2010-05-29 00:45:14 +04:00
|
|
|
/*
|
|
|
|
* CDDL HEADER START
|
|
|
|
*
|
|
|
|
* The contents of this file are subject to the terms of the
|
|
|
|
* Common Development and Distribution License (the "License").
|
|
|
|
* You may not use this file except in compliance with the License.
|
|
|
|
*
|
|
|
|
* You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
|
|
|
|
* or http://www.opensolaris.org/os/licensing.
|
|
|
|
* See the License for the specific language governing permissions
|
|
|
|
* and limitations under the License.
|
|
|
|
*
|
|
|
|
* When distributing Covered Code, include this CDDL HEADER in each
|
|
|
|
* file and include the License file at usr/src/OPENSOLARIS.LICENSE.
|
|
|
|
* If applicable, add the following below this CDDL HEADER, with the
|
|
|
|
* fields enclosed by brackets "[]" replaced with your own identifying
|
|
|
|
* information: Portions Copyright [yyyy] [name of copyright owner]
|
|
|
|
*
|
|
|
|
* CDDL HEADER END
|
|
|
|
*/
|
|
|
|
/*
|
|
|
|
* Copyright (c) 2010, Oracle and/or its affiliates. All rights reserved.
|
2019-07-26 20:54:14 +03:00
|
|
|
* Copyright (c) 2012, 2019 by Delphix. All rights reserved.
|
2015-04-02 06:44:32 +03:00
|
|
|
* Copyright (c) 2014 Spectra Logic Corporation, All rights reserved.
|
2010-05-29 00:45:14 +04:00
|
|
|
*/
|
|
|
|
|
|
|
|
#include <sys/dmu.h>
|
|
|
|
#include <sys/refcount.h>
|
|
|
|
#include <sys/zap.h>
|
|
|
|
#include <sys/zfs_context.h>
|
|
|
|
#include <sys/dsl_pool.h>
|
2019-07-26 20:54:14 +03:00
|
|
|
#include <sys/dsl_dataset.h>
|
2010-05-29 00:45:14 +04:00
|
|
|
|
2011-11-17 22:14:36 +04:00
|
|
|
/*
|
|
|
|
* Deadlist concurrency:
|
|
|
|
*
|
|
|
|
* Deadlists can only be modified from the syncing thread.
|
|
|
|
*
|
|
|
|
* Except for dsl_deadlist_insert(), it can only be modified with the
|
|
|
|
* dp_config_rwlock held with RW_WRITER.
|
|
|
|
*
|
|
|
|
* The accessors (dsl_deadlist_space() and dsl_deadlist_space_range()) can
|
|
|
|
* be called concurrently, from open context, with the dl_config_rwlock held
|
|
|
|
* with RW_READER.
|
|
|
|
*
|
|
|
|
* Therefore, we only need to provide locking between dsl_deadlist_insert() and
|
|
|
|
* the accessors, protecting:
|
|
|
|
* dl_phys->dl_used,comp,uncomp
|
|
|
|
* and protecting the dl_tree from being loaded.
|
|
|
|
* The locking is provided by dl_lock. Note that locking on the bpobj_t
|
|
|
|
* provides its own locking, and dl_oldfmt is immutable.
|
|
|
|
*/
|
|
|
|
|
2019-07-26 20:54:14 +03:00
|
|
|
/*
|
|
|
|
* Livelist Overview
|
|
|
|
* ================
|
|
|
|
*
|
|
|
|
* Livelists use the same 'deadlist_t' struct as deadlists and are also used
|
|
|
|
* to track blkptrs over the lifetime of a dataset. Livelists however, belong
|
|
|
|
* to clones and track the blkptrs that are clone-specific (were born after
|
|
|
|
* the clone's creation). The exception is embedded block pointers which are
|
|
|
|
* not included in livelists because they do not need to be freed.
|
|
|
|
*
|
|
|
|
* When it comes time to delete the clone, the livelist provides a quick
|
|
|
|
* reference as to what needs to be freed. For this reason, livelists also track
|
|
|
|
* when clone-specific blkptrs are freed before deletion to prevent double
|
|
|
|
* frees. Each blkptr in a livelist is marked as a FREE or an ALLOC and the
|
|
|
|
* deletion algorithm iterates backwards over the livelist, matching
|
|
|
|
* FREE/ALLOC pairs and then freeing those ALLOCs which remain. livelists
|
|
|
|
* are also updated in the case when blkptrs are remapped: the old version
|
|
|
|
* of the blkptr is cancelled out with a FREE and the new version is tracked
|
|
|
|
* with an ALLOC.
|
|
|
|
*
|
|
|
|
* To bound the amount of memory required for deletion, livelists over a
|
|
|
|
* certain size are spread over multiple entries. Entries are grouped by
|
|
|
|
* birth txg so we can be sure the ALLOC/FREE pair for a given blkptr will
|
|
|
|
* be in the same entry. This allows us to delete livelists incrementally
|
|
|
|
* over multiple syncs, one entry at a time.
|
|
|
|
*
|
|
|
|
* During the lifetime of the clone, livelists can get extremely large.
|
|
|
|
* Their size is managed by periodic condensing (preemptively cancelling out
|
|
|
|
* FREE/ALLOC pairs). Livelists are disabled when a clone is promoted or when
|
|
|
|
* the shared space between the clone and its origin is so small that it
|
|
|
|
* doesn't make sense to use livelists anymore.
|
|
|
|
*/
|
|
|
|
|
|
|
|
/*
|
|
|
|
* The threshold sublist size at which we create a new sub-livelist for the
|
|
|
|
* next txg. However, since blkptrs of the same transaction group must be in
|
|
|
|
* the same sub-list, the actual sublist size may exceed this. When picking the
|
|
|
|
* size we had to balance the fact that larger sublists mean fewer sublists
|
|
|
|
* (decreasing the cost of insertion) against the consideration that sublists
|
|
|
|
* will be loaded into memory and shouldn't take up an inordinate amount of
|
|
|
|
* space. We settled on ~500000 entries, corresponding to roughly 128M.
|
|
|
|
*/
|
|
|
|
unsigned long zfs_livelist_max_entries = 500000;
|
|
|
|
|
|
|
|
/*
|
|
|
|
* We can approximate how much of a performance gain a livelist will give us
|
|
|
|
* based on the percentage of blocks shared between the clone and its origin.
|
|
|
|
* 0 percent shared means that the clone has completely diverged and that the
|
|
|
|
* old method is maximally effective: every read from the block tree will
|
|
|
|
* result in lots of frees. Livelists give us gains when they track blocks
|
|
|
|
* scattered across the tree, when one read in the old method might only
|
|
|
|
* result in a few frees. Once the clone has been overwritten enough,
|
|
|
|
* writes are no longer sparse and we'll no longer get much of a benefit from
|
|
|
|
* tracking them with a livelist. We chose a lower limit of 75 percent shared
|
|
|
|
* (25 percent overwritten). This means that 1/4 of all block pointers will be
|
|
|
|
* freed (e.g. each read frees 256, out of a max of 1024) so we expect livelists
|
|
|
|
* to make deletion 4x faster. Once the amount of shared space drops below this
|
|
|
|
* threshold, the clone will revert to the old deletion method.
|
|
|
|
*/
|
|
|
|
int zfs_livelist_min_percent_shared = 75;
|
|
|
|
|
2010-05-29 00:45:14 +04:00
|
|
|
static int
|
|
|
|
dsl_deadlist_compare(const void *arg1, const void *arg2)
|
|
|
|
{
|
Add fast path for zfs_ioc_space_snaps() handling of empty_bpobj
When there are many snapshots, calls to zfs_ioc_space_snaps() (e.g. from
`zfs destroy -nv pool/fs@snap1%snap10000`) can be very slow, resulting
in poor performance because we are holding the dp_config_rwlock the
entire time, blocking spa_sync() from continuing. With around ten
thousand snapshots, we've seen up to 500 seconds in this ioctl,
iterating over up to 50,000,000 bpobjs, ~99% of which are the empty
bpobj.
By creating a fast path for zfs_ioc_space_snaps() handling of the
empty_bpobj, we can achieve a ~5x performance improvement of this ioctl
(when there are many snapshots, and the deadlist is mostly
empty_bpobj's).
Reviewed-by: Pavel Zakharov <pavel.zakharov@delphix.com>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Reviewed-by: Paul Dagnelie <pcd@delphix.com>
Signed-off-by: Matthew Ahrens <mahrens@delphix.com>
External-issue: DLPX-58348
Closes #8744
2019-08-20 21:34:52 +03:00
|
|
|
const dsl_deadlist_entry_t *dle1 = arg1;
|
|
|
|
const dsl_deadlist_entry_t *dle2 = arg2;
|
2010-05-29 00:45:14 +04:00
|
|
|
|
2016-08-27 21:12:53 +03:00
|
|
|
return (AVL_CMP(dle1->dle_mintxg, dle2->dle_mintxg));
|
2010-05-29 00:45:14 +04:00
|
|
|
}
|
|
|
|
|
Add fast path for zfs_ioc_space_snaps() handling of empty_bpobj
When there are many snapshots, calls to zfs_ioc_space_snaps() (e.g. from
`zfs destroy -nv pool/fs@snap1%snap10000`) can be very slow, resulting
in poor performance because we are holding the dp_config_rwlock the
entire time, blocking spa_sync() from continuing. With around ten
thousand snapshots, we've seen up to 500 seconds in this ioctl,
iterating over up to 50,000,000 bpobjs, ~99% of which are the empty
bpobj.
By creating a fast path for zfs_ioc_space_snaps() handling of the
empty_bpobj, we can achieve a ~5x performance improvement of this ioctl
(when there are many snapshots, and the deadlist is mostly
empty_bpobj's).
Reviewed-by: Pavel Zakharov <pavel.zakharov@delphix.com>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Reviewed-by: Paul Dagnelie <pcd@delphix.com>
Signed-off-by: Matthew Ahrens <mahrens@delphix.com>
External-issue: DLPX-58348
Closes #8744
2019-08-20 21:34:52 +03:00
|
|
|
static int
|
|
|
|
dsl_deadlist_cache_compare(const void *arg1, const void *arg2)
|
|
|
|
{
|
|
|
|
const dsl_deadlist_cache_entry_t *dlce1 = arg1;
|
|
|
|
const dsl_deadlist_cache_entry_t *dlce2 = arg2;
|
|
|
|
|
|
|
|
return (AVL_CMP(dlce1->dlce_mintxg, dlce2->dlce_mintxg));
|
|
|
|
}
|
|
|
|
|
2010-05-29 00:45:14 +04:00
|
|
|
static void
|
|
|
|
dsl_deadlist_load_tree(dsl_deadlist_t *dl)
|
|
|
|
{
|
|
|
|
zap_cursor_t zc;
|
|
|
|
zap_attribute_t za;
|
|
|
|
|
2017-02-09 21:19:12 +03:00
|
|
|
ASSERT(MUTEX_HELD(&dl->dl_lock));
|
|
|
|
|
2010-05-29 00:45:14 +04:00
|
|
|
ASSERT(!dl->dl_oldfmt);
|
Add fast path for zfs_ioc_space_snaps() handling of empty_bpobj
When there are many snapshots, calls to zfs_ioc_space_snaps() (e.g. from
`zfs destroy -nv pool/fs@snap1%snap10000`) can be very slow, resulting
in poor performance because we are holding the dp_config_rwlock the
entire time, blocking spa_sync() from continuing. With around ten
thousand snapshots, we've seen up to 500 seconds in this ioctl,
iterating over up to 50,000,000 bpobjs, ~99% of which are the empty
bpobj.
By creating a fast path for zfs_ioc_space_snaps() handling of the
empty_bpobj, we can achieve a ~5x performance improvement of this ioctl
(when there are many snapshots, and the deadlist is mostly
empty_bpobj's).
Reviewed-by: Pavel Zakharov <pavel.zakharov@delphix.com>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Reviewed-by: Paul Dagnelie <pcd@delphix.com>
Signed-off-by: Matthew Ahrens <mahrens@delphix.com>
External-issue: DLPX-58348
Closes #8744
2019-08-20 21:34:52 +03:00
|
|
|
if (dl->dl_havecache) {
|
|
|
|
/*
|
|
|
|
* After loading the tree, the caller may modify the tree,
|
|
|
|
* e.g. to add or remove nodes, or to make a node no longer
|
|
|
|
* refer to the empty_bpobj. These changes would make the
|
|
|
|
* dl_cache incorrect. Therefore we discard the cache here,
|
|
|
|
* so that it can't become incorrect.
|
|
|
|
*/
|
|
|
|
dsl_deadlist_cache_entry_t *dlce;
|
|
|
|
void *cookie = NULL;
|
|
|
|
while ((dlce = avl_destroy_nodes(&dl->dl_cache, &cookie))
|
|
|
|
!= NULL) {
|
|
|
|
kmem_free(dlce, sizeof (*dlce));
|
|
|
|
}
|
|
|
|
avl_destroy(&dl->dl_cache);
|
|
|
|
dl->dl_havecache = B_FALSE;
|
|
|
|
}
|
2010-05-29 00:45:14 +04:00
|
|
|
if (dl->dl_havetree)
|
|
|
|
return;
|
|
|
|
|
|
|
|
avl_create(&dl->dl_tree, dsl_deadlist_compare,
|
|
|
|
sizeof (dsl_deadlist_entry_t),
|
|
|
|
offsetof(dsl_deadlist_entry_t, dle_node));
|
|
|
|
for (zap_cursor_init(&zc, dl->dl_os, dl->dl_object);
|
|
|
|
zap_cursor_retrieve(&zc, &za) == 0;
|
|
|
|
zap_cursor_advance(&zc)) {
|
2017-06-13 06:16:28 +03:00
|
|
|
dsl_deadlist_entry_t *dle = kmem_alloc(sizeof (*dle), KM_SLEEP);
|
|
|
|
dle->dle_mintxg = zfs_strtonum(za.za_name, NULL);
|
Add fast path for zfs_ioc_space_snaps() handling of empty_bpobj
When there are many snapshots, calls to zfs_ioc_space_snaps() (e.g. from
`zfs destroy -nv pool/fs@snap1%snap10000`) can be very slow, resulting
in poor performance because we are holding the dp_config_rwlock the
entire time, blocking spa_sync() from continuing. With around ten
thousand snapshots, we've seen up to 500 seconds in this ioctl,
iterating over up to 50,000,000 bpobjs, ~99% of which are the empty
bpobj.
By creating a fast path for zfs_ioc_space_snaps() handling of the
empty_bpobj, we can achieve a ~5x performance improvement of this ioctl
(when there are many snapshots, and the deadlist is mostly
empty_bpobj's).
Reviewed-by: Pavel Zakharov <pavel.zakharov@delphix.com>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Reviewed-by: Paul Dagnelie <pcd@delphix.com>
Signed-off-by: Matthew Ahrens <mahrens@delphix.com>
External-issue: DLPX-58348
Closes #8744
2019-08-20 21:34:52 +03:00
|
|
|
|
|
|
|
/*
|
|
|
|
* Prefetch all the bpobj's so that we do that i/o
|
|
|
|
* in parallel. Then open them all in a second pass.
|
|
|
|
*/
|
|
|
|
dle->dle_bpobj.bpo_object = za.za_first_integer;
|
|
|
|
dmu_prefetch(dl->dl_os, dle->dle_bpobj.bpo_object,
|
|
|
|
0, 0, 0, ZIO_PRIORITY_SYNC_READ);
|
|
|
|
|
2010-05-29 00:45:14 +04:00
|
|
|
avl_add(&dl->dl_tree, dle);
|
|
|
|
}
|
|
|
|
zap_cursor_fini(&zc);
|
Add fast path for zfs_ioc_space_snaps() handling of empty_bpobj
When there are many snapshots, calls to zfs_ioc_space_snaps() (e.g. from
`zfs destroy -nv pool/fs@snap1%snap10000`) can be very slow, resulting
in poor performance because we are holding the dp_config_rwlock the
entire time, blocking spa_sync() from continuing. With around ten
thousand snapshots, we've seen up to 500 seconds in this ioctl,
iterating over up to 50,000,000 bpobjs, ~99% of which are the empty
bpobj.
By creating a fast path for zfs_ioc_space_snaps() handling of the
empty_bpobj, we can achieve a ~5x performance improvement of this ioctl
(when there are many snapshots, and the deadlist is mostly
empty_bpobj's).
Reviewed-by: Pavel Zakharov <pavel.zakharov@delphix.com>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Reviewed-by: Paul Dagnelie <pcd@delphix.com>
Signed-off-by: Matthew Ahrens <mahrens@delphix.com>
External-issue: DLPX-58348
Closes #8744
2019-08-20 21:34:52 +03:00
|
|
|
|
|
|
|
for (dsl_deadlist_entry_t *dle = avl_first(&dl->dl_tree);
|
|
|
|
dle != NULL; dle = AVL_NEXT(&dl->dl_tree, dle)) {
|
|
|
|
VERIFY0(bpobj_open(&dle->dle_bpobj, dl->dl_os,
|
|
|
|
dle->dle_bpobj.bpo_object));
|
|
|
|
}
|
2010-05-29 00:45:14 +04:00
|
|
|
dl->dl_havetree = B_TRUE;
|
|
|
|
}
|
|
|
|
|
Add fast path for zfs_ioc_space_snaps() handling of empty_bpobj
When there are many snapshots, calls to zfs_ioc_space_snaps() (e.g. from
`zfs destroy -nv pool/fs@snap1%snap10000`) can be very slow, resulting
in poor performance because we are holding the dp_config_rwlock the
entire time, blocking spa_sync() from continuing. With around ten
thousand snapshots, we've seen up to 500 seconds in this ioctl,
iterating over up to 50,000,000 bpobjs, ~99% of which are the empty
bpobj.
By creating a fast path for zfs_ioc_space_snaps() handling of the
empty_bpobj, we can achieve a ~5x performance improvement of this ioctl
(when there are many snapshots, and the deadlist is mostly
empty_bpobj's).
