mirror_zfs/include/sys/zcp.h

195 lines
4.9 KiB
C
Raw Normal View History

/*
* CDDL HEADER START
*
* This file and its contents are supplied under the terms of the
* Common Development and Distribution License ("CDDL"), version 1.0.
* You may only use this file in accordance with the terms of version
* 1.0 of the CDDL.
*
* A full copy of the text of the CDDL should have accompanied this
* source. A copy of the CDDL is also available via the Internet at
* http://www.illumos.org/license/CDDL.
*
* CDDL HEADER END
*/
/*
* Copyright (c) 2016, 2018 by Delphix. All rights reserved.
*/
#ifndef _SYS_ZCP_H
#define _SYS_ZCP_H
#include <sys/dmu_tx.h>
#include <sys/dsl_pool.h>
#include <sys/lua/lua.h>
#include <sys/lua/lualib.h>
#include <sys/lua/lauxlib.h>
#ifdef __cplusplus
extern "C" {
#endif
#define ZCP_RUN_INFO_KEY "runinfo"
Cleanup: 64-bit kernel module parameters should use fixed width types Various module parameters such as `zfs_arc_max` were originally `uint64_t` on OpenSolaris/Illumos, but were changed to `unsigned long` for Linux compatibility because Linux's kernel default module parameter implementation did not support 64-bit types on 32-bit platforms. This caused problems when porting OpenZFS to Windows because its LLP64 memory model made `unsigned long` a 32-bit type on 64-bit, which created the undesireable situation that parameters that should accept 64-bit values could not on 64-bit Windows. Upon inspection, it turns out that the Linux kernel module parameter interface is extensible, such that we are allowed to define our own types. Rather than maintaining the original type change via hacks to to continue shrinking module parameters on 32-bit Linux, we implement support for 64-bit module parameters on Linux. After doing a review of all 64-bit kernel parameters (found via the man page and also proposed changes by Andrew Innes), the kernel module parameters fell into a few groups: Parameters that were originally 64-bit on Illumos: * dbuf_cache_max_bytes * dbuf_metadata_cache_max_bytes * l2arc_feed_min_ms * l2arc_feed_secs * l2arc_headroom * l2arc_headroom_boost * l2arc_write_boost * l2arc_write_max * metaslab_aliquot * metaslab_force_ganging * zfetch_array_rd_sz * zfs_arc_max * zfs_arc_meta_limit * zfs_arc_meta_min * zfs_arc_min * zfs_async_block_max_blocks * zfs_condense_max_obsolete_bytes * zfs_condense_min_mapping_bytes * zfs_deadman_checktime_ms * zfs_deadman_synctime_ms * zfs_initialize_chunk_size * zfs_initialize_value * zfs_lua_max_instrlimit * zfs_lua_max_memlimit * zil_slog_bulk Parameters that were originally 32-bit on Illumos: * zfs_per_txg_dirty_frees_percent Parameters that were originally `ssize_t` on Illumos: * zfs_immediate_write_sz Note that `ssize_t` is `int32_t` on 32-bit and `int64_t` on 64-bit. It has been upgraded to 64-bit. Parameters that were `long`/`unsigned long` because of Linux/FreeBSD influence: * l2arc_rebuild_blocks_min_l2size * zfs_key_max_salt_uses * zfs_max_log_walking * zfs_max_logsm_summary_length * zfs_metaslab_max_size_cache_sec * zfs_min_metaslabs_to_flush * zfs_multihost_interval * zfs_unflushed_log_block_max * zfs_unflushed_log_block_min * zfs_unflushed_log_block_pct * zfs_unflushed_max_mem_amt * zfs_unflushed_max_mem_ppm New parameters that do not exist in Illumos: * l2arc_trim_ahead * vdev_file_logical_ashift * vdev_file_physical_ashift * zfs_arc_dnode_limit * zfs_arc_dnode_limit_percent * zfs_arc_dnode_reduce_percent * zfs_arc_meta_limit_percent * zfs_arc_sys_free * zfs_deadman_ziotime_ms * zfs_delete_blocks * zfs_history_output_max * zfs_livelist_max_entries * zfs_max_async_dedup_frees * zfs_max_nvlist_src_size * zfs_rebuild_max_segment * zfs_rebuild_vdev_limit * zfs_unflushed_log_txg_max * zfs_vdev_max_auto_ashift * zfs_vdev_min_auto_ashift * zfs_vnops_read_chunk_size * zvol_max_discard_blocks Rather than clutter the lists with commentary, the module parameters that need comments are repeated below. A few parameters were defined in Linux/FreeBSD specific code, where the use of ulong/long is not an issue for portability, so we leave them alone: * zfs_delete_blocks * zfs_key_max_salt_uses * zvol_max_discard_blocks The documentation for a few parameters was found to be incorrect: * zfs_deadman_checktime_ms - incorrectly documented as int * zfs_delete_blocks - not documented as Linux only * zfs_history_output_max - incorrectly documented as int * zfs_vnops_read_chunk_size - incorrectly documented as long * zvol_max_discard_blocks - incorrectly documented as ulong The documentation for these has been fixed, alongside the changes to document the switch to fixed width types. In addition, several kernel module parameters were percentages or held ashift values, so being 64-bit never made sense for them. They have been downgraded to 32-bit: * vdev_file_logical_ashift * vdev_file_physical_ashift * zfs_arc_dnode_limit_percent * zfs_arc_dnode_reduce_percent * zfs_arc_meta_limit_percent * zfs_per_txg_dirty_frees_percent * zfs_unflushed_log_block_pct * zfs_vdev_max_auto_ashift * zfs_vdev_min_auto_ashift Of special note are `zfs_vdev_max_auto_ashift` and `zfs_vdev_min_auto_ashift`, which were already defined as `uint64_t`, and passed to the kernel as `ulong`. This is inherently buggy on big endian 32-bit Linux, since the values would not be written to the correct locations. 32-bit FreeBSD was unaffected because its sysctl code correctly treated this as a `uint64_t`. Lastly, a code comment suggests that `zfs_arc_sys_free` is Linux-specific, but there is nothing to indicate to me that it is Linux-specific. Nothing was done about that. Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov> Reviewed-by: Jorgen Lundman <lundman@lundman.net> Reviewed-by: Ryan Moeller <ryan@iXsystems.com> Reviewed-by: Alexander Motin <mav@FreeBSD.org> Original-patch-by: Andrew Innes <andrew.c12@gmail.com> Original-patch-by: Jorgen Lundman <lundman@lundman.net> Signed-off-by: Richard Yao <richard.yao@alumni.stonybrook.edu> Closes #13984 Closes #14004
2022-10-03 22:06:54 +03:00
extern uint64_t zfs_lua_max_instrlimit;
extern uint64_t zfs_lua_max_memlimit;
int zcp_argerror(lua_State *, int, const char *, ...);
OpenZFS 8677 - Open-Context Channel Programs Authored by: Serapheim Dimitropoulos <serapheim@delphix.com> Reviewed by: Matt Ahrens <mahrens@delphix.com> Reviewed by: Chris Williamson <chris.williamson@delphix.com> Reviewed by: Pavel Zakharov <pavel.zakharov@delphix.com> Approved by: Robert Mustacchi <rm@joyent.com> Ported-by: Don Brady <don.brady@delphix.com> We want to be able to run channel programs outside of synching context. This would greatly improve performance for channel programs that just gather information, as they won't have to wait for synching context anymore. === What is implemented? This feature introduces the following: - A new command line flag in "zfs program" to specify our intention to run in open context. (The -n option) - A new flag/option within the channel program ioctl which selects the context. - Appropriate error handling whenever we try a channel program in open-context that contains zfs.sync* expressions. - Documentation for the new feature in the manual pages. === How do we handle zfs.sync functions in open context? When such a function is found by the interpreter and we are running in open context we abort the script and we spit out a descriptive runtime error. For example, given the script below ... arg = ... fs = arg["argv"][1] err = zfs.sync.destroy(fs) msg = "destroying " .. fs .. " err=" .. err return msg if we run it in open context, we will get back the following error: Channel program execution failed: [string "channel program"]:3: running functions from the zfs.sync submodule requires passing sync=TRUE to lzc_channel_program() (i.e. do not specify the "-n" command line argument) stack traceback: [C]: in function 'destroy' [string "channel program"]:3: in main chunk === What about testing? We've introduced new wrappers for all channel program tests that run each channel program as both (startard & open-context) and expect the appropriate behavior depending on the program using the zfs.sync module. OpenZFS-issue: https://www.illumos.org/issues/8677 OpenZFS-commit: https://github.com/openzfs/openzfs/commit/17a49e15 Closes #6558
2018-02-08 19:35:09 +03:00
int zcp_eval(const char *, const char *, boolean_t, uint64_t, uint64_t,
nvpair_t *, nvlist_t *);
int zcp_load_list_lib(lua_State *);
int zcp_load_synctask_lib(lua_State *, boolean_t);
typedef void (zcp_cleanup_t)(void *);
