Add superscalar fletcher4

This is the Fletcher4 algorithm implemented in pure C, but using
multiple counters using algorithms identical to those used for
SSE/NEON and AVX2.

This allows for faster execution on core with strong superscalar
capabilities but weak SIMD capabilities.

Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Romain Dolbeau <romain.dolbeau@atos.net>
Closes #5317
This commit is contained in:
Romain Dolbeau 2016-11-04 18:53:03 +01:00 committed by Brian Behlendorf
parent ace1eae84c
commit 7f3194932d
8 changed files with 405 additions and 2 deletions

View File

@ -65,6 +65,10 @@ void fletcher_4_fini(void);
/* Internal fletcher ctx */ /* Internal fletcher ctx */
typedef struct zfs_fletcher_superscalar {
uint64_t v[4];
} zfs_fletcher_superscalar_t;
typedef struct zfs_fletcher_sse { typedef struct zfs_fletcher_sse {
uint64_t v[2] __attribute__((aligned(16))); uint64_t v[2] __attribute__((aligned(16)));
} zfs_fletcher_sse_t; } zfs_fletcher_sse_t;
@ -84,6 +88,7 @@ typedef struct zfs_fletcher_aarch64_neon {
typedef union fletcher_4_ctx { typedef union fletcher_4_ctx {
zio_cksum_t scalar; zio_cksum_t scalar;
zfs_fletcher_superscalar_t superscalar[4];
#if defined(HAVE_SSE2) || (defined(HAVE_SSE2) && defined(HAVE_SSSE3)) #if defined(HAVE_SSE2) || (defined(HAVE_SSE2) && defined(HAVE_SSSE3))
zfs_fletcher_sse_t sse[4]; zfs_fletcher_sse_t sse[4];
@ -118,6 +123,8 @@ typedef struct fletcher_4_func {
const char *name; const char *name;
} fletcher_4_ops_t; } fletcher_4_ops_t;
extern const fletcher_4_ops_t fletcher_4_superscalar_ops;
extern const fletcher_4_ops_t fletcher_4_superscalar4_ops;
#if defined(HAVE_SSE2) #if defined(HAVE_SSE2)
extern const fletcher_4_ops_t fletcher_4_sse2_ops; extern const fletcher_4_ops_t fletcher_4_sse2_ops;

View File

@ -26,6 +26,8 @@ KERNEL_C = \
zfs_fletcher_sse.c \ zfs_fletcher_sse.c \
zfs_fletcher_avx512.c \ zfs_fletcher_avx512.c \
zfs_fletcher_aarch64_neon.c \ zfs_fletcher_aarch64_neon.c \
zfs_fletcher_superscalar.c \
zfs_fletcher_superscalar4.c \
zfs_namecheck.c \ zfs_namecheck.c \
zfs_prop.c \ zfs_prop.c \
zfs_uio.c \ zfs_uio.c \

View File

@ -15,6 +15,8 @@ $(MODULE)-objs += zfs_comutil.o
$(MODULE)-objs += zfs_fletcher.o $(MODULE)-objs += zfs_fletcher.o
$(MODULE)-objs += zfs_uio.o $(MODULE)-objs += zfs_uio.o
$(MODULE)-objs += zpool_prop.o $(MODULE)-objs += zpool_prop.o
$(MODULE)-objs += zfs_fletcher_superscalar.o
$(MODULE)-objs += zfs_fletcher_superscalar4.o
$(MODULE)-$(CONFIG_X86) += zfs_fletcher_intel.o $(MODULE)-$(CONFIG_X86) += zfs_fletcher_intel.o
$(MODULE)-$(CONFIG_X86) += zfs_fletcher_sse.o $(MODULE)-$(CONFIG_X86) += zfs_fletcher_sse.o

View File

@ -164,6 +164,8 @@ static fletcher_4_ops_t fletcher_4_fastest_impl = {
static const fletcher_4_ops_t *fletcher_4_impls[] = { static const fletcher_4_ops_t *fletcher_4_impls[] = {
&fletcher_4_scalar_ops, &fletcher_4_scalar_ops,
&fletcher_4_superscalar_ops,
&fletcher_4_superscalar4_ops,
#if defined(HAVE_SSE2) #if defined(HAVE_SSE2)
&fletcher_4_sse2_ops, &fletcher_4_sse2_ops,
#endif #endif

