mirror of
https://git.proxmox.com/git/mirror_zfs.git
synced 2024-12-25 18:59:33 +03:00
abd_os: split userspace and Linux kernel code
The Linux abd_os.c serves double-duty as the userspace scatter abd implementation, by carrying an emulation of kernel scatterlists. This commit lifts common and userspace-specific parts out into a separate abd_os.c for libzpool. Sponsored-by: Klara, Inc. Sponsored-by: Wasabi Technology, Inc. Reviewed-by: Alexander Motin <mav@FreeBSD.org> Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov> Signed-off-by: Rob Norris <rob.norris@klarasystems.com> Closes #16253
This commit is contained in:
parent
2b7d9a7863
commit
7a5b4355e2
@ -68,7 +68,9 @@ typedef struct abd {
|
||||
} abd_scatter;
|
||||
struct abd_linear {
|
||||
void *abd_buf;
|
||||
#if defined(__linux__) && defined(_KERNEL)
|
||||
struct scatterlist *abd_sgl; /* for LINEAR_PAGE */
|
||||
#endif
|
||||
} abd_linear;
|
||||
struct abd_gang {
|
||||
list_t abd_gang_chain;
|
||||
|
@ -9,6 +9,7 @@ lib_LTLIBRARIES += libzpool.la
|
||||
CPPCHECKTARGETS += libzpool.la
|
||||
|
||||
dist_libzpool_la_SOURCES = \
|
||||
%D%/abd_os.c \
|
||||
%D%/kernel.c \
|
||||
%D%/taskq.c \
|
||||
%D%/util.c
|
||||
@ -39,7 +40,6 @@ nodist_libzpool_la_SOURCES = \
|
||||
module/lua/lvm.c \
|
||||
module/lua/lzio.c \
|
||||
\
|
||||
module/os/linux/zfs/abd_os.c \
|
||||
module/os/linux/zfs/arc_os.c \
|
||||
module/os/linux/zfs/trace.c \
|
||||
module/os/linux/zfs/vdev_file.c \
|
||||
|
492
lib/libzpool/abd_os.c
Normal file
492
lib/libzpool/abd_os.c
Normal file
@ -0,0 +1,492 @@
|
||||
/*
|
||||
* CDDL HEADER START
|
||||
*
|
||||
* The contents of this file are subject to the terms of the
|
||||
* Common Development and Distribution License (the "License").
|
||||
* You may not use this file except in compliance with the License.
|
||||
*
|
||||
* You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
|
||||
* or https://opensource.org/licenses/CDDL-1.0.
|
||||
* See the License for the specific language governing permissions
|
||||
* and limitations under the License.
|
||||
*
|
||||
* When distributing Covered Code, include this CDDL HEADER in each
|
||||
* file and include the License file at usr/src/OPENSOLARIS.LICENSE.
|
||||
* If applicable, add the following below this CDDL HEADER, with the
|
||||
* fields enclosed by brackets "[]" replaced with your own identifying
|
||||
* information: Portions Copyright [yyyy] [name of copyright owner]
|
||||
*
|
||||
* CDDL HEADER END
|
||||
*/
|
||||
/*
|
||||
* Copyright (c) 2014 by Chunwei Chen. All rights reserved.
|
||||
* Copyright (c) 2019 by Delphix. All rights reserved.
|
||||
* Copyright (c) 2023, 2024, Klara Inc.
|
||||
*/
|
||||
|
||||
/*
|
||||
* See abd.c for a general overview of the arc buffered data (ABD).
|
||||
*
|
||||
* Linear buffers act exactly like normal buffers and are always mapped into the
|
||||
* kernel's virtual memory space, while scattered ABD data chunks are allocated
|
||||
* as physical pages and then mapped in only while they are actually being
|
||||
* accessed through one of the abd_* library functions. Using scattered ABDs
|
||||
* provides several benefits:
|
||||
*
|
||||
* (1) They avoid use of kmem_*, preventing performance problems where running
|
||||
* kmem_reap on very large memory systems never finishes and causes
|
||||
* constant TLB shootdowns.
|
||||
*
|
||||
* (2) Fragmentation is less of an issue since when we are at the limit of
|
||||
* allocatable space, we won't have to search around for a long free
|
||||
* hole in the VA space for large ARC allocations. Each chunk is mapped in
|
||||
* individually, so even if we are using HIGHMEM (see next point) we
|
||||
* wouldn't need to worry about finding a contiguous address range.