OpenZFS 8677 - Open-Context Channel Programs Authored by: Serapheim Dimitropoulos <serapheim@delphix.com> Reviewed by: Matt Ahrens <mahrens@delphix.com> Reviewed by: Chris Williamson <chris.williamson@delphix.com> Reviewed by: Pavel Zakharov <pavel.zakharov@delphix.com> Approved by: Robert Mustacchi <rm@joyent.com> Ported-by: Don Brady <don.brady@delphix.com> We want to be able to run channel programs outside of synching context. This would greatly improve performance for channel programs that just gather information, as they won't have to wait for synching context anymore. === What is implemented? This feature introduces the following: - A new command line flag in "zfs program" to specify our intention to run in open context. (The -n option) - A new flag/option within the channel program ioctl which selects the context. - Appropriate error handling whenever we try a channel program in open-context that contains zfs.sync* expressions. - Documentation for the new feature in the manual pages. === How do we handle zfs.sync functions in open context? When such a function is found by the interpreter and we are running in open context we abort the script and we spit out a descriptive runtime error. For example, given the script below ... arg = ... fs = arg["argv"][1] err = zfs.sync.destroy(fs) msg = "destroying " .. fs .. " err=" .. err return msg if we run it in open context, we will get back the following error: Channel program execution failed: [string "channel program"]:3: running functions from the zfs.sync submodule requires passing sync=TRUE to lzc_channel_program() (i.e. do not specify the "-n" command line argument) stack traceback: [C]: in function 'destroy' [string "channel program"]:3: in main chunk === What about testing? We've introduced new wrappers for all channel program tests that run each channel program as both (startard & open-context) and expect the appropriate behavior depending on the program using the zfs.sync module. OpenZFS-issue: https://www.illumos.org/issues/8677 OpenZFS-commit: https://github.com/openzfs/openzfs/commit/17a49e15 Closes #6558
2018-02-08 19:35:09 +03:00
typedef struct zcp_cleanup_handler {
zcp_cleanup_t *zch_cleanup_func;
void *zch_cleanup_arg;
list_node_t zch_node;
} zcp_cleanup_handler_t;
OpenZFS 9425 - channel programs can be interrupted Problem Statement ================= ZFS Channel program scripts currently require a timeout, so that hung or long-running scripts return a timeout error instead of causing ZFS to get wedged. This limit can currently be set up to 100 million Lua instructions. Even with a limit in place, it would be desirable to have a sys admin (support engineer) be able to cancel a script that is taking a long time. Proposed Solution ================= Make it possible to abort a channel program by sending an interrupt signal.In the underlying txg_wait_sync function, switch the cv_wait to a cv_wait_sig to catch the signal. Once a signal is encountered, the dsl_sync_task function can install a Lua hook that will get called before the Lua interpreter executes a new line of code. The dsl_sync_task can resume with a standard txg_wait_sync call and wait for the txg to complete. Meanwhile, the hook will abort the script and indicate that the channel program was canceled. The kernel returns a EINTR to indicate that the channel program run was canceled. Porting notes: Added missing return value from cv_wait_sig() Authored by: Don Brady <don.brady@delphix.com> Reviewed by: Sebastien Roy <sebastien.roy@delphix.com> Reviewed by: Serapheim Dimitropoulos <serapheim.dimitro@delphix.com> Reviewed by: Matt Ahrens <matt@delphix.com> Reviewed by: Sara Hartse <sara.hartse@delphix.com> Reviewed by: Brian Behlendorf <behlendorf1@llnl.gov> Approved by: Robert Mustacchi <rm@joyent.com> Ported-by: Don Brady <don.brady@delphix.com> Signed-off-by: Don Brady <don.brady@delphix.com> OpenZFS-issue: https://www.illumos.org/issues/9425 OpenZFS-commit: https://github.com/illumos/illumos-gate/commit/d0cb1fb926 Closes #8904
2019-06-23 02:51:46 +03:00
typedef struct zcp_alloc_arg {
boolean_t aa_must_succeed;
int64_t aa_alloc_remaining;
int64_t aa_alloc_limit;
} zcp_alloc_arg_t;
typedef struct zcp_run_info {
dsl_pool_t *zri_pool;
/*
