mirror_zfs/module/os/linux/zfs/zfs_acl.c

3020 lines
78 KiB
C
Raw Normal View History

2008-11-20 23:01:55 +03:00
/*
* CDDL HEADER START
*
* The contents of this file are subject to the terms of the
* Common Development and Distribution License (the "License").
* You may not use this file except in compliance with the License.
*
* You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
* or https://opensource.org/licenses/CDDL-1.0.
2008-11-20 23:01:55 +03:00
* See the License for the specific language governing permissions
* and limitations under the License.
*
* When distributing Covered Code, include this CDDL HEADER in each
* file and include the License file at usr/src/OPENSOLARIS.LICENSE.
* If applicable, add the following below this CDDL HEADER, with the
* fields enclosed by brackets "[]" replaced with your own identifying
* information: Portions Copyright [yyyy] [name of copyright owner]
*
* CDDL HEADER END
*/
/*
* Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
* Copyright (c) 2013 by Delphix. All rights reserved.
* Copyright 2014 Nexenta Systems, Inc. All rights reserved.
2008-11-20 23:01:55 +03:00
*/
2008-11-20 23:01:55 +03:00
#include <sys/types.h>
#include <sys/param.h>
#include <sys/time.h>
#include <sys/sysmacros.h>
#include <sys/vfs.h>
#include <sys/vnode.h>
#include <sys/sid.h>
#include <sys/file.h>
#include <sys/stat.h>
#include <sys/kmem.h>
#include <sys/cmn_err.h>
#include <sys/errno.h>
#include <sys/fs/zfs.h>
#include <sys/policy.h>
#include <sys/zfs_znode.h>
#include <sys/zfs_fuid.h>
#include <sys/zfs_acl.h>
#include <sys/zfs_dir.h>
#include <sys/zfs_quota.h>
2008-11-20 23:01:55 +03:00
#include <sys/zfs_vfsops.h>
#include <sys/dmu.h>
#include <sys/dnode.h>
#include <sys/zap.h>
#include <sys/sa.h>
Remove duplicate typedefs from trace.h Older versions of GCC (e.g. GCC 4.4.7 on RHEL6) do not allow duplicate typedef declarations with the same type. The trace.h header contains some typedefs to avoid 'unknown type' errors for C files that haven't declared the type in question. But this causes build failures for C files that have already declared the type. Newer versions of GCC (e.g. v4.6) allow duplicate typedefs with the same type unless pedantic error checking is in force. To support the older versions we need to remove the duplicate typedefs. Removal of the typedefs means we can't built tracepoints code using those types unless the required headers have been included. To facilitate this, all tracepoint event declarations have been moved out of trace.h into separate headers. Each new header is explicitly included from the C file that uses the events defined therein. The trace.h header is still indirectly included form zfs_context.h and provides the implementation of the dprintf(), dbgmsg(), and SET_ERROR() interfaces. This makes those interfaces readily available throughout the code base. The macros that redefine DTRACE_PROBE* to use Linux tracepoints are also still provided by trace.h, so it is a prerequisite for the other trace_*.h headers. These new Linux implementation-specific headers do introduce a small divergence from upstream ZFS in several core C files, but this should not present a significant maintenance burden. Signed-off-by: Ned Bass <bass6@llnl.gov> Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov> Issue #2953
2014-12-13 05:07:39 +03:00
#include <sys/trace_acl.h>
#include <sys/zpl.h>
2008-11-20 23:01:55 +03:00
#define ALLOW ACE_ACCESS_ALLOWED_ACE_TYPE
#define DENY ACE_ACCESS_DENIED_ACE_TYPE
#define MAX_ACE_TYPE ACE_SYSTEM_ALARM_CALLBACK_OBJECT_ACE_TYPE
#define MIN_ACE_TYPE ALLOW
2008-11-20 23:01:55 +03:00
#define OWNING_GROUP (ACE_GROUP|ACE_IDENTIFIER_GROUP)
#define EVERYONE_ALLOW_MASK (ACE_READ_ACL|ACE_READ_ATTRIBUTES | \
ACE_READ_NAMED_ATTRS|ACE_SYNCHRONIZE)
#define EVERYONE_DENY_MASK (ACE_WRITE_ACL|ACE_WRITE_OWNER | \
ACE_WRITE_ATTRIBUTES|ACE_WRITE_NAMED_ATTRS)
#define OWNER_ALLOW_MASK (ACE_WRITE_ACL | ACE_WRITE_OWNER | \
ACE_WRITE_ATTRIBUTES|ACE_WRITE_NAMED_ATTRS)
#define ZFS_CHECKED_MASKS (ACE_READ_ACL|ACE_READ_ATTRIBUTES|ACE_READ_DATA| \
ACE_READ_NAMED_ATTRS|ACE_WRITE_DATA|ACE_WRITE_ATTRIBUTES| \
ACE_WRITE_NAMED_ATTRS|ACE_APPEND_DATA|ACE_EXECUTE|ACE_WRITE_OWNER| \
ACE_WRITE_ACL|ACE_DELETE|ACE_DELETE_CHILD|ACE_SYNCHRONIZE)
2009-07-03 02:44:48 +04:00
#define WRITE_MASK_DATA (ACE_WRITE_DATA|ACE_APPEND_DATA|ACE_WRITE_NAMED_ATTRS)
#define WRITE_MASK_ATTRS (ACE_WRITE_ACL|ACE_WRITE_OWNER|ACE_WRITE_ATTRIBUTES| \
ACE_DELETE|ACE_DELETE_CHILD)
#define WRITE_MASK (WRITE_MASK_DATA|WRITE_MASK_ATTRS)
2008-11-20 23:01:55 +03:00
#define OGE_CLEAR (ACE_READ_DATA|ACE_LIST_DIRECTORY|ACE_WRITE_DATA| \
ACE_ADD_FILE|ACE_APPEND_DATA|ACE_ADD_SUBDIRECTORY|ACE_EXECUTE)
#define OKAY_MASK_BITS (ACE_READ_DATA|ACE_LIST_DIRECTORY|ACE_WRITE_DATA| \
ACE_ADD_FILE|ACE_APPEND_DATA|ACE_ADD_SUBDIRECTORY|ACE_EXECUTE)
#define ALL_INHERIT (ACE_FILE_INHERIT_ACE|ACE_DIRECTORY_INHERIT_ACE | \
ACE_NO_PROPAGATE_INHERIT_ACE|ACE_INHERIT_ONLY_ACE|ACE_INHERITED_ACE)
#define RESTRICTED_CLEAR (ACE_WRITE_ACL|ACE_WRITE_OWNER)
#define V4_ACL_WIDE_FLAGS (ZFS_ACL_AUTO_INHERIT|ZFS_ACL_DEFAULTED|\
ZFS_ACL_PROTECTED)
#define ZFS_ACL_WIDE_FLAGS (V4_ACL_WIDE_FLAGS|ZFS_ACL_TRIVIAL|ZFS_INHERIT_ACE|\
ZFS_ACL_OBJ_ACE)
2009-08-18 22:43:27 +04:00
#define ALL_MODE_EXECS (S_IXUSR | S_IXGRP | S_IXOTH)
Update build system and packaging Minimal changes required to integrate the SPL sources in to the ZFS repository build infrastructure and packaging. Build system and packaging: * Renamed SPL_* autoconf m4 macros to ZFS_*. * Removed redundant SPL_* autoconf m4 macros. * Updated the RPM spec files to remove SPL package dependency. * The zfs package obsoletes the spl package, and the zfs-kmod package obsoletes the spl-kmod package. * The zfs-kmod-devel* packages were updated to add compatibility symlinks under /usr/src/spl-x.y.z until all dependent packages can be updated. They will be removed in a future release. * Updated copy-builtin script for in-kernel builds. * Updated DKMS package to include the spl.ko. * Updated stale AUTHORS file to include all contributors. * Updated stale COPYRIGHT and included the SPL as an exception. * Renamed README.markdown to README.md * Renamed OPENSOLARIS.LICENSE to LICENSE. * Renamed DISCLAIMER to NOTICE. Required code changes: * Removed redundant HAVE_SPL macro. * Removed _BOOT from nvpairs since it doesn't apply for Linux. * Initial header cleanup (removal of empty headers, refactoring). * Remove SPL repository clone/build from zimport.sh. * Use of DEFINE_RATELIMIT_STATE and DEFINE_SPINLOCK removed due to build issues when forcing C99 compilation. * Replaced legacy ACCESS_ONCE with READ_ONCE. * Include needed headers for `current` and `EXPORT_SYMBOL`. Reviewed-by: Tony Hutter <hutter2@llnl.gov> Reviewed-by: Olaf Faaland <faaland1@llnl.gov> Reviewed-by: Matthew Ahrens <mahrens@delphix.com> Reviewed-by: Pavel Zakharov <pavel.zakharov@delphix.com> Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov> TEST_ZIMPORT_SKIP="yes" Closes #7556
2018-02-16 04:53:18 +03:00
#define IDMAP_WK_CREATOR_OWNER_UID 2147483648U
2008-11-20 23:01:55 +03:00
static uint16_t
zfs_ace_v0_get_type(void *acep)
{
return (((zfs_oldace_t *)acep)->z_type);
}
static uint16_t
zfs_ace_v0_get_flags(void *acep)
{
return (((zfs_oldace_t *)acep)->z_flags);
}
static uint32_t
zfs_ace_v0_get_mask(void *acep)
{
return (((zfs_oldace_t *)acep)->z_access_mask);
}
static uint64_t
zfs_ace_v0_get_who(void *acep)
{
return (((zfs_oldace_t *)acep)->z_fuid);
}
static void
zfs_ace_v0_set_type(void *acep, uint16_t type)
{
((zfs_oldace_t *)acep)->z_type = type;
}
static void
zfs_ace_v0_set_flags(void *acep, uint16_t flags)
{
((zfs_oldace_t *)acep)->z_flags = flags;
}
static void
zfs_ace_v0_set_mask(void *acep, uint32_t mask)
{
((zfs_oldace_t *)acep)->z_access_mask = mask;
}
static void
zfs_ace_v0_set_who(void *acep, uint64_t who)
{
((zfs_oldace_t *)acep)->z_fuid = who;
}
static size_t
zfs_ace_v0_size(void *acep)
{
(void) acep;
2008-11-20 23:01:55 +03:00
return (sizeof (zfs_oldace_t));
}
static size_t
zfs_ace_v0_abstract_size(void)
{
return (sizeof (zfs_oldace_t));
}
static int
zfs_ace_v0_mask_off(void)
{
return (offsetof(zfs_oldace_t, z_access_mask));
}
static int
zfs_ace_v0_data(void *acep, void **datap)
{
(void) acep;
2008-11-20 23:01:55 +03:00
*datap = NULL;
return (0);
}
static const acl_ops_t zfs_acl_v0_ops = {
.ace_mask_get = zfs_ace_v0_get_mask,
.ace_mask_set = zfs_ace_v0_set_mask,
.ace_flags_get = zfs_ace_v0_get_flags,
.ace_flags_set = zfs_ace_v0_set_flags,
.ace_type_get = zfs_ace_v0_get_type,
.ace_type_set = zfs_ace_v0_set_type,
.ace_who_get = zfs_ace_v0_get_who,
.ace_who_set = zfs_ace_v0_set_who,
.ace_size = zfs_ace_v0_size,
.ace_abstract_size = zfs_ace_v0_abstract_size,
.ace_mask_off = zfs_ace_v0_mask_off,
.ace_data = zfs_ace_v0_data
2008-11-20 23:01:55 +03:00
};
static uint16_t
zfs_ace_fuid_get_type(void *acep)
{
return (((zfs_ace_hdr_t *)acep)->z_type);
}
static uint16_t
zfs_ace_fuid_get_flags(void *acep)
{
return (((zfs_ace_hdr_t *)acep)->z_flags);
}
static uint32_t
zfs_ace_fuid_get_mask(void *acep)
{
return (((zfs_ace_hdr_t *)acep)->z_access_mask);
}
static uint64_t
zfs_ace_fuid_get_who(void *args)
{
uint16_t entry_type;
zfs_ace_t *acep = args;
entry_type = acep->z_hdr.z_flags & ACE_TYPE_FLAGS;
if (entry_type == ACE_OWNER || entry_type == OWNING_GROUP ||
entry_type == ACE_EVERYONE)
return (-1);
return (((zfs_ace_t *)acep)->z_fuid);
}
static void
zfs_ace_fuid_set_type(void *acep, uint16_t type)
{
((zfs_ace_hdr_t *)acep)->z_type = type;
}
static void
zfs_ace_fuid_set_flags(void *acep, uint16_t flags)
{
((zfs_ace_hdr_t *)acep)->z_flags = flags;
}
static void
zfs_ace_fuid_set_mask(void *acep, uint32_t mask)
{
((zfs_ace_hdr_t *)acep)->z_access_mask = mask;
}
static void
zfs_ace_fuid_set_who(void *arg, uint64_t who)
{
zfs_ace_t *acep = arg;
uint16_t entry_type = acep->z_hdr.z_flags & ACE_TYPE_FLAGS;
if (entry_type == ACE_OWNER || entry_type == OWNING_GROUP ||
entry_type == ACE_EVERYONE)
return;
acep->z_fuid = who;
}
static size_t
zfs_ace_fuid_size(void *acep)
{
zfs_ace_hdr_t *zacep = acep;
uint16_t entry_type;
switch (zacep->z_type) {
case ACE_ACCESS_ALLOWED_OBJECT_ACE_TYPE:
case ACE_ACCESS_DENIED_OBJECT_ACE_TYPE:
case ACE_SYSTEM_AUDIT_OBJECT_ACE_TYPE:
case ACE_SYSTEM_ALARM_OBJECT_ACE_TYPE:
return (sizeof (zfs_object_ace_t));
case ALLOW:
case DENY:
entry_type =
(((zfs_ace_hdr_t *)acep)->z_flags & ACE_TYPE_FLAGS);
if (entry_type == ACE_OWNER ||
entry_type == OWNING_GROUP ||
2008-11-20 23:01:55 +03:00
entry_type == ACE_EVERYONE)
return (sizeof (zfs_ace_hdr_t));
zfs_fallthrough;
2008-11-20 23:01:55 +03:00
default:
return (sizeof (zfs_ace_t));
}
}
static size_t
zfs_ace_fuid_abstract_size(void)
{
return (sizeof (zfs_ace_hdr_t));
}
static int
zfs_ace_fuid_mask_off(void)
{
return (offsetof(zfs_ace_hdr_t, z_access_mask));
}
static int
zfs_ace_fuid_data(void *acep, void **datap)
{
zfs_ace_t *zacep = acep;
zfs_object_ace_t *zobjp;
switch (zacep->z_hdr.z_type) {
case ACE_ACCESS_ALLOWED_OBJECT_ACE_TYPE:
case ACE_ACCESS_DENIED_OBJECT_ACE_TYPE:
case ACE_SYSTEM_AUDIT_OBJECT_ACE_TYPE:
case ACE_SYSTEM_ALARM_OBJECT_ACE_TYPE:
zobjp = acep;
*datap = (caddr_t)zobjp + sizeof (zfs_ace_t);
return (sizeof (zfs_object_ace_t) - sizeof (zfs_ace_t));
default:
*datap = NULL;
return (0);
}
}
static const acl_ops_t zfs_acl_fuid_ops = {
.ace_mask_get = zfs_ace_fuid_get_mask,
.ace_mask_set = zfs_ace_fuid_set_mask,
.ace_flags_get = zfs_ace_fuid_get_flags,
.ace_flags_set = zfs_ace_fuid_set_flags,
.ace_type_get = zfs_ace_fuid_get_type,
.ace_type_set = zfs_ace_fuid_set_type,
.ace_who_get = zfs_ace_fuid_get_who,
.ace_who_set = zfs_ace_fuid_set_who,
.ace_size = zfs_ace_fuid_size,
.ace_abstract_size = zfs_ace_fuid_abstract_size,
.ace_mask_off = zfs_ace_fuid_mask_off,
.ace_data = zfs_ace_fuid_data
2008-11-20 23:01:55 +03:00
};
/*
* The following three functions are provided for compatibility with
* older ZPL version in order to determine if the file use to have
* an external ACL and what version of ACL previously existed on the
* file. Would really be nice to not need this, sigh.
*/
uint64_t
zfs_external_acl(znode_t *zp)
{
zfs_acl_phys_t acl_phys;
int error;
if (zp->z_is_sa)
return (0);
/*
* Need to deal with a potential
* race where zfs_sa_upgrade could cause
* z_isa_sa to change.
*
* If the lookup fails then the state of z_is_sa should have
* changed.
*/
Prototype/structure update for Linux I appologize in advance why to many things ended up in this commit. When it could be seperated in to a whole series of commits teasing that all apart now would take considerable time and I'm not sure there's much merrit in it. As such I'll just summerize the intent of the changes which are all (or partly) in this commit. Broadly the intent is to remove as much Solaris specific code as possible and replace it with native Linux equivilants. More specifically: 1) Replace all instances of zfsvfs_t with zfs_sb_t. While the type is largely the same calling it private super block data rather than a zfsvfs is more consistent with how Linux names this. While non critical it makes the code easier to read when your thinking in Linux friendly VFS terms. 2) Replace vnode_t with struct inode. The Linux VFS doesn't have the notion of a vnode and there's absolutely no good reason to create one. There are in fact several good reasons to remove it. It just adds overhead on Linux if we were to manage one, it conplicates the code, and it likely will lead to bugs so there's a good change it will be out of date. The code has been updated to remove all need for this type. 3) Replace all vtype_t's with umode types. Along with this shift all uses of types to mode bits. The Solaris code would pass a vtype which is redundant with the Linux mode. Just update all the code to use the Linux mode macros and remove this redundancy. 4) Remove using of vn_* helpers and replace where needed with inode helpers. The big example here is creating iput_aync to replace vn_rele_async. Other vn helpers will be addressed as needed but they should be be emulated. They are a Solaris VFS'ism and should simply be replaced with Linux equivilants. 5) Update znode alloc/free code. Under Linux it's common to embed the inode specific data with the inode itself. This removes the need for an extra memory allocation. In zfs this information is called a znode and it now embeds the inode with it. Allocators have been updated accordingly. 6) Minimal integration with the vfs flags for setting up the super block and handling mount options has been added this code will need to be refined but functionally it's all there. This will be the first and last of these to large to review commits.
2011-02-08 22:16:06 +03:00
if ((error = sa_lookup(zp->z_sa_hdl, SA_ZPL_ZNODE_ACL(ZTOZSB(zp)),
&acl_phys, sizeof (acl_phys))) == 0)
return (acl_phys.z_acl_extern_obj);
else {
/*
* after upgrade the SA_ZPL_ZNODE_ACL should have been
* removed
*/
VERIFY(zp->z_is_sa && error == ENOENT);
return (0);
}
}
/*
* Determine size of ACL in bytes
*
* This is more complicated than it should be since we have to deal
* with old external ACLs.
*/
static int
zfs_acl_znode_info(znode_t *zp, int *aclsize, int *aclcount,
zfs_acl_phys_t *aclphys)
{
zfsvfs_t *zfsvfs = ZTOZSB(zp);
uint64_t acl_count;
int size;
int error;
ASSERT(MUTEX_HELD(&zp->z_acl_lock));
if (zp->z_is_sa) {
if ((error = sa_size(zp->z_sa_hdl, SA_ZPL_DACL_ACES(zfsvfs),
&size)) != 0)
return (error);
*aclsize = size;
if ((error = sa_lookup(zp->z_sa_hdl, SA_ZPL_DACL_COUNT(zfsvfs),
&acl_count, sizeof (acl_count))) != 0)
return (error);
*aclcount = acl_count;
} else {
if ((error = sa_lookup(zp->z_sa_hdl, SA_ZPL_ZNODE_ACL(zfsvfs),
aclphys, sizeof (*aclphys))) != 0)
return (error);
if (aclphys->z_acl_version == ZFS_ACL_VERSION_INITIAL) {
*aclsize = ZFS_ACL_SIZE(aclphys->z_acl_size);
*aclcount = aclphys->z_acl_size;
} else {
*aclsize = aclphys->z_acl_size;
*aclcount = aclphys->z_acl_count;
}
}
return (0);
}
int
zfs_znode_acl_version(znode_t *zp)
{
zfs_acl_phys_t acl_phys;
if (zp->z_is_sa)
return (ZFS_ACL_VERSION_FUID);
else {
int error;
/*
* Need to deal with a potential
* race where zfs_sa_upgrade could cause
* z_isa_sa to change.
*
* If the lookup fails then the state of z_is_sa should have
* changed.
*/
if ((error = sa_lookup(zp->z_sa_hdl,
Prototype/structure update for Linux I appologize in advance why to many things ended up in this commit. When it could be seperated in to a whole series of commits teasing that all apart now would take considerable time and I'm not sure there's much merrit in it. As such I'll just summerize the intent of the changes which are all (or partly) in this commit. Broadly the intent is to remove as much Solaris specific code as possible and replace it with native Linux equivilants. More specifically: 1) Replace all instances of zfsvfs_t with zfs_sb_t. While the type is largely the same calling it private super block data rather than a zfsvfs is more consistent with how Linux names this. While non critical it makes the code easier to read when your thinking in Linux friendly VFS terms. 2) Replace vnode_t with struct inode. The Linux VFS doesn't have the notion of a vnode and there's absolutely no good reason to create one. There are in fact several good reasons to remove it. It just adds overhead on Linux if we were to manage one, it conplicates the code, and it likely will lead to bugs so there's a good change it will be out of date. The code has been updated to remove all need for this type. 3) Replace all vtype_t's with umode types. Along with this shift all uses of types to mode bits. The Solaris code would pass a vtype which is redundant with the Linux mode. Just update all the code to use the Linux mode macros and remove this redundancy. 4) Remove using of vn_* helpers and replace where needed with inode helpers. The big example here is creating iput_aync to replace vn_rele_async. Other vn helpers will be addressed as needed but they should be be emulated. They are a Solaris VFS'ism and should simply be replaced with Linux equivilants. 5) Update znode alloc/free code. Under Linux it's common to embed the inode specific data with the inode itself. This removes the need for an extra memory allocation. In zfs this information is called a znode and it now embeds the inode with it. Allocators have been updated accordingly. 6) Minimal integration with the vfs flags for setting up the super block and handling mount options has been added this code will need to be refined but functionally it's all there. This will be the first and last of these to large to review commits.
2011-02-08 22:16:06 +03:00
SA_ZPL_ZNODE_ACL(ZTOZSB(zp)),
&acl_phys, sizeof (acl_phys))) == 0)
return (acl_phys.z_acl_version);
else {
/*
* After upgrade SA_ZPL_ZNODE_ACL should have
* been removed.
*/
VERIFY(zp->z_is_sa && error == ENOENT);
return (ZFS_ACL_VERSION_FUID);
}
}
}
2008-11-20 23:01:55 +03:00
static int
zfs_acl_version(int version)
{
if (version < ZPL_VERSION_FUID)
return (ZFS_ACL_VERSION_INITIAL);
else
return (ZFS_ACL_VERSION_FUID);
}
static int
zfs_acl_version_zp(znode_t *zp)
{
Prototype/structure update for Linux I appologize in advance why to many things ended up in this commit. When it could be seperated in to a whole series of commits teasing that all apart now would take considerable time and I'm not sure there's much merrit in it. As such I'll just summerize the intent of the changes which are all (or partly) in this commit. Broadly the intent is to remove as much Solaris specific code as possible and replace it with native Linux equivilants. More specifically: 1) Replace all instances of zfsvfs_t with zfs_sb_t. While the type is largely the same calling it private super block data rather than a zfsvfs is more consistent with how Linux names this. While non critical it makes the code easier to read when your thinking in Linux friendly VFS terms. 2) Replace vnode_t with struct inode. The Linux VFS doesn't have the notion of a vnode and there's absolutely no good reason to create one. There are in fact several good reasons to remove it. It just adds overhead on Linux if we were to manage one, it conplicates the code, and it likely will lead to bugs so there's a good change it will be out of date. The code has been updated to remove all need for this type. 3) Replace all vtype_t's with umode types. Along with this shift all uses of types to mode bits. The Solaris code would pass a vtype which is redundant with the Linux mode. Just update all the code to use the Linux mode macros and remove this redundancy. 4) Remove using of vn_* helpers and replace where needed with inode helpers. The big example here is creating iput_aync to replace vn_rele_async. Other vn helpers will be addressed as needed but they should be be emulated. They are a Solaris VFS'ism and should simply be replaced with Linux equivilants. 5) Update znode alloc/free code. Under Linux it's common to embed the inode specific data with the inode itself. This removes the need for an extra memory allocation. In zfs this information is called a znode and it now embeds the inode with it. Allocators have been updated accordingly. 6) Minimal integration with the vfs flags for setting up the super block and handling mount options has been added this code will need to be refined but functionally it's all there. This will be the first and last of these to large to review commits.
