mirror of
https://git.proxmox.com/git/mirror_zfs.git
synced 2024-12-26 03:09:34 +03:00
Illumos 5987 - zfs prefetch code needs work
5987 zfs prefetch code needs work Reviewed by: Adam Leventhal <ahl@delphix.com> Reviewed by: George Wilson <george.wilson@delphix.com> Reviewed by: Paul Dagnelie <pcd@delphix.com> Approved by: Gordon Ross <gordon.ross@nexenta.com> References: https://www.illumos.org/issues/5987 zfs prefetch code needs work illumos/illumos-gate@cf6106c 5987 zfs prefetch code needs work Porting notes: - [module/zfs/dbuf.c] -5f6d0b6
Handle block pointers with a corrupt logical size - [module/zfs/dmu_zfetch.c] -c65aa5b
Fix gcc missing parenthesis warnings -428870f
Update core ZFS code from build 121 to build 141. -79c76d5
Change KM_PUSHPAGE -> KM_SLEEP -b8d06fc
Switch KM_SLEEP to KM_PUSHPAGE - Account for ISO C90 - mixed declarations and code - warnings - Module parameters (new/changed): - Replaced zfetch_block_cap with zfetch_max_distance (Max bytes to prefetch per stream (default 8MB; 8 * 1024 * 1024)) - Preserved zfs_prefetch_disable as 'int' for consistency with existing Linux module options. - [include/sys/trace_arc.h] - Added new tracepoints - DEFINE_ARC_BUF_HDR_EVENT(zfs_arc__sync__wait__for__async); - DEFINE_ARC_BUF_HDR_EVENT(zfs_arc__demand__hit__predictive__prefetch); - [man/man5/zfs-module-parameters.5] - Updated man page Ported-by: kernelOfTruth kerneloftruth@gmail.com Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
This commit is contained in:
parent
ab5cbbd107
commit
7f60329a26
@ -84,27 +84,31 @@ typedef enum arc_flags
|
||||
ARC_FLAG_CACHED = 1 << 4, /* I/O was in cache */
|
||||
ARC_FLAG_L2CACHE = 1 << 5, /* cache in L2ARC */
|
||||
ARC_FLAG_L2COMPRESS = 1 << 6, /* compress in L2ARC */
|
||||
ARC_FLAG_PREDICTIVE_PREFETCH = 1 << 7, /* I/O from zfetch */
|
||||
|
||||
/*
|
||||
* Private ARC flags. These flags are private ARC only flags that
|
||||
* will show up in b_flags in the arc_hdr_buf_t. These flags should
|
||||
* only be set by ARC code.
|
||||
*/
|
||||
ARC_FLAG_IN_HASH_TABLE = 1 << 7, /* buffer is hashed */
|
||||
ARC_FLAG_IO_IN_PROGRESS = 1 << 8, /* I/O in progress */
|
||||
ARC_FLAG_IO_ERROR = 1 << 9, /* I/O failed for buf */
|
||||
ARC_FLAG_FREED_IN_READ = 1 << 10, /* freed during read */
|
||||
ARC_FLAG_BUF_AVAILABLE = 1 << 11, /* block not in use */
|
||||
ARC_FLAG_INDIRECT = 1 << 12, /* indirect block */
|
||||
ARC_FLAG_L2_WRITING = 1 << 13, /* write in progress */
|
||||
ARC_FLAG_L2_EVICTED = 1 << 14, /* evicted during I/O */
|
||||
ARC_FLAG_L2_WRITE_HEAD = 1 << 15, /* head of write list */
|
||||
ARC_FLAG_IN_HASH_TABLE = 1 << 8, /* buffer is hashed */
|
||||
ARC_FLAG_IO_IN_PROGRESS = 1 << 9, /* I/O in progress */
|
||||
ARC_FLAG_IO_ERROR = 1 << 10, /* I/O failed for buf */
|
||||
ARC_FLAG_FREED_IN_READ = 1 << 11, /* freed during read */
|
||||
ARC_FLAG_BUF_AVAILABLE = 1 << 12, /* block not in use */
|
||||
ARC_FLAG_INDIRECT = 1 << 13, /* indirect block */
|
||||
/* Indicates that block was read with ASYNC priority. */
|
||||
ARC_FLAG_PRIO_ASYNC_READ = 1 << 14,
|
||||
ARC_FLAG_L2_WRITING = 1 << 15, /* write in progress */
|
||||
ARC_FLAG_L2_EVICTED = 1 << 16, /* evicted during I/O */
|
||||
ARC_FLAG_L2_WRITE_HEAD = 1 << 17, /* head of write list */
|
||||
/* indicates that the buffer contains metadata (otherwise, data) */
|
||||
ARC_FLAG_BUFC_METADATA = 1 << 16,
|
||||
ARC_FLAG_BUFC_METADATA = 1 << 18,
|
||||
|
||||
/* Flags specifying whether optional hdr struct fields are defined */
|
||||
ARC_FLAG_HAS_L1HDR = 1 << 17,
|
||||
ARC_FLAG_HAS_L2HDR = 1 << 18,
|
||||
ARC_FLAG_HAS_L1HDR = 1 << 19,
|
||||
ARC_FLAG_HAS_L2HDR = 1 << 20,
|
||||
|
||||
} arc_flags_t;
|
||||
|
||||
struct arc_buf {
|
||||
|
@ -487,7 +487,8 @@ uint64_t dmu_buf_refcount(dmu_buf_t *db);
|
||||
* individually with dmu_buf_rele.
|
||||
*/
|
||||
int dmu_buf_hold_array_by_bonus(dmu_buf_t *db, uint64_t offset,
|
||||
uint64_t length, int read, void *tag, int *numbufsp, dmu_buf_t ***dbpp);
|
||||
uint64_t length, boolean_t read, void *tag,
|
||||
int *numbufsp, dmu_buf_t ***dbpp);
|
||||
void dmu_buf_rele_array(dmu_buf_t **, int numbufs, void *tag);
|
||||
|
||||
typedef void dmu_buf_evict_func_t(void *user_ptr);
|
||||
|
@ -23,8 +23,12 @@
|
||||
* Use is subject to license terms.
|
||||
*/
|
||||
|
||||
#ifndef _DFETCH_H
|
||||
#define _DFETCH_H
|
||||
/*
|
||||
* Copyright (c) 2014 by Delphix. All rights reserved.
|
||||
*/
|
||||
|
||||
#ifndef _DMU_ZFETCH_H
|
||||
#define _DMU_ZFETCH_H
|
||||
|
||||
#include <sys/zfs_context.h>
|
||||
|
||||
@ -36,41 +40,30 @@ extern unsigned long zfetch_array_rd_sz;
|
||||
|
||||
struct dnode; /* so we can reference dnode */
|
||||
|
||||
typedef enum zfetch_dirn {
|
||||
ZFETCH_FORWARD = 1, /* prefetch increasing block numbers */
|
||||
ZFETCH_BACKWARD = -1 /* prefetch decreasing block numbers */
|
||||
} zfetch_dirn_t;
|
||||
|
||||
typedef struct zstream {
|
||||
uint64_t zst_offset; /* offset of starting block in range */
|
||||
uint64_t zst_len; /* length of range, in blocks */
|
||||
zfetch_dirn_t zst_direction; /* direction of prefetch */
|
||||
uint64_t zst_stride; /* length of stride, in blocks */
|
||||
uint64_t zst_ph_offset; /* prefetch offset, in blocks */
|
||||
uint64_t zst_cap; /* prefetch limit (cap), in blocks */
|
||||
kmutex_t zst_lock; /* protects stream */
|
||||
clock_t zst_last; /* lbolt of last prefetch */
|
||||
list_node_t zst_node; /* next zstream here */
|
||||
uint64_t zs_blkid; /* expect next access at this blkid */
|
||||
uint64_t zs_pf_blkid; /* next block to prefetch */
|
||||
kmutex_t zs_lock; /* protects stream */
|
||||
hrtime_t zs_atime; /* time last prefetch issued */
|
||||
list_node_t zs_node; /* link for zf_stream */
|
||||
} zstream_t;
|
||||
|
||||
typedef struct zfetch {
|
||||
krwlock_t zf_rwlock; /* protects zfetch structure */
|
||||
list_t zf_stream; /* AVL tree of zstream_t's */
|
||||
list_t zf_stream; /* list of zstream_t's */
|
||||
struct dnode *zf_dnode; /* dnode that owns this zfetch */
|
||||
uint32_t zf_stream_cnt; /* # of active streams */
|
||||
uint64_t zf_alloc_fail; /* # of failed attempts to alloc strm */
|
||||
} zfetch_t;
|
||||
|
||||
void zfetch_init(void);
|
||||
void zfetch_fini(void);
|
||||
|
||||
void dmu_zfetch_init(zfetch_t *, struct dnode *);
|
||||
void dmu_zfetch_rele(zfetch_t *);
|
||||
void dmu_zfetch(zfetch_t *, uint64_t, uint64_t, int);
|
||||
void dmu_zfetch_fini(zfetch_t *);
|
||||
void dmu_zfetch(zfetch_t *, uint64_t, uint64_t);
|
||||
|
||||
|
||||
#ifdef __cplusplus
|
||||
}
|
||||
#endif
|
||||
|
||||
#endif /* _DFETCH_H */
|
||||
#endif /* _DMU_ZFETCH_H */
|
||||
|
@ -102,6 +102,8 @@ DEFINE_ARC_BUF_HDR_EVENT(zfs_arc__evict);
|
||||
DEFINE_ARC_BUF_HDR_EVENT(zfs_arc__delete);
|
||||
DEFINE_ARC_BUF_HDR_EVENT(zfs_new_state__mru);
|
||||
DEFINE_ARC_BUF_HDR_EVENT(zfs_new_state__mfu);
|
||||
DEFINE_ARC_BUF_HDR_EVENT(zfs_arc__sync__wait__for__async);
|
||||
DEFINE_ARC_BUF_HDR_EVENT(zfs_arc__demand__hit__predictive__prefetch);
|
||||
DEFINE_ARC_BUF_HDR_EVENT(zfs_l2arc__hit);
|
||||
DEFINE_ARC_BUF_HDR_EVENT(zfs_l2arc__miss);
|
||||
|
||||
|
@ -331,12 +331,12 @@ Default value: \fB1,048,576\fR.