Reviewed-by: Pavel Zakharov <pavel.zakharov@delphix.com>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Reviewed-by: Paul Dagnelie <pcd@delphix.com>
Signed-off-by: Matthew Ahrens <mahrens@delphix.com>
External-issue: DLPX-58348
Closes #8744
2019-08-20 21:34:52 +03:00
|
|
|
/*
|
|
|
|
* Load only the non-empty bpobj's into the dl_cache. The cache is an analog
|
|
|
|
* of the dl_tree, but contains only non-empty_bpobj nodes from the ZAP. It
|
|
|
|
* is used only for gathering space statistics. The dl_cache has two
|
|
|
|
* advantages over the dl_tree:
|
|
|
|
*
|
|
|
|
* 1. Loading the dl_cache is ~5x faster than loading the dl_tree (if it's
|
|
|
|
* mostly empty_bpobj's), due to less CPU overhead to open the empty_bpobj
|
|
|
|
* many times and to inquire about its (zero) space stats many times.
|
|
|
|
*
|
|
|
|
* 2. The dl_cache uses less memory than the dl_tree. We only need to load
|
|
|
|
* the dl_tree of snapshots when deleting a snapshot, after which we free the
|
|
|
|
* dl_tree with dsl_deadlist_discard_tree
|
|
|
|
*/
|
|
|
|
static void
|
|
|
|
dsl_deadlist_load_cache(dsl_deadlist_t *dl)
|
|
|
|
{
|
|
|
|
zap_cursor_t zc;
|
|
|
|
zap_attribute_t za;
|
|
|
|
|
|
|
|
ASSERT(MUTEX_HELD(&dl->dl_lock));
|
|
|
|
|
|
|
|
ASSERT(!dl->dl_oldfmt);
|
|
|
|
if (dl->dl_havecache)
|
|
|
|
return;
|
|
|
|
|
|
|
|
uint64_t empty_bpobj = dmu_objset_pool(dl->dl_os)->dp_empty_bpobj;
|
|
|
|
|
|
|
|
avl_create(&dl->dl_cache, dsl_deadlist_cache_compare,
|
|
|
|
sizeof (dsl_deadlist_cache_entry_t),
|
|
|
|
offsetof(dsl_deadlist_cache_entry_t, dlce_node));
|
|
|
|
for (zap_cursor_init(&zc, dl->dl_os, dl->dl_object);
|
|
|
|
zap_cursor_retrieve(&zc, &za) == 0;
|
|
|
|
zap_cursor_advance(&zc)) {
|
|
|
|
if (za.za_first_integer == empty_bpobj)
|
|
|
|
continue;
|
|
|
|
dsl_deadlist_cache_entry_t *dlce =
|
|
|
|
kmem_zalloc(sizeof (*dlce), KM_SLEEP);
|
|
|
|
dlce->dlce_mintxg = zfs_strtonum(za.za_name, NULL);
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Prefetch all the bpobj's so that we do that i/o
|
|
|
|
* in parallel. Then open them all in a second pass.
|
|
|
|
*/
|
|
|
|
dlce->dlce_bpobj = za.za_first_integer;
|
|
|
|
dmu_prefetch(dl->dl_os, dlce->dlce_bpobj,
|
|
|
|
0, 0, 0, ZIO_PRIORITY_SYNC_READ);
|
|
|
|
avl_add(&dl->dl_cache, dlce);
|
|
|
|
}
|
|
|
|
zap_cursor_fini(&zc);
|
|
|
|
|
|
|
|
for (dsl_deadlist_cache_entry_t *dlce = avl_first(&dl->dl_cache);
|
|
|
|
dlce != NULL; dlce = AVL_NEXT(&dl->dl_cache, dlce)) {
|
|
|
|
bpobj_t bpo;
|
|
|
|
VERIFY0(bpobj_open(&bpo, dl->dl_os, dlce->dlce_bpobj));
|
|
|
|
|
|
|
|
VERIFY0(bpobj_space(&bpo,
|
|
|
|
&dlce->dlce_bytes, &dlce->dlce_comp, &dlce->dlce_uncomp));
|
|
|
|
bpobj_close(&bpo);
|
|
|
|
}
|
|
|
|
dl->dl_havecache = B_TRUE;
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Discard the tree to save memory.
|
|
|
|
*/
|
|
|
|
void
|
|
|
|
dsl_deadlist_discard_tree(dsl_deadlist_t *dl)
|
|
|
|
{
|
|
|
|
mutex_enter(&dl->dl_lock);
|
|
|
|
|
|
|
|
if (!dl->dl_havetree) {
|
|
|
|
mutex_exit(&dl->dl_lock);
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
dsl_deadlist_entry_t *dle;
|
|
|
|
void *cookie = NULL;
|
|
|
|
while ((dle = avl_destroy_nodes(&dl->dl_tree, &cookie)) != NULL) {
|
|
|
|
bpobj_close(&dle->dle_bpobj);
|
|
|
|
kmem_free(dle, sizeof (*dle));
|
|
|
|
}
|
|
|
|
avl_destroy(&dl->dl_tree);
|
|
|
|
|
|
|
|
dl->dl_havetree = B_FALSE;
|
|
|
|
mutex_exit(&dl->dl_lock);
|
|
|
|
}
|
|
|
|
|
2019-07-26 20:54:14 +03:00
|
|
|
void
|
|
|
|
dsl_deadlist_iterate(dsl_deadlist_t *dl, deadlist_iter_t func, void *args)
|
|
|
|
{
|
|
|
|
dsl_deadlist_entry_t *dle;
|
|
|
|
|
|
|
|
ASSERT(dsl_deadlist_is_open(dl));
|
|
|
|
|
|
|
|
mutex_enter(&dl->dl_lock);
|
|
|
|
dsl_deadlist_load_tree(dl);
|
|
|
|
mutex_exit(&dl->dl_lock);
|
|
|
|
for (dle = avl_first(&dl->dl_tree); dle != NULL;
|
|
|
|
dle = AVL_NEXT(&dl->dl_tree, dle)) {
|
|
|
|
if (func(args, dle) != 0)
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2010-05-29 00:45:14 +04:00
|
|
|
void
|
|
|
|
dsl_deadlist_open(dsl_deadlist_t *dl, objset_t *os, uint64_t object)
|
|
|
|
{
|
|
|
|
dmu_object_info_t doi;
|
|
|
|
|
OpenZFS 7614, 9064 - zfs device evacuation/removal
OpenZFS 7614 - zfs device evacuation/removal
OpenZFS 9064 - remove_mirror should wait for device removal to complete
This project allows top-level vdevs to be removed from the storage pool
with "zpool remove", reducing the total amount of storage in the pool.
This operation copies all allocated regions of the device to be removed
onto other devices, recording the mapping from old to new location.
After the removal is complete, read and free operations to the removed
(now "indirect") vdev must be remapped and performed at the new location
on disk. The indirect mapping table is kept in memory whenever the pool
is loaded, so there is minimal performance overhead when doing operations
on the indirect vdev.
The size of the in-memory mapping table will be reduced when its entries
become "obsolete" because they are no longer used by any block pointers
in the pool. An entry becomes obsolete when all the blocks that use
it are freed. An entry can also become obsolete when all the snapshots
that reference it are deleted, and the block pointers that reference it
have been "remapped" in all filesystems/zvols (and clones). Whenever an
indirect block is written, all the block pointers in it will be "remapped"
to their new (concrete) locations if possible. This process can be
accelerated by using the "zfs remap" command to proactively rewrite all
indirect blocks that reference indirect (removed) vdevs.
Note that when a device is removed, we do not verify the checksum of
the data that is copied. This makes the process much faster, but if it
were used on redundant vdevs (i.e. mirror or raidz vdevs), it would be
possible to copy the wrong data, when we have the correct data on e.g.
the other side of the mirror.
At the moment, only mirrors and simple top-level vdevs can be removed
and no removal is allowed if any of the top-level vdevs are raidz.
Porting Notes:
* Avoid zero-sized kmem_alloc() in vdev_compact_children().
The device evacuation code adds a dependency that
vdev_compact_children() be able to properly empty the vdev_child
array by setting it to NULL and zeroing vdev_children. Under Linux,
kmem_alloc() and related functions return a sentinel pointer rather
than NULL for zero-sized allocations.
* Remove comment regarding "mpt" driver where zfs_remove_max_segment
is initialized to SPA_MAXBLOCKSIZE.
Change zfs_condense_indirect_commit_entry_delay_ticks to
zfs_condense_indirect_commit_entry_delay_ms for consistency with
most other tunables in which delays are specified in ms.
* ZTS changes:
Use set_tunable rather than mdb
Use zpool sync as appropriate
Use sync_pool instead of sync
Kill jobs during test_removal_with_operation to allow unmount/export
Don't add non-disk names such as "mirror" or "raidz" to $DISKS
Use $TEST_BASE_DIR instead of /tmp
Increase HZ from 100 to 1000 which is more common on Linux
removal_multiple_indirection.ksh
Reduce iterations in order to not time out on the code
coverage builders.
removal_resume_export:
Functionally, the test case is correct but there exists a race
where the kernel thread hasn't been fully started yet and is
not visible. Wait for up to 1 second for the removal thread
to be started before giving up on it. Also, increase the
amount of data copied in order that the removal not finish
before the export has a chance to fail.
* MMP compatibility, the concept of concrete versus non-concrete devices
has slightly changed the semantics of vdev_writeable(). Update
mmp_random_leaf_impl() accordingly.
* Updated dbuf_remap() to handle the org.zfsonlinux:large_dnode pool
feature which is not supported by OpenZFS.
* Added support for new vdev removal tracepoints.
* Test cases removal_with_zdb and removal_condense_export have been
intentionally disabled. When run manually they pass as intended,
but when running in the automated test environment they produce
unreliable results on the latest Fedora release.
They may work better once the upstream pool import refectoring is
merged into ZoL at which point they will be re-enabled.
Authored by: Matthew Ahrens <mahrens@delphix.com>
Reviewed-by: Alex Reece <alex@delphix.com>
Reviewed-by: George Wilson <george.wilson@delphix.com>
Reviewed-by: John Kennedy <john.kennedy@delphix.com>
Reviewed-by: Prakash Surya <prakash.surya@delphix.com>
Reviewed by: Richard Laager <rlaager@wiktel.com>
Reviewed by: Tim Chase <tim@chase2k.com>
Reviewed by: Brian Behlendorf <behlendorf1@llnl.gov>
Approved by: Garrett D'Amore <garrett@damore.org>
Ported-by: Tim Chase <tim@chase2k.com>
Signed-off-by: Tim Chase <tim@chase2k.com>
OpenZFS-issue: https://www.illumos.org/issues/7614
OpenZFS-commit: https://github.com/openzfs/openzfs/commit/f539f1eb
Closes #6900
2016-09-22 19:30:13 +03:00
|
|
|
ASSERT(!dsl_deadlist_is_open(dl));
|
|
|
|
|
2010-05-29 00:45:14 +04:00
|
|
|
mutex_init(&dl->dl_lock, NULL, MUTEX_DEFAULT, NULL);
|
|
|
|
dl->dl_os = os;
|
|
|
|
dl->dl_object = object;
|
Implement Redacted Send/Receive
Redacted send/receive allows users to send subsets of their data to
a target system. One possible use case for this feature is to not
transmit sensitive information to a data warehousing, test/dev, or
analytics environment. Another is to save space by not replicating
unimportant data within a given dataset, for example in backup tools
like zrepl.
Redacted send/receive is a three-stage process. First, a clone (or
clones) is made of the snapshot to be sent to the target. In this
clone (or clones), all unnecessary or unwanted data is removed or
modified. This clone is then snapshotted to create the "redaction
snapshot" (or snapshots). Second, the new zfs redact command is used
to create a redaction bookmark. The redaction bookmark stores the
list of blocks in a snapshot that were modified by the redaction
snapshot(s). Finally, the redaction bookmark is passed as a parameter
to zfs send. When sending to the snapshot that was redacted, the
redaction bookmark is used to filter out blocks that contain sensitive
or unwanted information, and those blocks are not included in the send
stream. When sending from the redaction bookmark, the blocks it
contains are considered as candidate blocks in addition to those
blocks in the destination snapshot that were modified since the
creation_txg of the redaction bookmark. This step is necessary to
allow the target to rehydrate data in the case where some blocks are
accidentally or unnecessarily modified in the redaction snapshot.
The changes to bookmarks to enable fast space estimation involve
adding deadlists to bookmarks. There is also logic to manage the
life cycles of these deadlists.
The new size estimation process operates in cases where previously
an accurate estimate could not be provided. In those cases, a send
is performed where no data blocks are read, reducing the runtime
significantly and providing a byte-accurate size estimate.
Reviewed-by: Dan Kimmel <dan.kimmel@delphix.com>
Reviewed-by: Matt Ahrens <mahrens@delphix.com>
Reviewed-by: Prashanth Sreenivasa <pks@delphix.com>
Reviewed-by: John Kennedy <john.kennedy@delphix.com>
Reviewed-by: George Wilson <george.wilson@delphix.com>
Reviewed-by: Chris Williamson <chris.williamson@delphix.com>
Reviewed-by: Pavel Zhakarov <pavel.zakharov@delphix.com>
Reviewed-by: Sebastien Roy <sebastien.roy@delphix.com>
Reviewed-by: Prakash Surya <prakash.surya@delphix.com>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Paul Dagnelie <pcd@delphix.com>
Closes #7958
2019-06-19 19:48:13 +03:00
|
|
|
VERIFY0(dmu_bonus_hold(os, object, dl, &dl->dl_dbuf));
|
2010-05-29 00:45:14 +04:00
|
|
|
dmu_object_info_from_db(dl->dl_dbuf, &doi);
|
|
|
|
if (doi.doi_type == DMU_OT_BPOBJ) {
|
|
|
|
dmu_buf_rele(dl->dl_dbuf, dl);
|
|
|
|
dl->dl_dbuf = NULL;
|
|
|
|
dl->dl_oldfmt = B_TRUE;
|
Implement Redacted Send/Receive
Redacted send/receive allows users to send subsets of their data to
a target system. One possible use case for this feature is to not
transmit sensitive information to a data warehousing, test/dev, or
analytics environment. Another is to save space by not replicating
unimportant data within a given dataset, for example in backup tools
like zrepl.
Redacted send/receive is a three-stage process. First, a clone (or
clones) is made of the snapshot to be sent to the target. In this
clone (or clones), all unnecessary or unwanted data is removed or
modified. This clone is then snapshotted to create the "redaction
snapshot" (or snapshots). Second, the new zfs redact command is used
to create a redaction bookmark. The redaction bookmark stores the
list of blocks in a snapshot that were modified by the redaction
snapshot(s). Finally, the redaction bookmark is passed as a parameter
to zfs send. When sending to the snapshot that was redacted, the
redaction bookmark is used to filter out blocks that contain sensitive
or unwanted information, and those blocks are not included in the send
stream. When sending from the redaction bookmark, the blocks it
contains are considered as candidate blocks in addition to those
blocks in the destination snapshot that were modified since the
creation_txg of the redaction bookmark. This step is necessary to
allow the target to rehydrate data in the case where some blocks are
accidentally or unnecessarily modified in the redaction snapshot.
The changes to bookmarks to enable fast space estimation involve
adding deadlists to bookmarks. There is also logic to manage the
life cycles of these deadlists.
The new size estimation process operates in cases where previously
an accurate estimate could not be provided. In those cases, a send
is performed where no data blocks are read, reducing the runtime
significantly and providing a byte-accurate size estimate.
Reviewed-by: Dan Kimmel <dan.kimmel@delphix.com>
Reviewed-by: Matt Ahrens <mahrens@delphix.com>
Reviewed-by: Prashanth Sreenivasa <pks@delphix.com>
Reviewed-by: John Kennedy <john.kennedy@delphix.com>
Reviewed-by: George Wilson <george.wilson@delphix.com>
Reviewed-by: Chris Williamson <chris.williamson@delphix.com>
Reviewed-by: Pavel Zhakarov <pavel.zakharov@delphix.com>
Reviewed-by: Sebastien Roy <sebastien.roy@delphix.com>
Reviewed-by: Prakash Surya <prakash.surya@delphix.com>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Paul Dagnelie <pcd@delphix.com>
Closes #7958
2019-06-19 19:48:13 +03:00
|
|
|
VERIFY0(bpobj_open(&dl->dl_bpobj, os, object));
|
2010-05-29 00:45:14 +04:00
|
|
|
return;
|
|
|
|
}
|
|
|
|
|
|
|
|
dl->dl_oldfmt = B_FALSE;
|
|
|
|
dl->dl_phys = dl->dl_dbuf->db_data;
|
|
|
|
dl->dl_havetree = B_FALSE;
|
Add fast path for zfs_ioc_space_snaps() handling of empty_bpobj
When there are many snapshots, calls to zfs_ioc_space_snaps() (e.g. from
`zfs destroy -nv pool/fs@snap1%snap10000`) can be very slow, resulting
in poor performance because we are holding the dp_config_rwlock the
entire time, blocking spa_sync() from continuing. With around ten
thousand snapshots, we've seen up to 500 seconds in this ioctl,
iterating over up to 50,000,000 bpobjs, ~99% of which are the empty
bpobj.
By creating a fast path for zfs_ioc_space_snaps() handling of the
empty_bpobj, we can achieve a ~5x performance improvement of this ioctl
(when there are many snapshots, and the deadlist is mostly
empty_bpobj's).
Reviewed-by: Pavel Zakharov <pavel.zakharov@delphix.com>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Reviewed-by: Paul Dagnelie <pcd@delphix.com>
Signed-off-by: Matthew Ahrens <mahrens@delphix.com>
External-issue: DLPX-58348
Closes #8744
2019-08-20 21:34:52 +03:00
|
|
|
dl->dl_havecache = B_FALSE;
|
2010-05-29 00:45:14 +04:00
|
|
|
}
|
|
|
|
|
OpenZFS 7614, 9064 - zfs device evacuation/removal
OpenZFS 7614 - zfs device evacuation/removal
OpenZFS 9064 - remove_mirror should wait for device removal to complete
This project allows top-level vdevs to be removed from the storage pool
with "zpool remove", reducing the total amount of storage in the pool.
This operation copies all allocated regions of the device to be removed
onto other devices, recording the mapping from old to new location.
After the removal is complete, read and free operations to the removed
(now "indirect") vdev must be remapped and performed at the new location
on disk. The indirect mapping table is kept in memory whenever the pool
is loaded, so there is minimal performance overhead when doing operations
on the indirect vdev.
The size of the in-memory mapping table will be reduced when its entries
become "obsolete" because they are no longer used by any block pointers
in the pool. An entry becomes obsolete when all the blocks that use
it are freed. An entry can also become obsolete when all the snapshots
that reference it are deleted, and the block pointers that reference it
have been "remapped" in all filesystems/zvols (and clones). Whenever an
indirect block is written, all the block pointers in it will be "remapped"
to their new (concrete) locations if possible. This process can be
accelerated by using the "zfs remap" command to proactively rewrite all
indirect blocks that reference indirect (removed) vdevs.
Note that when a device is removed, we do not verify the checksum of
the data that is copied. This makes the process much faster, but if it
were used on redundant vdevs (i.e. mirror or raidz vdevs), it would be
possible to copy the wrong data, when we have the correct data on e.g.
the other side of the mirror.
At the moment, only mirrors and simple top-level vdevs can be removed
and no removal is allowed if any of the top-level vdevs are raidz.
Porting Notes:
* Avoid zero-sized kmem_alloc() in vdev_compact_children().
The device evacuation code adds a dependency that
vdev_compact_children() be able to properly empty the vdev_child
array by setting it to NULL and zeroing vdev_children. Under Linux,
kmem_alloc() and related functions return a sentinel pointer rather
than NULL for zero-sized allocations.
* Remove comment regarding "mpt" driver where zfs_remove_max_segment
is initialized to SPA_MAXBLOCKSIZE.
Change zfs_condense_indirect_commit_entry_delay_ticks to
zfs_condense_indirect_commit_entry_delay_ms for consistency with
most other tunables in which delays are specified in ms.
* ZTS changes:
Use set_tunable rather than mdb
Use zpool sync as appropriate
Use sync_pool instead of sync
Kill jobs during test_removal_with_operation to allow unmount/export
Don't add non-disk names such as "mirror" or "raidz" to $DISKS
Use $TEST_BASE_DIR instead of /tmp
Increase HZ from 100 to 1000 which is more common on Linux
removal_multiple_indirection.ksh
Reduce iterations in order to not time out on the code
coverage builders.
removal_resume_export:
Functionally, the test case is correct but there exists a race
where the kernel thread hasn't been fully started yet and is
not visible. Wait for up to 1 second for the removal thread
to be started before giving up on it. Also, increase the
amount of data copied in order that the removal not finish
before the export has a chance to fail.
* MMP compatibility, the concept of concrete versus non-concrete devices
has slightly changed the semantics of vdev_writeable(). Update
mmp_random_leaf_impl() accordingly.
* Updated dbuf_remap() to handle the org.zfsonlinux:large_dnode pool
feature which is not supported by OpenZFS.
* Added support for new vdev removal tracepoints.
* Test cases removal_with_zdb and removal_condense_export have been
intentionally disabled. When run manually they pass as intended,
but when running in the automated test environment they produce
unreliable results on the latest Fedora release.
They may work better once the upstream pool import refectoring is
merged into ZoL at which point they will be re-enabled.
Authored by: Matthew Ahrens <mahrens@delphix.com>
Reviewed-by: Alex Reece <alex@delphix.com>
Reviewed-by: George Wilson <george.wilson@delphix.com>
Reviewed-by: John Kennedy <john.kennedy@delphix.com>
Reviewed-by: Prakash Surya <prakash.surya@delphix.com>
Reviewed by: Richard Laager <rlaager@wiktel.com>
Reviewed by: Tim Chase <tim@chase2k.com>
Reviewed by: Brian Behlendorf <behlendorf1@llnl.gov>
Approved by: Garrett D'Amore <garrett@damore.org>
Ported-by: Tim Chase <tim@chase2k.com>
Signed-off-by: Tim Chase <tim@chase2k.com>
OpenZFS-issue: https://www.illumos.org/issues/7614
OpenZFS-commit: https://github.com/openzfs/openzfs/commit/f539f1eb
Closes #6900
2016-09-22 19:30:13 +03:00
|
|
|
boolean_t
|
|
|
|
dsl_deadlist_is_open(dsl_deadlist_t *dl)
|
|
|
|
{
|
|
|
|
return (dl->dl_os != NULL);
|
|
|
|
}
|
|
|
|
|
2010-05-29 00:45:14 +04:00
|
|
|
void
|
|
|
|
dsl_deadlist_close(dsl_deadlist_t *dl)
|
|
|
|
{
|
OpenZFS 7614, 9064 - zfs device evacuation/removal
OpenZFS 7614 - zfs device evacuation/removal
OpenZFS 9064 - remove_mirror should wait for device removal to complete
This project allows top-level vdevs to be removed from the storage pool
with "zpool remove", reducing the total amount of storage in the pool.
This operation copies all allocated regions of the device to be removed
onto other devices, recording the mapping from old to new location.
