mirror of
https://git.proxmox.com/git/mirror_zfs.git
synced 2025-01-25 01:16:34 +03:00
icp: remove unusued incremental cipher methods
Sponsored-by: Klara, Inc. Sponsored-by: Wasabi Technology, Inc. Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov> Signed-off-by: Rob Norris <rob.norris@klarasystems.com> Closes #16209
This commit is contained in:
parent
57249bcddc
commit
4ed91dc26e
@ -222,8 +222,7 @@ kcf_add_mech_provider(short mech_indx,
|
||||
|
||||
if (fg & CRYPTO_FG_DIGEST || fg & CRYPTO_FG_DIGEST_ATOMIC)
|
||||
class = KCF_DIGEST_CLASS;
|
||||
else if (fg & CRYPTO_FG_ENCRYPT || fg & CRYPTO_FG_DECRYPT ||
|
||||
fg & CRYPTO_FG_ENCRYPT_ATOMIC ||
|
||||
else if (fg & CRYPTO_FG_ENCRYPT_ATOMIC ||
|
||||
fg & CRYPTO_FG_DECRYPT_ATOMIC)
|
||||
class = KCF_CIPHER_CLASS;
|
||||
else if (fg & CRYPTO_FG_MAC || fg & CRYPTO_FG_MAC_ATOMIC)
|
||||
|
@ -89,27 +89,8 @@ typedef struct crypto_digest_ops {
|
||||
* with the kernel using crypto_register_provider(9F).
|
||||
*/
|
||||
typedef struct crypto_cipher_ops {
|
||||
int (*encrypt_init)(crypto_ctx_t *,
|
||||
crypto_mechanism_t *, crypto_key_t *,
|
||||
crypto_spi_ctx_template_t);
|
||||
int (*encrypt)(crypto_ctx_t *,
|
||||
crypto_data_t *, crypto_data_t *);
|
||||
int (*encrypt_update)(crypto_ctx_t *,
|
||||
crypto_data_t *, crypto_data_t *);
|
||||
int (*encrypt_final)(crypto_ctx_t *,
|
||||
crypto_data_t *);
|
||||
int (*encrypt_atomic)(crypto_mechanism_t *, crypto_key_t *,
|
||||
crypto_data_t *, crypto_data_t *, crypto_spi_ctx_template_t);
|
||||
|
||||
int (*decrypt_init)(crypto_ctx_t *,
|
||||
crypto_mechanism_t *, crypto_key_t *,
|
||||
crypto_spi_ctx_template_t);
|
||||
int (*decrypt)(crypto_ctx_t *,
|
||||
crypto_data_t *, crypto_data_t *);
|
||||
int (*decrypt_update)(crypto_ctx_t *,
|
||||
crypto_data_t *, crypto_data_t *);
|
||||
int (*decrypt_final)(crypto_ctx_t *,
|
||||
crypto_data_t *);
|
||||
int (*decrypt_atomic)(crypto_mechanism_t *, crypto_key_t *,
|
||||
crypto_data_t *, crypto_data_t *, crypto_spi_ctx_template_t);
|
||||
} __no_const crypto_cipher_ops_t;
|
||||
@ -172,8 +153,6 @@ typedef struct crypto_ops {
|
||||
typedef uint32_t crypto_func_group_t;
|
||||
|
||||
|
||||
#define CRYPTO_FG_ENCRYPT 0x00000001 /* encrypt_init() */
|
||||
#define CRYPTO_FG_DECRYPT 0x00000002 /* decrypt_init() */
|
||||
#define CRYPTO_FG_DIGEST 0x00000004 /* digest_init() */
|
||||
#define CRYPTO_FG_MAC 0x00001000 /* mac_init() */
|
||||
#define CRYPTO_FG_ENCRYPT_ATOMIC 0x00008000 /* encrypt_atomic() */
|
||||
|
@ -42,47 +42,23 @@
|
||||
static const crypto_mech_info_t aes_mech_info_tab[] = {
|
||||
/* AES_CCM */
|
||||
{SUN_CKM_AES_CCM, AES_CCM_MECH_INFO_TYPE,
|
||||
CRYPTO_FG_ENCRYPT | CRYPTO_FG_ENCRYPT_ATOMIC |
|
||||
CRYPTO_FG_DECRYPT | CRYPTO_FG_DECRYPT_ATOMIC},
|
||||