|
||||
.sp
|
||||
.ne 2
|
||||
.na
|
||||
\fBzfetch_block_cap\fR (uint)
|
||||
\fBzfetch_max_distance\fR (uint)
|
||||
.ad
|
||||
.RS 12n
|
||||
Max number of blocks to prefetch at a time
|
||||
Max bytes to prefetch per stream (default 8MB).
|
||||
.sp
|
||||
Default value: \fB256\fR.
|
||||
Default value: \fB8,388,608\fR.
|
||||
.RE
|
||||
|
||||
.sp
|
||||
@ -1246,7 +1246,10 @@ Default value: \fB52,428,800\fR.
|
||||
\fBzfs_prefetch_disable\fR (int)
|
||||
.ad
|
||||
.RS 12n
|
||||
Disable all ZFS prefetching
|
||||
This tunable disables predictive prefetch. Note that it leaves "prescient"
|
||||
prefetch (e.g. prefetch for zfs send) intact. Unlike predictive prefetch,
|
||||
prescient prefetch never issues i/os that end up not being needed, so it
|
||||
can't hurt performance.
|
||||
.sp
|
||||
Use \fB1\fR for yes and \fB0\fR for no (default).
|
||||
.RE
|
||||
|
@ -474,6 +474,8 @@ typedef struct arc_stats {
|
||||
kstat_named_t arcstat_meta_limit;
|
||||
kstat_named_t arcstat_meta_max;
|
||||
kstat_named_t arcstat_meta_min;
|
||||
kstat_named_t arcstat_sync_wait_for_async;
|
||||
kstat_named_t arcstat_demand_hit_predictive_prefetch;
|
||||
kstat_named_t arcstat_need_free;
|
||||
kstat_named_t arcstat_sys_free;
|
||||
} arc_stats_t;
|
||||
@ -568,6 +570,8 @@ static arc_stats_t arc_stats = {
|
||||
{ "arc_meta_limit", KSTAT_DATA_UINT64 },
|
||||
{ "arc_meta_max", KSTAT_DATA_UINT64 },
|
||||
{ "arc_meta_min", KSTAT_DATA_UINT64 },
|
||||
{ "sync_wait_for_async", KSTAT_DATA_UINT64 },
|
||||
{ "demand_hit_predictive_prefetch", KSTAT_DATA_UINT64 },
|
||||
{ "arc_need_free", KSTAT_DATA_UINT64 },
|
||||
{ "arc_sys_free", KSTAT_DATA_UINT64 }
|
||||
};
|
||||
@ -4244,6 +4248,36 @@ top:
|
||||
|
||||
if (HDR_IO_IN_PROGRESS(hdr)) {
|
||||
|
||||
if ((hdr->b_flags & ARC_FLAG_PRIO_ASYNC_READ) &&
|
||||
priority == ZIO_PRIORITY_SYNC_READ) {
|
||||
/*
|
||||
* This sync read must wait for an
|
||||
* in-progress async read (e.g. a predictive
|
||||
* prefetch). Async reads are queued
|
||||
* separately at the vdev_queue layer, so
|
||||
* this is a form of priority inversion.
|
||||
* Ideally, we would "inherit" the demand
|
||||
* i/o's priority by moving the i/o from
|
||||
* the async queue to the synchronous queue,
|
||||
* but there is currently no mechanism to do
|
||||
* so. Track this so that we can evaluate
|
||||
* the magnitude of this potential performance
|
||||
* problem.
|
||||
*
|
||||
* Note that if the prefetch i/o is already
|
||||
* active (has been issued to the device),
|
||||
* the prefetch improved performance, because
|
||||
* we issued it sooner than we would have
|
||||
* without the prefetch.
|
||||
*/
|
||||
DTRACE_PROBE1(arc__sync__wait__for__async,
|
||||
arc_buf_hdr_t *, hdr);
|
||||
ARCSTAT_BUMP(arcstat_sync_wait_for_async);
|
||||
}
|
||||
if (hdr->b_flags & ARC_FLAG_PREDICTIVE_PREFETCH) {
|
||||
hdr->b_flags &= ~ARC_FLAG_PREDICTIVE_PREFETCH;
|
||||
}
|
||||
|
||||
if (*arc_flags & ARC_FLAG_WAIT) {
|
||||
cv_wait(&hdr->b_l1hdr.b_cv, hash_lock);
|
||||
mutex_exit(hash_lock);
|
||||
@ -4277,6 +4311,19 @@ top:
|
||||
hdr->b_l1hdr.b_state == arc_mfu);
|
||||
|
||||
if (done) {
|
||||
if (hdr->b_flags & ARC_FLAG_PREDICTIVE_PREFETCH) {
|
||||
/*
|
||||
* This is a demand read which does not have to
|
||||
* wait for i/o because we did a predictive
|
||||
* prefetch i/o for it, which has completed.
|
||||
*/
|
||||
DTRACE_PROBE1(
|
||||
arc__demand__hit__predictive__prefetch,
|
||||
arc_buf_hdr_t *, hdr);
|
||||
ARCSTAT_BUMP(
|
||||
arcstat_demand_hit_predictive_prefetch);
|
||||
hdr->b_flags &= ~ARC_FLAG_PREDICTIVE_PREFETCH;
|
||||
}
|
||||
add_reference(hdr, hash_lock, private);
|
||||
/*
|
||||
* If this block is already in use, create a new
|
||||
@ -4349,12 +4396,16 @@ top:
|
||||
goto top; /* restart the IO request */
|
||||
}
|
||||
|
||||
/* if this is a prefetch, we don't have a reference */
|
||||
if (*arc_flags & ARC_FLAG_PREFETCH) {
|
||||
/*
|
||||
* If there is a callback, we pass our reference to
|
||||
* it; otherwise we remove our reference.
|
||||
*/
|
||||
if (done == NULL) {
|
||||
(void) remove_reference(hdr, hash_lock,
|
||||
private);
|
||||
hdr->b_flags |= ARC_FLAG_PREFETCH;
|
||||
}
|
||||
if (*arc_flags & ARC_FLAG_PREFETCH)
|
||||
hdr->b_flags |= ARC_FLAG_PREFETCH;
|
||||
if (*arc_flags & ARC_FLAG_L2CACHE)
|
||||
hdr->b_flags |= ARC_FLAG_L2CACHE;
|
||||
if (*arc_flags & ARC_FLAG_L2COMPRESS)
|
||||
@ -4377,11 +4428,13 @@ top:
|
||||
ASSERT(refcount_is_zero(&hdr->b_l1hdr.b_refcnt));
|
||||
ASSERT3P(hdr->b_l1hdr.b_buf, ==, NULL);
|
||||
|
||||
/* if this is a prefetch, we don't have a reference */
|
||||
/*
|
||||
* If there is a callback, we pass a reference to it.