OpenZFS 8677 - Open-Context Channel Programs Authored by: Serapheim Dimitropoulos <serapheim@delphix.com> Reviewed by: Matt Ahrens <mahrens@delphix.com> Reviewed by: Chris Williamson <chris.williamson@delphix.com> Reviewed by: Pavel Zakharov <pavel.zakharov@delphix.com> Approved by: Robert Mustacchi <rm@joyent.com> Ported-by: Don Brady <don.brady@delphix.com> We want to be able to run channel programs outside of synching context. This would greatly improve performance for channel programs that just gather information, as they won't have to wait for synching context anymore. === What is implemented? This feature introduces the following: - A new command line flag in "zfs program" to specify our intention to run in open context. (The -n option) - A new flag/option within the channel program ioctl which selects the context. - Appropriate error handling whenever we try a channel program in open-context that contains zfs.sync* expressions. - Documentation for the new feature in the manual pages. === How do we handle zfs.sync functions in open context? When such a function is found by the interpreter and we are running in open context we abort the script and we spit out a descriptive runtime error. For example, given the script below ... arg = ... fs = arg["argv"][1] err = zfs.sync.destroy(fs) msg = "destroying " .. fs .. " err=" .. err return msg if we run it in open context, we will get back the following error: Channel program execution failed: [string "channel program"]:3: running functions from the zfs.sync submodule requires passing sync=TRUE to lzc_channel_program() (i.e. do not specify the "-n" command line argument) stack traceback: [C]: in function 'destroy' [string "channel program"]:3: in main chunk === What about testing? We've introduced new wrappers for all channel program tests that run each channel program as both (startard & open-context) and expect the appropriate behavior depending on the program using the zfs.sync module. OpenZFS-issue: https://www.illumos.org/issues/8677 OpenZFS-commit: https://github.com/openzfs/openzfs/commit/17a49e15 Closes #6558
2018-02-08 19:35:09 +03:00
* An estimate of the total amount of space consumed by all
* synctasks we have successfully performed so far in this
* channel program. Used to generate ENOSPC errors for syncfuncs.
*/
int zri_space_used;
/*
* The credentials of the thread which originally invoked the channel
* program. Since channel programs are always invoked from the synctask
* thread they should always do permissions checks against this cred
* rather than the 'current' thread's.
*/
cred_t *zri_cred;
filesystem_limit/snapshot_limit is incorrectly enforced against root The filesystem_limit and snapshot_limit properties limit the number of filesystems or snapshots that can be created below this dataset. According to the manpage, "The limit is not enforced if the user is allowed to change the limit." Two types of users are allowed to change the limit: 1. Those that have been delegated the `filesystem_limit` or `snapshot_limit` permission, e.g. with `zfs allow USER filesystem_limit DATASET`. This works properly. 2. A user with elevated system privileges (e.g. root). This does not work - the root user will incorrectly get an error when trying to create a snapshot/filesystem, if it exceeds the `_limit` property. The problem is that `priv_policy_ns()` does not work if the `cred_t` is not that of the current process. This happens when `dsl_enforce_ds_ss_limits()` is called in syncing context (as part of a sync task's check func) to determine the permissions of the corresponding user process. This commit fixes the issue by passing the `task_struct` (typedef'ed as a `proc_t`) to syncing context, and then using `has_capability()` to determine if that process is privileged. Note that we still need to pass the `cred_t` to syncing context so that we can check if the user was delegated this permission with `zfs allow`. This problem only impacts Linux. Wrappers are added to FreeBSD but it continues to use `priv_check_cred()`, which works on arbitrary `cred_t`. Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov> Reviewed-by: Ryan Moeller <ryan@ixsystems.com> Signed-off-by: Matthew Ahrens <mahrens@delphix.com> Closes #8226 Closes #10545
2020-07-12 03:18:02 +03:00
proc_t *zri_proc;
/*
* The tx in which this channel program is running.