CRYPTO_FG_ENCRYPT_ATOMIC | CRYPTO_FG_DECRYPT_ATOMIC},
|
||||
/* AES_GCM */
|
||||
{SUN_CKM_AES_GCM, AES_GCM_MECH_INFO_TYPE,
|
||||
CRYPTO_FG_ENCRYPT | CRYPTO_FG_ENCRYPT_ATOMIC |
|
||||
CRYPTO_FG_DECRYPT | CRYPTO_FG_DECRYPT_ATOMIC},
|
||||
CRYPTO_FG_ENCRYPT_ATOMIC | CRYPTO_FG_DECRYPT_ATOMIC},
|
||||
};
|
||||
|
||||
static int aes_encrypt_init(crypto_ctx_t *, crypto_mechanism_t *,
|
||||
crypto_key_t *, crypto_spi_ctx_template_t);
|
||||
static int aes_decrypt_init(crypto_ctx_t *, crypto_mechanism_t *,
|
||||
crypto_key_t *, crypto_spi_ctx_template_t);
|
||||
static int aes_common_init(crypto_ctx_t *, crypto_mechanism_t *,
|
||||
crypto_key_t *, crypto_spi_ctx_template_t, boolean_t);
|
||||
static int aes_common_init_ctx(aes_ctx_t *, crypto_spi_ctx_template_t *,
|
||||
crypto_mechanism_t *, crypto_key_t *, int, boolean_t);
|
||||
static int aes_encrypt_final(crypto_ctx_t *, crypto_data_t *);
|
||||
static int aes_decrypt_final(crypto_ctx_t *, crypto_data_t *);
|
||||
|
||||
static int aes_encrypt(crypto_ctx_t *, crypto_data_t *, crypto_data_t *);
|
||||
static int aes_encrypt_update(crypto_ctx_t *, crypto_data_t *,
|
||||
crypto_data_t *);
|
||||
static int aes_encrypt_atomic(crypto_mechanism_t *, crypto_key_t *,
|
||||
crypto_data_t *, crypto_data_t *, crypto_spi_ctx_template_t);
|
||||
|
||||
static int aes_decrypt(crypto_ctx_t *, crypto_data_t *, crypto_data_t *);
|
||||
static int aes_decrypt_update(crypto_ctx_t *, crypto_data_t *,
|
||||
crypto_data_t *);
|
||||
static int aes_decrypt_atomic(crypto_mechanism_t *, crypto_key_t *,
|
||||
crypto_data_t *, crypto_data_t *, crypto_spi_ctx_template_t);
|
||||
|
||||
static const crypto_cipher_ops_t aes_cipher_ops = {
|
||||
.encrypt_init = aes_encrypt_init,
|
||||
.encrypt = aes_encrypt,
|
||||
.encrypt_update = aes_encrypt_update,
|
||||
.encrypt_final = aes_encrypt_final,
|
||||
.encrypt_atomic = aes_encrypt_atomic,
|
||||
.decrypt_init = aes_decrypt_init,
|
||||
.decrypt = aes_decrypt,
|
||||
.decrypt_update = aes_decrypt_update,
|
||||
.decrypt_final = aes_decrypt_final,
|
||||
.decrypt_atomic = aes_decrypt_atomic
|
||||
};
|
||||
|
||||
@ -190,474 +166,9 @@ init_keysched(crypto_key_t *key, void *newbie)
|
||||
return (CRYPTO_SUCCESS);
|
||||
}
|
||||
|
||||
static int
|
||||
aes_encrypt_init(crypto_ctx_t *ctx, crypto_mechanism_t *mechanism,
|
||||
crypto_key_t *key, crypto_spi_ctx_template_t template)
|
||||
{
|
||||
return (aes_common_init(ctx, mechanism, key, template, B_TRUE));
|
||||
}
|
||||
|
||||
static int
|
||||
aes_decrypt_init(crypto_ctx_t *ctx, crypto_mechanism_t *mechanism,
|
||||
crypto_key_t *key, crypto_spi_ctx_template_t template)
|
||||
{
|
||||
return (aes_common_init(ctx, mechanism, key, template, B_FALSE));
|
||||
}
|
||||
|
||||
|
||||
|
||||
/*
|
||||
* KCF software provider encrypt entry points.
