Add linux kernel disk support

Native Linux vdev disk interfaces

Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
This commit is contained in:
Brian Behlendorf 2010-08-26 11:45:02 -07:00
parent 325f023544
commit 60101509ee
27 changed files with 2575 additions and 116 deletions

View File

@ -701,12 +701,12 @@ typedef struct ddt_histogram {
#define ZFS_DEV "/dev/zfs"
/* general zvol path */
#define ZVOL_DIR "/dev/zvol"
/* expansion */
#define ZVOL_PSEUDO_DEV "/devices/pseudo/zfs@0:"
/* for dump and swap */
#define ZVOL_FULL_DEV_DIR ZVOL_DIR "/dsk/"
#define ZVOL_FULL_RDEV_DIR ZVOL_DIR "/rdsk/"
#define ZVOL_DIR "/dev"
#define ZVOL_MAJOR 230
#define ZVOL_MINOR_BITS 4
#define ZVOL_MINOR_MASK ((1U << ZVOL_MINOR_BITS) - 1)
#define ZVOL_MINORS (1 << 4)
#define ZVOL_PROP_NAME "name"
#define ZVOL_DEFAULT_BLOCKSIZE 8192
@ -740,6 +740,8 @@ typedef enum zfs_ioc {
ZFS_IOC_DATASET_LIST_NEXT,
ZFS_IOC_SNAPSHOT_LIST_NEXT,
ZFS_IOC_SET_PROP,
ZFS_IOC_CREATE_MINOR,
ZFS_IOC_REMOVE_MINOR,
ZFS_IOC_CREATE,
ZFS_IOC_DESTROY,
ZFS_IOC_ROLLBACK,

View File

@ -142,9 +142,22 @@ dataset_namecheck(const char *path, namecheck_err_t *why, char *what)
* which is the same as MAXNAMELEN used in the kernel.
* If ZFS_MAXNAMELEN value is changed, make sure to cleanup all
* places using MAXNAMELEN.
*
* When HAVE_KOBJ_NAME_LEN is defined the maximum safe kobject name
* length is 20 bytes. This 20 bytes is broken down as follows to
* provide a maximum safe <pool>/<dataset>[@snapshot] length of only
* 18 bytes. To ensure bytes are left for <dataset>[@snapshot] the
* <pool> portition is futher limited to 9 bytes. For 2.6.27 and
* newer kernels this limit is set to MAXNAMELEN.
*
* <pool>/<dataset> + <partition> + <newline>
* (18) + (1) + (1)
*/
#ifdef HAVE_KOBJ_NAME_LEN
if (strlen(path) > 18) {
#else
if (strlen(path) >= MAXNAMELEN) {
#endif /* HAVE_KOBJ_NAME_LEN */
if (why)
*why = NAME_ERR_TOOLONG;
return (-1);
@ -303,8 +316,22 @@ pool_namecheck(const char *pool, namecheck_err_t *why, char *what)
* which is the same as MAXNAMELEN used in the kernel.
* If ZPOOL_MAXNAMELEN value is changed, make sure to cleanup all
* places using MAXNAMELEN.
*
* When HAVE_KOBJ_NAME_LEN is defined the maximum safe kobject name
* length is 20 bytes. This 20 bytes is broken down as follows to
* provide a maximum safe <pool>/<dataset>[@snapshot] length of only
* 18 bytes. To ensure bytes are left for <dataset>[@snapshot] the
* <pool> portition is futher limited to 8 bytes. For 2.6.27 and
* newer kernels this limit is set to MAXNAMELEN.
*
* <pool>/<dataset> + <partition> + <newline>
* (18) + (1) + (1)
*/
#ifdef HAVE_KOBJ_NAME_LEN
if (strlen(pool) > 8) {
#else
if (strlen(pool) >= MAXNAMELEN) {
#endif /* HAVE_KOBJ_NAME_LEN */
if (why)
*why = NAME_ERR_TOOLONG;
return (-1);

View File

@ -53,6 +53,7 @@ ${MODULE}-objs += uberblock.o
${MODULE}-objs += unique.o
${MODULE}-objs += vdev.o
${MODULE}-objs += vdev_cache.o
${MODULE}-objs += vdev_disk.o
${MODULE}-objs += vdev_file.o
${MODULE}-objs += vdev_label.o
${MODULE}-objs += vdev_mirror.o

View File

@ -793,7 +793,7 @@ dmu_write(objset_t *os, uint64_t object, uint64_t offset, uint64_t size,
else
dmu_buf_will_dirty(db, tx);
bcopy(buf, (char *)db->db_data + bufoff, tocpy);
(void) memcpy((char *)db->db_data + bufoff, buf, tocpy);
if (tocpy == db->db_size)
dmu_buf_fill_done(db, tx);
@ -975,85 +975,126 @@ xuio_stat_wbuf_nocopy()
}
#ifdef _KERNEL
int
dmu_read_uio(objset_t *os, uint64_t object, uio_t *uio, uint64_t size)
/*
* Copy up to size bytes between arg_buf and req based on the data direction
* described by the req. If an entire req's data cannot be transfered the
* req's is updated such that it's current index and bv offsets correctly
* reference any residual data which could not be copied. The return value
* is the number of bytes successfully copied to arg_buf.
*/
static int
dmu_req_copy(void *arg_buf, int size, int *offset, struct request *req)
{
struct bio_vec *bv;
struct req_iterator iter;
char *bv_buf;
int tocpy;
*offset = 0;
rq_for_each_segment(bv, req, iter) {
/* Fully consumed the passed arg_buf */
ASSERT3S(*offset, <=, size);
if (size == *offset)
break;
/* Skip fully consumed bv's */
if (bv->bv_len == 0)
continue;
tocpy = MIN(bv->bv_len, size - *offset);
ASSERT3S(tocpy, >=, 0);
bv_buf = page_address(bv->bv_page) + bv->bv_offset;
ASSERT3P(bv_buf, !=, NULL);
if (rq_data_dir(req) == WRITE)
memcpy(arg_buf + *offset, bv_buf, tocpy);
else
memcpy(bv_buf, arg_buf + *offset, tocpy);
*offset += tocpy;
bv->bv_offset += tocpy;
bv->bv_len -= tocpy;
}
return 0;
}
int
dmu_read_req(objset_t *os, uint64_t object, struct request *req)
{
uint64_t size = blk_rq_bytes(req);
uint64_t offset = blk_rq_pos(req) << 9;
dmu_buf_t **dbp;
int numbufs, i, err;
xuio_t *xuio = NULL;
/*
* NB: we could do this block-at-a-time, but it's nice
* to be reading in parallel.
*/
err = dmu_buf_hold_array(os, object, uio->uio_loffset, size, TRUE, FTAG,
err = dmu_buf_hold_array(os, object, offset, size, TRUE, FTAG,
&numbufs, &dbp);
if (err)
return (err);
if (uio->uio_extflg == UIO_XUIO)
xuio = (xuio_t *)uio;
for (i = 0; i < numbufs; i++) {
int tocpy;
int bufoff;
int tocpy, didcpy, bufoff;
dmu_buf_t *db = dbp[i];
ASSERT(size > 0);
bufoff = offset - db->db_offset;
ASSERT3S(bufoff, >=, 0);
bufoff = uio->uio_loffset - db->db_offset;
tocpy = (int)MIN(db->db_size - bufoff, size);
if (tocpy == 0)
break;
if (xuio) {
dmu_buf_impl_t *dbi = (dmu_buf_impl_t *)db;
arc_buf_t *dbuf_abuf = dbi->db_buf;
arc_buf_t *abuf = dbuf_loan_arcbuf(dbi);
err = dmu_xuio_add(xuio, abuf, bufoff, tocpy);
if (!err) {
uio->uio_resid -= tocpy;
uio->uio_loffset += tocpy;
}
err = dmu_req_copy(db->db_data + bufoff, tocpy, &didcpy, req);
if (didcpy < tocpy)
err = EIO;
if (abuf == dbuf_abuf)
XUIOSTAT_BUMP(xuiostat_rbuf_nocopy);
else
XUIOSTAT_BUMP(xuiostat_rbuf_copied);
} else {
err = uiomove((char *)db->db_data + bufoff, tocpy,
UIO_READ, uio);
}
if (err)
break;
size -= tocpy;
offset += didcpy;
err = 0;
}
dmu_buf_rele_array(dbp, numbufs, FTAG);
return (err);
}
static int
dmu_write_uio_dnode(dnode_t *dn, uio_t *uio, uint64_t size, dmu_tx_t *tx)
int
dmu_write_req(objset_t *os, uint64_t object, struct request *req, dmu_tx_t *tx)
{
uint64_t size = blk_rq_bytes(req);
uint64_t offset = blk_rq_pos(req) << 9;
dmu_buf_t **dbp;
int numbufs;
int err = 0;
int i;
err = dmu_buf_hold_array_by_dnode(dn, uio->uio_loffset, size,
FALSE, FTAG, &numbufs, &dbp, DMU_READ_PREFETCH);
if (size == 0)
return (0);
err = dmu_buf_hold_array(os, object, offset, size, FALSE, FTAG,
&numbufs, &dbp);
if (err)
return (err);
for (i = 0; i < numbufs; i++) {
int tocpy;
int bufoff;
int tocpy, didcpy, bufoff;
dmu_buf_t *db = dbp[i];
ASSERT(size > 0);
bufoff = offset - db->db_offset;
ASSERT3S(bufoff, >=, 0);
bufoff = uio->uio_loffset - db->db_offset;
tocpy = (int)MIN(db->db_size - bufoff, size);
if (tocpy == 0)
break;
ASSERT(i == 0 || i == numbufs-1 || tocpy == db->db_size);
@ -1062,28 +1103,28 @@ dmu_write_uio_dnode(dnode_t *dn, uio_t *uio, uint64_t size, dmu_tx_t *tx)
else
dmu_buf_will_dirty(db, tx);
/*
* XXX uiomove could block forever (eg. nfs-backed
* pages). There needs to be a uiolockdown() function
* to lock the pages in memory, so that uiomove won't
* block.
*/
err = uiomove((char *)db->db_data + bufoff, tocpy,
UIO_WRITE, uio);
err = dmu_req_copy(db->db_data + bufoff, tocpy, &didcpy, req);
if (tocpy == db->db_size)
dmu_buf_fill_done(db, tx);
if (didcpy < tocpy)
err = EIO;
if (err)
break;
size -= tocpy;
offset += didcpy;
err = 0;
}
dmu_buf_rele_array(dbp, numbufs, FTAG);
return (err);
}
#endif
#ifdef HAVE_ZPL
int
dmu_write_uio_dbuf(dmu_buf_t *zdb, uio_t *uio, uint64_t size,
dmu_tx_t *tx)