|
||||
*
|
||||
* (3) If we are not using HIGHMEM, then all physical memory is always
|
||||
* mapped into the kernel's address space, so we also avoid the map /
|
||||
* unmap costs on each ABD access.
|
||||
*
|
||||
* If we are not using HIGHMEM, scattered buffers which have only one chunk
|
||||
* can be treated as linear buffers, because they are contiguous in the
|
||||
* kernel's virtual address space. See abd_alloc_chunks() for details.
|
||||
*/
|
||||
|
||||
#include <sys/abd_impl.h>
|
||||
#include <sys/param.h>
|
||||
#include <sys/zio.h>
|
||||
#include <sys/arc.h>
|
||||
#include <sys/zfs_context.h>
|
||||
#include <sys/zfs_znode.h>
|
||||
|
||||
|
||||
#define abd_for_each_sg(abd, sg, n, i) \
|
||||
for_each_sg(ABD_SCATTER(abd).abd_sgl, sg, n, i)
|
||||
|
||||
/*
|
||||
* zfs_abd_scatter_min_size is the minimum allocation size to use scatter
|
||||
* ABD's. Smaller allocations will use linear ABD's which uses
|
||||
* zio_[data_]buf_alloc().
|
||||
*
|
||||
* Scatter ABD's use at least one page each, so sub-page allocations waste
|
||||
* some space when allocated as scatter (e.g. 2KB scatter allocation wastes
|
||||
* half of each page). Using linear ABD's for small allocations means that
|
||||
* they will be put on slabs which contain many allocations. This can
|
||||
* improve memory efficiency, but it also makes it much harder for ARC
|
||||
* evictions to actually free pages, because all the buffers on one slab need
|
||||
* to be freed in order for the slab (and underlying pages) to be freed.
|
||||
* Typically, 512B and 1KB kmem caches have 16 buffers per slab, so it's
|
||||
* possible for them to actually waste more memory than scatter (one page per
|
||||
* buf = wasting 3/4 or 7/8th; one buf per slab = wasting 15/16th).
|
||||
*
|
||||
* Spill blocks are typically 512B and are heavily used on systems running
|
||||
* selinux with the default dnode size and the `xattr=sa` property set.
|
||||
*
|
||||
* By default we use linear allocations for 512B and 1KB, and scatter
|
||||
* allocations for larger (1.5KB and up).
|
||||
*/
|
||||
static int zfs_abd_scatter_min_size = 512 * 3;
|
||||
|
||||
/*
|
||||
* We use a scattered SPA_MAXBLOCKSIZE sized ABD whose pages are
|
||||
* just a single zero'd page. This allows us to conserve memory by
|
||||
* only using a single zero page for the scatterlist.
|
||||
*/
|
||||
abd_t *abd_zero_scatter = NULL;
|
||||
|
||||
struct page;
|
||||
/*
|
||||
* abd_zero_page will be allocated with a zero'ed PAGESIZE buffer, which is
|
||||
* assigned to each of the pages of abd_zero_scatter.
|
||||
*/
|
||||
static struct page *abd_zero_page = NULL;
|
||||
|
||||
static kmem_cache_t *abd_cache = NULL;
|
||||
|
||||
static uint_t
|
||||
abd_chunkcnt_for_bytes(size_t size)
|
||||
{
|
||||
return (P2ROUNDUP(size, PAGESIZE) / PAGESIZE);
|
||||
}
|
||||
|
||||
abd_t *
|
||||
abd_alloc_struct_impl(size_t size)
|
||||
{
|
||||
/*
|
||||
* In Linux we do not use the size passed in during ABD
|
||||
* allocation, so we just ignore it.
|
||||
*/
|
||||
(void) size;
|
||||
abd_t *abd = kmem_cache_alloc(abd_cache, KM_PUSHPAGE);
|
||||
ASSERT3P(abd, !=, NULL);
|
||||
|
||||
return (abd);
|
||||
}
|
||||
|
||||
void
|
||||
abd_free_struct_impl(abd_t *abd)
|
||||
{
|
||||
kmem_cache_free(abd_cache, abd);
|
||||
}
|
||||
|
||||
#define nth_page(pg, i) \
|
||||
((struct page *)((void *)(pg) + (i) * PAGESIZE))
|
||||
|
||||
struct scatterlist {
|
||||
struct page *page;
|
||||
int length;
|
||||
int end;
|
||||
};
|
||||
|
||||
static void
|
||||
sg_init_table(struct scatterlist *sg, int nr)
|
||||
{
|
||||
memset(sg, 0, nr * sizeof (struct scatterlist));
|
||||
sg[nr - 1].end = 1;
|
||||
}
|
||||
|
||||
/*
|
||||
* This must be called if any of the sg_table allocation functions
|
||||
* are called.