View File

@ -2,7 +2,7 @@
* Implement fast Fletcher4 with NEON instructions. (aarch64) * Implement fast Fletcher4 with NEON instructions. (aarch64)
* *
* Use the 128-bit NEON SIMD instructions and registers to compute * Use the 128-bit NEON SIMD instructions and registers to compute
* Fletcher4 in four incremental 64-bit parallel accumulator streams, * Fletcher4 in two incremental 64-bit parallel accumulator streams,
* and then combine the streams to form the final four checksum words. * and then combine the streams to form the final four checksum words.
* This implementation is a derivative of the AVX SIMD implementation by * This implementation is a derivative of the AVX SIMD implementation by
* James Guilford and Jinshan Xiong from Intel (see zfs_fletcher_intel.c). * James Guilford and Jinshan Xiong from Intel (see zfs_fletcher_intel.c).

View File

@ -2,7 +2,7 @@
* Implement fast Fletcher4 with SSE2,SSSE3 instructions. (x86) * Implement fast Fletcher4 with SSE2,SSSE3 instructions. (x86)
* *
* Use the 128-bit SSE2/SSSE3 SIMD instructions and registers to compute * Use the 128-bit SSE2/SSSE3 SIMD instructions and registers to compute
* Fletcher4 in four incremental 64-bit parallel accumulator streams, * Fletcher4 in two incremental 64-bit parallel accumulator streams,
* and then combine the streams to form the final four checksum words. * and then combine the streams to form the final four checksum words.
* This implementation is a derivative of the AVX SIMD implementation by * This implementation is a derivative of the AVX SIMD implementation by
* James Guilford and Jinshan Xiong from Intel (see zfs_fletcher_intel.c). * James Guilford and Jinshan Xiong from Intel (see zfs_fletcher_intel.c).