|
||||
*/
|
||||
if (done != NULL)
|
||||
add_reference(hdr, hash_lock, private);
|
||||
if (*arc_flags & ARC_FLAG_PREFETCH)
|
||||
hdr->b_flags |= ARC_FLAG_PREFETCH;
|
||||
else
|
||||
add_reference(hdr, hash_lock, private);
|
||||
if (*arc_flags & ARC_FLAG_L2CACHE)
|
||||
hdr->b_flags |= ARC_FLAG_L2CACHE;
|
||||
if (*arc_flags & ARC_FLAG_L2COMPRESS)
|
||||
@ -4399,6 +4452,8 @@ top:
|
||||
arc_access(hdr, hash_lock);
|
||||
}
|
||||
|
||||
if (*arc_flags & ARC_FLAG_PREDICTIVE_PREFETCH)
|
||||
hdr->b_flags |= ARC_FLAG_PREDICTIVE_PREFETCH;
|
||||
ASSERT(!GHOST_STATE(hdr->b_l1hdr.b_state));
|
||||
|
||||
acb = kmem_zalloc(sizeof (arc_callback_t), KM_SLEEP);
|
||||
@ -4438,6 +4493,11 @@ top:
|
||||
demand, prefetch, !HDR_ISTYPE_METADATA(hdr),
|
||||
data, metadata, misses);
|
||||
|
||||
if (priority == ZIO_PRIORITY_ASYNC_READ)
|
||||
hdr->b_flags |= ARC_FLAG_PRIO_ASYNC_READ;
|
||||
else
|
||||
hdr->b_flags &= ~ARC_FLAG_PRIO_ASYNC_READ;
|
||||
|
||||
if (vd != NULL && l2arc_ndev != 0 && !(l2arc_norw && devw)) {
|
||||
/*
|
||||
* Read from the L2ARC if the following are true:
|
||||
|
@ -676,7 +676,7 @@ dbuf_read_done(zio_t *zio, arc_buf_t *buf, void *vdb)
|
||||
}
|
||||
|
||||
static int
|
||||
dbuf_read_impl(dmu_buf_impl_t *db, zio_t *zio, uint32_t *flags)
|
||||
dbuf_read_impl(dmu_buf_impl_t *db, zio_t *zio, uint32_t flags)
|
||||
{
|
||||
dnode_t *dn;
|
||||
zbookmark_phys_t zb;
|
||||
@ -723,7 +723,6 @@ dbuf_read_impl(dmu_buf_impl_t *db, zio_t *zio, uint32_t *flags)
|
||||
db->db.db_size, db, type));
|
||||
bzero(db->db.db_data, db->db.db_size);
|
||||
db->db_state = DB_CACHED;
|
||||
*flags |= DB_RF_CACHED;
|
||||
mutex_exit(&db->db_mtx);
|
||||
return (0);
|
||||
}
|
||||
@ -746,10 +745,8 @@ dbuf_read_impl(dmu_buf_impl_t *db, zio_t *zio, uint32_t *flags)
|
||||
|
||||
err = arc_read(zio, db->db_objset->os_spa, db->db_blkptr,
|
||||
dbuf_read_done, db, ZIO_PRIORITY_SYNC_READ,
|
||||
(*flags & DB_RF_CANFAIL) ? ZIO_FLAG_CANFAIL : ZIO_FLAG_MUSTSUCCEED,
|
||||
(flags & DB_RF_CANFAIL) ? ZIO_FLAG_CANFAIL : ZIO_FLAG_MUSTSUCCEED,
|
||||
&aflags, &zb);
|
||||
if (aflags & ARC_FLAG_CACHED)
|
||||
*flags |= DB_RF_CACHED;
|
||||
|
||||
return (SET_ERROR(err));
|
||||
}
|
||||
@ -784,8 +781,7 @@ dbuf_read(dmu_buf_impl_t *db, zio_t *zio, uint32_t flags)
|
||||
if (db->db_state == DB_CACHED) {
|
||||
mutex_exit(&db->db_mtx);
|
||||
if (prefetch)
|
||||
dmu_zfetch(&dn->dn_zfetch, db->db.db_offset,
|
||||
db->db.db_size, TRUE);
|
||||
dmu_zfetch(&dn->dn_zfetch, db->db_blkid, 1);
|
||||
if ((flags & DB_RF_HAVESTRUCT) == 0)
|
||||
rw_exit(&dn->dn_struct_rwlock);
|
||||
DB_DNODE_EXIT(db);
|
||||
@ -795,13 +791,12 @@ dbuf_read(dmu_buf_impl_t *db, zio_t *zio, uint32_t flags)
|
||||
if (zio == NULL)
|
||||
zio = zio_root(spa, NULL, NULL, ZIO_FLAG_CANFAIL);
|
||||
|
||||
err = dbuf_read_impl(db, zio, &flags);
|
||||
err = dbuf_read_impl(db, zio, flags);
|
||||
|
||||
/* dbuf_read_impl has dropped db_mtx for us */
|
||||
|
||||
if (!err && prefetch)
|
||||
dmu_zfetch(&dn->dn_zfetch, db->db.db_offset,
|
||||
db->db.db_size, flags & DB_RF_CACHED);
|
||||
dmu_zfetch(&dn->dn_zfetch, db->db_blkid, 1);
|
||||
|
||||
if ((flags & DB_RF_HAVESTRUCT) == 0)
|
||||
rw_exit(&dn->dn_struct_rwlock);
|
||||
@ -820,8 +815,7 @@ dbuf_read(dmu_buf_impl_t *db, zio_t *zio, uint32_t flags)
|
||||
*/
|
||||
mutex_exit(&db->db_mtx);
|
||||
if (prefetch)
|
||||
dmu_zfetch(&dn->dn_zfetch, db->db.db_offset,
|
||||
db->db.db_size, TRUE);
|
||||
dmu_zfetch(&dn->dn_zfetch, db->db_blkid, 1);
|
||||
if ((flags & DB_RF_HAVESTRUCT) == 0)
|
||||
rw_exit(&dn->dn_struct_rwlock);
|
||||
DB_DNODE_EXIT(db);
|
||||
@ -2143,6 +2137,9 @@ dbuf_prefetch(dnode_t *dn, int64_t level, uint64_t blkid, zio_priority_t prio,
|
||||
ASSERT(blkid != DMU_BONUS_BLKID);
|
||||
ASSERT(RW_LOCK_HELD(&dn->dn_struct_rwlock));
|
||||
|
||||
if (blkid > dn->dn_maxblkid)
|
||||
return;
|
||||
|
||||
if (dnode_block_freed(dn, blkid))
|
||||
return;
|
||||
|
||||
|
@ -20,7 +20,7 @@
|
||||
*/
|
||||
/*
|
||||
* Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
|
||||
* Copyright (c) 2011, 2014 by Delphix. All rights reserved.
|
||||
* Copyright (c) 2011, 2015 by Delphix. All rights reserved.
|
||||
* Copyright (c) 2013 by Saso Kiselkov. All rights reserved.
|
||||
* Copyright (c) 2014, Nexenta Systems, Inc. All rights reserved.
|
||||
* Copyright (c) 2015 by Chunwei Chen. All rights reserved.
|
||||
@ -386,7 +386,7 @@ dmu_spill_hold_by_bonus(dmu_buf_t *bonus, void *tag, dmu_buf_t **dbp)
|
||||
*/
|
||||
static int
|
||||
dmu_buf_hold_array_by_dnode(dnode_t *dn, uint64_t offset, uint64_t length,
|
||||
int read, void *tag, int *numbufsp, dmu_buf_t ***dbpp, uint32_t flags)
|
||||
boolean_t read, void *tag, int *numbufsp, dmu_buf_t ***dbpp, uint32_t flags)
|
||||
{
|
||||
dmu_buf_t **dbp;
|
||||
uint64_t blkid, nblks, i;
|
||||
@ -396,15 +396,19 @@ dmu_buf_hold_array_by_dnode(dnode_t *dn, uint64_t offset, uint64_t length,
|
||||
|
||||
ASSERT(length <= DMU_MAX_ACCESS);
|
||||
|
||||
dbuf_flags = DB_RF_CANFAIL | DB_RF_NEVERWAIT | DB_RF_HAVESTRUCT;
|
||||
if (flags & DMU_READ_NO_PREFETCH || length > zfetch_array_rd_sz)
|
||||
dbuf_flags |= DB_RF_NOPREFETCH;
|
||||
/*
|
||||
* Note: We directly notify the prefetch code of this read, so that
|
||||
* we can tell it about the multi-block read. dbuf_read() only knows
|
||||
* about the one block it is accessing.