|
||||
*/
|
||||
static void
|
||||
abd_free_sg_table(abd_t *abd)
|
||||
{
|
||||
int nents = ABD_SCATTER(abd).abd_nents;
|
||||
vmem_free(ABD_SCATTER(abd).abd_sgl,
|
||||
nents * sizeof (struct scatterlist));
|
||||
}
|
||||
|
||||
#define for_each_sg(sgl, sg, nr, i) \
|
||||
for ((i) = 0, (sg) = (sgl); (i) < (nr); (i)++, (sg) = sg_next(sg))
|
||||
|
||||
static inline void
|
||||
sg_set_page(struct scatterlist *sg, struct page *page, unsigned int len,
|
||||
unsigned int offset)
|
||||
{
|
||||
/* currently we don't use offset */
|
||||
ASSERT(offset == 0);
|
||||
sg->page = page;
|
||||
sg->length = len;
|
||||
}
|
||||
|
||||
static inline struct page *
|
||||
sg_page(struct scatterlist *sg)
|
||||
{
|
||||
return (sg->page);
|
||||
}
|
||||
|
||||
static inline struct scatterlist *
|
||||
sg_next(struct scatterlist *sg)
|
||||
{
|
||||
if (sg->end)
|
||||
return (NULL);
|
||||
|
||||
return (sg + 1);
|
||||
}
|
||||
|
||||
void
|
||||
abd_alloc_chunks(abd_t *abd, size_t size)
|
||||
{
|
||||
unsigned nr_pages = abd_chunkcnt_for_bytes(size);
|
||||
struct scatterlist *sg;
|
||||
int i;
|
||||
|
||||
ABD_SCATTER(abd).abd_sgl = vmem_alloc(nr_pages *
|
||||
sizeof (struct scatterlist), KM_SLEEP);
|
||||
sg_init_table(ABD_SCATTER(abd).abd_sgl, nr_pages);
|
||||
|
||||
abd_for_each_sg(abd, sg, nr_pages, i) {
|
||||
struct page *p = umem_alloc_aligned(PAGESIZE, 64, KM_SLEEP);
|
||||
sg_set_page(sg, p, PAGESIZE, 0);
|
||||
}
|
||||
ABD_SCATTER(abd).abd_nents = nr_pages;
|
||||
}
|
||||
|
||||
void
|
||||
abd_free_chunks(abd_t *abd)
|
||||
{
|
||||
int i, n = ABD_SCATTER(abd).abd_nents;
|
||||
struct scatterlist *sg;
|
||||
|
||||
abd_for_each_sg(abd, sg, n, i) {
|
||||
struct page *p = nth_page(sg_page(sg), 0);
|
||||
umem_free_aligned(p, PAGESIZE);
|
||||
}
|
||||
abd_free_sg_table(abd);
|
||||
}
|
||||
|
||||
static void
|
||||
abd_alloc_zero_scatter(void)
|
||||
{
|
||||
unsigned nr_pages = abd_chunkcnt_for_bytes(SPA_MAXBLOCKSIZE);
|
||||
struct scatterlist *sg;
|
||||
int i;
|
||||
|
||||
abd_zero_page = umem_alloc_aligned(PAGESIZE, 64, KM_SLEEP);
|
||||
memset(abd_zero_page, 0, PAGESIZE);
|
||||
abd_zero_scatter = abd_alloc_struct(SPA_MAXBLOCKSIZE);
|
||||
abd_zero_scatter->abd_flags |= ABD_FLAG_OWNER;
|
||||
abd_zero_scatter->abd_flags |= ABD_FLAG_MULTI_CHUNK;
|
||||
ABD_SCATTER(abd_zero_scatter).abd_offset = 0;
|
||||
ABD_SCATTER(abd_zero_scatter).abd_nents = nr_pages;
|
||||
abd_zero_scatter->abd_size = SPA_MAXBLOCKSIZE;
|
||||
ABD_SCATTER(abd_zero_scatter).abd_sgl = vmem_alloc(nr_pages *
|
||||
sizeof (struct scatterlist), KM_SLEEP);