After the removal is complete, read and free operations to the removed
(now "indirect") vdev must be remapped and performed at the new location
on disk. The indirect mapping table is kept in memory whenever the pool
is loaded, so there is minimal performance overhead when doing operations
on the indirect vdev.
The size of the in-memory mapping table will be reduced when its entries
become "obsolete" because they are no longer used by any block pointers
in the pool. An entry becomes obsolete when all the blocks that use
it are freed. An entry can also become obsolete when all the snapshots
that reference it are deleted, and the block pointers that reference it
have been "remapped" in all filesystems/zvols (and clones). Whenever an
indirect block is written, all the block pointers in it will be "remapped"
to their new (concrete) locations if possible. This process can be
accelerated by using the "zfs remap" command to proactively rewrite all
indirect blocks that reference indirect (removed) vdevs.
Note that when a device is removed, we do not verify the checksum of
the data that is copied. This makes the process much faster, but if it
were used on redundant vdevs (i.e. mirror or raidz vdevs), it would be
possible to copy the wrong data, when we have the correct data on e.g.
the other side of the mirror.
At the moment, only mirrors and simple top-level vdevs can be removed
and no removal is allowed if any of the top-level vdevs are raidz.
Porting Notes:
* Avoid zero-sized kmem_alloc() in vdev_compact_children().
The device evacuation code adds a dependency that
vdev_compact_children() be able to properly empty the vdev_child
array by setting it to NULL and zeroing vdev_children. Under Linux,
kmem_alloc() and related functions return a sentinel pointer rather
than NULL for zero-sized allocations.
* Remove comment regarding "mpt" driver where zfs_remove_max_segment
is initialized to SPA_MAXBLOCKSIZE.
Change zfs_condense_indirect_commit_entry_delay_ticks to
zfs_condense_indirect_commit_entry_delay_ms for consistency with
most other tunables in which delays are specified in ms.
* ZTS changes:
Use set_tunable rather than mdb
Use zpool sync as appropriate
Use sync_pool instead of sync
Kill jobs during test_removal_with_operation to allow unmount/export
Don't add non-disk names such as "mirror" or "raidz" to $DISKS
Use $TEST_BASE_DIR instead of /tmp
Increase HZ from 100 to 1000 which is more common on Linux
removal_multiple_indirection.ksh
Reduce iterations in order to not time out on the code
coverage builders.
removal_resume_export:
Functionally, the test case is correct but there exists a race
where the kernel thread hasn't been fully started yet and is
not visible. Wait for up to 1 second for the removal thread
to be started before giving up on it. Also, increase the
amount of data copied in order that the removal not finish
before the export has a chance to fail.
* MMP compatibility, the concept of concrete versus non-concrete devices
has slightly changed the semantics of vdev_writeable(). Update
mmp_random_leaf_impl() accordingly.
* Updated dbuf_remap() to handle the org.zfsonlinux:large_dnode pool
feature which is not supported by OpenZFS.
* Added support for new vdev removal tracepoints.
* Test cases removal_with_zdb and removal_condense_export have been
intentionally disabled. When run manually they pass as intended,
but when running in the automated test environment they produce
unreliable results on the latest Fedora release.
They may work better once the upstream pool import refectoring is
merged into ZoL at which point they will be re-enabled.
Authored by: Matthew Ahrens <mahrens@delphix.com>
Reviewed-by: Alex Reece <alex@delphix.com>
Reviewed-by: George Wilson <george.wilson@delphix.com>
Reviewed-by: John Kennedy <john.kennedy@delphix.com>
Reviewed-by: Prakash Surya <prakash.surya@delphix.com>
Reviewed by: Richard Laager <rlaager@wiktel.com>
Reviewed by: Tim Chase <tim@chase2k.com>
Reviewed by: Brian Behlendorf <behlendorf1@llnl.gov>
Approved by: Garrett D'Amore <garrett@damore.org>
Ported-by: Tim Chase <tim@chase2k.com>
Signed-off-by: Tim Chase <tim@chase2k.com>
OpenZFS-issue: https://www.illumos.org/issues/7614
OpenZFS-commit: https://github.com/openzfs/openzfs/commit/f539f1eb
Closes #6900
2016-09-22 19:30:13 +03:00
|
|
|
ASSERT(dsl_deadlist_is_open(dl));
|
2016-11-26 23:30:44 +03:00
|
|
|
mutex_destroy(&dl->dl_lock);
|
2015-04-02 06:44:32 +03:00
|
|
|
|
2010-05-29 00:45:14 +04:00
|
|
|
if (dl->dl_oldfmt) {
|
|
|
|
dl->dl_oldfmt = B_FALSE;
|
|
|
|
bpobj_close(&dl->dl_bpobj);
|
OpenZFS 7614, 9064 - zfs device evacuation/removal
OpenZFS 7614 - zfs device evacuation/removal
OpenZFS 9064 - remove_mirror should wait for device removal to complete
This project allows top-level vdevs to be removed from the storage pool
with "zpool remove", reducing the total amount of storage in the pool.
This operation copies all allocated regions of the device to be removed
onto other devices, recording the mapping from old to new location.
After the removal is complete, read and free operations to the removed
(now "indirect") vdev must be remapped and performed at the new location
on disk. The indirect mapping table is kept in memory whenever the pool
is loaded, so there is minimal performance overhead when doing operations
on the indirect vdev.
The size of the in-memory mapping table will be reduced when its entries
become "obsolete" because they are no longer used by any block pointers
in the pool. An entry becomes obsolete when all the blocks that use
it are freed. An entry can also become obsolete when all the snapshots
that reference it are deleted, and the block pointers that reference it
have been "remapped" in all filesystems/zvols (and clones). Whenever an
indirect block is written, all the block pointers in it will be "remapped"
to their new (concrete) locations if possible. This process can be
accelerated by using the "zfs remap" command to proactively rewrite all
indirect blocks that reference indirect (removed) vdevs.
Note that when a device is removed, we do not verify the checksum of
the data that is copied. This makes the process much faster, but if it
were used on redundant vdevs (i.e. mirror or raidz vdevs), it would be
possible to copy the wrong data, when we have the correct data on e.g.
the other side of the mirror.
At the moment, only mirrors and simple top-level vdevs can be removed
and no removal is allowed if any of the top-level vdevs are raidz.
Porting Notes:
* Avoid zero-sized kmem_alloc() in vdev_compact_children().
The device evacuation code adds a dependency that
vdev_compact_children() be able to properly empty the vdev_child
array by setting it to NULL and zeroing vdev_children. Under Linux,
kmem_alloc() and related functions return a sentinel pointer rather
than NULL for zero-sized allocations.
* Remove comment regarding "mpt" driver where zfs_remove_max_segment
is initialized to SPA_MAXBLOCKSIZE.
Change zfs_condense_indirect_commit_entry_delay_ticks to
zfs_condense_indirect_commit_entry_delay_ms for consistency with
most other tunables in which delays are specified in ms.
* ZTS changes:
Use set_tunable rather than mdb
Use zpool sync as appropriate
Use sync_pool instead of sync
Kill jobs during test_removal_with_operation to allow unmount/export
Don't add non-disk names such as "mirror" or "raidz" to $DISKS
Use $TEST_BASE_DIR instead of /tmp
Increase HZ from 100 to 1000 which is more common on Linux
removal_multiple_indirection.ksh
Reduce iterations in order to not time out on the code
coverage builders.
removal_resume_export:
Functionally, the test case is correct but there exists a race
where the kernel thread hasn't been fully started yet and is
not visible. Wait for up to 1 second for the removal thread
to be started before giving up on it. Also, increase the
amount of data copied in order that the removal not finish
before the export has a chance to fail.
* MMP compatibility, the concept of concrete versus non-concrete devices
has slightly changed the semantics of vdev_writeable(). Update
mmp_random_leaf_impl() accordingly.
* Updated dbuf_remap() to handle the org.zfsonlinux:large_dnode pool
feature which is not supported by OpenZFS.
* Added support for new vdev removal tracepoints.
* Test cases removal_with_zdb and removal_condense_export have been
intentionally disabled. When run manually they pass as intended,
but when running in the automated test environment they produce
unreliable results on the latest Fedora release.
They may work better once the upstream pool import refectoring is
merged into ZoL at which point they will be re-enabled.
Authored by: Matthew Ahrens <mahrens@delphix.com>
Reviewed-by: Alex Reece <alex@delphix.com>
Reviewed-by: George Wilson <george.wilson@delphix.com>
Reviewed-by: John Kennedy <john.kennedy@delphix.com>
Reviewed-by: Prakash Surya <prakash.surya@delphix.com>
Reviewed by: Richard Laager <rlaager@wiktel.com>
Reviewed by: Tim Chase <tim@chase2k.com>
Reviewed by: Brian Behlendorf <behlendorf1@llnl.gov>
Approved by: Garrett D'Amore <garrett@damore.org>
Ported-by: Tim Chase <tim@chase2k.com>
Signed-off-by: Tim Chase <tim@chase2k.com>
OpenZFS-issue: https://www.illumos.org/issues/7614
OpenZFS-commit: https://github.com/openzfs/openzfs/commit/f539f1eb
Closes #6900
2016-09-22 19:30:13 +03:00
|
|
|
dl->dl_os = NULL;
|
|
|
|
dl->dl_object = 0;
|
2010-05-29 00:45:14 +04:00
|
|
|
return;
|
|
|
|
}
|
|
|
|
|
|
|
|
if (dl->dl_havetree) {
|
Add fast path for zfs_ioc_space_snaps() handling of empty_bpobj
When there are many snapshots, calls to zfs_ioc_space_snaps() (e.g. from
`zfs destroy -nv pool/fs@snap1%snap10000`) can be very slow, resulting
in poor performance because we are holding the dp_config_rwlock the
entire time, blocking spa_sync() from continuing. With around ten
thousand snapshots, we've seen up to 500 seconds in this ioctl,
iterating over up to 50,000,000 bpobjs, ~99% of which are the empty
bpobj.
By creating a fast path for zfs_ioc_space_snaps() handling of the
empty_bpobj, we can achieve a ~5x performance improvement of this ioctl
(when there are many snapshots, and the deadlist is mostly
empty_bpobj's).
Reviewed-by: Pavel Zakharov <pavel.zakharov@delphix.com>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Reviewed-by: Paul Dagnelie <pcd@delphix.com>
Signed-off-by: Matthew Ahrens <mahrens@delphix.com>
External-issue: DLPX-58348
Closes #8744
2019-08-20 21:34:52 +03:00
|
|
|
dsl_deadlist_entry_t *dle;
|
|
|
|
void *cookie = NULL;
|
2010-05-29 00:45:14 +04:00
|
|
|
while ((dle = avl_destroy_nodes(&dl->dl_tree, &cookie))
|
|
|
|
!= NULL) {
|
|
|
|
bpobj_close(&dle->dle_bpobj);
|
|
|
|
kmem_free(dle, sizeof (*dle));
|
|
|
|
}
|
|
|
|
avl_destroy(&dl->dl_tree);
|
|
|
|
}
|
Add fast path for zfs_ioc_space_snaps() handling of empty_bpobj
When there are many snapshots, calls to zfs_ioc_space_snaps() (e.g. from
`zfs destroy -nv pool/fs@snap1%snap10000`) can be very slow, resulting
in poor performance because we are holding the dp_config_rwlock the
entire time, blocking spa_sync() from continuing. With around ten
thousand snapshots, we've seen up to 500 seconds in this ioctl,
iterating over up to 50,000,000 bpobjs, ~99% of which are the empty
bpobj.
By creating a fast path for zfs_ioc_space_snaps() handling of the
empty_bpobj, we can achieve a ~5x performance improvement of this ioctl
(when there are many snapshots, and the deadlist is mostly
empty_bpobj's).
Reviewed-by: Pavel Zakharov <pavel.zakharov@delphix.com>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Reviewed-by: Paul Dagnelie <pcd@delphix.com>
Signed-off-by: Matthew Ahrens <mahrens@delphix.com>
External-issue: DLPX-58348
Closes #8744
2019-08-20 21:34:52 +03:00
|
|
|
if (dl->dl_havecache) {
|
|
|
|
dsl_deadlist_cache_entry_t *dlce;
|
|
|
|
void *cookie = NULL;
|
|
|
|
while ((dlce = avl_destroy_nodes(&dl->dl_cache, &cookie))
|
|
|
|
!= NULL) {
|
|
|
|
kmem_free(dlce, sizeof (*dlce));
|
|
|
|
}
|
|
|
|
avl_destroy(&dl->dl_cache);
|
|
|
|
}
|
2010-05-29 00:45:14 +04:00
|
|
|
dmu_buf_rele(dl->dl_dbuf, dl);
|
|
|
|
dl->dl_dbuf = NULL;
|
|
|
|
dl->dl_phys = NULL;
|
OpenZFS 7614, 9064 - zfs device evacuation/removal
OpenZFS 7614 - zfs device evacuation/removal
OpenZFS 9064 - remove_mirror should wait for device removal to complete
This project allows top-level vdevs to be removed from the storage pool
with "zpool remove", reducing the total amount of storage in the pool.
This operation copies all allocated regions of the device to be removed
onto other devices, recording the mapping from old to new location.
After the removal is complete, read and free operations to the removed
(now "indirect") vdev must be remapped and performed at the new location
on disk. The indirect mapping table is kept in memory whenever the pool
is loaded, so there is minimal performance overhead when doing operations
on the indirect vdev.
The size of the in-memory mapping table will be reduced when its entries
become "obsolete" because they are no longer used by any block pointers
in the pool. An entry becomes obsolete when all the blocks that use
it are freed. An entry can also become obsolete when all the snapshots
that reference it are deleted, and the block pointers that reference it
have been "remapped" in all filesystems/zvols (and clones). Whenever an
indirect block is written, all the block pointers in it will be "remapped"
to their new (concrete) locations if possible. This process can be
accelerated by using the "zfs remap" command to proactively rewrite all
indirect blocks that reference indirect (removed) vdevs.
Note that when a device is removed, we do not verify the checksum of
the data that is copied. This makes the process much faster, but if it
were used on redundant vdevs (i.e. mirror or raidz vdevs), it would be
possible to copy the wrong data, when we have the correct data on e.g.
the other side of the mirror.
At the moment, only mirrors and simple top-level vdevs can be removed
and no removal is allowed if any of the top-level vdevs are raidz.
Porting Notes:
* Avoid zero-sized kmem_alloc() in vdev_compact_children().
The device evacuation code adds a dependency that
vdev_compact_children() be able to properly empty the vdev_child
array by setting it to NULL and zeroing vdev_children. Under Linux,
kmem_alloc() and related functions return a sentinel pointer rather
than NULL for zero-sized allocations.
* Remove comment regarding "mpt" driver where zfs_remove_max_segment
is initialized to SPA_MAXBLOCKSIZE.
Change zfs_condense_indirect_commit_entry_delay_ticks to
zfs_condense_indirect_commit_entry_delay_ms for consistency with
most other tunables in which delays are specified in ms.
* ZTS changes:
Use set_tunable rather than mdb
Use zpool sync as appropriate
Use sync_pool instead of sync
Kill jobs during test_removal_with_operation to allow unmount/export
Don't add non-disk names such as "mirror" or "raidz" to $DISKS
Use $TEST_BASE_DIR instead of /tmp
Increase HZ from 100 to 1000 which is more common on Linux
removal_multiple_indirection.ksh
Reduce iterations in order to not time out on the code
coverage builders.
removal_resume_export:
Functionally, the test case is correct but there exists a race
where the kernel thread hasn't been fully started yet and is
not visible. Wait for up to 1 second for the removal thread
to be started before giving up on it. Also, increase the
amount of data copied in order that the removal not finish
before the export has a chance to fail.
* MMP compatibility, the concept of concrete versus non-concrete devices
has slightly changed the semantics of vdev_writeable(). Update
mmp_random_leaf_impl() accordingly.
* Updated dbuf_remap() to handle the org.zfsonlinux:large_dnode pool
feature which is not supported by OpenZFS.
* Added support for new vdev removal tracepoints.
* Test cases removal_with_zdb and removal_condense_export have been
intentionally disabled. When run manually they pass as intended,
but when running in the automated test environment they produce
unreliable results on the latest Fedora release.
They may work better once the upstream pool import refectoring is
merged into ZoL at which point they will be re-enabled.
Authored by: Matthew Ahrens <mahrens@delphix.com>
Reviewed-by: Alex Reece <alex@delphix.com>
Reviewed-by: George Wilson <george.wilson@delphix.com>
Reviewed-by: John Kennedy <john.kennedy@delphix.com>
Reviewed-by: Prakash Surya <prakash.surya@delphix.com>
Reviewed by: Richard Laager <rlaager@wiktel.com>
Reviewed by: Tim Chase <tim@chase2k.com>
Reviewed by: Brian Behlendorf <behlendorf1@llnl.gov>
Approved by: Garrett D'Amore <garrett@damore.org>
Ported-by: Tim Chase <tim@chase2k.com>
Signed-off-by: Tim Chase <tim@chase2k.com>
OpenZFS-issue: https://www.illumos.org/issues/7614
OpenZFS-commit: https://github.com/openzfs/openzfs/commit/f539f1eb
Closes #6900
2016-09-22 19:30:13 +03:00
|
|
|
dl->dl_os = NULL;
|
|
|
|
dl->dl_object = 0;
|
2010-05-29 00:45:14 +04:00
|
|
|
}
|
|
|
|
|
|
|
|
uint64_t
|
|
|
|
dsl_deadlist_alloc(objset_t *os, dmu_tx_t *tx)
|
|
|
|
{
|
|
|
|
if (spa_version(dmu_objset_spa(os)) < SPA_VERSION_DEADLISTS)
|
2014-11-03 23:15:08 +03:00
|
|
|
return (bpobj_alloc(os, SPA_OLD_MAXBLOCKSIZE, tx));
|
2010-05-29 00:45:14 +04:00
|
|
|
return (zap_create(os, DMU_OT_DEADLIST, DMU_OT_DEADLIST_HDR,
|
|
|
|
sizeof (dsl_deadlist_phys_t), tx));
|
|
|
|
}
|
|
|
|
|
|
|
|
void
|
|
|
|
dsl_deadlist_free(objset_t *os, uint64_t dlobj, dmu_tx_t *tx)
|
|
|
|
{
|
|
|
|
dmu_object_info_t doi;
|
|
|
|
zap_cursor_t zc;
|
|
|
|
zap_attribute_t za;
|
|
|
|
|
Implement Redacted Send/Receive
Redacted send/receive allows users to send subsets of their data to
a target system. One possible use case for this feature is to not
transmit sensitive information to a data warehousing, test/dev, or
analytics environment. Another is to save space by not replicating
unimportant data within a given dataset, for example in backup tools
like zrepl.
Redacted send/receive is a three-stage process. First, a clone (or
clones) is made of the snapshot to be sent to the target. In this
clone (or clones), all unnecessary or unwanted data is removed or
modified. This clone is then snapshotted to create the "redaction
snapshot" (or snapshots). Second, the new zfs redact command is used
to create a redaction bookmark. The redaction bookmark stores the
list of blocks in a snapshot that were modified by the redaction
snapshot(s). Finally, the redaction bookmark is passed as a parameter
to zfs send. When sending to the snapshot that was redacted, the
redaction bookmark is used to filter out blocks that contain sensitive
or unwanted information, and those blocks are not included in the send
stream. When sending from the redaction bookmark, the blocks it
contains are considered as candidate blocks in addition to those
blocks in the destination snapshot that were modified since the
creation_txg of the redaction bookmark. This step is necessary to
allow the target to rehydrate data in the case where some blocks are
accidentally or unnecessarily modified in the redaction snapshot.
The changes to bookmarks to enable fast space estimation involve
adding deadlists to bookmarks. There is also logic to manage the
life cycles of these deadlists.
The new size estimation process operates in cases where previously
an accurate estimate could not be provided. In those cases, a send
is performed where no data blocks are read, reducing the runtime
significantly and providing a byte-accurate size estimate.
