Fletcher4: save/reload implementation context

Init, compute, and fini methods are changed to work on internal context object.
This is necessary because ABI does not guarantee that SIMD registers will be preserved
on function calls. This is technically the case in Linux kernel in between
`kfpu_begin()/kfpu_end()`, but it breaks user-space tests and some kernels that
don't require disabling preemption for using SIMD (osx).

Use scalar compute methods in-place for small buffers, and when the buffer size
does not meet SIMD size alignment.

Signed-off-by: Gvozden Neskovic <neskovic@gmail.com>
This commit is contained in:
Gvozden Neskovic 2016-09-25 00:56:22 +02:00
parent 37f520db2d
commit 5bf703b8f3
5 changed files with 304 additions and 195 deletions

View File

@ -62,12 +62,43 @@ void fletcher_4_init(void);
void fletcher_4_fini(void);
/* Internal fletcher ctx */
typedef struct zfs_fletcher_sse {
uint64_t v[2] __attribute__((aligned(16)));
} zfs_fletcher_sse_t;
typedef struct zfs_fletcher_avx {
uint64_t v[4] __attribute__((aligned(32)));
} zfs_fletcher_avx_t;
typedef struct zfs_fletcher_avx512 {
uint64_t v[8] __attribute__((aligned(64)));
} zfs_fletcher_avx512_t;
typedef union fletcher_4_ctx {
zio_cksum_t scalar;
#if defined(HAVE_SSE2) || (defined(HAVE_SSE2) && defined(HAVE_SSSE3))
zfs_fletcher_sse_t sse[4];
#endif
#if defined(HAVE_AVX) && defined(HAVE_AVX2)
zfs_fletcher_avx_t avx[4];
#endif
#if defined(__x86_64) && defined(HAVE_AVX512F)
zfs_fletcher_avx512_t avx512[4];
#endif
} fletcher_4_ctx_t;
/*
* fletcher checksum struct
*/
typedef void (*fletcher_4_init_f)(zio_cksum_t *);
typedef void (*fletcher_4_fini_f)(zio_cksum_t *);
typedef void (*fletcher_4_compute_f)(const void *, uint64_t, zio_cksum_t *);
typedef void (*fletcher_4_init_f)(fletcher_4_ctx_t *);
typedef void (*fletcher_4_fini_f)(fletcher_4_ctx_t *, zio_cksum_t *);
typedef void (*fletcher_4_compute_f)(fletcher_4_ctx_t *,
const void *, uint64_t);
typedef struct fletcher_4_func {
fletcher_4_init_f init_native;
@ -80,6 +111,7 @@ typedef struct fletcher_4_func {
const char *name;
} fletcher_4_ops_t;
#if defined(HAVE_SSE2)
extern const fletcher_4_ops_t fletcher_4_sse2_ops;
#endif

View File

@ -138,17 +138,20 @@
#include <zfs_fletcher.h>
static void fletcher_4_scalar_init(zio_cksum_t *zcp);
static void fletcher_4_scalar_native(const void *buf, uint64_t size,
zio_cksum_t *zcp);
static void fletcher_4_scalar_byteswap(const void *buf, uint64_t size,
zio_cksum_t *zcp);
static void fletcher_4_scalar_init(fletcher_4_ctx_t *ctx);
static void fletcher_4_scalar_fini(fletcher_4_ctx_t *ctx, zio_cksum_t *zcp);
static void fletcher_4_scalar_native(fletcher_4_ctx_t *ctx,
const void *buf, uint64_t size);
static void fletcher_4_scalar_byteswap(fletcher_4_ctx_t *ctx,
const void *buf, uint64_t size);
static boolean_t fletcher_4_scalar_valid(void);
static const fletcher_4_ops_t fletcher_4_scalar_ops = {
