diff --git a/scripts/update-zfs.sh b/scripts/update-zfs.sh index 9324bc225..2aa2425c6 100755 --- a/scripts/update-zfs.sh +++ b/scripts/update-zfs.sh @@ -72,13 +72,6 @@ cp ${SRC_LIB}/libnvpair/libnvpair.h ${DST_LIB}/libnvpair/include/ cp ${SRC_UCM}/sys/nvpair.h ${DST_LIB}/libnvpair/include/sys/ cp ${SRC_UCM}/sys/nvpair_impl.h ${DST_LIB}/libnvpair/include/sys/ -echo "* zfs/lib/libumem" -mkdir -p ${DST_LIB}/libumem/include/sys/ -cp ${SRC_LIB}/libumem/common/*.c ${DST_LIB}/libumem/ -cp ${SRC_LIB}/libumem/common/*.h ${DST_LIB}/libumem/include/ -cp ${SRC_LIB}/libumem/common/sys/*.h ${DST_LIB}/libumem/include/sys/ -cp ${SRC_UCM}/sys/vmem.h ${DST_LIB}/libumem/include/sys/ - echo "* zfs/lib/libuutil" mkdir -p ${DST_LIB}/libuutil/include/ cp ${SRC_LIB}/libuutil/common/*.c ${DST_LIB}/libuutil/ diff --git a/zfs/lib/libumem/envvar.c b/zfs/lib/libumem/envvar.c deleted file mode 100644 index 949d33ce1..000000000 --- a/zfs/lib/libumem/envvar.c +++ /dev/null @@ -1,746 +0,0 @@ -/* - * CDDL HEADER START - * - * The contents of this file are subject to the terms of the - * Common Development and Distribution License (the "License"). - * You may not use this file except in compliance with the License. - * - * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE - * or http://www.opensolaris.org/os/licensing. - * See the License for the specific language governing permissions - * and limitations under the License. - * - * When distributing Covered Code, include this CDDL HEADER in each - * file and include the License file at usr/src/OPENSOLARIS.LICENSE. - * If applicable, add the following below this CDDL HEADER, with the - * fields enclosed by brackets "[]" replaced with your own identifying - * information: Portions Copyright [yyyy] [name of copyright owner] - * - * CDDL HEADER END - */ - -/* - * Copyright 2008 Sun Microsystems, Inc. All rights reserved. - * Use is subject to license terms. - */ - -#pragma ident "%Z%%M% %I% %E% SMI" - -#include -#include -#include -#include -#include -#include -#include "umem_base.h" -#include "vmem_base.h" - -/* - * A umem environment variable, like UMEM_DEBUG, is set to a series - * of items, seperated by ',': - * - * UMEM_DEBUG="audit=10,guards,firewall=512" - * - * This structure describes items. Each item has a name, type, and - * description. During processing, an item read from the user may - * be either "valid" or "invalid". - * - * A valid item has an argument, if required, and it is of the right - * form (doesn't overflow, doesn't contain any unexpected characters). - * - * If the item is valid, item_flag_target != NULL, and: - * type is not CLEARFLAG, then (*item_flag_target) |= item_flag_value - * type is CLEARFLAG, then (*item_flag_target) &= ~item_flag_value - */ - -#define UMEM_ENV_ITEM_MAX 512 - -struct umem_env_item; - -typedef int arg_process_t(const struct umem_env_item *item, const char *value); -#define ARG_SUCCESS 0 /* processing successful */ -#define ARG_BAD 1 /* argument had a bad value */ - -typedef struct umem_env_item { - const char *item_name; /* tag in environment variable */ - const char *item_interface_stability; - enum { - ITEM_INVALID, - ITEM_FLAG, /* only a flag. No argument allowed */ - ITEM_CLEARFLAG, /* only a flag, but clear instead of set */ - ITEM_OPTUINT, /* optional integer argument */ - ITEM_UINT, /* required integer argument */ - ITEM_OPTSIZE, /* optional size_t argument */ - ITEM_SIZE, /* required size_t argument */ - ITEM_SPECIAL /* special argument processing */ - } item_type; - const char *item_description; - uint_t *item_flag_target; /* the variable containing the flag */ - uint_t item_flag_value; /* the value to OR in */ - uint_t *item_uint_target; /* the variable to hold the integer */ - size_t *item_size_target; - arg_process_t *item_special; /* callback for special handling */ -} umem_env_item_t; - -#ifndef UMEM_STANDALONE -static arg_process_t umem_backend_process; -#endif - -static arg_process_t umem_log_process; - -static size_t umem_size_tempval; -static arg_process_t umem_size_process; - -const char *____umem_environ_msg_options = "-- UMEM_OPTIONS --"; - -static umem_env_item_t umem_options_items[] = { -#ifndef UMEM_STANDALONE - { "backend", "Evolving", ITEM_SPECIAL, - "=sbrk for sbrk(2), =mmap for mmap(2)", - NULL, 0, NULL, NULL, - &umem_backend_process - }, -#endif - - { "concurrency", "Private", ITEM_UINT, - "Max concurrency", - NULL, 0, &umem_max_ncpus - }, - { "max_contention", "Private", ITEM_UINT, - "Maximum contention in a reap interval before the depot is " - "resized.", - NULL, 0, &umem_depot_contention - }, - { "nomagazines", "Private", ITEM_FLAG, - "no caches will be multithreaded, and no caching will occur.", - &umem_flags, UMF_NOMAGAZINE - }, - { "reap_interval", "Private", ITEM_UINT, - "Minimum time between reaps and updates, in seconds.", - NULL, 0, &umem_reap_interval - }, - - { "size_add", "Private", ITEM_SPECIAL, - "add a size to the cache size table", - NULL, 0, NULL, - &umem_size_tempval, &umem_size_process - }, - { "size_clear", "Private", ITEM_SPECIAL, - "clear all but the largest size from the cache size table", - NULL, 0, NULL, - &umem_size_tempval, &umem_size_process - }, - { "size_remove", "Private", ITEM_SPECIAL, - "remove a size from the cache size table", - NULL, 0, NULL, - &umem_size_tempval, &umem_size_process - }, - -#ifndef UMEM_STANDALONE - { "sbrk_minalloc", "Private", ITEM_SIZE, - "The minimum allocation chunk for the sbrk(2) heap.", - NULL, 0, NULL, &vmem_sbrk_minalloc - }, - { "sbrk_pagesize", "Private", ITEM_SIZE, - "The preferred page size for the sbrk(2) heap.", - NULL, 0, NULL, &vmem_sbrk_pagesize - }, -#endif - - { NULL, "-- end of UMEM_OPTIONS --", ITEM_INVALID } -}; - -const char *____umem_environ_msg_debug = "-- UMEM_DEBUG --"; - -static umem_env_item_t umem_debug_items[] = { - { "default", "Unstable", ITEM_FLAG, - "audit,contents,guards", - &umem_flags, - UMF_AUDIT | UMF_CONTENTS | UMF_DEADBEEF | UMF_REDZONE - }, - { "audit", "Unstable", ITEM_OPTUINT, - "Enable auditing. optionally =frames to set the number of " - "stored stack frames", - &umem_flags, UMF_AUDIT, &umem_stack_depth - }, - { "contents", "Unstable", ITEM_OPTSIZE, - "Enable contents storing. UMEM_LOGGING=contents also " - "required. optionally =bytes to set the number of stored " - "bytes", - &umem_flags, UMF_CONTENTS, NULL, &umem_content_maxsave - }, - { "guards", "Unstable", ITEM_FLAG, - "Enables guards and special patterns", - &umem_flags, UMF_DEADBEEF | UMF_REDZONE - }, - { "verbose", "Unstable", ITEM_FLAG, - "Enables writing error messages to stderr", - &umem_output, 1 - }, - - { "nosignal", "Private", ITEM_FLAG, - "Abort if called from a signal handler. Turns on 'audit'. " - "Note that this is not always a bug.", - &umem_flags, UMF_AUDIT | UMF_CHECKSIGNAL - }, - { "firewall", "Private", ITEM_SIZE, - "=minbytes. Every object >= minbytes in size will have its " - "end against an unmapped page", - &umem_flags, UMF_FIREWALL, NULL, &umem_minfirewall - }, - { "lite", "Private", ITEM_FLAG, - "debugging-lite", - &umem_flags, UMF_LITE - }, - { "maxverify", "Private", ITEM_SIZE, - "=maxbytes, Maximum bytes to check when 'guards' is active. " - "Normally all bytes are checked.", - NULL, 0, NULL, &umem_maxverify - }, - { "noabort", "Private", ITEM_CLEARFLAG, - "umem will not abort when a recoverable error occurs " - "(i.e. double frees, certain kinds of corruption)", - &umem_abort, 1 - }, - { "mtbf", "Private", ITEM_UINT, - "=mtbf, the mean time between injected failures. Works best " - "if prime.\n", - NULL, 0, &umem_mtbf - }, - { "random", "Private", ITEM_FLAG, - "randomize flags on a per-cache basis", - &umem_flags, UMF_RANDOMIZE - }, - { "allverbose", "Private", ITEM_FLAG, - "Enables writing all logged messages to stderr", - &umem_output, 2 - }, - - { NULL, "-- end of UMEM_DEBUG --", ITEM_INVALID } -}; - -const char *____umem_environ_msg_logging = "-- UMEM_LOGGING --"; - -static umem_env_item_t umem_logging_items[] = { - { "transaction", "Unstable", ITEM_SPECIAL, - "If 'audit' is set in UMEM_DEBUG, the audit structures " - "from previous transactions are entered into this log.", - NULL, 0, NULL, - &umem_transaction_log_size, &umem_log_process - }, - { "contents", "Unstable", ITEM_SPECIAL, - "If 'audit' is set in UMEM_DEBUG, the contents of objects " - "are recorded in this log as they are freed. If the " - "'contents' option is not set in UMEM_DEBUG, the first " - "256 bytes of each freed buffer will be saved.", - &umem_flags, UMF_CONTENTS, NULL, - &umem_content_log_size, &umem_log_process - }, - { "fail", "Unstable", ITEM_SPECIAL, - "Records are entered into this log for every failed " - "allocation.", - NULL, 0, NULL, - &umem_failure_log_size, &umem_log_process - }, - - { "slab", "Private", ITEM_SPECIAL, - "Every slab created will be entered into this log.", - NULL, 0, NULL, - &umem_slab_log_size, &umem_log_process - }, - - { NULL, "-- end of UMEM_LOGGING --", ITEM_INVALID } -}; - -typedef struct umem_envvar { - const char *env_name; - const char *env_func; - umem_env_item_t *env_item_list; - const char *env_getenv_result; - const char *env_func_result; -} umem_envvar_t; - -static umem_envvar_t umem_envvars[] = { - { "UMEM_DEBUG", "_umem_debug_init", umem_debug_items }, - { "UMEM_OPTIONS", "_umem_options_init", umem_options_items }, - { "UMEM_LOGGING", "_umem_logging_init", umem_logging_items }, - { NULL, NULL, NULL } -}; - -static umem_envvar_t *env_current; -#define CURRENT (env_current->env_name) - -static int -empty(const char *str) -{ - char c; - - while ((c = *str) != '\0' && isspace(c)) - str++; - - return (*str == '\0'); -} - -static int -item_uint_process(const umem_env_item_t *item, const char *item_arg) -{ - ulong_t result; - char *endptr = ""; - int olderrno; - - olderrno = errno; - errno = 0; - - if (empty(item_arg)) { - goto badnumber; - } - - result = strtoul(item_arg, &endptr, 10); - - if (result == ULONG_MAX && errno == ERANGE) { - errno = olderrno; - goto overflow; - } - errno = olderrno; - - if (*endptr != '\0') - goto badnumber; - if ((uint_t)result != result) - goto overflow; - - (*item->item_uint_target) = (uint_t)result; - return (ARG_SUCCESS); - -badnumber: - log_message("%s: %s: not a number\n", CURRENT, item->item_name); - return (ARG_BAD); - -overflow: - log_message("%s: %s: overflowed\n", CURRENT, item->item_name); - return (ARG_BAD); -} - -static int -item_size_process(const umem_env_item_t *item, const char *item_arg) -{ - ulong_t result; - ulong_t result_arg; - char *endptr = ""; - int olderrno; - - if (empty(item_arg)) - goto badnumber; - - olderrno = errno; - errno = 0; - - result_arg = strtoul(item_arg, &endptr, 10); - - if (result_arg == ULONG_MAX && errno == ERANGE) { - errno = olderrno; - goto overflow; - } - errno = olderrno; - - result = result_arg; - - switch (*endptr) { - case 't': - case 'T': - result *= 1024; - if (result < result_arg) - goto overflow; - /*FALLTHRU*/ - case 'g': - case 'G': - result *= 1024; - if (result < result_arg) - goto overflow; - /*FALLTHRU*/ - case 'm': - case 'M': - result *= 1024; - if (result < result_arg) - goto overflow; - /*FALLTHRU*/ - case 'k': - case 'K': - result *= 1024; - if (result < result_arg) - goto overflow; - endptr++; /* skip over the size character */ - break; - default: - break; /* handled later */ - } - - if (*endptr != '\0') - goto badnumber; - - (*item->item_size_target) = result; - return (ARG_SUCCESS); - -badnumber: - log_message("%s: %s: not a number\n", CURRENT, item->item_name); - return (ARG_BAD); - -overflow: - log_message("%s: %s: overflowed\n", CURRENT, item->item_name); - return (ARG_BAD); -} - -static int -umem_log_process(const umem_env_item_t *item, const char *item_arg) -{ - if (item_arg != NULL) { - int ret; - ret = item_size_process(item, item_arg); - if (ret != ARG_SUCCESS) - return (ret); - - if (*item->item_size_target == 0) - return (ARG_SUCCESS); - } else - *item->item_size_target = 64*1024; - - umem_logging = 1; - return (ARG_SUCCESS); -} - -static int -umem_size_process(const umem_env_item_t *item, const char *item_arg) -{ - const char *name = item->item_name; - void (*action_func)(size_t); - - size_t result; - - int ret; - - if (strcmp(name, "size_clear") == 0) { - if (item_arg != NULL) { - log_message("%s: %s: does not take a value. ignored\n", - CURRENT, name); - return (ARG_BAD); - } - umem_alloc_sizes_clear(); - return (ARG_SUCCESS); - } else if (strcmp(name, "size_add") == 0) { - action_func = umem_alloc_sizes_add; - } else if (strcmp(name, "size_remove") == 0) { - action_func = umem_alloc_sizes_remove; - } else { - log_message("%s: %s: internally unrecognized\n", - CURRENT, name, name, name); - return (ARG_BAD); - } - - if (item_arg == NULL) { - log_message("%s: %s: requires a value. ignored\n", - CURRENT, name); - return (ARG_BAD); - } - - ret = item_size_process(item, item_arg); - if (ret != ARG_SUCCESS) - return (ret); - - result = *item->item_size_target; - action_func(result); - return (ARG_SUCCESS); -} - -#ifndef UMEM_STANDALONE -static int -umem_backend_process(const umem_env_item_t *item, const char *item_arg) -{ - const char *name = item->item_name; - - if (item_arg == NULL) - goto fail; - - if (strcmp(item_arg, "sbrk") == 0) - vmem_backend |= VMEM_BACKEND_SBRK; - else if (strcmp(item_arg, "mmap") == 0) - vmem_backend |= VMEM_BACKEND_MMAP; - else - goto fail; - - return (ARG_SUCCESS); - -fail: - log_message("%s: %s: must be %s=sbrk or %s=mmap\n", - CURRENT, name, name, name); - return (ARG_BAD); -} -#endif - -static int -process_item(const umem_env_item_t *item, const char *item_arg) -{ - int arg_required = 0; - arg_process_t *processor; - - switch (item->item_type) { - case ITEM_FLAG: - case ITEM_CLEARFLAG: - case ITEM_OPTUINT: - case ITEM_OPTSIZE: - case ITEM_SPECIAL: - arg_required = 0; - break; - - case ITEM_UINT: - case ITEM_SIZE: - arg_required = 1; - break; - } - - switch (item->item_type) { - case ITEM_FLAG: - case ITEM_CLEARFLAG: - if (item_arg != NULL) { - log_message("%s: %s: does not take a value. ignored\n", - CURRENT, item->item_name); - return (1); - } - processor = NULL; - break; - - case ITEM_UINT: - case ITEM_OPTUINT: - processor = item_uint_process; - break; - - case ITEM_SIZE: - case ITEM_OPTSIZE: - processor = item_size_process; - break; - - case ITEM_SPECIAL: - processor = item->item_special; - break; - - default: - log_message("%s: %s: Invalid type. Ignored\n", - CURRENT, item->item_name); - return (1); - } - - if (arg_required && item_arg == NULL) { - log_message("%s: %s: Required value missing\n", - CURRENT, item->item_name); - goto invalid; - } - - if (item_arg != NULL || item->item_type == ITEM_SPECIAL) { - if (processor(item, item_arg) != ARG_SUCCESS) - goto invalid; - } - - if (item->item_flag_target) { - if (item->item_type == ITEM_CLEARFLAG) - (*item->item_flag_target) &= ~item->item_flag_value; - else - (*item->item_flag_target) |= item->item_flag_value; - } - return (0); - -invalid: - return (1); -} - -#define ENV_SHORT_BYTES 10 /* bytes to print on error */ -void -umem_process_value(umem_env_item_t *item_list, const char *beg, const char *end) -{ - char buf[UMEM_ENV_ITEM_MAX]; - char *argptr; - - size_t count; - - while (beg < end && isspace(*beg)) - beg++; - - while (beg < end && isspace(*(end - 1))) - end--; - - if (beg >= end) { - log_message("%s: empty option\n", CURRENT); - return; - } - - count = end - beg; - - if (count + 1 > sizeof (buf)) { - char outbuf[ENV_SHORT_BYTES + 1]; - /* - * Have to do this, since sprintf("%10s",...) calls malloc() - */ - (void) strncpy(outbuf, beg, ENV_SHORT_BYTES); - outbuf[ENV_SHORT_BYTES] = 0; - - log_message("%s: argument \"%s...\" too long\n", CURRENT, - outbuf); - return; - } - - (void) strncpy(buf, beg, count); - buf[count] = 0; - - argptr = strchr(buf, '='); - - if (argptr != NULL) - *argptr++ = 0; - - for (; item_list->item_name != NULL; item_list++) { - if (strcmp(buf, item_list->item_name) == 0) { - (void) process_item(item_list, argptr); - return; - } - } - log_message("%s: '%s' not recognized\n", CURRENT, buf); -} - -/*ARGSUSED*/ -void -umem_setup_envvars(int invalid) -{ - umem_envvar_t *cur_env; - static volatile enum { - STATE_START, - STATE_GETENV, - STATE_DLOPEN, - STATE_DLSYM, - STATE_FUNC, - STATE_DONE - } state = STATE_START; -#ifndef UMEM_STANDALONE - void *h; -#endif - - if (invalid) { - const char *where; - /* - * One of the calls below invoked malloc() recursively. We - * remove any partial results and return. - */ - - switch (state) { - case STATE_START: - where = "before getenv(3C) calls -- " - "getenv(3C) results ignored."; - break; - case STATE_GETENV: - where = "during getenv(3C) calls -- " - "getenv(3C) results ignored."; - break; - case STATE_DLOPEN: - where = "during dlopen(3C) call -- " - "_umem_*() results ignored."; - break; - case STATE_DLSYM: - where = "during dlsym(3C) call -- " - "_umem_*() results ignored."; - break; - case STATE_FUNC: - where = "during _umem_*() call -- " - "_umem_*() results ignored."; - break; - case STATE_DONE: - where = "after dlsym() or _umem_*() calls."; - break; - default: - where = "at unknown point -- " - "_umem_*() results ignored."; - break; - } - - log_message("recursive allocation %s\n", where); - - for (cur_env = umem_envvars; cur_env->env_name != NULL; - cur_env++) { - if (state == STATE_GETENV) - cur_env->env_getenv_result = NULL; - if (state != STATE_DONE) - cur_env->env_func_result = NULL; - } - - state = STATE_DONE; - return; - } - - state = STATE_GETENV; - - for (cur_env = umem_envvars; cur_env->env_name != NULL; cur_env++) { - cur_env->env_getenv_result = getenv(cur_env->env_name); - if (state == STATE_DONE) - return; /* recursed */ - } - -#ifndef UMEM_STANDALONE - state = STATE_DLOPEN; - - /* get a handle to the "a.out" object */ - if ((h = dlopen(0, RTLD_FIRST | RTLD_LAZY)) != NULL) { - for (cur_env = umem_envvars; cur_env->env_name != NULL; - cur_env++) { - const char *(*func)(void); - const char *value; - - state = STATE_DLSYM; - func = (const char *(*)(void))dlsym(h, - cur_env->env_func); - - if (state == STATE_DONE) - break; /* recursed */ - - state = STATE_FUNC; - if (func != NULL) { - value = func(); - if (state == STATE_DONE) - break; /* recursed */ - cur_env->env_func_result = value; - } - } - (void) dlclose(h); - } else { - (void) dlerror(); /* snarf dlerror() */ - } -#endif /* UMEM_STANDALONE */ - - state = STATE_DONE; -} - -/* - * Process the environment variables. - */ -void -umem_process_envvars(void) -{ - const char *value; - const char *end, *next; - umem_envvar_t *cur_env; - - for (cur_env = umem_envvars; cur_env->env_name != NULL; cur_env++) { - env_current = cur_env; - - value = cur_env->env_getenv_result; - if (value == NULL) - value = cur_env->env_func_result; - - /* ignore if missing or empty */ - if (value == NULL) - continue; - - for (end = value; *end != '\0'; value = next) { - end = strchr(value, ','); - if (end != NULL) - next = end + 1; /* skip the comma */ - else - next = end = value + strlen(value); - - umem_process_value(cur_env->env_item_list, value, end); - } - } -} diff --git a/zfs/lib/libumem/getpcstack.c b/zfs/lib/libumem/getpcstack.c deleted file mode 100644 index 8c3a47e19..000000000 --- a/zfs/lib/libumem/getpcstack.c +++ /dev/null @@ -1,188 +0,0 @@ -/* - * CDDL HEADER START - * - * The contents of this file are subject to the terms of the - * Common Development and Distribution License (the "License"). - * You may not use this file except in compliance with the License. - * - * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE - * or http://www.opensolaris.org/os/licensing. - * See the License for the specific language governing permissions - * and limitations under the License. - * - * When distributing Covered Code, include this CDDL HEADER in each - * file and include the License file at usr/src/OPENSOLARIS.LICENSE. - * If applicable, add the following below this CDDL HEADER, with the - * fields enclosed by brackets "[]" replaced with your own identifying - * information: Portions Copyright [yyyy] [name of copyright owner] - * - * CDDL HEADER END - */ - -/* - * Copyright 2008 Sun Microsystems, Inc. All rights reserved. - * Use is subject to license terms. - */ - -#pragma ident "%Z%%M% %I% %E% SMI" - -#include "misc.h" -#include -#include -#include -#include - -#if defined(__sparc) || defined(__sparcv9) -extern void flush_windows(void); -#define UMEM_FRAMESIZE MINFRAME - -#elif defined(__i386) || defined(__amd64) -/* - * On x86, MINFRAME is defined to be 0, but we want to be sure we can - * dereference the entire frame structure. - */ -#define UMEM_FRAMESIZE (sizeof (struct frame)) - -#else -#error needs update for new architecture -#endif - -/* - * Get a pc-only stacktrace. Used for kmem_alloc() buffer ownership tracking. - * Returns MIN(current stack depth, pcstack_limit). - */ -/*ARGSUSED*/ -int -getpcstack(uintptr_t *pcstack, int pcstack_limit, int check_signal) -{ - struct frame *fp; - struct frame *nextfp, *minfp; - int depth = 0; - uintptr_t base = 0; - size_t size = 0; -#ifndef UMEM_STANDALONE - int on_altstack = 0; - uintptr_t sigbase = 0; - size_t sigsize = 0; - - stack_t st; - - if (stack_getbounds(&st) != 0) { - if (thr_stksegment(&st) != 0 || - (uintptr_t)st.ss_sp < st.ss_size) { - return (0); /* unable to get stack bounds */ - } - /* - * thr_stksegment(3C) has a slightly different interface than - * stack_getbounds(3C) -- correct it - */ - st.ss_sp = (void *)(((uintptr_t)st.ss_sp) - st.ss_size); - st.ss_flags = 0; /* can't be on-stack */ - } - on_altstack = (st.ss_flags & SS_ONSTACK); - - if (st.ss_size != 0) { - base = (uintptr_t)st.ss_sp; - size = st.ss_size; - } else { - /* - * If size == 0, then ss_sp is the *top* of the stack. - * - * Since we only allow increasing frame pointers, and we - * know our caller set his up correctly, we can treat ss_sp - * as an upper bound safely. - */ - base = 0; - size = (uintptr_t)st.ss_sp; - } - - if (check_signal != 0) { - void (*sigfunc)() = NULL; - int sigfuncsize = 0; - extern void thr_sighndlrinfo(void (**)(), int *); - - thr_sighndlrinfo(&sigfunc, &sigfuncsize); - sigbase = (uintptr_t)sigfunc; - sigsize = sigfuncsize; - } -#else /* UMEM_STANDALONE */ - base = (uintptr_t)umem_min_stack; - size = umem_max_stack - umem_min_stack; -#endif - - /* - * shorten size so that fr_savfp and fr_savpc will be within the stack - * bounds. - */ - if (size >= UMEM_FRAMESIZE - 1) - size -= (UMEM_FRAMESIZE - 1); - else - size = 0; - -#if defined(__sparc) || defined(__sparcv9) - flush_windows(); -#endif - - /* LINTED alignment */ - fp = (struct frame *)((caddr_t)getfp() + STACK_BIAS); - - minfp = fp; - - if (((uintptr_t)fp - base) >= size) - return (0); /* the frame pointer isn't in our stack */ - - while (depth < pcstack_limit) { - uintptr_t tmp; - - /* LINTED alignment */ - nextfp = (struct frame *)((caddr_t)fp->fr_savfp + STACK_BIAS); - tmp = (uintptr_t)nextfp; - - /* - * Check nextfp for validity. It must be properly aligned, - * increasing compared to the last %fp (or the top of the - * stack we just switched to), and it must be inside - * [base, base + size). - */ - if (tmp != SA(tmp)) - break; - else if (nextfp <= minfp || (tmp - base) >= size) { -#ifndef UMEM_STANDALONE - if (tmp == NULL || !on_altstack) - break; - /* - * If we're on an alternate signal stack, try jumping - * to the main thread stack. - * - * If the main thread stack has an unlimited size, we - * punt, since we don't know where the frame pointer's - * been. - * - * (thr_stksegment() returns the *top of stack* - * in ss_sp, not the bottom) - */ - if (thr_stksegment(&st) == 0) { - if (st.ss_size >= (uintptr_t)st.ss_sp || - st.ss_size < UMEM_FRAMESIZE - 1) - break; - - on_altstack = 0; - base = (uintptr_t)st.ss_sp - st.ss_size; - size = st.ss_size - (UMEM_FRAMESIZE - 1); - minfp = (struct frame *)base; - continue; /* try again */ - } -#endif - break; - } - -#ifndef UMEM_STANDALONE - if (check_signal && (fp->fr_savpc - sigbase) <= sigsize) - umem_panic("called from signal handler"); -#endif - pcstack[depth++] = fp->fr_savpc; - fp = nextfp; - minfp = fp; - } - return (depth); -} diff --git a/zfs/lib/libumem/include/misc.h b/zfs/lib/libumem/include/misc.h deleted file mode 100644 index f1fdcc181..000000000 --- a/zfs/lib/libumem/include/misc.h +++ /dev/null @@ -1,141 +0,0 @@ -/* - * CDDL HEADER START - * - * The contents of this file are subject to the terms of the - * Common Development and Distribution License (the "License"). - * You may not use this file except in compliance with the License. - * - * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE - * or http://www.opensolaris.org/os/licensing. - * See the License for the specific language governing permissions - * and limitations under the License. - * - * When distributing Covered Code, include this CDDL HEADER in each - * file and include the License file at usr/src/OPENSOLARIS.LICENSE. - * If applicable, add the following below this CDDL HEADER, with the - * fields enclosed by brackets "[]" replaced with your own identifying - * information: Portions Copyright [yyyy] [name of copyright owner] - * - * CDDL HEADER END - */ - -/* - * Copyright 2008 Sun Microsystems, Inc. All rights reserved. - * Use is subject to license terms. - */ - -#ifndef _MISC_H -#define _MISC_H - -#pragma ident "%Z%%M% %I% %E% SMI" - -#include -#include -#include -#include -#include - -#ifdef __cplusplus -extern "C" { -#endif - -extern uint_t umem_abort; /* abort when errors occur */ -extern uint_t umem_output; /* output error messages to stderr */ -extern caddr_t umem_min_stack; /* max stack address for audit log */ -extern caddr_t umem_max_stack; /* min stack address for audit log */ - -/* - * various utility functions - * These are globally implemented. - */ - -#undef offsetof -#define offsetof(s, m) ((size_t)(&(((s *)0)->m))) - -/* - * a safe printf -- do not use for error messages. - */ -void debug_printf(const char *format, ...); - -/* - * adds a message to the log without writing it out. - */ -void log_message(const char *format, ...); - -/* - * returns the index of the (high/low) bit + 1 - */ -int highbit(ulong_t); -int lowbit(ulong_t); -#pragma no_side_effect(highbit, lowbit) - -/* - * Converts a hrtime_t to a timestruc_t - */ -void hrt2ts(hrtime_t hrt, timestruc_t *tsp); - -/* - * tries to print out the symbol and offset of a pointer using umem_error_info - */ -int print_sym(void *pointer); - -/* - * Information about the current error. Can be called multiple times, should - * be followed eventually with a call to umem_err or umem_err_recoverable. - */ -void umem_printf(const char *format, ...); -void umem_vprintf(const char *format, va_list); - -void umem_printf_warn(void *ignored, const char *format, ...); - -void umem_error_enter(const char *); - -/* - * prints error message and stack trace, then aborts. Cannot return. - */ -void umem_panic(const char *format, ...) __NORETURN; -#pragma does_not_return(umem_panic) -#pragma rarely_called(umem_panic) - -/* - * like umem_err, but only aborts if umem_abort > 0 - */ -void umem_err_recoverable(const char *format, ...); - -/* - * We define our own assertion handling since libc's assert() calls malloc() - */ -#ifdef NDEBUG -#define ASSERT(assertion) (void)0 -#else -#define ASSERT(assertion) (void)((assertion) || \ - __umem_assert_failed(#assertion, __FILE__, __LINE__)) -#endif - -int __umem_assert_failed(const char *assertion, const char *file, int line); -#pragma does_not_return(__umem_assert_failed) -#pragma rarely_called(__umem_assert_failed) -/* - * These have architecture-specific implementations. - */ - -/* - * Returns the current function's frame pointer. - */ -extern void *getfp(void); - -/* - * puts a pc-only stack trace of up to pcstack_limit frames into pcstack. - * Returns the number of stacks written. - * - * if check_sighandler != 0, and we are in a signal context, calls - * umem_err_recoverable. - */ -extern int getpcstack(uintptr_t *pcstack, int pcstack_limit, - int check_sighandler); - -#ifdef __cplusplus -} -#endif - -#endif /* _MISC_H */ diff --git a/zfs/lib/libumem/include/sys/vmem.h b/zfs/lib/libumem/include/sys/vmem.h deleted file mode 100644 index abcc8b26b..000000000 --- a/zfs/lib/libumem/include/sys/vmem.h +++ /dev/null @@ -1,145 +0,0 @@ -/* - * CDDL HEADER START - * - * The contents of this file are subject to the terms of the - * Common Development and Distribution License (the "License"). - * You may not use this file except in compliance with the License. - * - * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE - * or http://www.opensolaris.org/os/licensing. - * See the License for the specific language governing permissions - * and limitations under the License. - * - * When distributing Covered Code, include this CDDL HEADER in each - * file and include the License file at usr/src/OPENSOLARIS.LICENSE. - * If applicable, add the following below this CDDL HEADER, with the - * fields enclosed by brackets "[]" replaced with your own identifying - * information: Portions Copyright [yyyy] [name of copyright owner] - * - * CDDL HEADER END - */ -/* - * Copyright 2007 Sun Microsystems, Inc. All rights reserved. - * Use is subject to license terms. - */ - -#ifndef _SYS_VMEM_H -#define _SYS_VMEM_H - -#pragma ident "%Z%%M% %I% %E% SMI" - -#include - -#ifdef __cplusplus -extern "C" { -#endif - - -/* - * Per-allocation flags - */ -#define VM_SLEEP 0x00000000 /* same as KM_SLEEP */ -#define VM_NOSLEEP 0x00000001 /* same as KM_NOSLEEP */ -#define VM_PANIC 0x00000002 /* same as KM_PANIC */ -#define VM_PUSHPAGE 0x00000004 /* same as KM_PUSHPAGE */ -#define VM_KMFLAGS 0x000000ff /* flags that must match KM_* flags */ - -#define VM_BESTFIT 0x00000100 -#define VM_FIRSTFIT 0x00000200 -#define VM_NEXTFIT 0x00000400 - -/* - * The following flags are restricted for use only within the kernel. - * VM_MEMLOAD is for use by the HAT to avoid infinite recursion. - * VM_NORELOC is used by the kernel when static VA->PA mappings are required. - */ -#define VM_MEMLOAD 0x00000800 -#define VM_NORELOC 0x00001000 -/* - * VM_ABORT requests that vmem_alloc() *ignore* the VM_SLEEP/VM_NOSLEEP flags - * and forgo reaping if the allocation or attempted import, fails. This - * flag is a segkmem-specific flag, and should not be used by anyone else. - */ -#define VM_ABORT 0x00002000 - -#define VM_FLAGS 0x0000FFFF - -/* - * Arena creation flags - */ -#define VMC_POPULATOR 0x00010000 -#define VMC_NO_QCACHE 0x00020000 /* cannot use quantum caches */ -#define VMC_IDENTIFIER 0x00040000 /* not backed by memory */ -/* - * internal use only; the import function uses the vmem_ximport_t interface - * and may increase the request size if it so desires. - * VMC_XALIGN, for use with vmem_xcreate, specifies that - * the address returned by the import function will be - * aligned according to the alignment argument. - */ -#define VMC_XALLOC 0x00080000 -#define VMC_XALIGN 0x00100000 -#define VMC_FLAGS 0xFFFF0000 - -/* - * Public segment types - */ -#define VMEM_ALLOC 0x01 -#define VMEM_FREE 0x02 - -/* - * Implementation-private segment types - */ -#define VMEM_SPAN 0x10 -#define VMEM_ROTOR 0x20 -#define VMEM_WALKER 0x40 - -/* - * VMEM_REENTRANT indicates to vmem_walk() that the callback routine may - * call back into the arena being walked, so vmem_walk() must drop the - * arena lock before each callback. The caveat is that since the arena - * isn't locked, its state can change. Therefore it is up to the callback - * routine to handle cases where the segment isn't of the expected type. - * For example, we use this to walk heap_arena when generating a crash dump; - * see segkmem_dump() for sample usage. - */ -#define VMEM_REENTRANT 0x80000000 - -typedef struct vmem vmem_t; -typedef void *(vmem_alloc_t)(vmem_t *, size_t, int); -typedef void (vmem_free_t)(vmem_t *, void *, size_t); - -/* - * Alternate import style; the requested size is passed in a pointer, - * which can be increased by the import function if desired. - */ -typedef void *(vmem_ximport_t)(vmem_t *, size_t *, size_t, int); - -#ifdef _KERNEL -extern vmem_t *vmem_init(const char *, void *, size_t, size_t, - vmem_alloc_t *, vmem_free_t *); -extern void vmem_update(void *); -extern int vmem_is_populator(); -extern size_t vmem_seg_size; -#endif - -extern vmem_t *vmem_create(const char *, void *, size_t, size_t, - vmem_alloc_t *, vmem_free_t *, vmem_t *, size_t, int); -extern vmem_t *vmem_xcreate(const char *, void *, size_t, size_t, - vmem_ximport_t *, vmem_free_t *, vmem_t *, size_t, int); -extern void vmem_destroy(vmem_t *); -extern void *vmem_alloc(vmem_t *, size_t, int); -extern void *vmem_xalloc(vmem_t *, size_t, size_t, size_t, size_t, - void *, void *, int); -extern void vmem_free(vmem_t *, void *, size_t); -extern void vmem_xfree(vmem_t *, void *, size_t); -extern void *vmem_add(vmem_t *, void *, size_t, int); -extern int vmem_contains(vmem_t *, void *, size_t); -extern void vmem_walk(vmem_t *, int, void (*)(void *, void *, size_t), void *); -extern size_t vmem_size(vmem_t *, int); - -#ifdef __cplusplus -} -#endif - -#endif /* _SYS_VMEM_H */ diff --git a/zfs/lib/libumem/include/sys/vmem_impl_user.h b/zfs/lib/libumem/include/sys/vmem_impl_user.h deleted file mode 100644 index cc9da6679..000000000 --- a/zfs/lib/libumem/include/sys/vmem_impl_user.h +++ /dev/null @@ -1,152 +0,0 @@ -/* - * CDDL HEADER START - * - * The contents of this file are subject to the terms of the - * Common Development and Distribution License, Version 1.0 only - * (the "License"). You may not use this file except in compliance - * with the License. - * - * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE - * or http://www.opensolaris.org/os/licensing. - * See the License for the specific language governing permissions - * and limitations under the License. - * - * When distributing Covered Code, include this CDDL HEADER in each - * file and include the License file at usr/src/OPENSOLARIS.LICENSE. - * If applicable, add the following below this CDDL HEADER, with the - * fields enclosed by brackets "[]" replaced with your own identifying - * information: Portions Copyright [yyyy] [name of copyright owner] - * - * CDDL HEADER END - */ -/* - * Copyright 1999-2002 Sun Microsystems, Inc. All rights reserved. - * Use is subject to license terms. - */ - -#ifndef _SYS_VMEM_IMPL_USER_H -#define _SYS_VMEM_IMPL_USER_H - -#pragma ident "%Z%%M% %I% %E% SMI" - -#include -#include -#include -#include -#include - -#ifdef __cplusplus -extern "C" { -#endif - -typedef struct vmem_seg vmem_seg_t; - -#define VMEM_STACK_DEPTH 20 - -struct vmem_seg { - /* - * The first four fields must match vmem_freelist_t exactly. - */ - uintptr_t vs_start; /* start of segment (inclusive) */ - uintptr_t vs_end; /* end of segment (exclusive) */ - vmem_seg_t *vs_knext; /* next of kin (alloc, free, span) */ - vmem_seg_t *vs_kprev; /* prev of kin */ - - vmem_seg_t *vs_anext; /* next in arena */ - vmem_seg_t *vs_aprev; /* prev in arena */ - uint8_t vs_type; /* alloc, free, span */ - uint8_t vs_import; /* non-zero if segment was imported */ - uint8_t vs_depth; /* stack depth if UMF_AUDIT active */ - /* - * The following fields are present only when UMF_AUDIT is set. - */ - thread_t vs_thread; - hrtime_t vs_timestamp; - uintptr_t vs_stack[VMEM_STACK_DEPTH]; -}; - -typedef struct vmem_freelist { - uintptr_t vs_start; /* always zero */ - uintptr_t vs_end; /* segment size */ - vmem_seg_t *vs_knext; /* next of kin */ - vmem_seg_t *vs_kprev; /* prev of kin */ -} vmem_freelist_t; - -#define VS_SIZE(vsp) ((vsp)->vs_end - (vsp)->vs_start) - -/* - * Segment hashing - */ -#define VMEM_HASH_INDEX(a, s, q, m) \ - ((((a) + ((a) >> (s)) + ((a) >> ((s) << 1))) >> (q)) & (m)) - -#define VMEM_HASH(vmp, addr) \ - (&(vmp)->vm_hash_table[VMEM_HASH_INDEX(addr, \ - (vmp)->vm_hash_shift, (vmp)->vm_qshift, (vmp)->vm_hash_mask)]) - -#define VMEM_NAMELEN 30 -#define VMEM_HASH_INITIAL 16 -#define VMEM_NQCACHE_MAX 16 -#define VMEM_FREELISTS (sizeof (void *) * 8) - -typedef struct vmem_kstat { - uint64_t vk_mem_inuse; /* memory in use */ - uint64_t vk_mem_import; /* memory imported */ - uint64_t vk_mem_total; /* total memory in arena */ - uint32_t vk_source_id; /* vmem id of vmem source */ - uint64_t vk_alloc; /* number of allocations */ - uint64_t vk_free; /* number of frees */ - uint64_t vk_wait; /* number of allocations that waited */ - uint64_t vk_fail; /* number of allocations that failed */ - uint64_t vk_lookup; /* hash lookup count */ - uint64_t vk_search; /* freelist search count */ - uint64_t vk_populate_wait; /* populates that waited */ - uint64_t vk_populate_fail; /* populates that failed */ - uint64_t vk_contains; /* vmem_contains() calls */ - uint64_t vk_contains_search; /* vmem_contains() search cnt */ -} vmem_kstat_t; - -struct vmem { - char vm_name[VMEM_NAMELEN]; /* arena name */ - cond_t vm_cv; /* cv for blocking allocations */ - mutex_t vm_lock; /* arena lock */ - uint32_t vm_id; /* vmem id */ - uint32_t vm_mtbf; /* induced alloc failure rate */ - int vm_cflags; /* arena creation flags */ - int vm_qshift; /* log2(vm_quantum) */ - size_t vm_quantum; /* vmem quantum */ - size_t vm_qcache_max; /* maximum size to front by umem */ - vmem_alloc_t *vm_source_alloc; - vmem_free_t *vm_source_free; - vmem_t *vm_source; /* vmem source for imported memory */ - vmem_t *vm_next; /* next in vmem_list */ - ssize_t vm_nsegfree; /* number of free vmem_seg_t's */ - vmem_seg_t *vm_segfree; /* free vmem_seg_t list */ - vmem_seg_t **vm_hash_table; /* allocated-segment hash table */ - size_t vm_hash_mask; /* hash_size - 1 */ - size_t vm_hash_shift; /* log2(vm_hash_mask + 1) */ - ulong_t vm_freemap; /* bitmap of non-empty freelists */ - vmem_seg_t vm_seg0; /* anchor segment */ - vmem_seg_t vm_rotor; /* rotor for VM_NEXTFIT allocations */ - vmem_seg_t *vm_hash0[VMEM_HASH_INITIAL]; /* initial hash table */ - void *vm_qcache[VMEM_NQCACHE_MAX]; /* quantum caches */ - vmem_freelist_t vm_freelist[VMEM_FREELISTS + 1]; /* power-of-2 flists */ - vmem_kstat_t vm_kstat; /* kstat data */ -}; - -/* - * We cannot use a mutex_t and MUTEX_HELD, since that will not work - * when libthread is not linked. - */ -typedef struct vmem_populate_lock { - mutex_t vmpl_mutex; - thread_t vmpl_thr; -} vmem_populate_lock_t; - -#define VM_UMFLAGS VM_KMFLAGS - -#ifdef __cplusplus -} -#endif - -#endif /* _SYS_VMEM_IMPL_USER_H */ diff --git a/zfs/lib/libumem/include/umem.h b/zfs/lib/libumem/include/umem.h deleted file mode 100644 index f8dc47529..000000000 --- a/zfs/lib/libumem/include/umem.h +++ /dev/null @@ -1,86 +0,0 @@ -/* - * CDDL HEADER START - * - * The contents of this file are subject to the terms of the - * Common Development and Distribution License, Version 1.0 only - * (the "License"). You may not use this file except in compliance - * with the License. - * - * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE - * or http://www.opensolaris.org/os/licensing. - * See the License for the specific language governing permissions - * and limitations under the License. - * - * When distributing Covered Code, include this CDDL HEADER in each - * file and include the License file at usr/src/OPENSOLARIS.LICENSE. - * If applicable, add the following below this CDDL HEADER, with the - * fields enclosed by brackets "[]" replaced with your own identifying - * information: Portions Copyright [yyyy] [name of copyright owner] - * - * CDDL HEADER END - */ -/* - * Copyright 2004 Sun Microsystems, Inc. All rights reserved. - * Use is subject to license terms. - */ - -#ifndef _UMEM_H -#define _UMEM_H - -#pragma ident "%Z%%M% %I% %E% SMI" - -#include -#include -#include - -#ifdef __cplusplus -extern "C" { -#endif - -#define UMEM_DEFAULT 0x0000 /* normal -- may fail */ -#define UMEM_NOFAIL 0x0100 /* Never fails -- may call exit(2) */ - -#define UMEM_FLAGS 0xffff /* all settable umem flags */ - -extern void *umem_alloc(size_t, int); -extern void *umem_alloc_align(size_t, size_t, int); -extern void *umem_zalloc(size_t, int); -extern void umem_free(void *, size_t); -extern void umem_free_align(void *, size_t); - -/* - * Flags for umem_cache_create() - */ -#define UMC_NOTOUCH 0x00010000 -#define UMC_NODEBUG 0x00020000 -#define UMC_NOMAGAZINE 0x00040000 -#define UMC_NOHASH 0x00080000 - -struct umem_cache; /* cache structure is opaque to umem clients */ - -typedef struct umem_cache umem_cache_t; -typedef int umem_constructor_t(void *, void *, int); -typedef void umem_destructor_t(void *, void *); -typedef void umem_reclaim_t(void *); - -typedef int umem_nofail_callback_t(void); -#define UMEM_CALLBACK_RETRY 0 -#define UMEM_CALLBACK_EXIT(status) (0x100 | ((status) & 0xFF)) - -extern void umem_nofail_callback(umem_nofail_callback_t *); - -extern umem_cache_t *umem_cache_create(char *, size_t, - size_t, umem_constructor_t *, umem_destructor_t *, umem_reclaim_t *, - void *, vmem_t *, int); -extern void umem_cache_destroy(umem_cache_t *); - -extern void *umem_cache_alloc(umem_cache_t *, int); -extern void umem_cache_free(umem_cache_t *, void *); - -extern void umem_reap(void); - -#ifdef __cplusplus -} -#endif - -#endif /* _UMEM_H */ diff --git a/zfs/lib/libumem/include/umem_base.h b/zfs/lib/libumem/include/umem_base.h deleted file mode 100644 index e78bebfb5..000000000 --- a/zfs/lib/libumem/include/umem_base.h +++ /dev/null @@ -1,146 +0,0 @@ -/* - * CDDL HEADER START - * - * The contents of this file are subject to the terms of the - * Common Development and Distribution License (the "License"). - * You may not use this file except in compliance with the License. - * - * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE - * or http://www.opensolaris.org/os/licensing. - * See the License for the specific language governing permissions - * and limitations under the License. - * - * When distributing Covered Code, include this CDDL HEADER in each - * file and include the License file at usr/src/OPENSOLARIS.LICENSE. - * If applicable, add the following below this CDDL HEADER, with the - * fields enclosed by brackets "[]" replaced with your own identifying - * information: Portions Copyright [yyyy] [name of copyright owner] - * - * CDDL HEADER END - */ -/* - * Copyright 2006 Sun Microsystems, Inc. All rights reserved. - * Use is subject to license terms. - */ - -#ifndef _UMEM_BASE_H -#define _UMEM_BASE_H - -#pragma ident "%Z%%M% %I% %E% SMI" - -#include - -#ifdef __cplusplus -extern "C" { -#endif - -#include "misc.h" - -extern size_t pagesize; -#undef PAGESIZE -#define PAGESIZE pagesize - -/* - * umem.c: non-tunables - */ -extern vmem_t *umem_memalign_arena; - -extern int umem_ready; -extern thread_t umem_init_thr; /* the thread doing the init */ - -extern int umem_init(void); /* do umem's initialization */ -#pragma rarely_called(umem_init) - -extern umem_log_header_t *umem_transaction_log; -extern umem_log_header_t *umem_content_log; -extern umem_log_header_t *umem_failure_log; -extern umem_log_header_t *umem_slab_log; - -extern mutex_t umem_init_lock; - -extern mutex_t umem_cache_lock; -extern umem_cache_t umem_null_cache; - -extern mutex_t umem_flags_lock; - -extern mutex_t umem_update_lock; -extern cond_t umem_update_cv; -extern volatile thread_t umem_st_update_thr; -extern thread_t umem_update_thr; -extern struct timeval umem_update_next; - -extern volatile hrtime_t umem_reap_next; -extern volatile uint32_t umem_reaping; -#define UMEM_REAP_DONE 0x00000000 /* inactive */ -#define UMEM_REAP_ADDING 0x00000001 /* umem_reap() is active */ -#define UMEM_REAP_ACTIVE 0x00000002 /* update thread is reaping */ - -/* - * umem.c: tunables - */ -extern uint32_t umem_max_ncpus; - -extern uint32_t umem_stack_depth; -extern uint32_t umem_reap_interval; -extern uint32_t umem_update_interval; -extern uint32_t umem_depot_contention; -extern uint32_t umem_abort; -extern uint32_t umem_output; -extern uint32_t umem_logging; -extern uint32_t umem_mtbf; -extern size_t umem_transaction_log_size; -extern size_t umem_content_log_size; -extern size_t umem_failure_log_size; -extern size_t umem_slab_log_size; -extern size_t umem_content_maxsave; -extern size_t umem_lite_minsize; -extern size_t umem_lite_maxalign; -extern size_t umem_maxverify; -extern size_t umem_minfirewall; - -extern uint32_t umem_flags; - -/* - * umem.c: Internal aliases (to avoid PLTs) - */ -extern void *_umem_alloc(size_t size, int umflags); -extern void *_umem_zalloc(size_t size, int umflags); -extern void _umem_free(void *buf, size_t size); - -extern void *_umem_cache_alloc(umem_cache_t *cache, int flags); -extern void _umem_cache_free(umem_cache_t *cache, void *buffer); - -/* - * umem.c: private interfaces - */ -extern void umem_type_init(caddr_t, size_t, size_t); -extern int umem_get_max_ncpus(void); -extern void umem_process_updates(void); -extern void umem_cache_applyall(void (*)(umem_cache_t *)); -extern void umem_cache_update(umem_cache_t *); - -extern void umem_alloc_sizes_add(size_t); -extern void umem_alloc_sizes_clear(void); -extern void umem_alloc_sizes_remove(size_t); - -/* - * umem_fork.c: private interfaces - */ -extern void umem_forkhandler_init(void); - -/* - * umem_update_thread.c - */ -extern int umem_create_update_thread(void); - -/* - * envvar.c: - */ -void umem_setup_envvars(int); -void umem_process_envvars(void); - -#ifdef __cplusplus -} -#endif - -#endif /* _UMEM_BASE_H */ diff --git a/zfs/lib/libumem/include/umem_impl.h b/zfs/lib/libumem/include/umem_impl.h deleted file mode 100644 index c6481d975..000000000 --- a/zfs/lib/libumem/include/umem_impl.h +++ /dev/null @@ -1,403 +0,0 @@ -/* - * CDDL HEADER START - * - * The contents of this file are subject to the terms of the - * Common Development and Distribution License, Version 1.0 only - * (the "License"). You may not use this file except in compliance - * with the License. - * - * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE - * or http://www.opensolaris.org/os/licensing. - * See the License for the specific language governing permissions - * and limitations under the License. - * - * When distributing Covered Code, include this CDDL HEADER in each - * file and include the License file at usr/src/OPENSOLARIS.LICENSE. - * If applicable, add the following below this CDDL HEADER, with the - * fields enclosed by brackets "[]" replaced with your own identifying - * information: Portions Copyright [yyyy] [name of copyright owner] - * - * CDDL HEADER END - */ -/* - * Copyright 2004 Sun Microsystems, Inc. All rights reserved. - * Use is subject to license terms. - */ - -#ifndef _UMEM_IMPL_H -#define _UMEM_IMPL_H - -#pragma ident "%Z%%M% %I% %E% SMI" - -#include - -#include -#include -#include -#include - -#ifdef __cplusplus -extern "C" { -#endif - -/* - * umem memory allocator: implementation-private data structures - */ - -/* - * Internal flags for umem_cache_create - */ -#define UMC_QCACHE 0x00100000 -#define UMC_INTERNAL 0x80000000 - -/* - * Cache flags - */ -#define UMF_AUDIT 0x00000001 /* transaction auditing */ -#define UMF_DEADBEEF 0x00000002 /* deadbeef checking */ -#define UMF_REDZONE 0x00000004 /* redzone checking */ -#define UMF_CONTENTS 0x00000008 /* freed-buffer content logging */ -#define UMF_CHECKSIGNAL 0x00000010 /* abort when in signal context */ -#define UMF_NOMAGAZINE 0x00000020 /* disable per-cpu magazines */ -#define UMF_FIREWALL 0x00000040 /* put all bufs before unmapped pages */ -#define UMF_LITE 0x00000100 /* lightweight debugging */ - -#define UMF_HASH 0x00000200 /* cache has hash table */ -#define UMF_RANDOMIZE 0x00000400 /* randomize other umem_flags */ - -#define UMF_BUFTAG (UMF_DEADBEEF | UMF_REDZONE) -#define UMF_TOUCH (UMF_BUFTAG | UMF_LITE | UMF_CONTENTS) -#define UMF_RANDOM (UMF_TOUCH | UMF_AUDIT | UMF_NOMAGAZINE) -#define UMF_DEBUG (UMF_RANDOM | UMF_FIREWALL) - -#define UMEM_STACK_DEPTH umem_stack_depth - -#define UMEM_FREE_PATTERN 0xdeadbeefdeadbeefULL -#define UMEM_UNINITIALIZED_PATTERN 0xbaddcafebaddcafeULL -#define UMEM_REDZONE_PATTERN 0xfeedfacefeedfaceULL -#define UMEM_REDZONE_BYTE 0xbb - -#define UMEM_FATAL_FLAGS (UMEM_NOFAIL) -#define UMEM_SLEEP_FLAGS (0) - -/* - * Redzone size encodings for umem_alloc() / umem_free(). We encode the - * allocation size, rather than storing it directly, so that umem_free() - * can distinguish frees of the wrong size from redzone violations. - */ -#define UMEM_SIZE_ENCODE(x) (251 * (x) + 1) -#define UMEM_SIZE_DECODE(x) ((x) / 251) -#define UMEM_SIZE_VALID(x) ((x) % 251 == 1) - -/* - * The bufctl (buffer control) structure keeps some minimal information - * about each buffer: its address, its slab, and its current linkage, - * which is either on the slab's freelist (if the buffer is free), or - * on the cache's buf-to-bufctl hash table (if the buffer is allocated). - * In the case of non-hashed, or "raw", caches (the common case), only - * the freelist linkage is necessary: the buffer address is at a fixed - * offset from the bufctl address, and the slab is at the end of the page. - * - * NOTE: bc_next must be the first field; raw buffers have linkage only. - */ -typedef struct umem_bufctl { - struct umem_bufctl *bc_next; /* next bufctl struct */ - void *bc_addr; /* address of buffer */ - struct umem_slab *bc_slab; /* controlling slab */ -} umem_bufctl_t; - -/* - * The UMF_AUDIT version of the bufctl structure. The beginning of this - * structure must be identical to the normal bufctl structure so that - * pointers are interchangeable. - */ - -#define UMEM_BUFCTL_AUDIT_SIZE_DEPTH(frames) \ - ((size_t)(&((umem_bufctl_audit_t *)0)->bc_stack[frames])) - -/* - * umem_bufctl_audits must be allocated from a UMC_NOHASH cache, so we - * require that 2 of them, plus 2 buftags, plus a umem_slab_t, all fit on - * a single page. - * - * For ILP32, this is about 1000 frames. - * For LP64, this is about 490 frames. - */ - -#define UMEM_BUFCTL_AUDIT_ALIGN 32 - -#define UMEM_BUFCTL_AUDIT_MAX_SIZE \ - (P2ALIGN((PAGESIZE - sizeof (umem_slab_t))/2 - \ - sizeof (umem_buftag_t), UMEM_BUFCTL_AUDIT_ALIGN)) - -#define UMEM_MAX_STACK_DEPTH \ - ((UMEM_BUFCTL_AUDIT_MAX_SIZE - \ - UMEM_BUFCTL_AUDIT_SIZE_DEPTH(0)) / sizeof (uintptr_t)) - -typedef struct umem_bufctl_audit { - struct umem_bufctl *bc_next; /* next bufctl struct */ - void *bc_addr; /* address of buffer */ - struct umem_slab *bc_slab; /* controlling slab */ - umem_cache_t *bc_cache; /* controlling cache */ - hrtime_t bc_timestamp; /* transaction time */ - thread_t bc_thread; /* thread doing transaction */ - struct umem_bufctl *bc_lastlog; /* last log entry */ - void *bc_contents; /* contents at last free */ - int bc_depth; /* stack depth */ - uintptr_t bc_stack[1]; /* pc stack */ -} umem_bufctl_audit_t; - -#define UMEM_LOCAL_BUFCTL_AUDIT(bcpp) \ - *(bcpp) = (umem_bufctl_audit_t *) \ - alloca(UMEM_BUFCTL_AUDIT_SIZE) - -#define UMEM_BUFCTL_AUDIT_SIZE \ - UMEM_BUFCTL_AUDIT_SIZE_DEPTH(UMEM_STACK_DEPTH) - -/* - * A umem_buftag structure is appended to each buffer whenever any of the - * UMF_BUFTAG flags (UMF_DEADBEEF, UMF_REDZONE, UMF_VERIFY) are set. - */ -typedef struct umem_buftag { - uint64_t bt_redzone; /* 64-bit redzone pattern */ - umem_bufctl_t *bt_bufctl; /* bufctl */ - intptr_t bt_bxstat; /* bufctl ^ (alloc/free) */ -} umem_buftag_t; - -#define UMEM_BUFTAG(cp, buf) \ - ((umem_buftag_t *)((char *)(buf) + (cp)->cache_buftag)) - -#define UMEM_BUFCTL(cp, buf) \ - ((umem_bufctl_t *)((char *)(buf) + (cp)->cache_bufctl)) - -#define UMEM_BUF(cp, bcp) \ - ((void *)((char *)(bcp) - (cp)->cache_bufctl)) - -#define UMEM_SLAB(cp, buf) \ - ((umem_slab_t *)P2END((uintptr_t)(buf), (cp)->cache_slabsize) - 1) - -#define UMEM_CPU_CACHE(cp, cpu) \ - (umem_cpu_cache_t *)((char *)cp + cpu->cpu_cache_offset) - -#define UMEM_MAGAZINE_VALID(cp, mp) \ - (((umem_slab_t *)P2END((uintptr_t)(mp), PAGESIZE) - 1)->slab_cache == \ - (cp)->cache_magtype->mt_cache) - -#define UMEM_SLAB_MEMBER(sp, buf) \ - ((size_t)(buf) - (size_t)(sp)->slab_base < \ - (sp)->slab_cache->cache_slabsize) - -#define UMEM_BUFTAG_ALLOC 0xa110c8edUL -#define UMEM_BUFTAG_FREE 0xf4eef4eeUL - -typedef struct umem_slab { - struct umem_cache *slab_cache; /* controlling cache */ - void *slab_base; /* base of allocated memory */ - struct umem_slab *slab_next; /* next slab on freelist */ - struct umem_slab *slab_prev; /* prev slab on freelist */ - struct umem_bufctl *slab_head; /* first free buffer */ - long slab_refcnt; /* outstanding allocations */ - long slab_chunks; /* chunks (bufs) in this slab */ -} umem_slab_t; - -#define UMEM_HASH_INITIAL 64 - -#define UMEM_HASH(cp, buf) \ - ((cp)->cache_hash_table + \ - (((uintptr_t)(buf) >> (cp)->cache_hash_shift) & (cp)->cache_hash_mask)) - -typedef struct umem_magazine { - void *mag_next; - void *mag_round[1]; /* one or more rounds */ -} umem_magazine_t; - -/* - * The magazine types for fast per-cpu allocation - */ -typedef struct umem_magtype { - int mt_magsize; /* magazine size (number of rounds) */ - int mt_align; /* magazine alignment */ - size_t mt_minbuf; /* all smaller buffers qualify */ - size_t mt_maxbuf; /* no larger buffers qualify */ - umem_cache_t *mt_cache; /* magazine cache */ -} umem_magtype_t; - -#define UMEM_CPU_CACHE_SIZE 64 /* must be power of 2 */ -#define UMEM_CPU_PAD (UMEM_CPU_CACHE_SIZE - sizeof (mutex_t) - \ - 2 * sizeof (uint_t) - 2 * sizeof (void *) - 4 * sizeof (int)) -#define UMEM_CACHE_SIZE(ncpus) \ - ((size_t)(&((umem_cache_t *)0)->cache_cpu[ncpus])) - -typedef struct umem_cpu_cache { - mutex_t cc_lock; /* protects this cpu's local cache */ - uint_t cc_alloc; /* allocations from this cpu */ - uint_t cc_free; /* frees to this cpu */ - umem_magazine_t *cc_loaded; /* the currently loaded magazine */ - umem_magazine_t *cc_ploaded; /* the previously loaded magazine */ - int cc_rounds; /* number of objects in loaded mag */ - int cc_prounds; /* number of objects in previous mag */ - int cc_magsize; /* number of rounds in a full mag */ - int cc_flags; /* CPU-local copy of cache_flags */ -#ifndef _LP64 - char cc_pad[UMEM_CPU_PAD]; /* for nice alignment (32-bit) */ -#endif -} umem_cpu_cache_t; - -/* - * The magazine lists used in the depot. - */ -typedef struct umem_maglist { - umem_magazine_t *ml_list; /* magazine list */ - long ml_total; /* number of magazines */ - long ml_min; /* min since last update */ - long ml_reaplimit; /* max reapable magazines */ - uint64_t ml_alloc; /* allocations from this list */ -} umem_maglist_t; - -#define UMEM_CACHE_NAMELEN 31 - -struct umem_cache { - /* - * Statistics - */ - uint64_t cache_slab_create; /* slab creates */ - uint64_t cache_slab_destroy; /* slab destroys */ - uint64_t cache_slab_alloc; /* slab layer allocations */ - uint64_t cache_slab_free; /* slab layer frees */ - uint64_t cache_alloc_fail; /* total failed allocations */ - uint64_t cache_buftotal; /* total buffers */ - uint64_t cache_bufmax; /* max buffers ever */ - uint64_t cache_rescale; /* # of hash table rescales */ - uint64_t cache_lookup_depth; /* hash lookup depth */ - uint64_t cache_depot_contention; /* mutex contention count */ - uint64_t cache_depot_contention_prev; /* previous snapshot */ - - /* - * Cache properties - */ - char cache_name[UMEM_CACHE_NAMELEN + 1]; - size_t cache_bufsize; /* object size */ - size_t cache_align; /* object alignment */ - umem_constructor_t *cache_constructor; - umem_destructor_t *cache_destructor; - umem_reclaim_t *cache_reclaim; - void *cache_private; /* opaque arg to callbacks */ - vmem_t *cache_arena; /* vmem source for slabs */ - int cache_cflags; /* cache creation flags */ - int cache_flags; /* various cache state info */ - int cache_uflags; /* UMU_* flags */ - uint32_t cache_mtbf; /* induced alloc failure rate */ - umem_cache_t *cache_next; /* forward cache linkage */ - umem_cache_t *cache_prev; /* backward cache linkage */ - umem_cache_t *cache_unext; /* next in update list */ - umem_cache_t *cache_uprev; /* prev in update list */ - uint32_t cache_cpu_mask; /* mask for cpu offset */ - - /* - * Slab layer - */ - mutex_t cache_lock; /* protects slab layer */ - size_t cache_chunksize; /* buf + alignment [+ debug] */ - size_t cache_slabsize; /* size of a slab */ - size_t cache_bufctl; /* buf-to-bufctl distance */ - size_t cache_buftag; /* buf-to-buftag distance */ - size_t cache_verify; /* bytes to verify */ - size_t cache_contents; /* bytes of saved content */ - size_t cache_color; /* next slab color */ - size_t cache_mincolor; /* maximum slab color */ - size_t cache_maxcolor; /* maximum slab color */ - size_t cache_hash_shift; /* get to interesting bits */ - size_t cache_hash_mask; /* hash table mask */ - umem_slab_t *cache_freelist; /* slab free list */ - umem_slab_t cache_nullslab; /* end of freelist marker */ - umem_cache_t *cache_bufctl_cache; /* source of bufctls */ - umem_bufctl_t **cache_hash_table; /* hash table base */ - /* - * Depot layer - */ - mutex_t cache_depot_lock; /* protects depot */ - umem_magtype_t *cache_magtype; /* magazine type */ - umem_maglist_t cache_full; /* full magazines */ - umem_maglist_t cache_empty; /* empty magazines */ - - /* - * Per-CPU layer - */ - umem_cpu_cache_t cache_cpu[1]; /* cache_cpu_mask + 1 entries */ -}; - -typedef struct umem_cpu_log_header { - mutex_t clh_lock; - char *clh_current; - size_t clh_avail; - int clh_chunk; - int clh_hits; - char clh_pad[64 - sizeof (mutex_t) - sizeof (char *) - - sizeof (size_t) - 2 * sizeof (int)]; -} umem_cpu_log_header_t; - -typedef struct umem_log_header { - mutex_t lh_lock; - char *lh_base; - int *lh_free; - size_t lh_chunksize; - int lh_nchunks; - int lh_head; - int lh_tail; - int lh_hits; - umem_cpu_log_header_t lh_cpu[1]; /* actually umem_max_ncpus */ -} umem_log_header_t; - -typedef struct umem_cpu { - uint32_t cpu_cache_offset; - uint32_t cpu_number; -} umem_cpu_t; - -#define UMEM_MAXBUF 16384 - -#define UMEM_ALIGN 8 /* min guaranteed alignment */ -#define UMEM_ALIGN_SHIFT 3 /* log2(UMEM_ALIGN) */ -#define UMEM_VOID_FRACTION 8 /* never waste more than 1/8 of slab */ - -/* - * For 64 bits, buffers >= 16 bytes must be 16-byte aligned - */ -#ifdef _LP64 -#define UMEM_SECOND_ALIGN 16 -#else -#define UMEM_SECOND_ALIGN UMEM_ALIGN -#endif - -#define MALLOC_MAGIC 0x3a10c000 /* 8-byte tag */ -#define MEMALIGN_MAGIC 0x3e3a1000 - -#ifdef _LP64 -#define MALLOC_SECOND_MAGIC 0x16ba7000 /* 8-byte tag, 16-aligned */ -#define MALLOC_OVERSIZE_MAGIC 0x06e47000 /* 16-byte tag, _LP64 */ -#endif - -#define UMEM_MALLOC_ENCODE(type, sz) (uint32_t)((type) - (sz)) -#define UMEM_MALLOC_DECODE(stat, sz) (uint32_t)((stat) + (sz)) -#define UMEM_FREE_PATTERN_32 (uint32_t)(UMEM_FREE_PATTERN) - -#define UMU_MAGAZINE_RESIZE 0x00000001 -#define UMU_HASH_RESCALE 0x00000002 -#define UMU_REAP 0x00000004 -#define UMU_NOTIFY 0x08000000 -#define UMU_ACTIVE 0x80000000 - -#define UMEM_READY_INIT_FAILED -1 -#define UMEM_READY_STARTUP 1 -#define UMEM_READY_INITING 2 -#define UMEM_READY 3 - -#ifdef UMEM_STANDALONE -extern void umem_startup(caddr_t, size_t, size_t, caddr_t, caddr_t); -extern int umem_add(caddr_t, size_t); -#endif - -#ifdef __cplusplus -} -#endif - -#endif /* _UMEM_IMPL_H */ diff --git a/zfs/lib/libumem/include/vmem_base.h b/zfs/lib/libumem/include/vmem_base.h deleted file mode 100644 index 46ed39734..000000000 --- a/zfs/lib/libumem/include/vmem_base.h +++ /dev/null @@ -1,85 +0,0 @@ -/* - * CDDL HEADER START - * - * The contents of this file are subject to the terms of the - * Common Development and Distribution License (the "License"). - * You may not use this file except in compliance with the License. - * - * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE - * or http://www.opensolaris.org/os/licensing. - * See the License for the specific language governing permissions - * and limitations under the License. - * - * When distributing Covered Code, include this CDDL HEADER in each - * file and include the License file at usr/src/OPENSOLARIS.LICENSE. - * If applicable, add the following below this CDDL HEADER, with the - * fields enclosed by brackets "[]" replaced with your own identifying - * information: Portions Copyright [yyyy] [name of copyright owner] - * - * CDDL HEADER END - */ -/* - * Copyright 2006 Sun Microsystems, Inc. All rights reserved. - * Use is subject to license terms. - */ - -#ifndef _VMEM_BASE_H -#define _VMEM_BASE_H - -#pragma ident "%Z%%M% %I% %E% SMI" - -#include -#include - -#ifdef __cplusplus -extern "C" { -#endif - -#include "misc.h" - -extern void vmem_startup(void); -extern vmem_t *vmem_init(const char *parent_name, size_t parent_quantum, - vmem_alloc_t *parent_alloc, vmem_free_t *parent_free, - const char *heap_name, - void *heap_start, size_t heap_size, size_t heap_quantum, - vmem_alloc_t *heap_alloc, vmem_free_t *heap_free); - -extern void *_vmem_extend_alloc(vmem_t *vmp, void *vaddr, size_t size, - size_t alloc, int vmflag); - -extern vmem_t *vmem_heap_arena(vmem_alloc_t **, vmem_free_t **); -extern void vmem_heap_init(void); - -extern vmem_t *vmem_sbrk_arena(vmem_alloc_t **, vmem_free_t **); -extern vmem_t *vmem_mmap_arena(vmem_alloc_t **, vmem_free_t **); -extern vmem_t *vmem_stand_arena(vmem_alloc_t **, vmem_free_t **); - -extern void vmem_update(void *); -extern void vmem_reap(void); /* vmem_populate()-safe reap */ - -extern size_t pagesize; -extern size_t vmem_sbrk_pagesize; -extern size_t vmem_sbrk_minalloc; - -extern uint_t vmem_backend; -#define VMEM_BACKEND_SBRK 0x0000001 -#define VMEM_BACKEND_MMAP 0x0000002 -#define VMEM_BACKEND_STAND 0x0000003 - -extern vmem_t *vmem_heap; -extern vmem_alloc_t *vmem_heap_alloc; -extern vmem_free_t *vmem_heap_free; - -extern void vmem_lockup(void); -extern void vmem_release(void); - -extern void vmem_sbrk_lockup(void); -extern void vmem_sbrk_release(void); - -extern void vmem_no_debug(void); - -#ifdef __cplusplus -} -#endif - -#endif /* _VMEM_BASE_H */ diff --git a/zfs/lib/libumem/include/vmem_stand.h b/zfs/lib/libumem/include/vmem_stand.h deleted file mode 100644 index fe72ed486..000000000 --- a/zfs/lib/libumem/include/vmem_stand.h +++ /dev/null @@ -1,49 +0,0 @@ -/* - * CDDL HEADER START - * - * The contents of this file are subject to the terms of the - * Common Development and Distribution License, Version 1.0 only - * (the "License"). You may not use this file except in compliance - * with the License. - * - * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE - * or http://www.opensolaris.org/os/licensing. - * See the License for the specific language governing permissions - * and limitations under the License. - * - * When distributing Covered Code, include this CDDL HEADER in each - * file and include the License file at usr/src/OPENSOLARIS.LICENSE. - * If applicable, add the following below this CDDL HEADER, with the - * fields enclosed by brackets "[]" replaced with your own identifying - * information: Portions Copyright [yyyy] [name of copyright owner] - * - * CDDL HEADER END - */ -/* - * Copyright 2004 Sun Microsystems, Inc. All rights reserved. - * Use is subject to license terms. - */ - -#ifndef _VMEM_STAND_H -#define _VMEM_STAND_H - -#pragma ident "%Z%%M% %I% %E% SMI" - -/* - * additional functions defined by the standalone backend - */ - -#include - -#ifdef __cplusplus -extern "C" { -#endif - -extern void vmem_stand_init(void); -extern int vmem_stand_add(caddr_t, size_t); - -#ifdef __cplusplus -} -#endif - -#endif /* _VMEM_STAND_H */ diff --git a/zfs/lib/libumem/init_lib.c b/zfs/lib/libumem/init_lib.c deleted file mode 100644 index dd5500a13..000000000 --- a/zfs/lib/libumem/init_lib.c +++ /dev/null @@ -1,71 +0,0 @@ -/* - * CDDL HEADER START - * - * The contents of this file are subject to the terms of the - * Common Development and Distribution License (the "License"). - * You may not use this file except in compliance with the License. - * - * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE - * or http://www.opensolaris.org/os/licensing. - * See the License for the specific language governing permissions - * and limitations under the License. - * - * When distributing Covered Code, include this CDDL HEADER in each - * file and include the License file at usr/src/OPENSOLARIS.LICENSE. - * If applicable, add the following below this CDDL HEADER, with the - * fields enclosed by brackets "[]" replaced with your own identifying - * information: Portions Copyright [yyyy] [name of copyright owner] - * - * CDDL HEADER END - */ - -/* - * Copyright 2008 Sun Microsystems, Inc. All rights reserved. - * Use is subject to license terms. - */ - -#pragma ident "%Z%%M% %I% %E% SMI" - -/* - * Initialization routines for the library version of libumem. - */ - -#include "umem_base.h" -#include "vmem_base.h" -#include -#include - -void -vmem_heap_init(void) -{ - void *handle = dlopen("libmapmalloc.so.1", RTLD_NOLOAD); - - if (handle != NULL) { - log_message("sbrk backend disabled\n"); - vmem_backend = VMEM_BACKEND_MMAP; - } - - if ((vmem_backend & VMEM_BACKEND_MMAP) != 0) { - vmem_backend = VMEM_BACKEND_MMAP; - (void) vmem_mmap_arena(NULL, NULL); - } else { - vmem_backend = VMEM_BACKEND_SBRK; - (void) vmem_sbrk_arena(NULL, NULL); - } -} - -/*ARGSUSED*/ -void -umem_type_init(caddr_t start, size_t len, size_t pgsize) -{ - pagesize = _sysconf(_SC_PAGESIZE); -} - -int -umem_get_max_ncpus(void) -{ - if (thr_main() != -1) - return (2 * sysconf(_SC_NPROCESSORS_ONLN)); - else - return (1); -} diff --git a/zfs/lib/libumem/init_stand.c b/zfs/lib/libumem/init_stand.c deleted file mode 100644 index a864c40f2..000000000 --- a/zfs/lib/libumem/init_stand.c +++ /dev/null @@ -1,64 +0,0 @@ -/* - * CDDL HEADER START - * - * The contents of this file are subject to the terms of the - * Common Development and Distribution License, Version 1.0 only - * (the "License"). You may not use this file except in compliance - * with the License. - * - * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE - * or http://www.opensolaris.org/os/licensing. - * See the License for the specific language governing permissions - * and limitations under the License. - * - * When distributing Covered Code, include this CDDL HEADER in each - * file and include the License file at usr/src/OPENSOLARIS.LICENSE. - * If applicable, add the following below this CDDL HEADER, with the - * fields enclosed by brackets "[]" replaced with your own identifying - * information: Portions Copyright [yyyy] [name of copyright owner] - * - * CDDL HEADER END - */ -/* - * Copyright 2004 Sun Microsystems, Inc. All rights reserved. - * Use is subject to license terms. - */ - -#pragma ident "%Z%%M% %I% %E% SMI" - -/* - * Initialization routines for the standalone version of libumem. - */ - -#include "umem_base.h" -#include "vmem_base.h" - -#include "vmem_stand.h" - -void -vmem_heap_init(void) -{ - vmem_backend = VMEM_BACKEND_STAND; - (void) vmem_stand_arena(NULL, NULL); -} - -void -umem_type_init(caddr_t base, size_t len, size_t pgsize) -{ - pagesize = pgsize; - - vmem_stand_init(); - (void) vmem_stand_add(base, len); -} - -int -umem_get_max_ncpus(void) -{ - return (1); -} - -int -umem_add(caddr_t base, size_t len) -{ - return (vmem_stand_add(base, len)); -} diff --git a/zfs/lib/libumem/linktest_stand.c b/zfs/lib/libumem/linktest_stand.c deleted file mode 100644 index 8ae9fdbec..000000000 --- a/zfs/lib/libumem/linktest_stand.c +++ /dev/null @@ -1,71 +0,0 @@ -/* - * CDDL HEADER START - * - * The contents of this file are subject to the terms of the - * Common Development and Distribution License (the "License"). - * You may not use this file except in compliance with the License. - * - * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE - * or http://www.opensolaris.org/os/licensing. - * See the License for the specific language governing permissions - * and limitations under the License. - * - * When distributing Covered Code, include this CDDL HEADER in each - * file and include the License file at usr/src/OPENSOLARIS.LICENSE. - * If applicable, add the following below this CDDL HEADER, with the - * fields enclosed by brackets "[]" replaced with your own identifying - * information: Portions Copyright [yyyy] [name of copyright owner] - * - * CDDL HEADER END - */ - -/* - * Copyright 2008 Sun Microsystems, Inc. All rights reserved. - * Use is subject to license terms. - */ - -#pragma ident "%Z%%M% %I% %E% SMI" - -/* - * This file is used to verify that the standalone's external dependencies - * haven't changed in a way that'll break things that use it. - */ - -void __umem_assert_failed(void) {} -void atomic_add_64(void) {} -void atomic_add_32_nv(void) {} -void dladdr1(void) {} -void bcopy(void) {} -void bzero(void) {} -void exit(void) {} -void getenv(void) {} -void gethrtime(void) {} -void membar_producer(void) {} -void memcpy(void) {} -void _memcpy(void) {} -void memset(void) {} -void snprintf(void) {} -void strchr(void) {} -void strcmp(void) {} -void strlen(void) {} -void strncpy(void) {} -void strrchr(void) {} -void strtoul(void) {} -void umem_err_recoverable(void) {} -void umem_panic(void) {} -void vsnprintf(void) {} - -#ifdef __i386 -void __mul64(void) {} -void __rem64(void) {} -void __div64(void) {} - -#ifdef __GNUC__ -void __divdi3(void) {} -void __moddi3(void) {} -#endif /* __GNUC__ */ - -#endif /* __i386 */ - -int __ctype; -int errno; diff --git a/zfs/lib/libumem/malloc.c b/zfs/lib/libumem/malloc.c deleted file mode 100644 index 906f369d2..000000000 --- a/zfs/lib/libumem/malloc.c +++ /dev/null @@ -1,415 +0,0 @@ -/* - * CDDL HEADER START - * - * The contents of this file are subject to the terms of the - * Common Development and Distribution License (the "License"). - * You may not use this file except in compliance with the License. - * - * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE - * or http://www.opensolaris.org/os/licensing. - * See the License for the specific language governing permissions - * and limitations under the License. - * - * When distributing Covered Code, include this CDDL HEADER in each - * file and include the License file at usr/src/OPENSOLARIS.LICENSE. - * If applicable, add the following below this CDDL HEADER, with the - * fields enclosed by brackets "[]" replaced with your own identifying - * information: Portions Copyright [yyyy] [name of copyright owner] - * - * CDDL HEADER END - */ - -/* - * Copyright 2008 Sun Microsystems, Inc. All rights reserved. - * Use is subject to license terms. - */ - -#pragma ident "%Z%%M% %I% %E% SMI" - -#include -#include -#include -#include -#include "umem_base.h" -#include "misc.h" - -/* - * malloc_data_t is an 8-byte structure which is located "before" the pointer - * returned from {m,c,re}alloc and memalign. The first four bytes give - * information about the buffer, and the second four bytes are a status byte. - * - * See umem_impl.h for the various magic numbers used, and the size - * encode/decode macros. - * - * The 'size' of the buffer includes the tags. That is, we encode the - * argument to umem_alloc(), not the argument to malloc(). - */ - -typedef struct malloc_data { - uint32_t malloc_size; - uint32_t malloc_stat; /* = UMEM_MALLOC_ENCODE(state, malloc_size) */ -} malloc_data_t; - -void * -malloc(size_t size_arg) -{ -#ifdef _LP64 - uint32_t high_size = 0; -#endif - size_t size; - - malloc_data_t *ret; - size = size_arg + sizeof (malloc_data_t); - -#ifdef _LP64 - if (size > UMEM_SECOND_ALIGN) { - size += sizeof (malloc_data_t); - high_size = (size >> 32); - } -#endif - if (size < size_arg) { - errno = ENOMEM; /* overflow */ - return (NULL); - } - ret = (malloc_data_t *)_umem_alloc(size, UMEM_DEFAULT); - if (ret == NULL) { - if (size <= UMEM_MAXBUF) - errno = EAGAIN; - else - errno = ENOMEM; - return (NULL); -#ifdef _LP64 - } else if (high_size > 0) { - uint32_t low_size = (uint32_t)size; - - /* - * uses different magic numbers to make it harder to - * undetectably corrupt - */ - ret->malloc_size = high_size; - ret->malloc_stat = UMEM_MALLOC_ENCODE(MALLOC_MAGIC, high_size); - ret++; - - ret->malloc_size = low_size; - ret->malloc_stat = UMEM_MALLOC_ENCODE(MALLOC_OVERSIZE_MAGIC, - low_size); - ret++; - } else if (size > UMEM_SECOND_ALIGN) { - uint32_t low_size = (uint32_t)size; - - ret++; /* leave the first 8 bytes alone */ - - ret->malloc_size = low_size; - ret->malloc_stat = UMEM_MALLOC_ENCODE(MALLOC_SECOND_MAGIC, - low_size); - ret++; -#endif - } else { - ret->malloc_size = size; - ret->malloc_stat = UMEM_MALLOC_ENCODE(MALLOC_MAGIC, size); - ret++; - } - return ((void *)ret); -} - -void * -calloc(size_t nelem, size_t elsize) -{ - size_t size = nelem * elsize; - void *retval; - - if (nelem > 0 && elsize > 0 && size/nelem != elsize) { - errno = ENOMEM; /* overflow */ - return (NULL); - } - - retval = malloc(size); - if (retval == NULL) - return (NULL); - - (void) memset(retval, 0, size); - return (retval); -} - -/* - * memalign uses vmem_xalloc to do its work. - * - * in 64-bit, the memaligned buffer always has two tags. This simplifies the - * code. - */ - -void * -memalign(size_t align, size_t size_arg) -{ - size_t size; - uintptr_t phase; - - void *buf; - malloc_data_t *ret; - - size_t overhead; - - if (size_arg == 0 || align == 0 || (align & (align - 1)) != 0) { - errno = EINVAL; - return (NULL); - } - - /* - * if malloc provides the required alignment, use it. - */ - if (align <= UMEM_ALIGN || - (align <= UMEM_SECOND_ALIGN && size_arg >= UMEM_SECOND_ALIGN)) - return (malloc(size_arg)); - -#ifdef _LP64 - overhead = 2 * sizeof (malloc_data_t); -#else - overhead = sizeof (malloc_data_t); -#endif - - ASSERT(overhead <= align); - - size = size_arg + overhead; - phase = align - overhead; - - if (umem_memalign_arena == NULL && umem_init() == 0) { - errno = ENOMEM; - return (NULL); - } - - if (size < size_arg) { - errno = ENOMEM; /* overflow */ - return (NULL); - } - - buf = vmem_xalloc(umem_memalign_arena, size, align, phase, - 0, NULL, NULL, VM_NOSLEEP); - - if (buf == NULL) { - if ((size_arg + align) <= UMEM_MAXBUF) - errno = EAGAIN; - else - errno = ENOMEM; - - return (NULL); - } - - ret = (malloc_data_t *)buf; - { - uint32_t low_size = (uint32_t)size; - -#ifdef _LP64 - uint32_t high_size = (uint32_t)(size >> 32); - - ret->malloc_size = high_size; - ret->malloc_stat = UMEM_MALLOC_ENCODE(MEMALIGN_MAGIC, - high_size); - ret++; -#endif - - ret->malloc_size = low_size; - ret->malloc_stat = UMEM_MALLOC_ENCODE(MEMALIGN_MAGIC, low_size); - ret++; - } - - ASSERT(P2PHASE((uintptr_t)ret, align) == 0); - ASSERT((void *)((uintptr_t)ret - overhead) == buf); - - return ((void *)ret); -} - -void * -valloc(size_t size) -{ - return (memalign(pagesize, size)); -} - -/* - * process_free: - * - * Pulls information out of a buffer pointer, and optionally free it. - * This is used by free() and realloc() to process buffers. - * - * On failure, calls umem_err_recoverable() with an appropriate message - * On success, returns the data size through *data_size_arg, if (!is_free). - * - * Preserves errno, since free()'s semantics require it. - */ - -static int -process_free(void *buf_arg, - int do_free, /* free the buffer, or just get its size? */ - size_t *data_size_arg) /* output: bytes of data in buf_arg */ -{ - malloc_data_t *buf; - - void *base; - size_t size; - size_t data_size; - - const char *message; - int old_errno = errno; - - buf = (malloc_data_t *)buf_arg; - - buf--; - size = buf->malloc_size; - - switch (UMEM_MALLOC_DECODE(buf->malloc_stat, size)) { - - case MALLOC_MAGIC: - base = (void *)buf; - data_size = size - sizeof (malloc_data_t); - - if (do_free) - buf->malloc_stat = UMEM_FREE_PATTERN_32; - - goto process_malloc; - -#ifdef _LP64 - case MALLOC_SECOND_MAGIC: - base = (void *)(buf - 1); - data_size = size - 2 * sizeof (malloc_data_t); - - if (do_free) - buf->malloc_stat = UMEM_FREE_PATTERN_32; - - goto process_malloc; - - case MALLOC_OVERSIZE_MAGIC: { - size_t high_size; - - buf--; - high_size = buf->malloc_size; - - if (UMEM_MALLOC_DECODE(buf->malloc_stat, high_size) != - MALLOC_MAGIC) { - message = "invalid or corrupted buffer"; - break; - } - - size += high_size << 32; - - base = (void *)buf; - data_size = size - 2 * sizeof (malloc_data_t); - - if (do_free) { - buf->malloc_stat = UMEM_FREE_PATTERN_32; - (buf + 1)->malloc_stat = UMEM_FREE_PATTERN_32; - } - - goto process_malloc; - } -#endif - - case MEMALIGN_MAGIC: { - size_t overhead = sizeof (malloc_data_t); - -#ifdef _LP64 - size_t high_size; - - overhead += sizeof (malloc_data_t); - - buf--; - high_size = buf->malloc_size; - - if (UMEM_MALLOC_DECODE(buf->malloc_stat, high_size) != - MEMALIGN_MAGIC) { - message = "invalid or corrupted buffer"; - break; - } - size += high_size << 32; - - /* - * destroy the main tag's malloc_stat - */ - if (do_free) - (buf + 1)->malloc_stat = UMEM_FREE_PATTERN_32; -#endif - - base = (void *)buf; - data_size = size - overhead; - - if (do_free) - buf->malloc_stat = UMEM_FREE_PATTERN_32; - - goto process_memalign; - } - default: - if (buf->malloc_stat == UMEM_FREE_PATTERN_32) - message = "double-free or invalid buffer"; - else - message = "invalid or corrupted buffer"; - break; - } - - umem_err_recoverable("%s(%p): %s\n", - do_free? "free" : "realloc", buf_arg, message); - - errno = old_errno; - return (0); - -process_malloc: - if (do_free) - _umem_free(base, size); - else - *data_size_arg = data_size; - - errno = old_errno; - return (1); - -process_memalign: - if (do_free) - vmem_xfree(umem_memalign_arena, base, size); - else - *data_size_arg = data_size; - - errno = old_errno; - return (1); -} - -void -free(void *buf) -{ - if (buf == NULL) - return; - - /* - * Process buf, freeing it if it is not corrupt. - */ - (void) process_free(buf, 1, NULL); -} - -void * -realloc(void *buf_arg, size_t newsize) -{ - size_t oldsize; - void *buf; - - if (buf_arg == NULL) - return (malloc(newsize)); - - if (newsize == 0) { - free(buf_arg); - return (NULL); - } - - /* - * get the old data size without freeing the buffer - */ - if (process_free(buf_arg, 0, &oldsize) == 0) { - errno = EINVAL; - return (NULL); - } - - if (newsize == oldsize) /* size didn't change */ - return (buf_arg); - - buf = malloc(newsize); - if (buf == NULL) - return (NULL); - - (void) memcpy(buf, buf_arg, MIN(newsize, oldsize)); - free(buf_arg); - return (buf); -} diff --git a/zfs/lib/libumem/misc.c b/zfs/lib/libumem/misc.c deleted file mode 100644 index a3da9e5b0..000000000 --- a/zfs/lib/libumem/misc.c +++ /dev/null @@ -1,275 +0,0 @@ -/* - * CDDL HEADER START - * - * The contents of this file are subject to the terms of the - * Common Development and Distribution License (the "License"). - * You may not use this file except in compliance with the License. - * - * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE - * or http://www.opensolaris.org/os/licensing. - * See the License for the specific language governing permissions - * and limitations under the License. - * - * When distributing Covered Code, include this CDDL HEADER in each - * file and include the License file at usr/src/OPENSOLARIS.LICENSE. - * If applicable, add the following below this CDDL HEADER, with the - * fields enclosed by brackets "[]" replaced with your own identifying - * information: Portions Copyright [yyyy] [name of copyright owner] - * - * CDDL HEADER END - */ - -/* - * Copyright 2008 Sun Microsystems, Inc. All rights reserved. - * Use is subject to license terms. - */ - -#pragma ident "%Z%%M% %I% %E% SMI" - -#include -#include -#include -#include -#include -#include - -#include - -#include -#include "misc.h" - -#define UMEM_ERRFD 2 /* goes to standard error */ -#define UMEM_MAX_ERROR_SIZE 4096 /* error messages are truncated to this */ - -/* - * This is a circular buffer for holding error messages. - * umem_error_enter appends to the buffer, adding "..." to the beginning - * if data has been lost. - */ - -#define ERR_SIZE 8192 /* must be a power of 2 */ - -static mutex_t umem_error_lock = DEFAULTMUTEX; - -static char umem_error_buffer[ERR_SIZE] = ""; -static uint_t umem_error_begin = 0; -static uint_t umem_error_end = 0; - -#define WRITE_AND_INC(var, value) { \ - umem_error_buffer[(var)++] = (value); \ - var = P2PHASE((var), ERR_SIZE); \ -} - -static void -umem_log_enter(const char *error_str) -{ - int looped; - char c; - - looped = 0; - - (void) mutex_lock(&umem_error_lock); - - while ((c = *error_str++) != '\0') { - WRITE_AND_INC(umem_error_end, c); - if (umem_error_end == umem_error_begin) - looped = 1; - } - - umem_error_buffer[umem_error_end] = 0; - - if (looped) { - uint_t idx; - umem_error_begin = P2PHASE(umem_error_end + 1, ERR_SIZE); - - idx = umem_error_begin; - WRITE_AND_INC(idx, '.'); - WRITE_AND_INC(idx, '.'); - WRITE_AND_INC(idx, '.'); - } - - (void) mutex_unlock(&umem_error_lock); -} - -void -umem_error_enter(const char *error_str) -{ -#ifndef UMEM_STANDALONE - if (umem_output && !issetugid()) - (void) write(UMEM_ERRFD, error_str, strlen(error_str)); -#endif - - umem_log_enter(error_str); -} - -int -highbit(ulong_t i) -{ - register int h = 1; - - if (i == 0) - return (0); -#ifdef _LP64 - if (i & 0xffffffff00000000ul) { - h += 32; i >>= 32; - } -#endif - if (i & 0xffff0000) { - h += 16; i >>= 16; - } - if (i & 0xff00) { - h += 8; i >>= 8; - } - if (i & 0xf0) { - h += 4; i >>= 4; - } - if (i & 0xc) { - h += 2; i >>= 2; - } - if (i & 0x2) { - h += 1; - } - return (h); -} - -int -lowbit(ulong_t i) -{ - register int h = 1; - - if (i == 0) - return (0); -#ifdef _LP64 - if (!(i & 0xffffffff)) { - h += 32; i >>= 32; - } -#endif - if (!(i & 0xffff)) { - h += 16; i >>= 16; - } - if (!(i & 0xff)) { - h += 8; i >>= 8; - } - if (!(i & 0xf)) { - h += 4; i >>= 4; - } - if (!(i & 0x3)) { - h += 2; i >>= 2; - } - if (!(i & 0x1)) { - h += 1; - } - return (h); -} - -void -hrt2ts(hrtime_t hrt, timestruc_t *tsp) -{ - tsp->tv_sec = hrt / NANOSEC; - tsp->tv_nsec = hrt % NANOSEC; -} - -void -log_message(const char *format, ...) -{ - char buf[UMEM_MAX_ERROR_SIZE] = ""; - - va_list va; - - va_start(va, format); - (void) vsnprintf(buf, UMEM_MAX_ERROR_SIZE-1, format, va); - va_end(va); - -#ifndef UMEM_STANDALONE - if (umem_output > 1) - (void) write(UMEM_ERRFD, buf, strlen(buf)); -#endif - - umem_log_enter(buf); -} - -#ifndef UMEM_STANDALONE -void -debug_printf(const char *format, ...) -{ - char buf[UMEM_MAX_ERROR_SIZE] = ""; - - va_list va; - - va_start(va, format); - (void) vsnprintf(buf, UMEM_MAX_ERROR_SIZE-1, format, va); - va_end(va); - - (void) write(UMEM_ERRFD, buf, strlen(buf)); -} -#endif - -void -umem_vprintf(const char *format, va_list va) -{ - char buf[UMEM_MAX_ERROR_SIZE] = ""; - - (void) vsnprintf(buf, UMEM_MAX_ERROR_SIZE-1, format, va); - - umem_error_enter(buf); -} - -void -umem_printf(const char *format, ...) -{ - va_list va; - - va_start(va, format); - umem_vprintf(format, va); - va_end(va); -} - -/*ARGSUSED*/ -void -umem_printf_warn(void *ignored, const char *format, ...) -{ - va_list va; - - va_start(va, format); - umem_vprintf(format, va); - va_end(va); -} - -/* - * print_sym tries to print out the symbol and offset of a pointer - */ -int -print_sym(void *pointer) -{ - int result; - Dl_info sym_info; - - uintptr_t end = NULL; - - Sym *ext_info = NULL; - - result = dladdr1(pointer, &sym_info, (void **)&ext_info, - RTLD_DL_SYMENT); - - if (result != 0) { - const char *endpath; - - end = (uintptr_t)sym_info.dli_saddr + ext_info->st_size; - - endpath = strrchr(sym_info.dli_fname, '/'); - if (endpath) - endpath++; - else - endpath = sym_info.dli_fname; - umem_printf("%s'", endpath); - } - - if (result == 0 || (uintptr_t)pointer > end) { - umem_printf("?? (0x%p)", pointer); - return (0); - } else { - umem_printf("%s+0x%p", sym_info.dli_sname, - (char *)pointer - (char *)sym_info.dli_saddr); - return (1); - } -} diff --git a/zfs/lib/libumem/stub_stand.c b/zfs/lib/libumem/stub_stand.c deleted file mode 100644 index 025001ff7..000000000 --- a/zfs/lib/libumem/stub_stand.c +++ /dev/null @@ -1,129 +0,0 @@ -/* - * CDDL HEADER START - * - * The contents of this file are subject to the terms of the - * Common Development and Distribution License (the "License"). - * You may not use this file except in compliance with the License. - * - * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE - * or http://www.opensolaris.org/os/licensing. - * See the License for the specific language governing permissions - * and limitations under the License. - * - * When distributing Covered Code, include this CDDL HEADER in each - * file and include the License file at usr/src/OPENSOLARIS.LICENSE. - * If applicable, add the following below this CDDL HEADER, with the - * fields enclosed by brackets "[]" replaced with your own identifying - * information: Portions Copyright [yyyy] [name of copyright owner] - * - * CDDL HEADER END - */ - -/* - * Copyright 2008 Sun Microsystems, Inc. All rights reserved. - * Use is subject to license terms. - */ - -#pragma ident "%Z%%M% %I% %E% SMI" - -/* - * Stubs for the standalone to reduce the dependence on external libraries - */ - -#include -#include "misc.h" - -/*ARGSUSED*/ -int -cond_init(cond_t *cvp, int type, void *arg) -{ - return (0); -} - -/*ARGSUSED*/ -int -cond_destroy(cond_t *cvp) -{ - return (0); -} - -/*ARGSUSED*/ -int -cond_wait(cond_t *cv, mutex_t *mutex) -{ - umem_panic("attempt to wait on standumem cv %p", cv); - - /*NOTREACHED*/ - return (0); -} - -/*ARGSUSED*/ -int -cond_broadcast(cond_t *cvp) -{ - return (0); -} - -/*ARGSUSED*/ -int -pthread_setcancelstate(int state, int *oldstate) -{ - return (0); -} - -thread_t -thr_self(void) -{ - return ((thread_t)1); -} - -static mutex_t _mp = DEFAULTMUTEX; - -/*ARGSUSED*/ -int -mutex_init(mutex_t *mp, int type, void *arg) -{ - (void) memcpy(mp, &_mp, sizeof (mutex_t)); - return (0); -} - -/*ARGSUSED*/ -int -mutex_destroy(mutex_t *mp) -{ - return (0); -} - -/*ARGSUSED*/ -int -_mutex_held(mutex_t *mp) -{ - return (1); -} - -/*ARGSUSED*/ -int -mutex_lock(mutex_t *mp) -{ - return (0); -} - -/*ARGSUSED*/ -int -mutex_trylock(mutex_t *mp) -{ - return (0); -} - -/*ARGSUSED*/ -int -mutex_unlock(mutex_t *mp) -{ - return (0); -} - -int -issetugid(void) -{ - return (1); -} diff --git a/zfs/lib/libumem/umem.c b/zfs/lib/libumem/umem.c deleted file mode 100644 index a3eb0b8e6..000000000 --- a/zfs/lib/libumem/umem.c +++ /dev/null @@ -1,3257 +0,0 @@ -/* - * CDDL HEADER START - * - * The contents of this file are subject to the terms of the - * Common Development and Distribution License (the "License"). - * You may not use this file except in compliance with the License. - * - * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE - * or http://www.opensolaris.org/os/licensing. - * See the License for the specific language governing permissions - * and limitations under the License. - * - * When distributing Covered Code, include this CDDL HEADER in each - * file and include the License file at usr/src/OPENSOLARIS.LICENSE. - * If applicable, add the following below this CDDL HEADER, with the - * fields enclosed by brackets "[]" replaced with your own identifying - * information: Portions Copyright [yyyy] [name of copyright owner] - * - * CDDL HEADER END - */ - -/* - * Copyright 2008 Sun Microsystems, Inc. All rights reserved. - * Use is subject to license terms. - */ - -#pragma ident "%Z%%M% %I% %E% SMI" - -/* - * based on usr/src/uts/common/os/kmem.c r1.64 from 2001/12/18 - * - * The slab allocator, as described in the following two papers: - * - * Jeff Bonwick, - * The Slab Allocator: An Object-Caching Kernel Memory Allocator. - * Proceedings of the Summer 1994 Usenix Conference. - * Available as /shared/sac/PSARC/1994/028/materials/kmem.pdf. - * - * Jeff Bonwick and Jonathan Adams, - * Magazines and vmem: Extending the Slab Allocator to Many CPUs and - * Arbitrary Resources. - * Proceedings of the 2001 Usenix Conference. - * Available as /shared/sac/PSARC/2000/550/materials/vmem.pdf. - * - * 1. Overview - * ----------- - * umem is very close to kmem in implementation. There are four major - * areas of divergence: - * - * * Initialization - * - * * CPU handling - * - * * umem_update() - * - * * KM_SLEEP v.s. UMEM_NOFAIL - * - * * lock ordering - * - * 2. Initialization - * ----------------- - * kmem is initialized early on in boot, and knows that no one will call - * into it before it is ready. umem does not have these luxuries. Instead, - * initialization is divided into two phases: - * - * * library initialization, and - * - * * first use - * - * umem's full initialization happens at the time of the first allocation - * request (via malloc() and friends, umem_alloc(), or umem_zalloc()), - * or the first call to umem_cache_create(). - * - * umem_free(), and umem_cache_alloc() do not require special handling, - * since the only way to get valid arguments for them is to successfully - * call a function from the first group. - * - * 2.1. Library Initialization: umem_startup() - * ------------------------------------------- - * umem_startup() is libumem.so's .init section. It calls pthread_atfork() - * to install the handlers necessary for umem's Fork1-Safety. Because of - * race condition issues, all other pre-umem_init() initialization is done - * statically (i.e. by the dynamic linker). - * - * For standalone use, umem_startup() returns everything to its initial - * state. - * - * 2.2. First use: umem_init() - * ------------------------------ - * The first time any memory allocation function is used, we have to - * create the backing caches and vmem arenas which are needed for it. - * umem_init() is the central point for that task. When it completes, - * umem_ready is either UMEM_READY (all set) or UMEM_READY_INIT_FAILED (unable - * to initialize, probably due to lack of memory). - * - * There are four different paths from which umem_init() is called: - * - * * from umem_alloc() or umem_zalloc(), with 0 < size < UMEM_MAXBUF, - * - * * from umem_alloc() or umem_zalloc(), with size > UMEM_MAXBUF, - * - * * from umem_cache_create(), and - * - * * from memalign(), with align > UMEM_ALIGN. - * - * The last three just check if umem is initialized, and call umem_init() - * if it is not. For performance reasons, the first case is more complicated. - * - * 2.2.1. umem_alloc()/umem_zalloc(), with 0 < size < UMEM_MAXBUF - * ----------------------------------------------------------------- - * In this case, umem_cache_alloc(&umem_null_cache, ...) is called. - * There is special case code in which causes any allocation on - * &umem_null_cache to fail by returning (NULL), regardless of the - * flags argument. - * - * So umem_cache_alloc() returns NULL, and umem_alloc()/umem_zalloc() call - * umem_alloc_retry(). umem_alloc_retry() sees that the allocation - * was agains &umem_null_cache, and calls umem_init(). - * - * If initialization is successful, umem_alloc_retry() returns 1, which - * causes umem_alloc()/umem_zalloc() to start over, which causes it to load - * the (now valid) cache pointer from umem_alloc_table. - * - * 2.2.2. Dealing with race conditions - * ----------------------------------- - * There are a couple race conditions resulting from the initialization - * code that we have to guard against: - * - * * In umem_cache_create(), there is a special UMC_INTERNAL cflag - * that is passed for caches created during initialization. It - * is illegal for a user to try to create a UMC_INTERNAL cache. - * This allows initialization to proceed, but any other - * umem_cache_create()s will block by calling umem_init(). - * - * * Since umem_null_cache has a 1-element cache_cpu, it's cache_cpu_mask - * is always zero. umem_cache_alloc uses cp->cache_cpu_mask to - * mask the cpu number. This prevents a race between grabbing a - * cache pointer out of umem_alloc_table and growing the cpu array. - * - * - * 3. CPU handling - * --------------- - * kmem uses the CPU's sequence number to determine which "cpu cache" to - * use for an allocation. Currently, there is no way to get the sequence - * number in userspace. - * - * umem keeps track of cpu information in umem_cpus, an array of umem_max_ncpus - * umem_cpu_t structures. CURCPU() is a a "hint" function, which we then mask - * with either umem_cpu_mask or cp->cache_cpu_mask to find the actual "cpu" id. - * The mechanics of this is all in the CPU(mask) macro. - * - * Currently, umem uses _lwp_self() as its hint. - * - * - * 4. The update thread - * -------------------- - * kmem uses a task queue, kmem_taskq, to do periodic maintenance on - * every kmem cache. vmem has a periodic timeout for hash table resizing. - * The kmem_taskq also provides a separate context for kmem_cache_reap()'s - * to be done in, avoiding issues of the context of kmem_reap() callers. - * - * Instead, umem has the concept of "updates", which are asynchronous requests - * for work attached to single caches. All caches with pending work are - * on a doubly linked list rooted at the umem_null_cache. All update state - * is protected by the umem_update_lock mutex, and the umem_update_cv is used - * for notification between threads. - * - * 4.1. Cache states with regards to updates - * ----------------------------------------- - * A given cache is in one of three states: - * - * Inactive cache_uflags is zero, cache_u{next,prev} are NULL - * - * Work Requested cache_uflags is non-zero (but UMU_ACTIVE is not set), - * cache_u{next,prev} link the cache onto the global - * update list - * - * Active cache_uflags has UMU_ACTIVE set, cache_u{next,prev} - * are NULL, and either umem_update_thr or - * umem_st_update_thr are actively doing work on the - * cache. - * - * An update can be added to any cache in any state -- if the cache is - * Inactive, it transitions to being Work Requested. If the cache is - * Active, the worker will notice the new update and act on it before - * transitioning the cache to the Inactive state. - * - * If a cache is in the Active state, UMU_NOTIFY can be set, which asks - * the worker to broadcast the umem_update_cv when it has finished. - * - * 4.2. Update interface - * --------------------- - * umem_add_update() adds an update to a particular cache. - * umem_updateall() adds an update to all caches. - * umem_remove_updates() returns a cache to the Inactive state. - * - * umem_process_updates() process all caches in the Work Requested state. - * - * 4.3. Reaping - * ------------ - * When umem_reap() is called (at the time of heap growth), it schedule - * UMU_REAP updates on every cache. It then checks to see if the update - * thread exists (umem_update_thr != 0). If it is, it broadcasts - * the umem_update_cv to wake the update thread up, and returns. - * - * If the update thread does not exist (umem_update_thr == 0), and the - * program currently has multiple threads, umem_reap() attempts to create - * a new update thread. - * - * If the process is not multithreaded, or the creation fails, umem_reap() - * calls umem_st_update() to do an inline update. - * - * 4.4. The update thread - * ---------------------- - * The update thread spends most of its time in cond_timedwait() on the - * umem_update_cv. It wakes up under two conditions: - * - * * The timedwait times out, in which case it needs to run a global - * update, or - * - * * someone cond_broadcast(3THR)s the umem_update_cv, in which case - * it needs to check if there are any caches in the Work Requested - * state. - * - * When it is time for another global update, umem calls umem_cache_update() - * on every cache, then calls vmem_update(), which tunes the vmem structures. - * umem_cache_update() can request further work using umem_add_update(). - * - * After any work from the global update completes, the update timer is - * reset to umem_reap_interval seconds in the future. This makes the - * updates self-throttling. - * - * Reaps are similarly self-throttling. After a UMU_REAP update has - * been scheduled on all caches, umem_reap() sets a flag and wakes up the - * update thread. The update thread notices the flag, and resets the - * reap state. - * - * 4.5. Inline updates - * ------------------- - * If the update thread is not running, umem_st_update() is used instead. It - * immediately does a global update (as above), then calls - * umem_process_updates() to process both the reaps that umem_reap() added and - * any work generated by the global update. Afterwards, it resets the reap - * state. - * - * While the umem_st_update() is running, umem_st_update_thr holds the thread - * id of the thread performing the update. - * - * 4.6. Updates and fork1() - * ------------------------ - * umem has fork1() pre- and post-handlers which lock up (and release) every - * mutex in every cache. They also lock up the umem_update_lock. Since - * fork1() only copies over a single lwp, other threads (including the update - * thread) could have been actively using a cache in the parent. This - * can lead to inconsistencies in the child process. - * - * Because we locked all of the mutexes, the only possible inconsistancies are: - * - * * a umem_cache_alloc() could leak its buffer. - * - * * a caller of umem_depot_alloc() could leak a magazine, and all the - * buffers contained in it. - * - * * a cache could be in the Active update state. In the child, there - * would be no thread actually working on it. - * - * * a umem_hash_rescale() could leak the new hash table. - * - * * a umem_magazine_resize() could be in progress. - * - * * a umem_reap() could be in progress. - * - * The memory leaks we can't do anything about. umem_release_child() resets - * the update state, moves any caches in the Active state to the Work Requested - * state. This might cause some updates to be re-run, but UMU_REAP and - * UMU_HASH_RESCALE are effectively idempotent, and the worst that can - * happen from umem_magazine_resize() is resizing the magazine twice in close - * succession. - * - * Much of the cleanup in umem_release_child() is skipped if - * umem_st_update_thr == thr_self(). This is so that applications which call - * fork1() from a cache callback does not break. Needless to say, any such - * application is tremendously broken. - * - * - * 5. KM_SLEEP v.s. UMEM_NOFAIL - * ---------------------------- - * Allocations against kmem and vmem have two basic modes: SLEEP and - * NOSLEEP. A sleeping allocation is will go to sleep (waiting for - * more memory) instead of failing (returning NULL). - * - * SLEEP allocations presume an extremely multithreaded model, with - * a lot of allocation and deallocation activity. umem cannot presume - * that its clients have any particular type of behavior. Instead, - * it provides two types of allocations: - * - * * UMEM_DEFAULT, equivalent to KM_NOSLEEP (i.e. return NULL on - * failure) - * - * * UMEM_NOFAIL, which, on failure, calls an optional callback - * (registered with umem_nofail_callback()). - * - * The callback is invoked with no locks held, and can do an arbitrary - * amount of work. It then has a choice between: - * - * * Returning UMEM_CALLBACK_RETRY, which will cause the allocation - * to be restarted. - * - * * Returning UMEM_CALLBACK_EXIT(status), which will cause exit(2) - * to be invoked with status. If multiple threads attempt to do - * this simultaneously, only one will call exit(2). - * - * * Doing some kind of non-local exit (thr_exit(3thr), longjmp(3C), - * etc.) - * - * The default callback returns UMEM_CALLBACK_EXIT(255). - * - * To have these callbacks without risk of state corruption (in the case of - * a non-local exit), we have to ensure that the callbacks get invoked - * close to the original allocation, with no inconsistent state or held - * locks. The following steps are taken: - * - * * All invocations of vmem are VM_NOSLEEP. - * - * * All constructor callbacks (which can themselves to allocations) - * are passed UMEM_DEFAULT as their required allocation argument. This - * way, the constructor will fail, allowing the highest-level allocation - * invoke the nofail callback. - * - * If a constructor callback _does_ do a UMEM_NOFAIL allocation, and - * the nofail callback does a non-local exit, we will leak the - * partially-constructed buffer. - * - * - * 6. Lock Ordering - * ---------------- - * umem has a few more locks than kmem does, mostly in the update path. The - * overall lock ordering (earlier locks must be acquired first) is: - * - * umem_init_lock - * - * vmem_list_lock - * vmem_nosleep_lock.vmpl_mutex - * vmem_t's: - * vm_lock - * sbrk_lock - * - * umem_cache_lock - * umem_update_lock - * umem_flags_lock - * umem_cache_t's: - * cache_cpu[*].cc_lock - * cache_depot_lock - * cache_lock - * umem_log_header_t's: - * lh_cpu[*].clh_lock - * lh_lock - */ - -#include -#include -#include "umem_base.h" -#include "vmem_base.h" - -#include -#include - -#include -#include -#include -#include -#include -#include -#include -#include -#include -#include - -#include "misc.h" - -#define UMEM_VMFLAGS(umflag) (VM_NOSLEEP) - -size_t pagesize; - -/* - * The default set of caches to back umem_alloc(). - * These sizes should be reevaluated periodically. - * - * We want allocations that are multiples of the coherency granularity - * (64 bytes) to be satisfied from a cache which is a multiple of 64 - * bytes, so that it will be 64-byte aligned. For all multiples of 64, - * the next kmem_cache_size greater than or equal to it must be a - * multiple of 64. - * - * This table must be in sorted order, from smallest to highest. The - * highest slot must be UMEM_MAXBUF, and every slot afterwards must be - * zero. - */ -static int umem_alloc_sizes[] = { -#ifdef _LP64 - 1 * 8, - 1 * 16, - 2 * 16, - 3 * 16, -#else - 1 * 8, - 2 * 8, - 3 * 8, - 4 * 8, 5 * 8, 6 * 8, 7 * 8, -#endif - 4 * 16, 5 * 16, 6 * 16, 7 * 16, - 4 * 32, 5 * 32, 6 * 32, 7 * 32, - 4 * 64, 5 * 64, 6 * 64, 7 * 64, - 4 * 128, 5 * 128, 6 * 128, 7 * 128, - P2ALIGN(8192 / 7, 64), - P2ALIGN(8192 / 6, 64), - P2ALIGN(8192 / 5, 64), - P2ALIGN(8192 / 4, 64), 2304, - P2ALIGN(8192 / 3, 64), - P2ALIGN(8192 / 2, 64), 4544, - P2ALIGN(8192 / 1, 64), 9216, - 4096 * 3, - UMEM_MAXBUF, /* = 8192 * 2 */ - /* 24 slots for user expansion */ - 0, 0, 0, 0, 0, 0, 0, 0, - 0, 0, 0, 0, 0, 0, 0, 0, - 0, 0, 0, 0, 0, 0, 0, 0, -}; -#define NUM_ALLOC_SIZES (sizeof (umem_alloc_sizes) / sizeof (*umem_alloc_sizes)) - -static umem_magtype_t umem_magtype[] = { - { 1, 8, 3200, 65536 }, - { 3, 16, 256, 32768 }, - { 7, 32, 64, 16384 }, - { 15, 64, 0, 8192 }, - { 31, 64, 0, 4096 }, - { 47, 64, 0, 2048 }, - { 63, 64, 0, 1024 }, - { 95, 64, 0, 512 }, - { 143, 64, 0, 0 }, -}; - -/* - * umem tunables - */ -uint32_t umem_max_ncpus; /* # of CPU caches. */ - -uint32_t umem_stack_depth = 15; /* # stack frames in a bufctl_audit */ -uint32_t umem_reap_interval = 10; /* max reaping rate (seconds) */ -uint_t umem_depot_contention = 2; /* max failed trylocks per real interval */ -uint_t umem_abort = 1; /* whether to abort on error */ -uint_t umem_output = 0; /* whether to write to standard error */ -uint_t umem_logging = 0; /* umem_log_enter() override */ -uint32_t umem_mtbf = 0; /* mean time between failures [default: off] */ -size_t umem_transaction_log_size; /* size of transaction log */ -size_t umem_content_log_size; /* size of content log */ -size_t umem_failure_log_size; /* failure log [4 pages per CPU] */ -size_t umem_slab_log_size; /* slab create log [4 pages per CPU] */ -size_t umem_content_maxsave = 256; /* UMF_CONTENTS max bytes to log */ -size_t umem_lite_minsize = 0; /* minimum buffer size for UMF_LITE */ -size_t umem_lite_maxalign = 1024; /* maximum buffer alignment for UMF_LITE */ -size_t umem_maxverify; /* maximum bytes to inspect in debug routines */ -size_t umem_minfirewall; /* hardware-enforced redzone threshold */ - -uint_t umem_flags = 0; - -mutex_t umem_init_lock; /* locks initialization */ -cond_t umem_init_cv; /* initialization CV */ -thread_t umem_init_thr; /* thread initializing */ -int umem_init_env_ready; /* environ pre-initted */ -int umem_ready = UMEM_READY_STARTUP; - -static umem_nofail_callback_t *nofail_callback; -static mutex_t umem_nofail_exit_lock; -static thread_t umem_nofail_exit_thr; - -static umem_cache_t *umem_slab_cache; -static umem_cache_t *umem_bufctl_cache; -static umem_cache_t *umem_bufctl_audit_cache; - -mutex_t umem_flags_lock; - -static vmem_t *heap_arena; -static vmem_alloc_t *heap_alloc; -static vmem_free_t *heap_free; - -static vmem_t *umem_internal_arena; -static vmem_t *umem_cache_arena; -static vmem_t *umem_hash_arena; -static vmem_t *umem_log_arena; -static vmem_t *umem_oversize_arena; -static vmem_t *umem_va_arena; -static vmem_t *umem_default_arena; -static vmem_t *umem_firewall_va_arena; -static vmem_t *umem_firewall_arena; - -vmem_t *umem_memalign_arena; - -umem_log_header_t *umem_transaction_log; -umem_log_header_t *umem_content_log; -umem_log_header_t *umem_failure_log; -umem_log_header_t *umem_slab_log; - -#define CPUHINT() (thr_self()) -#define CPUHINT_MAX() INT_MAX - -#define CPU(mask) (umem_cpus + (CPUHINT() & (mask))) -static umem_cpu_t umem_startup_cpu = { /* initial, single, cpu */ - UMEM_CACHE_SIZE(0), - 0 -}; - -static uint32_t umem_cpu_mask = 0; /* global cpu mask */ -static umem_cpu_t *umem_cpus = &umem_startup_cpu; /* cpu list */ - -volatile uint32_t umem_reaping; - -thread_t umem_update_thr; -struct timeval umem_update_next; /* timeofday of next update */ -volatile thread_t umem_st_update_thr; /* only used when single-thd */ - -#define IN_UPDATE() (thr_self() == umem_update_thr || \ - thr_self() == umem_st_update_thr) -#define IN_REAP() IN_UPDATE() - -mutex_t umem_update_lock; /* cache_u{next,prev,flags} */ -cond_t umem_update_cv; - -volatile hrtime_t umem_reap_next; /* min hrtime of next reap */ - -mutex_t umem_cache_lock; /* inter-cache linkage only */ - -#ifdef UMEM_STANDALONE -umem_cache_t umem_null_cache; -static const umem_cache_t umem_null_cache_template = { -#else -umem_cache_t umem_null_cache = { -#endif - 0, 0, 0, 0, 0, - 0, 0, - 0, 0, - 0, 0, - "invalid_cache", - 0, 0, - NULL, NULL, NULL, NULL, - NULL, - 0, 0, 0, 0, - &umem_null_cache, &umem_null_cache, - &umem_null_cache, &umem_null_cache, - 0, - DEFAULTMUTEX, /* start of slab layer */ - 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, - &umem_null_cache.cache_nullslab, - { - &umem_null_cache, - NULL, - &umem_null_cache.cache_nullslab, - &umem_null_cache.cache_nullslab, - NULL, - -1, - 0 - }, - NULL, - NULL, - DEFAULTMUTEX, /* start of depot layer */ - NULL, { - NULL, 0, 0, 0, 0 - }, { - NULL, 0, 0, 0, 0 - }, { - { - DEFAULTMUTEX, /* start of CPU cache */ - 0, 0, NULL, NULL, -1, -1, 0 - } - } -}; - -#define ALLOC_TABLE_4 \ - &umem_null_cache, &umem_null_cache, &umem_null_cache, &umem_null_cache - -#define ALLOC_TABLE_64 \ - ALLOC_TABLE_4, ALLOC_TABLE_4, ALLOC_TABLE_4, ALLOC_TABLE_4, \ - ALLOC_TABLE_4, ALLOC_TABLE_4, ALLOC_TABLE_4, ALLOC_TABLE_4, \ - ALLOC_TABLE_4, ALLOC_TABLE_4, ALLOC_TABLE_4, ALLOC_TABLE_4, \ - ALLOC_TABLE_4, ALLOC_TABLE_4, ALLOC_TABLE_4, ALLOC_TABLE_4 - -#define ALLOC_TABLE_1024 \ - ALLOC_TABLE_64, ALLOC_TABLE_64, ALLOC_TABLE_64, ALLOC_TABLE_64, \ - ALLOC_TABLE_64, ALLOC_TABLE_64, ALLOC_TABLE_64, ALLOC_TABLE_64, \ - ALLOC_TABLE_64, ALLOC_TABLE_64, ALLOC_TABLE_64, ALLOC_TABLE_64, \ - ALLOC_TABLE_64, ALLOC_TABLE_64, ALLOC_TABLE_64, ALLOC_TABLE_64 - -static umem_cache_t *umem_alloc_table[UMEM_MAXBUF >> UMEM_ALIGN_SHIFT] = { - ALLOC_TABLE_1024, - ALLOC_TABLE_1024 -}; - - -/* Used to constrain audit-log stack traces */ -caddr_t umem_min_stack; -caddr_t umem_max_stack; - - -#define UMERR_MODIFIED 0 /* buffer modified while on freelist */ -#define UMERR_REDZONE 1 /* redzone violation (write past end of buf) */ -#define UMERR_DUPFREE 2 /* freed a buffer twice */ -#define UMERR_BADADDR 3 /* freed a bad (unallocated) address */ -#define UMERR_BADBUFTAG 4 /* buftag corrupted */ -#define UMERR_BADBUFCTL 5 /* bufctl corrupted */ -#define UMERR_BADCACHE 6 /* freed a buffer to the wrong cache */ -#define UMERR_BADSIZE 7 /* alloc size != free size */ -#define UMERR_BADBASE 8 /* buffer base address wrong */ - -struct { - hrtime_t ump_timestamp; /* timestamp of error */ - int ump_error; /* type of umem error (UMERR_*) */ - void *ump_buffer; /* buffer that induced abort */ - void *ump_realbuf; /* real start address for buffer */ - umem_cache_t *ump_cache; /* buffer's cache according to client */ - umem_cache_t *ump_realcache; /* actual cache containing buffer */ - umem_slab_t *ump_slab; /* slab accoring to umem_findslab() */ - umem_bufctl_t *ump_bufctl; /* bufctl */ -} umem_abort_info; - -static void -copy_pattern(uint64_t pattern, void *buf_arg, size_t size) -{ - uint64_t *bufend = (uint64_t *)((char *)buf_arg + size); - uint64_t *buf = buf_arg; - - while (buf < bufend) - *buf++ = pattern; -} - -static void * -verify_pattern(uint64_t pattern, void *buf_arg, size_t size) -{ - uint64_t *bufend = (uint64_t *)((char *)buf_arg + size); - uint64_t *buf; - - for (buf = buf_arg; buf < bufend; buf++) - if (*buf != pattern) - return (buf); - return (NULL); -} - -static void * -verify_and_copy_pattern(uint64_t old, uint64_t new, void *buf_arg, size_t size) -{ - uint64_t *bufend = (uint64_t *)((char *)buf_arg + size); - uint64_t *buf; - - for (buf = buf_arg; buf < bufend; buf++) { - if (*buf != old) { - copy_pattern(old, buf_arg, - (char *)buf - (char *)buf_arg); - return (buf); - } - *buf = new; - } - - return (NULL); -} - -void -umem_cache_applyall(void (*func)(umem_cache_t *)) -{ - umem_cache_t *cp; - - (void) mutex_lock(&umem_cache_lock); - for (cp = umem_null_cache.cache_next; cp != &umem_null_cache; - cp = cp->cache_next) - func(cp); - (void) mutex_unlock(&umem_cache_lock); -} - -static void -umem_add_update_unlocked(umem_cache_t *cp, int flags) -{ - umem_cache_t *cnext, *cprev; - - flags &= ~UMU_ACTIVE; - - if (!flags) - return; - - if (cp->cache_uflags & UMU_ACTIVE) { - cp->cache_uflags |= flags; - } else { - if (cp->cache_unext != NULL) { - ASSERT(cp->cache_uflags != 0); - cp->cache_uflags |= flags; - } else { - ASSERT(cp->cache_uflags == 0); - cp->cache_uflags = flags; - cp->cache_unext = cnext = &umem_null_cache; - cp->cache_uprev = cprev = umem_null_cache.cache_uprev; - cnext->cache_uprev = cp; - cprev->cache_unext = cp; - } - } -} - -static void -umem_add_update(umem_cache_t *cp, int flags) -{ - (void) mutex_lock(&umem_update_lock); - - umem_add_update_unlocked(cp, flags); - - if (!IN_UPDATE()) - (void) cond_broadcast(&umem_update_cv); - - (void) mutex_unlock(&umem_update_lock); -} - -/* - * Remove a cache from the update list, waiting for any in-progress work to - * complete first. - */ -static void -umem_remove_updates(umem_cache_t *cp) -{ - (void) mutex_lock(&umem_update_lock); - - /* - * Get it out of the active state - */ - while (cp->cache_uflags & UMU_ACTIVE) { - int cancel_state; - - ASSERT(cp->cache_unext == NULL); - - cp->cache_uflags |= UMU_NOTIFY; - - /* - * Make sure the update state is sane, before we wait - */ - ASSERT(umem_update_thr != 0 || umem_st_update_thr != 0); - ASSERT(umem_update_thr != thr_self() && - umem_st_update_thr != thr_self()); - - (void) pthread_setcancelstate(PTHREAD_CANCEL_DISABLE, - &cancel_state); - (void) cond_wait(&umem_update_cv, &umem_update_lock); - (void) pthread_setcancelstate(cancel_state, NULL); - } - /* - * Get it out of the Work Requested state - */ - if (cp->cache_unext != NULL) { - cp->cache_uprev->cache_unext = cp->cache_unext; - cp->cache_unext->cache_uprev = cp->cache_uprev; - cp->cache_uprev = cp->cache_unext = NULL; - cp->cache_uflags = 0; - } - /* - * Make sure it is in the Inactive state - */ - ASSERT(cp->cache_unext == NULL && cp->cache_uflags == 0); - (void) mutex_unlock(&umem_update_lock); -} - -static void -umem_updateall(int flags) -{ - umem_cache_t *cp; - - /* - * NOTE: To prevent deadlock, umem_cache_lock is always acquired first. - * - * (umem_add_update is called from things run via umem_cache_applyall) - */ - (void) mutex_lock(&umem_cache_lock); - (void) mutex_lock(&umem_update_lock); - - for (cp = umem_null_cache.cache_next; cp != &umem_null_cache; - cp = cp->cache_next) - umem_add_update_unlocked(cp, flags); - - if (!IN_UPDATE()) - (void) cond_broadcast(&umem_update_cv); - - (void) mutex_unlock(&umem_update_lock); - (void) mutex_unlock(&umem_cache_lock); -} - -/* - * Debugging support. Given a buffer address, find its slab. - */ -static umem_slab_t * -umem_findslab(umem_cache_t *cp, void *buf) -{ - umem_slab_t *sp; - - (void) mutex_lock(&cp->cache_lock); - for (sp = cp->cache_nullslab.slab_next; - sp != &cp->cache_nullslab; sp = sp->slab_next) { - if (UMEM_SLAB_MEMBER(sp, buf)) { - (void) mutex_unlock(&cp->cache_lock); - return (sp); - } - } - (void) mutex_unlock(&cp->cache_lock); - - return (NULL); -} - -static void -umem_error(int error, umem_cache_t *cparg, void *bufarg) -{ - umem_buftag_t *btp = NULL; - umem_bufctl_t *bcp = NULL; - umem_cache_t *cp = cparg; - umem_slab_t *sp; - uint64_t *off; - void *buf = bufarg; - - int old_logging = umem_logging; - - umem_logging = 0; /* stop logging when a bad thing happens */ - - umem_abort_info.ump_timestamp = gethrtime(); - - sp = umem_findslab(cp, buf); - if (sp == NULL) { - for (cp = umem_null_cache.cache_prev; cp != &umem_null_cache; - cp = cp->cache_prev) { - if ((sp = umem_findslab(cp, buf)) != NULL) - break; - } - } - - if (sp == NULL) { - cp = NULL; - error = UMERR_BADADDR; - } else { - if (cp != cparg) - error = UMERR_BADCACHE; - else - buf = (char *)bufarg - ((uintptr_t)bufarg - - (uintptr_t)sp->slab_base) % cp->cache_chunksize; - if (buf != bufarg) - error = UMERR_BADBASE; - if (cp->cache_flags & UMF_BUFTAG) - btp = UMEM_BUFTAG(cp, buf); - if (cp->cache_flags & UMF_HASH) { - (void) mutex_lock(&cp->cache_lock); - for (bcp = *UMEM_HASH(cp, buf); bcp; bcp = bcp->bc_next) - if (bcp->bc_addr == buf) - break; - (void) mutex_unlock(&cp->cache_lock); - if (bcp == NULL && btp != NULL) - bcp = btp->bt_bufctl; - if (umem_findslab(cp->cache_bufctl_cache, bcp) == - NULL || P2PHASE((uintptr_t)bcp, UMEM_ALIGN) || - bcp->bc_addr != buf) { - error = UMERR_BADBUFCTL; - bcp = NULL; - } - } - } - - umem_abort_info.ump_error = error; - umem_abort_info.ump_buffer = bufarg; - umem_abort_info.ump_realbuf = buf; - umem_abort_info.ump_cache = cparg; - umem_abort_info.ump_realcache = cp; - umem_abort_info.ump_slab = sp; - umem_abort_info.ump_bufctl = bcp; - - umem_printf("umem allocator: "); - - switch (error) { - - case UMERR_MODIFIED: - umem_printf("buffer modified after being freed\n"); - off = verify_pattern(UMEM_FREE_PATTERN, buf, cp->cache_verify); - if (off == NULL) /* shouldn't happen */ - off = buf; - umem_printf("modification occurred at offset 0x%lx " - "(0x%llx replaced by 0x%llx)\n", - (uintptr_t)off - (uintptr_t)buf, - (longlong_t)UMEM_FREE_PATTERN, (longlong_t)*off); - break; - - case UMERR_REDZONE: - umem_printf("redzone violation: write past end of buffer\n"); - break; - - case UMERR_BADADDR: - umem_printf("invalid free: buffer not in cache\n"); - break; - - case UMERR_DUPFREE: - umem_printf("duplicate free: buffer freed twice\n"); - break; - - case UMERR_BADBUFTAG: - umem_printf("boundary tag corrupted\n"); - umem_printf("bcp ^ bxstat = %lx, should be %lx\n", - (intptr_t)btp->bt_bufctl ^ btp->bt_bxstat, - UMEM_BUFTAG_FREE); - break; - - case UMERR_BADBUFCTL: - umem_printf("bufctl corrupted\n"); - break; - - case UMERR_BADCACHE: - umem_printf("buffer freed to wrong cache\n"); - umem_printf("buffer was allocated from %s,\n", cp->cache_name); - umem_printf("caller attempting free to %s.\n", - cparg->cache_name); - break; - - case UMERR_BADSIZE: - umem_printf("bad free: free size (%u) != alloc size (%u)\n", - UMEM_SIZE_DECODE(((uint32_t *)btp)[0]), - UMEM_SIZE_DECODE(((uint32_t *)btp)[1])); - break; - - case UMERR_BADBASE: - umem_printf("bad free: free address (%p) != alloc address " - "(%p)\n", bufarg, buf); - break; - } - - umem_printf("buffer=%p bufctl=%p cache: %s\n", - bufarg, (void *)bcp, cparg->cache_name); - - if (bcp != NULL && (cp->cache_flags & UMF_AUDIT) && - error != UMERR_BADBUFCTL) { - int d; - timespec_t ts; - hrtime_t diff; - umem_bufctl_audit_t *bcap = (umem_bufctl_audit_t *)bcp; - - diff = umem_abort_info.ump_timestamp - bcap->bc_timestamp; - ts.tv_sec = diff / NANOSEC; - ts.tv_nsec = diff % NANOSEC; - - umem_printf("previous transaction on buffer %p:\n", buf); - umem_printf("thread=%p time=T-%ld.%09ld slab=%p cache: %s\n", - (void *)(intptr_t)bcap->bc_thread, ts.tv_sec, ts.tv_nsec, - (void *)sp, cp->cache_name); - for (d = 0; d < MIN(bcap->bc_depth, umem_stack_depth); d++) { - (void) print_sym((void *)bcap->bc_stack[d]); - umem_printf("\n"); - } - } - - umem_err_recoverable("umem: heap corruption detected"); - - umem_logging = old_logging; /* resume logging */ -} - -void -umem_nofail_callback(umem_nofail_callback_t *cb) -{ - nofail_callback = cb; -} - -static int -umem_alloc_retry(umem_cache_t *cp, int umflag) -{ - if (cp == &umem_null_cache) { - if (umem_init()) - return (1); /* retry */ - /* - * Initialization failed. Do normal failure processing. - */ - } - if (umflag & UMEM_NOFAIL) { - int def_result = UMEM_CALLBACK_EXIT(255); - int result = def_result; - umem_nofail_callback_t *callback = nofail_callback; - - if (callback != NULL) - result = callback(); - - if (result == UMEM_CALLBACK_RETRY) - return (1); - - if ((result & ~0xFF) != UMEM_CALLBACK_EXIT(0)) { - log_message("nofail callback returned %x\n", result); - result = def_result; - } - - /* - * only one thread will call exit - */ - if (umem_nofail_exit_thr == thr_self()) - umem_panic("recursive UMEM_CALLBACK_EXIT()\n"); - - (void) mutex_lock(&umem_nofail_exit_lock); - umem_nofail_exit_thr = thr_self(); - exit(result & 0xFF); - /*NOTREACHED*/ - } - return (0); -} - -static umem_log_header_t * -umem_log_init(size_t logsize) -{ - umem_log_header_t *lhp; - int nchunks = 4 * umem_max_ncpus; - size_t lhsize = offsetof(umem_log_header_t, lh_cpu[umem_max_ncpus]); - int i; - - if (logsize == 0) - return (NULL); - - /* - * Make sure that lhp->lh_cpu[] is nicely aligned - * to prevent false sharing of cache lines. - */ - lhsize = P2ROUNDUP(lhsize, UMEM_ALIGN); - lhp = vmem_xalloc(umem_log_arena, lhsize, 64, P2NPHASE(lhsize, 64), 0, - NULL, NULL, VM_NOSLEEP); - if (lhp == NULL) - goto fail; - - bzero(lhp, lhsize); - - (void) mutex_init(&lhp->lh_lock, USYNC_THREAD, NULL); - lhp->lh_nchunks = nchunks; - lhp->lh_chunksize = P2ROUNDUP(logsize / nchunks, PAGESIZE); - if (lhp->lh_chunksize == 0) - lhp->lh_chunksize = PAGESIZE; - - lhp->lh_base = vmem_alloc(umem_log_arena, - lhp->lh_chunksize * nchunks, VM_NOSLEEP); - if (lhp->lh_base == NULL) - goto fail; - - lhp->lh_free = vmem_alloc(umem_log_arena, - nchunks * sizeof (int), VM_NOSLEEP); - if (lhp->lh_free == NULL) - goto fail; - - bzero(lhp->lh_base, lhp->lh_chunksize * nchunks); - - for (i = 0; i < umem_max_ncpus; i++) { - umem_cpu_log_header_t *clhp = &lhp->lh_cpu[i]; - (void) mutex_init(&clhp->clh_lock, USYNC_THREAD, NULL); - clhp->clh_chunk = i; - } - - for (i = umem_max_ncpus; i < nchunks; i++) - lhp->lh_free[i] = i; - - lhp->lh_head = umem_max_ncpus; - lhp->lh_tail = 0; - - return (lhp); - -fail: - if (lhp != NULL) { - if (lhp->lh_base != NULL) - vmem_free(umem_log_arena, lhp->lh_base, - lhp->lh_chunksize * nchunks); - - vmem_xfree(umem_log_arena, lhp, lhsize); - } - return (NULL); -} - -static void * -umem_log_enter(umem_log_header_t *lhp, void *data, size_t size) -{ - void *logspace; - umem_cpu_log_header_t *clhp = - &lhp->lh_cpu[CPU(umem_cpu_mask)->cpu_number]; - - if (lhp == NULL || umem_logging == 0) - return (NULL); - - (void) mutex_lock(&clhp->clh_lock); - clhp->clh_hits++; - if (size > clhp->clh_avail) { - (void) mutex_lock(&lhp->lh_lock); - lhp->lh_hits++; - lhp->lh_free[lhp->lh_tail] = clhp->clh_chunk; - lhp->lh_tail = (lhp->lh_tail + 1) % lhp->lh_nchunks; - clhp->clh_chunk = lhp->lh_free[lhp->lh_head]; - lhp->lh_head = (lhp->lh_head + 1) % lhp->lh_nchunks; - clhp->clh_current = lhp->lh_base + - clhp->clh_chunk * lhp->lh_chunksize; - clhp->clh_avail = lhp->lh_chunksize; - if (size > lhp->lh_chunksize) - size = lhp->lh_chunksize; - (void) mutex_unlock(&lhp->lh_lock); - } - logspace = clhp->clh_current; - clhp->clh_current += size; - clhp->clh_avail -= size; - bcopy(data, logspace, size); - (void) mutex_unlock(&clhp->clh_lock); - return (logspace); -} - -#define UMEM_AUDIT(lp, cp, bcp) \ -{ \ - umem_bufctl_audit_t *_bcp = (umem_bufctl_audit_t *)(bcp); \ - _bcp->bc_timestamp = gethrtime(); \ - _bcp->bc_thread = thr_self(); \ - _bcp->bc_depth = getpcstack(_bcp->bc_stack, umem_stack_depth, \ - (cp != NULL) && (cp->cache_flags & UMF_CHECKSIGNAL)); \ - _bcp->bc_lastlog = umem_log_enter((lp), _bcp, \ - UMEM_BUFCTL_AUDIT_SIZE); \ -} - -static void -umem_log_event(umem_log_header_t *lp, umem_cache_t *cp, - umem_slab_t *sp, void *addr) -{ - umem_bufctl_audit_t *bcp; - UMEM_LOCAL_BUFCTL_AUDIT(&bcp); - - bzero(bcp, UMEM_BUFCTL_AUDIT_SIZE); - bcp->bc_addr = addr; - bcp->bc_slab = sp; - bcp->bc_cache = cp; - UMEM_AUDIT(lp, cp, bcp); -} - -/* - * Create a new slab for cache cp. - */ -static umem_slab_t * -umem_slab_create(umem_cache_t *cp, int umflag) -{ - size_t slabsize = cp->cache_slabsize; - size_t chunksize = cp->cache_chunksize; - int cache_flags = cp->cache_flags; - size_t color, chunks; - char *buf, *slab; - umem_slab_t *sp; - umem_bufctl_t *bcp; - vmem_t *vmp = cp->cache_arena; - - color = cp->cache_color + cp->cache_align; - if (color > cp->cache_maxcolor) - color = cp->cache_mincolor; - cp->cache_color = color; - - slab = vmem_alloc(vmp, slabsize, UMEM_VMFLAGS(umflag)); - - if (slab == NULL) - goto vmem_alloc_failure; - - ASSERT(P2PHASE((uintptr_t)slab, vmp->vm_quantum) == 0); - - if (!(cp->cache_cflags & UMC_NOTOUCH) && - (cp->cache_flags & UMF_DEADBEEF)) - copy_pattern(UMEM_UNINITIALIZED_PATTERN, slab, slabsize); - - if (cache_flags & UMF_HASH) { - if ((sp = _umem_cache_alloc(umem_slab_cache, umflag)) == NULL) - goto slab_alloc_failure; - chunks = (slabsize - color) / chunksize; - } else { - sp = UMEM_SLAB(cp, slab); - chunks = (slabsize - sizeof (umem_slab_t) - color) / chunksize; - } - - sp->slab_cache = cp; - sp->slab_head = NULL; - sp->slab_refcnt = 0; - sp->slab_base = buf = slab + color; - sp->slab_chunks = chunks; - - ASSERT(chunks > 0); - while (chunks-- != 0) { - if (cache_flags & UMF_HASH) { - bcp = _umem_cache_alloc(cp->cache_bufctl_cache, umflag); - if (bcp == NULL) - goto bufctl_alloc_failure; - if (cache_flags & UMF_AUDIT) { - umem_bufctl_audit_t *bcap = - (umem_bufctl_audit_t *)bcp; - bzero(bcap, UMEM_BUFCTL_AUDIT_SIZE); - bcap->bc_cache = cp; - } - bcp->bc_addr = buf; - bcp->bc_slab = sp; - } else { - bcp = UMEM_BUFCTL(cp, buf); - } - if (cache_flags & UMF_BUFTAG) { - umem_buftag_t *btp = UMEM_BUFTAG(cp, buf); - btp->bt_redzone = UMEM_REDZONE_PATTERN; - btp->bt_bufctl = bcp; - btp->bt_bxstat = (intptr_t)bcp ^ UMEM_BUFTAG_FREE; - if (cache_flags & UMF_DEADBEEF) { - copy_pattern(UMEM_FREE_PATTERN, buf, - cp->cache_verify); - } - } - bcp->bc_next = sp->slab_head; - sp->slab_head = bcp; - buf += chunksize; - } - - umem_log_event(umem_slab_log, cp, sp, slab); - - return (sp); - -bufctl_alloc_failure: - - while ((bcp = sp->slab_head) != NULL) { - sp->slab_head = bcp->bc_next; - _umem_cache_free(cp->cache_bufctl_cache, bcp); - } - _umem_cache_free(umem_slab_cache, sp); - -slab_alloc_failure: - - vmem_free(vmp, slab, slabsize); - -vmem_alloc_failure: - - umem_log_event(umem_failure_log, cp, NULL, NULL); - atomic_add_64(&cp->cache_alloc_fail, 1); - - return (NULL); -} - -/* - * Destroy a slab. - */ -static void -umem_slab_destroy(umem_cache_t *cp, umem_slab_t *sp) -{ - vmem_t *vmp = cp->cache_arena; - void *slab = (void *)P2ALIGN((uintptr_t)sp->slab_base, vmp->vm_quantum); - - if (cp->cache_flags & UMF_HASH) { - umem_bufctl_t *bcp; - while ((bcp = sp->slab_head) != NULL) { - sp->slab_head = bcp->bc_next; - _umem_cache_free(cp->cache_bufctl_cache, bcp); - } - _umem_cache_free(umem_slab_cache, sp); - } - vmem_free(vmp, slab, cp->cache_slabsize); -} - -/* - * Allocate a raw (unconstructed) buffer from cp's slab layer. - */ -static void * -umem_slab_alloc(umem_cache_t *cp, int umflag) -{ - umem_bufctl_t *bcp, **hash_bucket; - umem_slab_t *sp; - void *buf; - - (void) mutex_lock(&cp->cache_lock); - cp->cache_slab_alloc++; - sp = cp->cache_freelist; - ASSERT(sp->slab_cache == cp); - if (sp->slab_head == NULL) { - /* - * The freelist is empty. Create a new slab. - */ - (void) mutex_unlock(&cp->cache_lock); - if (cp == &umem_null_cache) - return (NULL); - if ((sp = umem_slab_create(cp, umflag)) == NULL) - return (NULL); - (void) mutex_lock(&cp->cache_lock); - cp->cache_slab_create++; - if ((cp->cache_buftotal += sp->slab_chunks) > cp->cache_bufmax) - cp->cache_bufmax = cp->cache_buftotal; - sp->slab_next = cp->cache_freelist; - sp->slab_prev = cp->cache_freelist->slab_prev; - sp->slab_next->slab_prev = sp; - sp->slab_prev->slab_next = sp; - cp->cache_freelist = sp; - } - - sp->slab_refcnt++; - ASSERT(sp->slab_refcnt <= sp->slab_chunks); - - /* - * If we're taking the last buffer in the slab, - * remove the slab from the cache's freelist. - */ - bcp = sp->slab_head; - if ((sp->slab_head = bcp->bc_next) == NULL) { - cp->cache_freelist = sp->slab_next; - ASSERT(sp->slab_refcnt == sp->slab_chunks); - } - - if (cp->cache_flags & UMF_HASH) { - /* - * Add buffer to allocated-address hash table. - */ - buf = bcp->bc_addr; - hash_bucket = UMEM_HASH(cp, buf); - bcp->bc_next = *hash_bucket; - *hash_bucket = bcp; - if ((cp->cache_flags & (UMF_AUDIT | UMF_BUFTAG)) == UMF_AUDIT) { - UMEM_AUDIT(umem_transaction_log, cp, bcp); - } - } else { - buf = UMEM_BUF(cp, bcp); - } - - ASSERT(UMEM_SLAB_MEMBER(sp, buf)); - - (void) mutex_unlock(&cp->cache_lock); - - return (buf); -} - -/* - * Free a raw (unconstructed) buffer to cp's slab layer. - */ -static void -umem_slab_free(umem_cache_t *cp, void *buf) -{ - umem_slab_t *sp; - umem_bufctl_t *bcp, **prev_bcpp; - - ASSERT(buf != NULL); - - (void) mutex_lock(&cp->cache_lock); - cp->cache_slab_free++; - - if (cp->cache_flags & UMF_HASH) { - /* - * Look up buffer in allocated-address hash table. - */ - prev_bcpp = UMEM_HASH(cp, buf); - while ((bcp = *prev_bcpp) != NULL) { - if (bcp->bc_addr == buf) { - *prev_bcpp = bcp->bc_next; - sp = bcp->bc_slab; - break; - } - cp->cache_lookup_depth++; - prev_bcpp = &bcp->bc_next; - } - } else { - bcp = UMEM_BUFCTL(cp, buf); - sp = UMEM_SLAB(cp, buf); - } - - if (bcp == NULL || sp->slab_cache != cp || !UMEM_SLAB_MEMBER(sp, buf)) { - (void) mutex_unlock(&cp->cache_lock); - umem_error(UMERR_BADADDR, cp, buf); - return; - } - - if ((cp->cache_flags & (UMF_AUDIT | UMF_BUFTAG)) == UMF_AUDIT) { - if (cp->cache_flags & UMF_CONTENTS) - ((umem_bufctl_audit_t *)bcp)->bc_contents = - umem_log_enter(umem_content_log, buf, - cp->cache_contents); - UMEM_AUDIT(umem_transaction_log, cp, bcp); - } - - /* - * If this slab isn't currently on the freelist, put it there. - */ - if (sp->slab_head == NULL) { - ASSERT(sp->slab_refcnt == sp->slab_chunks); - ASSERT(cp->cache_freelist != sp); - sp->slab_next->slab_prev = sp->slab_prev; - sp->slab_prev->slab_next = sp->slab_next; - sp->slab_next = cp->cache_freelist; - sp->slab_prev = cp->cache_freelist->slab_prev; - sp->slab_next->slab_prev = sp; - sp->slab_prev->slab_next = sp; - cp->cache_freelist = sp; - } - - bcp->bc_next = sp->slab_head; - sp->slab_head = bcp; - - ASSERT(sp->slab_refcnt >= 1); - if (--sp->slab_refcnt == 0) { - /* - * There are no outstanding allocations from this slab, - * so we can reclaim the memory. - */ - sp->slab_next->slab_prev = sp->slab_prev; - sp->slab_prev->slab_next = sp->slab_next; - if (sp == cp->cache_freelist) - cp->cache_freelist = sp->slab_next; - cp->cache_slab_destroy++; - cp->cache_buftotal -= sp->slab_chunks; - (void) mutex_unlock(&cp->cache_lock); - umem_slab_destroy(cp, sp); - return; - } - (void) mutex_unlock(&cp->cache_lock); -} - -static int -umem_cache_alloc_debug(umem_cache_t *cp, void *buf, int umflag) -{ - umem_buftag_t *btp = UMEM_BUFTAG(cp, buf); - umem_bufctl_audit_t *bcp = (umem_bufctl_audit_t *)btp->bt_bufctl; - uint32_t mtbf; - int flags_nfatal; - - if (btp->bt_bxstat != ((intptr_t)bcp ^ UMEM_BUFTAG_FREE)) { - umem_error(UMERR_BADBUFTAG, cp, buf); - return (-1); - } - - btp->bt_bxstat = (intptr_t)bcp ^ UMEM_BUFTAG_ALLOC; - - if ((cp->cache_flags & UMF_HASH) && bcp->bc_addr != buf) { - umem_error(UMERR_BADBUFCTL, cp, buf); - return (-1); - } - - btp->bt_redzone = UMEM_REDZONE_PATTERN; - - if (cp->cache_flags & UMF_DEADBEEF) { - if (verify_and_copy_pattern(UMEM_FREE_PATTERN, - UMEM_UNINITIALIZED_PATTERN, buf, cp->cache_verify)) { - umem_error(UMERR_MODIFIED, cp, buf); - return (-1); - } - } - - if ((mtbf = umem_mtbf | cp->cache_mtbf) != 0 && - gethrtime() % mtbf == 0 && - (umflag & (UMEM_FATAL_FLAGS)) == 0) { - umem_log_event(umem_failure_log, cp, NULL, NULL); - } else { - mtbf = 0; - } - - /* - * We do not pass fatal flags on to the constructor. This prevents - * leaking buffers in the event of a subordinate constructor failing. - */ - flags_nfatal = UMEM_DEFAULT; - if (mtbf || (cp->cache_constructor != NULL && - cp->cache_constructor(buf, cp->cache_private, flags_nfatal) != 0)) { - atomic_add_64(&cp->cache_alloc_fail, 1); - btp->bt_bxstat = (intptr_t)bcp ^ UMEM_BUFTAG_FREE; - copy_pattern(UMEM_FREE_PATTERN, buf, cp->cache_verify); - umem_slab_free(cp, buf); - return (-1); - } - - if (cp->cache_flags & UMF_AUDIT) { - UMEM_AUDIT(umem_transaction_log, cp, bcp); - } - - return (0); -} - -static int -umem_cache_free_debug(umem_cache_t *cp, void *buf) -{ - umem_buftag_t *btp = UMEM_BUFTAG(cp, buf); - umem_bufctl_audit_t *bcp = (umem_bufctl_audit_t *)btp->bt_bufctl; - umem_slab_t *sp; - - if (btp->bt_bxstat != ((intptr_t)bcp ^ UMEM_BUFTAG_ALLOC)) { - if (btp->bt_bxstat == ((intptr_t)bcp ^ UMEM_BUFTAG_FREE)) { - umem_error(UMERR_DUPFREE, cp, buf); - return (-1); - } - sp = umem_findslab(cp, buf); - if (sp == NULL || sp->slab_cache != cp) - umem_error(UMERR_BADADDR, cp, buf); - else - umem_error(UMERR_REDZONE, cp, buf); - return (-1); - } - - btp->bt_bxstat = (intptr_t)bcp ^ UMEM_BUFTAG_FREE; - - if ((cp->cache_flags & UMF_HASH) && bcp->bc_addr != buf) { - umem_error(UMERR_BADBUFCTL, cp, buf); - return (-1); - } - - if (btp->bt_redzone != UMEM_REDZONE_PATTERN) { - umem_error(UMERR_REDZONE, cp, buf); - return (-1); - } - - if (cp->cache_flags & UMF_AUDIT) { - if (cp->cache_flags & UMF_CONTENTS) - bcp->bc_contents = umem_log_enter(umem_content_log, - buf, cp->cache_contents); - UMEM_AUDIT(umem_transaction_log, cp, bcp); - } - - if (cp->cache_destructor != NULL) - cp->cache_destructor(buf, cp->cache_private); - - if (cp->cache_flags & UMF_DEADBEEF) - copy_pattern(UMEM_FREE_PATTERN, buf, cp->cache_verify); - - return (0); -} - -/* - * Free each object in magazine mp to cp's slab layer, and free mp itself. - */ -static void -umem_magazine_destroy(umem_cache_t *cp, umem_magazine_t *mp, int nrounds) -{ - int round; - - ASSERT(cp->cache_next == NULL || IN_UPDATE()); - - for (round = 0; round < nrounds; round++) { - void *buf = mp->mag_round[round]; - - if ((cp->cache_flags & UMF_DEADBEEF) && - verify_pattern(UMEM_FREE_PATTERN, buf, - cp->cache_verify) != NULL) { - umem_error(UMERR_MODIFIED, cp, buf); - continue; - } - - if (!