2011-02-08 22:16:06 +03:00
return (zfs_acl_version(ZTOZSB(zp)->z_version));
2008-11-20 23:01:55 +03:00
}
zfs_acl_t *
2008-11-20 23:01:55 +03:00
zfs_acl_alloc(int vers)
{
zfs_acl_t *aclp;
aclp = kmem_zalloc(sizeof (zfs_acl_t), KM_SLEEP);
2008-11-20 23:01:55 +03:00
list_create(&aclp->z_acl, sizeof (zfs_acl_node_t),
offsetof(zfs_acl_node_t, z_next));
aclp->z_version = vers;
if (vers == ZFS_ACL_VERSION_FUID)
aclp->z_ops = &zfs_acl_fuid_ops;
2008-11-20 23:01:55 +03:00
else
aclp->z_ops = &zfs_acl_v0_ops;
2008-11-20 23:01:55 +03:00
return (aclp);
}
zfs_acl_node_t *
2008-11-20 23:01:55 +03:00
zfs_acl_node_alloc(size_t bytes)
{
zfs_acl_node_t *aclnode;
aclnode = kmem_zalloc(sizeof (zfs_acl_node_t), KM_SLEEP);
2008-11-20 23:01:55 +03:00
if (bytes) {
aclnode->z_acldata = kmem_alloc(bytes, KM_SLEEP);
2008-11-20 23:01:55 +03:00
aclnode->z_allocdata = aclnode->z_acldata;
aclnode->z_allocsize = bytes;
aclnode->z_size = bytes;
}
return (aclnode);
}
static void
zfs_acl_node_free(zfs_acl_node_t *aclnode)
{
if (aclnode->z_allocsize)
kmem_free(aclnode->z_allocdata, aclnode->z_allocsize);
kmem_free(aclnode, sizeof (zfs_acl_node_t));
}
static void
zfs_acl_release_nodes(zfs_acl_t *aclp)
{
zfs_acl_node_t *aclnode;
while ((aclnode = list_head(&aclp->z_acl))) {
2008-11-20 23:01:55 +03:00
list_remove(&aclp->z_acl, aclnode);
zfs_acl_node_free(aclnode);
}
aclp->z_acl_count = 0;
aclp->z_acl_bytes = 0;
}
void
zfs_acl_free(zfs_acl_t *aclp)
{
zfs_acl_release_nodes(aclp);
list_destroy(&aclp->z_acl);
kmem_free(aclp, sizeof (zfs_acl_t));
}
static boolean_t
zfs_acl_valid_ace_type(uint_t type, uint_t flags)
2008-11-20 23:01:55 +03:00
{
uint16_t entry_type;
2008-11-20 23:01:55 +03:00
switch (type) {
case ALLOW:
case DENY:
case ACE_SYSTEM_AUDIT_ACE_TYPE:
case ACE_SYSTEM_ALARM_ACE_TYPE:
entry_type = flags & ACE_TYPE_FLAGS;
return (entry_type == ACE_OWNER ||
entry_type == OWNING_GROUP ||
entry_type == ACE_EVERYONE || entry_type == 0 ||
entry_type == ACE_IDENTIFIER_GROUP);
2008-11-20 23:01:55 +03:00
default:
if (type >= MIN_ACE_TYPE && type <= MAX_ACE_TYPE)
return (B_TRUE);
2008-11-20 23:01:55 +03:00
}
return (B_FALSE);
}
2008-11-20 23:01:55 +03:00
static boolean_t
Prototype/structure update for Linux I appologize in advance why to many things ended up in this commit. When it could be seperated in to a whole series of commits teasing that all apart now would take considerable time and I'm not sure there's much merrit in it. As such I'll just summerize the intent of the changes which are all (or partly) in this commit. Broadly the intent is to remove as much Solaris specific code as possible and replace it with native Linux equivilants. More specifically: 1) Replace all instances of zfsvfs_t with zfs_sb_t. While the type is largely the same calling it private super block data rather than a zfsvfs is more consistent with how Linux names this. While non critical it makes the code easier to read when your thinking in Linux friendly VFS terms. 2) Replace vnode_t with struct inode. The Linux VFS doesn't have the notion of a vnode and there's absolutely no good reason to create one. There are in fact several good reasons to remove it. It just adds overhead on Linux if we were to manage one, it conplicates the code, and it likely will lead to bugs so there's a good change it will be out of date. The code has been updated to remove all need for this type. 3) Replace all vtype_t's with umode types. Along with this shift all uses of types to mode bits. The Solaris code would pass a vtype which is redundant with the Linux mode. Just update all the code to use the Linux mode macros and remove this redundancy. 4) Remove using of vn_* helpers and replace where needed with inode helpers. The big example here is creating iput_aync to replace vn_rele_async. Other vn helpers will be addressed as needed but they should be be emulated. They are a Solaris VFS'ism and should simply be replaced with Linux equivilants. 5) Update znode alloc/free code. Under Linux it's common to embed the inode specific data with the inode itself. This removes the need for an extra memory allocation. In zfs this information is called a znode and it now embeds the inode with it. Allocators have been updated accordingly. 6) Minimal integration with the vfs flags for setting up the super block and handling mount options has been added this code will need to be refined but functionally it's all there. This will be the first and last of these to large to review commits.
2011-02-08 22:16:06 +03:00
zfs_ace_valid(umode_t obj_mode, zfs_acl_t *aclp, uint16_t type, uint16_t iflags)
{
2008-11-20 23:01:55 +03:00
/*
* first check type of entry
2008-11-20 23:01:55 +03:00
*/
if (!zfs_acl_valid_ace_type(type, iflags))
2008-11-20 23:01:55 +03:00
return (B_FALSE);
switch (type) {
case ACE_ACCESS_ALLOWED_OBJECT_ACE_TYPE:
case ACE_ACCESS_DENIED_OBJECT_ACE_TYPE:
case ACE_SYSTEM_AUDIT_OBJECT_ACE_TYPE:
case ACE_SYSTEM_ALARM_OBJECT_ACE_TYPE:
if (aclp->z_version < ZFS_ACL_VERSION_FUID)
return (B_FALSE);
aclp->z_hints |= ZFS_ACL_OBJ_ACE;
}
/*
* next check inheritance level flags
2008-11-20 23:01:55 +03:00
*/
Prototype/structure update for Linux I appologize in advance why to many things ended up in this commit. When it could be seperated in to a whole series of commits teasing that all apart now would take considerable time and I'm not sure there's much merrit in it. As such I'll just summerize the intent of the changes which are all (or partly) in this commit. Broadly the intent is to remove as much Solaris specific code as possible and replace it with native Linux equivilants. More specifically: 1) Replace all instances of zfsvfs_t with zfs_sb_t. While the type is largely the same calling it private super block data rather than a zfsvfs is more consistent with how Linux names this. While non critical it makes the code easier to read when your thinking in Linux friendly VFS terms. 2) Replace vnode_t with struct inode. The Linux VFS doesn't have the notion of a vnode and there's absolutely no good reason to create one. There are in fact several good reasons to remove it. It just adds overhead on Linux if we were to manage one, it conplicates the code, and it likely will lead to bugs so there's a good change it will be out of date. The code has been updated to remove all need for this type. 3) Replace all vtype_t's with umode types. Along with this shift all uses of types to mode bits. The Solaris code would pass a vtype which is redundant with the Linux mode. Just update all the code to use the Linux mode macros and remove this redundancy. 4) Remove using of vn_* helpers and replace where needed with inode helpers. The big example here is creating iput_aync to replace vn_rele_async. Other vn helpers will be addressed as needed but they should be be emulated. They are a Solaris VFS'ism and should simply be replaced with Linux equivilants. 5) Update znode alloc/free code. Under Linux it's common to embed the inode specific data with the inode itself. This removes the need for an extra memory allocation. In zfs this information is called a znode and it now embeds the inode with it. Allocators have been updated accordingly. 6) Minimal integration with the vfs flags for setting up the super block and handling mount options has been added this code will need to be refined but functionally it's all there. This will be the first and last of these to large to review commits.
2011-02-08 22:16:06 +03:00
if (S_ISDIR(obj_mode) &&
(iflags & (ACE_FILE_INHERIT_ACE|ACE_DIRECTORY_INHERIT_ACE)))
2008-11-20 23:01:55 +03:00
aclp->z_hints |= ZFS_INHERIT_ACE;
if (iflags & (ACE_INHERIT_ONLY_ACE|ACE_NO_PROPAGATE_INHERIT_ACE)) {
if ((iflags & (ACE_FILE_INHERIT_ACE|
ACE_DIRECTORY_INHERIT_ACE)) == 0) {
return (B_FALSE);
}
}
return (B_TRUE);
}
static void *
zfs_acl_next_ace(zfs_acl_t *aclp, void *start, uint64_t *who,
uint32_t *access_mask, uint16_t *iflags, uint16_t *type)
{
zfs_acl_node_t *aclnode;
ASSERT(aclp);
2008-11-20 23:01:55 +03:00
if (start == NULL) {
aclnode = list_head(&aclp->z_acl);
if (aclnode == NULL)
return (NULL);
aclp->z_next_ace = aclnode->z_acldata;
aclp->z_curr_node = aclnode;
aclnode->z_ace_idx = 0;
}
aclnode = aclp->z_curr_node;
if (aclnode == NULL)
return (NULL);
if (aclnode->z_ace_idx >= aclnode->z_ace_count) {
aclnode = list_next(&aclp->z_acl, aclnode);
if (aclnode == NULL)
return (NULL);
else {
aclp->z_curr_node = aclnode;
aclnode->z_ace_idx = 0;
aclp->z_next_ace = aclnode->z_acldata;
}
}
if (aclnode->z_ace_idx < aclnode->z_ace_count) {
void *acep = aclp->z_next_ace;
size_t ace_size;
/*
* Make sure we don't overstep our bounds
*/
ace_size = aclp->z_ops->ace_size(acep);
if (((caddr_t)acep + ace_size) >
((caddr_t)aclnode->z_acldata + aclnode->z_size)) {
return (NULL);
}
*iflags = aclp->z_ops->ace_flags_get(acep);
*type = aclp->z_ops->ace_type_get(acep);
*access_mask = aclp->z_ops->ace_mask_get(acep);
*who = aclp->z_ops->ace_who_get(acep);
aclp->z_next_ace = (caddr_t)aclp->z_next_ace + ace_size;
2008-11-20 23:01:55 +03:00
aclnode->z_ace_idx++;
2008-11-20 23:01:55 +03:00
return ((void *)acep);
}
return (NULL);
}
static uint64_t
zfs_ace_walk(void *datap, uint64_t cookie, int aclcnt,
uint16_t *flags, uint16_t *type, uint32_t *mask)
{
(void) aclcnt;
2008-11-20 23:01:55 +03:00
zfs_acl_t *aclp = datap;
zfs_ace_hdr_t *acep = (zfs_ace_hdr_t *)(uintptr_t)cookie;
uint64_t who;
acep = zfs_acl_next_ace(aclp, acep, &who, mask,
flags, type);
return ((uint64_t)(uintptr_t)acep);
}
/*
* Copy ACE to internal ZFS format.
* While processing the ACL each ACE will be validated for correctness.
* ACE FUIDs will be created later.
*/
static int
zfs_copy_ace_2_fuid(zfsvfs_t *zfsvfs, umode_t obj_mode, zfs_acl_t *aclp,
void *datap, zfs_ace_t *z_acl, uint64_t aclcnt, size_t *size,
2009-07-03 02:44:48 +04:00
zfs_fuid_info_t **fuidp, cred_t *cr)
2008-11-20 23:01:55 +03:00
{
int i;
uint16_t entry_type;
zfs_ace_t *aceptr = z_acl;
ace_t *acep = datap;
zfs_object_ace_t *zobjacep;
ace_object_t *aceobjp;
for (i = 0; i != aclcnt; i++) {
aceptr->z_hdr.z_access_mask = acep->a_access_mask;
aceptr->z_hdr.z_flags = acep->a_flags;
aceptr->z_hdr.z_type = acep->a_type;
entry_type = aceptr->z_hdr.z_flags & ACE_TYPE_FLAGS;
if (entry_type != ACE_OWNER && entry_type != OWNING_GROUP &&
entry_type != ACE_EVERYONE) {
aceptr->z_fuid = zfs_fuid_create(zfsvfs, acep->a_who,
2009-07-03 02:44:48 +04:00
cr, (entry_type == 0) ?
ZFS_ACE_USER : ZFS_ACE_GROUP, fuidp);
2008-11-20 23:01:55 +03:00
}
/*
* Make sure ACE is valid
*/
Prototype/structure update for Linux I appologize in advance why to many things ended up in this commit. When it could be seperated in to a whole series of commits teasing that all apart now would take considerable time and I'm not sure there's much merrit in it. As such I'll just summerize the intent of the changes which are all (or partly) in this commit. Broadly the intent is to remove as much Solaris specific code as possible and replace it with native Linux equivilants. More specifically: 1) Replace all instances of zfsvfs_t with zfs_sb_t. While the type is largely the same calling it private super block data rather than a zfsvfs is more consistent with how Linux names this. While non critical it makes the code easier to read when your thinking in Linux friendly VFS terms. 2) Replace vnode_t with struct inode. The Linux VFS doesn't have the notion of a vnode and there's absolutely no good reason to create one. There are in fact several good reasons to remove it. It just adds overhead on Linux if we were to manage one, it conplicates the code, and it likely will lead to bugs so there's a good change it will be out of date. The code has been updated to remove all need for this type. 3) Replace all vtype_t's with umode types. Along with this shift all uses of types to mode bits. The Solaris code would pass a vtype which is redundant with the Linux mode. Just update all the code to use the Linux mode macros and remove this redundancy. 4) Remove using of vn_* helpers and replace where needed with inode helpers. The big example here is creating iput_aync to replace vn_rele_async. Other vn helpers will be addressed as needed but they should be be emulated. They are a Solaris VFS'ism and should simply be replaced with Linux equivilants. 5) Update znode alloc/free code. Under Linux it's common to embed the inode specific data with the inode itself. This removes the need for an extra memory allocation. In zfs this information is called a znode and it now embeds the inode with it. Allocators have been updated accordingly. 6) Minimal integration with the vfs flags for setting up the super block and handling mount options has been added this code will need to be refined but functionally it's all there. This will be the first and last of these to large to review commits.
2011-02-08 22:16:06 +03:00
if (zfs_ace_valid(obj_mode, aclp, aceptr->z_hdr.z_type,
2008-11-20 23:01:55 +03:00
aceptr->z_hdr.z_flags) != B_TRUE)
return (SET_ERROR(EINVAL));
2008-11-20 23:01:55 +03:00
switch (acep->a_type) {
case ACE_ACCESS_ALLOWED_OBJECT_ACE_TYPE:
case ACE_ACCESS_DENIED_OBJECT_ACE_TYPE:
case ACE_SYSTEM_AUDIT_OBJECT_ACE_TYPE:
case ACE_SYSTEM_ALARM_OBJECT_ACE_TYPE:
zobjacep = (zfs_object_ace_t *)aceptr;
aceobjp = (ace_object_t *)acep;
memcpy(zobjacep->z_object_type, aceobjp->a_obj_type,
2008-11-20 23:01:55 +03:00
sizeof (aceobjp->a_obj_type));
memcpy(zobjacep->z_inherit_type,
aceobjp->a_inherit_obj_type,
2008-11-20 23:01:55 +03:00
sizeof (aceobjp->a_inherit_obj_type));
acep = (ace_t *)((caddr_t)acep + sizeof (ace_object_t));
break;
default:
acep = (ace_t *)((caddr_t)acep + sizeof (ace_t));
}
aceptr = (zfs_ace_t *)((caddr_t)aceptr +
aclp->z_ops->ace_size(aceptr));
2008-11-20 23:01:55 +03:00
}
*size = (caddr_t)aceptr - (caddr_t)z_acl;
return (0);
}
/*
* Copy ZFS ACEs to fixed size ace_t layout
*/
static void
zfs_copy_fuid_2_ace(zfsvfs_t *zfsvfs, zfs_acl_t *aclp, cred_t *cr,
2008-11-20 23:01:55 +03:00
void *datap, int filter)
{
uint64_t who;
uint32_t access_mask;
uint16_t iflags, type;
zfs_ace_hdr_t *zacep = NULL;
ace_t *acep = datap;
ace_object_t *objacep;
zfs_object_ace_t *zobjacep;
size_t ace_size;
uint16_t entry_type;
while ((zacep = zfs_acl_next_ace(aclp, zacep,
&who, &access_mask, &iflags, &type))) {
2008-11-20 23:01:55 +03:00
switch (type) {
case ACE_ACCESS_ALLOWED_OBJECT_ACE_TYPE:
case ACE_ACCESS_DENIED_OBJECT_ACE_TYPE:
case ACE_SYSTEM_AUDIT_OBJECT_ACE_TYPE:
case ACE_SYSTEM_ALARM_OBJECT_ACE_TYPE:
if (filter) {
continue;
}
zobjacep = (zfs_object_ace_t *)zacep;
objacep = (ace_object_t *)acep;
memcpy(objacep->a_obj_type,
zobjacep->z_object_type,
2008-11-20 23:01:55 +03:00
sizeof (zobjacep->z_object_type));
memcpy(objacep->a_inherit_obj_type,
zobjacep->z_inherit_type,
2008-11-20 23:01:55 +03:00
sizeof (zobjacep->z_inherit_type));
ace_size = sizeof (ace_object_t);
break;
default:
ace_size = sizeof (ace_t);
break;
}
entry_type = (iflags & ACE_TYPE_FLAGS);
if ((entry_type != ACE_OWNER &&
entry_type != OWNING_GROUP &&
2008-11-20 23:01:55 +03:00
entry_type != ACE_EVERYONE)) {
acep->a_who = zfs_fuid_map_id(zfsvfs, who,
2008-11-20 23:01:55 +03:00
cr, (entry_type & ACE_IDENTIFIER_GROUP) ?
ZFS_ACE_GROUP : ZFS_ACE_USER);
} else {
acep->a_who = (uid_t)(int64_t)who;
}
acep->a_access_mask = access_mask;
acep->a_flags = iflags;
acep->a_type = type;
acep = (ace_t *)((caddr_t)acep + ace_size);
}
}
static int
Prototype/structure update for Linux I appologize in advance why to many things ended up in this commit. When it could be seperated in to a whole series of commits teasing that all apart now would take considerable time and I'm not sure there's much merrit in it. As such I'll just summerize the intent of the changes which are all (or partly) in this commit. Broadly the intent is to remove as much Solaris specific code as possible and replace it with native Linux equivilants. More specifically: 1) Replace all instances of zfsvfs_t with zfs_sb_t. While the type is largely the same calling it private super block data rather than a zfsvfs is more consistent with how Linux names this. While non critical it makes the code easier to read when your thinking in Linux friendly VFS terms. 2) Replace vnode_t with struct inode. The Linux VFS doesn't have the notion of a vnode and there's absolutely no good reason to create one. There are in fact several good reasons to remove it. It just adds overhead on Linux if we were to manage one, it conplicates the code, and it likely will lead to bugs so there's a good change it will be out of date. The code has been updated to remove all need for this type. 3) Replace all vtype_t's with umode types. Along with this shift all uses of types to mode bits. The Solaris code would pass a vtype which is redundant with the Linux mode. Just update all the code to use the Linux mode macros and remove this redundancy. 4) Remove using of vn_* helpers and replace where needed with inode helpers. The big example here is creating iput_aync to replace vn_rele_async. Other vn helpers will be addressed as needed but they should be be emulated. They are a Solaris VFS'ism and should simply be replaced with Linux equivilants. 5) Update znode alloc/free code. Under Linux it's common to embed the inode specific data with the inode itself. This removes the need for an extra memory allocation. In zfs this information is called a znode and it now embeds the inode with it. Allocators have been updated accordingly. 6) Minimal integration with the vfs flags for setting up the super block and handling mount options has been added this code will need to be refined but functionally it's all there. This will be the first and last of these to large to review commits.
2011-02-08 22:16:06 +03:00
zfs_copy_ace_2_oldace(umode_t obj_mode, zfs_acl_t *aclp, ace_t *acep,
2008-11-20 23:01:55 +03:00
zfs_oldace_t *z_acl, int aclcnt, size_t *size)
{
int i;
zfs_oldace_t *aceptr = z_acl;
for (i = 0; i != aclcnt; i++, aceptr++) {
aceptr->z_access_mask = acep[i].a_access_mask;
aceptr->z_type = acep[i].a_type;
aceptr->z_flags = acep[i].a_flags;
aceptr->z_fuid = acep[i].a_who;
/*
* Make sure ACE is valid
*/
Prototype/structure update for Linux I appologize in advance why to many things ended up in this commit. When it could be seperated in to a whole series of commits teasing that all apart now would take considerable time and I'm not sure there's much merrit in it. As such I'll just summerize the intent of the changes which are all (or partly) in this commit. Broadly the intent is to remove as much Solaris specific code as possible and replace it with native Linux equivilants. More specifically: 1) Replace all instances of zfsvfs_t with zfs_sb_t. While the type is largely the same calling it private super block data rather than a zfsvfs is more consistent with how Linux names this. While non critical it makes the code easier to read when your thinking in Linux friendly VFS terms. 2) Replace vnode_t with struct inode. The Linux VFS doesn't have the notion of a vnode and there's absolutely no good reason to create one. There are in fact several good reasons to remove it. It just adds overhead on Linux if we were to manage one, it conplicates the code, and it likely will lead to bugs so there's a good change it will be out of date. The code has been updated to remove all need for this type. 3) Replace all vtype_t's with umode types. Along with this shift all uses of types to mode bits. The Solaris code would pass a vtype which is redundant with the Linux mode. Just update all the code to use the Linux mode macros and remove this redundancy. 4) Remove using of vn_* helpers and replace where needed with inode helpers. The big example here is creating iput_aync to replace vn_rele_async. Other vn helpers will be addressed as needed but they should be be emulated. They are a Solaris VFS'ism and should simply be replaced with Linux equivilants. 5) Update znode alloc/free code. Under Linux it's common to embed the inode specific data with the inode itself. This removes the need for an extra memory allocation. In zfs this information is called a znode and it now embeds the inode with it. Allocators have been updated accordingly. 6) Minimal integration with the vfs flags for setting up the super block and handling mount options has been added this code will need to be refined but functionally it's all there. This will be the first and last of these to large to review commits.
2011-02-08 22:16:06 +03:00
if (zfs_ace_valid(obj_mode, aclp, aceptr->z_type,
2008-11-20 23:01:55 +03:00
aceptr->z_flags) != B_TRUE)
return (SET_ERROR(EINVAL));
2008-11-20 23:01:55 +03:00
}
*size = (caddr_t)aceptr - (caddr_t)z_acl;
return (0);
}
/*
* convert old ACL format to new
*/
void
2009-07-03 02:44:48 +04:00
zfs_acl_xform(znode_t *zp, zfs_acl_t *aclp, cred_t *cr)
2008-11-20 23:01:55 +03:00
{
zfs_oldace_t *oldaclp;
int i;
uint16_t type, iflags;
uint32_t access_mask;
uint64_t who;
void *cookie = NULL;
zfs_acl_node_t *newaclnode;
ASSERT(aclp->z_version == ZFS_ACL_VERSION_INITIAL);
/*
* First create the ACE in a contiguous piece of memory
* for zfs_copy_ace_2_fuid().
