
||||
bytes = MIN(PAGE_CACHE_SIZE - off, len);
|
||||
|
||||
if (pp = page_lookup(ip, start, SE_SHARED)) {
|
||||
caddr_t va;
|
||||
pp = find_lock_page(mp, start >> PAGE_CACHE_SHIFT);
|
||||
if (pp) {
|
||||
ASSERT(PageUptodate(pp));
|
||||
|
||||
va = zfs_map_page(pp, S_READ);
|
||||
error = uiomove(va + off, bytes, UIO_READ, uio);
|
||||
zfs_unmap_page(pp, va);
|
||||
page_unlock(pp);
|
||||
pb = kmap(pp);
|
||||
error = uiomove(pb + off, bytes, UIO_READ, uio);
|
||||
kunmap(pp);
|
||||
|
||||
if (mapping_writably_mapped(mp))
|
||||
flush_dcache_page(pp);
|
||||
|
||||
mark_page_accessed(pp);
|
||||
unlock_page(pp);
|
||||
page_cache_release(pp);
|
||||
} else {
|
||||
error = dmu_read_uio(os, zp->z_id, uio, bytes);
|
||||
}
|
||||
|
||||
len -= bytes;
|
||||
off = 0;
|
||||
if (error)
|
||||
@ -263,7 +263,7 @@ mappedread(struct inode *ip, int nbytes, uio_t *uio)
|
||||
}
|
||||
return (error);
|
||||
}
|
||||
#endif /* _KERNEL && HAVE_MMAP */
|
||||
#endif /* _KERNEL */
|
||||
|
||||
offset_t zfs_read_chunk_size = 1024 * 1024; /* Tunable */
|
||||
|
||||
@ -273,7 +273,8 @@ offset_t zfs_read_chunk_size = 1024 * 1024; /* Tunable */
|
||||
* IN: ip - inode of file to be read from.
|
||||
* uio - structure supplying read location, range info,
|
||||
* and return buffer.
|
||||
* ioflag - SYNC flags; used to provide FRSYNC semantics.
|
||||
* ioflag - FSYNC flags; used to provide FRSYNC semantics.
|
||||
* O_DIRECT flag; used to bypass page cache.
|
||||
* cr - credentials of caller.
|
||||
*
|
||||
* OUT: uio - updated offset and range, buffer filled.
|
||||
@ -394,15 +395,11 @@ zfs_read(struct inode *ip, uio_t *uio, int ioflag, cred_t *cr)
|
||||
nbytes = MIN(n, zfs_read_chunk_size -
|
||||
P2PHASE(uio->uio_loffset, zfs_read_chunk_size));
|
||||
|
||||
/* XXX: Drop this, ARC update handled by zpl layer */
|
||||
#ifdef HAVE_MMAP
|
||||
if (vn_has_cached_data(ip))
|
||||
if (zp->z_is_mapped && !(ioflag & O_DIRECT))
|
||||
error = mappedread(ip, nbytes, uio);
|
||||
else
|
||||
error = dmu_read_uio(os, zp->z_id, uio, nbytes);
|
||||
#else
|
||||
error = dmu_read_uio(os, zp->z_id, uio, nbytes);
|
||||
#endif /* HAVE_MMAP */
|
||||
|
||||
if (error) {
|
||||
/* convert checksum errors into IO errors */
|
||||
if (error == ECKSUM)
|
||||
@ -429,6 +426,7 @@ EXPORT_SYMBOL(zfs_read);
|
||||
* uio - structure supplying write location, range info,
|
||||
* and data buffer.
|
||||
* ioflag - FAPPEND flag set if in append mode.
|
||||
* O_DIRECT flag; used to bypass page cache.
|
||||
* cr - credentials of caller.
|
||||
*
|
||||
* OUT: uio - updated offset and range.