|
||||
|
||||
sg_init_table(ABD_SCATTER(abd_zero_scatter).abd_sgl, nr_pages);
|
||||
|
||||
abd_for_each_sg(abd_zero_scatter, sg, nr_pages, i) {
|
||||
sg_set_page(sg, abd_zero_page, PAGESIZE, 0);
|
||||
}
|
||||
}
|
||||
|
||||
boolean_t
|
||||
abd_size_alloc_linear(size_t size)
|
||||
{
|
||||
return (!zfs_abd_scatter_enabled || size < zfs_abd_scatter_min_size);
|
||||
}
|
||||
|
||||
void
|
||||
abd_update_scatter_stats(abd_t *abd, abd_stats_op_t op)
|
||||
{
|
||||
ASSERT(op == ABDSTAT_INCR || op == ABDSTAT_DECR);
|
||||
int waste = P2ROUNDUP(abd->abd_size, PAGESIZE) - abd->abd_size;
|
||||
if (op == ABDSTAT_INCR) {
|
||||
arc_space_consume(waste, ARC_SPACE_ABD_CHUNK_WASTE);
|
||||
} else {
|
||||
arc_space_return(waste, ARC_SPACE_ABD_CHUNK_WASTE);
|
||||
}
|
||||
}
|
||||
|
||||
void
|
||||
abd_update_linear_stats(abd_t *abd, abd_stats_op_t op)
|
||||
{
|
||||
(void) abd;
|
||||
(void) op;
|
||||
ASSERT(op == ABDSTAT_INCR || op == ABDSTAT_DECR);
|
||||
}
|
||||
|
||||
void
|
||||
abd_verify_scatter(abd_t *abd)
|
||||
{
|
||||
size_t n;
|
||||
int i = 0;
|
||||
struct scatterlist *sg = NULL;
|
||||
|
||||
ASSERT3U(ABD_SCATTER(abd).abd_nents, >, 0);
|
||||
ASSERT3U(ABD_SCATTER(abd).abd_offset, <,
|
||||
ABD_SCATTER(abd).abd_sgl->length);
|
||||
n = ABD_SCATTER(abd).abd_nents;
|
||||
abd_for_each_sg(abd, sg, n, i) {
|
||||
ASSERT3P(sg_page(sg), !=, NULL);
|
||||
}
|
||||
}
|
||||
|
||||
static void
|
||||
abd_free_zero_scatter(void)
|
||||
{
|
||||
abd_free_sg_table(abd_zero_scatter);
|
||||
abd_free_struct(abd_zero_scatter);
|
||||
abd_zero_scatter = NULL;
|
||||
ASSERT3P(abd_zero_page, !=, NULL);
|
||||
umem_free_aligned(abd_zero_page, PAGESIZE);
|
||||
}
|
||||
|
||||
void
|
||||
abd_init(void)
|
||||
{
|
||||
abd_cache = kmem_cache_create("abd_t", sizeof (abd_t),
|
||||
0, NULL, NULL, NULL, NULL, NULL, 0);
|
||||
|
||||
abd_alloc_zero_scatter();
|
||||
}
|
||||
|
||||
void
|
||||
abd_fini(void)
|
||||
{
|
||||
abd_free_zero_scatter();
|
||||
|
||||
if (abd_cache) {
|
||||
kmem_cache_destroy(abd_cache);
|
||||
abd_cache = NULL;
|
||||
}
|
||||
}
|
||||
|
||||
void
|
||||
abd_free_linear_page(abd_t *abd)
|
||||
{
|
||||
(void) abd;
|
||||
__builtin_unreachable();
|
||||
}
|
||||
|
||||
/*
|
||||
* If we're going to use this ABD for doing I/O using the block layer, the
|
||||
* consumer of the ABD data doesn't care if it's scattered or not, and we don't
|
||||
* plan to store this ABD in memory for a long period of time, we should
|
||||
* allocate the ABD type that requires the least data copying to do the I/O.