View File

@ -0,0 +1,211 @@
/*
* CDDL HEADER START
*
* The contents of this file are subject to the terms of the
* Common Development and Distribution License (the "License").
* You may not use this file except in compliance with the License.
*
* You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
* or http://www.opensolaris.org/os/licensing.
* See the License for the specific language governing permissions
* and limitations under the License.
*
* When distributing Covered Code, include this CDDL HEADER in each
* file and include the License file at usr/src/OPENSOLARIS.LICENSE.
* If applicable, add the following below this CDDL HEADER, with the
* fields enclosed by brackets "[]" replaced with your own identifying
* information: Portions Copyright [yyyy] [name of copyright owner]
*
* CDDL HEADER END
*/
/*
* Copyright (C) 2008-2010 Lawrence Livermore National Security, LLC.
* Produced at Lawrence Livermore National Laboratory (cf, DISCLAIMER).
* Written by Brian Behlendorf <behlendorf1@llnl.gov>.
* LLNL-CODE-403049.
*/
#ifndef _SYS_BLKDEV_H
#define _SYS_BLKDEV_H
#ifdef _KERNEL
#include <linux/blkdev.h>
#include <linux/elevator.h>
#ifndef HAVE_FMODE_T
typedef unsigned __bitwise__ fmode_t;
#endif /* HAVE_FMODE_T */
#ifndef HAVE_BLK_FETCH_REQUEST
static inline struct request *
blk_fetch_request(struct request_queue *q)
{
struct request *req;
req = elv_next_request(q);
if (req)
blkdev_dequeue_request(req);
return req;
}
#endif /* HAVE_BLK_FETCH_REQUEST */
#ifndef HAVE_BLK_REQUEUE_REQUEST
static inline void
blk_requeue_request(request_queue_t *q, struct request *req)
{
elv_requeue_request(q, req);
}
#endif /* HAVE_BLK_REQUEUE_REQUEST */
#ifndef HAVE_BLK_END_REQUEST
static inline bool
__blk_end_request(struct request *req, int error, unsigned int nr_bytes)
{
LIST_HEAD(list);
/*
* Request has already been dequeued but 2.6.18 version of
* end_request() unconditionally dequeues the request so we
* add it to a local list to prevent hitting the BUG_ON.
*/
list_add(&req->queuelist, &list);
/*
* The old API required the driver to end each segment and not
* the entire request. In our case we always need to end the
* entire request partial requests are not supported.
*/
req->hard_cur_sectors = nr_bytes >> 9;
end_request(req, ((error == 0) ? 1 : error));
return 0;
}
static inline bool
blk_end_request(struct request *req, int error, unsigned int nr_bytes)
{
struct request_queue *q = req->q;
bool rc;
spin_lock_irq(q->queue_lock);
rc = __blk_end_request(req, error, nr_bytes);
spin_unlock_irq(q->queue_lock);
return rc;
}
#else
# ifdef HAVE_BLK_END_REQUEST_GPL_ONLY
/*
* Define required to avoid conflicting 2.6.29 non-static prototype for a
* GPL-only version of the helper. As of 2.6.31 the helper is available
* to non-GPL modules and is not explicitly exported GPL-only.
*/
# define __blk_end_request __blk_end_request_x
# define blk_end_request blk_end_request_x
static inline bool
__blk_end_request_x(struct request *req, int error, unsigned int nr_bytes)
{
/*
* The old API required the driver to end each segment and not
* the entire request. In our case we always need to end the
* entire request partial requests are not supported.
*/
req->hard_cur_sectors = nr_bytes >> 9;
end_request(req, ((error == 0) ? 1 : error));
return 0;
}
static inline bool
blk_end_request_x(struct request *req, int error, unsigned int nr_bytes)
{
struct request_queue *q = req->q;
bool rc;
spin_lock_irq(q->queue_lock);
rc = __blk_end_request_x(req, error, nr_bytes);
spin_unlock_irq(q->queue_lock);
return rc;
}
# endif /* HAVE_BLK_END_REQUEST_GPL_ONLY */
#endif /* HAVE_BLK_END_REQUEST */
#ifndef HAVE_BLK_RQ_POS
static inline sector_t
blk_rq_pos(struct request *req)
{
return req->sector;
}
#endif /* HAVE_BLK_RQ_POS */
#ifndef HAVE_BLK_RQ_SECTORS
static inline unsigned int
blk_rq_sectors(struct request *req)
{
return req->nr_sectors;
}
#endif /* HAVE_BLK_RQ_SECTORS */
#if !defined(HAVE_BLK_RQ_BYTES) || defined(HAVE_BLK_RQ_BYTES_GPL_ONLY)
/*
* Define required to avoid conflicting 2.6.29 non-static prototype for a
* GPL-only version of the helper. As of 2.6.31 the helper is available
* to non-GPL modules in the form of a static inline in the header.
*/
#define blk_rq_bytes __blk_rq_bytes
static inline unsigned int
__blk_rq_bytes(struct request *req)
{
return blk_rq_sectors(req) << 9;
}
#endif /* !HAVE_BLK_RQ_BYTES || HAVE_BLK_RQ_BYTES_GPL_ONLY */
#ifndef HAVE_GET_DISK_RO
static inline int
get_disk_ro(struct gendisk *disk)
{
int policy = 0;
if (disk->part[0])
policy = disk->part[0]->policy;
return policy;
}
#endif /* HAVE_GET_DISK_RO */
#ifndef HAVE_RQ_IS_SYNC
static inline bool
rq_is_sync(struct request *req)
{
return (req->flags & REQ_RW_SYNC);
}
#endif /* HAVE_RQ_IS_SYNC */
#ifndef HAVE_RQ_FOR_EACH_SEGMENT
struct req_iterator {
int i;
struct bio *bio;
};
# define for_each_bio(_bio) \
for (; _bio; _bio = _bio->bi_next)
# define __rq_for_each_bio(_bio, rq) \
if ((rq->bio)) \
for (_bio = (rq)->bio; _bio; _bio = _bio->bi_next)
# define rq_for_each_segment(bvl, _rq, _iter) \
__rq_for_each_bio(_iter.bio, _rq) \
bio_for_each_segment(bvl, _iter.bio, _iter.i)
#endif /* HAVE_RQ_FOR_EACH_SEGMENT */
#ifndef DISK_NAME_LEN
#define DISK_NAME_LEN 32
#endif /* DISK_NAME_LEN */
#endif /* KERNEL */
#endif /* _SYS_BLKDEV_H */