|
||||
@ -700,13 +698,9 @@ again:
|
||||
ASSERT(tx_bytes <= uio->uio_resid);
|
||||
uioskip(uio, tx_bytes);
|
||||
}
|
||||
/* XXX: Drop this, ARC update handled by zpl layer */
|
||||
#ifdef HAVE_MMAP
|
||||
if (tx_bytes && vn_has_cached_data(ip)) {
|
||||
update_pages(ip, woff,
|
||||
tx_bytes, zsb->z_os, zp->z_id);
|
||||
}
|
||||
#endif /* HAVE_MMAP */
|
||||
|
||||
if (tx_bytes && zp->z_is_mapped && !(ioflag & O_DIRECT))
|
||||
update_pages(ip, woff, tx_bytes, zsb->z_os, zp->z_id);
|
||||
|
||||
/*
|
||||
* If we made no progress, we're done. If we made even
|
||||
@ -3392,6 +3386,7 @@ top:
|
||||
}
|
||||
EXPORT_SYMBOL(zfs_link);
|
||||
|
||||
#ifdef HAVE_MMAP
|
||||
/*
|
||||
* zfs_null_putapage() is used when the file system has been force
|
||||
* unmounted. It just drops the pages.
|
||||
@ -3627,48 +3622,30 @@ out:
|
||||
ZFS_EXIT(zfsvfs);
|
||||
return (error);
|
||||
}
|
||||
#endif /* HAVE_MMAP */
|
||||
|
||||
/*ARGSUSED*/
|
||||
void
|
||||
zfs_inactive(vnode_t *vp, cred_t *cr, caller_context_t *ct)
|
||||
zfs_inactive(struct inode *ip)
|
||||
{
|
||||
znode_t *zp = VTOZ(vp);
|
||||
zfsvfs_t *zfsvfs = zp->z_zfsvfs;
|
||||
znode_t *zp = ITOZ(ip);
|
||||
zfs_sb_t *zsb = ITOZSB(ip);
|
||||
int error;
|
||||
|
||||
rw_enter(&zfsvfs->z_teardown_inactive_lock, RW_READER);
|
||||
if (zp->z_sa_hdl == NULL) {
|
||||
/*
|
||||
* The fs has been unmounted, or we did a
|
||||
* suspend/resume and this file no longer exists.
|
||||
*/
|
||||
if (vn_has_cached_data(vp)) {
|
||||
(void) pvn_vplist_dirty(vp, 0, zfs_null_putapage,
|
||||
B_INVAL, cr);
|
||||
}
|
||||
truncate_inode_pages(&ip->i_data, 0);
|
||||
|
||||
mutex_enter(&zp->z_lock);
|
||||
mutex_enter(&vp->v_lock);
|
||||
ASSERT(vp->v_count == 1);
|
||||
vp->v_count = 0;
|
||||
mutex_exit(&vp->v_lock);
|
||||
mutex_exit(&zp->z_lock);
|
||||
rw_exit(&zfsvfs->z_teardown_inactive_lock);
|
||||
zfs_znode_free(zp);
|
||||
#ifdef HAVE_SNAPSHOT
|
||||
/* Early return for snapshot inode? */
|
||||
#endif /* HAVE_SNAPSHOT */
|
||||
|
||||
rw_enter(&zsb->z_teardown_inactive_lock, RW_READER);
|
||||
if (zp->z_sa_hdl == NULL) {
|
||||
rw_exit(&zsb->z_teardown_inactive_lock);
|
||||
return;
|
||||
}
|
||||
|
||||
/*
|
||||
* Attempt to push any data in the page cache. If this fails
|
||||
* we will get kicked out later in zfs_zinactive().
|
||||
*/
|
||||
if (vn_has_cached_data(vp)) {
|
||||
(void) pvn_vplist_dirty(vp, 0, zfs_putapage, B_INVAL|B_ASYNC,
|
||||
cr);
|
||||
}
|
||||
|
||||
if (zp->z_atime_dirty && zp->z_unlinked == 0) {
|
||||
dmu_tx_t *tx = dmu_tx_create(zfsvfs->z_os);
|
||||
dmu_tx_t *tx = dmu_tx_create(zsb->z_os);
|
||||
|
||||
dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE);
|
||||
zfs_sa_upgrade_txholds(tx, zp);
|
||||
@ -3712,6 +3689,7 @@ zfs_seek(struct inode *ip, offset_t ooff, offset_t *noffp,
|
||||
}
|
||||
EXPORT_SYMBOL(zfs_seek);
|
||||
|
||||
#ifdef HAVE_MMAP
|
||||
/*
|
||||
* Pre-filter the generic locking function to trap attempts to place
|
||||
* a mandatory lock on a memory mapped file.