|
||||
*
|
||||
* On Linux the optimal thing to do would be to use abd_get_offset() and
|
||||
* construct a new ABD which shares the original pages thereby eliminating
|
||||
* the copy. But for the moment a new linear ABD is allocated until this
|
||||
* performance optimization can be implemented.
|
||||
*/
|
||||
abd_t *
|
||||
abd_alloc_for_io(size_t size, boolean_t is_metadata)
|
||||
{
|
||||
return (abd_alloc(size, is_metadata));
|
||||
}
|
||||
|
||||
abd_t *
|
||||
abd_get_offset_scatter(abd_t *abd, abd_t *sabd, size_t off,
|
||||
size_t size)
|
||||
{
|
||||
(void) size;
|
||||
int i = 0;
|
||||
struct scatterlist *sg = NULL;
|
||||
|
||||
abd_verify(sabd);
|
||||
ASSERT3U(off, <=, sabd->abd_size);
|
||||
|
||||
size_t new_offset = ABD_SCATTER(sabd).abd_offset + off;
|
||||
|
||||
if (abd == NULL)
|
||||
abd = abd_alloc_struct(0);
|
||||
|
||||
/*
|
||||
* Even if this buf is filesystem metadata, we only track that
|
||||
* if we own the underlying data buffer, which is not true in
|
||||
* this case. Therefore, we don't ever use ABD_FLAG_META here.
|
||||
*/
|
||||
|
||||
abd_for_each_sg(sabd, sg, ABD_SCATTER(sabd).abd_nents, i) {
|
||||
if (new_offset < sg->length)
|
||||
break;
|
||||
new_offset -= sg->length;
|
||||
}
|
||||
|
||||
ABD_SCATTER(abd).abd_sgl = sg;
|
||||
ABD_SCATTER(abd).abd_offset = new_offset;
|
||||
ABD_SCATTER(abd).abd_nents = ABD_SCATTER(sabd).abd_nents - i;
|
||||
|
||||
return (abd);
|
||||
}
|
||||
|
||||
/*
|
||||
* Initialize the abd_iter.
|
||||
*/
|
||||
void
|
||||
abd_iter_init(struct abd_iter *aiter, abd_t *abd)
|
||||
{
|
||||
ASSERT(!abd_is_gang(abd));
|
||||
abd_verify(abd);
|
||||
memset(aiter, 0, sizeof (struct abd_iter));
|
||||
aiter->iter_abd = abd;
|
||||
if (!abd_is_linear(abd)) {
|
||||
aiter->iter_offset = ABD_SCATTER(abd).abd_offset;
|
||||
aiter->iter_sg = ABD_SCATTER(abd).abd_sgl;
|
||||
}
|
||||
}
|
||||
|
||||
/*
|
||||
* This is just a helper function to see if we have exhausted the
|
||||
* abd_iter and reached the end.
|
||||
*/
|
||||
boolean_t
|
||||
abd_iter_at_end(struct abd_iter *aiter)
|
||||
{
|
||||
ASSERT3U(aiter->iter_pos, <=, aiter->iter_abd->abd_size);
|
||||
return (aiter->iter_pos == aiter->iter_abd->abd_size);
|
||||
}
|
||||
|
||||
/*
|
||||
* Advance the iterator by a certain amount. Cannot be called when a chunk is
|
||||
* in use. This can be safely called when the aiter has already exhausted, in
|
||||
* which case this does nothing.
|
||||
*/
|
||||
void
|
||||
abd_iter_advance(struct abd_iter *aiter, size_t amount)
|
||||
{
|
||||
/*
|
||||
* Ensure that last chunk is not in use. abd_iterate_*() must clear
|
||||
* this state (directly or abd_iter_unmap()) before advancing.
|
||||
*/
|
||||
ASSERT3P(aiter->iter_mapaddr, ==, NULL);
|
||||
ASSERT0(aiter->iter_mapsize);
|
||||
ASSERT3P(aiter->iter_page, ==, NULL);
|
||||
ASSERT0(aiter->iter_page_doff);
|
||||
ASSERT0(aiter->iter_page_dsize);
|
||||
|
||||
/* There's nothing left to advance to, so do nothing */
|
||||
if (abd_iter_at_end(aiter))
|
||||
return;
|
||||
|
||||
aiter->iter_pos += amount;
|
||||
aiter->iter_offset += amount;
|
||||
if (!abd_is_linear(aiter->iter_abd)) {
|
||||
while (aiter->iter_offset >= aiter->iter_sg->length) {
|
||||
aiter->iter_offset -= aiter->iter_sg->length;
|
||||
aiter->iter_sg = sg_next(aiter->iter_sg);
|
||||
if (aiter->iter_sg == NULL) {
|
||||
ASSERT0(aiter->iter_offset);
|
||||
break;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/*
|
||||
* Map the current chunk into aiter. This can be safely called when the aiter
|
||||
* has already exhausted, in which case this does nothing.