.init_native = fletcher_4_scalar_init,
.fini_native = fletcher_4_scalar_fini,
.compute_native = fletcher_4_scalar_native,
.init_byteswap = fletcher_4_scalar_init,
.fini_byteswap = fletcher_4_scalar_fini,
.compute_byteswap = fletcher_4_scalar_byteswap,
.valid = fletcher_4_scalar_valid,
.name = "scalar"
@ -248,22 +251,29 @@ fletcher_2_byteswap(const void *buf, uint64_t size,
}
static void
fletcher_4_scalar_init(zio_cksum_t *zcp)
fletcher_4_scalar_init(fletcher_4_ctx_t *ctx)
{
ZIO_SET_CHECKSUM(zcp, 0, 0, 0, 0);
ZIO_SET_CHECKSUM(&ctx->scalar, 0, 0, 0, 0);
}
static void
fletcher_4_scalar_native(const void *buf, uint64_t size, zio_cksum_t *zcp)
fletcher_4_scalar_fini(fletcher_4_ctx_t *ctx, zio_cksum_t *zcp)
{
memcpy(zcp, &ctx->scalar, sizeof (zio_cksum_t));
}
static void
fletcher_4_scalar_native(fletcher_4_ctx_t *ctx, const void *buf,
uint64_t size)
{
const uint32_t *ip = buf;
const uint32_t *ipend = ip + (size / sizeof (uint32_t));
uint64_t a, b, c, d;
a = zcp->zc_word[0];
b = zcp->zc_word[1];
c = zcp->zc_word[2];
d = zcp->zc_word[3];
a = ctx->scalar.zc_word[0];
b = ctx->scalar.zc_word[1];
c = ctx->scalar.zc_word[2];
d = ctx->scalar.zc_word[3];
for (; ip < ipend; ip++) {
a += ip[0];
@ -272,20 +282,21 @@ fletcher_4_scalar_native(const void *buf, uint64_t size, zio_cksum_t *zcp)
d += c;
}
ZIO_SET_CHECKSUM(zcp, a, b, c, d);
ZIO_SET_CHECKSUM(&ctx->scalar, a, b, c, d);
}
static void
fletcher_4_scalar_byteswap(const void *buf, uint64_t size, zio_cksum_t *zcp)
fletcher_4_scalar_byteswap(fletcher_4_ctx_t *ctx, const void *buf,
uint64_t size)
{
const uint32_t *ip = buf;
const uint32_t *ipend = ip + (size / sizeof (uint32_t));
uint64_t a, b, c, d;
a = zcp->zc_word[0];
b = zcp->zc_word[1];
c = zcp->zc_word[2];
d = zcp->zc_word[3];
a = ctx->scalar.zc_word[0];
b = ctx->scalar.zc_word[1];
c = ctx->scalar.zc_word[2];
d = ctx->scalar.zc_word[3];
for (; ip < ipend; ip++) {
a += BSWAP_32(ip[0]);
@ -294,7 +305,7 @@ fletcher_4_scalar_byteswap(const void *buf, uint64_t size, zio_cksum_t *zcp)
d += c;
}
ZIO_SET_CHECKSUM(zcp, a, b, c, d);
ZIO_SET_CHECKSUM(&ctx->scalar, a, b, c, d);
}
static boolean_t
@ -384,13 +395,14 @@ fletcher_4_impl_get(void)
}
static inline void
fletcher_4_native_impl(const fletcher_4_ops_t *ops, const void *buf,
uint64_t size, zio_cksum_t *zcp)
fletcher_4_native_impl(const void *buf, uint64_t size, zio_cksum_t *zcp)
{
ops->init_native(zcp);
ops->compute_native(buf, size, zcp);
if (ops->fini_native != NULL)
ops->fini_native(zcp);
fletcher_4_ctx_t ctx;
const fletcher_4_ops_t *ops = fletcher_4_impl_get();
ops->init_native(&ctx);
ops->compute_native(&ctx, buf, size);
ops->fini_native(&ctx, zcp);
}
/*ARGSUSED*/
@ -398,40 +410,41 @@ void
fletcher_4_native(const void *buf, uint64_t size,
const void *ctx_template, zio_cksum_t *zcp)
{
const fletcher_4_ops_t *ops;
uint64_t p2size = P2ALIGN(size, 64);
const uint64_t p2size = P2ALIGN(size, 64);
ASSERT(IS_P2ALIGNED(size, sizeof (uint32_t)));
