Raw DRR_OBJECT records must write raw data

b1d21733 made it possible for empty metadnode blocks to be
compressed to a hole, fixing a bug that would cause invalid
metadnode MACs when a send stream attempted to free objects
and allowing the blocks to be reclaimed when they were no
longer needed. However, this patch also introduced a race
condition; if a txg sync occurred after a DRR_OBJECT_RANGE
record was received but before any objects were added, the
metadnode block would be compressed to a hole and lose all
of its encryption parameters. This would cause subsequent
DRR_OBJECT records to fail when they attempted to write
their data into an unencrypted block. This patch defers the
DRR_OBJECT_RANGE handling to receive_object() so that the
encryption parameters are set with each object that is
written into that block.

Reviewed-by: Kash Pande <kash@tripleback.net>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Tom Caputi <tcaputi@datto.com>
Closes #7215 
Closes #7236
This commit is contained in:
Tom Caputi 2018-02-27 12:04:05 -05:00 committed by Brian Behlendorf
parent 8b5814393f
commit 095495e008
4 changed files with 72 additions and 55 deletions

View File

@ -821,8 +821,9 @@ void dmu_assign_arcbuf_by_dnode(dnode_t *dn, uint64_t offset,
void dmu_assign_arcbuf_by_dbuf(dmu_buf_t *handle, uint64_t offset,
struct arc_buf *buf, dmu_tx_t *tx);
#define dmu_assign_arcbuf dmu_assign_arcbuf_by_dbuf
void dmu_convert_to_raw(dmu_buf_t *handle, boolean_t byteorder,
const uint8_t *salt, const uint8_t *iv, const uint8_t *mac, dmu_tx_t *tx);
int dmu_convert_mdn_block_to_raw(objset_t *os, uint64_t firstobj,
boolean_t byteorder, const uint8_t *salt, const uint8_t *iv,
const uint8_t *mac, dmu_tx_t *tx);
void dmu_copy_from_buf(objset_t *os, uint64_t object, uint64_t offset,
dmu_buf_t *handle, dmu_tx_t *tx);
#ifdef HAVE_UIO_ZEROCOPY

View File

@ -3465,8 +3465,7 @@ dbuf_check_crypt(dbuf_dirty_record_t *dr)
* Writing raw encrypted data requires the db's arc buffer
* to be converted to raw by the caller.
*/
ASSERT(arc_is_encrypted(db->db_buf) ||
db->db.db_object == DMU_META_DNODE_OBJECT);
ASSERT(arc_is_encrypted(db->db_buf));
}
}

View File

@ -1542,29 +1542,39 @@ dmu_return_arcbuf(arc_buf_t *buf)
arc_buf_destroy(buf, FTAG);
}
void
dmu_convert_to_raw(dmu_buf_t *handle, boolean_t byteorder, const uint8_t *salt,
const uint8_t *iv, const uint8_t *mac, dmu_tx_t *tx)
int
dmu_convert_mdn_block_to_raw(objset_t *os, uint64_t firstobj,
boolean_t byteorder, const uint8_t *salt, const uint8_t *iv,
const uint8_t *mac, dmu_tx_t *tx)
{
dmu_object_type_t type;
dmu_buf_impl_t *db = (dmu_buf_impl_t *)handle;
uint64_t dsobj = dmu_objset_id(db->db_objset);
int ret;
dmu_buf_t *handle = NULL;
dmu_buf_impl_t *db = NULL;
uint64_t offset = firstobj * DNODE_MIN_SIZE;
uint64_t dsobj = dmu_objset_id(os);
ASSERT3P(db->db_buf, !=, NULL);
ASSERT3U(dsobj, !=, 0);
ret = dmu_buf_hold_by_dnode(DMU_META_DNODE(os), offset, FTAG, &handle,
DMU_READ_PREFETCH | DMU_READ_NO_DECRYPT);
if (ret != 0)
return (ret);
dmu_buf_will_change_crypt_params(handle, tx);
DB_DNODE_ENTER(db);
type = DB_DNODE(db)->dn_type;
DB_DNODE_EXIT(db);
db = (dmu_buf_impl_t *)handle;
ASSERT3P(db->db_buf, !=, NULL);
ASSERT3U(dsobj, !=, 0);
/*
* This technically violates the assumption the dmu code makes
* that dnode blocks are only released in syncing context.
*/
(void) arc_release(db->db_buf, db);
arc_convert_to_raw(db->db_buf, dsobj, byteorder, type, salt, iv, mac);
arc_convert_to_raw(db->db_buf, dsobj, byteorder, DMU_OT_DNODE,
salt, iv, mac);
dmu_buf_rele(handle, FTAG);
return (0);
}
void