*
* We only convert an ACL once, so this won't happen
* every time.
2008-11-20 23:01:55 +03:00
*/
oldaclp = kmem_alloc(sizeof (zfs_oldace_t) * aclp->z_acl_count,
KM_SLEEP);
i = 0;
while ((cookie = zfs_acl_next_ace(aclp, cookie, &who,
&access_mask, &iflags, &type))) {
2008-11-20 23:01:55 +03:00
oldaclp[i].z_flags = iflags;
oldaclp[i].z_type = type;
oldaclp[i].z_fuid = who;
oldaclp[i++].z_access_mask = access_mask;
}
newaclnode = zfs_acl_node_alloc(aclp->z_acl_count *
sizeof (zfs_object_ace_t));
aclp->z_ops = &zfs_acl_fuid_ops;
Prototype/structure update for Linux I appologize in advance why to many things ended up in this commit. When it could be seperated in to a whole series of commits teasing that all apart now would take considerable time and I'm not sure there's much merrit in it. As such I'll just summerize the intent of the changes which are all (or partly) in this commit. Broadly the intent is to remove as much Solaris specific code as possible and replace it with native Linux equivilants. More specifically: 1) Replace all instances of zfsvfs_t with zfs_sb_t. While the type is largely the same calling it private super block data rather than a zfsvfs is more consistent with how Linux names this. While non critical it makes the code easier to read when your thinking in Linux friendly VFS terms. 2) Replace vnode_t with struct inode. The Linux VFS doesn't have the notion of a vnode and there's absolutely no good reason to create one. There are in fact several good reasons to remove it. It just adds overhead on Linux if we were to manage one, it conplicates the code, and it likely will lead to bugs so there's a good change it will be out of date. The code has been updated to remove all need for this type. 3) Replace all vtype_t's with umode types. Along with this shift all uses of types to mode bits. The Solaris code would pass a vtype which is redundant with the Linux mode. Just update all the code to use the Linux mode macros and remove this redundancy. 4) Remove using of vn_* helpers and replace where needed with inode helpers. The big example here is creating iput_aync to replace vn_rele_async. Other vn helpers will be addressed as needed but they should be be emulated. They are a Solaris VFS'ism and should simply be replaced with Linux equivilants. 5) Update znode alloc/free code. Under Linux it's common to embed the inode specific data with the inode itself. This removes the need for an extra memory allocation. In zfs this information is called a znode and it now embeds the inode with it. Allocators have been updated accordingly. 6) Minimal integration with the vfs flags for setting up the super block and handling mount options has been added this code will need to be refined but functionally it's all there. This will be the first and last of these to large to review commits.
2011-02-08 22:16:06 +03:00
VERIFY(zfs_copy_ace_2_fuid(ZTOZSB(zp), ZTOI(zp)->i_mode,
aclp, oldaclp, newaclnode->z_acldata, aclp->z_acl_count,
2009-07-03 02:44:48 +04:00
&newaclnode->z_size, NULL, cr) == 0);
2008-11-20 23:01:55 +03:00
newaclnode->z_ace_count = aclp->z_acl_count;
aclp->z_version = ZFS_ACL_VERSION;
kmem_free(oldaclp, aclp->z_acl_count * sizeof (zfs_oldace_t));
/*
* Release all previous ACL nodes
*/
zfs_acl_release_nodes(aclp);
list_insert_head(&aclp->z_acl, newaclnode);
aclp->z_acl_bytes = newaclnode->z_size;
aclp->z_acl_count = newaclnode->z_ace_count;
}
/*
* Convert unix access mask to v4 access mask
*/
static uint32_t
zfs_unix_to_v4(uint32_t access_mask)
{
uint32_t new_mask = 0;
if (access_mask & S_IXOTH)
new_mask |= ACE_EXECUTE;
if (access_mask & S_IWOTH)
new_mask |= ACE_WRITE_DATA;
if (access_mask & S_IROTH)
new_mask |= ACE_READ_DATA;
return (new_mask);
}
static int
zfs_v4_to_unix(uint32_t access_mask, int *unmapped)
{
int new_mask = 0;
*unmapped = access_mask &
(ACE_WRITE_OWNER | ACE_WRITE_ACL | ACE_DELETE);
if (access_mask & WRITE_MASK)
new_mask |= S_IWOTH;
if (access_mask & ACE_READ_DATA)
new_mask |= S_IROTH;
if (access_mask & ACE_EXECUTE)
new_mask |= S_IXOTH;
return (new_mask);
}
2008-11-20 23:01:55 +03:00
static void
zfs_set_ace(zfs_acl_t *aclp, void *acep, uint32_t access_mask,
uint16_t access_type, uint64_t fuid, uint16_t entry_type)
{
uint16_t type = entry_type & ACE_TYPE_FLAGS;
aclp->z_ops->ace_mask_set(acep, access_mask);
aclp->z_ops->ace_type_set(acep, access_type);
aclp->z_ops->ace_flags_set(acep, entry_type);
if ((type != ACE_OWNER && type != OWNING_GROUP &&
2008-11-20 23:01:55 +03:00
type != ACE_EVERYONE))
aclp->z_ops->ace_who_set(acep, fuid);
2008-11-20 23:01:55 +03:00
}
/*
* Determine mode of file based on ACL.
*/
uint64_t
zfs_mode_compute(uint64_t fmode, zfs_acl_t *aclp,
uint64_t *pflags, uint64_t fuid, uint64_t fgid)
2008-11-20 23:01:55 +03:00
{
int entry_type;
mode_t mode;
mode_t seen = 0;
zfs_ace_hdr_t *acep = NULL;
uint64_t who;
uint16_t iflags, type;
uint32_t access_mask;
2009-08-18 22:43:27 +04:00
boolean_t an_exec_denied = B_FALSE;
2008-11-20 23:01:55 +03:00
mode = (fmode & (S_IFMT | S_ISUID | S_ISGID | S_ISVTX));
2008-11-20 23:01:55 +03:00
while ((acep = zfs_acl_next_ace(aclp, acep, &who,
&access_mask, &iflags, &type))) {
2008-11-20 23:01:55 +03:00
if (!zfs_acl_valid_ace_type(type, iflags))
2008-11-20 23:01:55 +03:00
continue;
entry_type = (iflags & ACE_TYPE_FLAGS);
/*
* Skip over any inherit_only ACEs
*/
if (iflags & ACE_INHERIT_ONLY_ACE)
continue;
if (entry_type == ACE_OWNER || (entry_type == 0 &&
who == fuid)) {
2008-11-20 23:01:55 +03:00
if ((access_mask & ACE_READ_DATA) &&
(!(seen & S_IRUSR))) {
seen |= S_IRUSR;
if (type == ALLOW) {
mode |= S_IRUSR;
}
}
if ((access_mask & ACE_WRITE_DATA) &&
(!(seen & S_IWUSR))) {
seen |= S_IWUSR;
if (type == ALLOW) {
mode |= S_IWUSR;
}
}
if ((access_mask & ACE_EXECUTE) &&
(!(seen & S_IXUSR))) {
seen |= S_IXUSR;
if (type == ALLOW) {
mode |= S_IXUSR;
}
}
} else if (entry_type == OWNING_GROUP ||
(entry_type == ACE_IDENTIFIER_GROUP && who == fgid)) {
2008-11-20 23:01:55 +03:00
if ((access_mask & ACE_READ_DATA) &&
(!(seen & S_IRGRP))) {
seen |= S_IRGRP;
if (type == ALLOW) {
mode |= S_IRGRP;
}
}
if ((access_mask & ACE_WRITE_DATA) &&
(!(seen & S_IWGRP))) {
seen |= S_IWGRP;
if (type == ALLOW) {
mode |= S_IWGRP;
}
}
if ((access_mask & ACE_EXECUTE) &&
(!(seen & S_IXGRP))) {
seen |= S_IXGRP;
if (type == ALLOW) {
mode |= S_IXGRP;
}
}
} else if (entry_type == ACE_EVERYONE) {
if ((access_mask & ACE_READ_DATA)) {
if (!(seen & S_IRUSR)) {
seen |= S_IRUSR;
if (type == ALLOW) {
mode |= S_IRUSR;
}
}
if (!(seen & S_IRGRP)) {
seen |= S_IRGRP;
if (type == ALLOW) {
mode |= S_IRGRP;
}
}
if (!(seen & S_IROTH)) {
seen |= S_IROTH;
if (type == ALLOW) {
mode |= S_IROTH;
}
}
}
if ((access_mask & ACE_WRITE_DATA)) {
if (!(seen & S_IWUSR)) {
seen |= S_IWUSR;
if (type == ALLOW) {
mode |= S_IWUSR;
}
}
if (!(seen & S_IWGRP)) {
seen |= S_IWGRP;
if (type == ALLOW) {
mode |= S_IWGRP;
}
}
if (!(seen & S_IWOTH)) {
seen |= S_IWOTH;
if (type == ALLOW) {
mode |= S_IWOTH;
}
}
}
if ((access_mask & ACE_EXECUTE)) {
if (!(seen & S_IXUSR)) {
seen |= S_IXUSR;
if (type == ALLOW) {
mode |= S_IXUSR;
}
}
if (!(seen & S_IXGRP)) {
seen |= S_IXGRP;
if (type == ALLOW) {
mode |= S_IXGRP;
}
}
if (!(seen & S_IXOTH)) {
seen |= S_IXOTH;
if (type == ALLOW) {
mode |= S_IXOTH;
}
}
}
2009-08-18 22:43:27 +04:00
} else {
/*
* Only care if this IDENTIFIER_GROUP or
* USER ACE denies execute access to someone,
* mode is not affected
*/
if ((access_mask & ACE_EXECUTE) && type == DENY)
an_exec_denied = B_TRUE;
2008-11-20 23:01:55 +03:00
}
}
2009-08-18 22:43:27 +04:00
/*
* Failure to allow is effectively a deny, so execute permission
* is denied if it was never mentioned or if we explicitly
* weren't allowed it.
*/
if (!an_exec_denied &&
((seen & ALL_MODE_EXECS) != ALL_MODE_EXECS ||
(mode & ALL_MODE_EXECS) != ALL_MODE_EXECS))
an_exec_denied = B_TRUE;
if (an_exec_denied)
*pflags &= ~ZFS_NO_EXECS_DENIED;
2009-08-18 22:43:27 +04:00
else
*pflags |= ZFS_NO_EXECS_DENIED;
2009-08-18 22:43:27 +04:00
2008-11-20 23:01:55 +03:00
return (mode);
}
/*
2009-08-18 22:43:27 +04:00
* Read an external acl object. If the intent is to modify, always
* create a new acl and leave any cached acl in place.
2008-11-20 23:01:55 +03:00
*/
Project Quota on ZFS Project quota is a new ZFS system space/object usage accounting and enforcement mechanism. Similar as user/group quota, project quota is another dimension of system quota. It bases on the new object attribute - project ID. Project ID is a numerical value to indicate to which project an object belongs. An object only can belong to one project though you (the object owner or privileged user) can change the object project ID via 'chattr -p' or 'zfs project [-s] -p' explicitly. The object also can inherit the project ID from its parent when created if the parent has the project inherit flag (that can be set via 'chattr +P' or 'zfs project -s [-p]'). By accounting the spaces/objects belong to the same project, we can know how many spaces/objects used by the project. And if we set the upper limit then we can control the spaces/objects that are consumed by such project. It is useful when multiple groups and users cooperate for the same project, or a user/group needs to participate in multiple projects. Support the following commands and functionalities: zfs set projectquota@project zfs set projectobjquota@project zfs get projectquota@project zfs get projectobjquota@project zfs get projectused@project zfs get projectobjused@project zfs projectspace zfs allow projectquota zfs allow projectobjquota zfs allow projectused zfs allow projectobjused zfs unallow projectquota zfs unallow projectobjquota zfs unallow projectused zfs unallow projectobjused chattr +/-P chattr -p project_id lsattr -p This patch also supports tree quota based on the project quota via "zfs project" commands set as following: zfs project [-d|-r] <file|directory ...> zfs project -C [-k] [-r] <file|directory ...> zfs project -c [-0] [-d|-r] [-p id] <file|directory ...> zfs project [-p id] [-r] [-s] <file|directory ...> For "df [-i] $DIR" command, if we set INHERIT (project ID) flag on the $DIR, then the proejct [obj]quota and [obj]used values for the $DIR's project ID will be shown as the total/free (avail) resource. Keep the same behavior as EXT4/XFS does. Reviewed-by: Andreas Dilger <andreas.dilger@intel.com> Reviewed-by Ned Bass <bass6@llnl.gov> Reviewed-by: Matthew Ahrens <mahrens@delphix.com> Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov> Signed-off-by: Fan Yong <fan.yong@intel.com> TEST_ZIMPORT_POOLS="zol-0.6.1 zol-0.6.2 master" Change-Id: Ib4f0544602e03fb61fd46a849d7ba51a6005693c Closes #6290
2018-02-14 01:54:54 +03:00
int
zfs_acl_node_read(struct znode *zp, boolean_t have_lock, zfs_acl_t **aclpp,
boolean_t will_modify)
2008-11-20 23:01:55 +03:00
{
zfs_acl_t *aclp;
int aclsize = 0;
int acl_count = 0;
2008-11-20 23:01:55 +03:00
zfs_acl_node_t *aclnode;
zfs_acl_phys_t znode_acl;
int version;
int error;
boolean_t drop_lock = B_FALSE;
2008-11-20 23:01:55 +03:00
ASSERT(MUTEX_HELD(&zp->z_acl_lock));
2009-08-18 22:43:27 +04:00
if (zp->z_acl_cached && !will_modify) {
*aclpp = zp->z_acl_cached;
return (0);
}
/*
* close race where znode could be upgrade while trying to
* read the znode attributes.
*
* But this could only happen if the file isn't already an SA
* znode
*/
if (!zp->z_is_sa && !have_lock) {
mutex_enter(&zp->z_lock);
drop_lock = B_TRUE;
}
version = zfs_znode_acl_version(zp);
2008-11-20 23:01:55 +03:00
if ((error = zfs_acl_znode_info(zp, &aclsize,
&acl_count, &znode_acl)) != 0) {
goto done;
}
aclp = zfs_acl_alloc(version);
2008-11-20 23:01:55 +03:00
aclp->z_acl_count = acl_count;
aclp->z_acl_bytes = aclsize;
aclnode = zfs_acl_node_alloc(aclsize);
aclnode->z_ace_count = aclp->z_acl_count;
aclnode->z_size = aclsize;
if (!zp->z_is_sa) {
if (znode_acl.z_acl_extern_obj) {
Prototype/structure update for Linux I appologize in advance why to many things ended up in this commit. When it could be seperated in to a whole series of commits teasing that all apart now would take considerable time and I'm not sure there's much merrit in it. As such I'll just summerize the intent of the changes which are all (or partly) in this commit. Broadly the intent is to remove as much Solaris specific code as possible and replace it with native Linux equivilants. More specifically: 1) Replace all instances of zfsvfs_t with zfs_sb_t. While the type is largely the same calling it private super block data rather than a zfsvfs is more consistent with how Linux names this. While non critical it makes the code easier to read when your thinking in Linux friendly VFS terms. 2) Replace vnode_t with struct inode. The Linux VFS doesn't have the notion of a vnode and there's absolutely no good reason to create one. There are in fact several good reasons to remove it. It just adds overhead on Linux if we were to manage one, it conplicates the code, and it likely will lead to bugs so there's a good change it will be out of date. The code has been updated to remove all need for this type. 3) Replace all vtype_t's with umode types. Along with this shift all uses of types to mode bits. The Solaris code would pass a vtype which is redundant with the Linux mode. Just update all the code to use the Linux mode macros and remove this redundancy. 4) Remove using of vn_* helpers and replace where needed with inode helpers. The big example here is creating iput_aync to replace vn_rele_async. Other vn helpers will be addressed as needed but they should be be emulated. They are a Solaris VFS'ism and should simply be replaced with Linux equivilants. 5) Update znode alloc/free code. Under Linux it's common to embed the inode specific data with the inode itself. This removes the need for an extra memory allocation. In zfs this information is called a znode and it now embeds the inode with it. Allocators have been updated accordingly. 6) Minimal integration with the vfs flags for setting up the super block and handling mount options has been added this code will need to be refined but functionally it's all there. This will be the first and last of these to large to review commits.
2011-02-08 22:16:06 +03:00
error = dmu_read(ZTOZSB(zp)->z_os,
znode_acl.z_acl_extern_obj, 0, aclnode->z_size,
aclnode->z_acldata, DMU_READ_PREFETCH);
} else {
memcpy(aclnode->z_acldata, znode_acl.z_ace_data,
aclnode->z_size);
}
} else {
Prototype/structure update for Linux I appologize in advance why to many things ended up in this commit. When it could be seperated in to a whole series of commits teasing that all apart now would take considerable time and I'm not sure there's much merrit in it. As such I'll just summerize the intent of the changes which are all (or partly) in this commit. Broadly the intent is to remove as much Solaris specific code as possible and replace it with native Linux equivilants. More specifically: 1) Replace all instances of zfsvfs_t with zfs_sb_t. While the type is largely the same calling it private super block data rather than a zfsvfs is more consistent with how Linux names this. While non critical it makes the code easier to read when your thinking in Linux friendly VFS terms. 2) Replace vnode_t with struct inode. The Linux VFS doesn't have the notion of a vnode and there's absolutely no good reason to create one. There are in fact several good reasons to remove it. It just adds overhead on Linux if we were to manage one, it conplicates the code, and it likely will lead to bugs so there's a good change it will be out of date. The code has been updated to remove all need for this type. 3) Replace all vtype_t's with umode types. Along with this shift all uses of types to mode bits. The Solaris code would pass a vtype which is redundant with the Linux mode. Just update all the code to use the Linux mode macros and remove this redundancy. 4) Remove using of vn_* helpers and replace where needed with inode helpers. The big example here is creating iput_aync to replace vn_rele_async. Other vn helpers will be addressed as needed but they should be be emulated. They are a Solaris VFS'ism and should simply be replaced with Linux equivilants. 5) Update znode alloc/free code. Under Linux it's common to embed the inode specific data with the inode itself. This removes the need for an extra memory allocation. In zfs this information is called a znode and it now embeds the inode with it. Allocators have been updated accordingly. 6) Minimal integration with the vfs flags for setting up the super block and handling mount options has been added this code will need to be refined but functionally it's all there. This will be the first and last of these to large to review commits.
2011-02-08 22:16:06 +03:00
error = sa_lookup(zp->z_sa_hdl, SA_ZPL_DACL_ACES(ZTOZSB(zp)),
aclnode->z_acldata, aclnode->z_size);
}
2008-11-20 23:01:55 +03:00
if (error != 0) {
zfs_acl_free(aclp);
zfs_acl_node_free(aclnode);
/* convert checksum errors into IO errors */
if (error == ECKSUM)
error = SET_ERROR(EIO);
goto done;
2008-11-20 23:01:55 +03:00
}
list_insert_head(&aclp->z_acl, aclnode);
2008-11-20 23:01:55 +03:00
*aclpp = aclp;
2009-08-18 22:43:27 +04:00
if (!will_modify)
zp->z_acl_cached = aclp;
done:
if (drop_lock)
mutex_exit(&zp->z_lock);
return (error);
2008-11-20 23:01:55 +03:00
}
void
zfs_acl_data_locator(void **dataptr, uint32_t *length, uint32_t buflen,
boolean_t start, void *userdata)
{
(void) buflen;
zfs_acl_locator_cb_t *cb = (zfs_acl_locator_cb_t *)userdata;
if (start) {
cb->cb_acl_node = list_head(&cb->cb_aclp->z_acl);
} else {
cb->cb_acl_node = list_next(&cb->cb_aclp->z_acl,
cb->cb_acl_node);
}
*dataptr = cb->cb_acl_node->z_acldata;
*length = cb->cb_acl_node->z_size;
}
int
zfs_acl_chown_setattr(znode_t *zp)
{
int error;
zfs_acl_t *aclp;
if (ZTOZSB(zp)->z_acl_type == ZFS_ACLTYPE_POSIX)
return (0);
ASSERT(MUTEX_HELD(&zp->z_lock));
ASSERT(MUTEX_HELD(&zp->z_acl_lock));
error = zfs_acl_node_read(zp, B_TRUE, &aclp, B_FALSE);
if (error == 0 && aclp->z_acl_count > 0)
zp->z_mode = ZTOI(zp)->i_mode =
zfs_mode_compute(zp->z_mode, aclp,
&zp->z_pflags, KUID_TO_SUID(ZTOI(zp)->i_uid),
KGID_TO_SGID(ZTOI(zp)->i_gid));
/*
* Some ZFS implementations (ZEVO) create neither a ZNODE_ACL
* nor a DACL_ACES SA in which case ENOENT is returned from
* zfs_acl_node_read() when the SA can't be located.
* Allow chown/chgrp to succeed in these cases rather than
* returning an error that makes no sense in the context of
* the caller.
*/
if (error == ENOENT)
return (0);
return (error);
}
typedef struct trivial_acl {
uint32_t allow0; /* allow mask for bits only in owner */
uint32_t deny1; /* deny mask for bits not in owner */
uint32_t deny2; /* deny mask for bits not in group */
uint32_t owner; /* allow mask matching mode */
uint32_t group; /* allow mask matching mode */
uint32_t everyone; /* allow mask matching mode */
} trivial_acl_t;
static void
acl_trivial_access_masks(mode_t mode, boolean_t isdir, trivial_acl_t *masks)
{
uint32_t read_mask = ACE_READ_DATA;
uint32_t write_mask = ACE_WRITE_DATA|ACE_APPEND_DATA;
uint32_t execute_mask = ACE_EXECUTE;
if (isdir)
write_mask |= ACE_DELETE_CHILD;
masks->deny1 = 0;
if (!(mode & S_IRUSR) && (mode & (S_IRGRP|S_IROTH)))
masks->deny1 |= read_mask;
if (!(mode & S_IWUSR) && (mode & (S_IWGRP|S_IWOTH)))
masks->deny1 |= write_mask;
if (!(mode & S_IXUSR) && (mode & (S_IXGRP|S_IXOTH)))
masks->deny1 |= execute_mask;
masks->deny2 = 0;
if (!(mode & S_IRGRP) && (mode & S_IROTH))
masks->deny2 |= read_mask;
if (!(mode & S_IWGRP) && (mode & S_IWOTH))
masks->deny2 |= write_mask;
if (!(mode & S_IXGRP) && (mode & S_IXOTH))
masks->deny2 |= execute_mask;
masks->allow0 = 0;
if ((mode & S_IRUSR) && (!(mode & S_IRGRP) && (mode & S_IROTH)))
masks->allow0 |= read_mask;
if ((mode & S_IWUSR) && (!(mode & S_IWGRP) && (mode & S_IWOTH)))
masks->allow0 |= write_mask;
if ((mode & S_IXUSR) && (!(mode & S_IXGRP) && (mode & S_IXOTH)))
masks->allow0 |= execute_mask;
masks->owner = ACE_WRITE_ATTRIBUTES|ACE_WRITE_OWNER|ACE_WRITE_ACL|
ACE_WRITE_NAMED_ATTRS|ACE_READ_ACL|ACE_READ_ATTRIBUTES|
ACE_READ_NAMED_ATTRS|ACE_SYNCHRONIZE;
if (mode & S_IRUSR)
masks->owner |= read_mask;
if (mode & S_IWUSR)
masks->owner |= write_mask;
if (mode & S_IXUSR)
masks->owner |= execute_mask;
masks->group = ACE_READ_ACL|ACE_READ_ATTRIBUTES|ACE_READ_NAMED_ATTRS|
ACE_SYNCHRONIZE;
if (mode & S_IRGRP)
masks->group |= read_mask;
if (mode & S_IWGRP)
masks->group |= write_mask;
if (mode & S_IXGRP)
masks->group |= execute_mask;
masks->everyone = ACE_READ_ACL|ACE_READ_ATTRIBUTES|ACE_READ_NAMED_ATTRS|
ACE_SYNCHRONIZE;
if (mode & S_IROTH)
masks->everyone |= read_mask;
if (mode & S_IWOTH)
masks->everyone |= write_mask;
if (mode & S_IXOTH)
masks->everyone |= execute_mask;
}
/*
* ace_trivial:
* determine whether an ace_t acl is trivial
*
* Trivialness implies that the acl is composed of only
* owner, group, everyone entries. ACL can't
* have read_acl denied, and write_owner/write_acl/write_attributes
* can only be owner@ entry.