if (size == 0) {
if (size == 0 || p2size == 0) {
ZIO_SET_CHECKSUM(zcp, 0, 0, 0, 0);
} else if (p2size == 0) {
ops = &fletcher_4_scalar_ops;
fletcher_4_native_impl(ops, buf, size, zcp);
if (size > 0)
fletcher_4_scalar_native((fletcher_4_ctx_t *)zcp,
buf, size);
} else {
ops = fletcher_4_impl_get();
fletcher_4_native_impl(ops, buf, p2size, zcp);
fletcher_4_native_impl(buf, p2size, zcp);
if (p2size < size)
fletcher_4_incremental_native((char *)buf + p2size,
size - p2size, zcp);
fletcher_4_scalar_native((fletcher_4_ctx_t *)zcp,
(char *)buf + p2size, size - p2size);
}
}
void
fletcher_4_native_varsize(const void *buf, uint64_t size, zio_cksum_t *zcp)
{
fletcher_4_native_impl(&fletcher_4_scalar_ops, buf, size, zcp);
ZIO_SET_CHECKSUM(zcp, 0, 0, 0, 0);
fletcher_4_scalar_native((fletcher_4_ctx_t *)zcp, buf, size);
}
static inline void
fletcher_4_byteswap_impl(const fletcher_4_ops_t *ops, const void *buf,
uint64_t size, zio_cksum_t *zcp)
fletcher_4_byteswap_impl(const void *buf, uint64_t size, zio_cksum_t *zcp)
{
ops->init_byteswap(zcp);
ops->compute_byteswap(buf, size, zcp);
if (ops->fini_byteswap != NULL)
ops->fini_byteswap(zcp);
fletcher_4_ctx_t ctx;
const fletcher_4_ops_t *ops = fletcher_4_impl_get();
ops->init_byteswap(&ctx);
ops->compute_byteswap(&ctx, buf, size);
ops->fini_byteswap(&ctx, zcp);
}
/*ARGSUSED*/
@ -439,28 +452,29 @@ void
fletcher_4_byteswap(const void *buf, uint64_t size,
const void *ctx_template, zio_cksum_t *zcp)
{
const fletcher_4_ops_t *ops;
uint64_t p2size = P2ALIGN(size, 64);
const uint64_t p2size = P2ALIGN(size, 64);
ASSERT(IS_P2ALIGNED(size, sizeof (uint32_t)));
if (size == 0) {
if (size == 0 || p2size == 0) {
ZIO_SET_CHECKSUM(zcp, 0, 0, 0, 0);
} else if (p2size == 0) {
ops = &fletcher_4_scalar_ops;
fletcher_4_byteswap_impl(ops, buf, size, zcp);
if (size > 0)
fletcher_4_scalar_byteswap((fletcher_4_ctx_t *)zcp,
buf, size);
} else {
ops = fletcher_4_impl_get();
fletcher_4_byteswap_impl(ops, buf, p2size, zcp);
fletcher_4_byteswap_impl(buf, p2size, zcp);
if (p2size < size)
fletcher_4_incremental_byteswap((char *)buf + p2size,
size - p2size, zcp);
fletcher_4_scalar_byteswap((fletcher_4_ctx_t *)zcp,
(char *)buf + p2size, size - p2size);
}
}
/* Incremental Fletcher 4 */
#define ZFS_FLETCHER_4_INC_MAX_SIZE (8ULL << 20)
static inline void
fletcher_4_incremental_combine(zio_cksum_t *zcp, const uint64_t size,
const zio_cksum_t *nzcp)
@ -469,6 +483,13 @@ fletcher_4_incremental_combine(zio_cksum_t *zcp, const uint64_t size,
const uint64_t c2 = c1 * (c1 + 1) / 2;
const uint64_t c3 = c2 * (c1 + 2) / 3;
/*
* Value of 'c3' overflows on buffer sizes close to 16MiB. For that
* reason we split incremental fletcher4 computation of large buffers
* to steps of (ZFS_FLETCHER_4_INC_MAX_SIZE) size.
*/
ASSERT3U(size, <=, ZFS_FLETCHER_4_INC_MAX_SIZE);
zcp->zc_word[3] += nzcp->zc_word[3] + c1 * zcp->zc_word[2] +
c2 * zcp->zc_word[1] + c3 * zcp->zc_word[0];