|
||||
*/
|
||||
static int
|
||||
aes_common_init(crypto_ctx_t *ctx, crypto_mechanism_t *mechanism,
|
||||
crypto_key_t *key, crypto_spi_ctx_template_t template,
|
||||
boolean_t is_encrypt_init)
|
||||
{
|
||||
aes_ctx_t *aes_ctx;
|
||||
int rv;
|
||||
|
||||
if ((rv = aes_check_mech_param(mechanism, &aes_ctx))
|
||||
!= CRYPTO_SUCCESS)
|
||||
return (rv);
|
||||
|
||||
rv = aes_common_init_ctx(aes_ctx, template, mechanism, key, KM_SLEEP,
|
||||
is_encrypt_init);
|
||||
if (rv != CRYPTO_SUCCESS) {
|
||||
crypto_free_mode_ctx(aes_ctx);
|
||||
return (rv);
|
||||
}
|
||||
|
||||
ctx->cc_provider_private = aes_ctx;
|
||||
|
||||
return (CRYPTO_SUCCESS);
|
||||
}
|
||||
|
||||
static int
|
||||
aes_encrypt(crypto_ctx_t *ctx, crypto_data_t *plaintext,
|
||||
crypto_data_t *ciphertext)
|
||||
{
|
||||
int ret = CRYPTO_FAILED;
|
||||
|
||||
aes_ctx_t *aes_ctx;
|
||||
size_t saved_length, saved_offset, length_needed;
|
||||
|
||||
ASSERT(ctx->cc_provider_private != NULL);
|
||||
aes_ctx = ctx->cc_provider_private;
|
||||
|
||||
ASSERT(ciphertext != NULL);
|
||||
|
||||
/*
|
||||
* We need to just return the length needed to store the output.
|
||||
* We should not destroy the context for the following case.
|
||||
*/
|
||||
switch (aes_ctx->ac_flags & (CCM_MODE|GCM_MODE)) {
|
||||
case CCM_MODE:
|
||||
length_needed = plaintext->cd_length + aes_ctx->ac_mac_len;
|
||||
break;
|
||||
case GCM_MODE:
|
||||
length_needed = plaintext->cd_length + aes_ctx->ac_tag_len;
|
||||
break;
|
||||
default:
|
||||
__builtin_unreachable();
|
||||
}
|
||||
|
||||
if (ciphertext->cd_length < length_needed) {
|
||||
ciphertext->cd_length = length_needed;
|
||||
return (CRYPTO_BUFFER_TOO_SMALL);
|
||||
}
|
||||
|
||||
saved_length = ciphertext->cd_length;
|
||||
saved_offset = ciphertext->cd_offset;
|
||||
|
||||
/*
|
||||
* Do an update on the specified input data.