|
||||
*/
|
||||
dbuf_flags = DB_RF_CANFAIL | DB_RF_NEVERWAIT | DB_RF_HAVESTRUCT |
|
||||
DB_RF_NOPREFETCH;
|
||||
|
||||
rw_enter(&dn->dn_struct_rwlock, RW_READER);
|
||||
if (dn->dn_datablkshift) {
|
||||
int blkshift = dn->dn_datablkshift;
|
||||
nblks = (P2ROUNDUP(offset+length, 1ULL<<blkshift) -
|
||||
P2ALIGN(offset, 1ULL<<blkshift)) >> blkshift;
|
||||
nblks = (P2ROUNDUP(offset + length, 1ULL << blkshift) -
|
||||
P2ALIGN(offset, 1ULL << blkshift)) >> blkshift;
|
||||
} else {
|
||||
if (offset + length > dn->dn_datablksz) {
|
||||
zfs_panic_recover("zfs: accessing past end of object "
|
||||
@ -423,19 +427,24 @@ dmu_buf_hold_array_by_dnode(dnode_t *dn, uint64_t offset, uint64_t length,
|
||||
zio = zio_root(dn->dn_objset->os_spa, NULL, NULL, ZIO_FLAG_CANFAIL);
|
||||
blkid = dbuf_whichblock(dn, 0, offset);
|
||||
for (i = 0; i < nblks; i++) {
|
||||
dmu_buf_impl_t *db = dbuf_hold(dn, blkid+i, tag);
|
||||
dmu_buf_impl_t *db = dbuf_hold(dn, blkid + i, tag);
|
||||
if (db == NULL) {
|
||||
rw_exit(&dn->dn_struct_rwlock);
|
||||
dmu_buf_rele_array(dbp, nblks, tag);
|
||||
zio_nowait(zio);
|
||||
return (SET_ERROR(EIO));
|
||||
}
|
||||
|
||||
/* initiate async i/o */
|
||||
if (read) {
|
||||
if (read)
|
||||
(void) dbuf_read(db, zio, dbuf_flags);
|
||||
}
|
||||
dbp[i] = &db->db;
|
||||
}
|
||||
|
||||
if ((flags & DMU_READ_NO_PREFETCH) == 0 && read &&
|
||||
length < zfetch_array_rd_sz) {
|
||||
dmu_zfetch(&dn->dn_zfetch, blkid, nblks);
|
||||
}
|
||||
rw_exit(&dn->dn_struct_rwlock);
|
||||
|
||||
/* wait for async i/o */
|
||||
@ -489,7 +498,8 @@ dmu_buf_hold_array(objset_t *os, uint64_t object, uint64_t offset,
|
||||
|
||||
int
|
||||
dmu_buf_hold_array_by_bonus(dmu_buf_t *db_fake, uint64_t offset,
|
||||
uint64_t length, int read, void *tag, int *numbufsp, dmu_buf_t ***dbpp)
|
||||
uint64_t length, boolean_t read, void *tag, int *numbufsp,
|
||||
dmu_buf_t ***dbpp)
|
||||
{
|
||||
dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
|
||||
dnode_t *dn;
|
||||
@ -537,9 +547,6 @@ dmu_prefetch(objset_t *os, uint64_t object, int64_t level, uint64_t offset,
|
||||
uint64_t blkid;
|
||||
int nblks, err;
|
||||
|
||||
if (zfs_prefetch_disable)
|
||||
return;
|
||||
|
||||
if (len == 0) { /* they're interested in the bonus buffer */
|
||||
dn = DMU_META_DNODE(os);
|
||||
|
||||
|
@ -24,7 +24,7 @@
|
||||
*/
|
||||
|
||||
/*
|
||||
* Copyright (c) 2013 by Delphix. All rights reserved.
|
||||
* Copyright (c) 2013, 2014 by Delphix. All rights reserved.
|
||||
*/
|
||||
|
||||
#include <sys/zfs_context.h>
|
||||
@ -36,209 +36,43 @@
|
||||
#include <sys/kstat.h>
|
||||
|
||||
/*
|
||||
* I'm against tune-ables, but these should probably exist as tweakable globals
|
||||
* until we can get this working the way we want it to.
|
||||
* This tunable disables predictive prefetch. Note that it leaves "prescient"
|
||||
* prefetch (e.g. prefetch for zfs send) intact. Unlike predictive prefetch,
|
||||
* prescient prefetch never issues i/os that end up not being needed,
|
||||
* so it can't hurt performance.
|
||||
*/
|
||||
|
||||
int zfs_prefetch_disable = 0;
|
||||
int zfs_prefetch_disable = B_FALSE;
|
||||
|
||||
/* max # of streams per zfetch */
|
||||
unsigned int zfetch_max_streams = 8;
|
||||
/* min time before stream reclaim */
|
||||
unsigned int zfetch_min_sec_reap = 2;
|
||||
/* max number of blocks to fetch at a time */
|
||||
unsigned int zfetch_block_cap = 256;
|
||||
/* number of bytes in a array_read at which we stop prefetching (1Mb) */
|
||||
/* max bytes to prefetch per stream (default 8MB) */
|
||||
unsigned int zfetch_max_distance = 8 * 1024 * 1024;
|
||||
/* number of bytes in a array_read at which we stop prefetching (1MB) */
|
||||
unsigned long zfetch_array_rd_sz = 1024 * 1024;
|
||||
|
||||
/* forward decls for static routines */
|
||||
static boolean_t dmu_zfetch_colinear(zfetch_t *, zstream_t *);
|
||||
static void dmu_zfetch_dofetch(zfetch_t *, zstream_t *);
|
||||
static uint64_t dmu_zfetch_fetch(dnode_t *, uint64_t, uint64_t);
|
||||
static uint64_t dmu_zfetch_fetchsz(dnode_t *, uint64_t, uint64_t);
|
||||
static boolean_t dmu_zfetch_find(zfetch_t *, zstream_t *, int);
|
||||
static int dmu_zfetch_stream_insert(zfetch_t *, zstream_t *);
|
||||
static zstream_t *dmu_zfetch_stream_reclaim(zfetch_t *);
|
||||
static void dmu_zfetch_stream_remove(zfetch_t *, zstream_t *);
|
||||
static int dmu_zfetch_streams_equal(zstream_t *, zstream_t *);
|
||||
|
||||
typedef struct zfetch_stats {
|
||||
kstat_named_t zfetchstat_hits;
|
||||
kstat_named_t zfetchstat_misses;
|
||||
kstat_named_t zfetchstat_colinear_hits;
|
||||
kstat_named_t zfetchstat_colinear_misses;
|
||||
kstat_named_t zfetchstat_stride_hits;
|
||||
kstat_named_t zfetchstat_stride_misses;
|
||||
kstat_named_t zfetchstat_reclaim_successes;
|
||||
kstat_named_t zfetchstat_reclaim_failures;
|
||||
kstat_named_t zfetchstat_stream_resets;
|
||||
kstat_named_t zfetchstat_stream_noresets;
|
||||
kstat_named_t zfetchstat_bogus_streams;
|
||||
kstat_named_t zfetchstat_max_streams;
|
||||
} zfetch_stats_t;
|
||||
|
||||
static zfetch_stats_t zfetch_stats = {
|
||||
{ "hits", KSTAT_DATA_UINT64 },
|
||||
{ "misses", KSTAT_DATA_UINT64 },
|
||||
{ "colinear_hits", KSTAT_DATA_UINT64 },
|
||||
{ "colinear_misses", KSTAT_DATA_UINT64 },
|
||||
{ "stride_hits", KSTAT_DATA_UINT64 },
|
||||
{ "stride_misses", KSTAT_DATA_UINT64 },
|
||||
{ "reclaim_successes", KSTAT_DATA_UINT64 },
|
||||
{ "reclaim_failures", KSTAT_DATA_UINT64 },
|
||||
{ "streams_resets", KSTAT_DATA_UINT64 },
|
||||
{ "streams_noresets", KSTAT_DATA_UINT64 },
|
||||
{ "bogus_streams", KSTAT_DATA_UINT64 },
|
||||
{ "max_streams", KSTAT_DATA_UINT64 },
|
||||
};
|
||||
|
||||
#define ZFETCHSTAT_INCR(stat, val) \
|
||||
atomic_add_64(&zfetch_stats.stat.value.ui64, (val));
|
||||
|
||||
#define ZFETCHSTAT_BUMP(stat) ZFETCHSTAT_INCR(stat, 1);
|
||||
#define ZFETCHSTAT_BUMP(stat) \
|
||||
atomic_inc_64(&zfetch_stats.stat.value.ui64);
|
||||
|
||||
kstat_t *zfetch_ksp;
|
||||
|
||||
/*
|
||||
* Given a zfetch structure and a zstream structure, determine whether the
|
||||
* blocks to be read are part of a co-linear pair of existing prefetch
|
||||
* streams. If a set is found, coalesce the streams, removing one, and
|
||||
* configure the prefetch so it looks for a strided access pattern.
|
||||
*
|
||||
* In other words: if we find two sequential access streams that are
|
||||
* the same length and distance N appart, and this read is N from the
|
||||
* last stream, then we are probably in a strided access pattern. So
|
||||
* combine the two sequential streams into a single strided stream.
|
||||
*
|
||||
* Returns whether co-linear streams were found.