View File

@ -41,13 +41,14 @@
#include <sys/cred.h>
#include <sys/time.h>
#include <sys/uio.h>
#ifdef _KERNEL
#include <sys/blkdev.h>
#endif
#ifdef __cplusplus
extern "C" {
#endif
struct uio;
struct xuio;
struct page;
struct vnode;
struct spa;
@ -512,13 +513,14 @@ void dmu_write(objset_t *os, uint64_t object, uint64_t offset, uint64_t size,
const void *buf, dmu_tx_t *tx);
void dmu_prealloc(objset_t *os, uint64_t object, uint64_t offset, uint64_t size,
dmu_tx_t *tx);
int dmu_read_uio(objset_t *os, uint64_t object, struct uio *uio, uint64_t size);
int dmu_write_uio(objset_t *os, uint64_t object, struct uio *uio, uint64_t size,
dmu_tx_t *tx);
int dmu_write_uio_dbuf(dmu_buf_t *zdb, struct uio *uio, uint64_t size,
dmu_tx_t *tx);
#ifdef _KERNEL
int dmu_read_req(objset_t *os, uint64_t object, struct request *req);
int dmu_write_req(objset_t *os, uint64_t object, struct request *req, dmu_tx_t *tx);
#endif
#ifdef HAVE_ZPL
int dmu_write_pages(objset_t *os, uint64_t object, uint64_t offset,
uint64_t size, struct page *pp, dmu_tx_t *tx);
#endif
struct arc_buf *dmu_request_arcbuf(dmu_buf_t *handle, int size);
void dmu_return_arcbuf(struct arc_buf *buf);
void dmu_assign_arcbuf(dmu_buf_t *handle, uint64_t offset, struct arc_buf *buf,

View File

@ -210,7 +210,7 @@ struct spa {
kmutex_t spa_proc_lock; /* protects spa_proc* */
kcondvar_t spa_proc_cv; /* spa_proc_state transitions */
spa_proc_state_t spa_proc_state; /* see definition */
struct proc *spa_proc; /* "zpool-poolname" process */
proc_t *spa_proc; /* "zpool-poolname" process */
uint64_t spa_did; /* if procp != p0, did of t1 */
boolean_t spa_autoreplace; /* autoreplace set in open */
int spa_vdev_locks; /* locks grabbed */

View File

@ -0,0 +1,97 @@
/*
* CDDL HEADER START
*
* The contents of this file are subject to the terms of the
* Common Development and Distribution License (the "License").
* You may not use this file except in compliance with the License.
*
* You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
* or http://www.opensolaris.org/os/licensing.
* See the License for the specific language governing permissions
* and limitations under the License.
*
* When distributing Covered Code, include this CDDL HEADER in each
* file and include the License file at usr/src/OPENSOLARIS.LICENSE.
* If applicable, add the following below this CDDL HEADER, with the
* fields enclosed by brackets "[]" replaced with your own identifying
* information: Portions Copyright [yyyy] [name of copyright owner]
*
* CDDL HEADER END
*/
/*
* Copyright (C) 2008-2010 Lawrence Livermore National Security, LLC.
* Produced at Lawrence Livermore National Laboratory (cf, DISCLAIMER).
* Written by Brian Behlendorf <behlendorf1@llnl.gov>.
* LLNL-CODE-403049.
*/
#ifndef _SYS_VDEV_DISK_H
#define _SYS_VDEV_DISK_H
#ifdef __cplusplus
extern "C" {
#endif
#ifdef _KERNEL
#include <sys/vdev.h>
#include <sys/ddi.h>
#include <sys/sunldi.h>
#include <sys/sunddi.h>
typedef struct vdev_disk {
ddi_devid_t vd_devid;
char *vd_minor;
struct block_device *vd_bdev;
} vdev_disk_t;
extern int vdev_disk_physio(struct block_device *, caddr_t,
size_t, uint64_t, int);
extern int vdev_disk_read_rootlabel(char *, char *, nvlist_t **);
/* 2.6.24 API change */
#ifdef HAVE_2ARGS_BIO_END_IO_T
# define BIO_END_IO_PROTO(fn, x, y, z) static void fn(struct bio *x, int z)
# define BIO_END_IO_RETURN(rc) return
#else
# define BIO_END_IO_PROTO(fn, x, y, z) static int fn(struct bio *x, \
unsigned int y, int z)
# define BIO_END_IO_RETURN(rc) return rc
#endif /* HAVE_2ARGS_BIO_END_IO_T */
/* 2.6.29 API change */
#ifdef HAVE_BIO_RW_SYNCIO
# define DIO_RW_SYNCIO BIO_RW_SYNCIO
#else
# define DIO_RW_SYNCIO BIO_RW_SYNC
#endif /* HAVE_BIO_RW_SYNCIO */
/* 2.6.28 API change */
#ifdef HAVE_OPEN_BDEV_EXCLUSIVE
# define vdev_bdev_open(path, md, hld) open_bdev_exclusive(path, md, hld)
# define vdev_bdev_close(bdev, md) close_bdev_exclusive(bdev, md)
#else
# define vdev_bdev_open(path, md, hld) open_bdev_excl(path, md, hld)
# define vdev_bdev_close(bdev, md) close_bdev_excl(bdev)
#endif /* HAVE_OPEN_BDEV_EXCLUSIVE */
/* 2.6.22 API change */
#ifdef HAVE_1ARG_INVALIDATE_BDEV
# define vdev_bdev_invalidate(bdev) invalidate_bdev(bdev)
#else
# define vdev_bdev_invalidate(bdev) invalidate_bdev(bdev, 1)
#endif /* HAVE_1ARG_INVALIDATE_BDEV */
/* 2.6.30 API change */
#ifdef HAVE_BDEV_LOGICAL_BLOCK_SIZE
# define vdev_bdev_block_size(bdev) bdev_logical_block_size(bdev)
#else
# define vdev_bdev_block_size(bdev) bdev_hardsect_size(bdev)
#endif
#endif /* _KERNEL */
#ifdef __cplusplus
}
#endif
#endif /* _SYS_VDEV_DISK_H */