zcp->zc_word[2] += nzcp->zc_word[2] + c1 * zcp->zc_word[1] +
@ -481,13 +502,9 @@ static inline void
fletcher_4_incremental_impl(boolean_t native, const void *buf, uint64_t size,
zio_cksum_t *zcp)
{
static const uint64_t FLETCHER_4_INC_MAX = 8ULL << 20;
uint64_t len;
while (size > 0) {
zio_cksum_t nzc;
len = MIN(size, FLETCHER_4_INC_MAX);
uint64_t len = MIN(size, ZFS_FLETCHER_4_INC_MAX_SIZE);
if (native)
fletcher_4_native(buf, len, NULL, &nzc);
@ -504,6 +521,10 @@ fletcher_4_incremental_impl(boolean_t native, const void *buf, uint64_t size,
void
fletcher_4_incremental_native(const void *buf, uint64_t size, zio_cksum_t *zcp)
{
/* Use scalar impl to directly update cksum of small blocks */
if (size < SPA_MINBLOCKSIZE)
fletcher_4_scalar_native((fletcher_4_ctx_t *)zcp, buf, size);
else
fletcher_4_incremental_impl(B_TRUE, buf, size, zcp);
}
@ -511,6 +532,10 @@ void
fletcher_4_incremental_byteswap(const void *buf, uint64_t size,
zio_cksum_t *zcp)
{
/* Use scalar impl to directly update cksum of small blocks */
if (size < SPA_MINBLOCKSIZE)
fletcher_4_scalar_byteswap((fletcher_4_ctx_t *)zcp, buf, size);
else
fletcher_4_incremental_impl(B_FALSE, buf, size, zcp);
}
@ -662,9 +687,6 @@ fletcher_4_init(void)
membar_producer();
fletcher_4_initialized = B_TRUE;
/* Use 'cycle' math selection method for userspace */
VERIFY0(fletcher_4_impl_set("cycle"));
return;
#endif
/* Benchmark all supported implementations */

View File

@ -28,31 +28,73 @@
#include <sys/byteorder.h>
#include <sys/spa_checksum.h>
#include <zfs_fletcher.h>
#include <strings.h>
#define __asm __asm__ __volatile__
typedef struct {
uint64_t v[8] __attribute__((aligned(64)));
} zfs_avx512_t;
static void
fletcher_4_avx512f_init(zio_cksum_t *zcp)
fletcher_4_avx512f_init(fletcher_4_ctx_t *ctx)
{
kfpu_begin();
/* clear registers */
__asm("vpxorq %zmm0, %zmm0, %zmm0");
__asm("vpxorq %zmm1, %zmm1, %zmm1");
__asm("vpxorq %zmm2, %zmm2, %zmm2");
__asm("vpxorq %zmm3, %zmm3, %zmm3");
bzero(ctx->avx512, 4 * sizeof (zfs_fletcher_avx512_t));
}
static void
fletcher_4_avx512f_native(const void *buf, uint64_t size, zio_cksum_t *unused)
fletcher_4_avx512f_fini(fletcher_4_ctx_t *ctx, zio_cksum_t *zcp)
{
static const uint64_t
CcA[] = { 0, 0, 1, 3, 6, 10, 15, 21 },
CcB[] = { 28, 36, 44, 52, 60, 68, 76, 84 },
DcA[] = { 0, 0, 0, 1, 4, 10, 20, 35 },
DcB[] = { 56, 84, 120, 164, 216, 276, 344, 420 },
DcC[] = { 448, 512, 576, 640, 704, 768, 832, 896 };
uint64_t A, B, C, D;
uint64_t i;
A = ctx->avx512[0].v[0];
B = 8 * ctx->avx512[1].v[0];
C = 64 * ctx->avx512[2].v[0] - CcB[0] * ctx->avx512[1].v[0];
D = 512 * ctx->avx512[3].v[0] - DcC[0] * ctx->avx512[2].v[0] +
DcB[0] * ctx->avx512[1].v[0];
for (i = 1; i < 8; i++) {
A += ctx->avx512[0].v[i];
B += 8 * ctx->avx512[1].v[i] - i * ctx->avx512[0].v[i];
C += 64 * ctx->avx512[2].v[i] - CcB[i] * ctx->avx512[1].v[i] +
CcA[i] * ctx->avx512[0].v[i];
D += 512 * ctx->avx512[3].v[i] - DcC[i] * ctx->avx512[2].v[i] +