(cp->cache_flags & UMF_BUFTAG) && - cp->cache_destructor != NULL) - cp->cache_destructor(buf, cp->cache_private); - - umem_slab_free(cp, buf); - } - ASSERT(UMEM_MAGAZINE_VALID(cp, mp)); - _umem_cache_free(cp->cache_magtype->mt_cache, mp); -} - -/* - * Allocate a magazine from the depot. - */ -static umem_magazine_t * -umem_depot_alloc(umem_cache_t *cp, umem_maglist_t *mlp) -{ - umem_magazine_t *mp; - - /* - * If we can't get the depot lock without contention, - * update our contention count. We use the depot - * contention rate to determine whether we need to - * increase the magazine size for better scalability. - */ - if (mutex_trylock(&cp->cache_depot_lock) != 0) { - (void) mutex_lock(&cp->cache_depot_lock); - cp->cache_depot_contention++; - } - - if ((mp = mlp->ml_list) != NULL) { - ASSERT(UMEM_MAGAZINE_VALID(cp, mp)); - mlp->ml_list = mp->mag_next; - if (--mlp->ml_total < mlp->ml_min) - mlp->ml_min = mlp->ml_total; - mlp->ml_alloc++; - } - - (void) mutex_unlock(&cp->cache_depot_lock); - - return (mp); -} - -/* - * Free a magazine to the depot. - */ -static void -umem_depot_free(umem_cache_t *cp, umem_maglist_t *mlp, umem_magazine_t *mp) -{ - (void) mutex_lock(&cp->cache_depot_lock); - ASSERT(UMEM_MAGAZINE_VALID(cp, mp)); - mp->mag_next = mlp->ml_list; - mlp->ml_list = mp; - mlp->ml_total++; - (void) mutex_unlock(&cp->cache_depot_lock); -} - -/* - * Update the working set statistics for cp's depot. - */ -static void -umem_depot_ws_update(umem_cache_t *cp) -{ - (void) mutex_lock(&cp->cache_depot_lock); - cp->cache_full.ml_reaplimit = cp->cache_full.ml_min; - cp->cache_full.ml_min = cp->cache_full.ml_total; - cp->cache_empty.ml_reaplimit = cp->cache_empty.ml_min; - cp->cache_empty.ml_min = cp->cache_empty.ml_total; - (void) mutex_unlock(&cp->cache_depot_lock); -} - -/* - * Reap all magazines that have fallen out of the depot's working set. - */ -static void -umem_depot_ws_reap(umem_cache_t *cp) -{ - long reap; - umem_magazine_t *mp; - - ASSERT(cp->cache_next == NULL || IN_REAP()); - - reap = MIN(cp->cache_full.ml_reaplimit, cp->cache_full.ml_min); - while (reap-- && (mp = umem_depot_alloc(cp, &cp->cache_full)) != NULL) - umem_magazine_destroy(cp, mp, cp->cache_magtype->mt_magsize); - - reap = MIN(cp->cache_empty.ml_reaplimit, cp->cache_empty.ml_min); - while (reap-- && (mp = umem_depot_alloc(cp, &cp->cache_empty)) != NULL) - umem_magazine_destroy(cp, mp, 0); -} - -static void -umem_cpu_reload(umem_cpu_cache_t *ccp, umem_magazine_t *mp, int rounds) -{ - ASSERT((ccp->cc_loaded == NULL && ccp->cc_rounds == -1) || - (ccp->cc_loaded && ccp->cc_rounds + rounds == ccp->cc_magsize)); - ASSERT(ccp->cc_magsize > 0); - - ccp->cc_ploaded = ccp->cc_loaded; - ccp->cc_prounds = ccp->cc_rounds; - ccp->cc_loaded = mp; - ccp->cc_rounds = rounds; -} - -/* - * Allocate a constructed object from cache cp. - */ -#pragma weak umem_cache_alloc = _umem_cache_alloc -void * -_umem_cache_alloc(umem_cache_t *cp, int umflag) -{ - umem_cpu_cache_t *ccp; - umem_magazine_t *fmp; - void *buf; - int flags_nfatal; - -retry: - ccp = UMEM_CPU_CACHE(cp, CPU(cp->cache_cpu_mask)); - (void) mutex_lock(&ccp->cc_lock); - for (;;) { - /* - * If there's an object available in the current CPU's - * loaded magazine, just take it and return. - */ - if (ccp->cc_rounds > 0) { - buf = ccp->cc_loaded->mag_round[--ccp->cc_rounds]; - ccp->cc_alloc++; - (void) mutex_unlock(&ccp->cc_lock); - if ((ccp->cc_flags & UMF_BUFTAG) && - umem_cache_alloc_debug(cp, buf, umflag) == -1) { - if (umem_alloc_retry(cp, umflag)) { - goto retry; - } - - return (NULL); - } - return (buf); - } - - /* - * The loaded magazine is empty. If the previously loaded - * magazine was full, exchange them and try again. - */ - if (ccp->cc_prounds > 0) { - umem_cpu_reload(ccp, ccp->cc_ploaded, ccp->cc_prounds); - continue; - } - - /* - * If the magazine layer is disabled, break out now. - */ - if (ccp->cc_magsize == 0) - break; - - /* - * Try to get a full magazine from the depot. - */ - fmp = umem_depot_alloc(cp, &cp->cache_full); - if (fmp != NULL) { - if (ccp->cc_ploaded != NULL) - umem_depot_free(cp, &cp->cache_empty, - ccp->cc_ploaded); - umem_cpu_reload(ccp, fmp, ccp->cc_magsize); - continue; - } - - /* - * There are no full magazines in the depot, - * so fall through to the slab layer. - */ - break; - } - (void) mutex_unlock(&ccp->cc_lock); - - /* - * We couldn't allocate a constructed object from the magazine layer, - * so get a raw buffer from the slab layer and apply its constructor. - */ - buf = umem_slab_alloc(cp, umflag); - - if (buf == NULL) { - if (cp == &umem_null_cache) - return (NULL); - if (umem_alloc_retry(cp, umflag)) { - goto retry; - } - - return (NULL); - } - - if (cp->cache_flags & UMF_BUFTAG) { - /* - * Let umem_cache_alloc_debug() apply the constructor for us. - */ - if (umem_cache_alloc_debug(cp, buf, umflag) == -1) { - if (umem_alloc_retry(cp, umflag)) { - goto retry; - } - return (NULL); - } - return (buf); - } - - /* - * We do not pass fatal flags on to the constructor. This prevents - * leaking buffers in the event of a subordinate constructor failing. - */ - flags_nfatal = UMEM_DEFAULT; - if (cp->cache_constructor != NULL && - cp->cache_constructor(buf, cp->cache_private, flags_nfatal) != 0) { - atomic_add_64(&cp->cache_alloc_fail, 1); - umem_slab_free(cp, buf); - - if (umem_alloc_retry(cp, umflag)) { - goto retry; - } - return (NULL); - } - - return (buf); -} - -/* - * Free a constructed object to cache cp. - */ -#pragma weak umem_cache_free = _umem_cache_free -void -_umem_cache_free(umem_cache_t *cp, void *buf) -{ - umem_cpu_cache_t *ccp = UMEM_CPU_CACHE(cp, CPU(cp->cache_cpu_mask)); - umem_magazine_t *emp; - umem_magtype_t *mtp; - - if (ccp->cc_flags & UMF_BUFTAG) - if (umem_cache_free_debug(cp, buf) == -1) - return; - - (void) mutex_lock(&ccp->cc_lock); - for (;;) { - /* - * If there's a slot available in the current CPU's - * loaded magazine, just put the object there and return. - */ - if ((uint_t)ccp->cc_rounds < ccp->cc_magsize) { - ccp->cc_loaded->mag_round[ccp->cc_rounds++] = buf; - ccp->cc_free++; - (void) mutex_unlock(&ccp->cc_lock); - return; - } - - /* - * The loaded magazine is full. If the previously loaded - * magazine was empty, exchange them and try again. - */ - if (ccp->cc_prounds == 0) { - umem_cpu_reload(ccp, ccp->cc_ploaded, ccp->cc_prounds); - continue; - } - - /* - * If the magazine layer is disabled, break out now. - */ - if (ccp->cc_magsize == 0) - break; - - /* - * Try to get an empty magazine from the depot. - */ - emp = umem_depot_alloc(cp, &cp->cache_empty); - if (emp != NULL) { - if (ccp->cc_ploaded != NULL) - umem_depot_free(cp, &cp->cache_full, - ccp->cc_ploaded); - umem_cpu_reload(ccp, emp, 0); - continue; - } - - /* - * There are no empty magazines in the depot, - * so try to allocate a new one. We must drop all locks - * across umem_cache_alloc() because lower layers may - * attempt to allocate from this cache. - */ - mtp = cp->cache_magtype; - (void) mutex_unlock(&ccp->cc_lock); - emp = _umem_cache_alloc(mtp->mt_cache, UMEM_DEFAULT); - (void) mutex_lock(&ccp->cc_lock); - - if (emp != NULL) { - /* - * We successfully allocated an empty magazine. - * However, we had to drop ccp->cc_lock to do it, - * so the cache's magazine size may have changed. - * If so, free the magazine and try again. - */ - if (ccp->cc_magsize != mtp->mt_magsize) { - (void) mutex_unlock(&ccp->cc_lock); - _umem_cache_free(mtp->mt_cache, emp); - (void) mutex_lock(&ccp->cc_lock); - continue; - } - - /* - * We got a magazine of the right size. Add it to - * the depot and try the whole dance again. - */ - umem_depot_free(cp, &cp->cache_empty, emp); - continue; - } - - /* - * We couldn't allocate an empty magazine, - * so fall through to the slab layer. - */ - break; - } - (void) mutex_unlock(&ccp->cc_lock); - - /* - * We couldn't free our constructed object to the magazine layer, - * so apply its destructor and free it to the slab layer. - * Note that if UMF_BUFTAG is in effect, umem_cache_free_debug() - * will have already applied the destructor. - */ - if (!(cp->cache_flags & UMF_BUFTAG) && cp->cache_destructor != NULL) - cp->cache_destructor(buf, cp->cache_private); - - umem_slab_free(cp, buf); -} - -#pragma weak umem_zalloc = _umem_zalloc -void * -_umem_zalloc(size_t size, int umflag) -{ - size_t index = (size - 1) >> UMEM_ALIGN_SHIFT; - void *buf; - -retry: - if (index < UMEM_MAXBUF >> UMEM_ALIGN_SHIFT) { - umem_cache_t *cp = umem_alloc_table[index]; - buf = _umem_cache_alloc(cp, umflag); - if (buf != NULL) { - if (cp->cache_flags & UMF_BUFTAG) { - umem_buftag_t *btp = UMEM_BUFTAG(cp, buf); - ((uint8_t *)buf)[size] = UMEM_REDZONE_BYTE; - ((uint32_t *)btp)[1] = UMEM_SIZE_ENCODE(size); - } - bzero(buf, size); - } else if (umem_alloc_retry(cp, umflag)) - goto retry; - } else { - buf = _umem_alloc(size, umflag); /* handles failure */ - if (buf != NULL) - bzero(buf, size); - } - return (buf); -} - -#pragma weak umem_alloc = _umem_alloc -void * -_umem_alloc(size_t size, int umflag) -{ - size_t index = (size - 1) >> UMEM_ALIGN_SHIFT; - void *buf; -umem_alloc_retry: - if (index < UMEM_MAXBUF >> UMEM_ALIGN_SHIFT) { - umem_cache_t *cp = umem_alloc_table[index]; - buf = _umem_cache_alloc(cp, umflag); - if ((cp->cache_flags & UMF_BUFTAG) && buf != NULL) { - umem_buftag_t *btp = UMEM_BUFTAG(cp, buf); - ((uint8_t *)buf)[size] = UMEM_REDZONE_BYTE; - ((uint32_t *)btp)[1] = UMEM_SIZE_ENCODE(size); - } - if (buf == NULL && umem_alloc_retry(cp, umflag)) - goto umem_alloc_retry; - return (buf); - } - if (size == 0) - return (NULL); - if (umem_oversize_arena == NULL) { - if (umem_init()) - ASSERT(umem_oversize_arena != NULL); - else - return (NULL); - } - buf = vmem_alloc(umem_oversize_arena, size, UMEM_VMFLAGS(umflag)); - if (buf == NULL) { - umem_log_event(umem_failure_log, NULL, NULL, (void *)size); - if (umem_alloc_retry(NULL, umflag)) - goto umem_alloc_retry; - } - return (buf); -} - -#pragma weak umem_alloc_align = _umem_alloc_align -void * -_umem_alloc_align(size_t size, size_t align, int umflag) -{ - void *buf; - - if (size == 0) - return (NULL); - if ((align & (align - 1)) != 0) - return (NULL); - if (align < UMEM_ALIGN) - align = UMEM_ALIGN; - -umem_alloc_align_retry: - if (umem_memalign_arena == NULL) { - if (umem_init()) - ASSERT(umem_oversize_arena != NULL); - else - return (NULL); - } - buf = vmem_xalloc(umem_memalign_arena, size, align, 0, 0, NULL, NULL, - UMEM_VMFLAGS(umflag)); - if (buf == NULL) { - umem_log_event(umem_failure_log, NULL, NULL, (void *)size); - if (umem_alloc_retry(NULL, umflag)) - goto umem_alloc_align_retry; - } - return (buf); -} - -#pragma weak umem_free = _umem_free -void -_umem_free(void *buf, size_t size) -{ - size_t index = (size - 1) >> UMEM_ALIGN_SHIFT; - - if (index < UMEM_MAXBUF >> UMEM_ALIGN_SHIFT) { - umem_cache_t *cp = umem_alloc_table[index]; - if (cp->cache_flags & UMF_BUFTAG) { - umem_buftag_t *btp = UMEM_BUFTAG(cp, buf); - uint32_t *ip = (uint32_t *)btp; - if (ip[1] != UMEM_SIZE_ENCODE(size)) { - if (*(uint64_t *)buf == UMEM_FREE_PATTERN) { - umem_error(UMERR_DUPFREE, cp, buf); - return; - } - if (UMEM_SIZE_VALID(ip[1])) { - ip[0] = UMEM_SIZE_ENCODE(size); - umem_error(UMERR_BADSIZE, cp, buf); - } else { - umem_error(UMERR_REDZONE, cp, buf); - } - return; - } - if (((uint8_t *)buf)[size] != UMEM_REDZONE_BYTE) { - umem_error(UMERR_REDZONE, cp, buf); - return; - } - btp->bt_redzone = UMEM_REDZONE_PATTERN; - } - _umem_cache_free(cp, buf); - } else { - if (buf == NULL && size == 0) - return; - vmem_free(umem_oversize_arena, buf, size); - } -} - -#pragma weak umem_free_align = _umem_free_align -void -_umem_free_align(void *buf, size_t size) -{ - if (buf == NULL && size == 0) - return; - vmem_xfree(umem_memalign_arena, buf, size); -} - -static void * -umem_firewall_va_alloc(vmem_t *vmp, size_t size, int vmflag) -{ - size_t realsize = size + vmp->vm_quantum; - - /* - * Annoying edge case: if 'size' is just shy of ULONG_MAX, adding - * vm_quantum will cause integer wraparound. Check for this, and - * blow off the firewall page in this case. Note that such a - * giant allocation (the entire address space) can never be - * satisfied, so it will either fail immediately (VM_NOSLEEP) - * or sleep forever (VM_SLEEP). Thus, there is no need for a - * corresponding check in umem_firewall_va_free(). - */ - if (realsize < size) - realsize = size; - - return (vmem_alloc(vmp, realsize, vmflag | VM_NEXTFIT)); -} - -static void -umem_firewall_va_free(vmem_t *vmp, void *addr, size_t size) -{ - vmem_free(vmp, addr, size + vmp->vm_quantum); -} - -/* - * Reclaim all unused memory from a cache. - */ -static void -umem_cache_reap(umem_cache_t *cp) -{ - /* - * Ask the cache's owner to free some memory if possible. - * The idea is to handle things like the inode cache, which - * typically sits on a bunch of memory that it doesn't truly - * *need*. Reclaim policy is entirely up to the owner; this - * callback is just an advisory plea for help. - */ - if (cp->cache_reclaim != NULL) - cp->cache_reclaim(cp->cache_private); - - umem_depot_ws_reap(cp); -} - -/* - * Purge all magazines from a cache and set its magazine limit to zero. - * All calls are serialized by being done by the update thread, except for - * the final call from umem_cache_destroy(). - */ -static void -umem_cache_magazine_purge(umem_cache_t *cp) -{ - umem_cpu_cache_t *ccp; - umem_magazine_t *mp, *pmp; - int rounds, prounds, cpu_seqid; - - ASSERT(cp->cache_next == NULL || IN_UPDATE()); - - for (cpu_seqid = 0; cpu_seqid < umem_max_ncpus; cpu_seqid++) { - ccp = &cp->cache_cpu[cpu_seqid]; - - (void) mutex_lock(&ccp->cc_lock); - mp = ccp->cc_loaded; - pmp = ccp->cc_ploaded; - rounds = ccp->cc_rounds; - prounds = ccp->cc_prounds; - ccp->cc_loaded = NULL; - ccp->cc_ploaded = NULL; - ccp->cc_rounds = -1; - ccp->cc_prounds = -1; - ccp->cc_magsize = 0; - (void) mutex_unlock(&ccp->cc_lock); - - if (mp) - umem_magazine_destroy(cp, mp, rounds); - if (pmp) - umem_magazine_destroy(cp, pmp, prounds); - } - - /* - * Updating the working set statistics twice in a row has the - * effect of setting the working set size to zero, so everything - * is eligible for reaping. - */ - umem_depot_ws_update(cp); - umem_depot_ws_update(cp); - - umem_depot_ws_reap(cp); -} - -/* - * Enable per-cpu magazines on a cache. - */ -static void -umem_cache_magazine_enable(umem_cache_t *cp) -{ - int cpu_seqid; - - if (cp->cache_flags & UMF_NOMAGAZINE) - return; - - for (cpu_seqid = 0; cpu_seqid < umem_max_ncpus; cpu_seqid++) { - umem_cpu_cache_t *ccp = &cp->cache_cpu[cpu_seqid]; - (void) mutex_lock(&ccp->cc_lock); - ccp->cc_magsize = cp->cache_magtype->mt_magsize; - (void) mutex_unlock(&ccp->cc_lock); - } - -} - -/* - * Recompute a cache's magazine size. The trade-off is that larger magazines - * provide a higher transfer rate with the depot, while smaller magazines - * reduce memory consumption. Magazine resizing is an expensive operation; - * it should not be done frequently. - * - * Changes to the magazine size are serialized by only having one thread - * doing updates. (the update thread) - * - * Note: at present this only grows the magazine size. It might be useful - * to allow shrinkage too. - */ -static void -umem_cache_magazine_resize(umem_cache_t *cp) -{ - umem_magtype_t *mtp = cp->cache_magtype; - - ASSERT(IN_UPDATE()); - - if (cp->cache_chunksize < mtp->mt_maxbuf) { - umem_cache_magazine_purge(cp); - (void) mutex_lock(&cp->cache_depot_lock); - cp->cache_magtype = ++mtp; - cp->cache_depot_contention_prev = - cp->cache_depot_contention + INT_MAX; - (void) mutex_unlock(&cp->cache_depot_lock); - umem_cache_magazine_enable(cp); - } -} - -/* - * Rescale a cache's hash table, so that the table size is roughly the - * cache size. We want the average lookup time to be extremely small. - */ -static void -umem_hash_rescale(umem_cache_t *cp) -{ - umem_bufctl_t **old_table, **new_table, *bcp; - size_t old_size, new_size, h; - - ASSERT(IN_UPDATE()); - - new_size = MAX(UMEM_HASH_INITIAL, - 1 << (highbit(3 * cp->cache_buftotal + 4) - 2)); - old_size = cp->cache_hash_mask + 1; - - if ((old_size >> 1) <= new_size && new_size <= (old_size << 1)) - return; - - new_table = vmem_alloc(umem_hash_arena, new_size * sizeof (void *), - VM_NOSLEEP); - if (new_table == NULL) - return; - bzero(new_table, new_size * sizeof (void *)); - - (void) mutex_lock(&cp->cache_lock); - - old_size = cp->cache_hash_mask + 1; - old_table = cp->cache_hash_table; - - cp->cache_hash_mask = new_size - 1; - cp->cache_hash_table = new_table; - cp->cache_rescale++; - - for (h = 0; h < old_size; h++) { - bcp = old_table[h]; - while (bcp != NULL) { - void *addr = bcp->bc_addr; - umem_bufctl_t *next_bcp = bcp->bc_next; - umem_bufctl_t **hash_bucket = UMEM_HASH(cp, addr); - bcp->bc_next = *hash_bucket; - *hash_bucket = bcp; - bcp = next_bcp; - } - } - - (void) mutex_unlock(&cp->cache_lock); - - vmem_free(umem_hash_arena, old_table, old_size * sizeof (void *)); -} - -/* - * Perform periodic maintenance on a cache: hash rescaling, - * depot working-set update, and magazine resizing. - */ -void -umem_cache_update(umem_cache_t *cp) -{ - int update_flags = 0; - - ASSERT(MUTEX_HELD(&umem_cache_lock)); - - /* - * If the cache has become much larger or smaller than its hash table, - * fire off a request to rescale the hash table. - */ - (void) mutex_lock(&cp->cache_lock); - - if ((cp->cache_flags & UMF_HASH) && - (cp->cache_buftotal > (cp->cache_hash_mask << 1) || - (cp->cache_buftotal < (cp->cache_hash_mask >> 1) && - cp->cache_hash_mask > UMEM_HASH_INITIAL))) - update_flags |= UMU_HASH_RESCALE; - - (void) mutex_unlock(&cp->cache_lock); - - /* - * Update the depot working set statistics. - */ - umem_depot_ws_update(cp); - - /* - * If there's a lot of contention in the depot, - * increase the magazine size. - */ - (void) mutex_lock(&cp->cache_depot_lock); - - if (cp->cache_chunksize < cp->cache_magtype->mt_maxbuf && - (int)(cp->cache_depot_contention - - cp->cache_depot_contention_prev) > umem_depot_contention) - update_flags |= UMU_MAGAZINE_RESIZE; - - cp->cache_depot_contention_prev = cp->cache_depot_contention; - - (void) mutex_unlock(&cp->cache_depot_lock); - - if (update_flags) - umem_add_update(cp, update_flags); -} - -/* - * Runs all pending updates. - * - * The update lock must be held on entrance, and will be held on exit. - */ -void -umem_process_updates(void) -{ - ASSERT(MUTEX_HELD(&umem_update_lock)); - - while (umem_null_cache.cache_unext != &umem_null_cache) { - int notify = 0; - umem_cache_t *cp = umem_null_cache.cache_unext; - - cp->cache_uprev->cache_unext = cp->cache_unext; - cp->cache_unext->cache_uprev = cp->cache_uprev; - cp->cache_uprev = cp->cache_unext = NULL; - - ASSERT(!(cp->cache_uflags & UMU_ACTIVE)); - - while (cp->cache_uflags) { - int uflags = (cp->cache_uflags |= UMU_ACTIVE); - (void) mutex_unlock(&umem_update_lock); - - /* - * The order here is important. Each step can speed up - * later steps. - */ - - if (uflags & UMU_HASH_RESCALE) - umem_hash_rescale(cp); - - if (uflags & UMU_MAGAZINE_RESIZE) - umem_cache_magazine_resize(cp); - - if (uflags & UMU_REAP) - umem_cache_reap(cp); - - (void) mutex_lock(&umem_update_lock); - - /* - * check if anyone has requested notification - */ - if (cp->cache_uflags & UMU_NOTIFY) { - uflags |= UMU_NOTIFY; - notify = 1; - } - cp->cache_uflags &= ~uflags; - } - if (notify) - (void) cond_broadcast(&umem_update_cv); - } -} - -#ifndef UMEM_STANDALONE -static void -umem_st_update(void) -{ - ASSERT(MUTEX_HELD(&umem_update_lock)); - ASSERT(umem_update_thr == 0 && umem_st_update_thr == 0); - - umem_st_update_thr = thr_self(); - - (void) mutex_unlock(&umem_update_lock); - - vmem_update(NULL); - umem_cache_applyall(umem_cache_update); - - (void) mutex_lock(&umem_update_lock); - - umem_process_updates(); /* does all of the requested work */ - - umem_reap_next = gethrtime() + - (hrtime_t)umem_reap_interval * NANOSEC; - - umem_reaping = UMEM_REAP_DONE; - - umem_st_update_thr = 0; -} -#endif - -/* - * Reclaim all unused memory from all caches. Called from vmem when memory - * gets tight. Must be called with no locks held. - * - * This just requests a reap on all caches, and notifies the update thread. - */ -void -umem_reap(void) -{ -#ifndef UMEM_STANDALONE - extern int __nthreads(void); -#endif - - if (umem_ready != UMEM_READY || umem_reaping != UMEM_REAP_DONE || - gethrtime() < umem_reap_next) - return; - - (void) mutex_lock(&umem_update_lock); - - if (umem_reaping != UMEM_REAP_DONE || gethrtime() < umem_reap_next) { - (void) mutex_unlock(&umem_update_lock); - return; - } - umem_reaping = UMEM_REAP_ADDING; /* lock out other reaps */ - - (void) mutex_unlock(&umem_update_lock); - - umem_updateall(UMU_REAP); - - (void) mutex_lock(&umem_update_lock); - - umem_reaping = UMEM_REAP_ACTIVE; - - /* Standalone is single-threaded */ -#ifndef UMEM_STANDALONE - if (umem_update_thr == 0) { - /* - * The update thread does not exist. If the process is - * multi-threaded, create it. If not, or the creation fails, - * do the update processing inline. - */ - ASSERT(umem_st_update_thr == 0); - - if (__nthreads() <= 1 || umem_create_update_thread() == 0) - umem_st_update(); - } - - (void) cond_broadcast(&umem_update_cv); /* wake up the update thread */ -#endif - - (void) mutex_unlock(&umem_update_lock); -} - -umem_cache_t * -umem_cache_create( - char *name, /* descriptive name for this cache */ - size_t bufsize, /* size of the objects it manages */ - size_t align, /* required object alignment */ - umem_constructor_t *constructor, /* object constructor */ - umem_destructor_t *destructor, /* object destructor */ - umem_reclaim_t *reclaim, /* memory reclaim callback */ - void *private, /* pass-thru arg for constr/destr/reclaim */ - vmem_t *vmp, /* vmem source for slab allocation */ - int cflags) /* cache creation flags */ -{ - int cpu_seqid; - size_t chunksize; - umem_cache_t *cp, *cnext, *cprev; - umem_magtype_t *mtp; - size_t csize; - size_t phase; - - /* - * The init thread is allowed to create internal and quantum caches. - * - * Other threads must wait until until initialization is complete. - */ - if (umem_init_thr == thr_self()) - ASSERT((cflags & (UMC_INTERNAL | UMC_QCACHE)) != 0); - else { - ASSERT(!(cflags & UMC_INTERNAL)); - if (umem_ready != UMEM_READY && umem_init() == 0) { - errno = EAGAIN; - return (NULL); - } - } - - csize = UMEM_CACHE_SIZE(umem_max_ncpus); - phase = P2NPHASE(csize, UMEM_CPU_CACHE_SIZE); - - if (vmp == NULL) - vmp = umem_default_arena; - - ASSERT(P2PHASE(phase, UMEM_ALIGN) == 0); - - /* - * Check that the arguments are reasonable - */ - if ((align & (align - 1)) != 0 || align > vmp->vm_quantum || - ((cflags & UMC_NOHASH) && (cflags & UMC_NOTOUCH)) || - name == NULL || bufsize == 0) { - errno = EINVAL; - return (NULL); - } - - /* - * If align == 0, we set it to the minimum required alignment. - * - * If align < UMEM_ALIGN, we round it up to UMEM_ALIGN, unless - * UMC_NOTOUCH was passed. - */ - if (align == 0) { - if (P2ROUNDUP(bufsize, UMEM_ALIGN) >= UMEM_SECOND_ALIGN) - align = UMEM_SECOND_ALIGN; - else - align = UMEM_ALIGN; - } else if (align < UMEM_ALIGN && (cflags & UMC_NOTOUCH) == 0) - align = UMEM_ALIGN; - - - /* - * Get a umem_cache structure. We arrange that cp->cache_cpu[] - * is aligned on a UMEM_CPU_CACHE_SIZE boundary to prevent - * false sharing of per-CPU data. - */ - cp = vmem_xalloc(umem_cache_arena, csize, UMEM_CPU_CACHE_SIZE, phase, - 0, NULL, NULL, VM_NOSLEEP); - - if (cp == NULL) { - errno = EAGAIN; - return (NULL); - } - - bzero(cp, csize); - - (void) mutex_lock(&umem_flags_lock); - if (umem_flags & UMF_RANDOMIZE) - umem_flags = (((umem_flags | ~UMF_RANDOM) + 1) & UMF_RANDOM) | - UMF_RANDOMIZE; - cp->cache_flags = umem_flags | (cflags & UMF_DEBUG); - (void) mutex_unlock(&umem_flags_lock); - - /* - * Make sure all the various flags are reasonable. - */ - if (cp->cache_flags & UMF_LITE) { - if (bufsize >= umem_lite_minsize && - align <= umem_lite_maxalign && - P2PHASE(bufsize, umem_lite_maxalign) != 0) { - cp->cache_flags |= UMF_BUFTAG; - cp->cache_flags &= ~(UMF_AUDIT | UMF_FIREWALL); - } else { - cp->cache_flags &= ~UMF_DEBUG; - } - } - - if ((cflags & UMC_QCACHE) && (cp->cache_flags & UMF_AUDIT)) - cp->cache_flags |= UMF_NOMAGAZINE; - - if (cflags & UMC_NODEBUG) - cp->cache_flags &= ~UMF_DEBUG; - - if (cflags & UMC_NOTOUCH) - cp->cache_flags &= ~UMF_TOUCH; - - if (cflags & UMC_NOHASH) - cp->cache_flags &= ~(UMF_AUDIT | UMF_FIREWALL); - - if (cflags & UMC_NOMAGAZINE) - cp->cache_flags |= UMF_NOMAGAZINE; - - if ((cp->cache_flags & UMF_AUDIT) && !(cflags & UMC_NOTOUCH)) - cp->cache_flags |= UMF_REDZONE; - - if ((cp->cache_flags & UMF_BUFTAG) && bufsize >= umem_minfirewall && - !(cp->cache_flags & UMF_LITE) && !(cflags & UMC_NOHASH)) - cp->cache_flags |= UMF_FIREWALL; - - if (vmp != umem_default_arena || umem_firewall_arena == NULL) - cp->cache_flags &= ~UMF_FIREWALL; - - if (cp->cache_flags & UMF_FIREWALL) { - cp->cache_flags &= ~UMF_BUFTAG; - cp->cache_flags |= UMF_NOMAGAZINE; - ASSERT(vmp == umem_default_arena); - vmp = umem_firewall_arena; - } - - /* - * Set cache properties. - */ - (void) strncpy(cp->cache_name, name, sizeof (cp->cache_name) - 1); - cp->cache_bufsize = bufsize; - cp->cache_align = align; - cp->cache_constructor = constructor; - cp->cache_destructor = destructor; - cp->cache_reclaim = reclaim; - cp->cache_private = private; - cp->cache_arena = vmp; - cp->cache_cflags = cflags; - cp->cache_cpu_mask = umem_cpu_mask; - - /* - * Determine the chunk size. - */ - chunksize = bufsize; - - if (align >= UMEM_ALIGN) { - chunksize = P2ROUNDUP(chunksize, UMEM_ALIGN); - cp->cache_bufctl = chunksize - UMEM_ALIGN; - } - - if (cp->cache_flags & UMF_BUFTAG) { - cp->cache_bufctl = chunksize; - cp->cache_buftag = chunksize; - chunksize += sizeof (umem_buftag_t); - } - - if (cp->cache_flags & UMF_DEADBEEF) { - cp->cache_verify = MIN(cp->cache_buftag, umem_maxverify); - if (cp->cache_flags & UMF_LITE) - cp->cache_verify = MIN(cp->cache_verify, UMEM_ALIGN); - } - - cp->cache_contents = MIN(cp->cache_bufctl, umem_content_maxsave); - - cp->cache_chunksize = chunksize = P2ROUNDUP(chunksize, align); - - if (chunksize < bufsize) { - errno = ENOMEM; - goto fail; - } - - /* - * Now that we know the chunk size, determine the optimal slab size. - */ - if (vmp == umem_firewall_arena) { - cp->cache_slabsize = P2ROUNDUP(chunksize, vmp->vm_quantum); - cp->cache_mincolor = cp->cache_slabsize - chunksize; - cp->cache_maxcolor = cp->cache_mincolor; - cp->cache_flags |= UMF_HASH; - ASSERT(!(cp->cache_flags & UMF_BUFTAG)); - } else if ((cflags & UMC_NOHASH) || (!(cflags & UMC_NOTOUCH) && - !(cp->cache_flags & UMF_AUDIT) && - chunksize < vmp->vm_quantum / UMEM_VOID_FRACTION)) { - cp->cache_slabsize = vmp->vm_quantum; - cp->cache_mincolor = 0; - cp->cache_maxcolor = - (cp->cache_slabsize - sizeof (umem_slab_t)) % chunksize; - - if (chunksize + sizeof (umem_slab_t) > cp->cache_slabsize) { - errno = EINVAL; - goto fail; - } - ASSERT(!(cp->cache_flags & UMF_AUDIT)); - } else { - size_t chunks, bestfit, waste, slabsize; - size_t minwaste = LONG_MAX; - - for (chunks = 1; chunks <= UMEM_VOID_FRACTION; chunks++) { - slabsize = P2ROUNDUP(chunksize * chunks, - vmp->vm_quantum); - /* - * check for overflow - */ - if ((slabsize / chunks) < chunksize) { - errno = ENOMEM; - goto fail; - } - chunks = slabsize / chunksize; - waste = (slabsize % chunksize) / chunks; - if (waste < minwaste) { - minwaste = waste; - bestfit = slabsize; - } - } - if (cflags & UMC_QCACHE) - bestfit = MAX(1 << highbit(3 * vmp->vm_qcache_max), 64); - cp->cache_slabsize = bestfit; - cp->cache_mincolor = 0; - cp->cache_maxcolor = bestfit % chunksize; - cp->cache_flags |= UMF_HASH; - } - - if (cp->cache_flags & UMF_HASH) { - ASSERT(!