|
||||
*/
|
||||
void
|
||||
abd_iter_map(struct abd_iter *aiter)
|
||||
{
|
||||
void *paddr;
|
||||
size_t offset = 0;
|
||||
|
||||
ASSERT3P(aiter->iter_mapaddr, ==, NULL);
|
||||
ASSERT0(aiter->iter_mapsize);
|
||||
|
||||
/* There's nothing left to iterate over, so do nothing */
|
||||
if (abd_iter_at_end(aiter))
|
||||
return;
|
||||
|
||||
if (abd_is_linear(aiter->iter_abd)) {
|
||||
ASSERT3U(aiter->iter_pos, ==, aiter->iter_offset);
|
||||
offset = aiter->iter_offset;
|
||||
aiter->iter_mapsize = aiter->iter_abd->abd_size - offset;
|
||||
paddr = ABD_LINEAR_BUF(aiter->iter_abd);
|
||||
} else {
|
||||
offset = aiter->iter_offset;
|
||||
aiter->iter_mapsize = MIN(aiter->iter_sg->length - offset,
|
||||
aiter->iter_abd->abd_size - aiter->iter_pos);
|
||||
|
||||
paddr = sg_page(aiter->iter_sg);
|
||||
}
|
||||
|
||||
aiter->iter_mapaddr = (char *)paddr + offset;
|
||||
}
|
||||
|
||||
/*
|
||||
* Unmap the current chunk from aiter. This can be safely called when the aiter
|
||||
* has already exhausted, in which case this does nothing.
|
||||
*/
|
||||
void
|
||||
abd_iter_unmap(struct abd_iter *aiter)
|
||||
{
|
||||
/* There's nothing left to unmap, so do nothing */
|
||||
if (abd_iter_at_end(aiter))
|
||||
return;
|
||||
|
||||
ASSERT3P(aiter->iter_mapaddr, !=, NULL);
|
||||
ASSERT3U(aiter->iter_mapsize, >, 0);
|
||||
|
||||
aiter->iter_mapaddr = NULL;
|
||||
aiter->iter_mapsize = 0;
|
||||
}
|
||||
|
||||
void
|
||||
abd_cache_reap_now(void)
|
||||
{
|
||||
}
|
@ -58,22 +58,16 @@
|
||||
#include <sys/arc.h>
|
||||
#include <sys/zfs_context.h>
|
||||
#include <sys/zfs_znode.h>
|
||||
#ifdef _KERNEL
|
||||
#include <linux/kmap_compat.h>
|
||||
#include <linux/mm_compat.h>
|
||||
#include <linux/scatterlist.h>
|
||||
#include <linux/version.h>
|
||||
#endif
|
||||
|
||||
#ifdef _KERNEL
|
||||
#if defined(MAX_ORDER)
|
||||
#define ABD_MAX_ORDER (MAX_ORDER)
|
||||
#elif defined(MAX_PAGE_ORDER)
|
||||
#define ABD_MAX_ORDER (MAX_PAGE_ORDER)
|
||||
#endif
|
||||
#else
|
||||
#define ABD_MAX_ORDER (1)
|
||||
#endif
|
||||
|
||||
typedef struct abd_stats {
|
||||
kstat_named_t abdstat_struct_size;
|
||||
@ -193,11 +187,9 @@ abd_t *abd_zero_scatter = NULL;
|
||||
|
||||
struct page;
|
||||
/*
|
||||
* _KERNEL - Will point to ZERO_PAGE if it is available or it will be
|
||||
* an allocated zero'd PAGESIZE buffer.
|
||||
* Userspace - Will be an allocated zero'ed PAGESIZE buffer.
|
||||
*
|
||||
* abd_zero_page is assigned to each of the pages of abd_zero_scatter.