*/
static int
ace_trivial_common(void *acep, int aclcnt,
uint64_t (*walk)(void *, uint64_t, int aclcnt,
uint16_t *, uint16_t *, uint32_t *))
{
uint16_t flags;
uint32_t mask;
uint16_t type;
uint64_t cookie = 0;
while ((cookie = walk(acep, cookie, aclcnt, &flags, &type, &mask))) {
switch (flags & ACE_TYPE_FLAGS) {
case ACE_OWNER:
case ACE_GROUP|ACE_IDENTIFIER_GROUP:
case ACE_EVERYONE:
break;
default:
return (1);
}
if (flags & (ACE_FILE_INHERIT_ACE|
ACE_DIRECTORY_INHERIT_ACE|ACE_NO_PROPAGATE_INHERIT_ACE|
ACE_INHERIT_ONLY_ACE))
return (1);
/*
* Special check for some special bits
*
* Don't allow anybody to deny reading basic
* attributes or a files ACL.
*/
if ((mask & (ACE_READ_ACL|ACE_READ_ATTRIBUTES)) &&
(type == ACE_ACCESS_DENIED_ACE_TYPE))
return (1);
/*
* Delete permission is never set by default
*/
if (mask & ACE_DELETE)
return (1);
/*
* Child delete permission should be accompanied by write
*/
if ((mask & ACE_DELETE_CHILD) && !(mask & ACE_WRITE_DATA))
return (1);
/*
* only allow owner@ to have
* write_acl/write_owner/write_attributes/write_xattr/
*/
if (type == ACE_ACCESS_ALLOWED_ACE_TYPE &&
(!(flags & ACE_OWNER) && (mask &
(ACE_WRITE_OWNER|ACE_WRITE_ACL| ACE_WRITE_ATTRIBUTES|
ACE_WRITE_NAMED_ATTRS))))
return (1);
}
return (0);
}
2008-11-20 23:01:55 +03:00
/*
* common code for setting ACLs.
*
* This function is called from zfs_mode_update, zfs_perm_init, and zfs_setacl.
* zfs_setacl passes a non-NULL inherit pointer (ihp) to indicate that it's
* already checked the acl and knows whether to inherit.
*/
int
2009-07-03 02:44:48 +04:00
zfs_aclset_common(znode_t *zp, zfs_acl_t *aclp, cred_t *cr, dmu_tx_t *tx)
2008-11-20 23:01:55 +03:00
{
int error;
zfsvfs_t *zfsvfs = ZTOZSB(zp);
dmu_object_type_t otype;
zfs_acl_locator_cb_t locate = { 0 };
uint64_t mode;
sa_bulk_attr_t bulk[5];
uint64_t ctime[2];
int count = 0;
zfs_acl_phys_t acl_phys;
mode = zp->z_mode;
mode = zfs_mode_compute(mode, aclp, &zp->z_pflags,
KUID_TO_SUID(ZTOI(zp)->i_uid), KGID_TO_SGID(ZTOI(zp)->i_gid));
2008-11-20 23:01:55 +03:00
zp->z_mode = ZTOI(zp)->i_mode = mode;
SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MODE(zfsvfs), NULL,
&mode, sizeof (mode));
SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_FLAGS(zfsvfs), NULL,
&zp->z_pflags, sizeof (zp->z_pflags));
SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_CTIME(zfsvfs), NULL,
&ctime, sizeof (ctime));
2008-11-20 23:01:55 +03:00
2009-08-18 22:43:27 +04:00
if (zp->z_acl_cached) {
zfs_acl_free(zp->z_acl_cached);
zp->z_acl_cached = NULL;
}
2008-11-20 23:01:55 +03:00
/*
* Upgrade needed?
2008-11-20 23:01:55 +03:00
*/
if (!zfsvfs->z_use_fuids) {
2008-11-20 23:01:55 +03:00
otype = DMU_OT_OLDACL;
} else {
if ((aclp->z_version == ZFS_ACL_VERSION_INITIAL) &&
(zfsvfs->z_version >= ZPL_VERSION_FUID))
2009-07-03 02:44:48 +04:00
zfs_acl_xform(zp, aclp, cr);
2008-11-20 23:01:55 +03:00
ASSERT(aclp->z_version >= ZFS_ACL_VERSION_FUID);
otype = DMU_OT_ACL;
}
/*
* Arrgh, we have to handle old on disk format
* as well as newer (preferred) SA format.
*/
if (zp->z_is_sa) { /* the easy case, just update the ACL attribute */
locate.cb_aclp = aclp;
SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_DACL_ACES(zfsvfs),
zfs_acl_data_locator, &locate, aclp->z_acl_bytes);
SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_DACL_COUNT(zfsvfs),
NULL, &aclp->z_acl_count, sizeof (uint64_t));
} else { /* Painful legacy way */
zfs_acl_node_t *aclnode;
uint64_t off = 0;
uint64_t aoid;
if ((error = sa_lookup(zp->z_sa_hdl, SA_ZPL_ZNODE_ACL(zfsvfs),
&acl_phys, sizeof (acl_phys))) != 0)
return (error);
aoid = acl_phys.z_acl_extern_obj;
if (aclp->z_acl_bytes > ZFS_ACE_SPACE) {
/*
* If ACL was previously external and we are now
* converting to new ACL format then release old
* ACL object and create a new one.
*/
if (aoid &&
aclp->z_version != acl_phys.z_acl_version) {
error = dmu_object_free(zfsvfs->z_os, aoid, tx);
if (error)
return (error);
aoid = 0;
}
if (aoid == 0) {
aoid = dmu_object_alloc(zfsvfs->z_os,
otype, aclp->z_acl_bytes,
otype == DMU_OT_ACL ?
DMU_OT_SYSACL : DMU_OT_NONE,
otype == DMU_OT_ACL ?
Implement large_dnode pool feature Justification ------------- This feature adds support for variable length dnodes. Our motivation is to eliminate the overhead associated with using spill blocks. Spill blocks are used to store system attribute data (i.e. file metadata) that does not fit in the dnode's bonus buffer. By allowing a larger bonus buffer area the use of a spill block can be avoided. Spill blocks potentially incur an additional read I/O for every dnode in a dnode block. As a worst case example, reading 32 dnodes from a 16k dnode block and all of the spill blocks could issue 33 separate reads. Now suppose those dnodes have size 1024 and therefore don't need spill blocks. Then the worst case number of blocks read is reduced to from 33 to two--one per dnode block. In practice spill blocks may tend to be co-located on disk with the dnode blocks so the reduction in I/O would not be this drastic. In a badly fragmented pool, however, the improvement could be significant. ZFS-on-Linux systems that make heavy use of extended attributes would benefit from this feature. In particular, ZFS-on-Linux supports the xattr=sa dataset property which allows file extended attribute data to be stored in the dnode bonus buffer as an alternative to the traditional directory-based format. Workloads such as SELinux and the Lustre distributed filesystem often store enough xattr data to force spill bocks when xattr=sa is in effect. Large dnodes may therefore provide a performance benefit to such systems. Other use cases that may benefit from this feature include files with large ACLs and symbolic links with long target names. Furthermore, this feature may be desirable on other platforms in case future applications or features are developed that could make use of a larger bonus buffer area. Implementation -------------- The size of a dnode may be a multiple of 512 bytes up to the size of a dnode block (currently 16384 bytes). A dn_extra_slots field was added to the current on-disk dnode_phys_t structure to describe the size of the physical dnode on disk. The 8 bits for this field were taken from the zero filled dn_pad2 field. The field represents how many "extra" dnode_phys_t slots a dnode consumes in its dnode block. This convention results in a value of 0 for 512 byte dnodes which preserves on-disk format compatibility with older software. Similarly, the in-memory dnode_t structure has a new dn_num_slots field to represent the total number of dnode_phys_t slots consumed on disk. Thus dn->dn_num_slots is 1 greater than the corresponding dnp->dn_extra_slots. This difference in convention was adopted because, unlike on-disk structures, backward compatibility is not a concern for in-memory objects, so we used a more natural way to represent size for a dnode_t. The default size for newly created dnodes is determined by the value of a new "dnodesize" dataset property. By default the property is set to "legacy" which is compatible with older software. Setting the property to "auto" will allow the filesystem to choose the most suitable dnode size. Currently this just sets the default dnode size to 1k, but future code improvements could dynamically choose a size based on observed workload patterns. Dnodes of varying sizes can coexist within the same dataset and even within the same dnode block. For example, to enable automatically-sized dnodes, run # zfs set dnodesize=auto tank/fish The user can also specify literal values for the dnodesize property. These are currently limited to powers of two from 1k to 16k. The power-of-2 limitation is only for simplicity of the user interface. Internally the implementation can handle any multiple of 512 up to 16k, and consumers of the DMU API can specify any legal dnode value. The size of a new dnode is determined at object allocation time and stored as a new field in the znode in-memory structure. New DMU interfaces are added to allow the consumer to specify the dnode size that a newly allocated object should use. Existing interfaces are unchanged to avoid having to update every call site and to preserve compatibility with external consumers such as Lustre. The new interfaces names are given below. The versions of these functions that don't take a dnodesize parameter now just call the _dnsize() versions with a dnodesize of 0, which means use the legacy dnode size. New DMU interfaces: dmu_object_alloc_dnsize() dmu_object_claim_dnsize() dmu_object_reclaim_dnsize() New ZAP interfaces: zap_create_dnsize() zap_create_norm_dnsize() zap_create_flags_dnsize() zap_create_claim_norm_dnsize() zap_create_link_dnsize() The constant DN_MAX_BONUSLEN is renamed to DN_OLD_MAX_BONUSLEN. The spa_maxdnodesize() function should be used to determine the maximum bonus length for a pool. These are a few noteworthy changes to key functions: * The prototype for dnode_hold_impl() now takes a "slots" parameter. When the DNODE_MUST_BE_FREE flag is set, this parameter is used to ensure the hole at the specified object offset is large enough to hold the dnode being created. The slots parameter is also used to ensure a dnode does not span multiple dnode blocks. In both of these cases, if a failure occurs, ENOSPC is returned. Keep in mind, these failure cases are only possible when using DNODE_MUST_BE_FREE. If the DNODE_MUST_BE_ALLOCATED flag is set, "slots" must be 0. dnode_hold_impl() will check if the requested dnode is already consumed as an extra dnode slot by an large dnode, in which case it returns ENOENT. * The function dmu_object_alloc() advances to the next dnode block if dnode_hold_impl() returns an error for a requested object. This is because the beginning of the next dnode block is the only location it can safely assume to either be a hole or a valid starting point for a dnode. * dnode_next_offset_level() and other functions that iterate through dnode blocks may no longer use a simple array indexing scheme. These now use the current dnode's dn_num_slots field to advance to the next dnode in the block. This is to ensure we properly skip the current dnode's bonus area and don't interpret it as a valid dnode. zdb --- The zdb command was updated to display a dnode's size under the "dnsize" column when the object is dumped. For ZIL create log records, zdb will now display the slot count for the object. ztest ----- Ztest chooses a random dnodesize for every newly created object. The random distribution is more heavily weighted toward small dnodes to better simulate real-world datasets. Unused bonus buffer space is filled with non-zero values computed from the object number, dataset id, offset, and generation number. This helps ensure that the dnode traversal code properly skips the interior regions of large dnodes, and that these interior regions are not overwritten by data belonging to other dnodes. A new test visits each object in a dataset. It verifies that the actual dnode size matches what was stored in the ztest block tag when it was created. It also verifies that the unused bonus buffer space is filled with the expected data patterns. ZFS Test Suite -------------- Added six new large dnode-specific tests, and integrated the dnodesize property into existing tests for zfs allow and send/recv. Send/Receive ------------ ZFS send streams for datasets containing large dnodes cannot be received on pools that don't support the large_dnode feature. A send stream with large dnodes sets a DMU_BACKUP_FEATURE_LARGE_DNODE flag which will be unrecognized by an incompatible receiving pool so that the zfs receive will fail gracefully. While not implemented here, it may be possible to generate a backward-compatible send stream from a dataset containing large dnodes. The implementation may be tricky, however, because the send object record for a large dnode would need to be resized to a 512 byte dnode, possibly kicking in a spill block in the process. This means we would need to construct a new SA layout and possibly register it in the SA layout object. The SA layout is normally just sent as an ordinary object record. But if we are constructing new layouts while generating the send stream we'd have to build the SA layout object dynamically and send it at the end of the stream. For sending and receiving between pools that do support large dnodes, the drr_object send record type is extended with a new field to store the dnode slot count. This field was repurposed from unused padding in the structure. ZIL Replay ---------- The dnode slot count is stored in the uppermost 8 bits of the lr_foid field. The bits were unused as the object id is currently capped at 48 bits. Resizing Dnodes --------------- It should be possible to resize a dnode when it is dirtied if the current dnodesize dataset property differs from the dnode's size, but this functionality is not currently implemented. Clearly a dnode can only grow if there are sufficient contiguous unused slots in the dnode block, but it should always be possible to shrink a dnode. Growing dnodes may be useful to reduce fragmentation in a pool with many spill blocks in use. Shrinking dnodes may be useful to allow sending a dataset to a pool that doesn't support the large_dnode feature. Feature Reference Counting -------------------------- The reference count for the large_dnode pool feature tracks the number of datasets that have ever contained a dnode of size larger than 512 bytes. The first time a large dnode is created in a dataset the dataset is converted to an extensible dataset. This is a one-way operation and the only way to decrement the feature count is to destroy the dataset, even if the dataset no longer contains any large dnodes. The complexity of reference counting on a per-dnode basis was too high, so we chose to track it on a per-dataset basis similarly to the large_block feature. Signed-off-by: Ned Bass <bass6@llnl.gov> Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov> Closes #3542
2016-03-17 04:25:34 +03:00
DN_OLD_MAX_BONUSLEN : 0, tx);
} else {
(void) dmu_object_set_blocksize(zfsvfs->z_os,
aoid, aclp->z_acl_bytes, 0, tx);
}
acl_phys.z_acl_extern_obj = aoid;
for (aclnode = list_head(&aclp->z_acl); aclnode;
aclnode = list_next(&aclp->z_acl, aclnode)) {
if (aclnode->z_ace_count == 0)
continue;
dmu_write(zfsvfs->z_os, aoid, off,
aclnode->z_size, aclnode->z_acldata, tx);
off += aclnode->z_size;
}
2008-11-20 23:01:55 +03:00
} else {
void *start = acl_phys.z_ace_data;
/*
* Migrating back embedded?
*/
if (acl_phys.z_acl_extern_obj) {
error = dmu_object_free(zfsvfs->z_os,
acl_phys.z_acl_extern_obj, tx);
if (error)
return (error);
acl_phys.z_acl_extern_obj = 0;
}
for (aclnode = list_head(&aclp->z_acl); aclnode;
aclnode = list_next(&aclp->z_acl, aclnode)) {
if (aclnode->z_ace_count == 0)
continue;
memcpy(start, aclnode->z_acldata,
aclnode->z_size);
start = (caddr_t)start + aclnode->z_size;
}
2008-11-20 23:01:55 +03:00
}
/*
* If Old version then swap count/bytes to match old
* layout of znode_acl_phys_t.
2008-11-20 23:01:55 +03:00
*/
if (aclp->z_version == ZFS_ACL_VERSION_INITIAL) {
acl_phys.z_acl_size = aclp->z_acl_count;
acl_phys.z_acl_count = aclp->z_acl_bytes;
} else {
acl_phys.z_acl_size = aclp->z_acl_bytes;
acl_phys.z_acl_count = aclp->z_acl_count;
2008-11-20 23:01:55 +03:00
}
acl_phys.z_acl_version = aclp->z_version;
2008-11-20 23:01:55 +03:00
SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_ZNODE_ACL(zfsvfs), NULL,
&acl_phys, sizeof (acl_phys));
2008-11-20 23:01:55 +03:00
}
/*
* Replace ACL wide bits, but first clear them.
*/
zp->z_pflags &= ~ZFS_ACL_WIDE_FLAGS;
2008-11-20 23:01:55 +03:00
zp->z_pflags |= aclp->z_hints;
2008-11-20 23:01:55 +03:00
if (ace_trivial_common(aclp, 0, zfs_ace_walk) == 0)
zp->z_pflags |= ZFS_ACL_TRIVIAL;
2008-11-20 23:01:55 +03:00
Fix atime handling and relatime The problem for atime: We have 3 places for atime: inode->i_atime, znode->z_atime and SA. And its handling is a mess. A huge part of mess regarding atime comes from zfs_tstamp_update_setup, zfs_inode_update, and zfs_getattr, which behave inconsistently with those three values. zfs_tstamp_update_setup clears z_atime_dirty unconditionally as long as you don't pass ATTR_ATIME. Which means every write(2) operation which only updates ctime and mtime will cause atime changes to not be written to disk. Also zfs_inode_update from write(2) will replace inode->i_atime with what's inside SA(stale). But doesn't touch z_atime. So after read(2) and write(2). You'll have i_atime(stale), z_atime(new), SA(stale) and z_atime_dirty=0. Now, if you do stat(2), zfs_getattr will actually replace i_atime with what's inside, z_atime. So you will have now you'll have i_atime(new), z_atime(new), SA(stale) and z_atime_dirty=0. These will all gone after umount. And you'll leave with a stale atime. The problem for relatime: We do have a relatime config inside ZFS dataset, but how it should interact with the mount flag MS_RELATIME is not well defined. It seems it wanted relatime mount option to override the dataset config by showing it as temporary in `zfs get`. But at the same time, `zfs set relatime=on|off` would also seems to want to override the mount option. Not to mention that MS_RELATIME flag is actually never passed into ZFS, so it never really worked. How Linux handles atime: The Linux kernel actually handles atime completely in VFS, except for writing it to disk. So if we remove the atime handling in ZFS, things would just work, no matter it's strictatime, relatime, noatime, or even O_NOATIME. And whenever VFS updates the i_atime, it will notify the underlying filesystem via sb->dirty_inode(). And also there's one thing to note about atime flags like MS_RELATIME and other flags like MS_NODEV, etc. They are mount point flags rather than filesystem(sb) flags. Since native linux filesystem can be mounted at multiple places at the same time, they can all have different atime settings. So these flags are never passed down to filesystem drivers. What this patch tries to do: We remove znode->z_atime, since we won't gain anything from it. We remove most of the atime handling and leave it to VFS. The only thing we do with atime is to write it when dirty_inode() or setattr() is called. We also add file_accessed() in zpl_read() since it's not provided in vfs_read(). After this patch, only the MS_RELATIME flag will have effect. The setting in dataset won't do anything. We will make zfstuil to mount ZFS with MS_RELATIME set according to the setting in dataset in future patch. Signed-off-by: Chunwei Chen <david.chen@osnexus.com> Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov> Issue #4482
2016-03-30 03:53:34 +03:00
zfs_tstamp_update_setup(zp, STATE_CHANGED, NULL, ctime);
return (sa_bulk_update(zp->z_sa_hdl, bulk, count, tx));
2008-11-20 23:01:55 +03:00
}
static void
zfs_acl_chmod(boolean_t isdir, uint64_t mode, boolean_t split, boolean_t trim,
zfs_acl_t *aclp)
2008-11-20 23:01:55 +03:00
{
void *acep = NULL;
2008-11-20 23:01:55 +03:00
uint64_t who;
int new_count, new_bytes;
int ace_size;
Prototype/structure update for Linux I appologize in advance why to many things ended up in this commit. When it could be seperated in to a whole series of commits teasing that all apart now would take considerable time and I'm not sure there's much merrit in it. As such I'll just summerize the intent of the changes which are all (or partly) in this commit. Broadly the intent is to remove as much Solaris specific code as possible and replace it with native Linux equivilants. More specifically: 1) Replace all instances of zfsvfs_t with zfs_sb_t. While the type is largely the same calling it private super block data rather than a zfsvfs is more consistent with how Linux names this. While non critical it makes the code easier to read when your thinking in Linux friendly VFS terms. 2) Replace vnode_t with struct inode. The Linux VFS doesn't have the notion of a vnode and there's absolutely no good reason to create one. There are in fact several good reasons to remove it. It just adds overhead on Linux if we were to manage one, it conplicates the code, and it likely will lead to bugs so there's a good change it will be out of date. The code has been updated to remove all need for this type. 3) Replace all vtype_t's with umode types. Along with this shift all uses of types to mode bits. The Solaris code would pass a vtype which is redundant with the Linux mode. Just update all the code to use the Linux mode macros and remove this redundancy. 4) Remove using of vn_* helpers and replace where needed with inode helpers. The big example here is creating iput_aync to replace vn_rele_async. Other vn helpers will be addressed as needed but they should be be emulated. They are a Solaris VFS'ism and should simply be replaced with Linux equivilants. 5) Update znode alloc/free code. Under Linux it's common to embed the inode specific data with the inode itself. This removes the need for an extra memory allocation. In zfs this information is called a znode and it now embeds the inode with it. Allocators have been updated accordingly. 6) Minimal integration with the vfs flags for setting up the super block and handling mount options has been added this code will need to be refined but functionally it's all there. This will be the first and last of these to large to review commits.
2011-02-08 22:16:06 +03:00
int entry_type;
2008-11-20 23:01:55 +03:00
uint16_t iflags, type;
uint32_t access_mask;
zfs_acl_node_t *newnode;
size_t abstract_size = aclp->z_ops->ace_abstract_size();
Prototype/structure update for Linux I appologize in advance why to many things ended up in this commit. When it could be seperated in to a whole series of commits teasing that all apart now would take considerable time and I'm not sure there's much merrit in it. As such I'll just summerize the intent of the changes which are all (or partly) in this commit. Broadly the intent is to remove as much Solaris specific code as possible and replace it with native Linux equivilants. More specifically: 1) Replace all instances of zfsvfs_t with zfs_sb_t. While the type is largely the same calling it private super block data rather than a zfsvfs is more consistent with how Linux names this. While non critical it makes the code easier to read when your thinking in Linux friendly VFS terms. 2) Replace vnode_t with struct inode. The Linux VFS doesn't have the notion of a vnode and there's absolutely no good reason to create one. There are in fact several good reasons to remove it. It just adds overhead on Linux if we were to manage one, it conplicates the code, and it likely will lead to bugs so there's a good change it will be out of date. The code has been updated to remove all need for this type. 3) Replace all vtype_t's with umode types. Along with this shift all uses of types to mode bits. The Solaris code would pass a vtype which is redundant with the Linux mode. Just update all the code to use the Linux mode macros and remove this redundancy. 4) Remove using of vn_* helpers and replace where needed with inode helpers. The big example here is creating iput_aync to replace vn_rele_async. Other vn helpers will be addressed as needed but they should be be emulated. They are a Solaris VFS'ism and should simply be replaced with Linux equivilants. 5) Update znode alloc/free code. Under Linux it's common to embed the inode specific data with the inode itself. This removes the need for an extra memory allocation. In zfs this information is called a znode and it now embeds the inode with it. Allocators have been updated accordingly. 6) Minimal integration with the vfs flags for setting up the super block and handling mount options has been added this code will need to be refined but functionally it's all there. This will be the first and last of these to large to review commits.