View File

@ -2167,6 +2167,14 @@ struct receive_writer_arg {
uint64_t last_offset;
uint64_t max_object; /* highest object ID referenced in stream */
uint64_t bytes_read; /* bytes read when current record created */
/* Encryption parameters for the last received DRR_OBJECT_RANGE */
uint64_t or_firstobj;
uint64_t or_numslots;
uint8_t or_salt[ZIO_DATA_SALT_LEN];
uint8_t or_iv[ZIO_DATA_IV_LEN];
uint8_t or_mac[ZIO_DATA_MAC_LEN];
boolean_t or_byteorder;
};
struct objlist {
@ -2448,7 +2456,13 @@ receive_object(struct receive_writer_arg *rwa, struct drr_object *drro,
}
if (rwa->raw) {
if (drro->drr_raw_bonuslen < drro->drr_bonuslen ||
/*
* We should have received a DRR_OBJECT_RANGE record
* containing this block and stored it in rwa.
*/
if (drro->drr_object < rwa->or_firstobj ||
drro->drr_object >= rwa->or_firstobj + rwa->or_numslots ||
drro->drr_raw_bonuslen < drro->drr_bonuslen ||
drro->drr_indblkshift > SPA_MAXBLOCKSHIFT ||
drro->drr_nlevels > DN_MAX_LEVELS ||
drro->drr_nblkptr > DN_MAX_NBLKPTR ||
@ -2611,8 +2625,27 @@ receive_object(struct receive_writer_arg *rwa, struct drr_object *drro,
return (SET_ERROR(EINVAL));
}
if (rwa->raw)
VERIFY0(dmu_object_dirty_raw(rwa->os, drro->drr_object, tx));
if (rwa->raw) {
/*
* Convert the buffer associated with this range of dnodes
* to a raw buffer. This ensures that it will be written out
* as a raw buffer when we fill in the dnode object. Since we
* are committing this tx now, it is possible for the dnode
* block to end up on-disk with the incorrect MAC. Despite
* this, the dataset is marked as inconsistent so no other
* code paths (apart from scrubs) will attempt to read this
* data. Scrubs will not be effected by this either since
* scrubs only read raw data and do not attempt to check
* the MAC.
*/
err = dmu_convert_mdn_block_to_raw(rwa->os, rwa->or_firstobj,
rwa->or_byteorder, rwa->or_salt, rwa->or_iv, rwa->or_mac,
tx);
if (err != 0) {
dmu_tx_commit(tx);
return (SET_ERROR(EINVAL));
}
}
dmu_object_set_checksum(rwa->os, drro->drr_object,
drro->drr_checksumtype, tx);
@ -2984,12 +3017,6 @@ static int
receive_object_range(struct receive_writer_arg *rwa,
struct drr_object_range *drror)
{
int ret;
dmu_tx_t *tx;
dnode_t *mdn = NULL;
dmu_buf_t *db = NULL;
uint64_t offset;
/*
* By default, we assume this block is in our native format
* (ZFS_HOST_BYTEORDER). We then take into account whether
@ -3019,38 +3046,18 @@ receive_object_range(struct receive_writer_arg *rwa,
if (drror->drr_firstobj > rwa->max_object)
rwa->max_object = drror->drr_firstobj;
offset = drror->drr_firstobj * sizeof (dnode_phys_t);
mdn = DMU_META_DNODE(rwa->os);
tx = dmu_tx_create(rwa->os);
ret = dmu_tx_assign(tx, TXG_WAIT);
if (ret != 0) {
dmu_tx_abort(tx);
return (ret);
}
ret = dmu_buf_hold_by_dnode(mdn, offset, FTAG, &db,
DMU_READ_PREFETCH | DMU_READ_NO_DECRYPT);
if (ret != 0) {
dmu_tx_commit(tx);
return (ret);
}
/*
* Convert the buffer associated with this range of dnodes to a
* raw buffer. This ensures that it will be written out as a raw
* buffer when we fill in the dnode objects in future records.
* Since we are commiting this tx now, it is technically possible
* for the dnode block to end up on-disk with the incorrect MAC.
* Despite this, the dataset is marked as inconsistent so no other
* code paths (apart from scrubs) will attempt to read this data.
* Scrubs will not be effected by this either since scrubs only
* read raw data and do not attempt to check the MAC.
* The DRR_OBJECT_RANGE handling must be deferred to receive_object()
* so that the encryption parameters are set with each object that is
* written into that block.
*/
dmu_convert_to_raw(db, byteorder, drror->drr_salt, drror->drr_iv,
drror->drr_mac, tx);
dmu_buf_rele(db, FTAG);
dmu_tx_commit(tx);
rwa->or_firstobj = drror->drr_firstobj;
rwa->or_numslots = drror->drr_numslots;
bcopy(drror->drr_salt, rwa->or_salt, ZIO_DATA_SALT_LEN);
bcopy(drror->drr_iv, rwa->or_iv, ZIO_DATA_IV_LEN);
bcopy(drror->drr_mac, rwa->or_mac, ZIO_DATA_MAC_LEN);
rwa->or_byteorder = byteorder;
return (0);
}