|
||||
@ -4056,6 +4034,7 @@ zfs_delmap(vnode_t *vp, offset_t off, struct as *as, caddr_t addr,
|
||||
|
||||
return (0);
|
||||
}
|
||||
#endif /* HAVE_MMAP */
|
||||
|
||||
/*
|
||||
* convoff - converts the given data (start, whence) to the
|
||||
|
@ -145,24 +145,185 @@ zpl_write(struct file *filp, const char __user *buf, size_t len, loff_t *ppos)
|
||||
return (wrote);
|
||||
}
|
||||
|
||||
/*
|
||||
* It's worth taking a moment to describe how mmap is implemented
|
||||
* for zfs because it differs considerably from other Linux filesystems.
|
||||
* However, this issue is handled the same way under OpenSolaris.
|
||||
*
|
||||
* The issue is that by design zfs bypasses the Linux page cache and
|
||||
* leaves all caching up to the ARC. This has been shown to work
|
||||
* well for the common read(2)/write(2) case. However, mmap(2)
|
||||
* is problem because it relies on being tightly integrated with the
|
||||
* page cache. To handle this we cache mmap'ed files twice, once in
|
||||
* the ARC and a second time in the page cache. The code is careful
|
||||
* to keep both copies synchronized.
|
||||
*
|
||||
* When a file with an mmap'ed region is written to using write(2)
|
||||
* both the data in the ARC and existing pages in the page cache
|
||||
* are updated. For a read(2) data will be read first from the page
|
||||
* cache then the ARC if needed. Neither a write(2) or read(2) will
|
||||
* will ever result in new pages being added to the page cache.
|
||||
*
|
||||
* New pages are added to the page cache only via .readpage() which
|
||||
* is called when the vfs needs to read a page off disk to back the
|
||||
* virtual memory region. These pages may be modified without
|
||||
* notifying the ARC and will be written out periodically via
|
||||
* .writepage(). This will occur due to either a sync or the usual
|
||||
* page aging behavior. Note because a read(2) of a mmap'ed file
|
||||
* will always check the page cache first even when the ARC is out
|
||||
* of date correct data will still be returned.
|
||||
*
|
||||
* While this implementation ensures correct behavior it does have
|
||||
* have some drawbacks. The most obvious of which is that it
|
||||
* increases the required memory footprint when access mmap'ed
|
||||
* files. It also adds additional complexity to the code keeping
|
||||
* both caches synchronized.
|
||||
*
|
||||
* Longer term it may be possible to cleanly resolve this wart by
|
||||
* mapping page cache pages directly on to the ARC buffers. The
|
||||
* Linux address space operations are flexible enough to allow
|
||||
* selection of which pages back a particular index. The trick
|
||||
* would be working out the details of which subsystem is in
|
||||
* charge, the ARC, the page cache, or both. It may also prove
|
||||
* helpful to move the ARC buffers to a scatter-gather lists
|
||||
* rather than a vmalloc'ed region.
|
||||
*/
|
||||
static int
|
||||
zpl_mmap(struct file *filp, struct vm_area_struct *vma)
|
||||
{
|
||||
znode_t *zp = ITOZ(filp->f_mapping->host);
|
||||
int error;
|
||||
|
||||
error = generic_file_mmap(filp, vma);
|
||||
if (error)
|
||||
return (error);
|
||||
|
||||
mutex_enter(&zp->z_lock);
|
||||
zp->z_is_mapped = 1;
|
||||
mutex_exit(&zp->z_lock);
|
||||
|
||||
return (error);
|
||||
}
|
||||
|
||||
/*
|
||||
* Populate a page with data for the Linux page cache. This function is
|
||||
* only used to support mmap(2). There will be an identical copy of the
|
||||
* data in the ARC which is kept up to date via .write() and .writepage().
|
||||
*
|
||||
* Current this function relies on zpl_read_common() and the O_DIRECT
|
||||
* flag to read in a page. This works but the more correct way is to
|
||||
* update zfs_fillpage() to be Linux friendly and use that interface.