|
||||
*/
|
||||
ret = aes_encrypt_update(ctx, plaintext, ciphertext);
|
||||
if (ret != CRYPTO_SUCCESS) {
|
||||
return (ret);
|
||||
}
|
||||
|
||||
/*
|
||||
* For CCM mode, aes_ccm_encrypt_final() will take care of any
|
||||
* left-over unprocessed data, and compute the MAC
|
||||
*/
|
||||
if (aes_ctx->ac_flags & CCM_MODE) {
|
||||
/*
|
||||
* ccm_encrypt_final() will compute the MAC and append
|
||||
* it to existing ciphertext. So, need to adjust the left over
|
||||
* length value accordingly
|
||||
*/
|
||||
|
||||
/* order of following 2 lines MUST not be reversed */
|
||||
ciphertext->cd_offset = ciphertext->cd_length;
|
||||
ciphertext->cd_length = saved_length - ciphertext->cd_length;
|
||||
ret = ccm_encrypt_final((ccm_ctx_t *)aes_ctx, ciphertext,
|
||||
AES_BLOCK_LEN, aes_encrypt_block, aes_xor_block);
|
||||
if (ret != CRYPTO_SUCCESS) {
|
||||
return (ret);
|
||||
}
|
||||
|
||||
if (plaintext != ciphertext) {
|
||||
ciphertext->cd_length =
|
||||
ciphertext->cd_offset - saved_offset;
|
||||
}
|
||||
ciphertext->cd_offset = saved_offset;
|
||||
} else if (aes_ctx->ac_flags & GCM_MODE) {
|
||||
/*
|
||||
* gcm_encrypt_final() will compute the MAC and append
|
||||
* it to existing ciphertext. So, need to adjust the left over
|
||||
* length value accordingly
|
||||
*/
|
||||
|
||||
/* order of following 2 lines MUST not be reversed */
|
||||
ciphertext->cd_offset = ciphertext->cd_length;
|
||||
ciphertext->cd_length = saved_length - ciphertext->cd_length;
|
||||
ret = gcm_encrypt_final((gcm_ctx_t *)aes_ctx, ciphertext,
|
||||
AES_BLOCK_LEN, aes_encrypt_block, aes_copy_block,
|
||||
aes_xor_block);
|
||||
if (ret != CRYPTO_SUCCESS) {
|
||||
return (ret);
|
||||
}
|
||||
|
||||
if (plaintext != ciphertext) {
|
||||
ciphertext->cd_length =
|
||||
ciphertext->cd_offset - saved_offset;
|
||||
}
|
||||
ciphertext->cd_offset = saved_offset;
|
||||
}
|
||||
|
||||
ASSERT(aes_ctx->ac_remainder_len == 0);
|
||||
(void) aes_free_context(ctx);
|
||||
|
||||
return (ret);
|
||||
}
|
||||
|
||||
|
||||
static int
|
||||
aes_decrypt(crypto_ctx_t *ctx, crypto_data_t *ciphertext,
|
||||
crypto_data_t *plaintext)
|
||||
{
|
||||
int ret = CRYPTO_FAILED;
|
||||
|
||||
aes_ctx_t *aes_ctx;
|
||||
off_t saved_offset;
|
||||
size_t saved_length, length_needed;
|
||||
|
||||
ASSERT(ctx->cc_provider_private != NULL);
|
||||
aes_ctx = ctx->cc_provider_private;
|
||||
|
||||
ASSERT(plaintext != NULL);
|
||||
|
||||
/*
|
||||
* Return length needed to store the output.
|
||||
* Do not destroy context when plaintext buffer is too small.
|
||||
*
|
||||
* CCM: plaintext is MAC len smaller than cipher text
|
||||
* GCM: plaintext is TAG len smaller than cipher text
|
||||
*/
|
||||
switch (aes_ctx->ac_flags & (CCM_MODE|GCM_MODE)) {
|
||||
case CCM_MODE:
|
||||
length_needed = aes_ctx->ac_processed_data_len;
|
||||
break;
|
||||
case GCM_MODE:
|
||||
length_needed = ciphertext->cd_length - aes_ctx->ac_tag_len;
|
||||
break;
|
||||
default:
|
||||
__builtin_unreachable();
|
||||
}
|
||||
|
||||
if (plaintext->cd_length < length_needed) {
|
||||
plaintext->cd_length = length_needed;
|
||||
return (CRYPTO_BUFFER_TOO_SMALL);
|
||||
}
|
||||
|
||||
saved_offset = plaintext->cd_offset;
|
||||
saved_length = plaintext->cd_length;
|
||||
|
||||
/*
|
||||
* Do an update on the specified input data.