View File

@ -33,6 +33,7 @@
#include <sys/zfs_vfsops.h>
#endif
#include <sys/avl.h>
#include <sys/list.h>
#ifdef __cplusplus
extern "C" {
@ -98,6 +99,7 @@ typedef struct zfs_fuid_info {
} zfs_fuid_info_t;
#ifdef _KERNEL
#ifdef HAVE_ZPL
struct znode;
extern uid_t zfs_fuid_map_id(zfsvfs_t *, uint64_t, cred_t *, zfs_fuid_type_t);
extern void zfs_fuid_node_add(zfs_fuid_info_t **, const char *, uint32_t,
@ -117,6 +119,7 @@ extern int zfs_fuid_find_by_domain(zfsvfs_t *, const char *domain,
char **retdomain, boolean_t addok);
extern const char *zfs_fuid_find_by_idx(zfsvfs_t *zfsvfs, uint32_t idx);
extern void zfs_fuid_txhold(zfsvfs_t *zfsvfs, dmu_tx_t *tx);
#endif /* HAVE_ZPL */
#endif
char *zfs_fuid_idx_domain(avl_tree_t *, uint32_t);

View File

@ -316,7 +316,6 @@ extern int zfs_secpolicy_snapshot_perms(const char *name, cred_t *cr);
extern int zfs_secpolicy_rename_perms(const char *from,
const char *to, cred_t *cr);
extern int zfs_secpolicy_destroy_perms(const char *name, cred_t *cr);
extern int zfs_busy(void);
extern int zfs_unmount_snap(const char *, void *);
enum zfsdev_state_type {

View File

@ -343,8 +343,10 @@ extern void zfs_xvattr_set(znode_t *zp, xvattr_t *xvap, dmu_tx_t *tx);
extern void zfs_upgrade(zfsvfs_t *zfsvfs, dmu_tx_t *tx);
extern int zfs_create_share_dir(zfsvfs_t *zfsvfs, dmu_tx_t *tx);
#if defined(HAVE_UIO_RW)
extern caddr_t zfs_map_page(page_t *, enum seg_rw);
extern void zfs_unmap_page(page_t *, caddr_t);
#endif /* HAVE_UIO_RW */
extern zil_get_data_t zfs_get_data;
extern zil_replay_func_t *zfs_replay_vector[TX_MAX_TYPE];

View File

@ -28,49 +28,26 @@
#include <sys/zfs_context.h>
#ifdef __cplusplus
extern "C" {
#endif
#define ZVOL_OBJ 1ULL
#define ZVOL_ZAP_OBJ 2ULL
#ifdef _KERNEL
#include <sys/blkdev.h>
extern int zvol_check_volsize(uint64_t volsize, uint64_t blocksize);
extern int zvol_check_volblocksize(uint64_t volblocksize);
extern int zvol_get_stats(objset_t *os, nvlist_t *nv);
extern void zvol_create_cb(objset_t *os, void *arg, cred_t *cr, dmu_tx_t *tx);
extern int zvol_create_minor(const char *);
extern int zvol_create_minors(const char *);
extern int zvol_remove_minor(const char *);
extern void zvol_remove_minors(const char *);
extern int zvol_set_volsize(const char *, major_t, uint64_t);
extern int zvol_set_volsize(const char *, uint64_t);
extern int zvol_set_volblocksize(const char *, uint64_t);
extern int zvol_open(dev_t *devp, int flag, int otyp, cred_t *cr);
extern int zvol_dump(dev_t dev, caddr_t addr, daddr_t offset, int nblocks);
extern int zvol_close(dev_t dev, int flag, int otyp, cred_t *cr);
extern int zvol_strategy(buf_t *bp);
extern int zvol_read(dev_t dev, uio_t *uiop, cred_t *cr);
extern int zvol_write(dev_t dev, uio_t *uiop, cred_t *cr);
extern int zvol_aread(dev_t dev, struct aio_req *aio, cred_t *cr);
extern int zvol_awrite(dev_t dev, struct aio_req *aio, cred_t *cr);
extern int zvol_ioctl(dev_t dev, int cmd, intptr_t arg, int flag, cred_t *cr,
int *rvalp);
extern int zvol_busy(void);
extern void zvol_init(void);
extern int zvol_init(void);
extern void zvol_fini(void);
extern int zvol_get_volume_params(minor_t minor, uint64_t *blksize,
uint64_t *max_xfer_len, void **minor_hdl, void **objset_hdl, void **zil_hdl,
void **rl_hdl, void **bonus_hdl);
extern uint64_t zvol_get_volume_size(void *minor_hdl);
extern int zvol_get_volume_wce(void *minor_hdl);
extern void zvol_log_write_minor(void *minor_hdl, dmu_tx_t *tx, offset_t off,
ssize_t resid, boolean_t sync);
#endif
#ifdef __cplusplus
}
#endif
#endif /* _KERNEL */
#endif /* _SYS_ZVOL_H */

View File

@ -23,6 +23,8 @@
* Use is subject to license terms.
*/
#ifdef HAVE_ZPL
#include <sys/refcount.h>
#include <sys/rrwlock.h>
@ -262,3 +264,4 @@ rrw_held(rrwlock_t *rrl, krw_t rw)
return (held);
}
#endif /* HAVE_ZPL */

View File

@ -1510,12 +1510,6 @@ spa_name_compare(const void *a1, const void *a2)
return (0);
}
int
spa_busy(void)
{
return (spa_active_count);
}
void
spa_boot_init(void)
{

View File

@ -1069,6 +1069,15 @@ vdev_open_child(void *arg)
boolean_t
vdev_uses_zvols(vdev_t *vd)
{
/*
* Stacking zpools on top of zvols is unsupported until we implement a method
* for determining if an arbitrary block device is a zvol without using the
* path. Solaris would check the 'zvol' path component but this does not
* exist in the Linux port, so we really should do something like stat the
* file and check the major number. This is complicated by the fact that
* we need to do this portably in user or kernel space.
*/
#if 0
int c;
if (vd->vdev_path && strncmp(vd->vdev_path, ZVOL_DIR,
@ -1077,6 +1086,7 @@ vdev_uses_zvols(vdev_t *vd)
for (c = 0; c < vd->vdev_children; c++)
if (vdev_uses_zvols(vd->vdev_child[c]))
return (B_TRUE);
#endif
return (B_FALSE);
}