*/
dmu_tx_t *zri_tx;
/*
* The maximum number of Lua instructions the channel program is allowed
* to execute. If it takes longer than this it will time out. A value
* of 0 indicates no instruction limit.
*/
uint64_t zri_maxinstrs;
/*
* The number of Lua instructions the channel program has executed.
*/
uint64_t zri_curinstrs;
/*
* Boolean indicating whether or not the channel program exited
* because it timed out.
*/
boolean_t zri_timed_out;
OpenZFS 9425 - channel programs can be interrupted Problem Statement ================= ZFS Channel program scripts currently require a timeout, so that hung or long-running scripts return a timeout error instead of causing ZFS to get wedged. This limit can currently be set up to 100 million Lua instructions. Even with a limit in place, it would be desirable to have a sys admin (support engineer) be able to cancel a script that is taking a long time. Proposed Solution ================= Make it possible to abort a channel program by sending an interrupt signal.In the underlying txg_wait_sync function, switch the cv_wait to a cv_wait_sig to catch the signal. Once a signal is encountered, the dsl_sync_task function can install a Lua hook that will get called before the Lua interpreter executes a new line of code. The dsl_sync_task can resume with a standard txg_wait_sync call and wait for the txg to complete. Meanwhile, the hook will abort the script and indicate that the channel program was canceled. The kernel returns a EINTR to indicate that the channel program run was canceled. Porting notes: Added missing return value from cv_wait_sig() Authored by: Don Brady <don.brady@delphix.com> Reviewed by: Sebastien Roy <sebastien.roy@delphix.com> Reviewed by: Serapheim Dimitropoulos <serapheim.dimitro@delphix.com> Reviewed by: Matt Ahrens <matt@delphix.com> Reviewed by: Sara Hartse <sara.hartse@delphix.com> Reviewed by: Brian Behlendorf <behlendorf1@llnl.gov> Approved by: Robert Mustacchi <rm@joyent.com> Ported-by: Don Brady <don.brady@delphix.com> Signed-off-by: Don Brady <don.brady@delphix.com> OpenZFS-issue: https://www.illumos.org/issues/9425 OpenZFS-commit: https://github.com/illumos/illumos-gate/commit/d0cb1fb926 Closes #8904
2019-06-23 02:51:46 +03:00
/*
* Channel program was canceled by user
*/
boolean_t zri_canceled;
/*
OpenZFS 8677 - Open-Context Channel Programs Authored by: Serapheim Dimitropoulos <serapheim@delphix.com> Reviewed by: Matt Ahrens <mahrens@delphix.com> Reviewed by: Chris Williamson <chris.williamson@delphix.com> Reviewed by: Pavel Zakharov <pavel.zakharov@delphix.com> Approved by: Robert Mustacchi <rm@joyent.com> Ported-by: Don Brady <don.brady@delphix.com> We want to be able to run channel programs outside of synching context. This would greatly improve performance for channel programs that just gather information, as they won't have to wait for synching context anymore. === What is implemented? This feature introduces the following: - A new command line flag in "zfs program" to specify our intention to run in open context. (The -n option) - A new flag/option within the channel program ioctl which selects the context. - Appropriate error handling whenever we try a channel program in open-context that contains zfs.sync* expressions. - Documentation for the new feature in the manual pages. === How do we handle zfs.sync functions in open context? When such a function is found by the interpreter and we are running in open context we abort the script and we spit out a descriptive runtime error. For example, given the script below ... arg = ... fs = arg["argv"][1] err = zfs.sync.destroy(fs) msg = "destroying " .. fs .. " err=" .. err return msg if we run it in open context, we will get back the following error: Channel program execution failed: [string "channel program"]:3: running functions from the zfs.sync submodule requires passing sync=TRUE to lzc_channel_program() (i.e. do not specify the "-n" command line argument) stack traceback: [C]: in function 'destroy' [string "channel program"]:3: in main chunk === What about testing? We've introduced new wrappers for all channel program tests that run each channel program as both (startard & open-context) and expect the appropriate behavior depending on the program using the zfs.sync module. OpenZFS-issue: https://www.illumos.org/issues/8677 OpenZFS-commit: https://github.com/openzfs/openzfs/commit/17a49e15 Closes #6558
2018-02-08 19:35:09 +03:00
* Boolean indicating whether or not we are running in syncing
* context.