Reviewed-by: Dan Kimmel <dan.kimmel@delphix.com>
Reviewed-by: Matt Ahrens <mahrens@delphix.com>
Reviewed-by: Prashanth Sreenivasa <pks@delphix.com>
Reviewed-by: John Kennedy <john.kennedy@delphix.com>
Reviewed-by: George Wilson <george.wilson@delphix.com>
Reviewed-by: Chris Williamson <chris.williamson@delphix.com>
Reviewed-by: Pavel Zhakarov <pavel.zakharov@delphix.com>
Reviewed-by: Sebastien Roy <sebastien.roy@delphix.com>
Reviewed-by: Prakash Surya <prakash.surya@delphix.com>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Paul Dagnelie <pcd@delphix.com>
Closes #7958
2019-06-19 19:48:13 +03:00
|
|
|
VERIFY0(dmu_object_info(os, dlobj, &doi));
|
2010-05-29 00:45:14 +04:00
|
|
|
if (doi.doi_type == DMU_OT_BPOBJ) {
|
|
|
|
bpobj_free(os, dlobj, tx);
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
|
|
|
|
for (zap_cursor_init(&zc, os, dlobj);
|
|
|
|
zap_cursor_retrieve(&zc, &za) == 0;
|
2012-12-24 03:57:14 +04:00
|
|
|
zap_cursor_advance(&zc)) {
|
|
|
|
uint64_t obj = za.za_first_integer;
|
|
|
|
if (obj == dmu_objset_pool(os)->dp_empty_bpobj)
|
|
|
|
bpobj_decr_empty(os, tx);
|
|
|
|
else
|
|
|
|
bpobj_free(os, obj, tx);
|
|
|
|
}
|
2010-05-29 00:45:14 +04:00
|
|
|
zap_cursor_fini(&zc);
|
Implement Redacted Send/Receive
Redacted send/receive allows users to send subsets of their data to
a target system. One possible use case for this feature is to not
transmit sensitive information to a data warehousing, test/dev, or
analytics environment. Another is to save space by not replicating
unimportant data within a given dataset, for example in backup tools
like zrepl.
Redacted send/receive is a three-stage process. First, a clone (or
clones) is made of the snapshot to be sent to the target. In this
clone (or clones), all unnecessary or unwanted data is removed or
modified. This clone is then snapshotted to create the "redaction
snapshot" (or snapshots). Second, the new zfs redact command is used
to create a redaction bookmark. The redaction bookmark stores the
list of blocks in a snapshot that were modified by the redaction
snapshot(s). Finally, the redaction bookmark is passed as a parameter
to zfs send. When sending to the snapshot that was redacted, the
redaction bookmark is used to filter out blocks that contain sensitive
or unwanted information, and those blocks are not included in the send
stream. When sending from the redaction bookmark, the blocks it
contains are considered as candidate blocks in addition to those
blocks in the destination snapshot that were modified since the
creation_txg of the redaction bookmark. This step is necessary to
allow the target to rehydrate data in the case where some blocks are
accidentally or unnecessarily modified in the redaction snapshot.
The changes to bookmarks to enable fast space estimation involve
adding deadlists to bookmarks. There is also logic to manage the
life cycles of these deadlists.
The new size estimation process operates in cases where previously
an accurate estimate could not be provided. In those cases, a send
is performed where no data blocks are read, reducing the runtime
significantly and providing a byte-accurate size estimate.
Reviewed-by: Dan Kimmel <dan.kimmel@delphix.com>
Reviewed-by: Matt Ahrens <mahrens@delphix.com>
Reviewed-by: Prashanth Sreenivasa <pks@delphix.com>
Reviewed-by: John Kennedy <john.kennedy@delphix.com>
Reviewed-by: George Wilson <george.wilson@delphix.com>
Reviewed-by: Chris Williamson <chris.williamson@delphix.com>
Reviewed-by: Pavel Zhakarov <pavel.zakharov@delphix.com>
Reviewed-by: Sebastien Roy <sebastien.roy@delphix.com>
Reviewed-by: Prakash Surya <prakash.surya@delphix.com>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Paul Dagnelie <pcd@delphix.com>
Closes #7958
2019-06-19 19:48:13 +03:00
|
|
|
VERIFY0(dmu_object_free(os, dlobj, tx));
|
2010-05-29 00:45:14 +04:00
|
|
|
}
|
|
|
|
|
2012-12-24 03:57:14 +04:00
|
|
|
static void
|
|
|
|
dle_enqueue(dsl_deadlist_t *dl, dsl_deadlist_entry_t *dle,
|
2019-07-26 20:54:14 +03:00
|
|
|
const blkptr_t *bp, boolean_t bp_freed, dmu_tx_t *tx)
|
2012-12-24 03:57:14 +04:00
|
|
|
{
|
2017-02-09 21:19:12 +03:00
|
|
|
ASSERT(MUTEX_HELD(&dl->dl_lock));
|
2012-12-24 03:57:14 +04:00
|
|
|
if (dle->dle_bpobj.bpo_object ==
|
|
|
|
dmu_objset_pool(dl->dl_os)->dp_empty_bpobj) {
|
2014-11-03 23:15:08 +03:00
|
|
|
uint64_t obj = bpobj_alloc(dl->dl_os, SPA_OLD_MAXBLOCKSIZE, tx);
|
2012-12-24 03:57:14 +04:00
|
|
|
bpobj_close(&dle->dle_bpobj);
|
|
|
|
bpobj_decr_empty(dl->dl_os, tx);
|
Implement Redacted Send/Receive
Redacted send/receive allows users to send subsets of their data to
a target system. One possible use case for this feature is to not
transmit sensitive information to a data warehousing, test/dev, or
analytics environment. Another is to save space by not replicating
unimportant data within a given dataset, for example in backup tools
like zrepl.
Redacted send/receive is a three-stage process. First, a clone (or
clones) is made of the snapshot to be sent to the target. In this
clone (or clones), all unnecessary or unwanted data is removed or
modified. This clone is then snapshotted to create the "redaction
snapshot" (or snapshots). Second, the new zfs redact command is used
to create a redaction bookmark. The redaction bookmark stores the
list of blocks in a snapshot that were modified by the redaction
snapshot(s). Finally, the redaction bookmark is passed as a parameter
to zfs send. When sending to the snapshot that was redacted, the
redaction bookmark is used to filter out blocks that contain sensitive
or unwanted information, and those blocks are not included in the send
stream. When sending from the redaction bookmark, the blocks it
contains are considered as candidate blocks in addition to those
blocks in the destination snapshot that were modified since the
creation_txg of the redaction bookmark. This step is necessary to
allow the target to rehydrate data in the case where some blocks are
accidentally or unnecessarily modified in the redaction snapshot.
The changes to bookmarks to enable fast space estimation involve
adding deadlists to bookmarks. There is also logic to manage the
life cycles of these deadlists.
The new size estimation process operates in cases where previously
an accurate estimate could not be provided. In those cases, a send
is performed where no data blocks are read, reducing the runtime
significantly and providing a byte-accurate size estimate.
Reviewed-by: Dan Kimmel <dan.kimmel@delphix.com>
Reviewed-by: Matt Ahrens <mahrens@delphix.com>
Reviewed-by: Prashanth Sreenivasa <pks@delphix.com>
Reviewed-by: John Kennedy <john.kennedy@delphix.com>
Reviewed-by: George Wilson <george.wilson@delphix.com>
Reviewed-by: Chris Williamson <chris.williamson@delphix.com>
Reviewed-by: Pavel Zhakarov <pavel.zakharov@delphix.com>
Reviewed-by: Sebastien Roy <sebastien.roy@delphix.com>
Reviewed-by: Prakash Surya <prakash.surya@delphix.com>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Paul Dagnelie <pcd@delphix.com>
Closes #7958
2019-06-19 19:48:13 +03:00
|
|
|
VERIFY0(bpobj_open(&dle->dle_bpobj, dl->dl_os, obj));
|
|
|
|
VERIFY0(zap_update_int_key(dl->dl_os, dl->dl_object,
|
2012-12-24 03:57:14 +04:00
|
|
|
dle->dle_mintxg, obj, tx));
|
|
|
|
}
|
2019-07-26 20:54:14 +03:00
|
|
|
bpobj_enqueue(&dle->dle_bpobj, bp, bp_freed, tx);
|
2012-12-24 03:57:14 +04:00
|
|
|
}
|
|
|
|
|
|
|
|
static void
|
|
|
|
dle_enqueue_subobj(dsl_deadlist_t *dl, dsl_deadlist_entry_t *dle,
|
|
|
|
uint64_t obj, dmu_tx_t *tx)
|
|
|
|
{
|
2017-02-09 21:19:12 +03:00
|
|
|
ASSERT(MUTEX_HELD(&dl->dl_lock));
|
2012-12-24 03:57:14 +04:00
|
|
|
if (dle->dle_bpobj.bpo_object !=
|
|
|
|
dmu_objset_pool(dl->dl_os)->dp_empty_bpobj) {
|
|
|
|
bpobj_enqueue_subobj(&dle->dle_bpobj, obj, tx);
|
|
|
|
} else {
|
|
|
|
bpobj_close(&dle->dle_bpobj);
|
|
|
|
bpobj_decr_empty(dl->dl_os, tx);
|
Implement Redacted Send/Receive
Redacted send/receive allows users to send subsets of their data to
a target system. One possible use case for this feature is to not
transmit sensitive information to a data warehousing, test/dev, or
analytics environment. Another is to save space by not replicating
unimportant data within a given dataset, for example in backup tools
like zrepl.
Redacted send/receive is a three-stage process. First, a clone (or
clones) is made of the snapshot to be sent to the target. In this
clone (or clones), all unnecessary or unwanted data is removed or
modified. This clone is then snapshotted to create the "redaction
snapshot" (or snapshots). Second, the new zfs redact command is used
to create a redaction bookmark. The redaction bookmark stores the
list of blocks in a snapshot that were modified by the redaction
snapshot(s). Finally, the redaction bookmark is passed as a parameter
to zfs send. When sending to the snapshot that was redacted, the
redaction bookmark is used to filter out blocks that contain sensitive
or unwanted information, and those blocks are not included in the send
stream. When sending from the redaction bookmark, the blocks it
contains are considered as candidate blocks in addition to those
blocks in the destination snapshot that were modified since the
creation_txg of the redaction bookmark. This step is necessary to
allow the target to rehydrate data in the case where some blocks are
accidentally or unnecessarily modified in the redaction snapshot.
The changes to bookmarks to enable fast space estimation involve
adding deadlists to bookmarks. There is also logic to manage the
life cycles of these deadlists.
The new size estimation process operates in cases where previously
an accurate estimate could not be provided. In those cases, a send
is performed where no data blocks are read, reducing the runtime
significantly and providing a byte-accurate size estimate.
Reviewed-by: Dan Kimmel <dan.kimmel@delphix.com>
Reviewed-by: Matt Ahrens <mahrens@delphix.com>
Reviewed-by: Prashanth Sreenivasa <pks@delphix.com>
Reviewed-by: John Kennedy <john.kennedy@delphix.com>
Reviewed-by: George Wilson <george.wilson@delphix.com>
Reviewed-by: Chris Williamson <chris.williamson@delphix.com>
Reviewed-by: Pavel Zhakarov <pavel.zakharov@delphix.com>
Reviewed-by: Sebastien Roy <sebastien.roy@delphix.com>
Reviewed-by: Prakash Surya <prakash.surya@delphix.com>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Paul Dagnelie <pcd@delphix.com>
Closes #7958
2019-06-19 19:48:13 +03:00
|
|
|
VERIFY0(bpobj_open(&dle->dle_bpobj, dl->dl_os, obj));
|
|
|
|
VERIFY0(zap_update_int_key(dl->dl_os, dl->dl_object,
|
2012-12-24 03:57:14 +04:00
|
|
|
dle->dle_mintxg, obj, tx));
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2010-05-29 00:45:14 +04:00
|
|
|
void
|
2019-07-26 20:54:14 +03:00
|
|
|
dsl_deadlist_insert(dsl_deadlist_t *dl, const blkptr_t *bp, boolean_t bp_freed,
|
|
|
|
dmu_tx_t *tx)
|
2010-05-29 00:45:14 +04:00
|
|
|
{
|
|
|
|
dsl_deadlist_entry_t dle_tofind;
|
|
|
|
dsl_deadlist_entry_t *dle;
|
|
|
|
avl_index_t where;
|
|
|
|
|
|
|
|
if (dl->dl_oldfmt) {
|
2019-07-26 20:54:14 +03:00
|
|
|
bpobj_enqueue(&dl->dl_bpobj, bp, bp_freed, tx);
|
2010-05-29 00:45:14 +04:00
|
|
|
return;
|
|
|
|
}
|
|
|
|
|
2017-02-09 21:19:12 +03:00
|
|
|
mutex_enter(&dl->dl_lock);
|
2010-05-29 00:45:14 +04:00
|
|
|
dsl_deadlist_load_tree(dl);
|
|
|
|
|
|
|
|
dmu_buf_will_dirty(dl->dl_dbuf, tx);
|
2019-07-26 20:54:14 +03:00
|
|
|
|
|
|
|
int sign = bp_freed ? -1 : +1;
|
2010-05-29 00:45:14 +04:00
|
|
|
dl->dl_phys->dl_used +=
|
2019-07-26 20:54:14 +03:00
|
|
|
sign * bp_get_dsize_sync(dmu_objset_spa(dl->dl_os), bp);
|
|
|
|
dl->dl_phys->dl_comp += sign * BP_GET_PSIZE(bp);
|
|
|
|
dl->dl_phys->dl_uncomp += sign * BP_GET_UCSIZE(bp);
|
2010-05-29 00:45:14 +04:00
|
|
|
|
|
|
|
dle_tofind.dle_mintxg = bp->blk_birth;
|
|
|
|
dle = avl_find(&dl->dl_tree, &dle_tofind, &where);
|
|
|
|
if (dle == NULL)
|
|
|
|
dle = avl_nearest(&dl->dl_tree, where, AVL_BEFORE);
|
|
|
|
else
|
|
|
|
dle = AVL_PREV(&dl->dl_tree, dle);
|
2015-12-11 22:09:41 +03:00
|
|
|
|
|
|
|
if (dle == NULL) {
|
|
|
|
zfs_panic_recover("blkptr at %p has invalid BLK_BIRTH %llu",
|
|
|
|
bp, (longlong_t)bp->blk_birth);
|
|
|
|
dle = avl_first(&dl->dl_tree);
|
|
|
|
}
|
|
|
|
|
|
|
|
ASSERT3P(dle, !=, NULL);
|
2019-07-26 20:54:14 +03:00
|
|
|
dle_enqueue(dl, dle, bp, bp_freed, tx);
|
2017-02-09 21:19:12 +03:00
|
|
|
mutex_exit(&dl->dl_lock);
|
2010-05-29 00:45:14 +04:00
|
|
|
}
|
|
|
|
|
2019-07-26 20:54:14 +03:00
|
|
|
int
|
|
|
|
dsl_deadlist_insert_alloc_cb(void *arg, const blkptr_t *bp, dmu_tx_t *tx)
|
|
|
|
{
|
|
|
|
dsl_deadlist_t *dl = arg;
|
|
|
|
dsl_deadlist_insert(dl, bp, B_FALSE, tx);
|
|
|
|
return (0);
|
|
|
|
}
|
|
|
|
|
|
|
|
int
|
|
|
|
dsl_deadlist_insert_free_cb(void *arg, const blkptr_t *bp, dmu_tx_t *tx)
|
|
|
|
{
|
|
|
|
dsl_deadlist_t *dl = arg;
|
|
|
|
dsl_deadlist_insert(dl, bp, B_TRUE, tx);
|
|
|
|
return (0);
|
|
|
|
}
|
|
|
|
|
2010-05-29 00:45:14 +04:00
|
|
|
/*
|
|
|
|
* Insert new key in deadlist, which must be > all current entries.
|
|
|
|
* mintxg is not inclusive.
|
|
|
|
*/
|
|
|
|
void
|
|
|
|
dsl_deadlist_add_key(dsl_deadlist_t *dl, uint64_t mintxg, dmu_tx_t *tx)
|
|
|
|
{
|
|
|
|
uint64_t obj;
|
|
|
|
dsl_deadlist_entry_t *dle;
|
|
|
|
|
|
|
|
if (dl->dl_oldfmt)
|
|
|
|
return;
|
|
|
|
|
2014-11-21 03:09:39 +03:00
|
|
|
dle = kmem_alloc(sizeof (*dle), KM_SLEEP);
|
2010-05-29 00:45:14 +04:00
|
|
|
dle->dle_mintxg = mintxg;
|
2017-02-09 21:19:12 +03:00
|
|
|
|
|
|
|
mutex_enter(&dl->dl_lock);
|
|
|
|
dsl_deadlist_load_tree(dl);
|
|
|
|
|
2014-11-03 23:15:08 +03:00
|
|
|
obj = bpobj_alloc_empty(dl->dl_os, SPA_OLD_MAXBLOCKSIZE, tx);
|
Implement Redacted Send/Receive
Redacted send/receive allows users to send subsets of their data to
a target system. One possible use case for this feature is to not
transmit sensitive information to a data warehousing, test/dev, or
analytics environment. Another is to save space by not replicating
unimportant data within a given dataset, for example in backup tools
like zrepl.
Redacted send/receive is a three-stage process. First, a clone (or
clones) is made of the snapshot to be sent to the target. In this
clone (or clones), all unnecessary or unwanted data is removed or
modified. This clone is then snapshotted to create the "redaction
snapshot" (or snapshots). Second, the new zfs redact command is used
to create a redaction bookmark. The redaction bookmark stores the
list of blocks in a snapshot that were modified by the redaction
snapshot(s). Finally, the redaction bookmark is passed as a parameter
to zfs send. When sending to the snapshot that was redacted, the
redaction bookmark is used to filter out blocks that contain sensitive
or unwanted information, and those blocks are not included in the send
stream. When sending from the redaction bookmark, the blocks it
contains are considered as candidate blocks in addition to those
blocks in the destination snapshot that were modified since the
creation_txg of the redaction bookmark. This step is necessary to
allow the target to rehydrate data in the case where some blocks are
accidentally or unnecessarily modified in the redaction snapshot.
The changes to bookmarks to enable fast space estimation involve
adding deadlists to bookmarks. There is also logic to manage the
life cycles of these deadlists.
The new size estimation process operates in cases where previously
an accurate estimate could not be provided. In those cases, a send
is performed where no data blocks are read, reducing the runtime
significantly and providing a byte-accurate size estimate.
Reviewed-by: Dan Kimmel <dan.kimmel@delphix.com>
Reviewed-by: Matt Ahrens <mahrens@delphix.com>
Reviewed-by: Prashanth Sreenivasa <pks@delphix.com>
Reviewed-by: John Kennedy <john.kennedy@delphix.com>
Reviewed-by: George Wilson <george.wilson@delphix.com>
Reviewed-by: Chris Williamson <chris.williamson@delphix.com>
Reviewed-by: Pavel Zhakarov <pavel.zakharov@delphix.com>
Reviewed-by: Sebastien Roy <sebastien.roy@delphix.com>
Reviewed-by: Prakash Surya <prakash.surya@delphix.com>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Paul Dagnelie <pcd@delphix.com>
Closes #7958
2019-06-19 19:48:13 +03:00
|
|
|
VERIFY0(bpobj_open(&dle->dle_bpobj, dl->dl_os, obj));
|
2010-05-29 00:45:14 +04:00
|
|
|
avl_add(&dl->dl_tree, dle);
|
|
|
|
|
Implement Redacted Send/Receive
Redacted send/receive allows users to send subsets of their data to
a target system. One possible use case for this feature is to not
transmit sensitive information to a data warehousing, test/dev, or
analytics environment. Another is to save space by not replicating
unimportant data within a given dataset, for example in backup tools
like zrepl.
Redacted send/receive is a three-stage process. First, a clone (or
clones) is made of the snapshot to be sent to the target. In this
clone (or clones), all unnecessary or unwanted data is removed or
modified. This clone is then snapshotted to create the "redaction
snapshot" (or snapshots). Second, the new zfs redact command is used
to create a redaction bookmark. The redaction bookmark stores the
list of blocks in a snapshot that were modified by the redaction
snapshot(s). Finally, the redaction bookmark is passed as a parameter
to zfs send. When sending to the snapshot that was redacted, the
redaction bookmark is used to filter out blocks that contain sensitive
or unwanted information, and those blocks are not included in the send
stream. When sending from the redaction bookmark, the blocks it
contains are considered as candidate blocks in addition to those
blocks in the destination snapshot that were modified since the
creation_txg of the redaction bookmark. This step is necessary to
allow the target to rehydrate data in the case where some blocks are
accidentally or unnecessarily modified in the redaction snapshot.
The changes to bookmarks to enable fast space estimation involve
adding deadlists to bookmarks. There is also logic to manage the
life cycles of these deadlists.
The new size estimation process operates in cases where previously
an accurate estimate could not be provided. In those cases, a send
is performed where no data blocks are read, reducing the runtime
significantly and providing a byte-accurate size estimate.