(cflags & UMC_NOHASH)); - cp->cache_bufctl_cache = (cp->cache_flags & UMF_AUDIT) ? - umem_bufctl_audit_cache : umem_bufctl_cache; - } - - if (cp->cache_maxcolor >= vmp->vm_quantum) - cp->cache_maxcolor = vmp->vm_quantum - 1; - - cp->cache_color = cp->cache_mincolor; - - /* - * Initialize the rest of the slab layer. - */ - (void) mutex_init(&cp->cache_lock, USYNC_THREAD, NULL); - - cp->cache_freelist = &cp->cache_nullslab; - cp->cache_nullslab.slab_cache = cp; - cp->cache_nullslab.slab_refcnt = -1; - cp->cache_nullslab.slab_next = &cp->cache_nullslab; - cp->cache_nullslab.slab_prev = &cp->cache_nullslab; - - if (cp->cache_flags & UMF_HASH) { - cp->cache_hash_table = vmem_alloc(umem_hash_arena, - UMEM_HASH_INITIAL * sizeof (void *), VM_NOSLEEP); - if (cp->cache_hash_table == NULL) { - errno = EAGAIN; - goto fail_lock; - } - bzero(cp->cache_hash_table, - UMEM_HASH_INITIAL * sizeof (void *)); - cp->cache_hash_mask = UMEM_HASH_INITIAL - 1; - cp->cache_hash_shift = highbit((ulong_t)chunksize) - 1; - } - - /* - * Initialize the depot. - */ - (void) mutex_init(&cp->cache_depot_lock, USYNC_THREAD, NULL); - - for (mtp = umem_magtype; chunksize <= mtp->mt_minbuf; mtp++) - continue; - - cp->cache_magtype = mtp; - - /* - * Initialize the CPU layer. - */ - for (cpu_seqid = 0; cpu_seqid < umem_max_ncpus; cpu_seqid++) { - umem_cpu_cache_t *ccp = &cp->cache_cpu[cpu_seqid]; - (void) mutex_init(&ccp->cc_lock, USYNC_THREAD, NULL); - ccp->cc_flags = cp->cache_flags; - ccp->cc_rounds = -1; - ccp->cc_prounds = -1; - } - - /* - * Add the cache to the global list. This makes it visible - * to umem_update(), so the cache must be ready for business. - */ - (void) mutex_lock(&umem_cache_lock); - cp->cache_next = cnext = &umem_null_cache; - cp->cache_prev = cprev = umem_null_cache.cache_prev; - cnext->cache_prev = cp; - cprev->cache_next = cp; - (void) mutex_unlock(&umem_cache_lock); - - if (umem_ready == UMEM_READY) - umem_cache_magazine_enable(cp); - - return (cp); - -fail_lock: - (void) mutex_destroy(&cp->cache_lock); -fail: - vmem_xfree(umem_cache_arena, cp, csize); - return (NULL); -} - -void -umem_cache_destroy(umem_cache_t *cp) -{ - int cpu_seqid; - - /* - * Remove the cache from the global cache list so that no new updates - * will be scheduled on its behalf, wait for any pending tasks to - * complete, purge the cache, and then destroy it. - */ - (void) mutex_lock(&umem_cache_lock); - cp->cache_prev->cache_next = cp->cache_next; - cp->cache_next->cache_prev = cp->cache_prev; - cp->cache_prev = cp->cache_next = NULL; - (void) mutex_unlock(&umem_cache_lock); - - umem_remove_updates(cp); - - umem_cache_magazine_purge(cp); - - (void) mutex_lock(&cp->cache_lock); - if (cp->cache_buftotal != 0) - log_message("umem_cache_destroy: '%s' (%p) not empty\n", - cp->cache_name, (void *)cp); - cp->cache_reclaim = NULL; - /* - * The cache is now dead. There should be no further activity. - * We enforce this by setting land mines in the constructor and - * destructor routines that induce a segmentation fault if invoked. - */ - cp->cache_constructor = (umem_constructor_t *)1; - cp->cache_destructor = (umem_destructor_t *)2; - (void) mutex_unlock(&cp->cache_lock); - - if (cp->cache_hash_table != NULL) - vmem_free(umem_hash_arena, cp->cache_hash_table, - (cp->cache_hash_mask + 1) * sizeof (void *)); - - for (cpu_seqid = 0; cpu_seqid < umem_max_ncpus; cpu_seqid++) - (void) mutex_destroy(&cp->cache_cpu[cpu_seqid].cc_lock); - - (void) mutex_destroy(&cp->cache_depot_lock); - (void) mutex_destroy(&cp->cache_lock); - - vmem_free(umem_cache_arena, cp, UMEM_CACHE_SIZE(umem_max_ncpus)); -} - -void -umem_alloc_sizes_clear(void) -{ - int i; - - umem_alloc_sizes[0] = UMEM_MAXBUF; - for (i = 1; i < NUM_ALLOC_SIZES; i++) - umem_alloc_sizes[i] = 0; -} - -void -umem_alloc_sizes_add(size_t size_arg) -{ - int i, j; - size_t size = size_arg; - - if (size == 0) { - log_message("size_add: cannot add zero-sized cache\n", - size, UMEM_MAXBUF); - return; - } - - if (size > UMEM_MAXBUF) { - log_message("size_add: %ld > %d, cannot add\n", size, - UMEM_MAXBUF); - return; - } - - if (umem_alloc_sizes[NUM_ALLOC_SIZES - 1] != 0) { - log_message("size_add: no space in alloc_table for %d\n", - size); - return; - } - - if (P2PHASE(size, UMEM_ALIGN) != 0) { - size = P2ROUNDUP(size, UMEM_ALIGN); - log_message("size_add: rounding %d up to %d\n", size_arg, - size); - } - - for (i = 0; i < NUM_ALLOC_SIZES; i++) { - int cur = umem_alloc_sizes[i]; - if (cur == size) { - log_message("size_add: %ld already in table\n", - size); - return; - } - if (cur > size) - break; - } - - for (j = NUM_ALLOC_SIZES - 1; j > i; j--) - umem_alloc_sizes[j] = umem_alloc_sizes[j-1]; - umem_alloc_sizes[i] = size; -} - -void -umem_alloc_sizes_remove(size_t size) -{ - int i; - - if (size == UMEM_MAXBUF) { - log_message("size_remove: cannot remove %ld\n", size); - return; - } - - for (i = 0; i < NUM_ALLOC_SIZES; i++) { - int cur = umem_alloc_sizes[i]; - if (cur == size) - break; - else if (cur > size || cur == 0) { - log_message("size_remove: %ld not found in table\n", - size); - return; - } - } - - for (; i + 1 < NUM_ALLOC_SIZES; i++) - umem_alloc_sizes[i] = umem_alloc_sizes[i+1]; - umem_alloc_sizes[i] = 0; -} - -static int -umem_cache_init(void) -{ - int i; - size_t size, max_size; - umem_cache_t *cp; - umem_magtype_t *mtp; - char name[UMEM_CACHE_NAMELEN + 1]; - umem_cache_t *umem_alloc_caches[NUM_ALLOC_SIZES]; - - for (i = 0; i < sizeof (umem_magtype) / sizeof (*mtp); i++) { - mtp = &umem_magtype[i]; - (void) snprintf(name, sizeof (name), "umem_magazine_%d", - mtp->mt_magsize); - mtp->mt_cache = umem_cache_create(name, - (mtp->mt_magsize + 1) * sizeof (void *), - mtp->mt_align, NULL, NULL, NULL, NULL, - umem_internal_arena, UMC_NOHASH | UMC_INTERNAL); - if (mtp->mt_cache == NULL) - return (0); - } - - umem_slab_cache = umem_cache_create("umem_slab_cache", - sizeof (umem_slab_t), 0, NULL, NULL, NULL, NULL, - umem_internal_arena, UMC_NOHASH | UMC_INTERNAL); - - if (umem_slab_cache == NULL) - return (0); - - umem_bufctl_cache = umem_cache_create("umem_bufctl_cache", - sizeof (umem_bufctl_t), 0, NULL, NULL, NULL, NULL, - umem_internal_arena, UMC_NOHASH | UMC_INTERNAL); - - if (umem_bufctl_cache == NULL) - return (0); - - /* - * The size of the umem_bufctl_audit structure depends upon - * umem_stack_depth. See umem_impl.h for details on the size - * restrictions. - */ - - size = UMEM_BUFCTL_AUDIT_SIZE_DEPTH(umem_stack_depth); - max_size = UMEM_BUFCTL_AUDIT_MAX_SIZE; - - if (size > max_size) { /* too large -- truncate */ - int max_frames = UMEM_MAX_STACK_DEPTH; - - ASSERT(UMEM_BUFCTL_AUDIT_SIZE_DEPTH(max_frames) <= max_size); - - umem_stack_depth = max_frames; - size = UMEM_BUFCTL_AUDIT_SIZE_DEPTH(umem_stack_depth); - } - - umem_bufctl_audit_cache = umem_cache_create("umem_bufctl_audit_cache", - size, 0, NULL, NULL, NULL, NULL, umem_internal_arena, - UMC_NOHASH | UMC_INTERNAL); - - if (umem_bufctl_audit_cache == NULL) - return (0); - - if (vmem_backend & VMEM_BACKEND_MMAP) - umem_va_arena = vmem_create("umem_va", - NULL, 0, pagesize, - vmem_alloc, vmem_free, heap_arena, - 8 * pagesize, VM_NOSLEEP); - else - umem_va_arena = heap_arena; - - if (umem_va_arena == NULL) - return (0); - - umem_default_arena = vmem_create("umem_default", - NULL, 0, pagesize, - heap_alloc, heap_free, umem_va_arena, - 0, VM_NOSLEEP); - - if (umem_default_arena == NULL) - return (0); - - /* - * make sure the umem_alloc table initializer is correct - */ - i = sizeof (umem_alloc_table) / sizeof (*umem_alloc_table); - ASSERT(umem_alloc_table[i - 1] == &umem_null_cache); - - /* - * Create the default caches to back umem_alloc() - */ - for (i = 0; i < NUM_ALLOC_SIZES; i++) { - size_t cache_size = umem_alloc_sizes[i]; - size_t align = 0; - - if (cache_size == 0) - break; /* 0 terminates the list */ - - /* - * If they allocate a multiple of the coherency granularity, - * they get a coherency-granularity-aligned address. - */ - if (IS_P2ALIGNED(cache_size, 64)) - align = 64; - if (IS_P2ALIGNED(cache_size, pagesize)) - align = pagesize; - (void) snprintf(name, sizeof (name), "umem_alloc_%lu", - (long)cache_size); - - cp = umem_cache_create(name, cache_size, align, - NULL, NULL, NULL, NULL, NULL, UMC_INTERNAL); - if (cp == NULL) - return (0); - - umem_alloc_caches[i] = cp; - } - - /* - * Initialization cannot fail at this point. Make the caches - * visible to umem_alloc() and friends. - */ - size = UMEM_ALIGN; - for (i = 0; i < NUM_ALLOC_SIZES; i++) { - size_t cache_size = umem_alloc_sizes[i]; - - if (cache_size == 0) - break; /* 0 terminates the list */ - - cp = umem_alloc_caches[i]; - - while (size <= cache_size) { - umem_alloc_table[(size - 1) >> UMEM_ALIGN_SHIFT] = cp; - size += UMEM_ALIGN; - } - } - ASSERT(size - UMEM_ALIGN == UMEM_MAXBUF); - return (1); -} - -/* - * umem_startup() is called early on, and must be called explicitly if we're - * the standalone version. - */ -#ifdef UMEM_STANDALONE -void -#else -#pragma init(umem_startup) -static void -#endif -umem_startup(caddr_t start, size_t len, size_t pagesize, caddr_t minstack, - caddr_t maxstack) -{ -#ifdef UMEM_STANDALONE - int idx; - /* Standalone doesn't fork */ -#else - umem_forkhandler_init(); /* register the fork handler */ -#endif - -#ifdef __lint - /* make lint happy */ - minstack = maxstack; -#endif - -#ifdef UMEM_STANDALONE - umem_ready = UMEM_READY_STARTUP; - umem_init_env_ready = 0; - - umem_min_stack = minstack; - umem_max_stack = maxstack; - - nofail_callback = NULL; - umem_slab_cache = NULL; - umem_bufctl_cache = NULL; - umem_bufctl_audit_cache = NULL; - heap_arena = NULL; - heap_alloc = NULL; - heap_free = NULL; - umem_internal_arena = NULL; - umem_cache_arena = NULL; - umem_hash_arena = NULL; - umem_log_arena = NULL; - umem_oversize_arena = NULL; - umem_va_arena = NULL; - umem_default_arena = NULL; - umem_firewall_va_arena = NULL; - umem_firewall_arena = NULL; - umem_memalign_arena = NULL; - umem_transaction_log = NULL; - umem_content_log = NULL; - umem_failure_log = NULL; - umem_slab_log = NULL; - umem_cpu_mask = 0; - - umem_cpus = &umem_startup_cpu; - umem_startup_cpu.cpu_cache_offset = UMEM_CACHE_SIZE(0); - umem_startup_cpu.cpu_number = 0; - - bcopy(&umem_null_cache_template, &umem_null_cache, - sizeof (umem_cache_t)); - - for (idx = 0; idx < (UMEM_MAXBUF >> UMEM_ALIGN_SHIFT); idx++) - umem_alloc_table[idx] = &umem_null_cache; -#endif - - /* - * Perform initialization specific to the way we've been compiled - * (library or standalone) - */ - umem_type_init(start, len, pagesize); - - vmem_startup(); -} - -int -umem_init(void) -{ - size_t maxverify, minfirewall; - size_t size; - int idx; - umem_cpu_t *new_cpus; - - vmem_t *memalign_arena, *oversize_arena; - - if (thr_self() != umem_init_thr) { - /* - * The usual case -- non-recursive invocation of umem_init(). - */ - (void) mutex_lock(&umem_init_lock); - if (umem_ready != UMEM_READY_STARTUP) { - /* - * someone else beat us to initializing umem. Wait - * for them to complete, then return. - */ - while (umem_ready == UMEM_READY_INITING) { - int cancel_state; - - (void) pthread_setcancelstate( - PTHREAD_CANCEL_DISABLE, &cancel_state); - (void) cond_wait(&umem_init_cv, - &umem_init_lock); - (void) pthread_setcancelstate( - cancel_state, NULL); - } - ASSERT(umem_ready == UMEM_READY || - umem_ready == UMEM_READY_INIT_FAILED); - (void) mutex_unlock(&umem_init_lock); - return (umem_ready == UMEM_READY); - } - - ASSERT(umem_ready == UMEM_READY_STARTUP); - ASSERT(umem_init_env_ready == 0); - - umem_ready = UMEM_READY_INITING; - umem_init_thr = thr_self(); - - (void) mutex_unlock(&umem_init_lock); - umem_setup_envvars(0); /* can recurse -- see below */ - if (umem_init_env_ready) { - /* - * initialization was completed already - */ - ASSERT(umem_ready == UMEM_READY || - umem_ready == UMEM_READY_INIT_FAILED); - ASSERT(umem_init_thr == 0); - return (umem_ready == UMEM_READY); - } - } else if (!umem_init_env_ready) { - /* - * The umem_setup_envvars() call (above) makes calls into - * the dynamic linker and directly into user-supplied code. - * Since we cannot know what that code will do, we could be - * recursively invoked (by, say, a malloc() call in the code - * itself, or in a (C++) _init section it causes to be fired). - * - * This code is where we end up if such recursion occurs. We - * first clean up any partial results in the envvar code, then - * proceed to finish initialization processing in the recursive - * call. The original call will notice this, and return - * immediately. - */ - umem_setup_envvars(1); /* clean up any partial state */ - } else { - umem_panic( - "recursive allocation while initializing umem\n"); - } - umem_init_env_ready = 1; - - /* - * From this point until we finish, recursion into umem_init() will - * cause a umem_panic(). - */ - maxverify = minfirewall = ULONG_MAX; - - /* LINTED constant condition */ - if (sizeof (umem_cpu_cache_t) != UMEM_CPU_CACHE_SIZE) { - umem_panic("sizeof (umem_cpu_cache_t) = %d, should be %d\n", - sizeof (umem_cpu_cache_t), UMEM_CPU_CACHE_SIZE); - } - - umem_max_ncpus = umem_get_max_ncpus(); - - /* - * load tunables from environment - */ - umem_process_envvars(); - - if (issetugid()) - umem_mtbf = 0; - - /* - * set up vmem - */ - if (!(umem_flags & UMF_AUDIT)) - vmem_no_debug(); - - heap_arena = vmem_heap_arena(&heap_alloc, &heap_free); - - pagesize = heap_arena->vm_quantum; - - umem_internal_arena = vmem_create("umem_internal", NULL, 0, pagesize, - heap_alloc, heap_free, heap_arena, 0, VM_NOSLEEP); - - umem_default_arena = umem_internal_arena; - - if (umem_internal_arena == NULL) - goto fail; - - umem_cache_arena = vmem_create("umem_cache", NULL, 0, UMEM_ALIGN, - vmem_alloc, vmem_free, umem_internal_arena, 0, VM_NOSLEEP); - - umem_hash_arena = vmem_create("umem_hash", NULL, 0, UMEM_ALIGN, - vmem_alloc, vmem_free, umem_internal_arena, 0, VM_NOSLEEP); - - umem_log_arena = vmem_create("umem_log", NULL, 0, UMEM_ALIGN, - heap_alloc, heap_free, heap_arena, 0, VM_NOSLEEP); - - umem_firewall_va_arena = vmem_create("umem_firewall_va", - NULL, 0, pagesize, - umem_firewall_va_alloc, umem_firewall_va_free, heap_arena, - 0, VM_NOSLEEP); - - if (umem_cache_arena == NULL || umem_hash_arena == NULL || - umem_log_arena == NULL || umem_firewall_va_arena == NULL) - goto fail; - - umem_firewall_arena = vmem_create("umem_firewall", NULL, 0, pagesize, - heap_alloc, heap_free, umem_firewall_va_arena, 0, - VM_NOSLEEP); - - if (umem_firewall_arena == NULL) - goto fail; - - oversize_arena = vmem_create("umem_oversize", NULL, 0, pagesize, - heap_alloc, heap_free, minfirewall < ULONG_MAX ? - umem_firewall_va_arena : heap_arena, 0, VM_NOSLEEP); - - memalign_arena = vmem_create("umem_memalign", NULL, 0, UMEM_ALIGN, - heap_alloc, heap_free, minfirewall < ULONG_MAX ? - umem_firewall_va_arena : heap_arena, 0, VM_NOSLEEP); - - if (oversize_arena == NULL || memalign_arena == NULL) - goto fail; - - if (umem_max_ncpus > CPUHINT_MAX()) - umem_max_ncpus = CPUHINT_MAX(); - - while ((umem_max_ncpus & (umem_max_ncpus - 1)) != 0) - umem_max_ncpus++; - - if (umem_max_ncpus == 0) - umem_max_ncpus = 1; - - size = umem_max_ncpus * sizeof (umem_cpu_t); - new_cpus = vmem_alloc(umem_internal_arena, size, VM_NOSLEEP); - if (new_cpus == NULL) - goto fail; - - bzero(new_cpus, size); - for (idx = 0; idx < umem_max_ncpus; idx++) { - new_cpus[idx].cpu_number = idx; - new_cpus[idx].cpu_cache_offset = UMEM_CACHE_SIZE(idx); - } - umem_cpus = new_cpus; - umem_cpu_mask = (umem_max_ncpus - 1); - - if (umem_maxverify == 0) - umem_maxverify = maxverify; - - if (umem_minfirewall == 0) - umem_minfirewall = minfirewall; - - /* - * Set up updating and reaping - */ - umem_reap_next = gethrtime() + NANOSEC; - -#ifndef UMEM_STANDALONE - (void) gettimeofday(&umem_update_next, NULL); -#endif - - /* - * Set up logging -- failure here is okay, since it will just disable - * the logs - */ - if (umem_logging) { - umem_transaction_log = umem_log_init(umem_transaction_log_size); - umem_content_log = umem_log_init(umem_content_log_size); - umem_failure_log = umem_log_init(umem_failure_log_size); - umem_slab_log = umem_log_init(umem_slab_log_size); - } - - /* - * Set up caches -- if successful, initialization cannot fail, since - * allocations from other threads can now succeed. - */ - if (umem_cache_init() == 0) { - log_message("unable to create initial caches\n"); - goto fail; - } - umem_oversize_arena = oversize_arena; - umem_memalign_arena = memalign_arena; - - umem_cache_applyall(umem_cache_magazine_enable); - - /* - * initialization done, ready to go - */ - (void) mutex_lock(&umem_init_lock); - umem_ready = UMEM_READY; - umem_init_thr = 0; - (void) cond_broadcast(&umem_init_cv); - (void) mutex_unlock(&umem_init_lock); - return (1); - -fail: - log_message("umem initialization failed\n"); - - (void) mutex_lock(&umem_init_lock); - umem_ready = UMEM_READY_INIT_FAILED; - umem_init_thr = 0; - (void) cond_broadcast(&umem_init_cv); - (void) mutex_unlock(&umem_init_lock); - return (0); -} diff --git a/zfs/lib/libumem/umem_agent_support.c b/zfs/lib/libumem/umem_agent_support.c deleted file mode 100644 index d604b5e0c..000000000 --- a/zfs/lib/libumem/umem_agent_support.c +++ /dev/null @@ -1,43 +0,0 @@ -/* - * CDDL HEADER START - * - * The contents of this file are subject to the terms of the - * Common Development and Distribution License, Version 1.0 only - * (the "License"). You may not use this file except in compliance - * with the License. - * - * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE - * or http://www.opensolaris.org/os/licensing. - * See the License for the specific language governing permissions - * and limitations under the License. - * - * When distributing Covered Code, include this CDDL HEADER in each - * file and include the License file at usr/src/OPENSOLARIS.LICENSE. - * If applicable, add the following below this CDDL HEADER, with the - * fields enclosed by brackets "[]" replaced with your own identifying - * information: Portions Copyright [yyyy] [name of copyright owner] - * - * CDDL HEADER END - */ -/* - * Copyright 2002 Sun Microsystems, Inc. All rights reserved. - * Use is subject to license terms. - */ - -#pragma ident "%Z%%M% %I% %E% SMI" - -#include "umem_base.h" - -#define AGENT_STACK_SIZE 4096 - -char __umem_agent_stack_beg[AGENT_STACK_SIZE]; -char *__umem_agent_stack_end = __umem_agent_stack_beg + AGENT_STACK_SIZE; - -void -__umem_agent_free_bp(umem_cache_t *cp, void *buf) -{ - extern void _breakpoint(void); /* inline asm */ - - _umem_cache_free(cp, buf); - _breakpoint(); -} diff --git a/zfs/lib/libumem/umem_fail.c b/zfs/lib/libumem/umem_fail.c deleted file mode 100644 index 8e315b76c..000000000 --- a/zfs/lib/libumem/umem_fail.c +++ /dev/null @@ -1,146 +0,0 @@ -/* - * CDDL HEADER START - * - * The contents of this file are subject to the terms of the - * Common Development and Distribution License (the "License"). - * You may not use this file except in compliance with the License. - * - * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE - * or http://www.opensolaris.org/os/licensing. - * See the License for the specific language governing permissions - * and limitations under the License. - * - * When distributing Covered Code, include this CDDL HEADER in each - * file and include the License file at usr/src/OPENSOLARIS.LICENSE. - * If applicable, add the following below this CDDL HEADER, with the - * fields enclosed by brackets "[]" replaced with your own identifying - * information: Portions Copyright [yyyy] [name of copyright owner] - * - * CDDL HEADER END - */ - -/* - * Copyright 2008 Sun Microsystems, Inc. All rights reserved. - * Use is subject to license terms. - */ - -/* - * Failure routines for libumem (not standalone) - */ - -#include -#include -#include -#include - -#include "misc.h" - -static volatile int umem_exiting = 0; -#define UMEM_EXIT_ABORT 1 - -static mutex_t umem_exit_lock = DEFAULTMUTEX; /* protects umem_exiting */ - -static int -firstexit(int type) -{ - if (umem_exiting) - return (0); - - (void) mutex_lock(&umem_exit_lock); - if (umem_exiting) { - (void) mutex_unlock(&umem_exit_lock); - return (0); - } - umem_exiting = type; - (void) mutex_unlock(&umem_exit_lock); - - return (1); -} - -/* - * We can't use abort(3C), since it closes all of the standard library - * FILEs, which can call free(). - * - * In addition, we can't just raise(SIGABRT), since the current handler - * might do allocation. We give them once chance, though. - */ -static void __NORETURN -umem_do_abort(void) -{ - if (firstexit(UMEM_EXIT_ABORT)) - (void) raise(SIGABRT); - - for (;;) { - (void) signal(SIGABRT, SIG_DFL); - (void) sigrelse(SIGABRT); - (void) raise(SIGABRT); - } -} - -#define SKIP_FRAMES 1 /* skip the panic frame */ -#define ERR_STACK_FRAMES 128 - -static void -print_stacktrace(void) -{ - uintptr_t cur_stack[ERR_STACK_FRAMES]; - - /* - * if we are in a signal context, checking for it will recurse - */ - uint_t nframes = getpcstack(cur_stack, ERR_STACK_FRAMES, 0); - uint_t idx; - - if (nframes > SKIP_FRAMES) { - umem_printf("stack trace:\n"); - - for (idx = SKIP_FRAMES; idx < nframes; idx++) { - (void) print_sym((void *)cur_stack[idx]); - umem_printf("\n"); - } - } -} - -void -umem_panic(const char *format, ...) -{ - va_list va; - - va_start(va, format); - umem_vprintf(format, va); - va_end(va); - - if (format[strlen(format)-1] != '\n') - umem_error_enter("\n"); - - print_stacktrace(); - - umem_do_abort(); -} - -void -umem_err_recoverable(const char *format, ...) -{ - va_list va; - - va_start(va, format); - umem_vprintf(format, va); - va_end(va); - - if (format[strlen(format)-1] != '\n') - umem_error_enter("\n"); - - print_stacktrace(); - - if (umem_abort > 0) - umem_do_abort(); -} - -int -__umem_assert_failed(const char *assertion, const char *file, int line) -{ - umem_panic("Assertion failed: %s, file %s, line %d\n", - assertion, file, line); - /*NOTREACHED*/ - return (0); -} diff --git a/zfs/lib/libumem/umem_fork.c b/zfs/lib/libumem/umem_fork.c deleted file mode 100644 index 4cbe81dfe..000000000 --- a/zfs/lib/libumem/umem_fork.c +++ /dev/null @@ -1,223 +0,0 @@ -/* - * CDDL HEADER START - * - * The contents of this file are subject to the terms of the - * Common Development and Distribution License (the "License"). - * You may not use this file except in compliance with the License. - * - * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE - * or http://www.opensolaris.org/os/licensing. - * See the License for the specific language governing permissions - * and limitations under the License. - * - * When distributing Covered Code, include this CDDL HEADER in each - * file and include the License file at usr/src/OPENSOLARIS.LICENSE. - * If applicable, add the following below this CDDL HEADER, with the - * fields enclosed by brackets "[]" replaced with your own identifying - * information: Portions Copyright [yyyy] [name of copyright owner] - * - * CDDL HEADER END - */ - -/* - * Copyright 2008 Sun Microsystems, Inc. All rights reserved. - * Use is subject to license terms. - */ - -#pragma ident "%Z%%M% %I% %E% SMI" - -#include "umem_base.h" -#include "vmem_base.h" - -#include - -/* - * The following functions are for pre- and post-fork1(2) handling. See - * "Lock Ordering" in lib/libumem/common/umem.c for the lock ordering used. - */ - -static void -umem_lockup_cache(umem_cache_t *cp) -{ - int idx; - int ncpus = cp->cache_cpu_mask + 1; - - for (idx = 0; idx < ncpus; idx++) - (void) mutex_lock(&cp->cache_cpu[idx].cc_lock); - - (void) mutex_lock(&cp->cache_depot_lock); - (void) mutex_lock(&cp->cache_lock); -} - -static void -umem_release_cache(umem_cache_t *cp) -{ - int idx; - int ncpus = cp->cache_cpu_mask + 1; - - (void) mutex_unlock(&cp->cache_lock); - (void) mutex_unlock(&cp->cache_depot_lock); - - for (idx = 0; idx < ncpus; idx++) - (void) mutex_unlock(&cp->cache_cpu[idx].cc_lock); -} - -static void -umem_lockup_log_header(umem_log_header_t *lhp) -{ - int idx; - if (lhp == NULL) - return; - for (idx = 0; idx < umem_max_ncpus; idx++) - (void) mutex_lock(&lhp->lh_cpu[idx].clh_lock); - - (void) mutex_lock(&lhp->lh_lock); -} - -static void -umem_release_log_header(umem_log_header_t *lhp) -{ - int idx; - if (lhp == NULL) - return; - - (void) mutex_unlock(&lhp->lh_lock); - - for (idx = 0; idx < umem_max_ncpus; idx++) - (void) mutex_unlock(&lhp->lh_cpu[idx].clh_lock); -} - -static void -umem_lockup(void) -{ - umem_cache_t *cp; - - (void) mutex_lock(&umem_init_lock); - /* - * If another thread is busy initializing the library, we must - * wait for it to complete (by calling umem_init()) before allowing - * the fork() to proceed. - */ - if (umem_ready == UMEM_READY_INITING && umem_init_thr != thr_self()) { - (void) mutex_unlock(&umem_init_lock); - (void) umem_init(); - (void) mutex_lock(&umem_init_lock); - } - - vmem_lockup(); - vmem_sbrk_lockup(); - - (void) mutex_lock(&umem_cache_lock); - (void) mutex_lock(&umem_update_lock); - (void) mutex_lock(&umem_flags_lock); - - umem_lockup_cache(&umem_null_cache); - for (cp = umem_null_cache.cache_prev; cp != &umem_null_cache; - cp = cp->cache_prev) - umem_lockup_cache(cp); - - umem_lockup_log_header(umem_transaction_log); - umem_lockup_log_header(umem_content_log); - umem_lockup_log_header(umem_failure_log); - umem_lockup_log_header(umem_slab_log); - - (void) cond_broadcast(&umem_update_cv); - -} - -static void -umem_do_release(int as_child) -{ - umem_cache_t *cp; - int cleanup_update = 0; - - /* - * Clean up the update state if we are the child process and - * another thread was processing updates. - */ - if (as_child) { - if (umem_update_thr != thr_self()) { - umem_update_thr = 0; - cleanup_update = 1; - } - if (umem_st_update_thr != thr_self()) { - umem_st_update_thr = 0; - cleanup_update = 1; - } - } - - if (cleanup_update) { - umem_reaping = UMEM_REAP_DONE; - - for (cp = umem_null_cache.cache_next; cp != &umem_null_cache; - cp = cp->cache_next) { - if (cp->cache_uflags & UMU_NOTIFY) - cp->cache_uflags &= ~UMU_NOTIFY; - - /* - * If the cache is active, we just re-add it to - * the update list. This will re-do any active - * updates on the cache, but that won't break - * anything. - * - * The worst that can happen is a cache has - * its magazines rescaled twice, instead of once. - */ - if (cp->cache_uflags & UMU_ACTIVE) { - umem_cache_t *cnext, *cprev; - - ASSERT(cp->cache_unext == NULL && - cp->cache_uprev == NULL); - - cp->cache_uflags &= ~UMU_ACTIVE; - cp->cache_unext = cnext = &umem_null_cache; - cp->cache_uprev = cprev = - umem_null_cache.cache_uprev; - cnext->cache_uprev = cp; - cprev->cache_unext = cp; - } - } - } - - umem_release_log_header(umem_slab_log); - umem_release_log_header(umem_failure_log); - umem_release_log_header(umem_content_log); - umem_release_log_header(umem_transaction_log); - - for (cp = umem_null_cache.cache_next; cp != &umem_null_cache; - cp = cp->cache_next) - umem_release_cache(cp); - umem_release_cache(&umem_null_cache); - - (void) mutex_unlock(&umem_flags_lock); - (void) mutex_unlock(&umem_update_lock); - (void) mutex_unlock(&umem_cache_lock); - - vmem_sbrk_release(); - vmem_release(); - - (void) mutex_unlock(&umem_init_lock); -} - -static void -umem_release(void) -{ - umem_do_release(0); -} - -static void -umem_release_child(void) -{ - umem_do_release(1); -} - -void -umem_forkhandler_init(void) -{ - /* - * There is no way to unregister these atfork functions, - * but we don't need to. The dynamic linker and libc take - * care of unregistering them if/when the library is unloaded. - */ - (void) pthread_atfork(umem_lockup, umem_release, umem_release_child); -} diff --git a/zfs/lib/libumem/umem_update_thread.c b/zfs/lib/libumem/umem_update_thread.c deleted file mode 100644 index 178c6e733..000000000 --- a/zfs/lib/libumem/umem_update_thread.c +++ /dev/null @@ -1,165 +0,0 @@ -/* - * CDDL HEADER START - * - * The contents of this file are subject to the terms of the - * Common Development and Distribution License (the "License"). - * You may not use this file except in compliance with the License. - * - * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE - * or http://www.opensolaris.org/os/licensing. - * See the License for the specific language governing permissions - * and limitations under the License. - * - * When distributing Covered Code, include this CDDL HEADER in each - * file and include the License file at usr/src/OPENSOLARIS.LICENSE. - * If applicable, add the following below this CDDL HEADER, with the - * fields enclosed by brackets "[]" replaced with your own identifying - * information: Portions Copyright [yyyy] [name of copyright owner] - * - * CDDL HEADER END - */ - -/* - * Copyright 2008 Sun Microsystems, Inc. All rights reserved. - * Use is subject to license terms. - */ - -#pragma ident "%Z%%M% %I% %E% SMI" - -#include "umem_base.h" -#include "vmem_base.h" - -#include - -/*ARGSUSED*/ -static void * -umem_update_thread(void *arg) -{ - struct timeval now; - int in_update = 0; - - (void) mutex_lock(&umem_update_lock); - - ASSERT(umem_update_thr == thr_self()); - ASSERT(umem_st_update_thr == 0); - - for (;;) { - umem_process_updates(); - - if (in_update) { - in_update = 0; - /* - * we wait until now to set the next update time - * so that the updates are self-throttling - */ - (void) gettimeofday(&umem_update_next, NULL); - umem_update_next.tv_sec += umem_reap_interval; - } - - switch (umem_reaping) { - case UMEM_REAP_DONE: - case UMEM_REAP_ADDING: - break; - - case UMEM_REAP_ACTIVE: - umem_reap_next = gethrtime() + - (hrtime_t)umem_reap_interval * NANOSEC; - umem_reaping = UMEM_REAP_DONE; - break; - - default: - ASSERT(umem_reaping == UMEM_REAP_DONE || - umem_reaping == UMEM_REAP_ADDING || - umem_reaping == UMEM_REAP_ACTIVE); - break; - } - - (void) gettimeofday(&now, NULL); - if (now.tv_sec > umem_update_next.tv_sec || - (now.tv_sec == umem_update_next.tv_sec && - now.tv_usec >= umem_update_next.tv_usec)) { - /* - * Time to run an update - */ - (void) mutex_unlock(&umem_update_lock); - - vmem_update(NULL); - /* - * umem_cache_update can use umem_add_update to - * request further work. The update is not complete - * until all such work is finished. - */ - umem_cache_applyall(umem_cache_update); - - (void) mutex_lock(&umem_update_lock); - in_update = 1; - continue; /* start processing immediately */ - } - - /* - * if there is no work to do, we wait until it is time for - * next update, or someone wakes us. - */ - if (umem_null_cache.cache_unext == &umem_null_cache) { - int cancel_state; - timespec_t abs_time; - abs_time.tv_sec = umem_update_next.tv_sec; - abs_time.tv_nsec = umem_update_next.tv_usec * 1000; - - (void) pthread_setcancelstate(PTHREAD_CANCEL_DISABLE, - &cancel_state); - (void) cond_timedwait(&umem_update_cv, - &umem_update_lock, &abs_time); - (void) pthread_setcancelstate(cancel_state, NULL); - } - } - /* LINTED no return statement */ -} - -int -umem_create_update_thread(void) -{ - sigset_t sigmask, oldmask; - thread_t newthread; - - ASSERT(MUTEX_HELD(&umem_update_lock)); - ASSERT(umem_update_thr == 0); - - /* - * The update thread handles no signals - */ - (void) sigfillset(&sigmask); - (void) thr_sigsetmask(SIG_BLOCK, &sigmask, &oldmask); - - /* - * drop the umem_update_lock; we cannot hold locks acquired in - * pre-fork handler while calling thr_create or thr_continue(). - */ - - (void) mutex_unlock(&umem_update_lock); - - if (thr_create(NULL, NULL, umem_update_thread, NULL, - THR_BOUND | THR_DAEMON | THR_DETACHED | THR_SUSPENDED, - &newthread) == 0) { - (void) thr_sigsetmask(SIG_SETMASK, &oldmask, NULL); - - (void) mutex_lock(&umem_update_lock); - /* - * due to the locking in umem_reap(), only one thread can - * ever call umem_create_update_thread() at a time. This - * must be the case for this code to work. - */ - - ASSERT(umem_update_thr == 0); - umem_update_thr = newthread; - (void) mutex_unlock(&umem_update_lock); - (void) thr_continue(newthread); - (void) mutex_lock(&umem_update_lock); - - return (1); - } else { /* thr_create failed */ - (void) thr_sigsetmask(SIG_SETMASK, &oldmask, NULL); - (void) mutex_lock(&umem_update_lock); - } - return (0); -} diff --git a/zfs/lib/libumem/vmem.c b/zfs/lib/libumem/vmem.c deleted file mode 100644 index 040517a78..000000000 --- a/zfs/lib/libumem/vmem.c +++ /dev/null @@ -1,1796 +0,0 @@ -/* - * CDDL HEADER START - * - * The contents of this file are subject to the terms of the - * Common Development and Distribution License (the "License"). - * You may not use this file except in compliance with the License. - * - * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE - * or http://www.opensolaris.org/os/licensing. - * See the License for the specific language governing permissions - * and limitations under the License. - * - * When distributing Covered Code, include this CDDL HEADER in each - * file and include the License file at usr/src/OPENSOLARIS.LICENSE. - * If applicable, add the following below this CDDL HEADER, with the - * fields enclosed by brackets "[]" replaced with your own identifying - * information: Portions Copyright [yyyy] [name of copyright owner] - * - * CDDL HEADER END - */ - -/* - * Copyright 2008 Sun Microsystems, Inc. All rights reserved. - * Use is subject to license terms. - */ - -/* - * For a more complete description of the main ideas, see: - * - * Jeff Bonwick and Jonathan Adams, - * - * Magazines and vmem: Extending the Slab Allocator to Many CPUs and - * Arbitrary Resources. - * - * Proceedings of the 2001 Usenix Conference. - * Available as /shared/sac/PSARC/2000/550/materials/vmem.pdf. - * - * For the "Big Theory Statement", see usr/src/uts/common/os/vmem.c - * - * 1. Overview of changes - * ------------------------------ - * There have been a few changes to vmem in order to support umem. The - * main areas are: - * - * * VM_SLEEP unsupported - * - * * Reaping