|
||||
*/
|
||||
ret = aes_decrypt_update(ctx, ciphertext, plaintext);
|
||||
if (ret != CRYPTO_SUCCESS) {
|
||||
goto cleanup;
|
||||
}
|
||||
|
||||
if (aes_ctx->ac_flags & CCM_MODE) {
|
||||
ASSERT(aes_ctx->ac_processed_data_len == aes_ctx->ac_data_len);
|
||||
ASSERT(aes_ctx->ac_processed_mac_len == aes_ctx->ac_mac_len);
|
||||
|
||||
/* order of following 2 lines MUST not be reversed */
|
||||
plaintext->cd_offset = plaintext->cd_length;
|
||||
plaintext->cd_length = saved_length - plaintext->cd_length;
|
||||
|
||||
ret = ccm_decrypt_final((ccm_ctx_t *)aes_ctx, plaintext,
|
||||
AES_BLOCK_LEN, aes_encrypt_block, aes_copy_block,
|
||||
aes_xor_block);
|
||||
if (ret == CRYPTO_SUCCESS) {
|
||||
if (plaintext != ciphertext) {
|
||||
plaintext->cd_length =
|
||||
plaintext->cd_offset - saved_offset;
|
||||
}
|
||||
} else {
|
||||
plaintext->cd_length = saved_length;
|
||||
}
|
||||
|
||||
plaintext->cd_offset = saved_offset;
|
||||
} else if (aes_ctx->ac_flags & GCM_MODE) {
|
||||
/* order of following 2 lines MUST not be reversed */
|
||||
plaintext->cd_offset = plaintext->cd_length;
|
||||
plaintext->cd_length = saved_length - plaintext->cd_length;
|
||||
|
||||
ret = gcm_decrypt_final((gcm_ctx_t *)aes_ctx, plaintext,
|
||||
AES_BLOCK_LEN, aes_encrypt_block, aes_xor_block);
|
||||
if (ret == CRYPTO_SUCCESS) {
|
||||
if (plaintext != ciphertext) {
|
||||
plaintext->cd_length =
|
||||
plaintext->cd_offset - saved_offset;
|
||||
}
|
||||
} else {
|
||||
plaintext->cd_length = saved_length;
|
||||
}
|
||||
|
||||
plaintext->cd_offset = saved_offset;
|
||||
}
|
||||
|
||||
ASSERT(aes_ctx->ac_remainder_len == 0);
|
||||
|
||||
cleanup:
|
||||
(void) aes_free_context(ctx);
|
||||
|
||||
return (ret);
|
||||
}
|
||||
|
||||
|
||||
static int
|
||||
aes_encrypt_update(crypto_ctx_t *ctx, crypto_data_t *plaintext,
|
||||
crypto_data_t *ciphertext)
|
||||
{
|
||||
off_t saved_offset;
|
||||
size_t saved_length, out_len;
|
||||
int ret = CRYPTO_SUCCESS;
|
||||
aes_ctx_t *aes_ctx;
|
||||
|
||||
ASSERT(ctx->cc_provider_private != NULL);
|
||||
aes_ctx = ctx->cc_provider_private;
|
||||
|
||||
ASSERT(ciphertext != NULL);
|
||||
|
||||
/* compute number of bytes that will hold the ciphertext */
|
||||
out_len = aes_ctx->ac_remainder_len;
|
||||
out_len += plaintext->cd_length;
|
||||
out_len &= ~(AES_BLOCK_LEN - 1);
|
||||
|
||||
/* return length needed to store the output */
|
||||
if (ciphertext->cd_length < out_len) {
|
||||
ciphertext->cd_length = out_len;
|
||||
return (CRYPTO_BUFFER_TOO_SMALL);
|
||||
}
|
||||
|
||||
saved_offset = ciphertext->cd_offset;
|
||||
saved_length = ciphertext->cd_length;
|
||||
|
||||
/*
|
||||
* Do the AES update on the specified input data.