*/
OpenZFS 8677 - Open-Context Channel Programs Authored by: Serapheim Dimitropoulos <serapheim@delphix.com> Reviewed by: Matt Ahrens <mahrens@delphix.com> Reviewed by: Chris Williamson <chris.williamson@delphix.com> Reviewed by: Pavel Zakharov <pavel.zakharov@delphix.com> Approved by: Robert Mustacchi <rm@joyent.com> Ported-by: Don Brady <don.brady@delphix.com> We want to be able to run channel programs outside of synching context. This would greatly improve performance for channel programs that just gather information, as they won't have to wait for synching context anymore. === What is implemented? This feature introduces the following: - A new command line flag in "zfs program" to specify our intention to run in open context. (The -n option) - A new flag/option within the channel program ioctl which selects the context. - Appropriate error handling whenever we try a channel program in open-context that contains zfs.sync* expressions. - Documentation for the new feature in the manual pages. === How do we handle zfs.sync functions in open context? When such a function is found by the interpreter and we are running in open context we abort the script and we spit out a descriptive runtime error. For example, given the script below ... arg = ... fs = arg["argv"][1] err = zfs.sync.destroy(fs) msg = "destroying " .. fs .. " err=" .. err return msg if we run it in open context, we will get back the following error: Channel program execution failed: [string "channel program"]:3: running functions from the zfs.sync submodule requires passing sync=TRUE to lzc_channel_program() (i.e. do not specify the "-n" command line argument) stack traceback: [C]: in function 'destroy' [string "channel program"]:3: in main chunk === What about testing? We've introduced new wrappers for all channel program tests that run each channel program as both (startard & open-context) and expect the appropriate behavior depending on the program using the zfs.sync module. OpenZFS-issue: https://www.illumos.org/issues/8677 OpenZFS-commit: https://github.com/openzfs/openzfs/commit/17a49e15 Closes #6558
2018-02-08 19:35:09 +03:00
boolean_t zri_sync;
/*
* List of currently registered cleanup handlers, which will be
* triggered in the event of a fatal error.
*/
list_t zri_cleanup_handlers;
OpenZFS 9425 - channel programs can be interrupted Problem Statement ================= ZFS Channel program scripts currently require a timeout, so that hung or long-running scripts return a timeout error instead of causing ZFS to get wedged. This limit can currently be set up to 100 million Lua instructions. Even with a limit in place, it would be desirable to have a sys admin (support engineer) be able to cancel a script that is taking a long time. Proposed Solution ================= Make it possible to abort a channel program by sending an interrupt signal.In the underlying txg_wait_sync function, switch the cv_wait to a cv_wait_sig to catch the signal. Once a signal is encountered, the dsl_sync_task function can install a Lua hook that will get called before the Lua interpreter executes a new line of code. The dsl_sync_task can resume with a standard txg_wait_sync call and wait for the txg to complete. Meanwhile, the hook will abort the script and indicate that the channel program was canceled. The kernel returns a EINTR to indicate that the channel program run was canceled. Porting notes: Added missing return value from cv_wait_sig() Authored by: Don Brady <don.brady@delphix.com> Reviewed by: Sebastien Roy <sebastien.roy@delphix.com> Reviewed by: Serapheim Dimitropoulos <serapheim.dimitro@delphix.com> Reviewed by: Matt Ahrens <matt@delphix.com> Reviewed by: Sara Hartse <sara.hartse@delphix.com> Reviewed by: Brian Behlendorf <behlendorf1@llnl.gov> Approved by: Robert Mustacchi <rm@joyent.com> Ported-by: Don Brady <don.brady@delphix.com> Signed-off-by: Don Brady <don.brady@delphix.com> OpenZFS-issue: https://www.illumos.org/issues/9425 OpenZFS-commit: https://github.com/illumos/illumos-gate/commit/d0cb1fb926 Closes #8904
2019-06-23 02:51:46 +03:00
/*
* The Lua state context of our channel program.
*/
lua_State *zri_state;
/*
* Lua memory allocator arguments.
*/
zcp_alloc_arg_t *zri_allocargs;
/*
* Contains output values from zcp script or error string.