|
||||
* abd_zero_page is assigned to each of the pages of abd_zero_scatter. It will
|
||||
* point to ZERO_PAGE if it is available or it will be an allocated zero'd
|
||||
* PAGESIZE buffer.
|
||||
*/
|
||||
static struct page *abd_zero_page = NULL;
|
||||
|
||||
@ -232,7 +224,6 @@ abd_free_struct_impl(abd_t *abd)
|
||||
ABDSTAT_INCR(abdstat_struct_size, -(int)sizeof (abd_t));
|
||||
}
|
||||
|
||||
#ifdef _KERNEL
|
||||
static unsigned zfs_abd_scatter_max_order = ABD_MAX_ORDER - 1;
|
||||
|
||||
/*
|
||||
@ -520,134 +511,6 @@ abd_alloc_zero_scatter(void)
|
||||
ABDSTAT_BUMP(abdstat_scatter_page_multi_chunk);
|
||||
}
|
||||
|
||||
#else /* _KERNEL */
|
||||
|
||||
#ifndef PAGE_SHIFT
|
||||
#define PAGE_SHIFT (highbit64(PAGESIZE)-1)
|
||||
#endif
|
||||
|
||||
#define zfs_kmap_local(chunk) ((void *)chunk)
|
||||
#define zfs_kunmap_local(addr) do { (void)(addr); } while (0)
|
||||
#define local_irq_save(flags) do { (void)(flags); } while (0)
|
||||
#define local_irq_restore(flags) do { (void)(flags); } while (0)
|
||||
#define nth_page(pg, i) \
|
||||
((struct page *)((void *)(pg) + (i) * PAGESIZE))
|
||||
|
||||
struct scatterlist {
|
||||
struct page *page;
|
||||
int length;
|
||||
int end;
|
||||
};
|
||||
|
||||
static void
|
||||
sg_init_table(struct scatterlist *sg, int nr)
|
||||
{
|
||||
memset(sg, 0, nr * sizeof (struct scatterlist));
|
||||
sg[nr - 1].end = 1;
|
||||
}
|
||||
|
||||
/*
|
||||
* This must be called if any of the sg_table allocation functions
|
||||
* are called.
|
||||
*/
|
||||
static void
|
||||
abd_free_sg_table(abd_t *abd)
|
||||
{
|
||||
int nents = ABD_SCATTER(abd).abd_nents;
|
||||
vmem_free(ABD_SCATTER(abd).abd_sgl,
|
||||
nents * sizeof (struct scatterlist));
|
||||
}
|
||||
|
||||
#define for_each_sg(sgl, sg, nr, i) \
|
||||
for ((i) = 0, (sg) = (sgl); (i) < (nr); (i)++, (sg) = sg_next(sg))
|
||||
|
||||
static inline void
|
||||
sg_set_page(struct scatterlist *sg, struct page *page, unsigned int len,
|
||||
unsigned int offset)
|
||||
{
|
||||
/* currently we don't use offset */
|
||||
ASSERT(offset == 0);
|
||||
sg->page = page;
|
||||
sg->length = len;
|
||||
}
|
||||
|
||||
static inline struct page *
|
||||
sg_page(struct scatterlist *sg)
|
||||
{
|
||||
return (sg->page);
|
||||
}
|
||||
|
||||
static inline struct scatterlist *
|
||||
sg_next(struct scatterlist *sg)
|
||||
{
|
||||
if (sg->end)
|
||||
return (NULL);
|
||||
|
||||
return (sg + 1);
|
||||
}
|
||||
|
||||
void
|
||||
abd_alloc_chunks(abd_t *abd, size_t size)
|
||||
{
|
||||
unsigned nr_pages = abd_chunkcnt_for_bytes(size);
|
||||
struct scatterlist *sg;
|
||||
int i;
|
||||
|
||||
ABD_SCATTER(abd).abd_sgl = vmem_alloc(nr_pages *
|
||||
sizeof (struct scatterlist), KM_SLEEP);
|
||||
sg_init_table(ABD_SCATTER(abd).abd_sgl, nr_pages);
|
||||
|
||||
abd_for_each_sg(abd, sg, nr_pages, i) {
|
||||