654
module/zfs/vdev_disk.c Normal file
View File

@ -0,0 +1,654 @@
/*
* CDDL HEADER START
*
* The contents of this file are subject to the terms of the
* Common Development and Distribution License (the "License").
* You may not use this file except in compliance with the License.
*
* You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
* or http://www.opensolaris.org/os/licensing.
* See the License for the specific language governing permissions
* and limitations under the License.
*
* When distributing Covered Code, include this CDDL HEADER in each
* file and include the License file at usr/src/OPENSOLARIS.LICENSE.
* If applicable, add the following below this CDDL HEADER, with the
* fields enclosed by brackets "[]" replaced with your own identifying
* information: Portions Copyright [yyyy] [name of copyright owner]
*
* CDDL HEADER END
*/
/*
* Copyright (C) 2008-2010 Lawrence Livermore National Security, LLC.
* Produced at Lawrence Livermore National Laboratory (cf, DISCLAIMER).
* Rewritten for Linux by Brian Behlendorf <behlendorf1@llnl.gov>.
* LLNL-CODE-403049.
*/
#include <sys/zfs_context.h>
#include <sys/spa.h>
#include <sys/vdev_disk.h>
#include <sys/vdev_impl.h>
#include <sys/fs/zfs.h>
#include <sys/zio.h>
#include <sys/sunldi.h>
/*
* Virtual device vector for disks.
*/
typedef struct dio_request {
struct completion dr_comp; /* Completion for sync IO */
atomic_t dr_ref; /* References */
zio_t *dr_zio; /* Parent ZIO */
int dr_rw; /* Read/Write */
int dr_error; /* Bio error */
int dr_bio_count; /* Count of bio's */
struct bio *dr_bio[0]; /* Attached bio's */
} dio_request_t;
#ifdef HAVE_OPEN_BDEV_EXCLUSIVE
static fmode_t
vdev_bdev_mode(int smode)
{
fmode_t mode = 0;
ASSERT3S(smode & (FREAD | FWRITE), !=, 0);
if (smode & FREAD)
mode |= FMODE_READ;
if (smode & FWRITE)
mode |= FMODE_WRITE;
return mode;
}
#else
static int
vdev_bdev_mode(int smode)
{
int mode = 0;
ASSERT3S(smode & (FREAD | FWRITE), !=, 0);
if ((smode & FREAD) && !(smode & FWRITE))
mode = MS_RDONLY;
return mode;
}
#endif /* HAVE_OPEN_BDEV_EXCLUSIVE */
static uint64_t
bdev_capacity(struct block_device *bdev)
{
struct hd_struct *part = bdev->bd_part;
/* The partition capacity referenced by the block device */
if (part)
return part->nr_sects;
/* Otherwise assume the full device capacity */
return get_capacity(bdev->bd_disk);
}
static int
vdev_disk_open(vdev_t *v, uint64_t *psize, uint64_t *ashift)
{
struct block_device *bdev;
vdev_disk_t *vd;
int mode, block_size;
/* Must have a pathname and it must be absolute. */
if (v->vdev_path == NULL || v->vdev_path[0] != '/') {
v->vdev_stat.vs_aux = VDEV_AUX_BAD_LABEL;
return EINVAL;
}
vd = kmem_zalloc(sizeof(vdev_disk_t), KM_SLEEP);
if (vd == NULL)
return ENOMEM;
/*
* Devices are always opened by the path provided at configuration
* time. This means that if the provided path is a udev by-id path
* then drives may be recabled without an issue. If the provided
* path is a udev by-path path then the physical location information
* will be preserved. This can be critical for more complicated
* configurations where drives are located in specific physical
* locations to maximize the systems tolerence to component failure.
* Alternately you can provide your own udev rule to flexibly map
* the drives as you see fit. It is not advised that you use the
* /dev/[hd]d devices which may be reorder due to probing order.
* Devices in the wrong locations will be detected by the higher
* level vdev validation.
*/
mode = spa_mode(v->vdev_spa);
bdev = vdev_bdev_open(v->vdev_path, vdev_bdev_mode(mode), vd);
if (IS_ERR(bdev)) {
kmem_free(vd, sizeof(vdev_disk_t));
return -PTR_ERR(bdev);
}
v->vdev_tsd = vd;
vd->vd_bdev = bdev;
block_size = vdev_bdev_block_size(bdev);
/* Check if this is a whole device. When bdev->bd_contains ==
* bdev we have a whole device and not simply a partition. */
v->vdev_wholedisk = !!(bdev->bd_contains == bdev);
/* Clear the nowritecache bit, causes vdev_reopen() to try again. */
v->vdev_nowritecache = B_FALSE;
/* Physical volume size in bytes */
*psize = bdev_capacity(bdev) * block_size;
/* Based on the minimum sector size set the block size */
*ashift = highbit(MAX(block_size, SPA_MINBLOCKSIZE)) - 1;
return 0;
}
static void
vdev_disk_close(vdev_t *v)
{
vdev_disk_t *vd = v->vdev_tsd;
if (vd == NULL)
return;
if (vd->vd_bdev != NULL)
vdev_bdev_close(vd->vd_bdev,
vdev_bdev_mode(spa_mode(v->vdev_spa)));
kmem_free(vd, sizeof(vdev_disk_t));
v->vdev_tsd = NULL;
}
static dio_request_t *
vdev_disk_dio_alloc(int bio_count)
{
dio_request_t *dr;
int i;
dr = kmem_zalloc(sizeof(dio_request_t) +
sizeof(struct bio *) * bio_count, KM_SLEEP);
if (dr) {
init_completion(&dr->dr_comp);
atomic_set(&dr->dr_ref, 0);
dr->dr_bio_count = bio_count;
dr->dr_error = 0;
for (i = 0; i < dr->dr_bio_count; i++)
dr->dr_bio[i] = NULL;
}
return dr;
}
static void
vdev_disk_dio_free(dio_request_t *dr)
{
int i;
for (i = 0; i < dr->dr_bio_count; i++)
if (dr->dr_bio[i])
bio_put(dr->dr_bio[i]);
kmem_free(dr, sizeof(dio_request_t) +
sizeof(struct bio *) * dr->dr_bio_count);
}
static void
vdev_disk_dio_get(dio_request_t *dr)
{
atomic_inc(&dr->dr_ref);
}
static int
vdev_disk_dio_put(dio_request_t *dr)
{
int rc = atomic_dec_return(&dr->dr_ref);
/*
* Free the dio_request when the last reference is dropped and
* ensure zio_interpret is called only once with the correct zio
*/
if (rc == 0) {
zio_t *zio = dr->dr_zio;
int error = dr->dr_error;
vdev_disk_dio_free(dr);
if (zio) {
zio->io_error = error;
zio_interrupt(zio);
}
}
return rc;
}
BIO_END_IO_PROTO(vdev_disk_physio_completion, bio, size, error)
{
dio_request_t *dr = bio->bi_private;
int rc;
/* Fatal error but print some useful debugging before asserting */
if (dr == NULL)
PANIC("dr == NULL, bio->bi_private == NULL\n"
"bi_next: %p, bi_flags: %lx, bi_rw: %lu, bi_vcnt: %d\n"
"bi_idx: %d, bi_size: %d, bi_end_io: %p, bi_cnt: %d\n",
bio->bi_next, bio->bi_flags, bio->bi_rw, bio->bi_vcnt,
bio->bi_idx, bio->bi_size, bio->bi_end_io,
atomic_read(&bio->bi_cnt));
#ifndef HAVE_2ARGS_BIO_END_IO_T
if (bio->bi_size)
return 1;
#endif /* HAVE_2ARGS_BIO_END_IO_T */
if (error == 0 && !test_bit(BIO_UPTODATE, &bio->bi_flags))
error = EIO;
if (dr->dr_error == 0)
dr->dr_error = error;
/* Drop reference aquired by __vdev_disk_physio */
rc = vdev_disk_dio_put(dr);
/* Wake up synchronous waiter this is the last outstanding bio */
if ((rc == 1) && (dr->dr_rw & (1 << DIO_RW_SYNCIO)))
complete(&dr->dr_comp);
BIO_END_IO_RETURN(0);
}
static inline unsigned long
bio_nr_pages(void *bio_ptr, unsigned int bio_size)
{
return ((((unsigned long)bio_ptr + bio_size + PAGE_SIZE - 1) >>
PAGE_SHIFT) - ((unsigned long)bio_ptr >> PAGE_SHIFT));
}
static unsigned int
bio_map(struct bio *bio, void *bio_ptr, unsigned int bio_size)
{
unsigned int offset, size, i;
struct page *page;
offset = offset_in_page(bio_ptr);
for (i = 0; i < bio->bi_max_vecs; i++) {
size = PAGE_SIZE - offset;
if (bio_size <= 0)
break;
if (size > bio_size)
size = bio_size;
if (kmem_virt(bio_ptr))
page = vmalloc_to_page(bio_ptr);
else
page = virt_to_page(bio_ptr);
if (bio_add_page(bio, page, size, offset) != size)
break;
bio_ptr += size;
bio_size -= size;
offset = 0;
}
return bio_size;
}
static int
__vdev_disk_physio(struct block_device *bdev, zio_t *zio, caddr_t kbuf_ptr,
size_t kbuf_size, uint64_t kbuf_offset, int flags)
{
dio_request_t *dr;
caddr_t bio_ptr;
uint64_t bio_offset;
int bio_size, bio_count = 16;