2011-02-08 22:16:06 +03:00
void *zacep;
trivial_acl_t masks;
new_count = new_bytes = 0;
acl_trivial_access_masks((mode_t)mode, isdir, &masks);
newnode = zfs_acl_node_alloc((abstract_size * 6) + aclp->z_acl_bytes);
zacep = newnode->z_acldata;
if (masks.allow0) {
zfs_set_ace(aclp, zacep, masks.allow0, ALLOW, -1, ACE_OWNER);
zacep = (void *)((uintptr_t)zacep + abstract_size);
new_count++;
new_bytes += abstract_size;
}
if (masks.deny1) {
zfs_set_ace(aclp, zacep, masks.deny1, DENY, -1, ACE_OWNER);
zacep = (void *)((uintptr_t)zacep + abstract_size);
new_count++;
new_bytes += abstract_size;
}
if (masks.deny2) {
zfs_set_ace(aclp, zacep, masks.deny2, DENY, -1, OWNING_GROUP);
zacep = (void *)((uintptr_t)zacep + abstract_size);
new_count++;
new_bytes += abstract_size;
}
2008-11-20 23:01:55 +03:00
while ((acep = zfs_acl_next_ace(aclp, acep, &who, &access_mask,
&iflags, &type))) {
2008-11-20 23:01:55 +03:00
entry_type = (iflags & ACE_TYPE_FLAGS);
/*
* ACEs used to represent the file mode may be divided
* into an equivalent pair of inherit-only and regular
* ACEs, if they are inheritable.
* Skip regular ACEs, which are replaced by the new mode.
*/
if (split && (entry_type == ACE_OWNER ||
entry_type == OWNING_GROUP ||
entry_type == ACE_EVERYONE)) {
if (!isdir || !(iflags &
(ACE_FILE_INHERIT_ACE|ACE_DIRECTORY_INHERIT_ACE)))
continue;
/*
* We preserve owner@, group@, or @everyone
* permissions, if they are inheritable, by
* copying them to inherit_only ACEs. This
* prevents inheritable permissions from being
* altered along with the file mode.
*/
iflags |= ACE_INHERIT_ONLY_ACE;
}
2008-11-20 23:01:55 +03:00
/*
* If this ACL has any inheritable ACEs, mark that in
* the hints (which are later masked into the pflags)
* so create knows to do inheritance.
*/
if (isdir && (iflags &
(ACE_FILE_INHERIT_ACE|ACE_DIRECTORY_INHERIT_ACE)))
aclp->z_hints |= ZFS_INHERIT_ACE;
2008-11-20 23:01:55 +03:00
if ((type != ALLOW && type != DENY) ||
(iflags & ACE_INHERIT_ONLY_ACE)) {
2008-11-20 23:01:55 +03:00
switch (type) {
case ACE_ACCESS_ALLOWED_OBJECT_ACE_TYPE:
case ACE_ACCESS_DENIED_OBJECT_ACE_TYPE:
case ACE_SYSTEM_AUDIT_OBJECT_ACE_TYPE:
case ACE_SYSTEM_ALARM_OBJECT_ACE_TYPE:
aclp->z_hints |= ZFS_ACL_OBJ_ACE;
break;
}
} else {
/*
* Limit permissions to be no greater than
* group permissions.
* The "aclinherit" and "aclmode" properties
* affect policy for create and chmod(2),
* respectively.
*/
if ((type == ALLOW) && trim)
access_mask &= masks.group;
2008-11-20 23:01:55 +03:00
}
zfs_set_ace(aclp, zacep, access_mask, type, who, iflags);
ace_size = aclp->z_ops->ace_size(acep);
zacep = (void *)((uintptr_t)zacep + ace_size);
new_count++;
new_bytes += ace_size;
}
zfs_set_ace(aclp, zacep, masks.owner, ALLOW, -1, ACE_OWNER);
zacep = (void *)((uintptr_t)zacep + abstract_size);
zfs_set_ace(aclp, zacep, masks.group, ALLOW, -1, OWNING_GROUP);
zacep = (void *)((uintptr_t)zacep + abstract_size);
zfs_set_ace(aclp, zacep, masks.everyone, ALLOW, -1, ACE_EVERYONE);
new_count += 3;
new_bytes += abstract_size * 3;
zfs_acl_release_nodes(aclp);
aclp->z_acl_count = new_count;
aclp->z_acl_bytes = new_bytes;
newnode->z_ace_count = new_count;
newnode->z_size = new_bytes;
list_insert_tail(&aclp->z_acl, newnode);
2008-11-20 23:01:55 +03:00
}
int
2008-11-20 23:01:55 +03:00
zfs_acl_chmod_setattr(znode_t *zp, zfs_acl_t **aclp, uint64_t mode)
{
int error = 0;
2008-11-20 23:01:55 +03:00
mutex_enter(&zp->z_acl_lock);
mutex_enter(&zp->z_lock);
if (ZTOZSB(zp)->z_acl_mode == ZFS_ACL_DISCARD)
*aclp = zfs_acl_alloc(zfs_acl_version_zp(zp));
else
error = zfs_acl_node_read(zp, B_TRUE, aclp, B_TRUE);
if (error == 0) {
(*aclp)->z_hints = zp->z_pflags & V4_ACL_WIDE_FLAGS;
zfs_acl_chmod(S_ISDIR(ZTOI(zp)->i_mode), mode, B_TRUE,
(ZTOZSB(zp)->z_acl_mode == ZFS_ACL_GROUPMASK), *aclp);
}
2008-11-20 23:01:55 +03:00
mutex_exit(&zp->z_lock);
mutex_exit(&zp->z_acl_lock);
return (error);
2008-11-20 23:01:55 +03:00
}
/*
* Should ACE be inherited?
*/
static int
Prototype/structure update for Linux I appologize in advance why to many things ended up in this commit. When it could be seperated in to a whole series of commits teasing that all apart now would take considerable time and I'm not sure there's much merrit in it. As such I'll just summerize the intent of the changes which are all (or partly) in this commit. Broadly the intent is to remove as much Solaris specific code as possible and replace it with native Linux equivilants. More specifically: 1) Replace all instances of zfsvfs_t with zfs_sb_t. While the type is largely the same calling it private super block data rather than a zfsvfs is more consistent with how Linux names this. While non critical it makes the code easier to read when your thinking in Linux friendly VFS terms. 2) Replace vnode_t with struct inode. The Linux VFS doesn't have the notion of a vnode and there's absolutely no good reason to create one. There are in fact several good reasons to remove it. It just adds overhead on Linux if we were to manage one, it conplicates the code, and it likely will lead to bugs so there's a good change it will be out of date. The code has been updated to remove all need for this type. 3) Replace all vtype_t's with umode types. Along with this shift all uses of types to mode bits. The Solaris code would pass a vtype which is redundant with the Linux mode. Just update all the code to use the Linux mode macros and remove this redundancy. 4) Remove using of vn_* helpers and replace where needed with inode helpers. The big example here is creating iput_aync to replace vn_rele_async. Other vn helpers will be addressed as needed but they should be be emulated. They are a Solaris VFS'ism and should simply be replaced with Linux equivilants. 5) Update znode alloc/free code. Under Linux it's common to embed the inode specific data with the inode itself. This removes the need for an extra memory allocation. In zfs this information is called a znode and it now embeds the inode with it. Allocators have been updated accordingly. 6) Minimal integration with the vfs flags for setting up the super block and handling mount options has been added this code will need to be refined but functionally it's all there. This will be the first and last of these to large to review commits.
2011-02-08 22:16:06 +03:00
zfs_ace_can_use(umode_t obj_mode, uint16_t acep_flags)
2008-11-20 23:01:55 +03:00
{
int iflags = (acep_flags & 0xf);
Prototype/structure update for Linux I appologize in advance why to many things ended up in this commit. When it could be seperated in to a whole series of commits teasing that all apart now would take considerable time and I'm not sure there's much merrit in it. As such I'll just summerize the intent of the changes which are all (or partly) in this commit. Broadly the intent is to remove as much Solaris specific code as possible and replace it with native Linux equivilants. More specifically: 1) Replace all instances of zfsvfs_t with zfs_sb_t. While the type is largely the same calling it private super block data rather than a zfsvfs is more consistent with how Linux names this. While non critical it makes the code easier to read when your thinking in Linux friendly VFS terms. 2) Replace vnode_t with struct inode. The Linux VFS doesn't have the notion of a vnode and there's absolutely no good reason to create one. There are in fact several good reasons to remove it. It just adds overhead on Linux if we were to manage one, it conplicates the code, and it likely will lead to bugs so there's a good change it will be out of date. The code has been updated to remove all need for this type. 3) Replace all vtype_t's with umode types. Along with this shift all uses of types to mode bits. The Solaris code would pass a vtype which is redundant with the Linux mode. Just update all the code to use the Linux mode macros and remove this redundancy. 4) Remove using of vn_* helpers and replace where needed with inode helpers. The big example here is creating iput_aync to replace vn_rele_async. Other vn helpers will be addressed as needed but they should be be emulated. They are a Solaris VFS'ism and should simply be replaced with Linux equivilants. 5) Update znode alloc/free code. Under Linux it's common to embed the inode specific data with the inode itself. This removes the need for an extra memory allocation. In zfs this information is called a znode and it now embeds the inode with it. Allocators have been updated accordingly. 6) Minimal integration with the vfs flags for setting up the super block and handling mount options has been added this code will need to be refined but functionally it's all there. This will be the first and last of these to large to review commits.
2011-02-08 22:16:06 +03:00
if (S_ISDIR(obj_mode) && (iflags & ACE_DIRECTORY_INHERIT_ACE))
2008-11-20 23:01:55 +03:00
return (1);
else if (iflags & ACE_FILE_INHERIT_ACE)
Prototype/structure update for Linux I appologize in advance why to many things ended up in this commit. When it could be seperated in to a whole series of commits teasing that all apart now would take considerable time and I'm not sure there's much merrit in it. As such I'll just summerize the intent of the changes which are all (or partly) in this commit. Broadly the intent is to remove as much Solaris specific code as possible and replace it with native Linux equivilants. More specifically: 1) Replace all instances of zfsvfs_t with zfs_sb_t. While the type is largely the same calling it private super block data rather than a zfsvfs is more consistent with how Linux names this. While non critical it makes the code easier to read when your thinking in Linux friendly VFS terms. 2) Replace vnode_t with struct inode. The Linux VFS doesn't have the notion of a vnode and there's absolutely no good reason to create one. There are in fact several good reasons to remove it. It just adds overhead on Linux if we were to manage one, it conplicates the code, and it likely will lead to bugs so there's a good change it will be out of date. The code has been updated to remove all need for this type. 3) Replace all vtype_t's with umode types. Along with this shift all uses of types to mode bits. The Solaris code would pass a vtype which is redundant with the Linux mode. Just update all the code to use the Linux mode macros and remove this redundancy. 4) Remove using of vn_* helpers and replace where needed with inode helpers. The big example here is creating iput_aync to replace vn_rele_async. Other vn helpers will be addressed as needed but they should be be emulated. They are a Solaris VFS'ism and should simply be replaced with Linux equivilants. 5) Update znode alloc/free code. Under Linux it's common to embed the inode specific data with the inode itself. This removes the need for an extra memory allocation. In zfs this information is called a znode and it now embeds the inode with it. Allocators have been updated accordingly. 6) Minimal integration with the vfs flags for setting up the super block and handling mount options has been added this code will need to be refined but functionally it's all there. This will be the first and last of these to large to review commits.
2011-02-08 22:16:06 +03:00
return (!(S_ISDIR(obj_mode) &&
2008-11-20 23:01:55 +03:00
(iflags & ACE_NO_PROPAGATE_INHERIT_ACE)));
return (0);
}
/*
* inherit inheritable ACEs from parent
*/
static zfs_acl_t *
zfs_acl_inherit(zfsvfs_t *zfsvfs, umode_t va_mode, zfs_acl_t *paclp,
uint64_t mode, boolean_t *need_chmod)
2008-11-20 23:01:55 +03:00
{
void *pacep = NULL;
void *acep;
zfs_acl_node_t *aclnode;
2008-11-20 23:01:55 +03:00
zfs_acl_t *aclp = NULL;
uint64_t who;
uint32_t access_mask;
uint16_t iflags, newflags, type;
size_t ace_size;
void *data1, *data2;
size_t data1sz, data2sz;
uint_t aclinherit;
boolean_t isdir = S_ISDIR(va_mode);
boolean_t isreg = S_ISREG(va_mode);
*need_chmod = B_TRUE;
aclp = zfs_acl_alloc(paclp->z_version);
aclinherit = zfsvfs->z_acl_inherit;
if (aclinherit == ZFS_ACL_DISCARD || S_ISLNK(va_mode))
return (aclp);
while ((pacep = zfs_acl_next_ace(paclp, pacep, &who,
&access_mask, &iflags, &type))) {
2008-11-20 23:01:55 +03:00
/*
* don't inherit bogus ACEs
*/
if (!zfs_acl_valid_ace_type(type, iflags))
continue;
2008-11-20 23:01:55 +03:00
/*
* Check if ACE is inheritable by this vnode
*/
if ((aclinherit == ZFS_ACL_NOALLOW && type == ALLOW) ||
!zfs_ace_can_use(va_mode, iflags))
continue;
/*
* If owner@, group@, or everyone@ inheritable
* then zfs_acl_chmod() isn't needed.
*/
if ((aclinherit == ZFS_ACL_PASSTHROUGH ||
aclinherit == ZFS_ACL_PASSTHROUGH_X) &&
((iflags & (ACE_OWNER|ACE_EVERYONE)) ||
((iflags & OWNING_GROUP) == OWNING_GROUP)) &&
(isreg || (isdir && (iflags & ACE_DIRECTORY_INHERIT_ACE))))
*need_chmod = B_FALSE;
/*
* Strip inherited execute permission from file if
* not in mode
*/
if (aclinherit == ZFS_ACL_PASSTHROUGH_X && type == ALLOW &&
!isdir && ((mode & (S_IXUSR|S_IXGRP|S_IXOTH)) == 0)) {
access_mask &= ~ACE_EXECUTE;
}
/*
* Strip write_acl and write_owner from permissions
* when inheriting an ACE
*/
if (aclinherit == ZFS_ACL_RESTRICTED && type == ALLOW) {
access_mask &= ~RESTRICTED_CLEAR;
}
ace_size = aclp->z_ops->ace_size(pacep);
aclnode = zfs_acl_node_alloc(ace_size);
list_insert_tail(&aclp->z_acl, aclnode);
acep = aclnode->z_acldata;
zfs_set_ace(aclp, acep, access_mask, type,
who, iflags|ACE_INHERITED_ACE);
/*
* Copy special opaque data if any
*/
if ((data1sz = paclp->z_ops->ace_data(pacep, &data1)) != 0) {
VERIFY((data2sz = aclp->z_ops->ace_data(acep,
&data2)) == data1sz);
memcpy(data2, data1, data2sz);
}
aclp->z_acl_count++;
aclnode->z_ace_count++;
aclp->z_acl_bytes += aclnode->z_size;
newflags = aclp->z_ops->ace_flags_get(acep);
/*
* If ACE is not to be inherited further, or if the vnode is
* not a directory, remove all inheritance flags
*/
if (!isdir || (iflags & ACE_NO_PROPAGATE_INHERIT_ACE)) {
newflags &= ~ALL_INHERIT;
aclp->z_ops->ace_flags_set(acep,
newflags|ACE_INHERITED_ACE);
continue;
}
/*
* This directory has an inheritable ACE
*/
aclp->z_hints |= ZFS_INHERIT_ACE;
/*
* If only FILE_INHERIT is set then turn on
* inherit_only
*/
if ((iflags & (ACE_FILE_INHERIT_ACE |
ACE_DIRECTORY_INHERIT_ACE)) == ACE_FILE_INHERIT_ACE) {
newflags |= ACE_INHERIT_ONLY_ACE;
aclp->z_ops->ace_flags_set(acep,
newflags|ACE_INHERITED_ACE);
} else {
newflags &= ~ACE_INHERIT_ONLY_ACE;
aclp->z_ops->ace_flags_set(acep,
newflags|ACE_INHERITED_ACE);
2008-11-20 23:01:55 +03:00
}
}
if (zfsvfs->z_acl_mode == ZFS_ACL_RESTRICTED &&
aclp->z_acl_count != 0) {
*need_chmod = B_FALSE;
}
2008-11-20 23:01:55 +03:00
return (aclp);
}
/*
* Create file system object initial permissions
* including inheritable ACEs.
* Also, create FUIDs for owner and group.
2008-11-20 23:01:55 +03:00
*/
2009-07-03 02:44:48 +04:00
int
zfs_acl_ids_create(znode_t *dzp, int flag, vattr_t *vap, cred_t *cr,
vsecattr_t *vsecp, zfs_acl_ids_t *acl_ids)
2008-11-20 23:01:55 +03:00
{
int error;
zfsvfs_t *zfsvfs = ZTOZSB(dzp);
2008-11-20 23:01:55 +03:00
zfs_acl_t *paclp;
gid_t gid = vap->va_gid;
boolean_t need_chmod = B_TRUE;
boolean_t trim = B_FALSE;
boolean_t inherited = B_FALSE;
2008-11-20 23:01:55 +03:00
memset(acl_ids, 0, sizeof (zfs_acl_ids_t));
Prototype/structure update for Linux I appologize in advance why to many things ended up in this commit. When it could be seperated in to a whole series of commits teasing that all apart now would take considerable time and I'm not sure there's much merrit in it. As such I'll just summerize the intent of the changes which are all (or partly) in this commit. Broadly the intent is to remove as much Solaris specific code as possible and replace it with native Linux equivilants. More specifically: 1) Replace all instances of zfsvfs_t with zfs_sb_t. While the type is largely the same calling it private super block data rather than a zfsvfs is more consistent with how Linux names this. While non critical it makes the code easier to read when your thinking in Linux friendly VFS terms. 2) Replace vnode_t with struct inode. The Linux VFS doesn't have the notion of a vnode and there's absolutely no good reason to create one. There are in fact several good reasons to remove it. It just adds overhead on Linux if we were to manage one, it conplicates the code, and it likely will lead to bugs so there's a good change it will be out of date. The code has been updated to remove all need for this type. 3) Replace all vtype_t's with umode types. Along with this shift all uses of types to mode bits. The Solaris code would pass a vtype which is redundant with the Linux mode. Just update all the code to use the Linux mode macros and remove this redundancy. 4) Remove using of vn_* helpers and replace where needed with inode helpers. The big example here is creating iput_aync to replace vn_rele_async. Other vn helpers will be addressed as needed but they should be be emulated. They are a Solaris VFS'ism and should simply be replaced with Linux equivilants. 5) Update znode alloc/free code. Under Linux it's common to embed the inode specific data with the inode itself. This removes the need for an extra memory allocation. In zfs this information is called a znode and it now embeds the inode with it. Allocators have been updated accordingly. 6) Minimal integration with the vfs flags for setting up the super block and handling mount options has been added this code will need to be refined but functionally it's all there. This will be the first and last of these to large to review commits.
2011-02-08 22:16:06 +03:00
acl_ids->z_mode = vap->va_mode;
2008-11-20 23:01:55 +03:00
2009-07-03 02:44:48 +04:00
if (vsecp)
if ((error = zfs_vsec_2_aclp(zfsvfs, vap->va_mode, vsecp,
Prototype/structure update for Linux I appologize in advance why to many things ended up in this commit. When it could be seperated in to a whole series of commits teasing that all apart now would take considerable time and I'm not sure there's much merrit in it. As such I'll just summerize the intent of the changes which are all (or partly) in this commit. Broadly the intent is to remove as much Solaris specific code as possible and replace it with native Linux equivilants. More specifically: 1) Replace all instances of zfsvfs_t with zfs_sb_t. While the type is largely the same calling it private super block data rather than a zfsvfs is more consistent with how Linux names this. While non critical it makes the code easier to read when your thinking in Linux friendly VFS terms. 2) Replace vnode_t with struct inode. The Linux VFS doesn't have the notion of a vnode and there's absolutely no good reason to create one. There are in fact several good reasons to remove it. It just adds overhead on Linux if we were to manage one, it conplicates the code, and it likely will lead to bugs so there's a good change it will be out of date. The code has been updated to remove all need for this type. 3) Replace all vtype_t's with umode types. Along with this shift all uses of types to mode bits. The Solaris code would pass a vtype which is redundant with the Linux mode. Just update all the code to use the Linux mode macros and remove this redundancy. 4) Remove using of vn_* helpers and replace where needed with inode helpers. The big example here is creating iput_aync to replace vn_rele_async. Other vn helpers will be addressed as needed but they should be be emulated. They are a Solaris VFS'ism and should simply be replaced with Linux equivilants. 5) Update znode alloc/free code. Under Linux it's common to embed the inode specific data with the inode itself. This removes the need for an extra memory allocation. In zfs this information is called a znode and it now embeds the inode with it. Allocators have been updated accordingly. 6) Minimal integration with the vfs flags for setting up the super block and handling mount options has been added this code will need to be refined but functionally it's all there. This will be the first and last of these to large to review commits.
2011-02-08 22:16:06 +03:00
cr, &acl_ids->z_fuidp, &acl_ids->z_aclp)) != 0)
2009-07-03 02:44:48 +04:00
return (error);
acl_ids->z_fuid = vap->va_uid;
acl_ids->z_fgid = vap->va_gid;
#ifdef HAVE_KSID
2008-11-20 23:01:55 +03:00
/*
* Determine uid and gid.
*/
if ((flag & IS_ROOT_NODE) || zfsvfs->z_replay ||
Prototype/structure update for Linux I appologize in advance why to many things ended up in this commit. When it could be seperated in to a whole series of commits teasing that all apart now would take considerable time and I'm not sure there's much merrit in it. As such I'll just summerize the intent of the changes which are all (or partly) in this commit. Broadly the intent is to remove as much Solaris specific code as possible and replace it with native Linux equivilants. More specifically: 1) Replace all instances of zfsvfs_t with zfs_sb_t. While the type is largely the same calling it private super block data rather than a zfsvfs is more consistent with how Linux names this. While non critical it makes the code easier to read when your thinking in Linux friendly VFS terms. 2) Replace vnode_t with struct inode. The Linux VFS doesn't have the notion of a vnode and there's absolutely no good reason to create one. There are in fact several good reasons to remove it. It just adds overhead on Linux if we were to manage one, it conplicates the code, and it likely will lead to bugs so there's a good change it will be out of date. The code has been updated to remove all need for this type. 3) Replace all vtype_t's with umode types. Along with this shift all uses of types to mode bits. The Solaris code would pass a vtype which is redundant with the Linux mode. Just update all the code to use the Linux mode macros and remove this redundancy. 4) Remove using of vn_* helpers and replace where needed with inode helpers. The big example here is creating iput_aync to replace vn_rele_async. Other vn helpers will be addressed as needed but they should be be emulated. They are a Solaris VFS'ism and should simply be replaced with Linux equivilants. 5) Update znode alloc/free code. Under Linux it's common to embed the inode specific data with the inode itself. This removes the need for an extra memory allocation. In zfs this information is called a znode and it now embeds the inode with it. Allocators have been updated accordingly. 6) Minimal integration with the vfs flags for setting up the super block and handling mount options has been added this code will need to be refined but functionally it's all there. This will be the first and last of these to large to review commits.