struct page *p = umem_alloc_aligned(PAGESIZE, 64, KM_SLEEP);
|
||||
sg_set_page(sg, p, PAGESIZE, 0);
|
||||
}
|
||||
ABD_SCATTER(abd).abd_nents = nr_pages;
|
||||
}
|
||||
|
||||
void
|
||||
abd_free_chunks(abd_t *abd)
|
||||
{
|
||||
int i, n = ABD_SCATTER(abd).abd_nents;
|
||||
struct scatterlist *sg;
|
||||
|
||||
abd_for_each_sg(abd, sg, n, i) {
|
||||
struct page *p = nth_page(sg_page(sg), 0);
|
||||
umem_free_aligned(p, PAGESIZE);
|
||||
}
|
||||
abd_free_sg_table(abd);
|
||||
}
|
||||
|
||||
static void
|
||||
abd_alloc_zero_scatter(void)
|
||||
{
|
||||
unsigned nr_pages = abd_chunkcnt_for_bytes(SPA_MAXBLOCKSIZE);
|
||||
struct scatterlist *sg;
|
||||
int i;
|
||||
|
||||
abd_zero_page = umem_alloc_aligned(PAGESIZE, 64, KM_SLEEP);
|
||||
memset(abd_zero_page, 0, PAGESIZE);
|
||||
abd_zero_scatter = abd_alloc_struct(SPA_MAXBLOCKSIZE);
|
||||
abd_zero_scatter->abd_flags |= ABD_FLAG_OWNER;
|
||||
abd_zero_scatter->abd_flags |= ABD_FLAG_MULTI_CHUNK | ABD_FLAG_ZEROS;
|
||||
ABD_SCATTER(abd_zero_scatter).abd_offset = 0;
|
||||
ABD_SCATTER(abd_zero_scatter).abd_nents = nr_pages;
|
||||
abd_zero_scatter->abd_size = SPA_MAXBLOCKSIZE;
|
||||
ABD_SCATTER(abd_zero_scatter).abd_sgl = vmem_alloc(nr_pages *
|
||||
sizeof (struct scatterlist), KM_SLEEP);
|
||||
|
||||
sg_init_table(ABD_SCATTER(abd_zero_scatter).abd_sgl, nr_pages);
|
||||
|
||||
abd_for_each_sg(abd_zero_scatter, sg, nr_pages, i) {
|
||||
sg_set_page(sg, abd_zero_page, PAGESIZE, 0);
|
||||
}
|
||||
|
||||
ABDSTAT_BUMP(abdstat_scatter_cnt);
|
||||
ABDSTAT_INCR(abdstat_scatter_data_size, PAGESIZE);
|
||||
ABDSTAT_BUMP(abdstat_scatter_page_multi_chunk);
|
||||
}
|
||||
|
||||
#endif /* _KERNEL */
|
||||
|
||||
boolean_t
|
||||
abd_size_alloc_linear(size_t size)
|
||||
{
|
||||
@ -712,14 +575,10 @@ abd_free_zero_scatter(void)
|
||||
abd_free_struct(abd_zero_scatter);
|
||||
abd_zero_scatter = NULL;
|
||||
ASSERT3P(abd_zero_page, !=, NULL);
|
||||
#if defined(_KERNEL)
|
||||
#if defined(HAVE_ZERO_PAGE_GPL_ONLY)
|
||||
abd_unmark_zfs_page(abd_zero_page);
|
||||
__free_page(abd_zero_page);
|
||||
#endif /* HAVE_ZERO_PAGE_GPL_ONLY */
|
||||
#else
|
||||
umem_free_aligned(abd_zero_page, PAGESIZE);
|
||||
#endif /* _KERNEL */
|
||||
}
|
||||
|
||||
static int
|
||||
@ -1014,8 +873,6 @@ abd_cache_reap_now(void)
|
||||
{
|
||||
}
|
||||
|
||||
#if defined(_KERNEL)
|
||||
|
||||
/*
|
||||
* This is abd_iter_page(), the function underneath abd_iterate_page_func().
|
||||
* It yields the next page struct and data offset and size within it, without
|
||||
@ -1297,5 +1154,3 @@ MODULE_PARM_DESC(zfs_abd_scatter_min_size,
|
||||
module_param(zfs_abd_scatter_max_order, uint, 0644);
|
||||
MODULE_PARM_DESC(zfs_abd_scatter_max_order,
|
||||
"Maximum order allocation used for a scatter ABD.");
|
||||
|
||||
#endif /* _KERNEL */
|
||||
|
Loading…
Reference in New Issue
Block a user