DcB[i] * ctx->avx512[1].v[i] - DcA[i] * ctx->avx512[0].v[i];
}
ZIO_SET_CHECKSUM(zcp, A, B, C, D);
}
#define FLETCHER_4_AVX512_RESTORE_CTX(ctx) \
{ \
__asm("vmovdqu64 %0, %%zmm0" :: "m" ((ctx)->avx512[0])); \
__asm("vmovdqu64 %0, %%zmm1" :: "m" ((ctx)->avx512[1])); \
__asm("vmovdqu64 %0, %%zmm2" :: "m" ((ctx)->avx512[2])); \
__asm("vmovdqu64 %0, %%zmm3" :: "m" ((ctx)->avx512[3])); \
}
#define FLETCHER_4_AVX512_SAVE_CTX(ctx) \
{ \
__asm("vmovdqu64 %%zmm0, %0" : "=m" ((ctx)->avx512[0])); \
__asm("vmovdqu64 %%zmm1, %0" : "=m" ((ctx)->avx512[1])); \
__asm("vmovdqu64 %%zmm2, %0" : "=m" ((ctx)->avx512[2])); \
__asm("vmovdqu64 %%zmm3, %0" : "=m" ((ctx)->avx512[3])); \
}
static void
fletcher_4_avx512f_native(fletcher_4_ctx_t *ctx, const void *buf, uint64_t size)
{
const uint32_t *ip = buf;
const uint32_t *ipend = (uint32_t *)((uint8_t *)ip + size);
kfpu_begin();
FLETCHER_4_AVX512_RESTORE_CTX(ctx);
for (; ip < ipend; ip += 8) {
__asm("vpmovzxdq %0, %%zmm4"::"m" (*ip));
__asm("vpaddq %zmm4, %zmm0, %zmm0");
@ -60,15 +102,24 @@ fletcher_4_avx512f_native(const void *buf, uint64_t size, zio_cksum_t *unused)
__asm("vpaddq %zmm1, %zmm2, %zmm2");
__asm("vpaddq %zmm2, %zmm3, %zmm3");
}
FLETCHER_4_AVX512_SAVE_CTX(ctx);
kfpu_end();
}
static void
fletcher_4_avx512f_byteswap(const void *buf, uint64_t size, zio_cksum_t *unused)
fletcher_4_avx512f_byteswap(fletcher_4_ctx_t *ctx, const void *buf,
uint64_t size)
{
static const uint64_t byteswap_mask = 0xFFULL;
const uint32_t *ip = buf;
const uint32_t *ipend = (uint32_t *)((uint8_t *)ip + size);
kfpu_begin();
FLETCHER_4_AVX512_RESTORE_CTX(ctx);
__asm("vpbroadcastq %0, %%zmm8" :: "r" (byteswap_mask));
__asm("vpsllq $8, %zmm8, %zmm9");
__asm("vpsllq $16, %zmm8, %zmm10");
@ -94,49 +145,10 @@ fletcher_4_avx512f_byteswap(const void *buf, uint64_t size, zio_cksum_t *unused)
__asm("vpaddq %zmm1, %zmm2, %zmm2");
__asm("vpaddq %zmm2, %zmm3, %zmm3");
}
}
static void
fletcher_4_avx512f_fini(zio_cksum_t *zcp)
{
static const uint64_t
CcA[] = { 0, 0, 1, 3, 6, 10, 15, 21 },
CcB[] = { 28, 36, 44, 52, 60, 68, 76, 84 },
DcA[] = { 0, 0, 0, 1, 4, 10, 20, 35 },
DcB[] = { 56, 84, 120, 164, 216, 276, 344, 420 },
DcC[] = { 448, 512, 576, 640, 704, 768, 832, 896 };
zfs_avx512_t a, b, c, b8, c64, d512;
uint64_t A, B, C, D;
uint64_t i;
__asm("vmovdqu64 %%zmm0, %0":"=m" (a));
__asm("vmovdqu64 %%zmm1, %0":"=m" (b));
__asm("vmovdqu64 %%zmm2, %0":"=m" (c));
__asm("vpsllq $3, %zmm1, %zmm1");
__asm("vpsllq $6, %zmm2, %zmm2");
__asm("vpsllq $9, %zmm3, %zmm3");
__asm("vmovdqu64 %%zmm1, %0":"=m" (b8));
__asm("vmovdqu64 %%zmm2, %0":"=m" (c64));
__asm("vmovdqu64 %%zmm3, %0":"=m" (d512));
FLETCHER_4_AVX512_SAVE_CTX(ctx)
kfpu_end();
A = a.v[0];
B = b8.v[0];
C = c64.v[0] - CcB[0] * b.v[0];
D = d512.v[0] - DcC[0] * c.v[0] + DcB[0] * b.v[0];
for (i = 1; i < 8; i++) {
A += a.v[i];
B += b8.v[i] - i * a.v[i];
C += c64.v[i] - CcB[i] * b.v[i] + CcA[i] * a.v[i];