*/
nvlist_t *zri_outnvl;
async zvol minor node creation interferes with receive When we finish a zfs receive, dmu_recv_end_sync() calls zvol_create_minors(async=TRUE). This kicks off some other threads that create the minor device nodes (in /dev/zvol/poolname/...). These async threads call zvol_prefetch_minors_impl() and zvol_create_minor(), which both call dmu_objset_own(), which puts a "long hold" on the dataset. Since the zvol minor node creation is asynchronous, this can happen after the `ZFS_IOC_RECV[_NEW]` ioctl and `zfs receive` process have completed. After the first receive ioctl has completed, userland may attempt to do another receive into the same dataset (e.g. the next incremental stream). This second receive and the asynchronous minor node creation can interfere with one another in several different ways, because they both require exclusive access to the dataset: 1. When the second receive is finishing up, dmu_recv_end_check() does dsl_dataset_handoff_check(), which can fail with EBUSY if the async minor node creation already has a "long hold" on this dataset. This causes the 2nd receive to fail. 2. The async udev rule can fail if zvol_id and/or systemd-udevd try to open the device while the the second receive's async attempt at minor node creation owns the dataset (via zvol_prefetch_minors_impl). This causes the minor node (/dev/zd*) to exist, but the udev-generated /dev/zvol/... to not exist. 3. The async minor node creation can silently fail with EBUSY if the first receive's zvol_create_minor() trys to own the dataset while the second receive's zvol_prefetch_minors_impl already owns the dataset. To address these problems, this change synchronously creates the minor node. To avoid the lock ordering problems that the asynchrony was introduced to fix (see #3681), we create the minor nodes from open context, with no locks held, rather than from syncing contex as was originally done. Implementation notes: We generally do not need to traverse children or prefetch anything (e.g. when running the recv, snapshot, create, or clone subcommands of zfs). We only need recursion when importing/opening a pool and when loading encryption keys. The existing recursive, asynchronous, prefetching code is preserved for use in these cases. Channel programs may need to create zvol minor nodes, when creating a snapshot of a zvol with the snapdev property set. We figure out what snapshots are created when running the LUA program in syncing context. In this case we need to remember what snapshots were created, and then try to create their minor nodes from open context, after the LUA code has completed. There are additional zvol use cases that asynchronously own the dataset, which can cause similar problems. E.g. changing the volmode or snapdev properties. These are less problematic because they are not recursive and don't touch datasets that are not involved in the operation, there is still potential for interference with subsequent operations. In the future, these cases should be similarly converted to create the zvol minor node synchronously from open context. The async tasks of removing and renaming minors do not own the objset, so they do not have this problem. However, it may make sense to also convert these operations to happen synchronously from open context, in the future. Reviewed-by: Paul Dagnelie <pcd@delphix.com> Reviewed-by: Prakash Surya <prakash.surya@delphix.com> Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov> Signed-off-by: Matthew Ahrens <mahrens@delphix.com> External-issue: DLPX-65948 Closes #7863 Closes #9885
2020-02-03 20:33:14 +03:00
/*
* The keys of this nvlist are datasets which may be zvols and may need
* to have device minor nodes created. This information is passed from
* syncing context (where the zvol is created) to open context (where we
* create the minor nodes).
*/
nvlist_t *zri_new_zvols;
OpenZFS 9425 - channel programs can be interrupted Problem Statement ================= ZFS Channel program scripts currently require a timeout, so that hung or long-running scripts return a timeout error instead of causing ZFS to get wedged. This limit can currently be set up to 100 million Lua instructions. Even with a limit in place, it would be desirable to have a sys admin (support engineer) be able to cancel a script that is taking a long time. Proposed Solution ================= Make it possible to abort a channel program by sending an interrupt signal.In the underlying txg_wait_sync function, switch the cv_wait to a cv_wait_sig to catch the signal. Once a signal is encountered, the dsl_sync_task function can install a Lua hook that will get called before the Lua interpreter executes a new line of code. The dsl_sync_task can resume with a standard txg_wait_sync call and wait for the txg to complete. Meanwhile, the hook will abort the script and indicate that the channel program was canceled. The kernel returns a EINTR to indicate that the channel program run was canceled. Porting notes: Added missing return value from cv_wait_sig() Authored by: Don Brady <don.brady@delphix.com> Reviewed by: Sebastien Roy <sebastien.roy@delphix.com> Reviewed by: Serapheim Dimitropoulos <serapheim.dimitro@delphix.com> Reviewed by: Matt Ahrens <matt@delphix.com> Reviewed by: Sara Hartse <sara.hartse@delphix.com> Reviewed by: Brian Behlendorf <behlendorf1@llnl.gov> Approved by: Robert Mustacchi <rm@joyent.com> Ported-by: Don Brady <don.brady@delphix.com> Signed-off-by: Don Brady <don.brady@delphix.com> OpenZFS-issue: https://www.illumos.org/issues/9425 OpenZFS-commit: https://github.com/illumos/illumos-gate/commit/d0cb1fb926 Closes #8904
2019-06-23 02:51:46 +03:00
/*
* The errno number returned to caller of zcp_eval().
