Implementation of SSE optimized Fletcher-4

Builds off of 1eeb4562 (Implementation of AVX2 optimized Fletcher-4)
This commit adds another implementation of the Fletcher-4 algorithm.
It is automatically selected at module load if it benchmarks higher
than all other available implementations.

The module benchmark was also amended to analyze the performance of
the byteswap-ed version of Fletcher-4, as well as the non-byteswaped
version. The average performance of the two is used to select the
the fastest implementation available on the host system.

Adds a pair of fields to an existing zcommon module parameter:
-  zfs_fletcher_4_impl (str)
    "sse2"    - new SSE2 implementation if available
    "ssse3"   - new SSSE3 implementation if available

Signed-off-by: Tyler J. Stachecki <stachecki.tyler@gmail.com>
Signed-off-by: Gvozden Neskovic <neskovic@gmail.com>
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Closes #4789
This commit is contained in:
Tyler J. Stachecki 2016-06-23 23:32:40 -04:00 committed by Brian Behlendorf
parent dfbc86309f
commit 35a76a0366
6 changed files with 243 additions and 5 deletions

View File

@ -61,6 +61,14 @@ typedef struct fletcher_4_func {
const char *name; const char *name;
} fletcher_4_ops_t; } fletcher_4_ops_t;
#if defined(HAVE_SSE2)
extern const fletcher_4_ops_t fletcher_4_sse2_ops;
#endif
#if defined(HAVE_SSE2) && defined(HAVE_SSSE3)
extern const fletcher_4_ops_t fletcher_4_ssse3_ops;
#endif
#if defined(HAVE_AVX) && defined(HAVE_AVX2) #if defined(HAVE_AVX) && defined(HAVE_AVX2)
extern const fletcher_4_ops_t fletcher_4_avx2_ops; extern const fletcher_4_ops_t fletcher_4_avx2_ops;
#endif #endif

View File

@ -23,6 +23,7 @@ KERNEL_C = \
zfs_deleg.c \ zfs_deleg.c \
zfs_fletcher.c \ zfs_fletcher.c \
zfs_fletcher_intel.c \ zfs_fletcher_intel.c \
zfs_fletcher_sse.c \
zfs_namecheck.c \ zfs_namecheck.c \
zfs_prop.c \ zfs_prop.c \
zfs_uio.c \ zfs_uio.c \

View File

@ -838,11 +838,15 @@ Default value: \fB67,108,864\fR.
.RS 12n .RS 12n
Select a fletcher 4 implementation. Select a fletcher 4 implementation.
.sp .sp
Supported selectors are: \fBfastest\fR, \fBscalar\fR, and \fBavx2\fR when Supported selectors are: \fBfastest\fR, \fBscalar\fR, \fBsse2\fR, \fBssse3\fR,
AVX2 is supported by the processor. If multiple implementations of fletcher 4 and \fBavx2\fR. All of the selectors except \fBfastest\fR and \fBscalar\fR
are available the \fBfastest\fR will be chosen using a micro benchmark. require instruction set extensions to be available and will only appear if ZFS
Selecting \fBscalar\fR results in the original CPU based calculation being detects that they are present at runtime. If multiple implementations of
used, \fBavx2\fR uses the AVX2 vector instructions to compute a fletcher 4. fletcher 4 are available, the \fBfastest\fR will be chosen using a micro
benchmark. Selecting \fBscalar\fR results in the original CPU based calculation
being used. Selecting any option other than \fBfastest\fR and \fBscalar\fR
results in vector instructions from the respective CPU instruction set being
used.
.sp .sp
Default value: \fBfastest\fR. Default value: \fBfastest\fR.
.RE .RE

View File

@ -17,3 +17,4 @@ $(MODULE)-objs += zfs_uio.o
$(MODULE)-objs += zpool_prop.o $(MODULE)-objs += zpool_prop.o
$(MODULE)-$(CONFIG_X86) += zfs_fletcher_intel.o $(MODULE)-$(CONFIG_X86) += zfs_fletcher_intel.o
$(MODULE)-$(CONFIG_X86) += zfs_fletcher_sse.o