D += d512.v[i] - DcC[i] * c.v[i] + DcB[i] * b.v[i] -
DcA[i] * a.v[i];
}
ZIO_SET_CHECKSUM(zcp, A, B, C, D);
}
static boolean_t

View File

@ -45,58 +45,69 @@
#include <linux/simd_x86.h>
#include <sys/spa_checksum.h>
#include <zfs_fletcher.h>
#include <strings.h>
static void
fletcher_4_avx2_init(zio_cksum_t *zcp)
fletcher_4_avx2_init(fletcher_4_ctx_t *ctx)
{
kfpu_begin();
/* clear avx2 registers */
asm volatile("vpxor %ymm0, %ymm0, %ymm0");
asm volatile("vpxor %ymm1, %ymm1, %ymm1");
asm volatile("vpxor %ymm2, %ymm2, %ymm2");
asm volatile("vpxor %ymm3, %ymm3, %ymm3");
bzero(ctx->avx, 4 * sizeof (zfs_fletcher_avx_t));
}
static void
fletcher_4_avx2_fini(zio_cksum_t *zcp)
fletcher_4_avx2_fini(fletcher_4_ctx_t *ctx, zio_cksum_t *zcp)
{
uint64_t __attribute__((aligned(32))) a[4];
uint64_t __attribute__((aligned(32))) b[4];
uint64_t __attribute__((aligned(32))) c[4];
uint64_t __attribute__((aligned(32))) d[4];
uint64_t A, B, C, D;
asm volatile("vmovdqu %%ymm0, %0":"=m" (a));
asm volatile("vmovdqu %%ymm1, %0":"=m" (b));
asm volatile("vmovdqu %%ymm2, %0":"=m" (c));
asm volatile("vmovdqu %%ymm3, %0":"=m" (d));
asm volatile("vzeroupper");
A = ctx->avx[0].v[0] + ctx->avx[0].v[1] +
ctx->avx[0].v[2] + ctx->avx[0].v[3];
B = 0 - ctx->avx[0].v[1] - 2 * ctx->avx[0].v[2] - 3 * ctx->avx[0].v[3] +
4 * ctx->avx[1].v[0] + 4 * ctx->avx[1].v[1] + 4 * ctx->avx[1].v[2] +
4 * ctx->avx[1].v[3];
kfpu_end();
C = ctx->avx[0].v[2] + 3 * ctx->avx[0].v[3] - 6 * ctx->avx[1].v[0] -
10 * ctx->avx[1].v[1] - 14 * ctx->avx[1].v[2] -
18 * ctx->avx[1].v[3] + 16 * ctx->avx[2].v[0] +
16 * ctx->avx[2].v[1] + 16 * ctx->avx[2].v[2] +
16 * ctx->avx[2].v[3];
A = a[0] + a[1] + a[2] + a[3];
B = 0 - a[1] - 2*a[2] - 3*a[3]
+ 4*b[0] + 4*b[1] + 4*b[2] + 4*b[3];
C = a[2] + 3*a[3]
- 6*b[0] - 10*b[1] - 14*b[2] - 18*b[3]
+ 16*c[0] + 16*c[1] + 16*c[2] + 16*c[3];
D = 0 - a[3]
+ 4*b[0] + 10*b[1] + 20*b[2] + 34*b[3]
- 48*c[0] - 64*c[1] - 80*c[2] - 96*c[3]
+ 64*d[0] + 64*d[1] + 64*d[2] + 64*d[3];
D = 0 - ctx->avx[0].v[3] + 4 * ctx->avx[1].v[0] +
10 * ctx->avx[1].v[1] + 20 * ctx->avx[1].v[2] +
34 * ctx->avx[1].v[3] - 48 * ctx->avx[2].v[0] -
64 * ctx->avx[2].v[1] - 80 * ctx->avx[2].v[2] -
96 * ctx->avx[2].v[3] + 64 * ctx->avx[3].v[0] +
64 * ctx->avx[3].v[1] + 64 * ctx->avx[3].v[2] +
64 * ctx->avx[3].v[3];
ZIO_SET_CHECKSUM(zcp, A, B, C, D);
}
#define FLETCHER_4_AVX2_RESTORE_CTX(ctx) \
{ \
asm volatile("vmovdqu %0, %%ymm0" :: "m" ((ctx)->avx[0])); \
asm volatile("vmovdqu %0, %%ymm1" :: "m" ((ctx)->avx[1])); \
asm volatile("vmovdqu %0, %%ymm2" :: "m" ((ctx)->avx[2])); \
asm volatile("vmovdqu %0, %%ymm3" :: "m" ((ctx)->avx[3])); \
}
#define FLETCHER_4_AVX2_SAVE_CTX(ctx) \
{ \
asm volatile("vmovdqu %%ymm0, %0" : "=m" ((ctx)->avx[0])); \
asm volatile("vmovdqu %%ymm1, %0" : "=m" ((ctx)->avx[1])); \
asm volatile("vmovdqu %%ymm2, %0" : "=m" ((ctx)->avx[2])); \
asm volatile("vmovdqu %%ymm3, %0" : "=m" ((ctx)->avx[3])); \
}
static void