|
||||
*/
|
||||
static boolean_t
|
||||
dmu_zfetch_colinear(zfetch_t *zf, zstream_t *zh)
|
||||
{
|
||||
zstream_t *z_walk;
|
||||
zstream_t *z_comp;
|
||||
|
||||
if (! rw_tryenter(&zf->zf_rwlock, RW_WRITER))
|
||||
return (0);
|
||||
|
||||
if (zh == NULL) {
|
||||
rw_exit(&zf->zf_rwlock);
|
||||
return (0);
|
||||
}
|
||||
|
||||
for (z_walk = list_head(&zf->zf_stream); z_walk;
|
||||
z_walk = list_next(&zf->zf_stream, z_walk)) {
|
||||
for (z_comp = list_next(&zf->zf_stream, z_walk); z_comp;
|
||||
z_comp = list_next(&zf->zf_stream, z_comp)) {
|
||||
int64_t diff;
|
||||
|
||||
if (z_walk->zst_len != z_walk->zst_stride ||
|
||||
z_comp->zst_len != z_comp->zst_stride) {
|
||||
continue;
|
||||
}
|
||||
|
||||
diff = z_comp->zst_offset - z_walk->zst_offset;
|
||||
if (z_comp->zst_offset + diff == zh->zst_offset) {
|
||||
z_walk->zst_offset = zh->zst_offset;
|
||||
z_walk->zst_direction = diff < 0 ?
|
||||
ZFETCH_BACKWARD : ZFETCH_FORWARD;
|
||||
z_walk->zst_stride =
|
||||
diff * z_walk->zst_direction;
|
||||
z_walk->zst_ph_offset =
|
||||
zh->zst_offset + z_walk->zst_stride;
|
||||
dmu_zfetch_stream_remove(zf, z_comp);
|
||||
mutex_destroy(&z_comp->zst_lock);
|
||||
kmem_free(z_comp, sizeof (zstream_t));
|
||||
|
||||
dmu_zfetch_dofetch(zf, z_walk);
|
||||
|
||||
rw_exit(&zf->zf_rwlock);
|
||||
return (1);
|
||||
}
|
||||
|
||||
diff = z_walk->zst_offset - z_comp->zst_offset;
|
||||
if (z_walk->zst_offset + diff == zh->zst_offset) {
|
||||
z_walk->zst_offset = zh->zst_offset;
|
||||
z_walk->zst_direction = diff < 0 ?
|
||||
ZFETCH_BACKWARD : ZFETCH_FORWARD;
|
||||
z_walk->zst_stride =
|
||||
diff * z_walk->zst_direction;
|
||||
z_walk->zst_ph_offset =
|
||||
zh->zst_offset + z_walk->zst_stride;
|
||||
dmu_zfetch_stream_remove(zf, z_comp);
|
||||
mutex_destroy(&z_comp->zst_lock);
|
||||
kmem_free(z_comp, sizeof (zstream_t));
|
||||
|
||||
dmu_zfetch_dofetch(zf, z_walk);
|
||||
|
||||
rw_exit(&zf->zf_rwlock);
|
||||
return (1);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
rw_exit(&zf->zf_rwlock);
|
||||
return (0);
|
||||
}
|
||||
|
||||
/*
|
||||
* Given a zstream_t, determine the bounds of the prefetch. Then call the
|
||||
* routine that actually prefetches the individual blocks.
|
||||
*/
|
||||
static void
|
||||
dmu_zfetch_dofetch(zfetch_t *zf, zstream_t *zs)
|
||||
{
|
||||
uint64_t prefetch_tail;
|
||||
uint64_t prefetch_limit;
|
||||
uint64_t prefetch_ofst;
|
||||
uint64_t prefetch_len;
|
||||
uint64_t blocks_fetched;
|
||||
|
||||
zs->zst_stride = MAX((int64_t)zs->zst_stride, zs->zst_len);
|
||||
zs->zst_cap = MIN(zfetch_block_cap, 2 * zs->zst_cap);
|
||||
|
||||
prefetch_tail = MAX((int64_t)zs->zst_ph_offset,
|
||||
(int64_t)(zs->zst_offset + zs->zst_stride));
|
||||
/*
|
||||
* XXX: use a faster division method?
|
||||
*/
|
||||
prefetch_limit = zs->zst_offset + zs->zst_len +
|
||||
(zs->zst_cap * zs->zst_stride) / zs->zst_len;
|
||||
|
||||
while (prefetch_tail < prefetch_limit) {
|
||||
prefetch_ofst = zs->zst_offset + zs->zst_direction *
|
||||
(prefetch_tail - zs->zst_offset);
|
||||
|
||||
prefetch_len = zs->zst_len;
|
||||
|
||||
/*
|
||||
* Don't prefetch beyond the end of the file, if working
|
||||
* backwards.
|
||||
*/
|
||||
if ((zs->zst_direction == ZFETCH_BACKWARD) &&
|
||||
(prefetch_ofst > prefetch_tail)) {
|
||||
prefetch_len += prefetch_ofst;
|
||||
prefetch_ofst = 0;
|
||||
}
|
||||
|
||||
/* don't prefetch more than we're supposed to */
|
||||
if (prefetch_len > zs->zst_len)
|
||||
break;
|
||||
|
||||
blocks_fetched = dmu_zfetch_fetch(zf->zf_dnode,
|
||||
prefetch_ofst, zs->zst_len);
|
||||
|
||||
prefetch_tail += zs->zst_stride;
|
||||
/* stop if we've run out of stuff to prefetch */
|
||||
if (blocks_fetched < zs->zst_len)
|
||||
break;
|
||||
}
|
||||
zs->zst_ph_offset = prefetch_tail;
|
||||
zs->zst_last = ddi_get_lbolt();
|
||||
}
|
||||
|
||||
void
|
||||
zfetch_init(void)
|
||||
{
|
||||
|
||||
zfetch_ksp = kstat_create("zfs", 0, "zfetchstats", "misc",
|
||||
KSTAT_TYPE_NAMED, sizeof (zfetch_stats) / sizeof (kstat_named_t),
|
||||
KSTAT_FLAG_VIRTUAL);
|
||||
@ -266,273 +100,41 @@ zfetch_fini(void)
|
||||
void
|
||||
dmu_zfetch_init(zfetch_t *zf, dnode_t *dno)
|
||||
{
|
||||
if (zf == NULL) {
|
||||
if (zf == NULL)
|
||||
return;
|
||||
}
|
||||
|
||||
zf->zf_dnode = dno;
|
||||
zf->zf_stream_cnt = 0;
|
||||
zf->zf_alloc_fail = 0;
|
||||
|
||||
list_create(&zf->zf_stream, sizeof (zstream_t),
|
||||
offsetof(zstream_t, zst_node));
|
||||
offsetof(zstream_t, zs_node));
|
||||
|
||||
rw_init(&zf->zf_rwlock, NULL, RW_DEFAULT, NULL);
|
||||
}
|
||||
|
||||
/*
|
||||
* This function computes the actual size, in blocks, that can be prefetched,
|
||||
* and fetches it.
|
||||
*/
|
||||
static uint64_t
|
||||
dmu_zfetch_fetch(dnode_t *dn, uint64_t blkid, uint64_t nblks)
|
||||
static void
|
||||
dmu_zfetch_stream_remove(zfetch_t *zf, zstream_t *zs)
|
||||
{
|
||||
uint64_t fetchsz;
|
||||
uint64_t i;
|
||||
|
||||
fetchsz = dmu_zfetch_fetchsz(dn, blkid, nblks);
|
||||
|
||||
for (i = 0; i < fetchsz; i++) {
|
||||
dbuf_prefetch(dn, 0, blkid + i, ZIO_PRIORITY_ASYNC_READ,
|
||||
ARC_FLAG_PREFETCH);
|
||||
}
|
||||
|
||||
return (fetchsz);
|
||||
ASSERT(RW_WRITE_HELD(&zf->zf_rwlock));
|
||||
list_remove(&zf->zf_stream, zs);
|
||||
mutex_destroy(&zs->zs_lock);
|
||||
kmem_free(zs, sizeof (*zs));
|
||||
}
|
||||
|
||||
/*
|
||||
* this function returns the number of blocks that would be prefetched, based
|
||||
* upon the supplied dnode, blockid, and nblks. This is used so that we can
|
||||
* update streams in place, and then prefetch with their old value after the
|
||||
* fact. This way, we can delay the prefetch, but subsequent accesses to the
|
||||
* stream won't result in the same data being prefetched multiple times.