|
||||
*/
|
||||
static int
|
||||
zpl_readpage(struct file *filp, struct page *pp)
|
||||
{
|
||||
struct inode *ip;
|
||||
loff_t off, i_size;
|
||||
size_t len, wrote;
|
||||
cred_t *cr;
|
||||
void *pb;
|
||||
int error = 0;
|
||||
|
||||
ASSERT(PageLocked(pp));
|
||||
ip = pp->mapping->host;
|
||||
off = page_offset(pp);
|
||||
i_size = i_size_read(ip);
|
||||
ASSERT3S(off, <, i_size);
|
||||
|
||||
cr = (cred_t *)get_current_cred();
|
||||
len = MIN(PAGE_CACHE_SIZE, i_size - off);
|
||||
|
||||
pb = kmap(pp);
|
||||
|
||||
/* O_DIRECT is passed to bypass the page cache and avoid deadlock. */
|
||||
wrote = zpl_read_common(ip, pb, len, off, UIO_SYSSPACE, O_DIRECT, cr);
|
||||
if (wrote != len)
|
||||
error = -EIO;
|
||||
|
||||
if (!error && (len < PAGE_CACHE_SIZE))
|
||||
memset(pb + len, 0, PAGE_CACHE_SIZE - len);
|
||||
|
||||
kunmap(pp);
|
||||
put_cred(cr);
|
||||
|
||||
if (error) {
|
||||
SetPageError(pp);
|
||||
ClearPageUptodate(pp);
|
||||
} else {
|
||||
ClearPageError(pp);
|
||||
SetPageUptodate(pp);
|
||||
flush_dcache_page(pp);
|
||||
}
|
||||
|
||||
unlock_page(pp);
|
||||
|
||||
return (error);
|
||||
}
|
||||
|
||||
/*
|
||||
* Write out dirty pages to the ARC, this function is only required to
|
||||
* support mmap(2). Mapped pages may be dirtied by memory operations
|
||||
* which never call .write(). These dirty pages are kept in sync with
|
||||
* the ARC buffers via this hook.
|
||||
*
|
||||
* Currently this function relies on zpl_write_common() and the O_DIRECT
|
||||
* flag to push out the page. This works but the more correct way is
|
||||
* to update zfs_putapage() to be Linux friendly and use that interface.
|
||||
*/
|
||||
static int
|
||||
zpl_writepage(struct page *pp, struct writeback_control *wbc)
|
||||
{
|
||||
struct inode *ip;
|
||||
loff_t off, i_size;
|
||||
size_t len, read;
|
||||
cred_t *cr;
|
||||
void *pb;
|
||||
int error = 0;
|
||||
|
||||
ASSERT(PageLocked(pp));
|
||||
ip = pp->mapping->host;
|
||||
off = page_offset(pp);
|
||||
i_size = i_size_read(ip);
|
||||
|
||||
cr = (cred_t *)get_current_cred();
|
||||
len = MIN(PAGE_CACHE_SIZE, i_size - off);
|
||||
|
||||
pb = kmap(pp);
|
||||
|
||||
/* O_DIRECT is passed to bypass the page cache and avoid deadlock. */
|
||||
read = zpl_write_common(ip, pb, len, off, UIO_SYSSPACE, O_DIRECT, cr);
|
||||
if (read != len)
|
||||
error = -EIO;
|
||||
|
||||
kunmap(pp);
|
||||
put_cred(cr);
|
||||
|
||||
if (error) {
|
||||
SetPageError(pp);
|
||||
ClearPageUptodate(pp);
|
||||
} else {
|
||||
ClearPageError(pp);
|
||||
SetPageUptodate(pp);
|
||||
}
|
||||
|
||||
unlock_page(pp);
|
||||
|
||||
return (error);
|
||||
}
|
||||
|
||||
const struct address_space_operations zpl_address_space_operations = {
|
||||
#if 0
|
||||
.readpage = zpl_readpage,
|
||||
.writepage = zpl_writepage,
|
||||
.direct_IO = zpl_direct_IO,
|
||||
#endif
|
||||
};
|
||||
|
||||
const struct file_operations zpl_file_operations = {
|
||||
.open = generic_file_open,
|
||||
.llseek = generic_file_llseek,
|
||||
.read = zpl_read, /* do_sync_read */
|
||||
.write = zpl_write, /* do_sync_write */
|
||||
.read = zpl_read,
|
||||
.write = zpl_write,
|
||||
.readdir = zpl_readdir,
|
||||
.mmap = generic_file_mmap,
|
||||
.mmap = zpl_mmap,
|
||||
.fsync = zpl_fsync,
|
||||
.aio_read = NULL, /* generic_file_aio_read */
|
||||
.aio_write = NULL, /* generic_file_aio_write */
|
||||
};
|
||||
|
||||
const struct file_operations zpl_dir_file_operations = {
|
||||
|
Loading…
Reference in New Issue
Block a user