View File

@ -0,0 +1,162 @@
/*
* Implement fast Fletcher4 using superscalar pipelines.
*
* Use regular C code to compute
* Fletcher4 in two incremental 64-bit parallel accumulator streams,
* and then combine the streams to form the final four checksum words.
* This implementation is a derivative of the AVX SIMD implementation by
* James Guilford and Jinshan Xiong from Intel (see zfs_fletcher_intel.c).
*
* Copyright (C) 2016 Romain Dolbeau.
*
* Authors:
* Romain Dolbeau <romain.dolbeau@atos.net>
*
* This software is available to you under a choice of one of two
* licenses. You may choose to be licensed under the terms of the GNU
* General Public License (GPL) Version 2, available from the file
* COPYING in the main directory of this source tree, or the
* OpenIB.org BSD license below:
*
* Redistribution and use in source and binary forms, with or
* without modification, are permitted provided that the following
* conditions are met:
*
* - Redistributions of source code must retain the above
* copyright notice, this list of conditions and the following
* disclaimer.
*
* - Redistributions in binary form must reproduce the above
* copyright notice, this list of conditions and the following
* disclaimer in the documentation and/or other materials
* provided with the distribution.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
* NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
* BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
* ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
* CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*/
#include <sys/byteorder.h>
#include <sys/spa_checksum.h>
#include <zfs_fletcher.h>
#include <strings.h>
static void
fletcher_4_superscalar_init(fletcher_4_ctx_t *ctx)
{
bzero(ctx->superscalar, 4 * sizeof (zfs_fletcher_superscalar_t));
}
static void
fletcher_4_superscalar_fini(fletcher_4_ctx_t *ctx, zio_cksum_t *zcp)
{
uint64_t A, B, C, D;
A = ctx->superscalar[0].v[0] + ctx->superscalar[0].v[1];
B = 2 * ctx->superscalar[1].v[0] + 2 * ctx->superscalar[1].v[1] -
ctx->superscalar[0].v[1];
C = 4 * ctx->superscalar[2].v[0] - ctx->superscalar[1].v[0] +
4 * ctx->superscalar[2].v[1] - 3 * ctx->superscalar[1].v[1];
D = 8 * ctx->superscalar[3].v[0] - 4 * ctx->superscalar[2].v[0] +
8 * ctx->superscalar[3].v[1] - 8 * ctx->superscalar[2].v[1] +
ctx->superscalar[1].v[1];
ZIO_SET_CHECKSUM(zcp, A, B, C, D);
}
static void
fletcher_4_superscalar_native(fletcher_4_ctx_t *ctx,
const void *buf, uint64_t size)
{
const uint32_t *ip = buf;
const uint32_t *ipend = ip + (size / sizeof (uint32_t));
uint64_t a, b, c, d;
uint64_t a2, b2, c2, d2;
a = ctx->superscalar[0].v[0];
b = ctx->superscalar[1].v[0];
c = ctx->superscalar[2].v[0];
d = ctx->superscalar[3].v[0];
a2 = ctx->superscalar[0].v[1];
b2 = ctx->superscalar[1].v[1];
c2 = ctx->superscalar[2].v[1];
d2 = ctx->superscalar[3].v[1];
for (; ip < ipend; ip += 2) {
a += ip[0];
a2 += ip[1];
b += a;
b2 += a2;
c += b;
c2 += b2;
d += c;
d2 += c2;
}
ctx->superscalar[0].v[0] = a;
ctx->superscalar[1].v[0] = b;
ctx->superscalar[2].v[0] = c;
ctx->superscalar[3].v[0] = d;
ctx->superscalar[0].v[1] = a2;
ctx->superscalar[1].v[1] = b2;
ctx->superscalar[2].v[1] = c2;
ctx->superscalar[3].v[1] = d2;
}
static void
fletcher_4_superscalar_byteswap(fletcher_4_ctx_t *ctx,
const void *buf, uint64_t size)
{
const uint32_t *ip = buf;
const uint32_t *ipend = ip + (size / sizeof (uint32_t));
uint64_t a, b, c, d;
uint64_t a2, b2, c2, d2;
a = ctx->superscalar[0].v[0];
b = ctx->superscalar[1].v[0];
c = ctx->superscalar[2].v[0];
d = ctx->superscalar[3].v[0];
a2 = ctx->superscalar[0].v[1];
b2 = ctx->superscalar[1].v[1];
c2 = ctx->superscalar[2].v[1];
d2 = ctx->superscalar[3].v[1];
for (; ip < ipend; ip += 2) {
a += BSWAP_32(ip[0]);
a2 += BSWAP_32(ip[1]);
b += a;
b2 += a2;
c += b;
c2 += b2;
d += c;
d2 += c2;
}
ctx->superscalar[0].v[0] = a;
ctx->superscalar[1].v[0] = b;
ctx->superscalar[2].v[0] = c;
ctx->superscalar[3].v[0] = d;
ctx->superscalar[0].v[1] = a2;
ctx->superscalar[1].v[1] = b2;
ctx->superscalar[2].v[1] = c2;
ctx->superscalar[3].v[1] = d2;
}
static boolean_t fletcher_4_superscalar_valid(void)
{
return (B_TRUE);
}
const fletcher_4_ops_t fletcher_4_superscalar_ops = {
.init_native = fletcher_4_superscalar_init,
.compute_native = fletcher_4_superscalar_native,
.fini_native = fletcher_4_superscalar_fini,
.init_byteswap = fletcher_4_superscalar_init,
.compute_byteswap = fletcher_4_superscalar_byteswap,
.fini_byteswap = fletcher_4_superscalar_fini,
.valid = fletcher_4_superscalar_valid,
.name = "superscalar"
};