|
||||
*/
|
||||
static uint64_t
|
||||
dmu_zfetch_fetchsz(dnode_t *dn, uint64_t blkid, uint64_t nblks)
|
||||
{
|
||||
uint64_t fetchsz;
|
||||
|
||||
if (blkid > dn->dn_maxblkid) {
|
||||
return (0);
|
||||
}
|
||||
|
||||
/* compute fetch size */
|
||||
if (blkid + nblks + 1 > dn->dn_maxblkid) {
|
||||
fetchsz = (dn->dn_maxblkid - blkid) + 1;
|
||||
ASSERT(blkid + fetchsz - 1 <= dn->dn_maxblkid);
|
||||
} else {
|
||||
fetchsz = nblks;
|
||||
}
|
||||
|
||||
|
||||
return (fetchsz);
|
||||
}
|
||||
|
||||
/*
|
||||
* given a zfetch and a zstream structure, see if there is an associated zstream
|
||||
* for this block read. If so, it starts a prefetch for the stream it
|
||||
* located and returns true, otherwise it returns false
|
||||
*/
|
||||
static boolean_t
|
||||
dmu_zfetch_find(zfetch_t *zf, zstream_t *zh, int prefetched)
|
||||
{
|
||||
zstream_t *zs;
|
||||
int64_t diff;
|
||||
int reset = !prefetched;
|
||||
int rc = 0;
|
||||
|
||||
if (zh == NULL)
|
||||
return (0);
|
||||
|
||||
/*
|
||||
* XXX: This locking strategy is a bit coarse; however, it's impact has
|
||||
* yet to be tested. If this turns out to be an issue, it can be
|
||||
* modified in a number of different ways.
|
||||
*/
|
||||
|
||||
rw_enter(&zf->zf_rwlock, RW_READER);
|
||||
top:
|
||||
|
||||
for (zs = list_head(&zf->zf_stream); zs;
|
||||
zs = list_next(&zf->zf_stream, zs)) {
|
||||
|
||||
/*
|
||||
* XXX - should this be an assert?
|
||||
*/
|
||||
if (zs->zst_len == 0) {
|
||||
/* bogus stream */
|
||||
ZFETCHSTAT_BUMP(zfetchstat_bogus_streams);
|
||||
continue;
|
||||
}
|
||||
|
||||
/*
|
||||
* We hit this case when we are in a strided prefetch stream:
|
||||
* we will read "len" blocks before "striding".
|
||||
*/
|
||||
if (zh->zst_offset >= zs->zst_offset &&
|
||||
zh->zst_offset < zs->zst_offset + zs->zst_len) {
|
||||
if (prefetched) {
|
||||
/* already fetched */
|
||||
ZFETCHSTAT_BUMP(zfetchstat_stride_hits);
|
||||
rc = 1;
|
||||
goto out;
|
||||
} else {
|
||||
ZFETCHSTAT_BUMP(zfetchstat_stride_misses);
|
||||
}
|
||||
}
|
||||
|
||||
/*
|
||||
* This is the forward sequential read case: we increment
|
||||
* len by one each time we hit here, so we will enter this
|
||||
* case on every read.
|
||||
*/
|
||||
if (zh->zst_offset == zs->zst_offset + zs->zst_len) {
|
||||
|
||||
reset = !prefetched && zs->zst_len > 1;
|
||||
|
||||
mutex_enter(&zs->zst_lock);
|
||||
|
||||
if (zh->zst_offset != zs->zst_offset + zs->zst_len) {
|
||||
mutex_exit(&zs->zst_lock);
|
||||
goto top;
|
||||
}
|
||||
zs->zst_len += zh->zst_len;
|
||||
diff = zs->zst_len - zfetch_block_cap;
|
||||
if (diff > 0) {
|
||||
zs->zst_offset += diff;
|
||||
zs->zst_len = zs->zst_len > diff ?
|
||||
zs->zst_len - diff : 0;
|
||||
}
|
||||
zs->zst_direction = ZFETCH_FORWARD;
|
||||
|
||||
break;
|
||||
|
||||
/*
|
||||
* Same as above, but reading backwards through the file.
|
||||
*/
|
||||
} else if (zh->zst_offset == zs->zst_offset - zh->zst_len) {
|
||||
/* backwards sequential access */
|
||||
|
||||
reset = !prefetched && zs->zst_len > 1;
|
||||
|
||||
mutex_enter(&zs->zst_lock);
|
||||
|
||||
if (zh->zst_offset != zs->zst_offset - zh->zst_len) {
|
||||
mutex_exit(&zs->zst_lock);
|
||||
goto top;
|
||||
}
|
||||
|
||||
zs->zst_offset = zs->zst_offset > zh->zst_len ?
|
||||
zs->zst_offset - zh->zst_len : 0;
|
||||
zs->zst_ph_offset = zs->zst_ph_offset > zh->zst_len ?
|
||||
zs->zst_ph_offset - zh->zst_len : 0;
|
||||
zs->zst_len += zh->zst_len;
|
||||
|
||||
diff = zs->zst_len - zfetch_block_cap;
|
||||
if (diff > 0) {
|
||||
zs->zst_ph_offset = zs->zst_ph_offset > diff ?
|
||||
zs->zst_ph_offset - diff : 0;
|
||||
zs->zst_len = zs->zst_len > diff ?
|
||||
zs->zst_len - diff : zs->zst_len;
|
||||
}
|
||||
zs->zst_direction = ZFETCH_BACKWARD;
|
||||
|
||||
break;
|
||||
|
||||
} else if ((zh->zst_offset - zs->zst_offset - zs->zst_stride <
|
||||
zs->zst_len) && (zs->zst_len != zs->zst_stride)) {
|
||||
/* strided forward access */
|
||||
|
||||
mutex_enter(&zs->zst_lock);
|
||||
|
||||
if ((zh->zst_offset - zs->zst_offset - zs->zst_stride >=
|
||||
zs->zst_len) || (zs->zst_len == zs->zst_stride)) {
|
||||
mutex_exit(&zs->zst_lock);
|
||||
goto top;
|
||||
}
|
||||
|
||||
zs->zst_offset += zs->zst_stride;
|
||||
zs->zst_direction = ZFETCH_FORWARD;
|
||||
|
||||
break;
|
||||
|
||||
} else if ((zh->zst_offset - zs->zst_offset + zs->zst_stride <
|
||||
zs->zst_len) && (zs->zst_len != zs->zst_stride)) {
|
||||
/* strided reverse access */
|
||||
|
||||
mutex_enter(&zs->zst_lock);
|
||||
|
||||
if ((zh->zst_offset - zs->zst_offset + zs->zst_stride >=
|
||||
zs->zst_len) || (zs->zst_len == zs->zst_stride)) {
|
||||
mutex_exit(&zs->zst_lock);
|
||||
goto top;
|
||||
}
|
||||
|
||||
zs->zst_offset = zs->zst_offset > zs->zst_stride ?
|
||||
zs->zst_offset - zs->zst_stride : 0;
|
||||
zs->zst_ph_offset = (zs->zst_ph_offset >
|
||||
(2 * zs->zst_stride)) ?
|
||||
(zs->zst_ph_offset - (2 * zs->zst_stride)) : 0;
|
||||
zs->zst_direction = ZFETCH_BACKWARD;
|
||||
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
if (zs) {
|
||||
if (reset) {
|
||||
zstream_t *remove = zs;
|
||||
|
||||
ZFETCHSTAT_BUMP(zfetchstat_stream_resets);
|
||||
rc = 0;
|
||||
mutex_exit(&zs->zst_lock);
|
||||
rw_exit(&zf->zf_rwlock);
|
||||
rw_enter(&zf->zf_rwlock, RW_WRITER);
|
||||
/*
|
||||
* Relocate the stream, in case someone removes
|
||||
* it while we were acquiring the WRITER lock.
|
||||
*/
|
||||
for (zs = list_head(&zf->zf_stream); zs;
|
||||
zs = list_next(&zf->zf_stream, zs)) {
|
||||
if (zs == remove) {
|
||||
dmu_zfetch_stream_remove(zf, zs);
|
||||
mutex_destroy(&zs->zst_lock);
|
||||
kmem_free(zs, sizeof (zstream_t));
|
||||
break;
|
||||
}
|
||||
}
|
||||
} else {
|
||||
ZFETCHSTAT_BUMP(zfetchstat_stream_noresets);
|
||||
rc = 1;
|
||||
dmu_zfetch_dofetch(zf, zs);
|
||||
mutex_exit(&zs->zst_lock);
|
||||
}
|
||||
}
|
||||
out:
|
||||
rw_exit(&zf->zf_rwlock);
|
||||
return (rc);
|
||||
}
|
||||
|
||||
/*
|
||||
* Clean-up state associated with a zfetch structure. This frees allocated
|
||||
* structure members, empties the zf_stream tree, and generally makes things
|
||||
* nice. This doesn't free the zfetch_t itself, that's left to the caller.
|
||||
* Clean-up state associated with a zfetch structure (e.g. destroy the
|
||||
* streams). This doesn't free the zfetch_t itself, that's left to the caller.