2011-02-08 22:16:06 +03:00
((flag & IS_XATTR) && (S_ISDIR(vap->va_mode)))) {
acl_ids->z_fuid = zfs_fuid_create(zfsvfs, (uint64_t)vap->va_uid,
Prototype/structure update for Linux I appologize in advance why to many things ended up in this commit. When it could be seperated in to a whole series of commits teasing that all apart now would take considerable time and I'm not sure there's much merrit in it. As such I'll just summerize the intent of the changes which are all (or partly) in this commit. Broadly the intent is to remove as much Solaris specific code as possible and replace it with native Linux equivilants. More specifically: 1) Replace all instances of zfsvfs_t with zfs_sb_t. While the type is largely the same calling it private super block data rather than a zfsvfs is more consistent with how Linux names this. While non critical it makes the code easier to read when your thinking in Linux friendly VFS terms. 2) Replace vnode_t with struct inode. The Linux VFS doesn't have the notion of a vnode and there's absolutely no good reason to create one. There are in fact several good reasons to remove it. It just adds overhead on Linux if we were to manage one, it conplicates the code, and it likely will lead to bugs so there's a good change it will be out of date. The code has been updated to remove all need for this type. 3) Replace all vtype_t's with umode types. Along with this shift all uses of types to mode bits. The Solaris code would pass a vtype which is redundant with the Linux mode. Just update all the code to use the Linux mode macros and remove this redundancy. 4) Remove using of vn_* helpers and replace where needed with inode helpers. The big example here is creating iput_aync to replace vn_rele_async. Other vn helpers will be addressed as needed but they should be be emulated. They are a Solaris VFS'ism and should simply be replaced with Linux equivilants. 5) Update znode alloc/free code. Under Linux it's common to embed the inode specific data with the inode itself. This removes the need for an extra memory allocation. In zfs this information is called a znode and it now embeds the inode with it. Allocators have been updated accordingly. 6) Minimal integration with the vfs flags for setting up the super block and handling mount options has been added this code will need to be refined but functionally it's all there. This will be the first and last of these to large to review commits.
2011-02-08 22:16:06 +03:00
cr, ZFS_OWNER, &acl_ids->z_fuidp);
acl_ids->z_fgid = zfs_fuid_create(zfsvfs, (uint64_t)vap->va_gid,
Prototype/structure update for Linux I appologize in advance why to many things ended up in this commit. When it could be seperated in to a whole series of commits teasing that all apart now would take considerable time and I'm not sure there's much merrit in it. As such I'll just summerize the intent of the changes which are all (or partly) in this commit. Broadly the intent is to remove as much Solaris specific code as possible and replace it with native Linux equivilants. More specifically: 1) Replace all instances of zfsvfs_t with zfs_sb_t. While the type is largely the same calling it private super block data rather than a zfsvfs is more consistent with how Linux names this. While non critical it makes the code easier to read when your thinking in Linux friendly VFS terms. 2) Replace vnode_t with struct inode. The Linux VFS doesn't have the notion of a vnode and there's absolutely no good reason to create one. There are in fact several good reasons to remove it. It just adds overhead on Linux if we were to manage one, it conplicates the code, and it likely will lead to bugs so there's a good change it will be out of date. The code has been updated to remove all need for this type. 3) Replace all vtype_t's with umode types. Along with this shift all uses of types to mode bits. The Solaris code would pass a vtype which is redundant with the Linux mode. Just update all the code to use the Linux mode macros and remove this redundancy. 4) Remove using of vn_* helpers and replace where needed with inode helpers. The big example here is creating iput_aync to replace vn_rele_async. Other vn helpers will be addressed as needed but they should be be emulated. They are a Solaris VFS'ism and should simply be replaced with Linux equivilants. 5) Update znode alloc/free code. Under Linux it's common to embed the inode specific data with the inode itself. This removes the need for an extra memory allocation. In zfs this information is called a znode and it now embeds the inode with it. Allocators have been updated accordingly. 6) Minimal integration with the vfs flags for setting up the super block and handling mount options has been added this code will need to be refined but functionally it's all there. This will be the first and last of these to large to review commits.
2011-02-08 22:16:06 +03:00
cr, ZFS_GROUP, &acl_ids->z_fuidp);
2008-11-20 23:01:55 +03:00
gid = vap->va_gid;
} else {
acl_ids->z_fuid = zfs_fuid_create_cred(zfsvfs, ZFS_OWNER,
2009-07-03 02:44:48 +04:00
cr, &acl_ids->z_fuidp);
acl_ids->z_fgid = 0;
2008-11-20 23:01:55 +03:00
if (vap->va_mask & AT_GID) {
acl_ids->z_fgid = zfs_fuid_create(zfsvfs,
2009-07-03 02:44:48 +04:00
(uint64_t)vap->va_gid,
cr, ZFS_GROUP, &acl_ids->z_fuidp);
2008-11-20 23:01:55 +03:00
gid = vap->va_gid;
if (acl_ids->z_fgid != KGID_TO_SGID(ZTOI(dzp)->i_gid) &&
2008-11-20 23:01:55 +03:00
!groupmember(vap->va_gid, cr) &&
secpolicy_vnode_create_gid(cr) != 0)
2009-07-03 02:44:48 +04:00
acl_ids->z_fgid = 0;
2008-11-20 23:01:55 +03:00
}
2009-07-03 02:44:48 +04:00
if (acl_ids->z_fgid == 0) {
if (dzp->z_mode & S_ISGID) {
char *domain;
uint32_t rid;
acl_ids->z_fgid = KGID_TO_SGID(
ZTOI(dzp)->i_gid);
gid = zfs_fuid_map_id(zfsvfs, acl_ids->z_fgid,
2008-11-20 23:01:55 +03:00
cr, ZFS_GROUP);
if (zfsvfs->z_use_fuids &&
IS_EPHEMERAL(acl_ids->z_fgid)) {
domain = zfs_fuid_idx_domain(
&zfsvfs->z_fuid_idx,
FUID_INDEX(acl_ids->z_fgid));
rid = FUID_RID(acl_ids->z_fgid);
zfs_fuid_node_add(&acl_ids->z_fuidp,
domain, rid,
FUID_INDEX(acl_ids->z_fgid),
acl_ids->z_fgid, ZFS_GROUP);
}
2008-11-20 23:01:55 +03:00
} else {
acl_ids->z_fgid = zfs_fuid_create_cred(zfsvfs,
2009-07-03 02:44:48 +04:00
ZFS_GROUP, cr, &acl_ids->z_fuidp);
2008-11-20 23:01:55 +03:00
gid = crgetgid(cr);
}
}
}
#endif /* HAVE_KSID */
2008-11-20 23:01:55 +03:00
/*
* If we're creating a directory, and the parent directory has the
* set-GID bit set, set in on the new directory.
* Otherwise, if the user is neither privileged nor a member of the
* file's new group, clear the file's set-GID bit.
*/
if (!(flag & IS_ROOT_NODE) && (dzp->z_mode & S_ISGID) &&
Prototype/structure update for Linux I appologize in advance why to many things ended up in this commit. When it could be seperated in to a whole series of commits teasing that all apart now would take considerable time and I'm not sure there's much merrit in it. As such I'll just summerize the intent of the changes which are all (or partly) in this commit. Broadly the intent is to remove as much Solaris specific code as possible and replace it with native Linux equivilants. More specifically: 1) Replace all instances of zfsvfs_t with zfs_sb_t. While the type is largely the same calling it private super block data rather than a zfsvfs is more consistent with how Linux names this. While non critical it makes the code easier to read when your thinking in Linux friendly VFS terms. 2) Replace vnode_t with struct inode. The Linux VFS doesn't have the notion of a vnode and there's absolutely no good reason to create one. There are in fact several good reasons to remove it. It just adds overhead on Linux if we were to manage one, it conplicates the code, and it likely will lead to bugs so there's a good change it will be out of date. The code has been updated to remove all need for this type. 3) Replace all vtype_t's with umode types. Along with this shift all uses of types to mode bits. The Solaris code would pass a vtype which is redundant with the Linux mode. Just update all the code to use the Linux mode macros and remove this redundancy. 4) Remove using of vn_* helpers and replace where needed with inode helpers. The big example here is creating iput_aync to replace vn_rele_async. Other vn helpers will be addressed as needed but they should be be emulated. They are a Solaris VFS'ism and should simply be replaced with Linux equivilants. 5) Update znode alloc/free code. Under Linux it's common to embed the inode specific data with the inode itself. This removes the need for an extra memory allocation. In zfs this information is called a znode and it now embeds the inode with it. Allocators have been updated accordingly. 6) Minimal integration with the vfs flags for setting up the super block and handling mount options has been added this code will need to be refined but functionally it's all there. This will be the first and last of these to large to review commits.
2011-02-08 22:16:06 +03:00
(S_ISDIR(vap->va_mode))) {
2009-07-03 02:44:48 +04:00
acl_ids->z_mode |= S_ISGID;
2008-11-20 23:01:55 +03:00
} else {
2009-07-03 02:44:48 +04:00
if ((acl_ids->z_mode & S_ISGID) &&
2008-11-20 23:01:55 +03:00
secpolicy_vnode_setids_setgids(cr, gid) != 0)
2009-07-03 02:44:48 +04:00
acl_ids->z_mode &= ~S_ISGID;
2008-11-20 23:01:55 +03:00
}
2009-07-03 02:44:48 +04:00
if (acl_ids->z_aclp == NULL) {
mutex_enter(&dzp->z_acl_lock);
2009-07-03 02:44:48 +04:00
mutex_enter(&dzp->z_lock);
if (!(flag & IS_ROOT_NODE) &&
(dzp->z_pflags & ZFS_INHERIT_ACE) &&
!(dzp->z_pflags & ZFS_XATTR)) {
VERIFY(0 == zfs_acl_node_read(dzp, B_TRUE,
&paclp, B_FALSE));
acl_ids->z_aclp = zfs_acl_inherit(zfsvfs,
vap->va_mode, paclp, acl_ids->z_mode, &need_chmod);
inherited = B_TRUE;
2008-11-20 23:01:55 +03:00
} else {
2009-07-03 02:44:48 +04:00
acl_ids->z_aclp =
zfs_acl_alloc(zfs_acl_version_zp(dzp));
acl_ids->z_aclp->z_hints |= ZFS_ACL_TRIVIAL;
2009-07-03 02:44:48 +04:00
}
mutex_exit(&dzp->z_lock);
mutex_exit(&dzp->z_acl_lock);
if (need_chmod) {
if (S_ISDIR(vap->va_mode))
acl_ids->z_aclp->z_hints |=
ZFS_ACL_AUTO_INHERIT;
if (zfsvfs->z_acl_mode == ZFS_ACL_GROUPMASK &&
zfsvfs->z_acl_inherit != ZFS_ACL_PASSTHROUGH &&
zfsvfs->z_acl_inherit != ZFS_ACL_PASSTHROUGH_X)
trim = B_TRUE;
zfs_acl_chmod(vap->va_mode, acl_ids->z_mode, B_FALSE,
trim, acl_ids->z_aclp);
}
2008-11-20 23:01:55 +03:00
}
if (inherited || vsecp) {
acl_ids->z_mode = zfs_mode_compute(acl_ids->z_mode,
acl_ids->z_aclp, &acl_ids->z_aclp->z_hints,
acl_ids->z_fuid, acl_ids->z_fgid);
if (ace_trivial_common(acl_ids->z_aclp, 0, zfs_ace_walk) == 0)
acl_ids->z_aclp->z_hints |= ZFS_ACL_TRIVIAL;
}
2009-07-03 02:44:48 +04:00
return (0);
}
2008-11-20 23:01:55 +03:00
2009-07-03 02:44:48 +04:00
/*
* Free ACL and fuid_infop, but not the acl_ids structure
*/
void
zfs_acl_ids_free(zfs_acl_ids_t *acl_ids)
{
if (acl_ids->z_aclp)
zfs_acl_free(acl_ids->z_aclp);
if (acl_ids->z_fuidp)
zfs_fuid_info_free(acl_ids->z_fuidp);
acl_ids->z_aclp = NULL;
acl_ids->z_fuidp = NULL;
}
2008-11-20 23:01:55 +03:00
2009-07-03 02:44:48 +04:00
boolean_t
Project Quota on ZFS Project quota is a new ZFS system space/object usage accounting and enforcement mechanism. Similar as user/group quota, project quota is another dimension of system quota. It bases on the new object attribute - project ID. Project ID is a numerical value to indicate to which project an object belongs. An object only can belong to one project though you (the object owner or privileged user) can change the object project ID via 'chattr -p' or 'zfs project [-s] -p' explicitly. The object also can inherit the project ID from its parent when created if the parent has the project inherit flag (that can be set via 'chattr +P' or 'zfs project -s [-p]'). By accounting the spaces/objects belong to the same project, we can know how many spaces/objects used by the project. And if we set the upper limit then we can control the spaces/objects that are consumed by such project. It is useful when multiple groups and users cooperate for the same project, or a user/group needs to participate in multiple projects. Support the following commands and functionalities: zfs set projectquota@project zfs set projectobjquota@project zfs get projectquota@project zfs get projectobjquota@project zfs get projectused@project zfs get projectobjused@project zfs projectspace zfs allow projectquota zfs allow projectobjquota zfs allow projectused zfs allow projectobjused zfs unallow projectquota zfs unallow projectobjquota zfs unallow projectused zfs unallow projectobjused chattr +/-P chattr -p project_id lsattr -p This patch also supports tree quota based on the project quota via "zfs project" commands set as following: zfs project [-d|-r] <file|directory ...> zfs project -C [-k] [-r] <file|directory ...> zfs project -c [-0] [-d|-r] [-p id] <file|directory ...> zfs project [-p id] [-r] [-s] <file|directory ...> For "df [-i] $DIR" command, if we set INHERIT (project ID) flag on the $DIR, then the proejct [obj]quota and [obj]used values for the $DIR's project ID will be shown as the total/free (avail) resource. Keep the same behavior as EXT4/XFS does. Reviewed-by: Andreas Dilger <andreas.dilger@intel.com> Reviewed-by Ned Bass <bass6@llnl.gov> Reviewed-by: Matthew Ahrens <mahrens@delphix.com> Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov> Signed-off-by: Fan Yong <fan.yong@intel.com> TEST_ZIMPORT_POOLS="zol-0.6.1 zol-0.6.2 master" Change-Id: Ib4f0544602e03fb61fd46a849d7ba51a6005693c Closes #6290
2018-02-14 01:54:54 +03:00
zfs_acl_ids_overquota(zfsvfs_t *zv, zfs_acl_ids_t *acl_ids, uint64_t projid)
2009-07-03 02:44:48 +04:00
{
Project Quota on ZFS Project quota is a new ZFS system space/object usage accounting and enforcement mechanism. Similar as user/group quota, project quota is another dimension of system quota. It bases on the new object attribute - project ID. Project ID is a numerical value to indicate to which project an object belongs. An object only can belong to one project though you (the object owner or privileged user) can change the object project ID via 'chattr -p' or 'zfs project [-s] -p' explicitly. The object also can inherit the project ID from its parent when created if the parent has the project inherit flag (that can be set via 'chattr +P' or 'zfs project -s [-p]'). By accounting the spaces/objects belong to the same project, we can know how many spaces/objects used by the project. And if we set the upper limit then we can control the spaces/objects that are consumed by such project. It is useful when multiple groups and users cooperate for the same project, or a user/group needs to participate in multiple projects. Support the following commands and functionalities: zfs set projectquota@project zfs set projectobjquota@project zfs get projectquota@project zfs get projectobjquota@project zfs get projectused@project zfs get projectobjused@project zfs projectspace zfs allow projectquota zfs allow projectobjquota zfs allow projectused zfs allow projectobjused zfs unallow projectquota zfs unallow projectobjquota zfs unallow projectused zfs unallow projectobjused chattr +/-P chattr -p project_id lsattr -p This patch also supports tree quota based on the project quota via "zfs project" commands set as following: zfs project [-d|-r] <file|directory ...> zfs project -C [-k] [-r] <file|directory ...> zfs project -c [-0] [-d|-r] [-p id] <file|directory ...> zfs project [-p id] [-r] [-s] <file|directory ...> For "df [-i] $DIR" command, if we set INHERIT (project ID) flag on the $DIR, then the proejct [obj]quota and [obj]used values for the $DIR's project ID will be shown as the total/free (avail) resource. Keep the same behavior as EXT4/XFS does. Reviewed-by: Andreas Dilger <andreas.dilger@intel.com> Reviewed-by Ned Bass <bass6@llnl.gov> Reviewed-by: Matthew Ahrens <mahrens@delphix.com> Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov> Signed-off-by: Fan Yong <fan.yong@intel.com> TEST_ZIMPORT_POOLS="zol-0.6.1 zol-0.6.2 master" Change-Id: Ib4f0544602e03fb61fd46a849d7ba51a6005693c Closes #6290
2018-02-14 01:54:54 +03:00
return (zfs_id_overquota(zv, DMU_USERUSED_OBJECT, acl_ids->z_fuid) ||
zfs_id_overquota(zv, DMU_GROUPUSED_OBJECT, acl_ids->z_fgid) ||
(projid != ZFS_DEFAULT_PROJID && projid != ZFS_INVALID_PROJID &&
zfs_id_overquota(zv, DMU_PROJECTUSED_OBJECT, projid)));
2008-11-20 23:01:55 +03:00
}
/*
* Retrieve a file's ACL
2008-11-20 23:01:55 +03:00
*/
int
zfs_getacl(znode_t *zp, vsecattr_t *vsecp, boolean_t skipaclchk, cred_t *cr)
{
zfs_acl_t *aclp;
ulong_t mask;
int error;
int count = 0;
int largeace = 0;
mask = vsecp->vsa_mask & (VSA_ACE | VSA_ACECNT |
VSA_ACE_ACLFLAGS | VSA_ACE_ALLTYPES);
if (mask == 0)
return (SET_ERROR(ENOSYS));
2008-11-20 23:01:55 +03:00
if ((error = zfs_zaccess(zp, ACE_READ_ACL, 0, skipaclchk, cr)))
return (error);
2008-11-20 23:01:55 +03:00
mutex_enter(&zp->z_acl_lock);
error = zfs_acl_node_read(zp, B_FALSE, &aclp, B_FALSE);
2008-11-20 23:01:55 +03:00
if (error != 0) {
mutex_exit(&zp->z_acl_lock);
return (error);
}
/*
* Scan ACL to determine number of ACEs
*/
if ((zp->z_pflags & ZFS_ACL_OBJ_ACE) && !(mask & VSA_ACE_ALLTYPES)) {
2008-11-20 23:01:55 +03:00
void *zacep = NULL;
uint64_t who;
uint32_t access_mask;
uint16_t type, iflags;
while ((zacep = zfs_acl_next_ace(aclp, zacep,
&who, &access_mask, &iflags, &type))) {
2008-11-20 23:01:55 +03:00
switch (type) {
case ACE_ACCESS_ALLOWED_OBJECT_ACE_TYPE:
case ACE_ACCESS_DENIED_OBJECT_ACE_TYPE:
case ACE_SYSTEM_AUDIT_OBJECT_ACE_TYPE:
case ACE_SYSTEM_ALARM_OBJECT_ACE_TYPE:
largeace++;
continue;
default:
count++;
}
}
vsecp->vsa_aclcnt = count;
} else
count = (int)aclp->z_acl_count;
2008-11-20 23:01:55 +03:00
if (mask & VSA_ACECNT) {
vsecp->vsa_aclcnt = count;
}
if (mask & VSA_ACE) {
size_t aclsz;
aclsz = count * sizeof (ace_t) +
sizeof (ace_object_t) * largeace;
vsecp->vsa_aclentp = kmem_alloc(aclsz, KM_SLEEP);
vsecp->vsa_aclentsz = aclsz;
if (aclp->z_version == ZFS_ACL_VERSION_FUID)
Prototype/structure update for Linux I appologize in advance why to many things ended up in this commit. When it could be seperated in to a whole series of commits teasing that all apart now would take considerable time and I'm not sure there's much merrit in it. As such I'll just summerize the intent of the changes which are all (or partly) in this commit. Broadly the intent is to remove as much Solaris specific code as possible and replace it with native Linux equivilants. More specifically: 1) Replace all instances of zfsvfs_t with zfs_sb_t. While the type is largely the same calling it private super block data rather than a zfsvfs is more consistent with how Linux names this. While non critical it makes the code easier to read when your thinking in Linux friendly VFS terms. 2) Replace vnode_t with struct inode. The Linux VFS doesn't have the notion of a vnode and there's absolutely no good reason to create one. There are in fact several good reasons to remove it. It just adds overhead on Linux if we were to manage one, it conplicates the code, and it likely will lead to bugs so there's a good change it will be out of date. The code has been updated to remove all need for this type. 3) Replace all vtype_t's with umode types. Along with this shift all uses of types to mode bits. The Solaris code would pass a vtype which is redundant with the Linux mode. Just update all the code to use the Linux mode macros and remove this redundancy. 4) Remove using of vn_* helpers and replace where needed with inode helpers. The big example here is creating iput_aync to replace vn_rele_async. Other vn helpers will be addressed as needed but they should be be emulated. They are a Solaris VFS'ism and should simply be replaced with Linux equivilants. 5) Update znode alloc/free code. Under Linux it's common to embed the inode specific data with the inode itself. This removes the need for an extra memory allocation. In zfs this information is called a znode and it now embeds the inode with it. Allocators have been updated accordingly. 6) Minimal integration with the vfs flags for setting up the super block and handling mount options has been added this code will need to be refined but functionally it's all there. This will be the first and last of these to large to review commits.
2011-02-08 22:16:06 +03:00
zfs_copy_fuid_2_ace(ZTOZSB(zp), aclp, cr,
2008-11-20 23:01:55 +03:00
vsecp->vsa_aclentp, !(mask & VSA_ACE_ALLTYPES));
else {
zfs_acl_node_t *aclnode;
void *start = vsecp->vsa_aclentp;
for (aclnode = list_head(&aclp->z_acl); aclnode;
aclnode = list_next(&aclp->z_acl, aclnode)) {
memcpy(start, aclnode->z_acldata,
aclnode->z_size);
start = (caddr_t)start + aclnode->z_size;
}
ASSERT((caddr_t)start - (caddr_t)vsecp->vsa_aclentp ==
aclp->z_acl_bytes);
2008-11-20 23:01:55 +03:00
}
}
if (mask & VSA_ACE_ACLFLAGS) {
vsecp->vsa_aclflags = 0;
if (zp->z_pflags & ZFS_ACL_DEFAULTED)
2008-11-20 23:01:55 +03:00
vsecp->vsa_aclflags |= ACL_DEFAULTED;
if (zp->z_pflags & ZFS_ACL_PROTECTED)
2008-11-20 23:01:55 +03:00
vsecp->vsa_aclflags |= ACL_PROTECTED;
if (zp->z_pflags & ZFS_ACL_AUTO_INHERIT)
2008-11-20 23:01:55 +03:00
vsecp->vsa_aclflags |= ACL_AUTO_INHERIT;
}
mutex_exit(&zp->z_acl_lock);
return (0);
}
int
zfs_vsec_2_aclp(zfsvfs_t *zfsvfs, umode_t obj_mode,
2009-07-03 02:44:48 +04:00
vsecattr_t *vsecp, cred_t *cr, zfs_fuid_info_t **fuidp, zfs_acl_t **zaclp)
2008-11-20 23:01:55 +03:00
{
zfs_acl_t *aclp;
zfs_acl_node_t *aclnode;
int aclcnt = vsecp->vsa_aclcnt;
int error;
if (vsecp->vsa_aclcnt > MAX_ACL_ENTRIES || vsecp->vsa_aclcnt <= 0)
return (SET_ERROR(EINVAL));
2008-11-20 23:01:55 +03:00
aclp = zfs_acl_alloc(zfs_acl_version(zfsvfs->z_version));
2008-11-20 23:01:55 +03:00
aclp->z_hints = 0;
aclnode = zfs_acl_node_alloc(aclcnt * sizeof (zfs_object_ace_t));
if (aclp->z_version == ZFS_ACL_VERSION_INITIAL) {
Prototype/structure update for Linux I appologize in advance why to many things ended up in this commit. When it could be seperated in to a whole series of commits teasing that all apart now would take considerable time and I'm not sure there's much merrit in it. As such I'll just summerize the intent of the changes which are all (or partly) in this commit. Broadly the intent is to remove as much Solaris specific code as possible and replace it with native Linux equivilants. More specifically: 1) Replace all instances of zfsvfs_t with zfs_sb_t. While the type is largely the same calling it private super block data rather than a zfsvfs is more consistent with how Linux names this. While non critical it makes the code easier to read when your thinking in Linux friendly VFS terms. 2) Replace vnode_t with struct inode. The Linux VFS doesn't have the notion of a vnode and there's absolutely no good reason to create one. There are in fact several good reasons to remove it. It just adds overhead on Linux if we were to manage one, it conplicates the code, and it likely will lead to bugs so there's a good change it will be out of date. The code has been updated to remove all need for this type. 3) Replace all vtype_t's with umode types. Along with this shift all uses of types to mode bits. The Solaris code would pass a vtype which is redundant with the Linux mode. Just update all the code to use the Linux mode macros and remove this redundancy. 4) Remove using of vn_* helpers and replace where needed with inode helpers. The big example here is creating iput_aync to replace vn_rele_async. Other vn helpers will be addressed as needed but they should be be emulated. They are a Solaris VFS'ism and should simply be replaced with Linux equivilants. 5) Update znode alloc/free code. Under Linux it's common to embed the inode specific data with the inode itself. This removes the need for an extra memory allocation. In zfs this information is called a znode and it now embeds the inode with it. Allocators have been updated accordingly. 6) Minimal integration with the vfs flags for setting up the super block and handling mount options has been added this code will need to be refined but functionally it's all there. This will be the first and last of these to large to review commits.