Reviewed-by: Dan Kimmel <dan.kimmel@delphix.com>
Reviewed-by: Matt Ahrens <mahrens@delphix.com>
Reviewed-by: Prashanth Sreenivasa <pks@delphix.com>
Reviewed-by: John Kennedy <john.kennedy@delphix.com>
Reviewed-by: George Wilson <george.wilson@delphix.com>
Reviewed-by: Chris Williamson <chris.williamson@delphix.com>
Reviewed-by: Pavel Zhakarov <pavel.zakharov@delphix.com>
Reviewed-by: Sebastien Roy <sebastien.roy@delphix.com>
Reviewed-by: Prakash Surya <prakash.surya@delphix.com>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Paul Dagnelie <pcd@delphix.com>
Closes #7958
2019-06-19 19:48:13 +03:00
|
|
|
VERIFY0(zap_add_int_key(dl->dl_os, dl->dl_object,
|
2010-05-29 00:45:14 +04:00
|
|
|
mintxg, obj, tx));
|
2017-02-09 21:19:12 +03:00
|
|
|
mutex_exit(&dl->dl_lock);
|
2010-05-29 00:45:14 +04:00
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Remove this key, merging its entries into the previous key.
|
|
|
|
*/
|
|
|
|
void
|
|
|
|
dsl_deadlist_remove_key(dsl_deadlist_t *dl, uint64_t mintxg, dmu_tx_t *tx)
|
|
|
|
{
|
|
|
|
dsl_deadlist_entry_t dle_tofind;
|
|
|
|
dsl_deadlist_entry_t *dle, *dle_prev;
|
|
|
|
|
|
|
|
if (dl->dl_oldfmt)
|
|
|
|
return;
|
2017-02-09 21:19:12 +03:00
|
|
|
mutex_enter(&dl->dl_lock);
|
2010-05-29 00:45:14 +04:00
|
|
|
dsl_deadlist_load_tree(dl);
|
|
|
|
|
|
|
|
dle_tofind.dle_mintxg = mintxg;
|
|
|
|
dle = avl_find(&dl->dl_tree, &dle_tofind, NULL);
|
Implement Redacted Send/Receive
Redacted send/receive allows users to send subsets of their data to
a target system. One possible use case for this feature is to not
transmit sensitive information to a data warehousing, test/dev, or
analytics environment. Another is to save space by not replicating
unimportant data within a given dataset, for example in backup tools
like zrepl.
Redacted send/receive is a three-stage process. First, a clone (or
clones) is made of the snapshot to be sent to the target. In this
clone (or clones), all unnecessary or unwanted data is removed or
modified. This clone is then snapshotted to create the "redaction
snapshot" (or snapshots). Second, the new zfs redact command is used
to create a redaction bookmark. The redaction bookmark stores the
list of blocks in a snapshot that were modified by the redaction
snapshot(s). Finally, the redaction bookmark is passed as a parameter
to zfs send. When sending to the snapshot that was redacted, the
redaction bookmark is used to filter out blocks that contain sensitive
or unwanted information, and those blocks are not included in the send
stream. When sending from the redaction bookmark, the blocks it
contains are considered as candidate blocks in addition to those
blocks in the destination snapshot that were modified since the
creation_txg of the redaction bookmark. This step is necessary to
allow the target to rehydrate data in the case where some blocks are
accidentally or unnecessarily modified in the redaction snapshot.
The changes to bookmarks to enable fast space estimation involve
adding deadlists to bookmarks. There is also logic to manage the
life cycles of these deadlists.
The new size estimation process operates in cases where previously
an accurate estimate could not be provided. In those cases, a send
is performed where no data blocks are read, reducing the runtime
significantly and providing a byte-accurate size estimate.
Reviewed-by: Dan Kimmel <dan.kimmel@delphix.com>
Reviewed-by: Matt Ahrens <mahrens@delphix.com>
Reviewed-by: Prashanth Sreenivasa <pks@delphix.com>
Reviewed-by: John Kennedy <john.kennedy@delphix.com>
Reviewed-by: George Wilson <george.wilson@delphix.com>
Reviewed-by: Chris Williamson <chris.williamson@delphix.com>
Reviewed-by: Pavel Zhakarov <pavel.zakharov@delphix.com>
Reviewed-by: Sebastien Roy <sebastien.roy@delphix.com>
Reviewed-by: Prakash Surya <prakash.surya@delphix.com>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Paul Dagnelie <pcd@delphix.com>
Closes #7958
2019-06-19 19:48:13 +03:00
|
|
|
ASSERT3P(dle, !=, NULL);
|
2010-05-29 00:45:14 +04:00
|
|
|
dle_prev = AVL_PREV(&dl->dl_tree, dle);
|
|
|
|
|
2012-12-24 03:57:14 +04:00
|
|
|
dle_enqueue_subobj(dl, dle_prev, dle->dle_bpobj.bpo_object, tx);
|
2010-05-29 00:45:14 +04:00
|
|
|
|
|
|
|
avl_remove(&dl->dl_tree, dle);
|
|
|
|
bpobj_close(&dle->dle_bpobj);
|
|
|
|
kmem_free(dle, sizeof (*dle));
|
|
|
|
|
Implement Redacted Send/Receive
Redacted send/receive allows users to send subsets of their data to
a target system. One possible use case for this feature is to not
transmit sensitive information to a data warehousing, test/dev, or
analytics environment. Another is to save space by not replicating
unimportant data within a given dataset, for example in backup tools
like zrepl.
Redacted send/receive is a three-stage process. First, a clone (or
clones) is made of the snapshot to be sent to the target. In this
clone (or clones), all unnecessary or unwanted data is removed or
modified. This clone is then snapshotted to create the "redaction
snapshot" (or snapshots). Second, the new zfs redact command is used
to create a redaction bookmark. The redaction bookmark stores the
list of blocks in a snapshot that were modified by the redaction
snapshot(s). Finally, the redaction bookmark is passed as a parameter
to zfs send. When sending to the snapshot that was redacted, the
redaction bookmark is used to filter out blocks that contain sensitive
or unwanted information, and those blocks are not included in the send
stream. When sending from the redaction bookmark, the blocks it
contains are considered as candidate blocks in addition to those
blocks in the destination snapshot that were modified since the
creation_txg of the redaction bookmark. This step is necessary to
allow the target to rehydrate data in the case where some blocks are
accidentally or unnecessarily modified in the redaction snapshot.
The changes to bookmarks to enable fast space estimation involve
adding deadlists to bookmarks. There is also logic to manage the
life cycles of these deadlists.
The new size estimation process operates in cases where previously
an accurate estimate could not be provided. In those cases, a send
is performed where no data blocks are read, reducing the runtime
significantly and providing a byte-accurate size estimate.
Reviewed-by: Dan Kimmel <dan.kimmel@delphix.com>
Reviewed-by: Matt Ahrens <mahrens@delphix.com>
Reviewed-by: Prashanth Sreenivasa <pks@delphix.com>
Reviewed-by: John Kennedy <john.kennedy@delphix.com>
Reviewed-by: George Wilson <george.wilson@delphix.com>
Reviewed-by: Chris Williamson <chris.williamson@delphix.com>
Reviewed-by: Pavel Zhakarov <pavel.zakharov@delphix.com>
Reviewed-by: Sebastien Roy <sebastien.roy@delphix.com>
Reviewed-by: Prakash Surya <prakash.surya@delphix.com>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Paul Dagnelie <pcd@delphix.com>
Closes #7958
2019-06-19 19:48:13 +03:00
|
|
|
VERIFY0(zap_remove_int(dl->dl_os, dl->dl_object, mintxg, tx));
|
2017-02-09 21:19:12 +03:00
|
|
|
mutex_exit(&dl->dl_lock);
|
2010-05-29 00:45:14 +04:00
|
|
|
}
|
|
|
|
|
2019-07-26 20:54:14 +03:00
|
|
|
/*
|
|
|
|
* Remove a deadlist entry and all of its contents by removing the entry from
|
|
|
|
* the deadlist's avl tree, freeing the entry's bpobj and adjusting the
|
|
|
|
* deadlist's space accounting accordingly.
|
|
|
|
*/
|
|
|
|
void
|
|
|
|
dsl_deadlist_remove_entry(dsl_deadlist_t *dl, uint64_t mintxg, dmu_tx_t *tx)
|
|
|
|
{
|
|
|
|
uint64_t used, comp, uncomp;
|
|
|
|
dsl_deadlist_entry_t dle_tofind;
|
|
|
|
dsl_deadlist_entry_t *dle;
|
|
|
|
objset_t *os = dl->dl_os;
|
|
|
|
|
|
|
|
if (dl->dl_oldfmt)
|
|
|
|
return;
|
|
|
|
|
|
|
|
mutex_enter(&dl->dl_lock);
|
|
|
|
dsl_deadlist_load_tree(dl);
|
|
|
|
|
|
|
|
dle_tofind.dle_mintxg = mintxg;
|
|
|
|
dle = avl_find(&dl->dl_tree, &dle_tofind, NULL);
|
|
|
|
VERIFY3P(dle, !=, NULL);
|
|
|
|
|
|
|
|
avl_remove(&dl->dl_tree, dle);
|
|
|
|
VERIFY0(zap_remove_int(os, dl->dl_object, mintxg, tx));
|
|
|
|
VERIFY0(bpobj_space(&dle->dle_bpobj, &used, &comp, &uncomp));
|
Add fast path for zfs_ioc_space_snaps() handling of empty_bpobj
When there are many snapshots, calls to zfs_ioc_space_snaps() (e.g. from
`zfs destroy -nv pool/fs@snap1%snap10000`) can be very slow, resulting
in poor performance because we are holding the dp_config_rwlock the
entire time, blocking spa_sync() from continuing. With around ten
thousand snapshots, we've seen up to 500 seconds in this ioctl,
iterating over up to 50,000,000 bpobjs, ~99% of which are the empty
bpobj.
By creating a fast path for zfs_ioc_space_snaps() handling of the
empty_bpobj, we can achieve a ~5x performance improvement of this ioctl
(when there are many snapshots, and the deadlist is mostly
empty_bpobj's).
Reviewed-by: Pavel Zakharov <pavel.zakharov@delphix.com>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Reviewed-by: Paul Dagnelie <pcd@delphix.com>
Signed-off-by: Matthew Ahrens <mahrens@delphix.com>
External-issue: DLPX-58348
Closes #8744
2019-08-20 21:34:52 +03:00
|
|
|
dmu_buf_will_dirty(dl->dl_dbuf, tx);
|
2019-07-26 20:54:14 +03:00
|
|
|
dl->dl_phys->dl_used -= used;
|
|
|
|
dl->dl_phys->dl_comp -= comp;
|
|
|
|
dl->dl_phys->dl_uncomp -= uncomp;
|
|
|
|
if (dle->dle_bpobj.bpo_object == dmu_objset_pool(os)->dp_empty_bpobj) {
|
|
|
|
bpobj_decr_empty(os, tx);
|
|
|
|
} else {
|
|
|
|
bpobj_free(os, dle->dle_bpobj.bpo_object, tx);
|
|
|
|
}
|
|
|
|
bpobj_close(&dle->dle_bpobj);
|
|
|
|
kmem_free(dle, sizeof (*dle));
|
|
|
|
mutex_exit(&dl->dl_lock);
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Clear out the contents of a deadlist_entry by freeing its bpobj,
|
|
|
|
* replacing it with an empty bpobj and adjusting the deadlist's
|
|
|
|
* space accounting
|
|
|
|
*/
|
|
|
|
void
|
|
|
|
dsl_deadlist_clear_entry(dsl_deadlist_entry_t *dle, dsl_deadlist_t *dl,
|
|
|
|
dmu_tx_t *tx)
|
|
|
|
{
|
|
|
|
uint64_t new_obj, used, comp, uncomp;
|
|
|
|
objset_t *os = dl->dl_os;
|
|
|
|
|
|
|
|
mutex_enter(&dl->dl_lock);
|
|
|
|
VERIFY0(zap_remove_int(os, dl->dl_object, dle->dle_mintxg, tx));
|
|
|
|
VERIFY0(bpobj_space(&dle->dle_bpobj, &used, &comp, &uncomp));
|
Add fast path for zfs_ioc_space_snaps() handling of empty_bpobj
When there are many snapshots, calls to zfs_ioc_space_snaps() (e.g. from
`zfs destroy -nv pool/fs@snap1%snap10000`) can be very slow, resulting
in poor performance because we are holding the dp_config_rwlock the
entire time, blocking spa_sync() from continuing. With around ten
thousand snapshots, we've seen up to 500 seconds in this ioctl,
iterating over up to 50,000,000 bpobjs, ~99% of which are the empty
bpobj.
By creating a fast path for zfs_ioc_space_snaps() handling of the
empty_bpobj, we can achieve a ~5x performance improvement of this ioctl
(when there are many snapshots, and the deadlist is mostly
empty_bpobj's).
Reviewed-by: Pavel Zakharov <pavel.zakharov@delphix.com>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Reviewed-by: Paul Dagnelie <pcd@delphix.com>
Signed-off-by: Matthew Ahrens <mahrens@delphix.com>
External-issue: DLPX-58348
Closes #8744
2019-08-20 21:34:52 +03:00
|
|
|
dmu_buf_will_dirty(dl->dl_dbuf, tx);
|
2019-07-26 20:54:14 +03:00
|
|
|
dl->dl_phys->dl_used -= used;
|
|
|
|
dl->dl_phys->dl_comp -= comp;
|
|
|
|
dl->dl_phys->dl_uncomp -= uncomp;
|
|
|
|
if (dle->dle_bpobj.bpo_object == dmu_objset_pool(os)->dp_empty_bpobj)
|
|
|
|
bpobj_decr_empty(os, tx);
|
|
|
|
else
|
|
|
|
bpobj_free(os, dle->dle_bpobj.bpo_object, tx);
|
|
|
|
bpobj_close(&dle->dle_bpobj);
|
|
|
|
new_obj = bpobj_alloc_empty(os, SPA_OLD_MAXBLOCKSIZE, tx);
|
|
|
|
VERIFY0(bpobj_open(&dle->dle_bpobj, os, new_obj));
|
|
|
|
VERIFY0(zap_add_int_key(os, dl->dl_object, dle->dle_mintxg,
|
|
|
|
new_obj, tx));
|
|
|
|
ASSERT(bpobj_is_empty(&dle->dle_bpobj));
|
|
|
|
mutex_exit(&dl->dl_lock);
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Return the first entry in deadlist's avl tree
|
|
|
|
*/
|
|
|
|
dsl_deadlist_entry_t *
|
|
|
|
dsl_deadlist_first(dsl_deadlist_t *dl)
|
|
|
|
{
|
|
|
|
dsl_deadlist_entry_t *dle;
|
|
|
|
|
|
|
|
mutex_enter(&dl->dl_lock);
|
|
|
|
dsl_deadlist_load_tree(dl);
|
|
|
|
dle = avl_first(&dl->dl_tree);
|
|
|
|
mutex_exit(&dl->dl_lock);
|
|
|
|
|
|
|
|
return (dle);
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Return the last entry in deadlist's avl tree
|
|
|
|
*/
|
|
|
|
dsl_deadlist_entry_t *
|
|
|
|
dsl_deadlist_last(dsl_deadlist_t *dl)
|
|
|
|
{
|
|
|
|
dsl_deadlist_entry_t *dle;
|
|
|
|
|
|
|
|
mutex_enter(&dl->dl_lock);
|
|
|
|
dsl_deadlist_load_tree(dl);
|
|
|
|
dle = avl_last(&dl->dl_tree);
|
|
|
|
mutex_exit(&dl->dl_lock);
|
|
|
|
|
|
|
|
return (dle);
|
|
|
|
}
|
|
|
|
|
2010-05-29 00:45:14 +04:00
|
|
|
/*
|
|
|
|
* Walk ds's snapshots to regenerate generate ZAP & AVL.
|
|
|
|
*/
|
|
|
|
static void
|
|
|
|
dsl_deadlist_regenerate(objset_t *os, uint64_t dlobj,
|
|
|
|
uint64_t mrs_obj, dmu_tx_t *tx)
|
|
|
|
{
|
OpenZFS 7614, 9064 - zfs device evacuation/removal
OpenZFS 7614 - zfs device evacuation/removal
OpenZFS 9064 - remove_mirror should wait for device removal to complete
This project allows top-level vdevs to be removed from the storage pool
with "zpool remove", reducing the total amount of storage in the pool.
This operation copies all allocated regions of the device to be removed
onto other devices, recording the mapping from old to new location.
After the removal is complete, read and free operations to the removed
(now "indirect") vdev must be remapped and performed at the new location
on disk. The indirect mapping table is kept in memory whenever the pool
is loaded, so there is minimal performance overhead when doing operations
on the indirect vdev.
The size of the in-memory mapping table will be reduced when its entries
become "obsolete" because they are no longer used by any block pointers
in the pool. An entry becomes obsolete when all the blocks that use
it are freed. An entry can also become obsolete when all the snapshots
that reference it are deleted, and the block pointers that reference it
have been "remapped" in all filesystems/zvols (and clones). Whenever an
indirect block is written, all the block pointers in it will be "remapped"
to their new (concrete) locations if possible. This process can be
accelerated by using the "zfs remap" command to proactively rewrite all
indirect blocks that reference indirect (removed) vdevs.
Note that when a device is removed, we do not verify the checksum of
the data that is copied. This makes the process much faster, but if it
were used on redundant vdevs (i.e. mirror or raidz vdevs), it would be
possible to copy the wrong data, when we have the correct data on e.g.
the other side of the mirror.
At the moment, only mirrors and simple top-level vdevs can be removed
and no removal is allowed if any of the top-level vdevs are raidz.
Porting Notes:
* Avoid zero-sized kmem_alloc() in vdev_compact_children().
The device evacuation code adds a dependency that
vdev_compact_children() be able to properly empty the vdev_child
array by setting it to NULL and zeroing vdev_children. Under Linux,
kmem_alloc() and related functions return a sentinel pointer rather
than NULL for zero-sized allocations.
* Remove comment regarding "mpt" driver where zfs_remove_max_segment
is initialized to SPA_MAXBLOCKSIZE.
Change zfs_condense_indirect_commit_entry_delay_ticks to
zfs_condense_indirect_commit_entry_delay_ms for consistency with
most other tunables in which delays are specified in ms.
* ZTS changes:
Use set_tunable rather than mdb
Use zpool sync as appropriate
Use sync_pool instead of sync
Kill jobs during test_removal_with_operation to allow unmount/export
Don't add non-disk names such as "mirror" or "raidz" to $DISKS
Use $TEST_BASE_DIR instead of /tmp
Increase HZ from 100 to 1000 which is more common on Linux
removal_multiple_indirection.ksh
Reduce iterations in order to not time out on the code
coverage builders.
removal_resume_export:
Functionally, the test case is correct but there exists a race
where the kernel thread hasn't been fully started yet and is
not visible. Wait for up to 1 second for the removal thread
to be started before giving up on it. Also, increase the
amount of data copied in order that the removal not finish
before the export has a chance to fail.
* MMP compatibility, the concept of concrete versus non-concrete devices
has slightly changed the semantics of vdev_writeable(). Update
mmp_random_leaf_impl() accordingly.
* Updated dbuf_remap() to handle the org.zfsonlinux:large_dnode pool
feature which is not supported by OpenZFS.
* Added support for new vdev removal tracepoints.
* Test cases removal_with_zdb and removal_condense_export have been
intentionally disabled. When run manually they pass as intended,
but when running in the automated test environment they produce
unreliable results on the latest Fedora release.
They may work better once the upstream pool import refectoring is
merged into ZoL at which point they will be re-enabled.
Authored by: Matthew Ahrens <mahrens@delphix.com>
Reviewed-by: Alex Reece <alex@delphix.com>
Reviewed-by: George Wilson <george.wilson@delphix.com>
Reviewed-by: John Kennedy <john.kennedy@delphix.com>
Reviewed-by: Prakash Surya <prakash.surya@delphix.com>
Reviewed by: Richard Laager <rlaager@wiktel.com>
Reviewed by: Tim Chase <tim@chase2k.com>
Reviewed by: Brian Behlendorf <behlendorf1@llnl.gov>
Approved by: Garrett D'Amore <garrett@damore.org>
Ported-by: Tim Chase <tim@chase2k.com>
Signed-off-by: Tim Chase <tim@chase2k.com>
OpenZFS-issue: https://www.illumos.org/issues/7614
OpenZFS-commit: https://github.com/openzfs/openzfs/commit/f539f1eb
Closes #6900
2016-09-22 19:30:13 +03:00
|
|
|
dsl_deadlist_t dl = { 0 };
|
2010-05-29 00:45:14 +04:00
|
|
|
dsl_pool_t *dp = dmu_objset_pool(os);
|
|
|
|
|
|
|
|
dsl_deadlist_open(&dl, os, dlobj);
|
|
|
|
if (dl.dl_oldfmt) {
|
|
|
|
dsl_deadlist_close(&dl);
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
|
|
|
|
while (mrs_obj != 0) {
|
|
|
|
dsl_dataset_t *ds;
|
Implement Redacted Send/Receive
Redacted send/receive allows users to send subsets of their data to
a target system. One possible use case for this feature is to not
transmit sensitive information to a data warehousing, test/dev, or
analytics environment. Another is to save space by not replicating
unimportant data within a given dataset, for example in backup tools
like zrepl.