int i = 0, error = 0, block_size;
retry:
dr = vdev_disk_dio_alloc(bio_count);
if (dr == NULL)
return ENOMEM;
dr->dr_zio = zio;
dr->dr_rw = flags;
block_size = vdev_bdev_block_size(bdev);
#ifdef BIO_RW_FAILFAST
if (flags & (1 << BIO_RW_FAILFAST))
dr->dr_rw |= 1 << BIO_RW_FAILFAST;
#endif /* BIO_RW_FAILFAST */
/*
* When the IO size exceeds the maximum bio size for the request
* queue we are forced to break the IO in multiple bio's and wait
* for them all to complete. Ideally, all pool users will set
* their volume block size to match the maximum request size and
* the common case will be one bio per vdev IO request.
*/
bio_ptr = kbuf_ptr;
bio_offset = kbuf_offset;
bio_size = kbuf_size;
for (i = 0; i <= dr->dr_bio_count; i++) {
/* Finished constructing bio's for given buffer */
if (bio_size <= 0)
break;
/*
* By default only 'bio_count' bio's per dio are allowed.
* However, if we find ourselves in a situation where more
* are needed we allocate a larger dio and warn the user.
*/
if (dr->dr_bio_count == i) {
vdev_disk_dio_free(dr);
bio_count *= 2;
printk("WARNING: Resized bio's/dio to %d\n",bio_count);
goto retry;
}
dr->dr_bio[i] = bio_alloc(GFP_NOIO,
bio_nr_pages(bio_ptr, bio_size));
if (dr->dr_bio[i] == NULL) {
vdev_disk_dio_free(dr);
return ENOMEM;
}
/* Matching put called by vdev_disk_physio_completion */
vdev_disk_dio_get(dr);
dr->dr_bio[i]->bi_bdev = bdev;
dr->dr_bio[i]->bi_sector = bio_offset / block_size;
dr->dr_bio[i]->bi_rw = dr->dr_rw;
dr->dr_bio[i]->bi_end_io = vdev_disk_physio_completion;
dr->dr_bio[i]->bi_private = dr;
/* Remaining size is returned to become the new size */
bio_size = bio_map(dr->dr_bio[i], bio_ptr, bio_size);
/* Advance in buffer and construct another bio if needed */
bio_ptr += dr->dr_bio[i]->bi_size;
bio_offset += dr->dr_bio[i]->bi_size;
}
/* Extra reference to protect dio_request during submit_bio */
vdev_disk_dio_get(dr);
/* Submit all bio's associated with this dio */
for (i = 0; i < dr->dr_bio_count; i++)
if (dr->dr_bio[i])
submit_bio(dr->dr_rw, dr->dr_bio[i]);
/*
* On synchronous blocking requests we wait for all bio the completion
* callbacks to run. We will be woken when the last callback runs
* for this dio. We are responsible for putting the last dio_request
* reference will in turn put back the last bio references. The
* only synchronous consumer is vdev_disk_read_rootlabel() all other
* IO originating from vdev_disk_io_start() is asynchronous.
*/
if (dr->dr_rw & (1 << DIO_RW_SYNCIO)) {
wait_for_completion(&dr->dr_comp);
error = dr->dr_error;
ASSERT3S(atomic_read(&dr->dr_ref), ==, 1);
}
(void)vdev_disk_dio_put(dr);
return error;
}
int
vdev_disk_physio(struct block_device *bdev, caddr_t kbuf,
size_t size, uint64_t offset, int flags)
{
return __vdev_disk_physio(bdev, NULL, kbuf, size, offset, flags);
}
/* 2.6.24 API change */
#ifdef HAVE_BIO_EMPTY_BARRIER
BIO_END_IO_PROTO(vdev_disk_io_flush_completion, bio, size, rc)
{
zio_t *zio = bio->bi_private;
zio->io_error = -rc;
if (rc && (rc == -EOPNOTSUPP))
zio->io_vd->vdev_nowritecache = B_TRUE;
bio_put(bio);
zio_interrupt(zio);
BIO_END_IO_RETURN(0);
}
static int
vdev_disk_io_flush(struct block_device *bdev, zio_t *zio)
{
struct request_queue *q;
struct bio *bio;
q = bdev_get_queue(bdev);
if (!q)
return ENXIO;
bio = bio_alloc(GFP_KERNEL, 0);
if (!bio)
return ENOMEM;
bio->bi_end_io = vdev_disk_io_flush_completion;
bio->bi_private = zio;
bio->bi_bdev = bdev;
submit_bio(WRITE_BARRIER, bio);
return 0;
}
#else
static int
vdev_disk_io_flush(struct block_device *bdev, zio_t *zio)
{
return ENOTSUP;
}
#endif /* HAVE_BIO_EMPTY_BARRIER */
static int
vdev_disk_io_start(zio_t *zio)
{
vdev_t *v = zio->io_vd;
vdev_disk_t *vd = v->vdev_tsd;
int flags, error;
switch (zio->io_type) {
case ZIO_TYPE_IOCTL:
if (!vdev_readable(v)) {
zio->io_error = ENXIO;
return ZIO_PIPELINE_CONTINUE;
}
switch (zio->io_cmd) {
case DKIOCFLUSHWRITECACHE:
if (zfs_nocacheflush)
break;
if (v->vdev_nowritecache) {
zio->io_error = ENOTSUP;
break;
}
error = vdev_disk_io_flush(vd->vd_bdev, zio);
if (error == 0)
return ZIO_PIPELINE_STOP;
zio->io_error = error;
if (error == ENOTSUP)
v->vdev_nowritecache = B_TRUE;
break;
default:
zio->io_error = ENOTSUP;
}
return ZIO_PIPELINE_CONTINUE;
case ZIO_TYPE_WRITE:
flags = WRITE;
break;
case ZIO_TYPE_READ:
flags = READ;
break;
default:
zio->io_error = ENOTSUP;
return ZIO_PIPELINE_CONTINUE;
}
#ifdef BIO_RW_FAILFAST
if (zio->io_flags & (ZIO_FLAG_IO_RETRY | ZIO_FLAG_TRYHARD))
flags |= (1 << BIO_RW_FAILFAST);
#endif /* BIO_RW_FAILFAST */
error = __vdev_disk_physio(vd->vd_bdev, zio, zio->io_data,
zio->io_size, zio->io_offset, flags);
if (error) {
zio->io_error = error;
return ZIO_PIPELINE_CONTINUE;
}
return ZIO_PIPELINE_STOP;
}
static void
vdev_disk_io_done(zio_t *zio)
{
/*
* If the device returned EIO, we revalidate the media. If it is
* determined the media has changed this triggers the asynchronous
* removal of the device from the configuration.
*/
if (zio->io_error == EIO) {
vdev_t *v = zio->io_vd;
vdev_disk_t *vd = v->vdev_tsd;
if (check_disk_change(vd->vd_bdev)) {
vdev_bdev_invalidate(vd->vd_bdev);
v->vdev_remove_wanted = B_TRUE;
spa_async_request(zio->io_spa, SPA_ASYNC_REMOVE);
}
}
}
static void
vdev_disk_hold(vdev_t *vd)
{
ASSERT(spa_config_held(vd->vdev_spa, SCL_STATE, RW_WRITER));
/* We must have a pathname, and it must be absolute. */
if (vd->vdev_path == NULL || vd->vdev_path[0] != '/')
return;
/*
* Only prefetch path and devid info if the device has
* never been opened.
*/
if (vd->vdev_tsd != NULL)
return;
/* XXX: Implement me as a vnode lookup for the device */
vd->vdev_name_vp = NULL;
vd->vdev_devid_vp = NULL;
}
static void
vdev_disk_rele(vdev_t *vd)
{
ASSERT(spa_config_held(vd->vdev_spa, SCL_STATE, RW_WRITER));
/* XXX: Implement me as a vnode rele for the device */
}
vdev_ops_t vdev_disk_ops = {
vdev_disk_open,
vdev_disk_close,
vdev_default_asize,
vdev_disk_io_start,
vdev_disk_io_done,
NULL,
vdev_disk_hold,
vdev_disk_rele,
VDEV_TYPE_DISK, /* name of this vdev type */
B_TRUE /* leaf vdev */
};
/*
* Given the root disk device devid or pathname, read the label from
* the device, and construct a configuration nvlist.
*/
int
vdev_disk_read_rootlabel(char *devpath, char *devid, nvlist_t **config)
{
struct block_device *bdev;
vdev_label_t *label;
uint64_t s, size;
int i;
bdev = vdev_bdev_open(devpath, vdev_bdev_mode(FREAD), NULL);
if (IS_ERR(bdev))
return -PTR_ERR(bdev);
s = bdev_capacity(bdev) * vdev_bdev_block_size(bdev);
if (s == 0) {
vdev_bdev_close(bdev, vdev_bdev_mode(FREAD));
return EIO;
}
size = P2ALIGN_TYPED(s, sizeof(vdev_label_t), uint64_t);
label = vmem_alloc(sizeof(vdev_label_t), KM_SLEEP);
for (i = 0; i < VDEV_LABELS; i++) {
uint64_t offset, state, txg = 0;
/* read vdev label */
offset = vdev_label_offset(size, i, 0);
if (vdev_disk_physio(bdev, (caddr_t)label,
VDEV_SKIP_SIZE + VDEV_PHYS_SIZE, offset, READ_SYNC) != 0)
continue;
if (nvlist_unpack(label->vl_vdev_phys.vp_nvlist,
sizeof (label->vl_vdev_phys.vp_nvlist), config, 0) != 0) {
*config = NULL;
continue;
}
if (nvlist_lookup_uint64(*config, ZPOOL_CONFIG_POOL_STATE,
&state) != 0 || state >= POOL_STATE_DESTROYED) {
nvlist_free(*config);
*config = NULL;
continue;
}
if (nvlist_lookup_uint64(*config, ZPOOL_CONFIG_POOL_TXG,
&txg) != 0 || txg == 0) {
nvlist_free(*config);
*config = NULL;
continue;
}
break;
}
vmem_free(label, sizeof(vdev_label_t));
vdev_bdev_close(bdev, vdev_bdev_mode(FREAD));
return 0;
}