*/
int zri_result;
} zcp_run_info_t;
zcp_run_info_t *zcp_run_info(lua_State *);
OpenZFS 8677 - Open-Context Channel Programs Authored by: Serapheim Dimitropoulos <serapheim@delphix.com> Reviewed by: Matt Ahrens <mahrens@delphix.com> Reviewed by: Chris Williamson <chris.williamson@delphix.com> Reviewed by: Pavel Zakharov <pavel.zakharov@delphix.com> Approved by: Robert Mustacchi <rm@joyent.com> Ported-by: Don Brady <don.brady@delphix.com> We want to be able to run channel programs outside of synching context. This would greatly improve performance for channel programs that just gather information, as they won't have to wait for synching context anymore. === What is implemented? This feature introduces the following: - A new command line flag in "zfs program" to specify our intention to run in open context. (The -n option) - A new flag/option within the channel program ioctl which selects the context. - Appropriate error handling whenever we try a channel program in open-context that contains zfs.sync* expressions. - Documentation for the new feature in the manual pages. === How do we handle zfs.sync functions in open context? When such a function is found by the interpreter and we are running in open context we abort the script and we spit out a descriptive runtime error. For example, given the script below ... arg = ... fs = arg["argv"][1] err = zfs.sync.destroy(fs) msg = "destroying " .. fs .. " err=" .. err return msg if we run it in open context, we will get back the following error: Channel program execution failed: [string "channel program"]:3: running functions from the zfs.sync submodule requires passing sync=TRUE to lzc_channel_program() (i.e. do not specify the "-n" command line argument) stack traceback: [C]: in function 'destroy' [string "channel program"]:3: in main chunk === What about testing? We've introduced new wrappers for all channel program tests that run each channel program as both (startard & open-context) and expect the appropriate behavior depending on the program using the zfs.sync module. OpenZFS-issue: https://www.illumos.org/issues/8677 OpenZFS-commit: https://github.com/openzfs/openzfs/commit/17a49e15 Closes #6558
2018-02-08 19:35:09 +03:00
zcp_cleanup_handler_t *zcp_register_cleanup(lua_State *, zcp_cleanup_t, void *);
void zcp_deregister_cleanup(lua_State *, zcp_cleanup_handler_t *);
void zcp_cleanup(lua_State *);
/*
* Argument parsing routines for channel program callback functions.
*/
typedef struct zcp_arg {
/*
* The name of this argument. For keyword arguments this is the name
* functions will use to set the argument. For positional arguments
* the name has no programmatic meaning, but will appear in error
* messages and help output.
*/
const char *za_name;
/*
* The Lua type this argument should have (e.g. LUA_TSTRING,
* LUA_TBOOLEAN) see the lua_type() function documentation for a
* complete list. Calling a function with an argument that does
* not match the expected type will result in the program terminating.
*/
const int za_lua_type;
} zcp_arg_t;
void zcp_parse_args(lua_State *, const char *, const zcp_arg_t *,
const zcp_arg_t *);
int zcp_nvlist_to_lua(lua_State *, nvlist_t *, char *, int);
int zcp_dataset_hold_error(lua_State *, dsl_pool_t *, const char *, int);
struct dsl_dataset *zcp_dataset_hold(lua_State *, dsl_pool_t *,
const char *, const void *);
typedef int (zcp_lib_func_t)(lua_State *);
typedef struct zcp_lib_info {
const char *name;
zcp_lib_func_t *func;
const zcp_arg_t pargs[4];
const zcp_arg_t kwargs[2];
} zcp_lib_info_t;
#ifdef __cplusplus
}
#endif
#endif /* _SYS_ZCP_H */