Redacted send/receive is a three-stage process. First, a clone (or
clones) is made of the snapshot to be sent to the target. In this
clone (or clones), all unnecessary or unwanted data is removed or
modified. This clone is then snapshotted to create the "redaction
snapshot" (or snapshots). Second, the new zfs redact command is used
to create a redaction bookmark. The redaction bookmark stores the
list of blocks in a snapshot that were modified by the redaction
snapshot(s). Finally, the redaction bookmark is passed as a parameter
to zfs send. When sending to the snapshot that was redacted, the
redaction bookmark is used to filter out blocks that contain sensitive
or unwanted information, and those blocks are not included in the send
stream. When sending from the redaction bookmark, the blocks it
contains are considered as candidate blocks in addition to those
blocks in the destination snapshot that were modified since the
creation_txg of the redaction bookmark. This step is necessary to
allow the target to rehydrate data in the case where some blocks are
accidentally or unnecessarily modified in the redaction snapshot.
The changes to bookmarks to enable fast space estimation involve
adding deadlists to bookmarks. There is also logic to manage the
life cycles of these deadlists.
The new size estimation process operates in cases where previously
an accurate estimate could not be provided. In those cases, a send
is performed where no data blocks are read, reducing the runtime
significantly and providing a byte-accurate size estimate.
Reviewed-by: Dan Kimmel <dan.kimmel@delphix.com>
Reviewed-by: Matt Ahrens <mahrens@delphix.com>
Reviewed-by: Prashanth Sreenivasa <pks@delphix.com>
Reviewed-by: John Kennedy <john.kennedy@delphix.com>
Reviewed-by: George Wilson <george.wilson@delphix.com>
Reviewed-by: Chris Williamson <chris.williamson@delphix.com>
Reviewed-by: Pavel Zhakarov <pavel.zakharov@delphix.com>
Reviewed-by: Sebastien Roy <sebastien.roy@delphix.com>
Reviewed-by: Prakash Surya <prakash.surya@delphix.com>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Paul Dagnelie <pcd@delphix.com>
Closes #7958
2019-06-19 19:48:13 +03:00
|
|
|
VERIFY0(dsl_dataset_hold_obj(dp, mrs_obj, FTAG, &ds));
|
2015-04-01 18:14:34 +03:00
|
|
|
dsl_deadlist_add_key(&dl,
|
|
|
|
dsl_dataset_phys(ds)->ds_prev_snap_txg, tx);
|
|
|
|
mrs_obj = dsl_dataset_phys(ds)->ds_prev_snap_obj;
|
2010-05-29 00:45:14 +04:00
|
|
|
dsl_dataset_rele(ds, FTAG);
|
|
|
|
}
|
|
|
|
dsl_deadlist_close(&dl);
|
|
|
|
}
|
|
|
|
|
|
|
|
uint64_t
|
|
|
|
dsl_deadlist_clone(dsl_deadlist_t *dl, uint64_t maxtxg,
|
|
|
|
uint64_t mrs_obj, dmu_tx_t *tx)
|
|
|
|
{
|
|
|
|
dsl_deadlist_entry_t *dle;
|
|
|
|
uint64_t newobj;
|
|
|
|
|
|
|
|
newobj = dsl_deadlist_alloc(dl->dl_os, tx);
|
|
|
|
|
|
|
|
if (dl->dl_oldfmt) {
|
|
|
|
dsl_deadlist_regenerate(dl->dl_os, newobj, mrs_obj, tx);
|
|
|
|
return (newobj);
|
|
|
|
}
|
|
|
|
|
2017-02-09 21:19:12 +03:00
|
|
|
mutex_enter(&dl->dl_lock);
|
2010-05-29 00:45:14 +04:00
|
|
|
dsl_deadlist_load_tree(dl);
|
|
|
|
|
|
|
|
for (dle = avl_first(&dl->dl_tree); dle;
|
|
|
|
dle = AVL_NEXT(&dl->dl_tree, dle)) {
|
|
|
|
uint64_t obj;
|
|
|
|
|
|
|
|
if (dle->dle_mintxg >= maxtxg)
|
|
|
|
break;
|
|
|
|
|
2014-11-03 23:15:08 +03:00
|
|
|
obj = bpobj_alloc_empty(dl->dl_os, SPA_OLD_MAXBLOCKSIZE, tx);
|
Implement Redacted Send/Receive
Redacted send/receive allows users to send subsets of their data to
a target system. One possible use case for this feature is to not
transmit sensitive information to a data warehousing, test/dev, or
analytics environment. Another is to save space by not replicating
unimportant data within a given dataset, for example in backup tools
like zrepl.
Redacted send/receive is a three-stage process. First, a clone (or
clones) is made of the snapshot to be sent to the target. In this
clone (or clones), all unnecessary or unwanted data is removed or
modified. This clone is then snapshotted to create the "redaction
snapshot" (or snapshots). Second, the new zfs redact command is used
to create a redaction bookmark. The redaction bookmark stores the
list of blocks in a snapshot that were modified by the redaction
snapshot(s). Finally, the redaction bookmark is passed as a parameter
to zfs send. When sending to the snapshot that was redacted, the
redaction bookmark is used to filter out blocks that contain sensitive
or unwanted information, and those blocks are not included in the send
stream. When sending from the redaction bookmark, the blocks it
contains are considered as candidate blocks in addition to those
blocks in the destination snapshot that were modified since the
creation_txg of the redaction bookmark. This step is necessary to
allow the target to rehydrate data in the case where some blocks are
accidentally or unnecessarily modified in the redaction snapshot.
The changes to bookmarks to enable fast space estimation involve
adding deadlists to bookmarks. There is also logic to manage the
life cycles of these deadlists.
The new size estimation process operates in cases where previously
an accurate estimate could not be provided. In those cases, a send
is performed where no data blocks are read, reducing the runtime
significantly and providing a byte-accurate size estimate.
Reviewed-by: Dan Kimmel <dan.kimmel@delphix.com>
Reviewed-by: Matt Ahrens <mahrens@delphix.com>
Reviewed-by: Prashanth Sreenivasa <pks@delphix.com>
Reviewed-by: John Kennedy <john.kennedy@delphix.com>
Reviewed-by: George Wilson <george.wilson@delphix.com>
Reviewed-by: Chris Williamson <chris.williamson@delphix.com>
Reviewed-by: Pavel Zhakarov <pavel.zakharov@delphix.com>
Reviewed-by: Sebastien Roy <sebastien.roy@delphix.com>
Reviewed-by: Prakash Surya <prakash.surya@delphix.com>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Paul Dagnelie <pcd@delphix.com>
Closes #7958
2019-06-19 19:48:13 +03:00
|
|
|
VERIFY0(zap_add_int_key(dl->dl_os, newobj,
|
2010-05-29 00:45:14 +04:00
|
|
|
dle->dle_mintxg, obj, tx));
|
|
|
|
}
|
2017-02-09 21:19:12 +03:00
|
|
|
mutex_exit(&dl->dl_lock);
|
2010-05-29 00:45:14 +04:00
|
|
|
return (newobj);
|
|
|
|
}
|
|
|
|
|
|
|
|
void
|
|
|
|
dsl_deadlist_space(dsl_deadlist_t *dl,
|
|
|
|
uint64_t *usedp, uint64_t *compp, uint64_t *uncompp)
|
|
|
|
{
|
OpenZFS 7614, 9064 - zfs device evacuation/removal
OpenZFS 7614 - zfs device evacuation/removal
OpenZFS 9064 - remove_mirror should wait for device removal to complete
This project allows top-level vdevs to be removed from the storage pool
with "zpool remove", reducing the total amount of storage in the pool.
This operation copies all allocated regions of the device to be removed
onto other devices, recording the mapping from old to new location.
After the removal is complete, read and free operations to the removed
(now "indirect") vdev must be remapped and performed at the new location
on disk. The indirect mapping table is kept in memory whenever the pool
is loaded, so there is minimal performance overhead when doing operations
on the indirect vdev.
The size of the in-memory mapping table will be reduced when its entries
become "obsolete" because they are no longer used by any block pointers
in the pool. An entry becomes obsolete when all the blocks that use
it are freed. An entry can also become obsolete when all the snapshots
that reference it are deleted, and the block pointers that reference it
have been "remapped" in all filesystems/zvols (and clones). Whenever an
indirect block is written, all the block pointers in it will be "remapped"
to their new (concrete) locations if possible. This process can be
accelerated by using the "zfs remap" command to proactively rewrite all
indirect blocks that reference indirect (removed) vdevs.
Note that when a device is removed, we do not verify the checksum of
the data that is copied. This makes the process much faster, but if it
were used on redundant vdevs (i.e. mirror or raidz vdevs), it would be
possible to copy the wrong data, when we have the correct data on e.g.
the other side of the mirror.
At the moment, only mirrors and simple top-level vdevs can be removed
and no removal is allowed if any of the top-level vdevs are raidz.
Porting Notes:
* Avoid zero-sized kmem_alloc() in vdev_compact_children().
The device evacuation code adds a dependency that
vdev_compact_children() be able to properly empty the vdev_child
array by setting it to NULL and zeroing vdev_children. Under Linux,
kmem_alloc() and related functions return a sentinel pointer rather
than NULL for zero-sized allocations.
* Remove comment regarding "mpt" driver where zfs_remove_max_segment
is initialized to SPA_MAXBLOCKSIZE.
Change zfs_condense_indirect_commit_entry_delay_ticks to
zfs_condense_indirect_commit_entry_delay_ms for consistency with
most other tunables in which delays are specified in ms.
* ZTS changes:
Use set_tunable rather than mdb
Use zpool sync as appropriate
Use sync_pool instead of sync
Kill jobs during test_removal_with_operation to allow unmount/export
Don't add non-disk names such as "mirror" or "raidz" to $DISKS
Use $TEST_BASE_DIR instead of /tmp
Increase HZ from 100 to 1000 which is more common on Linux
removal_multiple_indirection.ksh
Reduce iterations in order to not time out on the code
coverage builders.
removal_resume_export:
Functionally, the test case is correct but there exists a race
where the kernel thread hasn't been fully started yet and is
not visible. Wait for up to 1 second for the removal thread
to be started before giving up on it. Also, increase the
amount of data copied in order that the removal not finish
before the export has a chance to fail.
* MMP compatibility, the concept of concrete versus non-concrete devices
has slightly changed the semantics of vdev_writeable(). Update
mmp_random_leaf_impl() accordingly.
* Updated dbuf_remap() to handle the org.zfsonlinux:large_dnode pool
feature which is not supported by OpenZFS.
* Added support for new vdev removal tracepoints.
* Test cases removal_with_zdb and removal_condense_export have been
intentionally disabled. When run manually they pass as intended,
but when running in the automated test environment they produce
unreliable results on the latest Fedora release.
They may work better once the upstream pool import refectoring is
merged into ZoL at which point they will be re-enabled.
Authored by: Matthew Ahrens <mahrens@delphix.com>
Reviewed-by: Alex Reece <alex@delphix.com>
Reviewed-by: George Wilson <george.wilson@delphix.com>
Reviewed-by: John Kennedy <john.kennedy@delphix.com>
Reviewed-by: Prakash Surya <prakash.surya@delphix.com>
Reviewed by: Richard Laager <rlaager@wiktel.com>
Reviewed by: Tim Chase <tim@chase2k.com>
Reviewed by: Brian Behlendorf <behlendorf1@llnl.gov>
Approved by: Garrett D'Amore <garrett@damore.org>
Ported-by: Tim Chase <tim@chase2k.com>
Signed-off-by: Tim Chase <tim@chase2k.com>
OpenZFS-issue: https://www.illumos.org/issues/7614
OpenZFS-commit: https://github.com/openzfs/openzfs/commit/f539f1eb
Closes #6900
2016-09-22 19:30:13 +03:00
|
|
|
ASSERT(dsl_deadlist_is_open(dl));
|
2010-05-29 00:45:14 +04:00
|
|
|
if (dl->dl_oldfmt) {
|
Implement Redacted Send/Receive
Redacted send/receive allows users to send subsets of their data to
a target system. One possible use case for this feature is to not
transmit sensitive information to a data warehousing, test/dev, or
analytics environment. Another is to save space by not replicating
unimportant data within a given dataset, for example in backup tools
like zrepl.
Redacted send/receive is a three-stage process. First, a clone (or
clones) is made of the snapshot to be sent to the target. In this
clone (or clones), all unnecessary or unwanted data is removed or
modified. This clone is then snapshotted to create the "redaction
snapshot" (or snapshots). Second, the new zfs redact command is used
to create a redaction bookmark. The redaction bookmark stores the
list of blocks in a snapshot that were modified by the redaction
snapshot(s). Finally, the redaction bookmark is passed as a parameter
to zfs send. When sending to the snapshot that was redacted, the
redaction bookmark is used to filter out blocks that contain sensitive
or unwanted information, and those blocks are not included in the send
stream. When sending from the redaction bookmark, the blocks it
contains are considered as candidate blocks in addition to those
blocks in the destination snapshot that were modified since the
creation_txg of the redaction bookmark. This step is necessary to
allow the target to rehydrate data in the case where some blocks are
accidentally or unnecessarily modified in the redaction snapshot.
The changes to bookmarks to enable fast space estimation involve
adding deadlists to bookmarks. There is also logic to manage the
life cycles of these deadlists.
The new size estimation process operates in cases where previously
an accurate estimate could not be provided. In those cases, a send
is performed where no data blocks are read, reducing the runtime
significantly and providing a byte-accurate size estimate.
Reviewed-by: Dan Kimmel <dan.kimmel@delphix.com>
Reviewed-by: Matt Ahrens <mahrens@delphix.com>
Reviewed-by: Prashanth Sreenivasa <pks@delphix.com>
Reviewed-by: John Kennedy <john.kennedy@delphix.com>
Reviewed-by: George Wilson <george.wilson@delphix.com>
Reviewed-by: Chris Williamson <chris.williamson@delphix.com>
Reviewed-by: Pavel Zhakarov <pavel.zakharov@delphix.com>
Reviewed-by: Sebastien Roy <sebastien.roy@delphix.com>
Reviewed-by: Prakash Surya <prakash.surya@delphix.com>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Paul Dagnelie <pcd@delphix.com>
Closes #7958
2019-06-19 19:48:13 +03:00
|
|
|
VERIFY0(bpobj_space(&dl->dl_bpobj,
|
2010-05-29 00:45:14 +04:00
|
|
|
usedp, compp, uncompp));
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
|
|
|
|
mutex_enter(&dl->dl_lock);
|
|
|
|
*usedp = dl->dl_phys->dl_used;
|
|
|
|
*compp = dl->dl_phys->dl_comp;
|
|
|
|
*uncompp = dl->dl_phys->dl_uncomp;
|
|
|
|
mutex_exit(&dl->dl_lock);
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* return space used in the range (mintxg, maxtxg].
|
|
|
|
* Includes maxtxg, does not include mintxg.
|
|
|
|
* mintxg and maxtxg must both be keys in the deadlist (unless maxtxg is
|
Implement Redacted Send/Receive
Redacted send/receive allows users to send subsets of their data to
a target system. One possible use case for this feature is to not
transmit sensitive information to a data warehousing, test/dev, or
analytics environment. Another is to save space by not replicating
unimportant data within a given dataset, for example in backup tools
like zrepl.
Redacted send/receive is a three-stage process. First, a clone (or
clones) is made of the snapshot to be sent to the target. In this
clone (or clones), all unnecessary or unwanted data is removed or
modified. This clone is then snapshotted to create the "redaction
snapshot" (or snapshots). Second, the new zfs redact command is used
to create a redaction bookmark. The redaction bookmark stores the
list of blocks in a snapshot that were modified by the redaction
snapshot(s). Finally, the redaction bookmark is passed as a parameter
to zfs send. When sending to the snapshot that was redacted, the
redaction bookmark is used to filter out blocks that contain sensitive
or unwanted information, and those blocks are not included in the send
stream. When sending from the redaction bookmark, the blocks it
contains are considered as candidate blocks in addition to those
blocks in the destination snapshot that were modified since the
creation_txg of the redaction bookmark. This step is necessary to
allow the target to rehydrate data in the case where some blocks are
accidentally or unnecessarily modified in the redaction snapshot.
The changes to bookmarks to enable fast space estimation involve
adding deadlists to bookmarks. There is also logic to manage the
life cycles of these deadlists.
The new size estimation process operates in cases where previously
an accurate estimate could not be provided. In those cases, a send
is performed where no data blocks are read, reducing the runtime
significantly and providing a byte-accurate size estimate.
Reviewed-by: Dan Kimmel <dan.kimmel@delphix.com>
Reviewed-by: Matt Ahrens <mahrens@delphix.com>
Reviewed-by: Prashanth Sreenivasa <pks@delphix.com>
Reviewed-by: John Kennedy <john.kennedy@delphix.com>
Reviewed-by: George Wilson <george.wilson@delphix.com>
Reviewed-by: Chris Williamson <chris.williamson@delphix.com>
Reviewed-by: Pavel Zhakarov <pavel.zakharov@delphix.com>
Reviewed-by: Sebastien Roy <sebastien.roy@delphix.com>
Reviewed-by: Prakash Surya <prakash.surya@delphix.com>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Paul Dagnelie <pcd@delphix.com>
Closes #7958
2019-06-19 19:48:13 +03:00
|
|
|
* UINT64_MAX).
|
2010-05-29 00:45:14 +04:00
|
|
|
*/
|
|
|
|
void
|
|
|
|
dsl_deadlist_space_range(dsl_deadlist_t *dl, uint64_t mintxg, uint64_t maxtxg,
|
|
|
|
uint64_t *usedp, uint64_t *compp, uint64_t *uncompp)
|
|
|
|
{
|
Add fast path for zfs_ioc_space_snaps() handling of empty_bpobj
When there are many snapshots, calls to zfs_ioc_space_snaps() (e.g. from
`zfs destroy -nv pool/fs@snap1%snap10000`) can be very slow, resulting
in poor performance because we are holding the dp_config_rwlock the
entire time, blocking spa_sync() from continuing. With around ten
thousand snapshots, we've seen up to 500 seconds in this ioctl,
iterating over up to 50,000,000 bpobjs, ~99% of which are the empty
bpobj.
By creating a fast path for zfs_ioc_space_snaps() handling of the
empty_bpobj, we can achieve a ~5x performance improvement of this ioctl
(when there are many snapshots, and the deadlist is mostly
empty_bpobj's).
Reviewed-by: Pavel Zakharov <pavel.zakharov@delphix.com>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Reviewed-by: Paul Dagnelie <pcd@delphix.com>
Signed-off-by: Matthew Ahrens <mahrens@delphix.com>
External-issue: DLPX-58348
Closes #8744
2019-08-20 21:34:52 +03:00
|
|
|
dsl_deadlist_cache_entry_t *dlce;
|
|
|
|
dsl_deadlist_cache_entry_t dlce_tofind;
|
2010-05-29 00:45:14 +04:00
|
|
|
avl_index_t where;
|
|
|
|
|
|
|
|
if (dl->dl_oldfmt) {
|
Implement Redacted Send/Receive
Redacted send/receive allows users to send subsets of their data to
a target system. One possible use case for this feature is to not
transmit sensitive information to a data warehousing, test/dev, or
analytics environment. Another is to save space by not replicating
unimportant data within a given dataset, for example in backup tools
like zrepl.
Redacted send/receive is a three-stage process. First, a clone (or
clones) is made of the snapshot to be sent to the target. In this
clone (or clones), all unnecessary or unwanted data is removed or
modified. This clone is then snapshotted to create the "redaction
snapshot" (or snapshots). Second, the new zfs redact command is used
to create a redaction bookmark. The redaction bookmark stores the
list of blocks in a snapshot that were modified by the redaction
snapshot(s). Finally, the redaction bookmark is passed as a parameter
to zfs send. When sending to the snapshot that was redacted, the
redaction bookmark is used to filter out blocks that contain sensitive
or unwanted information, and those blocks are not included in the send
stream. When sending from the redaction bookmark, the blocks it
contains are considered as candidate blocks in addition to those
blocks in the destination snapshot that were modified since the
creation_txg of the redaction bookmark. This step is necessary to
allow the target to rehydrate data in the case where some blocks are
accidentally or unnecessarily modified in the redaction snapshot.