View File

@ -22,6 +22,8 @@
* Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
*/
#ifdef HAVE_ZPL
#include <sys/types.h>
#include <sys/param.h>
#include <sys/time.h>
@ -2746,3 +2748,5 @@ zfs_zaccess_rename(znode_t *sdzp, znode_t *szp, znode_t *tdzp,
return (error);
}
#endif /* HAVE_ZPL */

View File

@ -63,6 +63,8 @@
* so that it cannot be freed until all snapshots have been unmounted.
*/
#ifdef HAVE_ZPL
#include <fs/fs_subr.h>
#include <sys/zfs_ctldir.h>
#include <sys/zfs_ioctl.h>
@ -1347,3 +1349,4 @@ zfsctl_umount_snapshots(vfs_t *vfsp, int fflags, cred_t *cr)
return (error);
}
#endif /* HAVE_ZPL */

View File

@ -22,6 +22,8 @@
* Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
*/
#ifdef HAVE_ZPL
#include <sys/types.h>
#include <sys/param.h>
#include <sys/time.h>
@ -1087,3 +1089,4 @@ zfs_sticky_remove_access(znode_t *zdp, znode_t *zp, cred_t *cr)
else
return (secpolicy_vnode_remove(cr));
}
#endif /* HAVE_ZPL */

View File

@ -192,6 +192,7 @@ zfs_fuid_idx_domain(avl_tree_t *idx_tree, uint32_t idx)
}
#ifdef _KERNEL
#ifdef HAVE_ZPL
/*
* Load the fuid table(s) into memory.
*/
@ -753,4 +754,5 @@ zfs_fuid_txhold(zfsvfs_t *zfsvfs, dmu_tx_t *tx)
FUID_SIZE_ESTIMATE(zfsvfs));
}
}
#endif /* HAVE_ZPL */
#endif

View File

@ -1292,6 +1292,9 @@ zfs_ioc_pool_import(zfs_cmd_t *zc)
error = err;
}
if (error == 0)
zvol_create_minors(zc->zc_name);
nvlist_free(config);
if (props)
@ -2179,8 +2182,7 @@ zfs_prop_set_special(const char *dsname, zprop_source_t source,
err = dsl_dataset_set_reservation(dsname, source, intval);
break;
case ZFS_PROP_VOLSIZE:
err = zvol_set_volsize(dsname, ddi_driver_major(zfs_dip),
intval);
err = zvol_set_volsize(dsname, intval);
break;
case ZFS_PROP_VERSION:
{
@ -2652,6 +2654,30 @@ zfs_ioc_pool_get_props(zfs_cmd_t *zc)
return (error);
}
/*
* inputs:
* zc_name name of volume
*
* outputs: none
*/
static int
zfs_ioc_create_minor(zfs_cmd_t *zc)
{
return (zvol_create_minor(zc->zc_name));
}
/*
* inputs:
* zc_name name of volume
*
* outputs: none
*/
static int
zfs_ioc_remove_minor(zfs_cmd_t *zc)
{
return (zvol_remove_minor(zc->zc_name));
}
/*
* inputs:
* zc_name name of filesystem
@ -4805,6 +4831,10 @@ static zfs_ioc_vec_t zfs_ioc_vec[] = {
POOL_CHECK_SUSPENDED },
{ zfs_ioc_set_prop, zfs_secpolicy_none, DATASET_NAME, B_TRUE,
POOL_CHECK_SUSPENDED | POOL_CHECK_READONLY },
{ zfs_ioc_create_minor, zfs_secpolicy_config, DATASET_NAME, B_FALSE,
POOL_CHECK_NONE },
{ zfs_ioc_remove_minor, zfs_secpolicy_config, DATASET_NAME, B_FALSE,
POOL_CHECK_NONE },
{ zfs_ioc_create, zfs_secpolicy_create, DATASET_NAME, B_TRUE,
POOL_CHECK_SUSPENDED | POOL_CHECK_READONLY },
{ zfs_ioc_destroy, zfs_secpolicy_destroy, DATASET_NAME, B_TRUE,

View File

@ -22,6 +22,8 @@
* Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
*/
#ifdef HAVE_ZPL
#include <sys/types.h>
#include <sys/param.h>
#include <sys/systm.h>
@ -674,3 +676,5 @@ zfs_log_acl(zilog_t *zilog, dmu_tx_t *tx, znode_t *zp,
itx->itx_sync = (zp->z_sync_cnt != 0);
zil_itx_assign(zilog, itx, tx);
}
#endif /* HAVE_ZPL */