View File

@ -0,0 +1,228 @@
/*
* Implement fast Fletcher4 using superscalar pipelines.
*
* Use regular C code to compute
* Fletcher4 in four incremental 64-bit parallel accumulator streams,
* and then combine the streams to form the final four checksum words.
* This implementation is a derivative of the AVX SIMD implementation by
* James Guilford and Jinshan Xiong from Intel (see zfs_fletcher_intel.c).
*
* Copyright (C) 2016 Romain Dolbeau.
*
* Authors:
* Romain Dolbeau <romain.dolbeau@atos.net>
*
* This software is available to you under a choice of one of two
* licenses. You may choose to be licensed under the terms of the GNU
* General Public License (GPL) Version 2, available from the file
* COPYING in the main directory of this source tree, or the
* OpenIB.org BSD license below:
*
* Redistribution and use in source and binary forms, with or
* without modification, are permitted provided that the following
* conditions are met:
*
* - Redistributions of source code must retain the above
* copyright notice, this list of conditions and the following
* disclaimer.
*
* - Redistributions in binary form must reproduce the above
* copyright notice, this list of conditions and the following
* disclaimer in the documentation and/or other materials
* provided with the distribution.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
* NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
* BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
* ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
* CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*/
#include <sys/byteorder.h>
#include <sys/spa_checksum.h>
#include <zfs_fletcher.h>
#include <strings.h>
static void
fletcher_4_superscalar4_init(fletcher_4_ctx_t *ctx)
{
bzero(ctx->superscalar, 4 * sizeof (zfs_fletcher_superscalar_t));
}
static void
fletcher_4_superscalar4_fini(fletcher_4_ctx_t *ctx, zio_cksum_t *zcp)
{
uint64_t A, B, C, D;
A = ctx->superscalar[0].v[0] + ctx->superscalar[0].v[1] +
ctx->superscalar[0].v[2] + ctx->superscalar[0].v[3];
B = 0 - ctx->superscalar[0].v[1] - 2 * ctx->superscalar[0].v[2] -
3 * ctx->superscalar[0].v[3] + 4 * ctx->superscalar[1].v[0] +
4 * ctx->superscalar[1].v[1] + 4 * ctx->superscalar[1].v[2] +
4 * ctx->superscalar[1].v[3];
C = ctx->superscalar[0].v[2] + 3 * ctx->superscalar[0].v[3] -
6 * ctx->superscalar[1].v[0] - 10 * ctx->superscalar[1].v[1] -
14 * ctx->superscalar[1].v[2] - 18 * ctx->superscalar[1].v[3] +
16 * ctx->superscalar[2].v[0] + 16 * ctx->superscalar[2].v[1] +
16 * ctx->superscalar[2].v[2] + 16 * ctx->superscalar[2].v[3];
D = 0 - ctx->superscalar[0].v[3] + 4 * ctx->superscalar[1].v[0] +
10 * ctx->superscalar[1].v[1] + 20 * ctx->superscalar[1].v[2] +
34 * ctx->superscalar[1].v[3] - 48 * ctx->superscalar[2].v[0] -
64 * ctx->superscalar[2].v[1] - 80 * ctx->superscalar[2].v[2] -
96 * ctx->superscalar[2].v[3] + 64 * ctx->superscalar[3].v[0] +
64 * ctx->superscalar[3].v[1] + 64 * ctx->superscalar[3].v[2] +
64 * ctx->superscalar[3].v[3];
ZIO_SET_CHECKSUM(zcp, A, B, C, D);
}
static void
fletcher_4_superscalar4_native(fletcher_4_ctx_t *ctx,
const void *buf, uint64_t size)
{
const uint32_t *ip = buf;
const uint32_t *ipend = ip + (size / sizeof (uint32_t));
uint64_t a, b, c, d;