The changes to bookmarks to enable fast space estimation involve
adding deadlists to bookmarks. There is also logic to manage the
life cycles of these deadlists.
The new size estimation process operates in cases where previously
an accurate estimate could not be provided. In those cases, a send
is performed where no data blocks are read, reducing the runtime
significantly and providing a byte-accurate size estimate.
Reviewed-by: Dan Kimmel <dan.kimmel@delphix.com>
Reviewed-by: Matt Ahrens <mahrens@delphix.com>
Reviewed-by: Prashanth Sreenivasa <pks@delphix.com>
Reviewed-by: John Kennedy <john.kennedy@delphix.com>
Reviewed-by: George Wilson <george.wilson@delphix.com>
Reviewed-by: Chris Williamson <chris.williamson@delphix.com>
Reviewed-by: Pavel Zhakarov <pavel.zakharov@delphix.com>
Reviewed-by: Sebastien Roy <sebastien.roy@delphix.com>
Reviewed-by: Prakash Surya <prakash.surya@delphix.com>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Paul Dagnelie <pcd@delphix.com>
Closes #7958
2019-06-19 19:48:13 +03:00
|
|
|
VERIFY0(bpobj_space_range(&dl->dl_bpobj,
|
2010-05-29 00:45:14 +04:00
|
|
|
mintxg, maxtxg, usedp, compp, uncompp));
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
|
|
|
|
*usedp = *compp = *uncompp = 0;
|
|
|
|
|
2011-11-17 22:14:36 +04:00
|
|
|
mutex_enter(&dl->dl_lock);
|
Add fast path for zfs_ioc_space_snaps() handling of empty_bpobj
When there are many snapshots, calls to zfs_ioc_space_snaps() (e.g. from
`zfs destroy -nv pool/fs@snap1%snap10000`) can be very slow, resulting
in poor performance because we are holding the dp_config_rwlock the
entire time, blocking spa_sync() from continuing. With around ten
thousand snapshots, we've seen up to 500 seconds in this ioctl,
iterating over up to 50,000,000 bpobjs, ~99% of which are the empty
bpobj.
By creating a fast path for zfs_ioc_space_snaps() handling of the
empty_bpobj, we can achieve a ~5x performance improvement of this ioctl
(when there are many snapshots, and the deadlist is mostly
empty_bpobj's).
Reviewed-by: Pavel Zakharov <pavel.zakharov@delphix.com>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Reviewed-by: Paul Dagnelie <pcd@delphix.com>
Signed-off-by: Matthew Ahrens <mahrens@delphix.com>
External-issue: DLPX-58348
Closes #8744
2019-08-20 21:34:52 +03:00
|
|
|
dsl_deadlist_load_cache(dl);
|
|
|
|
dlce_tofind.dlce_mintxg = mintxg;
|
|
|
|
dlce = avl_find(&dl->dl_cache, &dlce_tofind, &where);
|
|
|
|
|
2010-05-29 00:45:14 +04:00
|
|
|
/*
|
Add fast path for zfs_ioc_space_snaps() handling of empty_bpobj
When there are many snapshots, calls to zfs_ioc_space_snaps() (e.g. from
`zfs destroy -nv pool/fs@snap1%snap10000`) can be very slow, resulting
in poor performance because we are holding the dp_config_rwlock the
entire time, blocking spa_sync() from continuing. With around ten
thousand snapshots, we've seen up to 500 seconds in this ioctl,
iterating over up to 50,000,000 bpobjs, ~99% of which are the empty
bpobj.
By creating a fast path for zfs_ioc_space_snaps() handling of the
empty_bpobj, we can achieve a ~5x performance improvement of this ioctl
(when there are many snapshots, and the deadlist is mostly
empty_bpobj's).
Reviewed-by: Pavel Zakharov <pavel.zakharov@delphix.com>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Reviewed-by: Paul Dagnelie <pcd@delphix.com>
Signed-off-by: Matthew Ahrens <mahrens@delphix.com>
External-issue: DLPX-58348
Closes #8744
2019-08-20 21:34:52 +03:00
|
|
|
* If this mintxg doesn't exist, it may be an empty_bpobj which
|
|
|
|
* is omitted from the sparse tree. Start at the next non-empty
|
|
|
|
* entry.
|
2010-05-29 00:45:14 +04:00
|
|
|
*/
|
Add fast path for zfs_ioc_space_snaps() handling of empty_bpobj
When there are many snapshots, calls to zfs_ioc_space_snaps() (e.g. from
`zfs destroy -nv pool/fs@snap1%snap10000`) can be very slow, resulting
in poor performance because we are holding the dp_config_rwlock the
entire time, blocking spa_sync() from continuing. With around ten
thousand snapshots, we've seen up to 500 seconds in this ioctl,
iterating over up to 50,000,000 bpobjs, ~99% of which are the empty
bpobj.
By creating a fast path for zfs_ioc_space_snaps() handling of the
empty_bpobj, we can achieve a ~5x performance improvement of this ioctl
(when there are many snapshots, and the deadlist is mostly
empty_bpobj's).
Reviewed-by: Pavel Zakharov <pavel.zakharov@delphix.com>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Reviewed-by: Paul Dagnelie <pcd@delphix.com>
Signed-off-by: Matthew Ahrens <mahrens@delphix.com>
External-issue: DLPX-58348
Closes #8744
2019-08-20 21:34:52 +03:00
|
|
|
if (dlce == NULL)
|
|
|
|
dlce = avl_nearest(&dl->dl_cache, where, AVL_AFTER);
|
|
|
|
|
|
|
|
for (; dlce && dlce->dlce_mintxg < maxtxg;
|
|
|
|
dlce = AVL_NEXT(&dl->dl_tree, dlce)) {
|
|
|
|
*usedp += dlce->dlce_bytes;
|
|
|
|
*compp += dlce->dlce_comp;
|
|
|
|
*uncompp += dlce->dlce_uncomp;
|
2010-05-29 00:45:14 +04:00
|
|
|
}
|
Implement Redacted Send/Receive
Redacted send/receive allows users to send subsets of their data to
a target system. One possible use case for this feature is to not
transmit sensitive information to a data warehousing, test/dev, or
analytics environment. Another is to save space by not replicating
unimportant data within a given dataset, for example in backup tools
like zrepl.
Redacted send/receive is a three-stage process. First, a clone (or
clones) is made of the snapshot to be sent to the target. In this
clone (or clones), all unnecessary or unwanted data is removed or
modified. This clone is then snapshotted to create the "redaction
snapshot" (or snapshots). Second, the new zfs redact command is used
to create a redaction bookmark. The redaction bookmark stores the
list of blocks in a snapshot that were modified by the redaction
snapshot(s). Finally, the redaction bookmark is passed as a parameter
to zfs send. When sending to the snapshot that was redacted, the
redaction bookmark is used to filter out blocks that contain sensitive
or unwanted information, and those blocks are not included in the send
stream. When sending from the redaction bookmark, the blocks it
contains are considered as candidate blocks in addition to those
blocks in the destination snapshot that were modified since the
creation_txg of the redaction bookmark. This step is necessary to
allow the target to rehydrate data in the case where some blocks are
accidentally or unnecessarily modified in the redaction snapshot.
The changes to bookmarks to enable fast space estimation involve
adding deadlists to bookmarks. There is also logic to manage the
life cycles of these deadlists.
The new size estimation process operates in cases where previously
an accurate estimate could not be provided. In those cases, a send
is performed where no data blocks are read, reducing the runtime
significantly and providing a byte-accurate size estimate.
Reviewed-by: Dan Kimmel <dan.kimmel@delphix.com>
Reviewed-by: Matt Ahrens <mahrens@delphix.com>
Reviewed-by: Prashanth Sreenivasa <pks@delphix.com>
Reviewed-by: John Kennedy <john.kennedy@delphix.com>
Reviewed-by: George Wilson <george.wilson@delphix.com>
Reviewed-by: Chris Williamson <chris.williamson@delphix.com>
Reviewed-by: Pavel Zhakarov <pavel.zakharov@delphix.com>
Reviewed-by: Sebastien Roy <sebastien.roy@delphix.com>
Reviewed-by: Prakash Surya <prakash.surya@delphix.com>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Paul Dagnelie <pcd@delphix.com>
Closes #7958
2019-06-19 19:48:13 +03:00
|
|
|
|
2011-11-17 22:14:36 +04:00
|
|
|
mutex_exit(&dl->dl_lock);
|
2010-05-29 00:45:14 +04:00
|
|
|
}
|
|
|
|
|
|
|
|
static void
|
|
|
|
dsl_deadlist_insert_bpobj(dsl_deadlist_t *dl, uint64_t obj, uint64_t birth,
|
|
|
|
dmu_tx_t *tx)
|
|
|
|
{
|
|
|
|
dsl_deadlist_entry_t dle_tofind;
|
|
|
|
dsl_deadlist_entry_t *dle;
|
|
|
|
avl_index_t where;
|
|
|
|
uint64_t used, comp, uncomp;
|
|
|
|
bpobj_t bpo;
|
|
|
|
|
2017-02-09 21:19:12 +03:00
|
|
|
ASSERT(MUTEX_HELD(&dl->dl_lock));
|
|
|
|
|
Implement Redacted Send/Receive
Redacted send/receive allows users to send subsets of their data to
a target system. One possible use case for this feature is to not
transmit sensitive information to a data warehousing, test/dev, or
analytics environment. Another is to save space by not replicating
unimportant data within a given dataset, for example in backup tools
like zrepl.
Redacted send/receive is a three-stage process. First, a clone (or
clones) is made of the snapshot to be sent to the target. In this
clone (or clones), all unnecessary or unwanted data is removed or
modified. This clone is then snapshotted to create the "redaction
snapshot" (or snapshots). Second, the new zfs redact command is used
to create a redaction bookmark. The redaction bookmark stores the
list of blocks in a snapshot that were modified by the redaction
snapshot(s). Finally, the redaction bookmark is passed as a parameter
to zfs send. When sending to the snapshot that was redacted, the
redaction bookmark is used to filter out blocks that contain sensitive
or unwanted information, and those blocks are not included in the send
stream. When sending from the redaction bookmark, the blocks it
contains are considered as candidate blocks in addition to those
blocks in the destination snapshot that were modified since the
creation_txg of the redaction bookmark. This step is necessary to
allow the target to rehydrate data in the case where some blocks are
accidentally or unnecessarily modified in the redaction snapshot.
The changes to bookmarks to enable fast space estimation involve
adding deadlists to bookmarks. There is also logic to manage the
life cycles of these deadlists.
The new size estimation process operates in cases where previously
an accurate estimate could not be provided. In those cases, a send
is performed where no data blocks are read, reducing the runtime
significantly and providing a byte-accurate size estimate.
Reviewed-by: Dan Kimmel <dan.kimmel@delphix.com>
Reviewed-by: Matt Ahrens <mahrens@delphix.com>
Reviewed-by: Prashanth Sreenivasa <pks@delphix.com>
Reviewed-by: John Kennedy <john.kennedy@delphix.com>
Reviewed-by: George Wilson <george.wilson@delphix.com>
Reviewed-by: Chris Williamson <chris.williamson@delphix.com>
Reviewed-by: Pavel Zhakarov <pavel.zakharov@delphix.com>
Reviewed-by: Sebastien Roy <sebastien.roy@delphix.com>
Reviewed-by: Prakash Surya <prakash.surya@delphix.com>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Paul Dagnelie <pcd@delphix.com>
Closes #7958
2019-06-19 19:48:13 +03:00
|
|
|
VERIFY0(bpobj_open(&bpo, dl->dl_os, obj));
|
|
|
|
VERIFY0(bpobj_space(&bpo, &used, &comp, &uncomp));
|
2010-05-29 00:45:14 +04:00
|
|
|
bpobj_close(&bpo);
|
|
|
|
|
|
|
|
dsl_deadlist_load_tree(dl);
|
|
|
|
|
|
|
|
dmu_buf_will_dirty(dl->dl_dbuf, tx);
|
|
|
|
dl->dl_phys->dl_used += used;
|
|
|
|
dl->dl_phys->dl_comp += comp;
|
|
|
|
dl->dl_phys->dl_uncomp += uncomp;
|
|
|
|
|
|
|
|
dle_tofind.dle_mintxg = birth;
|
|
|
|
dle = avl_find(&dl->dl_tree, &dle_tofind, &where);
|
|
|
|
if (dle == NULL)
|
|
|
|
dle = avl_nearest(&dl->dl_tree, where, AVL_BEFORE);
|
2012-12-24 03:57:14 +04:00
|
|
|
dle_enqueue_subobj(dl, dle, obj, tx);
|
2010-05-29 00:45:14 +04:00
|
|
|
}
|
|
|
|
|
|
|
|
static int
|
2019-07-26 20:54:14 +03:00
|
|
|
dsl_deadlist_insert_cb(void *arg, const blkptr_t *bp, boolean_t bp_freed,
|
|
|
|
dmu_tx_t *tx)
|
2010-05-29 00:45:14 +04:00
|
|
|
{
|
|
|
|
dsl_deadlist_t *dl = arg;
|
2019-07-26 20:54:14 +03:00
|
|
|
dsl_deadlist_insert(dl, bp, bp_freed, tx);
|
2010-05-29 00:45:14 +04:00
|
|
|
return (0);
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Merge the deadlist pointed to by 'obj' into dl. obj will be left as
|
|
|
|
* an empty deadlist.
|
|
|
|
*/
|
|
|
|
void
|
|
|
|
dsl_deadlist_merge(dsl_deadlist_t *dl, uint64_t obj, dmu_tx_t *tx)
|
|
|
|
{
|
|
|
|
zap_cursor_t zc;
|
|
|
|
zap_attribute_t za;
|
|
|
|
dmu_buf_t *bonus;
|
|
|
|
dsl_deadlist_phys_t *dlp;
|
|
|
|
dmu_object_info_t doi;
|
|
|
|
|
Implement Redacted Send/Receive
Redacted send/receive allows users to send subsets of their data to
a target system. One possible use case for this feature is to not
transmit sensitive information to a data warehousing, test/dev, or
analytics environment. Another is to save space by not replicating
unimportant data within a given dataset, for example in backup tools
like zrepl.
Redacted send/receive is a three-stage process. First, a clone (or
clones) is made of the snapshot to be sent to the target. In this
clone (or clones), all unnecessary or unwanted data is removed or
modified. This clone is then snapshotted to create the "redaction
snapshot" (or snapshots). Second, the new zfs redact command is used
to create a redaction bookmark. The redaction bookmark stores the
list of blocks in a snapshot that were modified by the redaction
snapshot(s). Finally, the redaction bookmark is passed as a parameter
to zfs send. When sending to the snapshot that was redacted, the
redaction bookmark is used to filter out blocks that contain sensitive
or unwanted information, and those blocks are not included in the send
stream. When sending from the redaction bookmark, the blocks it
contains are considered as candidate blocks in addition to those
blocks in the destination snapshot that were modified since the
creation_txg of the redaction bookmark. This step is necessary to
allow the target to rehydrate data in the case where some blocks are
accidentally or unnecessarily modified in the redaction snapshot.
The changes to bookmarks to enable fast space estimation involve
adding deadlists to bookmarks. There is also logic to manage the
life cycles of these deadlists.
The new size estimation process operates in cases where previously
an accurate estimate could not be provided. In those cases, a send
is performed where no data blocks are read, reducing the runtime
significantly and providing a byte-accurate size estimate.
Reviewed-by: Dan Kimmel <dan.kimmel@delphix.com>
Reviewed-by: Matt Ahrens <mahrens@delphix.com>
Reviewed-by: Prashanth Sreenivasa <pks@delphix.com>
Reviewed-by: John Kennedy <john.kennedy@delphix.com>
Reviewed-by: George Wilson <george.wilson@delphix.com>
Reviewed-by: Chris Williamson <chris.williamson@delphix.com>
Reviewed-by: Pavel Zhakarov <pavel.zakharov@delphix.com>
Reviewed-by: Sebastien Roy <sebastien.roy@delphix.com>
Reviewed-by: Prakash Surya <prakash.surya@delphix.com>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Paul Dagnelie <pcd@delphix.com>
Closes #7958
2019-06-19 19:48:13 +03:00
|
|
|
VERIFY0(dmu_object_info(dl->dl_os, obj, &doi));
|
2010-05-29 00:45:14 +04:00
|
|
|
if (doi.doi_type == DMU_OT_BPOBJ) {
|
|
|
|
bpobj_t bpo;
|
Implement Redacted Send/Receive
Redacted send/receive allows users to send subsets of their data to
a target system. One possible use case for this feature is to not
transmit sensitive information to a data warehousing, test/dev, or
analytics environment. Another is to save space by not replicating
unimportant data within a given dataset, for example in backup tools
like zrepl.
Redacted send/receive is a three-stage process. First, a clone (or
clones) is made of the snapshot to be sent to the target. In this
clone (or clones), all unnecessary or unwanted data is removed or
modified. This clone is then snapshotted to create the "redaction
snapshot" (or snapshots). Second, the new zfs redact command is used
to create a redaction bookmark. The redaction bookmark stores the
list of blocks in a snapshot that were modified by the redaction
snapshot(s). Finally, the redaction bookmark is passed as a parameter
to zfs send. When sending to the snapshot that was redacted, the
redaction bookmark is used to filter out blocks that contain sensitive
or unwanted information, and those blocks are not included in the send
stream. When sending from the redaction bookmark, the blocks it
contains are considered as candidate blocks in addition to those
blocks in the destination snapshot that were modified since the
creation_txg of the redaction bookmark. This step is necessary to
allow the target to rehydrate data in the case where some blocks are
accidentally or unnecessarily modified in the redaction snapshot.
The changes to bookmarks to enable fast space estimation involve
adding deadlists to bookmarks. There is also logic to manage the
life cycles of these deadlists.
The new size estimation process operates in cases where previously
an accurate estimate could not be provided. In those cases, a send
is performed where no data blocks are read, reducing the runtime
significantly and providing a byte-accurate size estimate.
Reviewed-by: Dan Kimmel <dan.kimmel@delphix.com>
Reviewed-by: Matt Ahrens <mahrens@delphix.com>
Reviewed-by: Prashanth Sreenivasa <pks@delphix.com>
Reviewed-by: John Kennedy <john.kennedy@delphix.com>
Reviewed-by: George Wilson <george.wilson@delphix.com>
Reviewed-by: Chris Williamson <chris.williamson@delphix.com>
Reviewed-by: Pavel Zhakarov <pavel.zakharov@delphix.com>
Reviewed-by: Sebastien Roy <sebastien.roy@delphix.com>
Reviewed-by: Prakash Surya <prakash.surya@delphix.com>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Paul Dagnelie <pcd@delphix.com>
Closes #7958
2019-06-19 19:48:13 +03:00
|
|
|
VERIFY0(bpobj_open(&bpo, dl->dl_os, obj));
|
|
|
|
VERIFY0(bpobj_iterate(&bpo, dsl_deadlist_insert_cb, dl, tx));
|
2010-05-29 00:45:14 +04:00
|
|
|
bpobj_close(&bpo);
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
|
2017-02-09 21:19:12 +03:00
|
|
|
mutex_enter(&dl->dl_lock);
|
2010-05-29 00:45:14 +04:00
|
|
|
for (zap_cursor_init(&zc, dl->dl_os, obj);
|
|
|
|
zap_cursor_retrieve(&zc, &za) == 0;
|
|
|
|
zap_cursor_advance(&zc)) {
|
2017-06-13 06:16:28 +03:00
|
|
|
uint64_t mintxg = zfs_strtonum(za.za_name, NULL);
|
2010-05-29 00:45:14 +04:00
|
|
|
dsl_deadlist_insert_bpobj(dl, za.za_first_integer, mintxg, tx);
|
Implement Redacted Send/Receive
Redacted send/receive allows users to send subsets of their data to
a target system. One possible use case for this feature is to not
transmit sensitive information to a data warehousing, test/dev, or
analytics environment. Another is to save space by not replicating
unimportant data within a given dataset, for example in backup tools
like zrepl.