|
||||
*/
|
||||
void
|
||||
dmu_zfetch_rele(zfetch_t *zf)
|
||||
dmu_zfetch_fini(zfetch_t *zf)
|
||||
{
|
||||
zstream_t *zs;
|
||||
zstream_t *zs_next;
|
||||
|
||||
ASSERT(!RW_LOCK_HELD(&zf->zf_rwlock));
|
||||
|
||||
for (zs = list_head(&zf->zf_stream); zs; zs = zs_next) {
|
||||
zs_next = list_next(&zf->zf_stream, zs);
|
||||
|
||||
list_remove(&zf->zf_stream, zs);
|
||||
mutex_destroy(&zs->zst_lock);
|
||||
kmem_free(zs, sizeof (zstream_t));
|
||||
}
|
||||
rw_enter(&zf->zf_rwlock, RW_WRITER);
|
||||
while ((zs = list_head(&zf->zf_stream)) != NULL)
|
||||
dmu_zfetch_stream_remove(zf, zs);
|
||||
rw_exit(&zf->zf_rwlock);
|
||||
list_destroy(&zf->zf_stream);
|
||||
rw_destroy(&zf->zf_rwlock);
|
||||
|
||||
@ -540,101 +142,57 @@ dmu_zfetch_rele(zfetch_t *zf)
|
||||
}
|
||||
|
||||
/*
|
||||
* Given a zfetch and zstream structure, insert the zstream structure into the
|
||||
* AVL tree contained within the zfetch structure. Peform the appropriate
|
||||
* book-keeping. It is possible that another thread has inserted a stream which
|
||||
* matches one that we are about to insert, so we must be sure to check for this
|
||||
* case. If one is found, return failure, and let the caller cleanup the
|
||||
* duplicates.
|
||||
*/
|
||||
static int
|
||||
dmu_zfetch_stream_insert(zfetch_t *zf, zstream_t *zs)
|
||||
{
|
||||
zstream_t *zs_walk;
|
||||
zstream_t *zs_next;
|
||||
|
||||
ASSERT(RW_WRITE_HELD(&zf->zf_rwlock));
|
||||
|
||||
for (zs_walk = list_head(&zf->zf_stream); zs_walk; zs_walk = zs_next) {
|
||||
zs_next = list_next(&zf->zf_stream, zs_walk);
|
||||
|
||||
if (dmu_zfetch_streams_equal(zs_walk, zs)) {
|
||||
return (0);
|
||||
}
|
||||
}
|
||||
|
||||
list_insert_head(&zf->zf_stream, zs);
|
||||
zf->zf_stream_cnt++;
|
||||
return (1);
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* Walk the list of zstreams in the given zfetch, find an old one (by time), and
|
||||
* reclaim it for use by the caller.
|
||||
*/
|
||||
static zstream_t *
|
||||
dmu_zfetch_stream_reclaim(zfetch_t *zf)
|
||||
{
|
||||
zstream_t *zs;
|
||||
|
||||
if (! rw_tryenter(&zf->zf_rwlock, RW_WRITER))
|
||||
return (0);
|
||||
|
||||
for (zs = list_head(&zf->zf_stream); zs;
|
||||
zs = list_next(&zf->zf_stream, zs)) {
|
||||
|
||||
if (((ddi_get_lbolt() - zs->zst_last)/hz) > zfetch_min_sec_reap)
|
||||
break;
|
||||
}
|
||||
|
||||
if (zs) {
|
||||
dmu_zfetch_stream_remove(zf, zs);
|
||||
mutex_destroy(&zs->zst_lock);
|
||||
bzero(zs, sizeof (zstream_t));
|
||||
} else {
|
||||
zf->zf_alloc_fail++;
|
||||
}
|
||||
rw_exit(&zf->zf_rwlock);
|
||||
|
||||
return (zs);
|
||||
}
|
||||
|
||||
/*
|
||||
* Given a zfetch and zstream structure, remove the zstream structure from its
|
||||
* container in the zfetch structure. Perform the appropriate book-keeping.
|
||||
* If there aren't too many streams already, create a new stream.
|
||||
* The "blkid" argument is the next block that we expect this stream to access.
|
||||
* While we're here, clean up old streams (which haven't been
|
||||
* accessed for at least zfetch_min_sec_reap seconds).
|
||||
*/
|
||||
static void
|
||||
dmu_zfetch_stream_remove(zfetch_t *zf, zstream_t *zs)
|
||||
dmu_zfetch_stream_create(zfetch_t *zf, uint64_t blkid)
|
||||
{
|
||||
zstream_t *zs;
|
||||
zstream_t *zs_next;
|
||||
int numstreams = 0;
|
||||
uint32_t max_streams;
|
||||
|
||||
ASSERT(RW_WRITE_HELD(&zf->zf_rwlock));
|
||||
|
||||
list_remove(&zf->zf_stream, zs);
|
||||
zf->zf_stream_cnt--;
|
||||
}
|
||||
/*
|
||||
* Clean up old streams.
|
||||
*/
|
||||
for (zs = list_head(&zf->zf_stream);
|
||||
zs != NULL; zs = zs_next) {
|
||||
zs_next = list_next(&zf->zf_stream, zs);
|
||||
if (((gethrtime() - zs->zs_atime) / NANOSEC) >
|
||||
zfetch_min_sec_reap)
|
||||
dmu_zfetch_stream_remove(zf, zs);
|
||||
else
|
||||
numstreams++;
|
||||
}
|
||||
|
||||
static int
|
||||
dmu_zfetch_streams_equal(zstream_t *zs1, zstream_t *zs2)
|
||||
{
|
||||
if (zs1->zst_offset != zs2->zst_offset)
|
||||
return (0);
|
||||
/*
|
||||
* The maximum number of streams is normally zfetch_max_streams,
|
||||
* but for small files we lower it such that it's at least possible
|
||||
* for all the streams to be non-overlapping.
|
||||
*
|
||||
* If we are already at the maximum number of streams for this file,
|
||||
* even after removing old streams, then don't create this stream.
|
||||
*/
|
||||
max_streams = MAX(1, MIN(zfetch_max_streams,
|
||||
zf->zf_dnode->dn_maxblkid * zf->zf_dnode->dn_datablksz /
|
||||
zfetch_max_distance));
|
||||
if (numstreams >= max_streams) {
|
||||
ZFETCHSTAT_BUMP(zfetchstat_max_streams);
|
||||
return;
|
||||
}
|
||||
|
||||
if (zs1->zst_len != zs2->zst_len)
|
||||
return (0);
|
||||
zs = kmem_zalloc(sizeof (*zs), KM_SLEEP);
|
||||
zs->zs_blkid = blkid;
|
||||
zs->zs_pf_blkid = blkid;
|
||||
zs->zs_atime = gethrtime();
|
||||
mutex_init(&zs->zs_lock, NULL, MUTEX_DEFAULT, NULL);
|
||||
|
||||
if (zs1->zst_stride != zs2->zst_stride)
|
||||
return (0);
|
||||
|
||||
if (zs1->zst_ph_offset != zs2->zst_ph_offset)
|
||||
return (0);
|
||||
|
||||
if (zs1->zst_cap != zs2->zst_cap)
|
||||
return (0);
|
||||
|
||||
if (zs1->zst_direction != zs2->zst_direction)
|
||||
return (0);
|
||||
|
||||
return (1);
|
||||
list_insert_head(&zf->zf_stream, zs);
|
||||
}
|
||||
|
||||
/*
|
||||
@ -642,93 +200,91 @@ dmu_zfetch_streams_equal(zstream_t *zs1, zstream_t *zs2)
|
||||
* routines to create, delete, find, or operate upon prefetch streams.
|
||||
*/
|
||||
void
|
||||
dmu_zfetch(zfetch_t *zf, uint64_t offset, uint64_t size, int prefetched)
|
||||
dmu_zfetch(zfetch_t *zf, uint64_t blkid, uint64_t nblks)
|
||||
{
|
||||
zstream_t zst;
|
||||
zstream_t *newstream;
|
||||
boolean_t fetched;
|
||||
int inserted;
|
||||
unsigned int blkshft;
|
||||
uint64_t blksz;
|
||||
zstream_t *zs;
|
||||
int64_t pf_start;
|
||||
int pf_nblks;
|
||||
int i;
|
||||
|
||||
if (zfs_prefetch_disable)
|
||||
return;
|
||||
|
||||
/* files that aren't ln2 blocksz are only one block -- nothing to do */
|
||||
if (!zf->zf_dnode->dn_datablkshift)
|
||||
/*
|
||||
* As a fast path for small (single-block) files, ignore access
|
||||
* to the first block.