uint64_t a2, b2, c2, d2;
uint64_t a3, b3, c3, d3;
uint64_t a4, b4, c4, d4;
a = ctx->superscalar[0].v[0];
b = ctx->superscalar[1].v[0];
c = ctx->superscalar[2].v[0];
d = ctx->superscalar[3].v[0];
a2 = ctx->superscalar[0].v[1];
b2 = ctx->superscalar[1].v[1];
c2 = ctx->superscalar[2].v[1];
d2 = ctx->superscalar[3].v[1];
a3 = ctx->superscalar[0].v[2];
b3 = ctx->superscalar[1].v[2];
c3 = ctx->superscalar[2].v[2];
d3 = ctx->superscalar[3].v[2];
a4 = ctx->superscalar[0].v[3];
b4 = ctx->superscalar[1].v[3];
c4 = ctx->superscalar[2].v[3];
d4 = ctx->superscalar[3].v[3];
for (; ip < ipend; ip += 4) {
a += ip[0];
a2 += ip[1];
a3 += ip[2];
a4 += ip[3];
b += a;
b2 += a2;
b3 += a3;
b4 += a4;
c += b;
c2 += b2;
c3 += b3;
c4 += b4;
d += c;
d2 += c2;
d3 += c3;
d4 += c4;
}
ctx->superscalar[0].v[0] = a;
ctx->superscalar[1].v[0] = b;
ctx->superscalar[2].v[0] = c;
ctx->superscalar[3].v[0] = d;
ctx->superscalar[0].v[1] = a2;
ctx->superscalar[1].v[1] = b2;
ctx->superscalar[2].v[1] = c2;
ctx->superscalar[3].v[1] = d2;
ctx->superscalar[0].v[2] = a3;
ctx->superscalar[1].v[2] = b3;
ctx->superscalar[2].v[2] = c3;
ctx->superscalar[3].v[2] = d3;
ctx->superscalar[0].v[3] = a4;
ctx->superscalar[1].v[3] = b4;
ctx->superscalar[2].v[3] = c4;
ctx->superscalar[3].v[3] = d4;
}
static void
fletcher_4_superscalar4_byteswap(fletcher_4_ctx_t *ctx,
const void *buf, uint64_t size)
{
const uint32_t *ip = buf;
const uint32_t *ipend = ip + (size / sizeof (uint32_t));
uint64_t a, b, c, d;
uint64_t a2, b2, c2, d2;
uint64_t a3, b3, c3, d3;
uint64_t a4, b4, c4, d4;
a = ctx->superscalar[0].v[0];
b = ctx->superscalar[1].v[0];
c = ctx->superscalar[2].v[0];
d = ctx->superscalar[3].v[0];
a2 = ctx->superscalar[0].v[1];
b2 = ctx->superscalar[1].v[1];
c2 = ctx->superscalar[2].v[1];
d2 = ctx->superscalar[3].v[1];
a3 = ctx->superscalar[0].v[2];
b3 = ctx->superscalar[1].v[2];
c3 = ctx->superscalar[2].v[2];
d3 = ctx->superscalar[3].v[2];
a4 = ctx->superscalar[0].v[3];
b4 = ctx->superscalar[1].v[3];
c4 = ctx->superscalar[2].v[3];
d4 = ctx->superscalar[3].v[3];
for (; ip < ipend; ip += 4) {
a += BSWAP_32(ip[0]);
a2 += BSWAP_32(ip[1]);
a3 += BSWAP_32(ip[2]);
a4 += BSWAP_32(ip[3]);
b += a;
b2 += a2;
b3 += a3;
b4 += a4;
c += b;
c2 += b2;
c3 += b3;
c4 += b4;
d += c;
d2 += c2;
d3 += c3;
d4 += c4;
}
ctx->superscalar[0].v[0] = a;
ctx->superscalar[1].v[0] = b;
ctx->superscalar[2].v[0] = c;
ctx->superscalar[3].v[0] = d;
ctx->superscalar[0].v[1] = a2;
ctx->superscalar[1].v[1] = b2;
ctx->superscalar[2].v[1] = c2;
ctx->superscalar[3].v[1] = d2;
ctx->superscalar[0].v[2] = a3;
ctx->superscalar[1].v[2] = b3;
ctx->superscalar[2].v[2] = c3;
ctx->superscalar[3].v[2] = d3;
ctx->superscalar[0].v[3] = a4;
ctx->superscalar[1].v[3] = b4;
ctx->superscalar[2].v[3] = c4;
ctx->superscalar[3].v[3] = d4;
}
static boolean_t fletcher_4_superscalar4_valid(void)
{
return (B_TRUE);
}
const fletcher_4_ops_t fletcher_4_superscalar4_ops = {
.init_native = fletcher_4_superscalar4_init,
.compute_native = fletcher_4_superscalar4_native,
.fini_native = fletcher_4_superscalar4_fini,
.init_byteswap = fletcher_4_superscalar4_init,
.compute_byteswap = fletcher_4_superscalar4_byteswap,
.fini_byteswap = fletcher_4_superscalar4_fini,
.valid = fletcher_4_superscalar4_valid,
.name = "superscalar4"
};