View File

@ -22,6 +22,8 @@
* Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
*/
#ifdef HAVE_ZPL
#include <sys/types.h>
#include <sys/param.h>
#include <sys/systm.h>
@ -929,3 +931,4 @@ zil_replay_func_t *zfs_replay_vector[TX_MAX_TYPE] = {
zfs_replay_create_acl, /* TX_MKDIR_ACL_ATTR */
zfs_replay_write2, /* TX_WRITE2 */
};
#endif /* HAVE_ZPL */

View File

@ -65,6 +65,7 @@
#include <sys/sa.h>
#include "zfs_comutil.h"
#ifdef HAVE_ZPL
int zfsfstype;
vfsops_t *zfs_vfsops = NULL;
static major_t zfs_major;
@ -2127,10 +2128,12 @@ zfs_vfsinit(int fstype, char *name)
return (0);
}
#endif /* HAVE_ZPL */
void
zfs_init(void)
{
#ifdef HAVE_ZPL
/*
* Initialize .zfs directory structures
*/
@ -2142,21 +2145,19 @@ zfs_init(void)
zfs_znode_init();
dmu_objset_register_type(DMU_OST_ZFS, zfs_space_delta_cb);
#endif /* HAVE_ZPL */
}
void
zfs_fini(void)
{
#ifdef HAVE_ZPL
zfsctl_fini();
zfs_znode_fini();
#endif /* HAVE_ZPL */
}
int
zfs_busy(void)
{
return (zfs_active_fs_count != 0);
}
#ifdef HAVE_ZPL
int
zfs_set_version(zfsvfs_t *zfsvfs, uint64_t newvers)
{
@ -2224,6 +2225,7 @@ zfs_set_version(zfsvfs_t *zfsvfs, uint64_t newvers)
return (0);
}
#endif /* HAVE_ZPL */
/*
* Read a property stored within the master node.
@ -2267,6 +2269,7 @@ zfs_get_zplprop(objset_t *os, zfs_prop_t prop, uint64_t *value)
return (error);
}
#ifdef HAVE_ZPL
static vfsdef_t vfw = {
VFSDEF_VERSION,
MNTTYPE_ZFS,
@ -2279,3 +2282,4 @@ static vfsdef_t vfw = {
struct modlfs zfs_modlfs = {
&mod_fsops, "ZFS filesystem version " SPA_VERSION_STRING, &vfw
};
#endif /* HAVE_ZPL */

View File

@ -25,6 +25,8 @@
/* Portions Copyright 2007 Jeremy Teo */
/* Portions Copyright 2010 Robert Milkowski */
#ifdef HAVE_ZPL
#include <sys/types.h>
#include <sys/param.h>
#include <sys/time.h>
@ -319,6 +321,7 @@ zfs_ioctl(vnode_t *vp, int com, intptr_t data, int flag, cred_t *cred,
return (ENOTTY);
}
#if defined(_KERNEL) && defined(HAVE_UIO_RW)
/*
* Utility functions to map and unmap a single physical page. These
* are used to manage the mappable copies of ZFS file data, and therefore
@ -343,6 +346,7 @@ zfs_unmap_page(page_t *pp, caddr_t addr)
ppmapout(addr);
}
}
#endif /* _KERNEL && HAVE_UIO_RW */
/*
* When a file is memory mapped, we must keep the IO data synchronized
@ -5241,3 +5245,4 @@ const fs_operation_def_t zfs_evnodeops_template[] = {
VOPNAME_PATHCONF, { .vop_pathconf = zfs_pathconf },
NULL, NULL
};
#endif /* HAVE_ZPL */

View File

@ -88,6 +88,7 @@
* (such as VFS logic) that will not compile easily in userland.
*/
#ifdef _KERNEL
#ifdef HAVE_ZPL
/*
* Needed to close a small window in zfs_znode_move() that allows the zfsvfs to
* be freed before it can be safely accessed.
@ -1737,22 +1738,29 @@ log:
dmu_tx_commit(tx);
return (0);
}
#endif /* HAVE_ZPL */
void
zfs_create_fs(objset_t *os, cred_t *cr, nvlist_t *zplprops, dmu_tx_t *tx)
{
zfsvfs_t zfsvfs;
uint64_t moid, obj, sa_obj, version;
uint64_t sense = ZFS_CASE_SENSITIVE;
uint64_t norm = 0;
nvpair_t *elem;
int error;
#ifdef HAVE_ZPL
zfsvfs_t zfsvfs;
int i;
znode_t *rootzp = NULL;
vnode_t *vp;
vattr_t vattr;
znode_t *zp;
zfs_acl_ids_t acl_ids;
#else
timestruc_t now;
dmu_buf_t *db;
znode_phys_t *pzp;
#endif /* HAVE_ZPL */
/*
* First attempt to create master node.
@ -1814,6 +1822,7 @@ zfs_create_fs(objset_t *os, cred_t *cr, nvlist_t *zplprops, dmu_tx_t *tx)
error = zap_add(os, moid, ZFS_UNLINKED_SET, 8, 1, &obj, tx);
ASSERT(error == 0);
#ifdef HAVE_ZPL
/*
* Create root znode. Create minimal znode/vnode/zfsvfs
* to allow zfs_mknode to work.
@ -1879,17 +1888,49 @@ zfs_create_fs(objset_t *os, cred_t *cr, nvlist_t *zplprops, dmu_tx_t *tx)
ZTOV(rootzp)->v_count = 0;
sa_handle_destroy(rootzp->z_sa_hdl);
kmem_cache_free(znode_cache, rootzp);
/*
* Create shares directory
*/
error = zfs_create_share_dir(&zfsvfs, tx);
ASSERT(error == 0);
for (i = 0; i != ZFS_OBJ_MTX_SZ; i++)
mutex_destroy(&zfsvfs.z_hold_mtx[i]);
#else
/*
* Create root znode with code free of VFS dependencies
*/
obj = zap_create_norm(os, norm, DMU_OT_DIRECTORY_CONTENTS,
DMU_OT_ZNODE, sizeof (znode_phys_t), tx);
VERIFY(0 == dmu_bonus_hold(os, obj, FTAG, &db));
dmu_buf_will_dirty(db, tx);
/*
* Initialize the znode physical data to zero.
*/
ASSERT(db->db_size >= sizeof (znode_phys_t));
bzero(db->db_data, db->db_size);
pzp = db->db_data;
if (USE_FUIDS(version, os))
pzp->zp_flags = ZFS_ARCHIVE | ZFS_AV_MODIFIED;
pzp->zp_size = 2; /* "." and ".." */
pzp->zp_links = 2;
pzp->zp_parent = obj;
pzp->zp_gen = dmu_tx_get_txg(tx);
pzp->zp_mode = S_IFDIR | 0755;
pzp->zp_flags = ZFS_ACL_TRIVIAL;
gethrestime(&now);
ZFS_TIME_ENCODE(&now, pzp->zp_crtime);
ZFS_TIME_ENCODE(&now, pzp->zp_ctime);
ZFS_TIME_ENCODE(&now, pzp->zp_atime);
ZFS_TIME_ENCODE(&now, pzp->zp_mtime);
error = zap_add(os, moid, ZFS_ROOT_OBJ, 8, 1, &obj, tx);
ASSERT(error == 0);
dmu_buf_rele(db, FTAG);
#endif /* HAVE_ZPL */
}
#endif /* _KERNEL */

1337
module/zfs/zvol.c Normal file

File diff suppressed because it is too large Load Diff