fletcher_4_avx2_native(const void *buf, uint64_t size, zio_cksum_t *unused)
fletcher_4_avx2_native(fletcher_4_ctx_t *ctx, const void *buf, uint64_t size)
{
const uint64_t *ip = buf;
const uint64_t *ipend = (uint64_t *)((uint8_t *)ip + size);
kfpu_begin();
FLETCHER_4_AVX2_RESTORE_CTX(ctx);
for (; ip < ipend; ip += 2) {
asm volatile("vpmovzxdq %0, %%ymm4"::"m" (*ip));
asm volatile("vpaddq %ymm4, %ymm0, %ymm0");
@ -104,21 +115,28 @@ fletcher_4_avx2_native(const void *buf, uint64_t size, zio_cksum_t *unused)
asm volatile("vpaddq %ymm1, %ymm2, %ymm2");
asm volatile("vpaddq %ymm2, %ymm3, %ymm3");
}
FLETCHER_4_AVX2_SAVE_CTX(ctx);
asm volatile("vzeroupper");
kfpu_end();
}
static void
fletcher_4_avx2_byteswap(const void *buf, uint64_t size, zio_cksum_t *unused)
fletcher_4_avx2_byteswap(fletcher_4_ctx_t *ctx, const void *buf, uint64_t size)
{
static const struct {
uint64_t v[4] __attribute__((aligned(32)));
} mask = {
static const zfs_fletcher_avx_t mask = {
.v = { 0xFFFFFFFF00010203, 0xFFFFFFFF08090A0B,
0xFFFFFFFF00010203, 0xFFFFFFFF08090A0B }
};
const uint64_t *ip = buf;
const uint64_t *ipend = (uint64_t *)((uint8_t *)ip + size);
asm volatile("vmovdqa %0, %%ymm5"::"m"(mask));
kfpu_begin();
FLETCHER_4_AVX2_RESTORE_CTX(ctx);
asm volatile("vmovdqu %0, %%ymm5" :: "m" (mask));
for (; ip < ipend; ip += 2) {
asm volatile("vpmovzxdq %0, %%ymm4"::"m" (*ip));
@ -129,6 +147,11 @@ fletcher_4_avx2_byteswap(const void *buf, uint64_t size, zio_cksum_t *unused)
asm volatile("vpaddq %ymm1, %ymm2, %ymm2");
asm volatile("vpaddq %ymm2, %ymm3, %ymm3");
}
FLETCHER_4_AVX2_SAVE_CTX(ctx);
asm volatile("vzeroupper");
kfpu_end();
}
static boolean_t fletcher_4_avx2_valid(void)

View File

@ -45,39 +45,19 @@
#include <linux/simd_x86.h>
#include <sys/spa_checksum.h>
#include <sys/byteorder.h>
#include <zfs_fletcher.h>
struct zfs_fletcher_sse_array {
uint64_t v[2] __attribute__((aligned(16)));
};
#include <strings.h>
static void
fletcher_4_sse2_init(zio_cksum_t *zcp)
{
kfpu_begin();
/* clear sse registers */
asm volatile("pxor %xmm0, %xmm0");
asm volatile("pxor %xmm1, %xmm1");
asm volatile("pxor %xmm2, %xmm2");
asm volatile("pxor %xmm3, %xmm3");
fletcher_4_sse2_init(fletcher_4_ctx_t *ctx) {
bzero(ctx->sse, 4 * sizeof (zfs_fletcher_sse_t));
}
static void
fletcher_4_sse2_fini(zio_cksum_t *zcp)
{
struct zfs_fletcher_sse_array a, b, c, d;
fletcher_4_sse2_fini(fletcher_4_ctx_t *ctx, zio_cksum_t *zcp) {
uint64_t A, B, C, D;
asm volatile("movdqu %%xmm0, %0":"=m" (a.v));
asm volatile("movdqu %%xmm1, %0":"=m" (b.v));
asm volatile("psllq $0x2, %xmm2");
asm volatile("movdqu %%xmm2, %0":"=m" (c.v));
asm volatile("psllq $0x3, %xmm3");
asm volatile("movdqu %%xmm3, %0":"=m" (d.v));
kfpu_end();
/*
* The mixing matrix for checksum calculation is:
* a = a0 + a1
@ -88,20 +68,42 @@ fletcher_4_sse2_fini(zio_cksum_t *zcp)
* c and d are multiplied by 4 and 8, respectively,
* before spilling the vectors out to memory.