View File

@ -149,6 +149,12 @@ static const fletcher_4_ops_t fletcher_4_scalar_ops = {
static const fletcher_4_ops_t *fletcher_4_algos[] = { static const fletcher_4_ops_t *fletcher_4_algos[] = {
&fletcher_4_scalar_ops, &fletcher_4_scalar_ops,
#if defined(HAVE_SSE2)
&fletcher_4_sse2_ops,
#endif
#if defined(HAVE_SSE2) && defined(HAVE_SSSE3)
&fletcher_4_ssse3_ops,
#endif
#if defined(HAVE_AVX) && defined(HAVE_AVX2) #if defined(HAVE_AVX) && defined(HAVE_AVX2)
&fletcher_4_avx2_ops, &fletcher_4_avx2_ops,
#endif #endif
@ -157,6 +163,12 @@ static const fletcher_4_ops_t *fletcher_4_algos[] = {
static enum fletcher_selector { static enum fletcher_selector {
FLETCHER_FASTEST = 0, FLETCHER_FASTEST = 0,
FLETCHER_SCALAR, FLETCHER_SCALAR,
#if defined(HAVE_SSE2)
FLETCHER_SSE2,
#endif
#if defined(HAVE_SSE2) && defined(HAVE_SSSE3)
FLETCHER_SSSE3,
#endif
#if defined(HAVE_AVX) && defined(HAVE_AVX2) #if defined(HAVE_AVX) && defined(HAVE_AVX2)
FLETCHER_AVX2, FLETCHER_AVX2,
#endif #endif
@ -169,6 +181,12 @@ static struct fletcher_4_impl_selector {
} fletcher_4_impl_selectors[] = { } fletcher_4_impl_selectors[] = {
[ FLETCHER_FASTEST ] = { "fastest", NULL }, [ FLETCHER_FASTEST ] = { "fastest", NULL },
[ FLETCHER_SCALAR ] = { "scalar", &fletcher_4_scalar_ops }, [ FLETCHER_SCALAR ] = { "scalar", &fletcher_4_scalar_ops },
#if defined(HAVE_SSE2)
[ FLETCHER_SSE2 ] = { "sse2", &fletcher_4_sse2_ops },
#endif
#if defined(HAVE_SSE2) && defined(HAVE_SSSE3)
[ FLETCHER_SSSE3 ] = { "ssse3", &fletcher_4_ssse3_ops },
#endif
#if defined(HAVE_AVX) && defined(HAVE_AVX2) #if defined(HAVE_AVX) && defined(HAVE_AVX2)
[ FLETCHER_AVX2 ] = { "avx2", &fletcher_4_avx2_ops }, [ FLETCHER_AVX2 ] = { "avx2", &fletcher_4_avx2_ops },
#endif #endif
@ -407,6 +425,7 @@ fletcher_4_init(void)
ops->init(&zc); ops->init(&zc);
do { do {
ops->compute(databuf, data_size, &zc); ops->compute(databuf, data_size, &zc);
ops->compute_byteswap(databuf, data_size, &zc);
run_count++; run_count++;
} while (gethrtime() < start + bench_ns); } while (gethrtime() < start + bench_ns);
if (ops->fini != NULL) if (ops->fini != NULL)