|
||||
*/
|
||||
switch (plaintext->cd_format) {
|
||||
case CRYPTO_DATA_RAW:
|
||||
ret = crypto_update_iov(ctx->cc_provider_private,
|
||||
plaintext, ciphertext, aes_encrypt_contiguous_blocks);
|
||||
break;
|
||||
case CRYPTO_DATA_UIO:
|
||||
ret = crypto_update_uio(ctx->cc_provider_private,
|
||||
plaintext, ciphertext, aes_encrypt_contiguous_blocks);
|
||||
break;
|
||||
default:
|
||||
ret = CRYPTO_ARGUMENTS_BAD;
|
||||
}
|
||||
|
||||
if (ret == CRYPTO_SUCCESS) {
|
||||
if (plaintext != ciphertext)
|
||||
ciphertext->cd_length =
|
||||
ciphertext->cd_offset - saved_offset;
|
||||
} else {
|
||||
ciphertext->cd_length = saved_length;
|
||||
}
|
||||
ciphertext->cd_offset = saved_offset;
|
||||
|
||||
return (ret);
|
||||
}
|
||||
|
||||
|
||||
static int
|
||||
aes_decrypt_update(crypto_ctx_t *ctx, crypto_data_t *ciphertext,
|
||||
crypto_data_t *plaintext)
|
||||
{
|
||||
off_t saved_offset;
|
||||
size_t saved_length;
|
||||
int ret = CRYPTO_SUCCESS;
|
||||
|
||||
ASSERT(ctx->cc_provider_private != NULL);
|
||||
|
||||
ASSERT(plaintext != NULL);
|
||||
|
||||
saved_offset = plaintext->cd_offset;
|
||||
saved_length = plaintext->cd_length;
|
||||
|
||||
/*
|
||||
* Do the AES update on the specified input data.
|
||||
*/
|
||||
switch (ciphertext->cd_format) {
|
||||
case CRYPTO_DATA_RAW:
|
||||
ret = crypto_update_iov(ctx->cc_provider_private,
|
||||
ciphertext, plaintext, aes_decrypt_contiguous_blocks);
|
||||
break;
|
||||
case CRYPTO_DATA_UIO:
|
||||
ret = crypto_update_uio(ctx->cc_provider_private,
|
||||
ciphertext, plaintext, aes_decrypt_contiguous_blocks);
|
||||
break;
|
||||
default:
|
||||
ret = CRYPTO_ARGUMENTS_BAD;
|
||||
}
|
||||
|
||||
if (ret == CRYPTO_SUCCESS) {
|
||||
if (ciphertext != plaintext)
|
||||
plaintext->cd_length =
|
||||
plaintext->cd_offset - saved_offset;
|
||||
} else {
|
||||
plaintext->cd_length = saved_length;
|
||||
}
|
||||
plaintext->cd_offset = saved_offset;
|
||||
|
||||
|
||||
return (ret);
|
||||
}
|
||||
|
||||
static int
|
||||
aes_encrypt_final(crypto_ctx_t *ctx, crypto_data_t *data)
|
||||
{
|
||||
aes_ctx_t *aes_ctx;
|
||||
int ret;
|
||||
|
||||
ASSERT(ctx->cc_provider_private != NULL);
|
||||
aes_ctx = ctx->cc_provider_private;
|
||||
|
||||
if (data->cd_format != CRYPTO_DATA_RAW &&
|
||||
data->cd_format != CRYPTO_DATA_UIO) {
|
||||
return (CRYPTO_ARGUMENTS_BAD);
|
||||
}
|
||||
|
||||
if (aes_ctx->ac_flags & CCM_MODE) {
|
||||
ret = ccm_encrypt_final((ccm_ctx_t *)aes_ctx, data,
|
||||
AES_BLOCK_LEN, aes_encrypt_block, aes_xor_block);
|
||||
if (ret != CRYPTO_SUCCESS) {
|
||||
return (ret);
|
||||
}
|
||||
} else if (aes_ctx->ac_flags & GCM_MODE) {
|
||||
size_t saved_offset = data->cd_offset;
|
||||
|
||||
ret = gcm_encrypt_final((gcm_ctx_t *)aes_ctx, data,
|
||||
AES_BLOCK_LEN, aes_encrypt_block, aes_copy_block,
|
||||
aes_xor_block);
|
||||
if (ret != CRYPTO_SUCCESS) {
|
||||
return (ret);
|
||||
}
|
||||
data->cd_length = data->cd_offset - saved_offset;
|
||||
data->cd_offset = saved_offset;
|
||||
}
|
||||
|
||||
(void) aes_free_context(ctx);
|
||||
|
||||
return (CRYPTO_SUCCESS);
|
||||
}
|
||||
|
||||
static int
|
||||
aes_decrypt_final(crypto_ctx_t *ctx, crypto_data_t *data)
|
||||
{
|
||||
aes_ctx_t *aes_ctx;
|
||||
int ret;
|
||||
off_t saved_offset;
|
||||
size_t saved_length;
|
||||
|
||||
ASSERT(ctx->cc_provider_private != NULL);
|
||||
aes_ctx = ctx->cc_provider_private;
|
||||
|
||||
if (data->cd_format != CRYPTO_DATA_RAW &&
|
||||
data->cd_format != CRYPTO_DATA_UIO) {
|
||||
return (CRYPTO_ARGUMENTS_BAD);
|
||||
}
|
||||
|
||||
/*
|
||||
* There must be no unprocessed ciphertext.