*/
A = a.v[0] + a.v[1];
B = 2*b.v[0] + 2*b.v[1] - a.v[1];
C = c.v[0] - b.v[0] + c.v[1] - 3*b.v[1];
D = d.v[0] - c.v[0] + d.v[1] - 2*c.v[1] + b.v[1];
A = ctx->sse[0].v[0] + ctx->sse[0].v[1];
B = 2 * ctx->sse[1].v[0] + 2 * ctx->sse[1].v[1] - ctx->sse[0].v[1];
C = 4 * ctx->sse[2].v[0] - ctx->sse[1].v[0] + 4 * ctx->sse[2].v[1] -
3 * ctx->sse[1].v[1];
D = 8 * ctx->sse[3].v[0] - 4 * ctx->sse[2].v[0] + 8 * ctx->sse[3].v[1] -
8 * ctx->sse[2].v[1] + ctx->sse[1].v[1];
ZIO_SET_CHECKSUM(zcp, A, B, C, D);
}
#define FLETCHER_4_SSE_RESTORE_CTX(ctx) \
{ \
asm volatile("movdqu %0, %%xmm0" :: "m" ((ctx)->sse[0])); \
asm volatile("movdqu %0, %%xmm1" :: "m" ((ctx)->sse[1])); \
asm volatile("movdqu %0, %%xmm2" :: "m" ((ctx)->sse[2])); \
asm volatile("movdqu %0, %%xmm3" :: "m" ((ctx)->sse[3])); \
}
#define FLETCHER_4_SSE_SAVE_CTX(ctx) \
{ \
asm volatile("movdqu %%xmm0, %0" : "=m" ((ctx)->sse[0])); \
asm volatile("movdqu %%xmm1, %0" : "=m" ((ctx)->sse[1])); \
asm volatile("movdqu %%xmm2, %0" : "=m" ((ctx)->sse[2])); \
asm volatile("movdqu %%xmm3, %0" : "=m" ((ctx)->sse[3])); \
}
static void
fletcher_4_sse2_native(const void *buf, uint64_t size, zio_cksum_t *unused)
fletcher_4_sse2_native(fletcher_4_ctx_t *ctx, const void *buf, uint64_t size)
{
const uint64_t *ip = buf;
const uint64_t *ipend = (uint64_t *)((uint8_t *)ip + size);
kfpu_begin();
FLETCHER_4_SSE_RESTORE_CTX(ctx);
asm volatile("pxor %xmm4, %xmm4");
for (; ip < ipend; ip += 2) {
@ -118,27 +120,37 @@ fletcher_4_sse2_native(const void *buf, uint64_t size, zio_cksum_t *unused)
asm volatile("paddq %xmm1, %xmm2");
asm volatile("paddq %xmm2, %xmm3");
}
FLETCHER_4_SSE_SAVE_CTX(ctx);
kfpu_end();
}
static void
fletcher_4_sse2_byteswap(const void *buf, uint64_t size, zio_cksum_t *unused)
fletcher_4_sse2_byteswap(fletcher_4_ctx_t *ctx, const void *buf, uint64_t size)
{
const uint32_t *ip = buf;
const uint32_t *ipend = (uint32_t *)((uint8_t *)ip + size);
for (; ip < ipend; ip += 2) {
uint32_t scratch;
kfpu_begin();
asm volatile("bswapl %0" : "=r"(scratch) : "0"(*ip));
asm volatile("movd %0, %%xmm5" :: "r"(scratch));
asm volatile("bswapl %0" : "=r"(scratch) : "0"(*(ip + 1)));
asm volatile("movd %0, %%xmm6" :: "r"(scratch));
FLETCHER_4_SSE_RESTORE_CTX(ctx);
for (; ip < ipend; ip += 2) {
uint32_t scratch1 = BSWAP_32(ip[0]);
uint32_t scratch2 = BSWAP_32(ip[1]);
asm volatile("movd %0, %%xmm5" :: "r"(scratch1));
asm volatile("movd %0, %%xmm6" :: "r"(scratch2));
asm volatile("punpcklqdq %xmm6, %xmm5");
asm volatile("paddq %xmm5, %xmm0");
asm volatile("paddq %xmm0, %xmm1");
asm volatile("paddq %xmm1, %xmm2");
asm volatile("paddq %xmm2, %xmm3");
}
FLETCHER_4_SSE_SAVE_CTX(ctx);
kfpu_end();
}
static boolean_t fletcher_4_sse2_valid(void)
@ -161,15 +173,19 @@ const fletcher_4_ops_t fletcher_4_sse2_ops = {
#if defined(HAVE_SSE2) && defined(HAVE_SSSE3)
static void
fletcher_4_ssse3_byteswap(const void *buf, uint64_t size, zio_cksum_t *unused)
fletcher_4_ssse3_byteswap(fletcher_4_ctx_t *ctx, const void *buf, uint64_t size)
{
static const struct zfs_fletcher_sse_array mask = {
static const zfs_fletcher_sse_t mask = {
.v = { 0x0405060700010203, 0x0C0D0E0F08090A0B }
};
const uint64_t *ip = buf;
const uint64_t *ipend = (uint64_t *)((uint8_t *)ip + size);
kfpu_begin();
FLETCHER_4_SSE_RESTORE_CTX(ctx);
asm volatile("movdqu %0, %%xmm7"::"m" (mask));
asm volatile("pxor %xmm4, %xmm4");
@ -188,6 +204,10 @@ fletcher_4_ssse3_byteswap(const void *buf, uint64_t size, zio_cksum_t *unused)
asm volatile("paddq %xmm1, %xmm2");
asm volatile("paddq %xmm2, %xmm3");
}
FLETCHER_4_SSE_SAVE_CTX(ctx);
kfpu_end();
}
static boolean_t fletcher_4_ssse3_valid(void)