View File

@ -0,0 +1,205 @@
/*
* Implement fast Fletcher4 with SSE2,SSSE3 instructions. (x86)
*
* Use the 128-bit SSE2/SSSE3 SIMD instructions and registers to compute
* Fletcher4 in four incremental 64-bit parallel accumulator streams,
* and then combine the streams to form the final four checksum words.
* This implementation is a derivative of the AVX SIMD implementation by
* James Guilford and Jinshan Xiong from Intel (see zfs_fletcher_intel.c).
*
* Copyright (C) 2016 Tyler J. Stachecki.
*
* Authors:
* Tyler J. Stachecki <stachecki.tyler@gmail.com>
*
* This software is available to you under a choice of one of two
* licenses. You may choose to be licensed under the terms of the GNU
* General Public License (GPL) Version 2, available from the file
* COPYING in the main directory of this source tree, or the
* OpenIB.org BSD license below:
*
* Redistribution and use in source and binary forms, with or
* without modification, are permitted provided that the following
* conditions are met:
*
* - Redistributions of source code must retain the above
* copyright notice, this list of conditions and the following
* disclaimer.
*
* - Redistributions in binary form must reproduce the above
* copyright notice, this list of conditions and the following
* disclaimer in the documentation and/or other materials
* provided with the distribution.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
* NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
* BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
* ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
* CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*/
#if defined(HAVE_SSE2)
#include <linux/simd_x86.h>
#include <sys/spa_checksum.h>
#include <zfs_fletcher.h>
struct zfs_fletcher_sse_array {
uint64_t v[2] __attribute__((aligned(16)));
};
static void
fletcher_4_sse2_init(zio_cksum_t *zcp)
{
kfpu_begin();
/* clear sse registers */
asm volatile("pxor %xmm0, %xmm0");
asm volatile("pxor %xmm1, %xmm1");
asm volatile("pxor %xmm2, %xmm2");
asm volatile("pxor %xmm3, %xmm3");
}
static void
fletcher_4_sse2_fini(zio_cksum_t *zcp)
{
struct zfs_fletcher_sse_array a, b, c, d;
uint64_t A, B, C, D;
asm volatile("movdqa %%xmm0, %0":"=m" (a.v));
asm volatile("movdqa %%xmm1, %0":"=m" (b.v));
asm volatile("psllq $0x2, %xmm2");
asm volatile("movdqa %%xmm2, %0":"=m" (c.v));
asm volatile("psllq $0x3, %xmm3");
asm volatile("movdqa %%xmm3, %0":"=m" (d.v));
kfpu_end();
/*
* The mixing matrix for checksum calculation is:
* a = a0 + a1
* b = 2b0 + 2b1 - a1
* c = 4c0 - b0 + 4c1 -3b1
* d = 8d0 - 4c0 + 8d1 - 8c1 + b1;
*
* c and d are multiplied by 4 and 8, respectively,
* before spilling the vectors out to memory.
*/
A = a.v[0] + a.v[1];
B = 2*b.v[0] + 2*b.v[1] - a.v[1];
C = c.v[0] - b.v[0] + c.v[1] - 3*b.v[1];
D = d.v[0] - c.v[0] + d.v[1] - 2*c.v[1] + b.v[1];
ZIO_SET_CHECKSUM(zcp, A, B, C, D);
}
static void
fletcher_4_sse2(const void *buf, uint64_t size, zio_cksum_t *unused)
{
const uint64_t *ip = buf;
const uint64_t *ipend = (uint64_t *)((uint8_t *)ip + size);
asm volatile("pxor %xmm4, %xmm4");
for (; ip < ipend; ip += 2) {
asm volatile("movdqu %0, %%xmm5" :: "m"(*ip));
asm volatile("movdqa %xmm5, %xmm6");
asm volatile("punpckldq %xmm4, %xmm5");
asm volatile("punpckhdq %xmm4, %xmm6");
asm volatile("paddq %xmm5, %xmm0");
asm volatile("paddq %xmm0, %xmm1");
asm volatile("paddq %xmm1, %xmm2");
asm volatile("paddq %xmm2, %xmm3");
asm volatile("paddq %xmm6, %xmm0");
asm volatile("paddq %xmm0, %xmm1");
asm volatile("paddq %xmm1, %xmm2");
asm volatile("paddq %xmm2, %xmm3");
}
}
static void
fletcher_4_sse2_byteswap(const void *buf, uint64_t size, zio_cksum_t *unused)
{
const uint32_t *ip = buf;
const uint32_t *ipend = (uint32_t *)((uint8_t *)ip + size);
for (; ip < ipend; ip += 2) {
uint32_t scratch;
asm volatile("bswapl %0" : "=r"(scratch) : "0"(*ip));
asm volatile("movd %0, %%xmm5" :: "r"(scratch));
asm volatile("bswapl %0" : "=r"(scratch) : "0"(*(ip + 1)));
asm volatile("movd %0, %%xmm6" :: "r"(scratch));
asm volatile("punpcklqdq %xmm6, %xmm5");
asm volatile("paddq %xmm5, %xmm0");
asm volatile("paddq %xmm0, %xmm1");
asm volatile("paddq %xmm1, %xmm2");
asm volatile("paddq %xmm2, %xmm3");
}
}
static boolean_t fletcher_4_sse2_valid(void)
{
return (zfs_sse2_available());
}
const fletcher_4_ops_t fletcher_4_sse2_ops = {
.init = fletcher_4_sse2_init,
.fini = fletcher_4_sse2_fini,
.compute = fletcher_4_sse2,
.compute_byteswap = fletcher_4_sse2_byteswap,
.valid = fletcher_4_sse2_valid,
.name = "sse2"
};
#endif /* defined(HAVE_SSE2) */
#if defined(HAVE_SSE2) && defined(HAVE_SSSE3)
static void
fletcher_4_ssse3_byteswap(const void *buf, uint64_t size, zio_cksum_t *unused)
{
static const struct zfs_fletcher_sse_array mask = {
.v = { 0x0405060700010203, 0x0C0D0E0F08090A0B }
};
const uint64_t *ip = buf;
const uint64_t *ipend = (uint64_t *)((uint8_t *)ip + size);
asm volatile("movdqa %0, %%xmm7"::"m" (mask));
asm volatile("pxor %xmm4, %xmm4");
for (; ip < ipend; ip += 2) {
asm volatile("movdqu %0, %%xmm5"::"m" (*ip));
asm volatile("pshufb %xmm7, %xmm5");
asm volatile("movdqa %xmm5, %xmm6");
asm volatile("punpckldq %xmm4, %xmm5");
asm volatile("punpckhdq %xmm4, %xmm6");
asm volatile("paddq %xmm5, %xmm0");
asm volatile("paddq %xmm0, %xmm1");
asm volatile("paddq %xmm1, %xmm2");
asm volatile("paddq %xmm2, %xmm3");
asm volatile("paddq %xmm6, %xmm0");
asm volatile("paddq %xmm0, %xmm1");
asm volatile("paddq %xmm1, %xmm2");
asm volatile("paddq %xmm2, %xmm3");
}
}
static boolean_t fletcher_4_ssse3_valid(void)
{
return (zfs_sse2_available() && zfs_ssse3_available());
}
const fletcher_4_ops_t fletcher_4_ssse3_ops = {
.init = fletcher_4_sse2_init,
.fini = fletcher_4_sse2_fini,
.compute = fletcher_4_sse2,
.compute_byteswap = fletcher_4_ssse3_byteswap,
.valid = fletcher_4_ssse3_valid,
.name = "ssse3"
};
#endif /* defined(HAVE_SSE2) && defined(HAVE_SSSE3) */