changes - * - * * initialization changes - * - * * _vmem_extend_alloc - * - * - * 2. VM_SLEEP Removed - * ------------------- - * Since VM_SLEEP allocations can hold locks (in vmem_populate()) for - * possibly infinite amounts of time, they are not supported in this - * version of vmem. Sleep-like behavior can be achieved through - * UMEM_NOFAIL umem allocations. - * - * - * 3. Reaping changes - * ------------------ - * Unlike kmem_reap(), which just asynchronously schedules work, umem_reap() - * can do allocations and frees synchronously. This is a problem if it - * occurs during a vmem_populate() allocation. - * - * Instead, we delay reaps while populates are active. - * - * - * 4. Initialization changes - * ------------------------- - * In the kernel, vmem_init() allows you to create a single, top-level arena, - * which has vmem_internal_arena as a child. For umem, we want to be able - * to extend arenas dynamically. It is much easier to support this if we - * allow a two-level "heap" arena: - * - * +----------+ - * | "fake" | - * +----------+ - * | - * +----------+ - * | "heap" | - * +----------+ - * | \ \ - * | +-+-- ... - * | - * +---------------+ - * | vmem_internal | - * +---------------+ - * | | | | - * - * - * The new vmem_init() allows you to specify a "parent" of the heap, along - * with allocation functions. - * - * - * 5. _vmem_extend_alloc - * --------------------- - * The other part of extending is _vmem_extend_alloc. This function allows - * you to extend (expand current spans, if possible) an arena and allocate - * a chunk of the newly extened span atomically. This is needed to support - * extending the heap while vmem_populate()ing it. - * - * In order to increase the usefulness of extending, non-imported spans are - * sorted in address order. - */ - -#include -#include -#include -#include -#include -#include - -#include "vmem_base.h" -#include "umem_base.h" - -#define VMEM_INITIAL 6 /* early vmem arenas */ -#define VMEM_SEG_INITIAL 100 /* early segments */ - -/* - * Adding a new span to an arena requires two segment structures: one to - * represent the span, and one to represent the free segment it contains. - */ -#define VMEM_SEGS_PER_SPAN_CREATE 2 - -/* - * Allocating a piece of an existing segment requires 0-2 segment structures - * depending on how much of the segment we're allocating. - * - * To allocate the entire segment, no new segment structures are needed; we - * simply move the existing segment structure from the freelist to the - * allocation hash table. - * - * To allocate a piece from the left or right end of the segment, we must - * split the segment into two pieces (allocated part and remainder), so we - * need one new segment structure to represent the remainder. - * - * To allocate from the middle of a segment, we need two new segment strucures - * to represent the remainders on either side of the allocated part. - */ -#define VMEM_SEGS_PER_EXACT_ALLOC 0 -#define VMEM_SEGS_PER_LEFT_ALLOC 1 -#define VMEM_SEGS_PER_RIGHT_ALLOC 1 -#define VMEM_SEGS_PER_MIDDLE_ALLOC 2 - -/* - * vmem_populate() preallocates segment structures for vmem to do its work. - * It must preallocate enough for the worst case, which is when we must import - * a new span and then allocate from the middle of it. - */ -#define VMEM_SEGS_PER_ALLOC_MAX \ - (VMEM_SEGS_PER_SPAN_CREATE + VMEM_SEGS_PER_MIDDLE_ALLOC) - -/* - * The segment structures themselves are allocated from vmem_seg_arena, so - * we have a recursion problem when vmem_seg_arena needs to populate itself. - * We address this by working out the maximum number of segment structures - * this act will require, and multiplying by the maximum number of threads - * that we'll allow to do it simultaneously. - * - * The worst-case segment consumption to populate vmem_seg_arena is as - * follows (depicted as a stack trace to indicate why events are occurring): - * - * vmem_alloc(vmem_seg_arena) -> 2 segs (span create + exact alloc) - * vmem_alloc(vmem_internal_arena) -> 2 segs (span create + exact alloc) - * heap_alloc(heap_arena) - * vmem_alloc(heap_arena) -> 4 seg (span create + alloc) - * parent_alloc(parent_arena) - * _vmem_extend_alloc(parent_arena) -> 3 seg (span create + left alloc) - * - * Note: The reservation for heap_arena must be 4, since vmem_xalloc() - * is overly pessimistic on allocations where parent_arena has a stricter - * alignment than heap_arena. - * - * The worst-case consumption for any arena is 4 segment structures. - * For now, we only support VM_NOSLEEP allocations, so as long as we - * serialize all vmem_populates, a 4-seg reserve is sufficient. - */ -#define VMEM_POPULATE_SEGS_PER_ARENA 4 -#define VMEM_POPULATE_LOCKS 1 - -#define VMEM_POPULATE_RESERVE \ - (VMEM_POPULATE_SEGS_PER_ARENA * VMEM_POPULATE_LOCKS) - -/* - * vmem_populate() ensures that each arena has VMEM_MINFREE seg structures - * so that it can satisfy the worst-case allocation *and* participate in - * worst-case allocation from vmem_seg_arena. - */ -#define VMEM_MINFREE (VMEM_POPULATE_RESERVE + VMEM_SEGS_PER_ALLOC_MAX) - -/* Don't assume new statics are zeroed - see vmem_startup() */ -static vmem_t vmem0[VMEM_INITIAL]; -static vmem_t *vmem_populator[VMEM_INITIAL]; -static uint32_t vmem_id; -static uint32_t vmem_populators; -static vmem_seg_t vmem_seg0[VMEM_SEG_INITIAL]; -static vmem_seg_t *vmem_segfree; -static mutex_t vmem_list_lock; -static mutex_t vmem_segfree_lock; -static vmem_populate_lock_t vmem_nosleep_lock; -#define IN_POPULATE() (vmem_nosleep_lock.vmpl_thr == thr_self()) -static vmem_t *vmem_list; -static vmem_t *vmem_internal_arena; -static vmem_t *vmem_seg_arena; -static vmem_t *vmem_hash_arena; -static vmem_t *vmem_vmem_arena; - -vmem_t *vmem_heap; -vmem_alloc_t *vmem_heap_alloc; -vmem_free_t *vmem_heap_free; - -uint32_t vmem_mtbf; /* mean time between failures [default: off] */ -size_t vmem_seg_size = sizeof (vmem_seg_t); - -/* - * Insert/delete from arena list (type 'a') or next-of-kin list (type 'k'). - */ -#define VMEM_INSERT(vprev, vsp, type) \ -{ \ - vmem_seg_t *vnext = (vprev)->vs_##type##next; \ - (vsp)->vs_##type##next = (vnext); \ - (vsp)->vs_##type##prev = (vprev); \ - (vprev)->vs_##type##next = (vsp); \ - (vnext)->vs_##type##prev = (vsp); \ -} - -#define VMEM_DELETE(vsp, type) \ -{ \ - vmem_seg_t *vprev = (vsp)->vs_##type##prev; \ - vmem_seg_t *vnext = (vsp)->vs_##type##next; \ - (vprev)->vs_##type##next = (vnext); \ - (vnext)->vs_##type##prev = (vprev); \ -} - -/* - * Get a vmem_seg_t from the global segfree list. - */ -static vmem_seg_t * -vmem_getseg_global(void) -{ - vmem_seg_t *vsp; - - (void) mutex_lock(&vmem_segfree_lock); - if ((vsp = vmem_segfree) != NULL) - vmem_segfree = vsp->vs_knext; - (void) mutex_unlock(&vmem_segfree_lock); - - return (vsp); -} - -/* - * Put a vmem_seg_t on the global segfree list. - */ -static void -vmem_putseg_global(vmem_seg_t *vsp) -{ - (void) mutex_lock(&vmem_segfree_lock); - vsp->vs_knext = vmem_segfree; - vmem_segfree = vsp; - (void) mutex_unlock(&vmem_segfree_lock); -} - -/* - * Get a vmem_seg_t from vmp's segfree list. - */ -static vmem_seg_t * -vmem_getseg(vmem_t *vmp) -{ - vmem_seg_t *vsp; - - ASSERT(vmp->vm_nsegfree > 0); - - vsp = vmp->vm_segfree; - vmp->vm_segfree = vsp->vs_knext; - vmp->vm_nsegfree--; - - return (vsp); -} - -/* - * Put a vmem_seg_t on vmp's segfree list. - */ -static void -vmem_putseg(vmem_t *vmp, vmem_seg_t *vsp) -{ - vsp->vs_knext = vmp->vm_segfree; - vmp->vm_segfree = vsp; - vmp->vm_nsegfree++; -} - -/* - * Add vsp to the appropriate freelist. - */ -static void -vmem_freelist_insert(vmem_t *vmp, vmem_seg_t *vsp) -{ - vmem_seg_t *vprev; - - ASSERT(*VMEM_HASH(vmp, vsp->vs_start) != vsp); - - vprev = (vmem_seg_t *)&vmp->vm_freelist[highbit(VS_SIZE(vsp)) - 1]; - vsp->vs_type = VMEM_FREE; - vmp->vm_freemap |= VS_SIZE(vprev); - VMEM_INSERT(vprev, vsp, k); - - (void) cond_broadcast(&vmp->vm_cv); -} - -/* - * Take vsp from the freelist. - */ -static void -vmem_freelist_delete(vmem_t *vmp, vmem_seg_t *vsp) -{ - ASSERT(*VMEM_HASH(vmp, vsp->vs_start) != vsp); - ASSERT(vsp->vs_type == VMEM_FREE); - - if (vsp->vs_knext->vs_start == 0 && vsp->vs_kprev->vs_start == 0) { - /* - * The segments on both sides of 'vsp' are freelist heads, - * so taking vsp leaves the freelist at vsp->vs_kprev empty. - */ - ASSERT(vmp->vm_freemap & VS_SIZE(vsp->vs_kprev)); - vmp->vm_freemap ^= VS_SIZE(vsp->vs_kprev); - } - VMEM_DELETE(vsp, k); -} - -/* - * Add vsp to the allocated-segment hash table and update kstats. - */ -static void -vmem_hash_insert(vmem_t *vmp, vmem_seg_t *vsp) -{ - vmem_seg_t **bucket; - - vsp->vs_type = VMEM_ALLOC; - bucket = VMEM_HASH(vmp, vsp->vs_start); - vsp->vs_knext = *bucket; - *bucket = vsp; - - if (vmem_seg_size == sizeof (vmem_seg_t)) { - vsp->vs_depth = (uint8_t)getpcstack(vsp->vs_stack, - VMEM_STACK_DEPTH, 0); - vsp->vs_thread = thr_self(); - vsp->vs_timestamp = gethrtime(); - } else { - vsp->vs_depth = 0; - } - - vmp->vm_kstat.vk_alloc++; - vmp->vm_kstat.vk_mem_inuse += VS_SIZE(vsp); -} - -/* - * Remove vsp from the allocated-segment hash table and update kstats. - */ -static vmem_seg_t * -vmem_hash_delete(vmem_t *vmp, uintptr_t addr, size_t size) -{ - vmem_seg_t *vsp, **prev_vspp; - - prev_vspp = VMEM_HASH(vmp, addr); - while ((vsp = *prev_vspp) != NULL) { - if (vsp->vs_start == addr) { - *prev_vspp = vsp->vs_knext; - break; - } - vmp->vm_kstat.vk_lookup++; - prev_vspp = &vsp->vs_knext; - } - - if (vsp == NULL) { - umem_panic("vmem_hash_delete(%p, %lx, %lu): bad free", - vmp, addr, size); - } - if (VS_SIZE(vsp) != size) { - umem_panic("vmem_hash_delete(%p, %lx, %lu): wrong size " - "(expect %lu)", vmp, addr, size, VS_SIZE(vsp)); - } - - vmp->vm_kstat.vk_free++; - vmp->vm_kstat.vk_mem_inuse -= size; - - return (vsp); -} - -/* - * Create a segment spanning the range [start, end) and add it to the arena. - */ -static vmem_seg_t * -vmem_seg_create(vmem_t *vmp, vmem_seg_t *vprev, uintptr_t start, uintptr_t end) -{ - vmem_seg_t *newseg = vmem_getseg(vmp); - - newseg->vs_start = start; - newseg->vs_end = end; - newseg->vs_type = 0; - newseg->vs_import = 0; - - VMEM_INSERT(vprev, newseg, a); - - return (newseg); -} - -/* - * Remove segment vsp from the arena. - */ -static void -vmem_seg_destroy(vmem_t *vmp, vmem_seg_t *vsp) -{ - ASSERT(vsp->vs_type != VMEM_ROTOR); - VMEM_DELETE(vsp, a); - - vmem_putseg(vmp, vsp); -} - -/* - * Add the span [vaddr, vaddr + size) to vmp and update kstats. - */ -static vmem_seg_t * -vmem_span_create(vmem_t *vmp, void *vaddr, size_t size, uint8_t import) -{ - vmem_seg_t *knext; - vmem_seg_t *newseg, *span; - uintptr_t start = (uintptr_t)vaddr; - uintptr_t end = start + size; - - knext = &vmp->vm_seg0; - if (!import && vmp->vm_source_alloc == NULL) { - vmem_seg_t *kend, *kprev; - /* - * non-imported spans are sorted in address order. This - * makes vmem_extend_unlocked() much more effective. - * - * We search in reverse order, since new spans are - * generally at higher addresses. - */ - kend = &vmp->vm_seg0; - for (kprev = kend->vs_kprev; kprev != kend; - kprev = kprev->vs_kprev) { - if (!kprev->vs_import && (kprev->vs_end - 1) < start) - break; - } - knext = kprev->vs_knext; - } - - ASSERT(MUTEX_HELD(&vmp->vm_lock)); - - if ((start | end) & (vmp->vm_quantum - 1)) { - umem_panic("vmem_span_create(%p, %p, %lu): misaligned", - vmp, vaddr, size); - } - - span = vmem_seg_create(vmp, knext->vs_aprev, start, end); - span->vs_type = VMEM_SPAN; - VMEM_INSERT(knext->vs_kprev, span, k); - - newseg = vmem_seg_create(vmp, span, start, end); - vmem_freelist_insert(vmp, newseg); - - newseg->vs_import = import; - if (import) - vmp->vm_kstat.vk_mem_import += size; - vmp->vm_kstat.vk_mem_total += size; - - return (newseg); -} - -/* - * Remove span vsp from vmp and update kstats. - */ -static void -vmem_span_destroy(vmem_t *vmp, vmem_seg_t *vsp) -{ - vmem_seg_t *span = vsp->vs_aprev; - size_t size = VS_SIZE(vsp); - - ASSERT(MUTEX_HELD(&vmp->vm_lock)); - ASSERT(span->vs_type == VMEM_SPAN); - - if (vsp->vs_import) - vmp->vm_kstat.vk_mem_import -= size; - vmp->vm_kstat.vk_mem_total -= size; - - VMEM_DELETE(span, k); - - vmem_seg_destroy(vmp, vsp); - vmem_seg_destroy(vmp, span); -} - -/* - * Allocate the subrange [addr, addr + size) from segment vsp. - * If there are leftovers on either side, place them on the freelist. - * Returns a pointer to the segment representing [addr, addr + size). - */ -static vmem_seg_t * -vmem_seg_alloc(vmem_t *vmp, vmem_seg_t *vsp, uintptr_t addr, size_t size) -{ - uintptr_t vs_start = vsp->vs_start; - uintptr_t vs_end = vsp->vs_end; - size_t vs_size = vs_end - vs_start; - size_t realsize = P2ROUNDUP(size, vmp->vm_quantum); - uintptr_t addr_end = addr + realsize; - - ASSERT(P2PHASE(vs_start, vmp->vm_quantum) == 0); - ASSERT(P2PHASE(addr, vmp->vm_quantum) == 0); - ASSERT(vsp->vs_type == VMEM_FREE); - ASSERT(addr >= vs_start && addr_end - 1 <= vs_end - 1); - ASSERT(addr - 1 <= addr_end - 1); - - /* - * If we're allocating from the start of the segment, and the - * remainder will be on the same freelist, we can save quite - * a bit of work. - */ - if (P2SAMEHIGHBIT(vs_size, vs_size - realsize) && addr == vs_start) { - ASSERT(highbit(vs_size) == highbit(vs_size - realsize)); - vsp->vs_start = addr_end; - vsp = vmem_seg_create(vmp, vsp->vs_aprev, addr, addr + size); - vmem_hash_insert(vmp, vsp); - return (vsp); - } - - vmem_freelist_delete(vmp, vsp); - - if (vs_end != addr_end) - vmem_freelist_insert(vmp, - vmem_seg_create(vmp, vsp, addr_end, vs_end)); - - if (vs_start != addr) - vmem_freelist_insert(vmp, - vmem_seg_create(vmp, vsp->vs_aprev, vs_start, addr)); - - vsp->vs_start = addr; - vsp->vs_end = addr + size; - - vmem_hash_insert(vmp, vsp); - return (vsp); -} - -/* - * We cannot reap if we are in the middle of a vmem_populate(). - */ -void -vmem_reap(void) -{ - if (!IN_POPULATE()) - umem_reap(); -} - -/* - * Populate vmp's segfree list with VMEM_MINFREE vmem_seg_t structures. - */ -static int -vmem_populate(vmem_t *vmp, int vmflag) -{ - char *p; - vmem_seg_t *vsp; - ssize_t nseg; - size_t size; - vmem_populate_lock_t *lp; - int i; - - while (vmp->vm_nsegfree < VMEM_MINFREE && - (vsp = vmem_getseg_global()) != NULL) - vmem_putseg(vmp, vsp); - - if (vmp->vm_nsegfree >= VMEM_MINFREE) - return (1); - - /* - * If we're already populating, tap the reserve. - */ - if (vmem_nosleep_lock.vmpl_thr == thr_self()) { - ASSERT(vmp->vm_cflags & VMC_POPULATOR); - return (1); - } - - (void) mutex_unlock(&vmp->vm_lock); - - ASSERT(vmflag & VM_NOSLEEP); /* we do not allow sleep allocations */ - lp = &vmem_nosleep_lock; - - /* - * Cannot be just a mutex_lock(), since that has no effect if - * libthread is not linked. - */ - (void) mutex_lock(&lp->vmpl_mutex); - ASSERT(lp->vmpl_thr == 0); - lp->vmpl_thr = thr_self(); - - nseg = VMEM_MINFREE + vmem_populators * VMEM_POPULATE_RESERVE; - size = P2ROUNDUP(nseg * vmem_seg_size, vmem_seg_arena->vm_quantum); - nseg = size / vmem_seg_size; - - /* - * The following vmem_alloc() may need to populate vmem_seg_arena - * and all the things it imports from. When doing so, it will tap - * each arena's reserve to prevent recursion (see the block comment - * above the definition of VMEM_POPULATE_RESERVE). - * - * During this allocation, vmem_reap() is a no-op. If the allocation - * fails, we call vmem_reap() after dropping the population lock. - */ - p = vmem_alloc(vmem_seg_arena, size, vmflag & VM_UMFLAGS); - if (p == NULL) { - lp->vmpl_thr = 0; - (void) mutex_unlock(&lp->vmpl_mutex); - vmem_reap(); - - (void) mutex_lock(&vmp->vm_lock); - vmp->vm_kstat.vk_populate_fail++; - return (0); - } - /* - * Restock the arenas that may have been depleted during population. - */ - for (i = 0; i < vmem_populators; i++) { - (void) mutex_lock(&vmem_populator[i]->vm_lock); - while (vmem_populator[i]->vm_nsegfree < VMEM_POPULATE_RESERVE) - vmem_putseg(vmem_populator[i], - (vmem_seg_t *)(p + --nseg * vmem_seg_size)); - (void) mutex_unlock(&vmem_populator[i]->vm_lock); - } - - lp->vmpl_thr = 0; - (void) mutex_unlock(&lp->vmpl_mutex); - (void) mutex_lock(&vmp->vm_lock); - - /* - * Now take our own segments. - */ - ASSERT(nseg >= VMEM_MINFREE); - while (vmp->vm_nsegfree < VMEM_MINFREE) - vmem_putseg(vmp, (vmem_seg_t *)(p + --nseg * vmem_seg_size)); - - /* - * Give the remainder to charity. - */ - while (nseg > 0) - vmem_putseg_global((vmem_seg_t *)(p + --nseg * vmem_seg_size)); - - return (1); -} - -/* - * Advance a walker from its previous position to 'afterme'. - * Note: may drop and reacquire vmp->vm_lock. - */ -static void -vmem_advance(vmem_t *vmp, vmem_seg_t *walker, vmem_seg_t *afterme) -{ - vmem_seg_t *vprev = walker->vs_aprev; - vmem_seg_t *vnext = walker->vs_anext; - vmem_seg_t *vsp = NULL; - - VMEM_DELETE(walker, a); - - if (afterme != NULL) - VMEM_INSERT(afterme, walker, a); - - /* - * The walker segment's presence may have prevented its neighbors - * from coalescing. If so, coalesce them now. - */ - if (vprev->vs_type == VMEM_FREE) { - if (vnext->vs_type == VMEM_FREE) { - ASSERT(vprev->vs_end == vnext->vs_start); - vmem_freelist_delete(vmp, vnext); - vmem_freelist_delete(vmp, vprev); - vprev->vs_end = vnext->vs_end; - vmem_freelist_insert(vmp, vprev); - vmem_seg_destroy(vmp, vnext); - } - vsp = vprev; - } else if (vnext->vs_type == VMEM_FREE) { - vsp = vnext; - } - - /* - * vsp could represent a complete imported span, - * in which case we must return it to the source. - */ - if (vsp != NULL && vsp->vs_import && vmp->vm_source_free != NULL && - vsp->vs_aprev->vs_type == VMEM_SPAN && - vsp->vs_anext->vs_type == VMEM_SPAN) { - void *vaddr = (void *)vsp->vs_start; - size_t size = VS_SIZE(vsp); - ASSERT(size == VS_SIZE(vsp->vs_aprev)); - vmem_freelist_delete(vmp, vsp); - vmem_span_destroy(vmp, vsp); - (void) mutex_unlock(&vmp->vm_lock); - vmp->vm_source_free(vmp->vm_source, vaddr, size); - (void) mutex_lock(&vmp->vm_lock); - } -} - -/* - * VM_NEXTFIT allocations deliberately cycle through all virtual addresses - * in an arena, so that we avoid reusing addresses for as long as possible. - * This helps to catch used-after-freed bugs. It's also the perfect policy - * for allocating things like process IDs, where we want to cycle through - * all values in order. - */ -static void * -vmem_nextfit_alloc(vmem_t *vmp, size_t size, int vmflag) -{ - vmem_seg_t *vsp, *rotor; - uintptr_t addr; - size_t realsize = P2ROUNDUP(size, vmp->vm_quantum); - size_t vs_size; - - (void) mutex_lock(&vmp->vm_lock); - - if (vmp->vm_nsegfree < VMEM_MINFREE && !vmem_populate(vmp, vmflag)) { - (void) mutex_unlock(&vmp->vm_lock); - return (NULL); - } - - /* - * The common case is that the segment right after the rotor is free, - * and large enough that extracting 'size' bytes won't change which - * freelist it's on. In this case we can avoid a *lot* of work. - * Instead of the normal vmem_seg_alloc(), we just advance the start - * address of the victim segment. Instead of moving the rotor, we - * create the new segment structure *behind the rotor*, which has - * the same effect. And finally, we know we don't have to coalesce - * the rotor's neighbors because the new segment lies between them. - */ - rotor = &vmp->vm_rotor; - vsp = rotor->vs_anext; - if (vsp->vs_type == VMEM_FREE && (vs_size = VS_SIZE(vsp)) > realsize && - P2SAMEHIGHBIT(vs_size, vs_size - realsize)) { - ASSERT(highbit(vs_size) == highbit(vs_size - realsize)); - addr = vsp->vs_start; - vsp->vs_start = addr + realsize; - vmem_hash_insert(vmp, - vmem_seg_create(vmp, rotor->vs_aprev, addr, addr + size)); - (void) mutex_unlock(&vmp->vm_lock); - return ((void *)addr); - } - - /* - * Starting at the rotor, look for a segment large enough to - * satisfy the allocation. - */ - for (;;) { - vmp->vm_kstat.vk_search++; - if (vsp->vs_type == VMEM_FREE && VS_SIZE(vsp) >= size) - break; - vsp = vsp->vs_anext; - if (vsp == rotor) { - int cancel_state; - - /* - * We've come full circle. One possibility is that the - * there's actually enough space, but the rotor itself - * is preventing the allocation from succeeding because - * it's sitting between two free segments. Therefore, - * we advance the rotor and see if that liberates a - * suitable segment. - */ - vmem_advance(vmp, rotor, rotor->vs_anext); - vsp = rotor->vs_aprev; - if (vsp->vs_type == VMEM_FREE && VS_SIZE(vsp) >= size) - break; - /* - * If there's a lower arena we can import from, or it's - * a VM_NOSLEEP allocation, let vmem_xalloc() handle it. - * Otherwise, wait until another thread frees something. - */ - if (vmp->vm_source_alloc != NULL || - (vmflag & VM_NOSLEEP)) { - (void) mutex_unlock(&vmp->vm_lock); - return (vmem_xalloc(vmp, size, vmp->vm_quantum, - 0, 0, NULL, NULL, vmflag & VM_UMFLAGS)); - } - vmp->vm_kstat.vk_wait++; - (void) pthread_setcancelstate(PTHREAD_CANCEL_DISABLE, - &cancel_state); - (void) cond_wait(&vmp->vm_cv, &vmp->vm_lock); - (void) pthread_setcancelstate(cancel_state, NULL); - vsp = rotor->vs_anext; - } - } - - /* - * We found a segment. Extract enough space to satisfy the allocation. - */ - addr = vsp->vs_start; - vsp = vmem_seg_alloc(vmp, vsp, addr, size); - ASSERT(vsp->vs_type == VMEM_ALLOC && - vsp->vs_start == addr && vsp->vs_end == addr + size); - - /* - * Advance the rotor to right after the newly-allocated segment. - * That's where the next VM_NEXTFIT allocation will begin searching. - */ - vmem_advance(vmp, rotor, vsp); - (void) mutex_unlock(&vmp->vm_lock); - return ((void *)addr); -} - -/* - * Allocate size bytes at offset phase from an align boundary such that the - * resulting segment [addr, addr + size) is a subset of [minaddr, maxaddr) - * that does not straddle a nocross-aligned boundary. - */ -void * -vmem_xalloc(vmem_t *vmp, size_t size, size_t align, size_t phase, - size_t nocross, void *minaddr, void *maxaddr, int vmflag) -{ - vmem_seg_t *vsp; - vmem_seg_t *vbest = NULL; - uintptr_t addr, taddr, start, end; - void *vaddr; - int hb, flist, resv; - uint32_t mtbf; - - if (phase > 0 && phase >= align) - umem_panic("vmem_xalloc(%p, %lu, %lu, %lu, %lu, %p, %p, %x): " - "invalid phase", - (void *)vmp, size, align, phase, nocross, - minaddr, maxaddr, vmflag); - - if (align == 0) - align = vmp->vm_quantum; - - if ((align | phase | nocross) & (vmp->vm_quantum - 1)) { - umem_panic("vmem_xalloc(%p, %lu, %lu, %lu, %lu, %p, %p, %x): " - "parameters not vm_quantum aligned", - (void *)vmp, size, align, phase, nocross, - minaddr, maxaddr, vmflag); - } - - if (nocross != 0 && - (align > nocross || P2ROUNDUP(phase + size, align) > nocross)) { - umem_panic("vmem_xalloc(%p, %lu, %lu, %lu, %lu, %p, %p, %x): " - "overconstrained allocation", - (void *)vmp, size, align, phase, nocross, - minaddr, maxaddr, vmflag); - } - - if ((mtbf = vmem_mtbf | vmp->vm_mtbf) != 0 && gethrtime() % mtbf == 0 && - (vmflag & (VM_NOSLEEP | VM_PANIC)) == VM_NOSLEEP) - return (NULL); - - (void) mutex_lock(&vmp->vm_lock); - for (;;) { - int cancel_state; - - if (vmp->vm_nsegfree < VMEM_MINFREE && - !vmem_populate(vmp, vmflag)) - break; - - /* - * highbit() returns the highest bit + 1, which is exactly - * what we want: we want to search the first freelist whose - * members are *definitely* large enough to satisfy our - * allocation. However, there are certain cases in which we - * want to look at the next-smallest freelist (which *might* - * be able to satisfy the allocation): - * - * (1) The size is exactly a power of 2, in which case - * the smaller freelist is always big enough; - * - * (2) All other freelists are empty; - * - * (3) We're in the highest possible freelist, which is - * always empty (e.g. the 4GB freelist on 32-bit systems); - * - * (4) We're doing a best-fit or first-fit allocation. - */ - if ((size & (size - 1)) == 0) { - flist = lowbit(P2ALIGN(vmp->vm_freemap, size)); - } else { - hb = highbit(size); - if ((vmp->vm_freemap >> hb) == 0 || - hb == VMEM_FREELISTS || - (vmflag & (VM_BESTFIT | VM_FIRSTFIT))) - hb--; - flist = lowbit(P2ALIGN(vmp->vm_freemap, 1UL << hb)); - } - - for (vbest = NULL, vsp = (flist == 0) ? NULL : - vmp->vm_freelist[flist - 1].vs_knext; - vsp != NULL; vsp = vsp->vs_knext) { - vmp->vm_kstat.vk_search++; - if (vsp->vs_start == 0) { - /* - * We're moving up to a larger freelist, - * so if we've already found a candidate, - * the fit can't possibly get any better. - */ - if (vbest != NULL) - break; - /* - * Find the next non-empty freelist. - */ - flist = lowbit(P2ALIGN(vmp->vm_freemap, - VS_SIZE(vsp))); - if (flist-- == 0) - break; - vsp = (vmem_seg_t *)&vmp->vm_freelist[flist]; - ASSERT(vsp->vs_knext->vs_type == VMEM_FREE); - continue; - } - if (vsp->vs_end - 1 < (uintptr_t)minaddr) - continue; - if (vsp->vs_start > (uintptr_t)maxaddr - 1) - continue; - start = MAX(vsp->vs_start, (uintptr_t)minaddr); - end = MIN(vsp->vs_end - 1, (uintptr_t)maxaddr - 1) + 1; - taddr = P2PHASEUP(start, align, phase); - if (P2BOUNDARY(taddr, size, nocross)) - taddr += - P2ROUNDUP(P2NPHASE(taddr, nocross), align); - if ((taddr - start) + size > end - start || - (vbest != NULL && VS_SIZE(vsp) >= VS_SIZE(vbest))) - continue; - vbest = vsp; - addr = taddr; - if (!(vmflag & VM_BESTFIT) || VS_SIZE(vbest) == size) - break; - } - if (vbest != NULL) - break; - if (size == 0) - umem_panic("vmem_xalloc(): size == 0"); - if (vmp->vm_source_alloc != NULL && nocross == 0 && - minaddr == NULL && maxaddr == NULL) { - size_t asize = P2ROUNDUP(size + phase, - MAX(align, vmp->vm_source->vm_quantum)); - if (asize < size) { /* overflow */ - (void) mutex_unlock(&vmp->vm_lock); - if (vmflag & VM_NOSLEEP) - return (NULL); - - umem_panic("vmem_xalloc(): " - "overflow on VM_SLEEP allocation"); - } - /* - * Determine how many segment structures we'll consume. - * The calculation must be presise because if we're - * here on behalf of vmem_populate(), we are taking - * segments from a very limited reserve. - */ - resv = (size == asize) ? - VMEM_SEGS_PER_SPAN_CREATE + - VMEM_SEGS_PER_EXACT_ALLOC : - VMEM_SEGS_PER_ALLOC_MAX; - ASSERT(vmp->vm_nsegfree >= resv); - vmp->vm_nsegfree -= resv; /* reserve our segs */ - (void) mutex_unlock(&vmp->vm_lock); - vaddr = vmp->vm_source_alloc(vmp->vm_source, asize, - vmflag & VM_UMFLAGS); - (void) mutex_lock(&vmp->vm_lock); - vmp->vm_nsegfree += resv; /* claim reservation */ - if (vaddr != NULL) { - vbest = vmem_span_create(vmp, vaddr, asize, 1); - addr = P2PHASEUP(vbest->vs_start, align, phase); - break; - } - } - (void) mutex_unlock(&vmp->vm_lock); - vmem_reap(); - (void) mutex_lock(&vmp->vm_lock); - if (vmflag & VM_NOSLEEP) - break; - vmp->vm_kstat.vk_wait++; - (void) pthread_setcancelstate(PTHREAD_CANCEL_DISABLE, - &cancel_state); - (void) cond_wait(&vmp->vm_cv, &vmp->vm_lock); - (void) pthread_setcancelstate(cancel_state, NULL); - } - if (vbest != NULL) { - ASSERT(vbest->vs_type == VMEM_FREE); - ASSERT(vbest->vs_knext != vbest); - (void) vmem_seg_alloc(vmp, vbest, addr, size); - (void) mutex_unlock(&vmp->vm_lock); - ASSERT(P2PHASE(addr, align) == phase); - ASSERT(!P2BOUNDARY(addr, size, nocross)); - ASSERT(addr >= (uintptr_t)minaddr); - ASSERT(addr + size - 1 <= (uintptr_t)maxaddr - 1); - return ((void *)addr); - } - vmp->vm_kstat.vk_fail++; - (void) mutex_unlock(&vmp->vm_lock); - if (vmflag & VM_PANIC) - umem_panic("vmem_xalloc(%p, %lu, %lu, %lu, %lu, %p, %p, %x): " - "cannot satisfy mandatory allocation", - (void *)vmp, size, align, phase, nocross, - minaddr, maxaddr, vmflag); - return (NULL); -} - -/* - * Free the segment [vaddr, vaddr + size), where vaddr was a constrained - * allocation. vmem_xalloc() and vmem_xfree() must always be paired because - * both routines bypass the quantum caches. - */ -void -vmem_xfree(vmem_t *vmp, void *vaddr, size_t size) -{ - vmem_seg_t *vsp, *vnext, *vprev; - - (void) mutex_lock(&vmp->vm_lock); - - vsp = vmem_hash_delete(vmp, (uintptr_t)vaddr, size); - vsp->vs_end = P2ROUNDUP(vsp->vs_end, vmp->vm_quantum); - - /* - * Attempt to coalesce with the next segment. - */ - vnext = vsp->vs_anext; - if (vnext->vs_type == VMEM_FREE) { - ASSERT(vsp->vs_end == vnext->vs_start); - vmem_freelist_delete(vmp, vnext); - vsp->vs_end = vnext->vs_end; - vmem_seg_destroy(vmp, vnext); - } - - /* - * Attempt to coalesce with the previous segment. - */ - vprev = vsp->vs_aprev; - if (vprev->vs_type == VMEM_FREE) { - ASSERT(vprev->vs_end == vsp->vs_start); - vmem_freelist_delete(vmp, vprev); - vprev->vs_end = vsp->vs_end; - vmem_seg_destroy(vmp, vsp); - vsp = vprev; - } - - /* - * If the entire span is free, return it to the source. - */ - if (vsp->vs_import && vmp->vm_source_free != NULL && - vsp->vs_aprev->vs_type == VMEM_SPAN && - vsp->vs_anext->vs_type == VMEM_SPAN) { - vaddr = (void *)vsp->vs_start; - size = VS_SIZE(vsp); - ASSERT(size == VS_SIZE(vsp->vs_aprev)); - vmem_span_destroy(vmp, vsp); - (void) mutex_unlock(&vmp->vm_lock); - vmp->vm_source_free(vmp->vm_source, vaddr, size); - } else { - vmem_freelist_insert(vmp, vsp); - (void) mutex_unlock(&vmp->vm_lock); - } -} - -/* - * Allocate size bytes from arena vmp. Returns the allocated address - * on success, NULL on failure. vmflag specifies VM_SLEEP or VM_NOSLEEP, - * and may also specify best-fit, first-fit, or next-fit allocation policy - * instead of the default instant-fit policy. VM_SLEEP allocations are - * guaranteed to succeed. - */ -void * -vmem_alloc(vmem_t *vmp, size_t size, int vmflag) -{ - vmem_seg_t *vsp; - uintptr_t addr; - int hb; - int flist = 0; - uint32_t mtbf; - - if (size - 1 < vmp->vm_qcache_max) { - ASSERT(vmflag & VM_NOSLEEP); - return (_umem_cache_alloc(vmp->vm_qcache[(size - 1) >> - vmp->vm_qshift], UMEM_DEFAULT)); - } - - if ((mtbf = vmem_mtbf | vmp->vm_mtbf) != 0 && gethrtime() % mtbf == 0 && - (vmflag & (VM_NOSLEEP | VM_PANIC)) == VM_NOSLEEP) - return (NULL); - - if (vmflag & VM_NEXTFIT) - return (vmem_nextfit_alloc(vmp, size, vmflag)); - - if (vmflag & (VM_BESTFIT | VM_FIRSTFIT)) - return (vmem_xalloc(vmp, size, vmp->vm_quantum, 0, 0, - NULL, NULL, vmflag)); - - /* - * Unconstrained instant-fit allocation from the segment list. - */ - (void) mutex_lock(&vmp->vm_lock); - - if (vmp->vm_nsegfree >= VMEM_MINFREE || vmem_populate(vmp, vmflag)) { - if ((size & (size - 1)) == 0) - flist = lowbit(P2ALIGN(vmp->vm_freemap, size)); - else if ((hb = highbit(size)) < VMEM_FREELISTS) - flist = lowbit(P2ALIGN(vmp->vm_freemap, 1UL << hb)); - } - - if (flist-- == 0) { - (void) mutex_unlock(&vmp->vm_lock); - return (vmem_xalloc(vmp, size, vmp->vm_quantum, - 0, 0, NULL, NULL, vmflag)); - } - - ASSERT(size <= (1UL << flist)); - vsp = vmp->vm_freelist[flist].vs_knext; - addr = vsp->vs_start; - (void) vmem_seg_alloc(vmp, vsp, addr, size); - (void) mutex_unlock(&vmp->vm_lock); - return ((void *)addr); -} - -/* - * Free the segment [vaddr, vaddr + size). - */ -void -vmem_free(vmem_t *vmp, void *vaddr, size_t size) -{ - if (size - 1 < vmp->vm_qcache_max) - _umem_cache_free(vmp->vm_qcache[(size - 1) >> vmp->vm_qshift], - vaddr); - else - vmem_xfree(vmp, vaddr, size); -} - -/* - * Determine whether arena vmp contains the segment [vaddr, vaddr + size). - */ -int -vmem_contains(vmem_t *vmp, void *vaddr, size_t size) -{ - uintptr_t start = (uintptr_t)vaddr; - uintptr_t end = start + size; - vmem_seg_t *vsp; - vmem_seg_t *seg0 = &vmp->vm_seg0; - - (void) mutex_lock(&vmp->vm_lock); - vmp->vm_kstat.vk_contains++; - for (vsp = seg0->vs_knext; vsp != seg0; vsp = vsp->vs_knext) { - vmp->vm_kstat.vk_contains_search++; - ASSERT(vsp->vs_type == VMEM_SPAN); - if (start >= vsp->vs_start && end - 1 <= vsp->vs_end - 1) - break; - } - (void) mutex_unlock(&vmp->vm_lock); - return (vsp != seg0); -} - -/* - * Add the span [vaddr, vaddr + size) to arena vmp. - */ -void * -vmem_add(vmem_t *vmp, void *vaddr, size_t size, int vmflag) -{ - if (vaddr == NULL || size == 0) { - umem_panic("vmem_add(%p, %p, %lu): bad arguments", - vmp, vaddr, size); - } - - ASSERT(!vmem_contains(vmp, vaddr, size)); - - (void) mutex_lock(&vmp->vm_lock); - if (vmem_populate(vmp, vmflag)) - (void) vmem_span_create(vmp, vaddr, size, 0); - else - vaddr = NULL; - (void) cond_broadcast(&vmp->vm_cv); - (void) mutex_unlock(&vmp->vm_lock); - return (vaddr); -} - -/* - * Adds the address range [addr, endaddr) to arena vmp, by either: - * 1. joining two existing spans, [x, addr), and [endaddr, y) (which - * are in that order) into a single [x, y) span, - * 2. expanding an existing [x, addr) span to [x, endaddr), - * 3. expanding an existing [endaddr, x) span to [addr, x), or - * 4. creating a new [addr, endaddr) span. - * - * Called with vmp->vm_lock held, and a successful vmem_populate() completed. - * Cannot fail. Returns the new segment. - * - * NOTE: this algorithm is linear-time in the number of spans, but is - * constant-time when you are extending the last (highest-addressed) - * span. - */ -static vmem_seg_t * -vmem_extend_unlocked(vmem_t *vmp, uintptr_t addr, uintptr_t endaddr) -{ - vmem_seg_t *span; - vmem_seg_t *vsp; - - vmem_seg_t *end = &vmp->vm_seg0; - - ASSERT(MUTEX_HELD(&vmp->vm_lock)); - - /* - * the second "if" clause below relies on the direction of this search - */ - for (span = end->vs_kprev; span != end; span = span->vs_kprev) { - if (span->vs_end == addr || span->vs_start == endaddr) - break; - } - - if (span == end) - return (vmem_span_create(vmp, (void *)addr, endaddr - addr, 0)); - if (span->vs_kprev->vs_end == addr && span->vs_start == endaddr) { - vmem_seg_t *prevspan = span->vs_kprev; - vmem_seg_t *nextseg = span->vs_anext; - vmem_seg_t *prevseg = span->vs_aprev; - - /* - * prevspan becomes the span marker for the full range - */ - prevspan->vs_end = span->vs_end; - - /* - * Notionally, span becomes a free segment representing - * [addr, endaddr). - * - * However, if either of its neighbors are free, we coalesce - * by destroying span and changing the free segment. - */ - if (prevseg->vs_type == VMEM_FREE && - nextseg->vs_type == VMEM_FREE) { - /* - * coalesce both ways - */ - ASSERT(prevseg->vs_end == addr && - nextseg->vs_start == endaddr); - - vmem_freelist_delete(vmp, prevseg); - prevseg->vs_end = nextseg->vs_end; - - vmem_freelist_delete(vmp, nextseg); - VMEM_DELETE(span, k); - vmem_seg_destroy(vmp, nextseg); - vmem_seg_destroy(vmp, span); - - vsp = prevseg; - } else if (prevseg->vs_type == VMEM_FREE) { - /* - * coalesce left - */ - ASSERT(prevseg->vs_end == addr); - - VMEM_DELETE(span, k); - vmem_seg_destroy(vmp, span); - - vmem_freelist_delete(vmp, prevseg); - prevseg->vs_end = endaddr; - - vsp = prevseg; - } else if (nextseg->vs_type == VMEM_FREE) { - /* - * coalesce right - */ - ASSERT(nextseg->vs_start == endaddr); - - VMEM_DELETE(span, k); - vmem_seg_destroy(vmp, span); - - vmem_freelist_delete(vmp, nextseg); - nextseg->vs_start = addr; - - vsp = nextseg; - } else { - /* - * cannnot coalesce - */ - VMEM_DELETE(span, k); - span->vs_start = addr; - span->vs_end = endaddr; - - vsp = span; - } - } else if (span->vs_end == addr) { - vmem_seg_t *oldseg = span->vs_knext->vs_aprev; - span->vs_end = endaddr; - - ASSERT(oldseg->vs_type != VMEM_SPAN); - if (oldseg->vs_type == VMEM_FREE) { - ASSERT(oldseg->vs_end == addr); - vmem_freelist_delete(vmp, oldseg); - oldseg->vs_end = endaddr; - vsp = oldseg; - } else - vsp = vmem_seg_create(vmp, oldseg, addr, endaddr); - } else { - vmem_seg_t *oldseg = span->vs_anext; - ASSERT(span->vs_start == endaddr); - span->vs_start = addr; - - ASSERT(oldseg->vs_type != VMEM_SPAN); - if (oldseg->vs_type == VMEM_FREE) { - ASSERT(oldseg->vs_start == endaddr); - vmem_freelist_delete(vmp, oldseg); - oldseg->vs_start = addr; - vsp = oldseg; - } else - vsp = vmem_seg_create(vmp, span, addr, endaddr); - } - vmem_freelist_insert(vmp, vsp); - vmp->vm_kstat.vk_mem_total += (endaddr - addr); - return (vsp); -} - -/* - * Does some error checking, calls vmem_extend_unlocked to add - * [vaddr, vaddr+size) to vmp, then allocates alloc bytes from the - * newly merged segment. - */ -void * -_vmem_extend_alloc(vmem_t *vmp, void *vaddr, size_t size, size_t alloc, - int vmflag) -{ - uintptr_t addr = (uintptr_t)vaddr; - uintptr_t endaddr = addr + size; - vmem_seg_t *vsp; - - ASSERT(vaddr != NULL && size != 0 && endaddr > addr); - ASSERT(alloc <= size && alloc != 0); - ASSERT(((addr | size | alloc) & (vmp->vm_quantum - 1)) == 0); - - ASSERT(!vmem_contains(vmp, vaddr, size)); - - (void) mutex_lock(&vmp->vm_lock); - if (!vmem_populate(vmp, vmflag)) { - (void) mutex_unlock(&vmp->vm_lock); - return (NULL); - } - /* - * if there is a source, we can't mess with the spans - */ - if (vmp->vm_source_alloc != NULL) - vsp = vmem_span_create(vmp, vaddr, size, 0); - else - vsp = vmem_extend_unlocked(vmp, addr, endaddr); - - ASSERT(VS_SIZE(vsp) >= alloc); - - addr = vsp->vs_start; - (void) vmem_seg_alloc(vmp, vsp, addr, alloc); - vaddr = (void *)addr; - - (void) cond_broadcast(&vmp->vm_cv); - (void) mutex_unlock(&vmp->vm_lock); - - return (vaddr); -} - -/* - * Walk the vmp arena, applying func to each segment matching typemask. - * If VMEM_REENTRANT is specified, the arena lock is dropped across each - * call to func(); otherwise, it is held for the duration of vmem_walk() - * to ensure a consistent snapshot. Note that VMEM_REENTRANT callbacks - * are *not* necessarily consistent, so they may only be used when a hint - * is adequate. - */ -void -vmem_walk(vmem_t *vmp, int typemask, - void (*func)(void *, void *, size_t), void *arg) -{ - vmem_seg_t *vsp; - vmem_seg_t *seg0 = &vmp->vm_seg0; - vmem_seg_t walker; - - if (typemask & VMEM_WALKER) - return; - - bzero(&walker, sizeof (walker)); - walker.vs_type = VMEM_WALKER; - - (void) mutex_lock(&vmp->vm_lock); - VMEM_INSERT(seg0, &walker, a); - for (vsp = seg0->vs_anext; vsp != seg0; vsp = vsp->vs_anext) { - if (vsp->vs_type & typemask) { - void *start = (void *)vsp->vs_start; - size_t size = VS_SIZE(vsp); - if (typemask & VMEM_REENTRANT) { - vmem_advance(vmp, &walker, vsp); - (void) mutex_unlock(&vmp->vm_lock); - func(arg, start, size); - (void) mutex_lock(&vmp->vm_lock); - vsp = &walker; - } else { - func(arg, start, size); - } - } - } - vmem_advance(vmp, &walker, NULL); - (void) mutex_unlock(&vmp->vm_lock); -} - -/* - * Return the total amount of memory whose type matches typemask. Thus: - * - * typemask VMEM_ALLOC yields total memory allocated (in use). - * typemask VMEM_FREE yields total memory free (available). - * typemask (VMEM_ALLOC | VMEM_FREE) yields total arena size. - */ -size_t -vmem_size(vmem_t *vmp, int typemask) -{ - uint64_t size = 0; - - if (typemask & VMEM_ALLOC) - size += vmp->vm_kstat.vk_mem_inuse; - if (typemask & VMEM_FREE) - size += vmp->vm_kstat.vk_mem_total - - vmp->vm_kstat.vk_mem_inuse; - return ((size_t)size); -} - -/* - * Create an arena called name whose initial span is [base, base + size). - * The arena's natural unit of currency is quantum, so vmem_alloc() - * guarantees quantum-aligned results. The arena may import new spans - * by invoking afunc() on source, and may return those spans by invoking - * ffunc() on source. To make small allocations fast and scalable, - * the arena offers high-performance caching for each integer multiple - * of quantum up to qcache_max. - */ -vmem_t * -vmem_create(const char *name, void *base, size_t size, size_t quantum, - vmem_alloc_t *afunc, vmem_free_t *ffunc, vmem_t *source, - size_t qcache_max, int vmflag) -{ - int i; - size_t nqcache; - vmem_t *vmp, *cur, **vmpp; - vmem_seg_t *vsp; - vmem_freelist_t *vfp; - uint32_t id = atomic_add_32_nv(&vmem_id, 1); - - if (vmem_vmem_arena != NULL) { - vmp = vmem_alloc(vmem_vmem_arena, sizeof (vmem_t), - vmflag & VM_UMFLAGS); - } else { - ASSERT(id <= VMEM_INITIAL); - vmp = &vmem0[id - 1]; - } - - if (vmp == NULL) - return (NULL); - bzero(vmp, sizeof (vmem_t)); - - (void) snprintf(vmp->vm_name, VMEM_NAMELEN, "%s", name); - (void) mutex_init(&vmp->vm_lock, USYNC_THREAD, NULL); - (void) cond_init(&vmp->vm_cv, USYNC_THREAD, NULL); - vmp->vm_cflags = vmflag; - vmflag &= VM_UMFLAGS; - - vmp->vm_quantum = quantum; - vmp->vm_qshift = highbit(quantum) - 1; - nqcache = MIN(qcache_max >> vmp->vm_qshift, VMEM_NQCACHE_MAX); - - for (i = 0; i <= VMEM_FREELISTS; i++) { - vfp = &vmp->vm_freelist[i]; - vfp->vs_end = 1UL << i; - vfp->vs_knext = (vmem_seg_t *)(vfp + 1); - vfp->vs_kprev = (vmem_seg_t *)(vfp - 1); - } - - vmp->vm_freelist[0].vs_kprev = NULL; - vmp->vm_freelist[VMEM_FREELISTS].vs_knext = NULL; - vmp->vm_freelist[VMEM_FREELISTS].vs_end = 0; - vmp->vm_hash_table = vmp->vm_hash0; - vmp->vm_hash_mask = VMEM_HASH_INITIAL - 1; - vmp->vm_hash_shift = highbit(vmp->vm_hash_mask); - - vsp = &vmp->vm_seg0; - vsp->vs_anext = vsp; - vsp->vs_aprev = vsp; - vsp->vs_knext = vsp; - vsp->vs_kprev = vsp; - vsp->vs_type = VMEM_SPAN; - - vsp = &vmp->vm_rotor; - vsp->vs_type = VMEM_ROTOR; - VMEM_INSERT(&vmp->vm_seg0, vsp, a); - - vmp->vm_id = id; - if (source != NULL) - vmp->vm_kstat.vk_source_id = source->vm_id; - vmp->vm_source = source; - vmp->vm_source_alloc = afunc; - vmp->vm_source_free = ffunc; - - if (nqcache != 0) { - vmp->vm_qcache_max = nqcache << vmp->vm_qshift; - for (i = 0; i < nqcache; i++) { - char buf[VMEM_NAMELEN + 21]; - (void) snprintf(buf, sizeof (buf), "%s_%lu", - vmp->vm_name, (long)((i + 1) * quantum)); - vmp->vm_qcache[i] = umem_cache_create(buf, - (i + 1) * quantum, quantum, NULL, NULL, NULL, - NULL, vmp, UMC_QCACHE | UMC_NOTOUCH); - if (vmp->vm_qcache[i] == NULL) { - vmp->vm_qcache_max = i * quantum; - break; - } - } - } - - (void) mutex_lock(&vmem_list_lock); - vmpp = &vmem_list; - while ((cur = *vmpp) != NULL) - vmpp = &cur->vm_next; - *vmpp = vmp; - (void) mutex_unlock(&vmem_list_lock); - - if (vmp->vm_cflags & VMC_POPULATOR) { - uint_t pop_id = atomic_add_32_nv(&vmem_populators, 1); - ASSERT(pop_id <= VMEM_INITIAL); - vmem_populator[pop_id - 1] = vmp; - (void) mutex_lock(&vmp->vm_lock); - (void) vmem_populate(vmp, vmflag | VM_PANIC); - (void) mutex_unlock(&vmp->vm_lock); - } - - if ((base || size) && vmem_add(vmp, base, size, vmflag) == NULL) { - vmem_destroy(vmp); - return (NULL); - } - - return (vmp); -} - -/* - * Destroy arena vmp. - */ -void -vmem_destroy(vmem_t *vmp) -{ - vmem_t *cur, **vmpp; - vmem_seg_t *seg0 = &vmp->vm_seg0; - vmem_seg_t *vsp; - size_t leaked; - int i; - - (void) mutex_lock(&vmem_list_lock); - vmpp = &vmem_list; - while ((cur = *vmpp) != vmp) - vmpp = &cur->vm_next; - *vmpp = vmp->vm_next; - (void) mutex_unlock(&vmem_list_lock); - - for (i = 0; i < VMEM_NQCACHE_MAX; i++) - if (vmp->vm_qcache[i]) - umem_cache_destroy(vmp->vm_qcache[i]); - - leaked = vmem_size(vmp, VMEM_ALLOC); - if (leaked != 0) - umem_printf("vmem_destroy('%s'): leaked %lu bytes", - vmp->vm_name, leaked); - - if (vmp->vm_hash_table != vmp->vm_hash0) - vmem_free(vmem_hash_arena, vmp->vm_hash_table, - (vmp->vm_hash_mask + 1) * sizeof (void *)); - - /* - * Give back the segment structures for anything that's left in the - * arena, e.g. the primary spans and their free segments. - */ - VMEM_DELETE(&vmp->vm_rotor, a); - for (vsp = seg0->vs_anext; vsp != seg0; vsp = vsp->vs_anext) - vmem_putseg_global(vsp); - - while (vmp->vm_nsegfree > 0) - vmem_putseg_global(vmem_getseg(vmp)); - - (void) mutex_destroy(&vmp->vm_lock); - (void) cond_destroy(&vmp->vm_cv); - vmem_free(vmem_vmem_arena, vmp, sizeof (vmem_t)); -} - -/* - * Resize vmp's hash table to keep the average lookup depth near 1.0. - */ -static void -vmem_hash_rescale(vmem_t *vmp) -{ - vmem_seg_t **old_table, **new_table, *vsp; - size_t old_size, new_size, h, nseg; - - nseg = (size_t)(vmp->vm_kstat.vk_alloc - vmp->vm_kstat.vk_free); - - new_size = MAX(VMEM_HASH_INITIAL, 1 << (highbit(3 * nseg + 4) - 2)); - old_size = vmp->vm_hash_mask + 1; - - if ((old_size >> 1) <= new_size && new_size <= (old_size << 1)) - return; - - new_table = vmem_alloc(vmem_hash_arena, new_size * sizeof (void *), - VM_NOSLEEP); - if (new_table == NULL) - return; - bzero(new_table, new_size * sizeof (void *)); - - (void) mutex_lock(&vmp->vm_lock); - - old_size = vmp->vm_hash_mask + 1; - old_table = vmp->vm_hash_table; - - vmp->vm_hash_mask = new_size - 1; - vmp->vm_hash_table = new_table; - vmp->vm_hash_shift = highbit(vmp->vm_hash_mask); - - for (h = 0; h < old_size; h++) { - vsp = old_table[h]; - while (vsp != NULL) { - uintptr_t addr = vsp->vs_start; - vmem_seg_t *next_vsp = vsp->vs_knext; - vmem_seg_t **hash_bucket = VMEM_HASH(vmp, addr); - vsp->vs_knext = *hash_bucket; - *hash_bucket = vsp; - vsp = next_vsp; - } - } - - (void) mutex_unlock(&vmp->vm_lock); - - if (old_table != vmp->vm_hash0) - vmem_free(vmem_hash_arena, old_table, - old_size * sizeof (void *)); -} - -/* - * Perform periodic maintenance on all vmem arenas. - */ -/*ARGSUSED*/ -void -vmem_update(void *dummy) -{ - vmem_t *vmp; - - (void) mutex_lock(&vmem_list_lock); - for (vmp = vmem_list; vmp != NULL; vmp = vmp->vm_next) { - /* - * If threads are waiting for resources, wake them up - * periodically so they can issue another vmem_reap() - * to reclaim resources cached by the slab allocator. - */ - (void) cond_broadcast(&vmp->vm_cv); - - /* - * Rescale the hash table to keep the hash chains short. - */ - vmem_hash_rescale(vmp); - } - (void) mutex_unlock(&vmem_list_lock); -} - -/* - * If vmem_init is called again, we need to be able to reset the world. - * That includes resetting the statics back to their original values. - */ -void -vmem_startup(void) -{ -#ifdef UMEM_STANDALONE - vmem_id = 0; - vmem_populators = 0; - vmem_segfree = NULL; - vmem_list = NULL; - vmem_internal_arena = NULL; - vmem_seg_arena = NULL; - vmem_hash_arena = NULL; - vmem_vmem_arena = NULL; - vmem_heap = NULL; - vmem_heap_alloc = NULL; - vmem_heap_free = NULL; - - bzero(vmem0, sizeof (vmem0)); - bzero(vmem_populator, sizeof (vmem_populator)); - bzero(vmem_seg0, sizeof (vmem_seg0)); -#endif -} - -/* - * Prepare vmem for use. - */ -vmem_t * -vmem_init(const char *parent_name, size_t parent_quantum, - vmem_alloc_t *parent_alloc, vmem_free_t *parent_free, - const char *heap_name, void *heap_start, size_t heap_size, - size_t heap_quantum, vmem_alloc_t *heap_alloc, vmem_free_t *heap_free) -{ - uint32_t id; - int nseg = VMEM_SEG_INITIAL; - vmem_t *parent, *heap; - - ASSERT(vmem_internal_arena == NULL); - - while (--nseg >= 0) - vmem_putseg_global(&vmem_seg0[nseg]); - - if (parent_name != NULL) { - parent = vmem_create(parent_name, - heap_start, heap_size, parent_quantum, - NULL, NULL, NULL, 0, - VM_SLEEP | VMC_POPULATOR); - heap_start = NULL; - heap_size = 0; - } else { - ASSERT(parent_alloc == NULL && parent_free == NULL); - parent = NULL; - } - - heap = vmem_create(heap_name, - heap_start, heap_size, heap_quantum, - parent_alloc, parent_free, parent, 0, - VM_SLEEP | VMC_POPULATOR); - - vmem_heap = heap; - vmem_heap_alloc = heap_alloc; - vmem_heap_free = heap_free; - - vmem_internal_arena = vmem_create("vmem_internal", - NULL, 0, heap_quantum, - heap_alloc, heap_free, heap, 0, - VM_SLEEP | VMC_POPULATOR); - - vmem_seg_arena = vmem_create("vmem_seg", - NULL, 0, heap_quantum, - vmem_alloc, vmem_free, vmem_internal_arena, 0, - VM_SLEEP | VMC_POPULATOR); - - vmem_hash_arena = vmem_create("vmem_hash", - NULL, 0, 8, - vmem_alloc, vmem_free, vmem_internal_arena, 0, - VM_SLEEP); - - vmem_vmem_arena = vmem_create("vmem_vmem", - vmem0, sizeof (vmem0), 1, - vmem_alloc, vmem_free, vmem_internal_arena, 0, - VM_SLEEP); - - for (id = 0; id < vmem_id; id++) - (void) vmem_xalloc(vmem_vmem_arena, sizeof (vmem_t), - 1, 0, 0, &vmem0[id], &vmem0[id + 1], - VM_NOSLEEP | VM_BESTFIT | VM_PANIC); - - return (heap); -} - -void -vmem_no_debug(void) -{ - /* - * This size must be a multiple of the minimum required alignment, - * since vmem_populate allocates them compactly. - */ - vmem_seg_size = P2ROUNDUP(offsetof(vmem_seg_t, vs_thread), - sizeof (hrtime_t)); -} - -/* - * Lockup and release, for fork1(2) handling. - */ -void -vmem_lockup(void) -{ - vmem_t *cur; - - (void) mutex_lock(&vmem_list_lock); - (void) mutex_lock(&vmem_nosleep_lock.vmpl_mutex); - - /* - * Lock up and broadcast all arenas. - */ - for (cur = vmem_list; cur != NULL; cur = cur->vm_next) { - (void) mutex_lock(&cur->vm_lock); - (void) cond_broadcast(&cur->vm_cv); - } - - (void) mutex_lock(&vmem_segfree_lock); -} - -void -vmem_release(void) -{ - vmem_t *cur; - - (void) mutex_unlock(&vmem_nosleep_lock.vmpl_mutex); - - for (cur = vmem_list; cur != NULL; cur = cur->vm_next) - (void) mutex_unlock(&cur->vm_lock); - - (void) mutex_unlock(&vmem_segfree_lock); - (void) mutex_unlock(&vmem_list_lock); -} diff --git a/zfs/lib/libumem/vmem_base.c b/zfs/lib/libumem/vmem_base.c deleted file mode 100644 index 6b1c07e1b..000000000 --- a/zfs/lib/libumem/vmem_base.c +++ /dev/null @@ -1,56 +0,0 @@ -/* - * CDDL HEADER START - * - * The contents of this file are subject to the terms of the - * Common Development and Distribution License (the "License"). - * You may not use this file except in compliance with the License. - * - * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE - * or http://www.opensolaris.org/os/licensing. - * See the License for the specific language governing permissions - * and limitations under the License. - * - * When distributing Covered Code, include this CDDL HEADER in each - * file and include the License file at usr/src/OPENSOLARIS.LICENSE. - * If applicable, add the following below this CDDL HEADER, with the - * fields enclosed by brackets "[]" replaced with your own identifying - * information: Portions Copyright [yyyy] [name of copyright owner] - * - * CDDL HEADER END - */ - -/* - * Copyright 2008 Sun Microsystems, Inc. All rights reserved. - * Use is subject to license terms. - */ - -#pragma ident "%Z%%M% %I% %E% SMI" - -#include "vmem_base.h" -#include "umem_base.h" - -uint_t vmem_backend = 0; - -vmem_t * -vmem_heap_arena(vmem_alloc_t **allocp, vmem_free_t **freep) -{ - static mutex_t arena_mutex = DEFAULTMUTEX; - - /* - * Allow the init thread through, block others until the init completes - */ - if (umem_ready != UMEM_READY && umem_init_thr != thr_self() && - umem_init() == 0) - return (NULL); - - (void) mutex_lock(&arena_mutex); - if (vmem_heap == NULL) - vmem_heap_init(); - (void) mutex_unlock(&arena_mutex); - - if (allocp != NULL) - *allocp = vmem_heap_alloc; - if (freep != NULL) - *freep = vmem_heap_free; - return (vmem_heap); -} diff --git a/zfs/lib/libumem/vmem_mmap.c b/zfs/lib/libumem/vmem_mmap.c deleted file mode 100644 index 41c1ee5e7..000000000 --- a/zfs/lib/libumem/vmem_mmap.c +++ /dev/null @@ -1,134 +0,0 @@ -/* - * CDDL HEADER START - * - * The contents of this file are subject to the terms of the - * Common Development and Distribution License (the "License"). - * You may not use this file except in compliance with the License. - * - * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE - * or http://www.opensolaris.org/os/licensing. - * See the License for the specific language governing permissions - * and limitations under the License. - * - * When distributing Covered Code, include this CDDL HEADER in each - * file and include the License file at usr/src/OPENSOLARIS.LICENSE. - * If applicable, add the following below this CDDL HEADER, with the - * fields enclosed by brackets "[]" replaced with your own identifying - * information: Portions Copyright [yyyy] [name of copyright owner] - * - * CDDL HEADER END - */ - -/* - * Copyright 2008 Sun Microsystems, Inc. All rights reserved. - * Use is subject to license terms. - */ - -#pragma ident "%Z%%M% %I% %E% SMI" - -#include -#include -#include -#include -#include "vmem_base.h" - -#define ALLOC_PROT PROT_READ | PROT_WRITE | PROT_EXEC -#define FREE_PROT PROT_NONE - -#define ALLOC_FLAGS MAP_PRIVATE | MAP_ANON -#define FREE_FLAGS MAP_PRIVATE | MAP_ANON | MAP_NORESERVE - -#define CHUNKSIZE (64*1024) /* 64 kilobytes */ - -static vmem_t *mmap_heap; - -static void * -vmem_mmap_alloc(vmem_t *src, size_t size, int vmflags) -{ - void *ret; - int old_errno = errno; - - ret = vmem_alloc(src, size, vmflags); - if (ret != NULL && - mmap(ret, size, ALLOC_PROT, ALLOC_FLAGS | MAP_FIXED, -1, 0) == - MAP_FAILED) { - vmem_free(src, ret, size); - vmem_reap(); - - ASSERT((vmflags & VM_NOSLEEP) == VM_NOSLEEP); - errno = old_errno; - return (NULL); - } - - errno = old_errno; - return (ret); -} - -static void -vmem_mmap_free(vmem_t *src, void *addr, size_t size) -{ - int old_errno = errno; - (void) mmap(addr, size, FREE_PROT, FREE_FLAGS | MAP_FIXED, -1, 0); - vmem_free(src, addr, size); - errno = old_errno; -} - -static void * -vmem_mmap_top_alloc(vmem_t *src, size_t size, int vmflags) -{ - void *ret; - void *buf; - int old_errno = errno; - - ret = vmem_alloc(src, size, VM_NOSLEEP); - - if (ret) { - errno = old_errno; - return (ret); - } - /* - * Need to grow the heap - */ - buf = mmap((void *)CHUNKSIZE, size, FREE_PROT, FREE_FLAGS | MAP_ALIGN, - -1, 0); - - if (buf != MAP_FAILED) { - ret = _vmem_extend_alloc(src, buf, size, size, vmflags); - if (ret != NULL) - return (ret); - else { - (void) munmap(buf, size); - errno = old_errno; - return (NULL); - } - } else { - /* - * Growing the heap failed. The allocation above will - * already have called umem_reap(). - */ - ASSERT((vmflags & VM_NOSLEEP) == VM_NOSLEEP); - - errno = old_errno; - return (NULL); - } -} - -vmem_t * -vmem_mmap_arena(vmem_alloc_t **a_out, vmem_free_t **f_out) -{ - size_t pagesize = sysconf(_SC_PAGESIZE); - - if (mmap_heap == NULL) { - mmap_heap = vmem_init("mmap_top", CHUNKSIZE, - vmem_mmap_top_alloc, vmem_free, - "mmap_heap", NULL, 0, pagesize, - vmem_mmap_alloc, vmem_mmap_free); - } - - if (a_out != NULL) - *a_out = vmem_mmap_alloc; - if (f_out != NULL) - *f_out = vmem_mmap_free; - - return (mmap_heap); -} diff --git a/zfs/lib/libumem/vmem_sbrk.c b/zfs/lib/libumem/vmem_sbrk.c deleted file mode 100644 index 20bfb7345..000000000 --- a/zfs/lib/libumem/vmem_sbrk.c +++ /dev/null @@ -1,268 +0,0 @@ -/* - * CDDL HEADER START - * - * The contents of this file are subject to the terms of the - * Common Development and Distribution License (the "License"). - * You may not use this file except in compliance with the License. - * - * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE - * or http://www.opensolaris.org/os/licensing. - * See the License for the specific language governing permissions - * and limitations under the License. - * - * When distributing Covered Code, include this CDDL HEADER in each - * file and include the License file at usr/src/OPENSOLARIS.LICENSE. - * If applicable, add the following below this CDDL HEADER, with the - * fields enclosed by brackets "[]" replaced with your own identifying - * information: Portions Copyright [yyyy] [name of copyright owner] - * - * CDDL HEADER END - */ - -/* - * Copyright 2008 Sun Microsystems, Inc. All rights reserved. - * Use is subject to license terms. - */ - -#pragma ident "%Z%%M% %I% %E% SMI" - -/* - * The structure of the sbrk backend: - * - * +-----------+ - * | sbrk_top | - * +-----------+ - * | (vmem_sbrk_alloc(), vmem_free()) - * | - * +-----------+ - * | sbrk_heap | - * +-----------+ - * | | ... | (vmem_alloc(), vmem_free()) - * - * - * The sbrk_top arena holds all controlled memory. vmem_sbrk_alloc() handles - * allocations from it, including growing the heap when we run low. - * - * Growing the heap is complicated by the fact that we have to extend the - * sbrk_top arena (using _vmem_extend_alloc()), and that can fail. Since - * other threads may be actively allocating, we can't return the memory. - * - * Instead, we put it on a doubly-linked list, sbrk_fails, which we search - * before calling sbrk(). - */ - -#include -#include -#include -#include -#include - -#include "vmem_base.h" - -#include "misc.h" - -size_t vmem_sbrk_pagesize = 0; /* the preferred page size of the heap */ - -#define VMEM_SBRK_MINALLOC (64 * 1024) -size_t vmem_sbrk_minalloc = VMEM_SBRK_MINALLOC; /* minimum allocation */ - -static size_t real_pagesize; -static vmem_t *sbrk_heap; - -typedef struct sbrk_fail { - struct sbrk_fail *sf_next; - struct sbrk_fail *sf_prev; - void *sf_base; /* == the sbrk_fail's address */ - size_t sf_size; /* the size of this buffer */ -} sbrk_fail_t; - -static sbrk_fail_t sbrk_fails = { - &sbrk_fails, - &sbrk_fails, - NULL, - 0 -}; - -static mutex_t sbrk_faillock = DEFAULTMUTEX; - -/* - * Try to extend src with [pos, pos + size). - * - * If it fails, add the block to the sbrk_fails list. - */ -static void * -vmem_sbrk_extend_alloc(vmem_t *src, void *pos, size_t size, size_t alloc, - int vmflags) -{ - sbrk_fail_t *fnext, *fprev, *fp; - void *ret; - - ret = _vmem_extend_alloc(src, pos, size, alloc, vmflags); - if (ret != NULL) - return (ret); - - fp = (sbrk_fail_t *)pos; - - ASSERT(sizeof (sbrk_fail_t) <= size); - - fp->sf_base = pos; - fp->sf_size = size; - - (void) mutex_lock(&sbrk_faillock); - fp->sf_next = fnext = &sbrk_fails; - fp->sf_prev = fprev = sbrk_fails.sf_prev; - fnext->sf_prev = fp; - fprev->sf_next = fp; - (void) mutex_unlock(&sbrk_faillock); - - return (NULL); -} - -/* - * Try to add at least size bytes to src, using the sbrk_fails list - */ -static void * -vmem_sbrk_tryfail(vmem_t *src, size_t size, int vmflags) -{ - sbrk_fail_t *fp; - - (void) mutex_lock(&sbrk_faillock); - for (fp = sbrk_fails.sf_next; fp != &sbrk_fails; fp = fp->sf_next) { - if (fp->sf_size >= size) { - fp->sf_next->sf_prev = fp->sf_prev; - fp->sf_prev->sf_next = fp->sf_next; - fp->sf_next = fp->sf_prev = NULL; - break; - } - } - (void) mutex_unlock(&sbrk_faillock); - - if (fp != &sbrk_fails) { - ASSERT(fp->sf_base == (void *)fp); - return (vmem_sbrk_extend_alloc(src, fp, fp->sf_size, size, - vmflags)); - } - /* - * nothing of the right size on the freelist - */ - return (NULL); -} - -static void * -vmem_sbrk_alloc(vmem_t *src, size_t size, int vmflags) -{ - extern void *_sbrk_grow_aligned(size_t min_size, size_t low_align, - size_t high_align, size_t *actual_size); - - void *ret; - void *buf; - size_t buf_size; - - int old_errno = errno; - - ret = vmem_alloc(src, size, VM_NOSLEEP); - if (ret != NULL) { - errno = old_errno; - return (ret); - } - - /* - * The allocation failed. We need to grow the heap. - * - * First, try to use any buffers which failed earlier. - */ - if (sbrk_fails.sf_next != &sbrk_fails && - (ret = vmem_sbrk_tryfail(src, size, vmflags)) != NULL) - return (ret); - - buf_size = MAX(size, vmem_sbrk_minalloc); - - /* - * buf_size gets overwritten with the actual allocated size - */ - buf = _sbrk_grow_aligned(buf_size, real_pagesize, vmem_sbrk_pagesize, - &buf_size); - - if (buf != MAP_FAILED) { - ret = vmem_sbrk_extend_alloc(src, buf, buf_size, size, vmflags); - if (ret != NULL) { - errno = old_errno; - return (ret); - } - } - - /* - * Growing the heap failed. The vmem_alloc() above called umem_reap(). - */ - ASSERT((vmflags & VM_NOSLEEP) == VM_NOSLEEP); - - errno = old_errno; - return (NULL); -} - -/* - * fork1() support - */ -void -vmem_sbrk_lockup(void) -{ - (void) mutex_lock(&sbrk_faillock); -} - -void -vmem_sbrk_release(void) -{ - (void) mutex_unlock(&sbrk_faillock); -} - -vmem_t * -vmem_sbrk_arena(vmem_alloc_t **a_out, vmem_free_t **f_out) -{ - if (sbrk_heap == NULL) { - size_t heap_size; - - real_pagesize = sysconf(_SC_PAGESIZE); - - heap_size = vmem_sbrk_pagesize; - - if (issetugid()) { - heap_size = 0; - } else if (heap_size != 0 && !ISP2(heap_size)) { - heap_size = 0; - log_message("ignoring bad pagesize: 0x%p\n", heap_size); - } - if (heap_size <= real_pagesize) { - heap_size = real_pagesize; - } else { - struct memcntl_mha mha; - mha.mha_cmd = MHA_MAPSIZE_BSSBRK; - mha.mha_flags = 0; - mha.mha_pagesize = heap_size; - - if (memcntl(NULL, 0, MC_HAT_ADVISE, (char *)&mha, 0, 0) - == -1) { - log_message("unable to set MAPSIZE_BSSBRK to " - "0x%p\n", heap_size); - heap_size = real_pagesize; - } - } - vmem_sbrk_pagesize = heap_size; - - /* validate vmem_sbrk_minalloc */ - if (vmem_sbrk_minalloc < VMEM_SBRK_MINALLOC) - vmem_sbrk_minalloc = VMEM_SBRK_MINALLOC; - vmem_sbrk_minalloc = P2ROUNDUP(vmem_sbrk_minalloc, heap_size); - - sbrk_heap = vmem_init("sbrk_top", real_pagesize, - vmem_sbrk_alloc, vmem_free, - "sbrk_heap", NULL, 0, real_pagesize, - vmem_alloc, vmem_free); - } - - if (a_out != NULL) - *a_out = vmem_alloc; - if (f_out != NULL) - *f_out = vmem_free; - - return (sbrk_heap); -} diff --git a/zfs/lib/libumem/vmem_stand.c b/zfs/lib/libumem/vmem_stand.c deleted file mode 100644 index da19043df..000000000 --- a/zfs/lib/libumem/vmem_stand.c +++ /dev/null @@ -1,164 +0,0 @@ -/* - * CDDL HEADER START - * - * The contents of this file are subject to the terms of the - * Common Development and Distribution License, Version 1.0 only - * (the "License"). You may not use this file except in compliance - * with the License. - * - * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE - * or http://www.opensolaris.org/os/licensing. - * See the License for the specific language governing permissions - * and limitations under the License. - * - * When distributing Covered Code, include this CDDL HEADER in each - * file and include the License file at usr/src/OPENSOLARIS.LICENSE. - * If applicable, add the following below this CDDL HEADER, with the - * fields enclosed by brackets "[]" replaced with your own identifying - * information: Portions Copyright [yyyy] [name of copyright owner] - * - * CDDL HEADER END - */ -/* - * Copyright 2004 Sun Microsystems, Inc. All rights reserved. - * Use is subject to license terms. - */ - -#pragma ident "%Z%%M% %I% %E% SMI" - -/* - * Standalone-specific vmem routines - * - * The standalone allocator operates on a pre-existing blob of memory, the - * location and dimensions of which are set using vmem_stand_setsize(). We - * then hand out CHUNKSIZE-sized pieces of this blob, until we run out. - */ - -#define DEF_CHUNKSIZE (64 * 1024) /* 64K */ - -#define DEF_NREGIONS 2 - -#include -#include -#include -#include -#include -#include - -#include "vmem_base.h" -#include "misc.h" - -static vmem_t *stand_heap; - -static size_t stand_chunksize; - -typedef struct stand_region { - caddr_t sr_base; - caddr_t sr_curtop; - size_t sr_left; -} stand_region_t; - -static stand_region_t stand_regions[DEF_NREGIONS]; -static int stand_nregions; - -extern void membar_producer(void); - -void -vmem_stand_init(void) -{ - stand_chunksize = MAX(DEF_CHUNKSIZE, pagesize); - - stand_nregions = 0; -} - -int -vmem_stand_add(caddr_t base, size_t len) -{ - stand_region_t *sr = &stand_regions[stand_nregions]; - - ASSERT(pagesize != 0); - - if (stand_nregions == DEF_NREGIONS) { - errno = ENOSPC; - return (-1); /* we don't have room -- throw it back */ - } - - /* - * We guarantee that only one call to `vmem_stand_add' will be - * active at a time, but we can't ensure that the allocator won't be - * in use while this function is being called. As such, we have to - * ensure that sr is populated and visible to other processors before - * allowing the allocator to access the new region. - */ - sr->sr_base = base; - sr->sr_curtop = (caddr_t)P2ROUNDUP((ulong_t)base, stand_chunksize); - sr->sr_left = P2ALIGN(len - (size_t)(sr->sr_curtop - sr->sr_base), - stand_chunksize); - membar_producer(); - - stand_nregions++; - - return (0); -} - -static void * -stand_parent_alloc(vmem_t *src, size_t size, int vmflags) -{ - int old_errno = errno; - stand_region_t *sr; - size_t chksize; - void *ret; - int i; - - if ((ret = vmem_alloc(src, size, VM_NOSLEEP)) != NULL) { - errno = old_errno; - return (ret); - } - - /* We need to allocate another chunk */ - chksize = roundup(size, stand_chunksize); - - for (sr = stand_regions, i = 0; i < stand_nregions; i++, sr++) { - if (sr->sr_left >= chksize) - break; - } - - if (i == stand_nregions) { - /* - * We don't have enough in any of our regions to satisfy the - * request. - */ - errno = old_errno; - return (NULL); - } - - if ((ret = _vmem_extend_alloc(src, sr->sr_curtop, chksize, size, - vmflags)) == NULL) { - errno = old_errno; - return (NULL); - } - - bzero(sr->sr_curtop, chksize); - - sr->sr_curtop += chksize; - sr->sr_left -= chksize; - - return (ret); -} - -vmem_t * -vmem_stand_arena(vmem_alloc_t **a_out, vmem_free_t **f_out) -{ - ASSERT(stand_nregions == 1); - - stand_heap = vmem_init("stand_parent", stand_chunksize, - stand_parent_alloc, vmem_free, - "stand_heap", NULL, 0, pagesize, vmem_alloc, vmem_free); - - if (a_out != NULL) - *a_out = vmem_alloc; - if (f_out != NULL) - *f_out = vmem_free; - - return (stand_heap); -}