2011-02-08 22:16:06 +03:00
if ((error = zfs_copy_ace_2_oldace(obj_mode, aclp,
2008-11-20 23:01:55 +03:00
(ace_t *)vsecp->vsa_aclentp, aclnode->z_acldata,
aclcnt, &aclnode->z_size)) != 0) {
zfs_acl_free(aclp);
zfs_acl_node_free(aclnode);
return (error);
}
} else {
if ((error = zfs_copy_ace_2_fuid(zfsvfs, obj_mode, aclp,
2008-11-20 23:01:55 +03:00
vsecp->vsa_aclentp, aclnode->z_acldata, aclcnt,
2009-07-03 02:44:48 +04:00
&aclnode->z_size, fuidp, cr)) != 0) {
2008-11-20 23:01:55 +03:00
zfs_acl_free(aclp);
zfs_acl_node_free(aclnode);
return (error);
}
}
aclp->z_acl_bytes = aclnode->z_size;
aclnode->z_ace_count = aclcnt;
aclp->z_acl_count = aclcnt;
list_insert_head(&aclp->z_acl, aclnode);
/*
* If flags are being set then add them to z_hints
*/
if (vsecp->vsa_mask & VSA_ACE_ACLFLAGS) {
if (vsecp->vsa_aclflags & ACL_PROTECTED)
aclp->z_hints |= ZFS_ACL_PROTECTED;
if (vsecp->vsa_aclflags & ACL_DEFAULTED)
aclp->z_hints |= ZFS_ACL_DEFAULTED;
if (vsecp->vsa_aclflags & ACL_AUTO_INHERIT)
aclp->z_hints |= ZFS_ACL_AUTO_INHERIT;
}
*zaclp = aclp;
return (0);
}
/*
* Set a file's ACL
2008-11-20 23:01:55 +03:00
*/
int
zfs_setacl(znode_t *zp, vsecattr_t *vsecp, boolean_t skipaclchk, cred_t *cr)
{
zfsvfs_t *zfsvfs = ZTOZSB(zp);
zilog_t *zilog = zfsvfs->z_log;
2008-11-20 23:01:55 +03:00
ulong_t mask = vsecp->vsa_mask & (VSA_ACE | VSA_ACECNT);
dmu_tx_t *tx;
int error;
zfs_acl_t *aclp;
zfs_fuid_info_t *fuidp = NULL;
2009-07-03 02:44:48 +04:00
boolean_t fuid_dirtied;
uint64_t acl_obj;
2008-11-20 23:01:55 +03:00
if (mask == 0)
return (SET_ERROR(ENOSYS));
2008-11-20 23:01:55 +03:00
if (zp->z_pflags & ZFS_IMMUTABLE)
return (SET_ERROR(EPERM));
2008-11-20 23:01:55 +03:00
if ((error = zfs_zaccess(zp, ACE_WRITE_ACL, 0, skipaclchk, cr)))
2008-11-20 23:01:55 +03:00
return (error);
error = zfs_vsec_2_aclp(zfsvfs, ZTOI(zp)->i_mode, vsecp, cr, &fuidp,
2009-07-03 02:44:48 +04:00
&aclp);
2008-11-20 23:01:55 +03:00
if (error)
return (error);
/*
* If ACL wide flags aren't being set then preserve any
* existing flags.
*/
if (!(vsecp->vsa_mask & VSA_ACE_ACLFLAGS)) {
aclp->z_hints |=
(zp->z_pflags & V4_ACL_WIDE_FLAGS);
2008-11-20 23:01:55 +03:00
}
top:
mutex_enter(&zp->z_acl_lock);
mutex_enter(&zp->z_lock);
2008-11-20 23:01:55 +03:00
tx = dmu_tx_create(zfsvfs->z_os);
dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_TRUE);
fuid_dirtied = zfsvfs->z_fuid_dirty;
if (fuid_dirtied)
zfs_fuid_txhold(zfsvfs, tx);
/*
* If old version and ACL won't fit in bonus and we aren't
* upgrading then take out necessary DMU holds
*/
if ((acl_obj = zfs_external_acl(zp)) != 0) {
if (zfsvfs->z_version >= ZPL_VERSION_FUID &&
zfs_znode_acl_version(zp) <= ZFS_ACL_VERSION_INITIAL) {
dmu_tx_hold_free(tx, acl_obj, 0,
DMU_OBJECT_END);
dmu_tx_hold_write(tx, DMU_NEW_OBJECT, 0,
aclp->z_acl_bytes);
2008-11-20 23:01:55 +03:00
} else {
dmu_tx_hold_write(tx, acl_obj, 0, aclp->z_acl_bytes);
2008-11-20 23:01:55 +03:00
}
} else if (!zp->z_is_sa && aclp->z_acl_bytes > ZFS_ACE_SPACE) {
2008-11-20 23:01:55 +03:00
dmu_tx_hold_write(tx, DMU_NEW_OBJECT, 0, aclp->z_acl_bytes);
}
zfs_sa_upgrade_txholds(tx, zp);
2009-01-16 00:59:39 +03:00
error = dmu_tx_assign(tx, TXG_NOWAIT);
2008-11-20 23:01:55 +03:00
if (error) {
mutex_exit(&zp->z_acl_lock);
mutex_exit(&zp->z_lock);
2009-01-16 00:59:39 +03:00
if (error == ERESTART) {
2008-11-20 23:01:55 +03:00
dmu_tx_wait(tx);
dmu_tx_abort(tx);
goto top;
}
dmu_tx_abort(tx);
zfs_acl_free(aclp);
return (error);
}
2009-07-03 02:44:48 +04:00
error = zfs_aclset_common(zp, aclp, cr, tx);
2008-11-20 23:01:55 +03:00
ASSERT(error == 0);
ASSERT(zp->z_acl_cached == NULL);
2009-08-18 22:43:27 +04:00
zp->z_acl_cached = aclp;
2008-11-20 23:01:55 +03:00
2009-07-03 02:44:48 +04:00
if (fuid_dirtied)
zfs_fuid_sync(zfsvfs, tx);
2009-07-03 02:44:48 +04:00
2008-11-20 23:01:55 +03:00
zfs_log_acl(zilog, tx, zp, vsecp, fuidp);
if (fuidp)
zfs_fuid_info_free(fuidp);
dmu_tx_commit(tx);
2008-11-20 23:01:55 +03:00
mutex_exit(&zp->z_lock);
mutex_exit(&zp->z_acl_lock);
2008-11-20 23:01:55 +03:00
return (error);
}
/*
2009-07-03 02:44:48 +04:00
* Check accesses of interest (AoI) against attributes of the dataset
* such as read-only. Returns zero if no AoI conflict with dataset
* attributes, otherwise an appropriate errno is returned.
2008-11-20 23:01:55 +03:00
*/
static int
2009-07-03 02:44:48 +04:00
zfs_zaccess_dataset_check(znode_t *zp, uint32_t v4_mode)
2008-11-20 23:01:55 +03:00
{
Linux compat 2.6.39: mount_nodev() The .get_sb callback has been replaced by a .mount callback in the file_system_type structure. When using the new interface the caller must now use the mount_nodev() helper. Unfortunately, the new interface no longer passes the vfsmount down to the zfs layers. This poses a problem for the existing implementation because we currently save this pointer in the super block for latter use. It provides our only entry point in to the namespace layer for manipulating certain mount options. This needed to be done originally to allow commands like 'zfs set atime=off tank' to work properly. It also allowed me to keep more of the original Solaris code unmodified. Under Solaris there is a 1-to-1 mapping between a mount point and a file system so this is a fairly natural thing to do. However, under Linux they many be multiple entries in the namespace which reference the same filesystem. Thus keeping a back reference from the filesystem to the namespace is complicated. Rather than introduce some ugly hack to get the vfsmount and continue as before. I'm leveraging this API change to update the ZFS code to do things in a more natural way for Linux. This has the upside that is resolves the compatibility issue for the long term and fixes several other minor bugs which have been reported. This commit updates the code to remove this vfsmount back reference entirely. All modifications to filesystem mount options are now passed in to the kernel via a '-o remount'. This is the expected Linux mechanism and allows the namespace to properly handle any options which apply to it before passing them on to the file system itself. Aside from fixing the compatibility issue, removing the vfsmount has had the benefit of simplifying the code. This change which fairly involved has turned out nicely. Closes #246 Closes #217 Closes #187 Closes #248 Closes #231
2011-05-19 22:44:07 +04:00
if ((v4_mode & WRITE_MASK) && (zfs_is_readonly(ZTOZSB(zp))) &&
(!Z_ISDEV(ZTOI(zp)->i_mode) ||
(Z_ISDEV(ZTOI(zp)->i_mode) && (v4_mode & WRITE_MASK_ATTRS)))) {
return (SET_ERROR(EROFS));
2008-11-20 23:01:55 +03:00
}
/*
* Intentionally allow ZFS_READONLY through here.
* See zfs_zaccess_common().
2008-11-20 23:01:55 +03:00
*/
if ((v4_mode & WRITE_MASK_DATA) &&
(zp->z_pflags & ZFS_IMMUTABLE)) {
return (SET_ERROR(EPERM));
2008-11-20 23:01:55 +03:00
}
if ((v4_mode & (ACE_DELETE | ACE_DELETE_CHILD)) &&
(zp->z_pflags & ZFS_NOUNLINK)) {
return (SET_ERROR(EPERM));
2008-11-20 23:01:55 +03:00
}
if (((v4_mode & (ACE_READ_DATA|ACE_EXECUTE)) &&
(zp->z_pflags & ZFS_AV_QUARANTINED))) {
return (SET_ERROR(EACCES));
2008-11-20 23:01:55 +03:00
}
2009-07-03 02:44:48 +04:00
return (0);
}
/*
* The primary usage of this function is to loop through all of the
* ACEs in the znode, determining what accesses of interest (AoI) to
* the caller are allowed or denied. The AoI are expressed as bits in
* the working_mode parameter. As each ACE is processed, bits covered
* by that ACE are removed from the working_mode. This removal
* facilitates two things. The first is that when the working mode is
* empty (= 0), we know we've looked at all the AoI. The second is
* that the ACE interpretation rules don't allow a later ACE to undo
* something granted or denied by an earlier ACE. Removing the
* discovered access or denial enforces this rule. At the end of
* processing the ACEs, all AoI that were found to be denied are
* placed into the working_mode, giving the caller a mask of denied
* accesses. Returns:
* 0 if all AoI granted
Native Encryption for ZFS on Linux This change incorporates three major pieces: The first change is a keystore that manages wrapping and encryption keys for encrypted datasets. These commands mostly involve manipulating the new DSL Crypto Key ZAP Objects that live in the MOS. Each encrypted dataset has its own DSL Crypto Key that is protected with a user's key. This level of indirection allows users to change their keys without re-encrypting their entire datasets. The change implements the new subcommands "zfs load-key", "zfs unload-key" and "zfs change-key" which allow the user to manage their encryption keys and settings. In addition, several new flags and properties have been added to allow dataset creation and to make mounting and unmounting more convenient. The second piece of this patch provides the ability to encrypt, decyrpt, and authenticate protected datasets. Each object set maintains a Merkel tree of Message Authentication Codes that protect the lower layers, similarly to how checksums are maintained. This part impacts the zio layer, which handles the actual encryption and generation of MACs, as well as the ARC and DMU, which need to be able to handle encrypted buffers and protected data. The last addition is the ability to do raw, encrypted sends and receives. The idea here is to send raw encrypted and compressed data and receive it exactly as is on a backup system. This means that the dataset on the receiving system is protected using the same user key that is in use on the sending side. By doing so, datasets can be efficiently backed up to an untrusted system without fear of data being compromised. Reviewed by: Matthew Ahrens <mahrens@delphix.com> Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov> Reviewed-by: Jorgen Lundman <lundman@lundman.net> Signed-off-by: Tom Caputi <tcaputi@datto.com> Closes #494 Closes #5769
2017-08-14 20:36:48 +03:00
* EACCES if the denied mask is non-zero
2009-07-03 02:44:48 +04:00
* other error if abnormal failure (e.g., IO error)
*
* A secondary usage of the function is to determine if any of the
* AoI are granted. If an ACE grants any access in
* the working_mode, we immediately short circuit out of the function.
* This mode is chosen by setting anyaccess to B_TRUE. The
* working_mode is not a denied access mask upon exit if the function
* is used in this manner.
*/
static int
zfs_zaccess_aces_check(znode_t *zp, uint32_t *working_mode,
boolean_t anyaccess, cred_t *cr)
{
zfsvfs_t *zfsvfs = ZTOZSB(zp);
2009-07-03 02:44:48 +04:00
zfs_acl_t *aclp;
int error;
uid_t uid = crgetuid(cr);
Prototype/structure update for Linux I appologize in advance why to many things ended up in this commit. When it could be seperated in to a whole series of commits teasing that all apart now would take considerable time and I'm not sure there's much merrit in it. As such I'll just summerize the intent of the changes which are all (or partly) in this commit. Broadly the intent is to remove as much Solaris specific code as possible and replace it with native Linux equivilants. More specifically: 1) Replace all instances of zfsvfs_t with zfs_sb_t. While the type is largely the same calling it private super block data rather than a zfsvfs is more consistent with how Linux names this. While non critical it makes the code easier to read when your thinking in Linux friendly VFS terms. 2) Replace vnode_t with struct inode. The Linux VFS doesn't have the notion of a vnode and there's absolutely no good reason to create one. There are in fact several good reasons to remove it. It just adds overhead on Linux if we were to manage one, it conplicates the code, and it likely will lead to bugs so there's a good change it will be out of date. The code has been updated to remove all need for this type. 3) Replace all vtype_t's with umode types. Along with this shift all uses of types to mode bits. The Solaris code would pass a vtype which is redundant with the Linux mode. Just update all the code to use the Linux mode macros and remove this redundancy. 4) Remove using of vn_* helpers and replace where needed with inode helpers. The big example here is creating iput_aync to replace vn_rele_async. Other vn helpers will be addressed as needed but they should be be emulated. They are a Solaris VFS'ism and should simply be replaced with Linux equivilants. 5) Update znode alloc/free code. Under Linux it's common to embed the inode specific data with the inode itself. This removes the need for an extra memory allocation. In zfs this information is called a znode and it now embeds the inode with it. Allocators have been updated accordingly. 6) Minimal integration with the vfs flags for setting up the super block and handling mount options has been added this code will need to be refined but functionally it's all there. This will be the first and last of these to large to review commits.
2011-02-08 22:16:06 +03:00
uint64_t who;
2009-07-03 02:44:48 +04:00
uint16_t type, iflags;
uint16_t entry_type;
uint32_t access_mask;
uint32_t deny_mask = 0;
zfs_ace_hdr_t *acep = NULL;
boolean_t checkit;
uid_t gowner;
uid_t fowner;
zfs_fuid_map_ids(zp, cr, &fowner, &gowner);
2008-11-20 23:01:55 +03:00
mutex_enter(&zp->z_acl_lock);
error = zfs_acl_node_read(zp, B_FALSE, &aclp, B_FALSE);
2008-11-20 23:01:55 +03:00
if (error != 0) {
mutex_exit(&zp->z_acl_lock);
return (error);
}
ASSERT(zp->z_acl_cached);
while ((acep = zfs_acl_next_ace(aclp, acep, &who, &access_mask,
&iflags, &type))) {
2009-07-03 02:44:48 +04:00
uint32_t mask_matched;
2008-11-20 23:01:55 +03:00
if (!zfs_acl_valid_ace_type(type, iflags))
continue;
Prototype/structure update for Linux I appologize in advance why to many things ended up in this commit. When it could be seperated in to a whole series of commits teasing that all apart now would take considerable time and I'm not sure there's much merrit in it. As such I'll just summerize the intent of the changes which are all (or partly) in this commit. Broadly the intent is to remove as much Solaris specific code as possible and replace it with native Linux equivilants. More specifically: 1) Replace all instances of zfsvfs_t with zfs_sb_t. While the type is largely the same calling it private super block data rather than a zfsvfs is more consistent with how Linux names this. While non critical it makes the code easier to read when your thinking in Linux friendly VFS terms. 2) Replace vnode_t with struct inode. The Linux VFS doesn't have the notion of a vnode and there's absolutely no good reason to create one. There are in fact several good reasons to remove it. It just adds overhead on Linux if we were to manage one, it conplicates the code, and it likely will lead to bugs so there's a good change it will be out of date. The code has been updated to remove all need for this type. 3) Replace all vtype_t's with umode types. Along with this shift all uses of types to mode bits. The Solaris code would pass a vtype which is redundant with the Linux mode. Just update all the code to use the Linux mode macros and remove this redundancy. 4) Remove using of vn_* helpers and replace where needed with inode helpers. The big example here is creating iput_aync to replace vn_rele_async. Other vn helpers will be addressed as needed but they should be be emulated. They are a Solaris VFS'ism and should simply be replaced with Linux equivilants. 5) Update znode alloc/free code. Under Linux it's common to embed the inode specific data with the inode itself. This removes the need for an extra memory allocation. In zfs this information is called a znode and it now embeds the inode with it. Allocators have been updated accordingly. 6) Minimal integration with the vfs flags for setting up the super block and handling mount options has been added this code will need to be refined but functionally it's all there. This will be the first and last of these to large to review commits.
2011-02-08 22:16:06 +03:00
if (S_ISDIR(ZTOI(zp)->i_mode) &&
(iflags & ACE_INHERIT_ONLY_ACE))
2008-11-20 23:01:55 +03:00
continue;
2009-07-03 02:44:48 +04:00
/* Skip ACE if it does not affect any AoI */
mask_matched = (access_mask & *working_mode);
if (!mask_matched)
continue;
2008-11-20 23:01:55 +03:00
entry_type = (iflags & ACE_TYPE_FLAGS);
checkit = B_FALSE;
switch (entry_type) {
case ACE_OWNER:
if (uid == fowner)
2008-11-20 23:01:55 +03:00
checkit = B_TRUE;
break;
case OWNING_GROUP:
who = gowner;
zfs_fallthrough;
2008-11-20 23:01:55 +03:00
case ACE_IDENTIFIER_GROUP:
checkit = zfs_groupmember(zfsvfs, who, cr);
2008-11-20 23:01:55 +03:00
break;
case ACE_EVERYONE:
checkit = B_TRUE;
break;
/* USER Entry */
default:
if (entry_type == 0) {
uid_t newid;
newid = zfs_fuid_map_id(zfsvfs, who, cr,
2008-11-20 23:01:55 +03:00
ZFS_ACE_USER);
if (newid != IDMAP_WK_CREATOR_OWNER_UID &&
uid == newid)
checkit = B_TRUE;
break;
} else {
mutex_exit(&zp->z_acl_lock);
return (SET_ERROR(EIO));
2008-11-20 23:01:55 +03:00
}
}
if (checkit) {
2009-07-03 02:44:48 +04:00
if (type == DENY) {
DTRACE_PROBE3(zfs__ace__denies,
znode_t *, zp,
zfs_ace_hdr_t *, acep,
uint32_t, mask_matched);
deny_mask |= mask_matched;
} else {
DTRACE_PROBE3(zfs__ace__allows,
znode_t *, zp,
zfs_ace_hdr_t *, acep,
uint32_t, mask_matched);
if (anyaccess) {
mutex_exit(&zp->z_acl_lock);
return (0);
}
2008-11-20 23:01:55 +03:00
}
2009-07-03 02:44:48 +04:00
*working_mode &= ~mask_matched;
2008-11-20 23:01:55 +03:00
}
/* Are we done? */
if (*working_mode == 0)
break;
}
mutex_exit(&zp->z_acl_lock);
/* Put the found 'denies' back on the working mode */
if (deny_mask) {
*working_mode |= deny_mask;
return (SET_ERROR(EACCES));
} else if (*working_mode) {
return (-1);
}
2008-11-20 23:01:55 +03:00
return (0);
}
2009-07-03 02:44:48 +04:00
/*
* Return true if any access whatsoever granted, we don't actually
* care what access is granted.
*/
boolean_t
zfs_has_access(znode_t *zp, cred_t *cr)
{
uint32_t have = ACE_ALL_PERMS;
if (zfs_zaccess_aces_check(zp, &have, B_TRUE, cr) != 0) {
uid_t owner;
owner = zfs_fuid_map_id(ZTOZSB(zp),
KUID_TO_SUID(ZTOI(zp)->i_uid), cr, ZFS_OWNER);
Prototype/structure update for Linux I appologize in advance why to many things ended up in this commit. When it could be seperated in to a whole series of commits teasing that all apart now would take considerable time and I'm not sure there's much merrit in it. As such I'll just summerize the intent of the changes which are all (or partly) in this commit. Broadly the intent is to remove as much Solaris specific code as possible and replace it with native Linux equivilants. More specifically: 1) Replace all instances of zfsvfs_t with zfs_sb_t. While the type is largely the same calling it private super block data rather than a zfsvfs is more consistent with how Linux names this. While non critical it makes the code easier to read when your thinking in Linux friendly VFS terms. 2) Replace vnode_t with struct inode. The Linux VFS doesn't have the notion of a vnode and there's absolutely no good reason to create one. There are in fact several good reasons to remove it. It just adds overhead on Linux if we were to manage one, it conplicates the code, and it likely will lead to bugs so there's a good change it will be out of date. The code has been updated to remove all need for this type. 3) Replace all vtype_t's with umode types. Along with this shift all uses of types to mode bits. The Solaris code would pass a vtype which is redundant with the Linux mode. Just update all the code to use the Linux mode macros and remove this redundancy. 4) Remove using of vn_* helpers and replace where needed with inode helpers. The big example here is creating iput_aync to replace vn_rele_async. Other vn helpers will be addressed as needed but they should be be emulated. They are a Solaris VFS'ism and should simply be replaced with Linux equivilants. 5) Update znode alloc/free code. Under Linux it's common to embed the inode specific data with the inode itself. This removes the need for an extra memory allocation. In zfs this information is called a znode and it now embeds the inode with it. Allocators have been updated accordingly. 6) Minimal integration with the vfs flags for setting up the super block and handling mount options has been added this code will need to be refined but functionally it's all there. This will be the first and last of these to large to review commits.
2011-02-08 22:16:06 +03:00
return (secpolicy_vnode_any_access(cr, ZTOI(zp), owner) == 0);
2009-07-03 02:44:48 +04:00
}
return (B_TRUE);
}
/*
* Simplified access check for case where ACL is known to not contain
* information beyond what is defined in the mode. In this case, we
* can pass along to the kernel / vfs generic_permission() check, which
* evaluates the mode and POSIX ACL.
*
* NFSv4 ACLs allow granting permissions that are usually relegated only
* to the file owner or superuser. Examples are ACE_WRITE_OWNER (chown),
* ACE_WRITE_ACL(chmod), and ACE_DELETE. ACE_DELETE requests must fail
* because with conventional posix permissions, right to delete file
* is determined by write bit on the parent dir.