Redacted send/receive is a three-stage process. First, a clone (or
clones) is made of the snapshot to be sent to the target. In this
clone (or clones), all unnecessary or unwanted data is removed or
modified. This clone is then snapshotted to create the "redaction
snapshot" (or snapshots). Second, the new zfs redact command is used
to create a redaction bookmark. The redaction bookmark stores the
list of blocks in a snapshot that were modified by the redaction
snapshot(s). Finally, the redaction bookmark is passed as a parameter
to zfs send. When sending to the snapshot that was redacted, the
redaction bookmark is used to filter out blocks that contain sensitive
or unwanted information, and those blocks are not included in the send
stream. When sending from the redaction bookmark, the blocks it
contains are considered as candidate blocks in addition to those
blocks in the destination snapshot that were modified since the
creation_txg of the redaction bookmark. This step is necessary to
allow the target to rehydrate data in the case where some blocks are
accidentally or unnecessarily modified in the redaction snapshot.
The changes to bookmarks to enable fast space estimation involve
adding deadlists to bookmarks. There is also logic to manage the
life cycles of these deadlists.
The new size estimation process operates in cases where previously
an accurate estimate could not be provided. In those cases, a send
is performed where no data blocks are read, reducing the runtime
significantly and providing a byte-accurate size estimate.
Reviewed-by: Dan Kimmel <dan.kimmel@delphix.com>
Reviewed-by: Matt Ahrens <mahrens@delphix.com>
Reviewed-by: Prashanth Sreenivasa <pks@delphix.com>
Reviewed-by: John Kennedy <john.kennedy@delphix.com>
Reviewed-by: George Wilson <george.wilson@delphix.com>
Reviewed-by: Chris Williamson <chris.williamson@delphix.com>
Reviewed-by: Pavel Zhakarov <pavel.zakharov@delphix.com>
Reviewed-by: Sebastien Roy <sebastien.roy@delphix.com>
Reviewed-by: Prakash Surya <prakash.surya@delphix.com>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Paul Dagnelie <pcd@delphix.com>
Closes #7958
2019-06-19 19:48:13 +03:00
|
|
|
VERIFY0(zap_remove_int(dl->dl_os, obj, mintxg, tx));
|
2010-05-29 00:45:14 +04:00
|
|
|
}
|
|
|
|
zap_cursor_fini(&zc);
|
|
|
|
|
Implement Redacted Send/Receive
Redacted send/receive allows users to send subsets of their data to
a target system. One possible use case for this feature is to not
transmit sensitive information to a data warehousing, test/dev, or
analytics environment. Another is to save space by not replicating
unimportant data within a given dataset, for example in backup tools
like zrepl.
Redacted send/receive is a three-stage process. First, a clone (or
clones) is made of the snapshot to be sent to the target. In this
clone (or clones), all unnecessary or unwanted data is removed or
modified. This clone is then snapshotted to create the "redaction
snapshot" (or snapshots). Second, the new zfs redact command is used
to create a redaction bookmark. The redaction bookmark stores the
list of blocks in a snapshot that were modified by the redaction
snapshot(s). Finally, the redaction bookmark is passed as a parameter
to zfs send. When sending to the snapshot that was redacted, the
redaction bookmark is used to filter out blocks that contain sensitive
or unwanted information, and those blocks are not included in the send
stream. When sending from the redaction bookmark, the blocks it
contains are considered as candidate blocks in addition to those
blocks in the destination snapshot that were modified since the
creation_txg of the redaction bookmark. This step is necessary to
allow the target to rehydrate data in the case where some blocks are
accidentally or unnecessarily modified in the redaction snapshot.
The changes to bookmarks to enable fast space estimation involve
adding deadlists to bookmarks. There is also logic to manage the
life cycles of these deadlists.
The new size estimation process operates in cases where previously
an accurate estimate could not be provided. In those cases, a send
is performed where no data blocks are read, reducing the runtime
significantly and providing a byte-accurate size estimate.
Reviewed-by: Dan Kimmel <dan.kimmel@delphix.com>
Reviewed-by: Matt Ahrens <mahrens@delphix.com>
Reviewed-by: Prashanth Sreenivasa <pks@delphix.com>
Reviewed-by: John Kennedy <john.kennedy@delphix.com>
Reviewed-by: George Wilson <george.wilson@delphix.com>
Reviewed-by: Chris Williamson <chris.williamson@delphix.com>
Reviewed-by: Pavel Zhakarov <pavel.zakharov@delphix.com>
Reviewed-by: Sebastien Roy <sebastien.roy@delphix.com>
Reviewed-by: Prakash Surya <prakash.surya@delphix.com>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Paul Dagnelie <pcd@delphix.com>
Closes #7958
2019-06-19 19:48:13 +03:00
|
|
|
VERIFY0(dmu_bonus_hold(dl->dl_os, obj, FTAG, &bonus));
|
2010-05-29 00:45:14 +04:00
|
|
|
dlp = bonus->db_data;
|
|
|
|
dmu_buf_will_dirty(bonus, tx);
|
|
|
|
bzero(dlp, sizeof (*dlp));
|
|
|
|
dmu_buf_rele(bonus, FTAG);
|
2017-02-09 21:19:12 +03:00
|
|
|
mutex_exit(&dl->dl_lock);
|
2010-05-29 00:45:14 +04:00
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
Implement Redacted Send/Receive
Redacted send/receive allows users to send subsets of their data to
a target system. One possible use case for this feature is to not
transmit sensitive information to a data warehousing, test/dev, or
analytics environment. Another is to save space by not replicating
unimportant data within a given dataset, for example in backup tools
like zrepl.
Redacted send/receive is a three-stage process. First, a clone (or
clones) is made of the snapshot to be sent to the target. In this
clone (or clones), all unnecessary or unwanted data is removed or
modified. This clone is then snapshotted to create the "redaction
snapshot" (or snapshots). Second, the new zfs redact command is used
to create a redaction bookmark. The redaction bookmark stores the
list of blocks in a snapshot that were modified by the redaction
snapshot(s). Finally, the redaction bookmark is passed as a parameter
to zfs send. When sending to the snapshot that was redacted, the
redaction bookmark is used to filter out blocks that contain sensitive
or unwanted information, and those blocks are not included in the send
stream. When sending from the redaction bookmark, the blocks it
contains are considered as candidate blocks in addition to those
blocks in the destination snapshot that were modified since the
creation_txg of the redaction bookmark. This step is necessary to
allow the target to rehydrate data in the case where some blocks are
accidentally or unnecessarily modified in the redaction snapshot.
The changes to bookmarks to enable fast space estimation involve
adding deadlists to bookmarks. There is also logic to manage the
life cycles of these deadlists.
The new size estimation process operates in cases where previously
an accurate estimate could not be provided. In those cases, a send
is performed where no data blocks are read, reducing the runtime
significantly and providing a byte-accurate size estimate.
Reviewed-by: Dan Kimmel <dan.kimmel@delphix.com>
Reviewed-by: Matt Ahrens <mahrens@delphix.com>
Reviewed-by: Prashanth Sreenivasa <pks@delphix.com>
Reviewed-by: John Kennedy <john.kennedy@delphix.com>
Reviewed-by: George Wilson <george.wilson@delphix.com>
Reviewed-by: Chris Williamson <chris.williamson@delphix.com>
Reviewed-by: Pavel Zhakarov <pavel.zakharov@delphix.com>
Reviewed-by: Sebastien Roy <sebastien.roy@delphix.com>
Reviewed-by: Prakash Surya <prakash.surya@delphix.com>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Paul Dagnelie <pcd@delphix.com>
Closes #7958
2019-06-19 19:48:13 +03:00
|
|
|
* Remove entries on dl that are born > mintxg, and put them on the bpobj.
|
2010-05-29 00:45:14 +04:00
|
|
|
*/
|
|
|
|
void
|
|
|
|
dsl_deadlist_move_bpobj(dsl_deadlist_t *dl, bpobj_t *bpo, uint64_t mintxg,
|
|
|
|
dmu_tx_t *tx)
|
|
|
|
{
|
|
|
|
dsl_deadlist_entry_t dle_tofind;
|
|
|
|
dsl_deadlist_entry_t *dle;
|
|
|
|
avl_index_t where;
|
|
|
|
|
|
|
|
ASSERT(!dl->dl_oldfmt);
|
2017-02-09 21:19:12 +03:00
|
|
|
|
|
|
|
mutex_enter(&dl->dl_lock);
|
2010-05-29 00:45:14 +04:00
|
|
|
dmu_buf_will_dirty(dl->dl_dbuf, tx);
|
|
|
|
dsl_deadlist_load_tree(dl);
|
|
|
|
|
|
|
|
dle_tofind.dle_mintxg = mintxg;
|
|
|
|
dle = avl_find(&dl->dl_tree, &dle_tofind, &where);
|
|
|
|
if (dle == NULL)
|
|
|
|
dle = avl_nearest(&dl->dl_tree, where, AVL_AFTER);
|
|
|
|
while (dle) {
|
|
|
|
uint64_t used, comp, uncomp;
|
|
|
|
dsl_deadlist_entry_t *dle_next;
|
|
|
|
|
|
|
|
bpobj_enqueue_subobj(bpo, dle->dle_bpobj.bpo_object, tx);
|
|
|
|
|
Implement Redacted Send/Receive
Redacted send/receive allows users to send subsets of their data to
a target system. One possible use case for this feature is to not
transmit sensitive information to a data warehousing, test/dev, or
analytics environment. Another is to save space by not replicating
unimportant data within a given dataset, for example in backup tools
like zrepl.
Redacted send/receive is a three-stage process. First, a clone (or
clones) is made of the snapshot to be sent to the target. In this
clone (or clones), all unnecessary or unwanted data is removed or
modified. This clone is then snapshotted to create the "redaction
snapshot" (or snapshots). Second, the new zfs redact command is used
to create a redaction bookmark. The redaction bookmark stores the
list of blocks in a snapshot that were modified by the redaction
snapshot(s). Finally, the redaction bookmark is passed as a parameter
to zfs send. When sending to the snapshot that was redacted, the
redaction bookmark is used to filter out blocks that contain sensitive
or unwanted information, and those blocks are not included in the send
stream. When sending from the redaction bookmark, the blocks it
contains are considered as candidate blocks in addition to those
blocks in the destination snapshot that were modified since the
creation_txg of the redaction bookmark. This step is necessary to
allow the target to rehydrate data in the case where some blocks are
accidentally or unnecessarily modified in the redaction snapshot.
The changes to bookmarks to enable fast space estimation involve
adding deadlists to bookmarks. There is also logic to manage the
life cycles of these deadlists.
The new size estimation process operates in cases where previously
an accurate estimate could not be provided. In those cases, a send
is performed where no data blocks are read, reducing the runtime
significantly and providing a byte-accurate size estimate.
Reviewed-by: Dan Kimmel <dan.kimmel@delphix.com>
Reviewed-by: Matt Ahrens <mahrens@delphix.com>
Reviewed-by: Prashanth Sreenivasa <pks@delphix.com>
Reviewed-by: John Kennedy <john.kennedy@delphix.com>
Reviewed-by: George Wilson <george.wilson@delphix.com>
Reviewed-by: Chris Williamson <chris.williamson@delphix.com>
Reviewed-by: Pavel Zhakarov <pavel.zakharov@delphix.com>
Reviewed-by: Sebastien Roy <sebastien.roy@delphix.com>
Reviewed-by: Prakash Surya <prakash.surya@delphix.com>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Paul Dagnelie <pcd@delphix.com>
Closes #7958
2019-06-19 19:48:13 +03:00
|
|
|
VERIFY0(bpobj_space(&dle->dle_bpobj,
|
2010-05-29 00:45:14 +04:00
|
|
|
&used, &comp, &uncomp));
|
|
|
|
ASSERT3U(dl->dl_phys->dl_used, >=, used);
|
|
|
|
ASSERT3U(dl->dl_phys->dl_comp, >=, comp);
|
|
|
|
ASSERT3U(dl->dl_phys->dl_uncomp, >=, uncomp);
|
|
|
|
dl->dl_phys->dl_used -= used;
|
|
|
|
dl->dl_phys->dl_comp -= comp;
|
|
|
|
dl->dl_phys->dl_uncomp -= uncomp;
|
|
|
|
|
Implement Redacted Send/Receive
Redacted send/receive allows users to send subsets of their data to
a target system. One possible use case for this feature is to not
transmit sensitive information to a data warehousing, test/dev, or
analytics environment. Another is to save space by not replicating
unimportant data within a given dataset, for example in backup tools
like zrepl.
Redacted send/receive is a three-stage process. First, a clone (or
clones) is made of the snapshot to be sent to the target. In this
clone (or clones), all unnecessary or unwanted data is removed or
modified. This clone is then snapshotted to create the "redaction
snapshot" (or snapshots). Second, the new zfs redact command is used
to create a redaction bookmark. The redaction bookmark stores the
list of blocks in a snapshot that were modified by the redaction
snapshot(s). Finally, the redaction bookmark is passed as a parameter
to zfs send. When sending to the snapshot that was redacted, the
redaction bookmark is used to filter out blocks that contain sensitive
or unwanted information, and those blocks are not included in the send
stream. When sending from the redaction bookmark, the blocks it
contains are considered as candidate blocks in addition to those
blocks in the destination snapshot that were modified since the
creation_txg of the redaction bookmark. This step is necessary to
allow the target to rehydrate data in the case where some blocks are
accidentally or unnecessarily modified in the redaction snapshot.
The changes to bookmarks to enable fast space estimation involve
adding deadlists to bookmarks. There is also logic to manage the
life cycles of these deadlists.
The new size estimation process operates in cases where previously
an accurate estimate could not be provided. In those cases, a send
is performed where no data blocks are read, reducing the runtime
significantly and providing a byte-accurate size estimate.
Reviewed-by: Dan Kimmel <dan.kimmel@delphix.com>
Reviewed-by: Matt Ahrens <mahrens@delphix.com>
Reviewed-by: Prashanth Sreenivasa <pks@delphix.com>
Reviewed-by: John Kennedy <john.kennedy@delphix.com>
Reviewed-by: George Wilson <george.wilson@delphix.com>
Reviewed-by: Chris Williamson <chris.williamson@delphix.com>
Reviewed-by: Pavel Zhakarov <pavel.zakharov@delphix.com>
Reviewed-by: Sebastien Roy <sebastien.roy@delphix.com>
Reviewed-by: Prakash Surya <prakash.surya@delphix.com>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Paul Dagnelie <pcd@delphix.com>
Closes #7958
2019-06-19 19:48:13 +03:00
|
|
|
VERIFY0(zap_remove_int(dl->dl_os, dl->dl_object,
|
2010-05-29 00:45:14 +04:00
|
|
|
dle->dle_mintxg, tx));
|
|
|
|
|
|
|
|
dle_next = AVL_NEXT(&dl->dl_tree, dle);
|
|
|
|
avl_remove(&dl->dl_tree, dle);
|
|
|
|
bpobj_close(&dle->dle_bpobj);
|
|
|
|
kmem_free(dle, sizeof (*dle));
|
|
|
|
dle = dle_next;
|
|
|
|
}
|
2017-02-09 21:19:12 +03:00
|
|
|
mutex_exit(&dl->dl_lock);
|
2010-05-29 00:45:14 +04:00
|
|
|
}
|
2019-07-26 20:54:14 +03:00
|
|
|
|
|
|
|
typedef struct livelist_entry {
|
|
|
|
const blkptr_t *le_bp;
|
|
|
|
avl_node_t le_node;
|
|
|
|
} livelist_entry_t;
|
|
|
|
|
|
|
|
static int
|
|
|
|
livelist_compare(const void *larg, const void *rarg)
|
|
|
|
{
|
|
|
|
const blkptr_t *l = ((livelist_entry_t *)larg)->le_bp;
|
|
|
|
const blkptr_t *r = ((livelist_entry_t *)rarg)->le_bp;
|
|
|
|
|
|
|
|
/* Sort them according to dva[0] */
|
|
|
|
uint64_t l_dva0_vdev = DVA_GET_VDEV(&l->blk_dva[0]);
|
|
|
|
uint64_t r_dva0_vdev = DVA_GET_VDEV(&r->blk_dva[0]);
|
|
|
|
|
|
|
|
if (l_dva0_vdev != r_dva0_vdev)
|
|
|
|
return (AVL_CMP(l_dva0_vdev, r_dva0_vdev));
|
|
|
|
|
|
|
|
/* if vdevs are equal, sort by offsets. */
|
|
|
|
uint64_t l_dva0_offset = DVA_GET_OFFSET(&l->blk_dva[0]);
|
|
|
|
uint64_t r_dva0_offset = DVA_GET_OFFSET(&r->blk_dva[0]);
|
|
|
|
if (l_dva0_offset == r_dva0_offset)
|
|
|
|
ASSERT3U(l->blk_birth, ==, r->blk_birth);
|
|
|
|
return (AVL_CMP(l_dva0_offset, r_dva0_offset));
|
|
|
|
}
|
|
|
|
|
|
|
|
struct livelist_iter_arg {
|
|
|
|
avl_tree_t *avl;
|
|
|
|
bplist_t *to_free;
|
|
|
|
zthr_t *t;
|
|
|
|
};
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Expects an AVL tree which is incrementally filled will FREE blkptrs
|
|
|
|
* and used to match up ALLOC/FREE pairs. ALLOC'd blkptrs without a
|
|
|
|
* corresponding FREE are stored in the supplied bplist.
|
|
|
|
*/
|
|
|
|
static int
|
|
|
|
dsl_livelist_iterate(void *arg, const blkptr_t *bp, boolean_t bp_freed,
|
|
|
|
dmu_tx_t *tx)
|
|
|
|
{
|
|
|
|
struct livelist_iter_arg *lia = arg;
|
|
|
|
avl_tree_t *avl = lia->avl;
|
|
|
|
bplist_t *to_free = lia->to_free;
|
|
|
|
zthr_t *t = lia->t;
|
|
|
|
ASSERT(tx == NULL);
|
|
|
|
|
|
|
|
if ((t != NULL) && (zthr_has_waiters(t) || zthr_iscancelled(t)))
|
|
|
|
return (SET_ERROR(EINTR));
|
|
|
|
if (bp_freed) {
|
|
|
|
livelist_entry_t *node = kmem_alloc(sizeof (livelist_entry_t),
|
|
|
|
KM_SLEEP);
|
|
|
|
blkptr_t *temp_bp = kmem_alloc(sizeof (blkptr_t), KM_SLEEP);
|
|
|
|
*temp_bp = *bp;
|
|
|
|
node->le_bp = temp_bp;
|
|
|
|
avl_add(avl, node);
|
|
|
|
} else {
|
|
|
|
livelist_entry_t node;
|
|
|
|
node.le_bp = bp;
|
|
|
|
livelist_entry_t *found = avl_find(avl, &node, NULL);
|
|
|
|
if (found != NULL) {
|
|
|
|
avl_remove(avl, found);
|
|
|
|
kmem_free((blkptr_t *)found->le_bp, sizeof (blkptr_t));
|
|
|
|
kmem_free(found, sizeof (livelist_entry_t));
|
|
|
|
} else {
|
|
|
|
bplist_append(to_free, bp);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
return (0);
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Accepts a bpobj and a bplist. Will insert into the bplist the blkptrs
|
|
|
|
* which have an ALLOC entry but no matching FREE
|
|
|
|
*/
|
|
|
|
int
|
|
|
|
dsl_process_sub_livelist(bpobj_t *bpobj, bplist_t *to_free, zthr_t *t,
|
|
|
|
uint64_t *size)
|
|
|
|
{
|
|
|
|
avl_tree_t avl;
|
|
|
|
avl_create(&avl, livelist_compare, sizeof (livelist_entry_t),
|
|
|
|
offsetof(livelist_entry_t, le_node));
|
|
|
|
|
|
|
|
/* process the sublist */
|
|
|
|
struct livelist_iter_arg arg = {
|
|
|
|
.avl = &avl,
|
|
|
|
.to_free = to_free,
|
|
|
|
.t = t
|
|
|
|
};
|
|
|
|
int err = bpobj_iterate_nofree(bpobj, dsl_livelist_iterate, &arg, size);
|
|
|
|
|
|
|
|
avl_destroy(&avl);
|
|
|
|
return (err);
|
|
|
|
}
|
|
|
|
|
|
|
|
#if defined(_KERNEL)
|
|
|
|
/* CSTYLED */
|
|
|
|
module_param(zfs_livelist_max_entries, ulong, 0644);
|
|
|
|
MODULE_PARM_DESC(zfs_livelist_max_entries,
|
|
|
|
"Size to start the next sub-livelist in a livelist");
|
|
|
|
|
|
|
|
module_param(zfs_livelist_min_percent_shared, int, 0644);
|
|
|
|
MODULE_PARM_DESC(zfs_livelist_min_percent_shared,
|
|
|
|
"Threshold at which livelist is disabled");
|
|
|
|
#endif
|