|
||||
*/
|
||||
if (blkid == 0)
|
||||
return;
|
||||
|
||||
/* convert offset and size, into blockid and nblocks */
|
||||
blkshft = zf->zf_dnode->dn_datablkshift;
|
||||
blksz = (1 << blkshft);
|
||||
rw_enter(&zf->zf_rwlock, RW_READER);
|
||||
|
||||
bzero(&zst, sizeof (zstream_t));
|
||||
zst.zst_offset = offset >> blkshft;
|
||||
zst.zst_len = (P2ROUNDUP(offset + size, blksz) -
|
||||
P2ALIGN(offset, blksz)) >> blkshft;
|
||||
for (zs = list_head(&zf->zf_stream); zs != NULL;
|
||||
zs = list_next(&zf->zf_stream, zs)) {
|
||||
if (blkid == zs->zs_blkid) {
|
||||
mutex_enter(&zs->zs_lock);
|
||||
/*
|
||||
* zs_blkid could have changed before we
|
||||
* acquired zs_lock; re-check them here.
|
||||
*/
|
||||
if (blkid != zs->zs_blkid) {
|
||||
mutex_exit(&zs->zs_lock);
|
||||
continue;
|
||||
}
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
fetched = dmu_zfetch_find(zf, &zst, prefetched);
|
||||
if (fetched) {
|
||||
ZFETCHSTAT_BUMP(zfetchstat_hits);
|
||||
} else {
|
||||
if (zs == NULL) {
|
||||
/*
|
||||
* This access is not part of any existing stream. Create
|
||||
* a new stream for it.
|
||||
*/
|
||||
ZFETCHSTAT_BUMP(zfetchstat_misses);
|
||||
if ((fetched = dmu_zfetch_colinear(zf, &zst))) {
|
||||
ZFETCHSTAT_BUMP(zfetchstat_colinear_hits);
|
||||
} else {
|
||||
ZFETCHSTAT_BUMP(zfetchstat_colinear_misses);
|
||||
if (rw_tryupgrade(&zf->zf_rwlock))
|
||||
dmu_zfetch_stream_create(zf, blkid + nblks);
|
||||
rw_exit(&zf->zf_rwlock);
|
||||
return;
|
||||
}
|
||||
}
|
||||
|
||||
if (!fetched) {
|
||||
newstream = dmu_zfetch_stream_reclaim(zf);
|
||||
|
||||
/*
|
||||
* we still couldn't find a stream, drop the lock, and allocate
|
||||
* one if possible. Otherwise, give up and go home.
|
||||
* This access was to a block that we issued a prefetch for on
|
||||
* behalf of this stream. Issue further prefetches for this stream.
|
||||
*
|
||||
* Normally, we start prefetching where we stopped
|
||||
* prefetching last (zs_pf_blkid). But when we get our first
|
||||
* hit on this stream, zs_pf_blkid == zs_blkid, we don't
|
||||
* want to prefetch to block we just accessed. In this case,
|
||||
* start just after the block we just accessed.
|
||||
*/
|
||||
if (newstream) {
|
||||
ZFETCHSTAT_BUMP(zfetchstat_reclaim_successes);
|
||||
} else {
|
||||
uint64_t maxblocks;
|
||||
uint32_t max_streams;
|
||||
uint32_t cur_streams;
|
||||
pf_start = MAX(zs->zs_pf_blkid, blkid + nblks);
|
||||
|
||||
ZFETCHSTAT_BUMP(zfetchstat_reclaim_failures);
|
||||
cur_streams = zf->zf_stream_cnt;
|
||||
maxblocks = zf->zf_dnode->dn_maxblkid;
|
||||
/*
|
||||
* Double our amount of prefetched data, but don't let the
|
||||
* prefetch get further ahead than zfetch_max_distance.
|
||||
*/
|
||||
pf_nblks =
|
||||
MIN((int64_t)zs->zs_pf_blkid - zs->zs_blkid + nblks,
|
||||
zs->zs_blkid + nblks +
|
||||
(zfetch_max_distance >> zf->zf_dnode->dn_datablkshift) - pf_start);
|
||||
|
||||
max_streams = MIN(zfetch_max_streams,
|
||||
(maxblocks / zfetch_block_cap));
|
||||
if (max_streams == 0) {
|
||||
max_streams++;
|
||||
}
|
||||
zs->zs_pf_blkid = pf_start + pf_nblks;
|
||||
zs->zs_atime = gethrtime();
|
||||
zs->zs_blkid = blkid + nblks;
|
||||
|
||||
if (cur_streams >= max_streams) {
|
||||
return;
|
||||
}
|
||||
newstream =
|
||||
kmem_zalloc(sizeof (zstream_t), KM_SLEEP);
|
||||
}
|
||||
|
||||
newstream->zst_offset = zst.zst_offset;
|
||||
newstream->zst_len = zst.zst_len;
|
||||
newstream->zst_stride = zst.zst_len;
|
||||
newstream->zst_ph_offset = zst.zst_len + zst.zst_offset;
|
||||
newstream->zst_cap = zst.zst_len;
|
||||
newstream->zst_direction = ZFETCH_FORWARD;
|
||||
newstream->zst_last = ddi_get_lbolt();
|
||||
|
||||
mutex_init(&newstream->zst_lock, NULL, MUTEX_DEFAULT, NULL);
|
||||
|
||||
rw_enter(&zf->zf_rwlock, RW_WRITER);
|
||||
inserted = dmu_zfetch_stream_insert(zf, newstream);
|
||||
/*
|
||||
* dbuf_prefetch() issues the prefetch i/o
|
||||
* asynchronously, but it may need to wait for an
|
||||
* indirect block to be read from disk. Therefore
|
||||
* we do not want to hold any locks while we call it.
|
||||
*/
|
||||
mutex_exit(&zs->zs_lock);
|
||||
rw_exit(&zf->zf_rwlock);
|
||||
|
||||
if (!inserted) {
|
||||
mutex_destroy(&newstream->zst_lock);
|
||||
kmem_free(newstream, sizeof (zstream_t));
|
||||
}
|
||||
for (i = 0; i < pf_nblks; i++) {
|
||||
dbuf_prefetch(zf->zf_dnode, 0, pf_start + i,
|
||||
ZIO_PRIORITY_ASYNC_READ, ARC_FLAG_PREDICTIVE_PREFETCH);
|
||||
}
|
||||
ZFETCHSTAT_BUMP(zfetchstat_hits);
|
||||
}
|
||||
|
||||
#if defined(_KERNEL) && defined(HAVE_SPL)
|
||||
@ -741,8 +297,9 @@ MODULE_PARM_DESC(zfetch_max_streams, "Max number of streams per zfetch");
|
||||
module_param(zfetch_min_sec_reap, uint, 0644);
|
||||
MODULE_PARM_DESC(zfetch_min_sec_reap, "Min time before stream reclaim");
|
||||
|
||||
module_param(zfetch_block_cap, uint, 0644);
|
||||
MODULE_PARM_DESC(zfetch_block_cap, "Max number of blocks to fetch at a time");
|
||||
module_param(zfetch_max_distance, uint, 0644);
|
||||
MODULE_PARM_DESC(zfetch_max_distance,
|
||||
"Max bytes to prefetch per stream (default 8MB)");
|
||||
|
||||
module_param(zfetch_array_rd_sz, ulong, 0644);
|
||||
MODULE_PARM_DESC(zfetch_array_rd_sz, "Number of bytes in a array_read");
|
||||
|
@ -524,7 +524,7 @@ dnode_destroy(dnode_t *dn)
|
||||
dn->dn_id_flags = 0;
|
||||
dn->dn_unlisted_l0_blkid = 0;
|
||||
|
||||
dmu_zfetch_rele(&dn->dn_zfetch);
|
||||
dmu_zfetch_fini(&dn->dn_zfetch);
|
||||
kmem_cache_free(dnode_cache, dn);
|
||||
arc_space_return(sizeof (dnode_t), ARC_SPACE_OTHER);
|
||||
|
||||
@ -773,8 +773,6 @@ dnode_move_impl(dnode_t *odn, dnode_t *ndn)
|
||||
dmu_zfetch_init(&ndn->dn_zfetch, NULL);
|
||||
list_move_tail(&ndn->dn_zfetch.zf_stream, &odn->dn_zfetch.zf_stream);
|
||||
ndn->dn_zfetch.zf_dnode = odn->dn_zfetch.zf_dnode;
|
||||
ndn->dn_zfetch.zf_stream_cnt = odn->dn_zfetch.zf_stream_cnt;
|
||||
ndn->dn_zfetch.zf_alloc_fail = odn->dn_zfetch.zf_alloc_fail;
|
||||
|
||||
/*
|
||||
* Update back pointers. Updating the handle fixes the back pointer of
|
||||
|
Loading…
Reference in New Issue
Block a user