|
||||
* This happens if the length of the last ciphertext is
|
||||
* not a multiple of the AES block length.
|
||||
*/
|
||||
if (aes_ctx->ac_remainder_len > 0)
|
||||
return (CRYPTO_ENCRYPTED_DATA_LEN_RANGE);
|
||||
|
||||
if (aes_ctx->ac_flags & CCM_MODE) {
|
||||
/*
|
||||
* This is where all the plaintext is returned, make sure
|
||||
* the plaintext buffer is big enough
|
||||
*/
|
||||
size_t pt_len = aes_ctx->ac_data_len;
|
||||
if (data->cd_length < pt_len) {
|
||||
data->cd_length = pt_len;
|
||||
return (CRYPTO_BUFFER_TOO_SMALL);
|
||||
}
|
||||
|
||||
ASSERT(aes_ctx->ac_processed_data_len == pt_len);
|
||||
ASSERT(aes_ctx->ac_processed_mac_len == aes_ctx->ac_mac_len);
|
||||
saved_offset = data->cd_offset;
|
||||
saved_length = data->cd_length;
|
||||
ret = ccm_decrypt_final((ccm_ctx_t *)aes_ctx, data,
|
||||
AES_BLOCK_LEN, aes_encrypt_block, aes_copy_block,
|
||||
aes_xor_block);
|
||||
if (ret == CRYPTO_SUCCESS) {
|
||||
data->cd_length = data->cd_offset - saved_offset;
|
||||
} else {
|
||||
data->cd_length = saved_length;
|
||||
}
|
||||
|
||||
data->cd_offset = saved_offset;
|
||||
if (ret != CRYPTO_SUCCESS) {
|
||||
return (ret);
|
||||
}
|
||||
} else if (aes_ctx->ac_flags & GCM_MODE) {
|
||||
/*
|
||||
* This is where all the plaintext is returned, make sure
|
||||
* the plaintext buffer is big enough
|
||||
*/
|
||||
gcm_ctx_t *ctx = (gcm_ctx_t *)aes_ctx;
|
||||
size_t pt_len = ctx->gcm_processed_data_len - ctx->gcm_tag_len;
|
||||
|
||||
if (data->cd_length < pt_len) {
|
||||
data->cd_length = pt_len;
|
||||
return (CRYPTO_BUFFER_TOO_SMALL);
|
||||
}
|
||||
|
||||
saved_offset = data->cd_offset;
|
||||
saved_length = data->cd_length;
|
||||
ret = gcm_decrypt_final((gcm_ctx_t *)aes_ctx, data,
|
||||
AES_BLOCK_LEN, aes_encrypt_block, aes_xor_block);
|
||||
if (ret == CRYPTO_SUCCESS) {
|
||||
data->cd_length = data->cd_offset - saved_offset;
|
||||
} else {
|
||||
data->cd_length = saved_length;
|
||||
}
|
||||
|
||||
data->cd_offset = saved_offset;
|
||||
if (ret != CRYPTO_SUCCESS) {
|
||||
return (ret);
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
(void) aes_free_context(ctx);
|
||||
|
||||
return (CRYPTO_SUCCESS);
|
||||
}
|
||||
|
||||
static int
|
||||
aes_encrypt_atomic(crypto_mechanism_t *mechanism,
|
||||
crypto_key_t *key, crypto_data_t *plaintext, crypto_data_t *ciphertext,
|
||||
|
Loading…
Reference in New Issue
Block a user