*
* If unmappable perms are requested, then we must return EPERM
* and include those bits in the working_mode so that the caller of
* zfs_zaccess_common() can decide whether to perform additional
* policy / capability checks. EACCES is used in zfs_zaccess_aces_check()
* to indicate access check failed due to explicit DENY entry, and so
* we want to avoid that here.
*/
static int
zfs_zaccess_trivial(znode_t *zp, uint32_t *working_mode, cred_t *cr)
{
int err, mask;
int unmapped = 0;
ASSERT(zp->z_pflags & ZFS_ACL_TRIVIAL);
mask = zfs_v4_to_unix(*working_mode, &unmapped);
if (mask == 0 || unmapped) {
*working_mode = unmapped;
return (unmapped ? SET_ERROR(EPERM) : 0);
}
#if defined(HAVE_IOPS_PERMISSION_USERNS)
err = generic_permission(cr->user_ns, ZTOI(zp), mask);
#else
err = generic_permission(ZTOI(zp), mask);
#endif
if (err != 0) {
return (SET_ERROR(EPERM));
}
*working_mode = unmapped;
return (0);
}
2009-07-03 02:44:48 +04:00
static int
zfs_zaccess_common(znode_t *zp, uint32_t v4_mode, uint32_t *working_mode,
boolean_t *check_privs, boolean_t skipaclchk, cred_t *cr)
{
zfsvfs_t *zfsvfs = ZTOZSB(zp);
2009-07-03 02:44:48 +04:00
int err;
*working_mode = v4_mode;
*check_privs = B_TRUE;
/*
* Short circuit empty requests
*/
if (v4_mode == 0 || zfsvfs->z_replay) {
2009-07-03 02:44:48 +04:00
*working_mode = 0;
return (0);
}
if ((err = zfs_zaccess_dataset_check(zp, v4_mode)) != 0) {
*check_privs = B_FALSE;
return (err);
}
/*
* The caller requested that the ACL check be skipped. This
* would only happen if the caller checked VOP_ACCESS() with a
* 32 bit ACE mask and already had the appropriate permissions.
*/
if (skipaclchk) {
*working_mode = 0;
return (0);
}
/*
* Note: ZFS_READONLY represents the "DOS R/O" attribute.
* When that flag is set, we should behave as if write access
* were not granted by anything in the ACL. In particular:
* We _must_ allow writes after opening the file r/w, then
* setting the DOS R/O attribute, and writing some more.
* (Similar to how you can write after fchmod(fd, 0444).)
*
* Therefore ZFS_READONLY is ignored in the dataset check
* above, and checked here as if part of the ACL check.
* Also note: DOS R/O is ignored for directories.
*/
if ((v4_mode & WRITE_MASK_DATA) &&
S_ISDIR(ZTOI(zp)->i_mode) &&
(zp->z_pflags & ZFS_READONLY)) {
return (SET_ERROR(EPERM));
}
if (zp->z_pflags & ZFS_ACL_TRIVIAL)
return (zfs_zaccess_trivial(zp, working_mode, cr));
2009-07-03 02:44:48 +04:00
return (zfs_zaccess_aces_check(zp, working_mode, B_FALSE, cr));
}
2008-11-20 23:01:55 +03:00
static int
zfs_zaccess_append(znode_t *zp, uint32_t *working_mode, boolean_t *check_privs,
cred_t *cr)
{
if (*working_mode != ACE_WRITE_DATA)
return (SET_ERROR(EACCES));
2008-11-20 23:01:55 +03:00
return (zfs_zaccess_common(zp, ACE_APPEND_DATA, working_mode,
check_privs, B_FALSE, cr));
}
2009-08-18 22:43:27 +04:00
int
zfs_fastaccesschk_execute(znode_t *zdp, cred_t *cr)
{
boolean_t owner = B_FALSE;
boolean_t groupmbr = B_FALSE;
boolean_t is_attr;
uid_t uid = crgetuid(cr);
int error;
if (zdp->z_pflags & ZFS_AV_QUARANTINED)
return (SET_ERROR(EACCES));
2009-08-18 22:43:27 +04:00
is_attr = ((zdp->z_pflags & ZFS_XATTR) &&
Prototype/structure update for Linux I appologize in advance why to many things ended up in this commit. When it could be seperated in to a whole series of commits teasing that all apart now would take considerable time and I'm not sure there's much merrit in it. As such I'll just summerize the intent of the changes which are all (or partly) in this commit. Broadly the intent is to remove as much Solaris specific code as possible and replace it with native Linux equivilants. More specifically: 1) Replace all instances of zfsvfs_t with zfs_sb_t. While the type is largely the same calling it private super block data rather than a zfsvfs is more consistent with how Linux names this. While non critical it makes the code easier to read when your thinking in Linux friendly VFS terms. 2) Replace vnode_t with struct inode. The Linux VFS doesn't have the notion of a vnode and there's absolutely no good reason to create one. There are in fact several good reasons to remove it. It just adds overhead on Linux if we were to manage one, it conplicates the code, and it likely will lead to bugs so there's a good change it will be out of date. The code has been updated to remove all need for this type. 3) Replace all vtype_t's with umode types. Along with this shift all uses of types to mode bits. The Solaris code would pass a vtype which is redundant with the Linux mode. Just update all the code to use the Linux mode macros and remove this redundancy. 4) Remove using of vn_* helpers and replace where needed with inode helpers. The big example here is creating iput_aync to replace vn_rele_async. Other vn helpers will be addressed as needed but they should be be emulated. They are a Solaris VFS'ism and should simply be replaced with Linux equivilants. 5) Update znode alloc/free code. Under Linux it's common to embed the inode specific data with the inode itself. This removes the need for an extra memory allocation. In zfs this information is called a znode and it now embeds the inode with it. Allocators have been updated accordingly. 6) Minimal integration with the vfs flags for setting up the super block and handling mount options has been added this code will need to be refined but functionally it's all there. This will be the first and last of these to large to review commits.
2011-02-08 22:16:06 +03:00
(S_ISDIR(ZTOI(zdp)->i_mode)));
2009-08-18 22:43:27 +04:00
if (is_attr)
goto slow;
2009-08-18 22:43:27 +04:00
mutex_enter(&zdp->z_acl_lock);
if (zdp->z_pflags & ZFS_NO_EXECS_DENIED) {
2009-08-18 22:43:27 +04:00
mutex_exit(&zdp->z_acl_lock);
return (0);
}
if (KUID_TO_SUID(ZTOI(zdp)->i_uid) != 0 ||
KGID_TO_SGID(ZTOI(zdp)->i_gid) != 0) {
2009-08-18 22:43:27 +04:00
mutex_exit(&zdp->z_acl_lock);
goto slow;
}
if (uid == KUID_TO_SUID(ZTOI(zdp)->i_uid)) {
2009-08-18 22:43:27 +04:00
owner = B_TRUE;
if (zdp->z_mode & S_IXUSR) {
2009-08-18 22:43:27 +04:00
mutex_exit(&zdp->z_acl_lock);
return (0);
} else {
mutex_exit(&zdp->z_acl_lock);
goto slow;
}
}
if (groupmember(KGID_TO_SGID(ZTOI(zdp)->i_gid), cr)) {
2009-08-18 22:43:27 +04:00
groupmbr = B_TRUE;
if (zdp->z_mode & S_IXGRP) {
2009-08-18 22:43:27 +04:00
mutex_exit(&zdp->z_acl_lock);
return (0);
} else {
mutex_exit(&zdp->z_acl_lock);
goto slow;
}
}
if (!owner && !groupmbr) {
if (zdp->z_mode & S_IXOTH) {
2009-08-18 22:43:27 +04:00
mutex_exit(&zdp->z_acl_lock);
return (0);
}
}
mutex_exit(&zdp->z_acl_lock);
slow:
DTRACE_PROBE(zfs__fastpath__execute__access__miss);
if ((error = zfs_enter(ZTOZSB(zdp), FTAG)) != 0)
return (error);
2009-08-18 22:43:27 +04:00
error = zfs_zaccess(zdp, ACE_EXECUTE, 0, B_FALSE, cr);
zfs_exit(ZTOZSB(zdp), FTAG);
2009-08-18 22:43:27 +04:00
return (error);
}
2008-11-20 23:01:55 +03:00
/*
* Determine whether Access should be granted/denied.
*
* The least priv subsystem is always consulted as a basic privilege
* can define any form of access.
2008-11-20 23:01:55 +03:00
*/
int
zfs_zaccess(znode_t *zp, int mode, int flags, boolean_t skipaclchk, cred_t *cr)
{
uint32_t working_mode;
int error;
int is_attr;
boolean_t check_privs;
znode_t *xzp;
znode_t *check_zp = zp;
mode_t needed_bits;
uid_t owner;
2008-11-20 23:01:55 +03:00
is_attr = ((zp->z_pflags & ZFS_XATTR) && S_ISDIR(ZTOI(zp)->i_mode));
2008-11-20 23:01:55 +03:00
/*
* If attribute then validate against base file
*/
if (is_attr) {
if ((error = zfs_zget(ZTOZSB(zp),
zp->z_xattr_parent, &xzp)) != 0) {
return (error);
}
2008-11-20 23:01:55 +03:00
check_zp = xzp;
2008-11-20 23:01:55 +03:00
/*
* fixup mode to map to xattr perms
*/
if (mode & (ACE_WRITE_DATA|ACE_APPEND_DATA)) {
mode &= ~(ACE_WRITE_DATA|ACE_APPEND_DATA);
mode |= ACE_WRITE_NAMED_ATTRS;
}
if (mode & (ACE_READ_DATA|ACE_EXECUTE)) {
mode &= ~(ACE_READ_DATA|ACE_EXECUTE);
mode |= ACE_READ_NAMED_ATTRS;
}
}
owner = zfs_fuid_map_id(ZTOZSB(zp), KUID_TO_SUID(ZTOI(zp)->i_uid),
cr, ZFS_OWNER);
/*
Prototype/structure update for Linux I appologize in advance why to many things ended up in this commit. When it could be seperated in to a whole series of commits teasing that all apart now would take considerable time and I'm not sure there's much merrit in it. As such I'll just summerize the intent of the changes which are all (or partly) in this commit. Broadly the intent is to remove as much Solaris specific code as possible and replace it with native Linux equivilants. More specifically: 1) Replace all instances of zfsvfs_t with zfs_sb_t. While the type is largely the same calling it private super block data rather than a zfsvfs is more consistent with how Linux names this. While non critical it makes the code easier to read when your thinking in Linux friendly VFS terms. 2) Replace vnode_t with struct inode. The Linux VFS doesn't have the notion of a vnode and there's absolutely no good reason to create one. There are in fact several good reasons to remove it. It just adds overhead on Linux if we were to manage one, it conplicates the code, and it likely will lead to bugs so there's a good change it will be out of date. The code has been updated to remove all need for this type. 3) Replace all vtype_t's with umode types. Along with this shift all uses of types to mode bits. The Solaris code would pass a vtype which is redundant with the Linux mode. Just update all the code to use the Linux mode macros and remove this redundancy. 4) Remove using of vn_* helpers and replace where needed with inode helpers. The big example here is creating iput_aync to replace vn_rele_async. Other vn helpers will be addressed as needed but they should be be emulated. They are a Solaris VFS'ism and should simply be replaced with Linux equivilants. 5) Update znode alloc/free code. Under Linux it's common to embed the inode specific data with the inode itself. This removes the need for an extra memory allocation. In zfs this information is called a znode and it now embeds the inode with it. Allocators have been updated accordingly. 6) Minimal integration with the vfs flags for setting up the super block and handling mount options has been added this code will need to be refined but functionally it's all there. This will be the first and last of these to large to review commits.
2011-02-08 22:16:06 +03:00
* Map the bits required to the standard inode flags
* S_IRUSR|S_IWUSR|S_IXUSR in the needed_bits. Map the bits
* mapped by working_mode (currently missing) in missing_bits.
* Call secpolicy_vnode_access2() with (needed_bits & ~checkmode),
* needed_bits.
*/
needed_bits = 0;
working_mode = mode;
if ((working_mode & (ACE_READ_ACL|ACE_READ_ATTRIBUTES)) &&
owner == crgetuid(cr))
working_mode &= ~(ACE_READ_ACL|ACE_READ_ATTRIBUTES);
if (working_mode & (ACE_READ_DATA|ACE_READ_NAMED_ATTRS|
ACE_READ_ACL|ACE_READ_ATTRIBUTES|ACE_SYNCHRONIZE))
Prototype/structure update for Linux I appologize in advance why to many things ended up in this commit. When it could be seperated in to a whole series of commits teasing that all apart now would take considerable time and I'm not sure there's much merrit in it. As such I'll just summerize the intent of the changes which are all (or partly) in this commit. Broadly the intent is to remove as much Solaris specific code as possible and replace it with native Linux equivilants. More specifically: 1) Replace all instances of zfsvfs_t with zfs_sb_t. While the type is largely the same calling it private super block data rather than a zfsvfs is more consistent with how Linux names this. While non critical it makes the code easier to read when your thinking in Linux friendly VFS terms. 2) Replace vnode_t with struct inode. The Linux VFS doesn't have the notion of a vnode and there's absolutely no good reason to create one. There are in fact several good reasons to remove it. It just adds overhead on Linux if we were to manage one, it conplicates the code, and it likely will lead to bugs so there's a good change it will be out of date. The code has been updated to remove all need for this type. 3) Replace all vtype_t's with umode types. Along with this shift all uses of types to mode bits. The Solaris code would pass a vtype which is redundant with the Linux mode. Just update all the code to use the Linux mode macros and remove this redundancy. 4) Remove using of vn_* helpers and replace where needed with inode helpers. The big example here is creating iput_aync to replace vn_rele_async. Other vn helpers will be addressed as needed but they should be be emulated. They are a Solaris VFS'ism and should simply be replaced with Linux equivilants. 5) Update znode alloc/free code. Under Linux it's common to embed the inode specific data with the inode itself. This removes the need for an extra memory allocation. In zfs this information is called a znode and it now embeds the inode with it. Allocators have been updated accordingly. 6) Minimal integration with the vfs flags for setting up the super block and handling mount options has been added this code will need to be refined but functionally it's all there. This will be the first and last of these to large to review commits.
2011-02-08 22:16:06 +03:00
needed_bits |= S_IRUSR;
if (working_mode & (ACE_WRITE_DATA|ACE_WRITE_NAMED_ATTRS|
ACE_APPEND_DATA|ACE_WRITE_ATTRIBUTES|ACE_SYNCHRONIZE))
Prototype/structure update for Linux I appologize in advance why to many things ended up in this commit. When it could be seperated in to a whole series of commits teasing that all apart now would take considerable time and I'm not sure there's much merrit in it. As such I'll just summerize the intent of the changes which are all (or partly) in this commit. Broadly the intent is to remove as much Solaris specific code as possible and replace it with native Linux equivilants. More specifically: 1) Replace all instances of zfsvfs_t with zfs_sb_t. While the type is largely the same calling it private super block data rather than a zfsvfs is more consistent with how Linux names this. While non critical it makes the code easier to read when your thinking in Linux friendly VFS terms. 2) Replace vnode_t with struct inode. The Linux VFS doesn't have the notion of a vnode and there's absolutely no good reason to create one. There are in fact several good reasons to remove it. It just adds overhead on Linux if we were to manage one, it conplicates the code, and it likely will lead to bugs so there's a good change it will be out of date. The code has been updated to remove all need for this type. 3) Replace all vtype_t's with umode types. Along with this shift all uses of types to mode bits. The Solaris code would pass a vtype which is redundant with the Linux mode. Just update all the code to use the Linux mode macros and remove this redundancy. 4) Remove using of vn_* helpers and replace where needed with inode helpers. The big example here is creating iput_aync to replace vn_rele_async. Other vn helpers will be addressed as needed but they should be be emulated. They are a Solaris VFS'ism and should simply be replaced with Linux equivilants. 5) Update znode alloc/free code. Under Linux it's common to embed the inode specific data with the inode itself. This removes the need for an extra memory allocation. In zfs this information is called a znode and it now embeds the inode with it. Allocators have been updated accordingly. 6) Minimal integration with the vfs flags for setting up the super block and handling mount options has been added this code will need to be refined but functionally it's all there. This will be the first and last of these to large to review commits.
2011-02-08 22:16:06 +03:00
needed_bits |= S_IWUSR;
if (working_mode & ACE_EXECUTE)
Prototype/structure update for Linux I appologize in advance why to many things ended up in this commit. When it could be seperated in to a whole series of commits teasing that all apart now would take considerable time and I'm not sure there's much merrit in it. As such I'll just summerize the intent of the changes which are all (or partly) in this commit. Broadly the intent is to remove as much Solaris specific code as possible and replace it with native Linux equivilants. More specifically: 1) Replace all instances of zfsvfs_t with zfs_sb_t. While the type is largely the same calling it private super block data rather than a zfsvfs is more consistent with how Linux names this. While non critical it makes the code easier to read when your thinking in Linux friendly VFS terms. 2) Replace vnode_t with struct inode. The Linux VFS doesn't have the notion of a vnode and there's absolutely no good reason to create one. There are in fact several good reasons to remove it. It just adds overhead on Linux if we were to manage one, it conplicates the code, and it likely will lead to bugs so there's a good change it will be out of date. The code has been updated to remove all need for this type. 3) Replace all vtype_t's with umode types. Along with this shift all uses of types to mode bits. The Solaris code would pass a vtype which is redundant with the Linux mode. Just update all the code to use the Linux mode macros and remove this redundancy. 4) Remove using of vn_* helpers and replace where needed with inode helpers. The big example here is creating iput_aync to replace vn_rele_async. Other vn helpers will be addressed as needed but they should be be emulated. They are a Solaris VFS'ism and should simply be replaced with Linux equivilants. 5) Update znode alloc/free code. Under Linux it's common to embed the inode specific data with the inode itself. This removes the need for an extra memory allocation. In zfs this information is called a znode and it now embeds the inode with it. Allocators have been updated accordingly. 6) Minimal integration with the vfs flags for setting up the super block and handling mount options has been added this code will need to be refined but functionally it's all there. This will be the first and last of these to large to review commits.
2011-02-08 22:16:06 +03:00
needed_bits |= S_IXUSR;
2008-11-20 23:01:55 +03:00
if ((error = zfs_zaccess_common(check_zp, mode, &working_mode,
&check_privs, skipaclchk, cr)) == 0) {
if (is_attr)
zrele(xzp);
Prototype/structure update for Linux I appologize in advance why to many things ended up in this commit. When it could be seperated in to a whole series of commits teasing that all apart now would take considerable time and I'm not sure there's much merrit in it. As such I'll just summerize the intent of the changes which are all (or partly) in this commit. Broadly the intent is to remove as much Solaris specific code as possible and replace it with native Linux equivilants. More specifically: 1) Replace all instances of zfsvfs_t with zfs_sb_t. While the type is largely the same calling it private super block data rather than a zfsvfs is more consistent with how Linux names this. While non critical it makes the code easier to read when your thinking in Linux friendly VFS terms. 2) Replace vnode_t with struct inode. The Linux VFS doesn't have the notion of a vnode and there's absolutely no good reason to create one. There are in fact several good reasons to remove it. It just adds overhead on Linux if we were to manage one, it conplicates the code, and it likely will lead to bugs so there's a good change it will be out of date. The code has been updated to remove all need for this type. 3) Replace all vtype_t's with umode types. Along with this shift all uses of types to mode bits. The Solaris code would pass a vtype which is redundant with the Linux mode. Just update all the code to use the Linux mode macros and remove this redundancy. 4) Remove using of vn_* helpers and replace where needed with inode helpers. The big example here is creating iput_aync to replace vn_rele_async. Other vn helpers will be addressed as needed but they should be be emulated. They are a Solaris VFS'ism and should simply be replaced with Linux equivilants. 5) Update znode alloc/free code. Under Linux it's common to embed the inode specific data with the inode itself. This removes the need for an extra memory allocation. In zfs this information is called a znode and it now embeds the inode with it. Allocators have been updated accordingly. 6) Minimal integration with the vfs flags for setting up the super block and handling mount options has been added this code will need to be refined but functionally it's all there. This will be the first and last of these to large to review commits.
2011-02-08 22:16:06 +03:00
return (secpolicy_vnode_access2(cr, ZTOI(zp), owner,
needed_bits, needed_bits));
2008-11-20 23:01:55 +03:00
}
if (error && !check_privs) {
if (is_attr)
zrele(xzp);
2008-11-20 23:01:55 +03:00
return (error);
}
if (error && (flags & V_APPEND)) {
error = zfs_zaccess_append(zp, &working_mode, &check_privs, cr);
}
if (error && check_privs) {
mode_t checkmode = 0;
/*
* First check for implicit owner permission on
* read_acl/read_attributes
*/
error = 0;
ASSERT(working_mode != 0);
if ((working_mode & (ACE_READ_ACL|ACE_READ_ATTRIBUTES) &&
owner == crgetuid(cr)))
2008-11-20 23:01:55 +03:00
working_mode &= ~(ACE_READ_ACL|ACE_READ_ATTRIBUTES);
if (working_mode & (ACE_READ_DATA|ACE_READ_NAMED_ATTRS|
ACE_READ_ACL|ACE_READ_ATTRIBUTES|ACE_SYNCHRONIZE))
Prototype/structure update for Linux I appologize in advance why to many things ended up in this commit. When it could be seperated in to a whole series of commits teasing that all apart now would take considerable time and I'm not sure there's much merrit in it. As such I'll just summerize the intent of the changes which are all (or partly) in this commit. Broadly the intent is to remove as much Solaris specific code as possible and replace it with native Linux equivilants. More specifically: 1) Replace all instances of zfsvfs_t with zfs_sb_t. While the type is largely the same calling it private super block data rather than a zfsvfs is more consistent with how Linux names this. While non critical it makes the code easier to read when your thinking in Linux friendly VFS terms. 2) Replace vnode_t with struct inode. The Linux VFS doesn't have the notion of a vnode and there's absolutely no good reason to create one. There are in fact several good reasons to remove it. It just adds overhead on Linux if we were to manage one, it conplicates the code, and it likely will lead to bugs so there's a good change it will be out of date. The code has been updated to remove all need for this type. 3) Replace all vtype_t's with umode types. Along with this shift all uses of types to mode bits. The Solaris code would pass a vtype which is redundant with the Linux mode. Just update all the code to use the Linux mode macros and remove this redundancy. 4) Remove using of vn_* helpers and replace where needed with inode helpers. The big example here is creating iput_aync to replace vn_rele_async. Other vn helpers will be addressed as needed but they should be be emulated. They are a Solaris VFS'ism and should simply be replaced with Linux equivilants. 5) Update znode alloc/free code. Under Linux it's common to embed the inode specific data with the inode itself. This removes the need for an extra memory allocation. In zfs this information is called a znode and it now embeds the inode with it. Allocators have been updated accordingly. 6) Minimal integration with the vfs flags for setting up the super block and handling mount options has been added this code will need to be refined but functionally it's all there. This will be the first and last of these to large to review commits.
2011-02-08 22:16:06 +03:00
checkmode |= S_IRUSR;
2008-11-20 23:01:55 +03:00
if (working_mode & (ACE_WRITE_DATA|ACE_WRITE_NAMED_ATTRS|
ACE_APPEND_DATA|ACE_WRITE_ATTRIBUTES|ACE_SYNCHRONIZE))
Prototype/structure update for Linux I appologize in advance why to many things ended up in this commit. When it could be seperated in to a whole series of commits teasing that all apart now would take considerable time and I'm not sure there's much merrit in it. As such I'll just summerize the intent of the changes which are all (or partly) in this commit. Broadly the intent is to remove as much Solaris specific code as possible and replace it with native Linux equivilants. More specifically: 1) Replace all instances of zfsvfs_t with zfs_sb_t. While the type is largely the same calling it private super block data rather than a zfsvfs is more consistent with how Linux names this. While non critical it makes the code easier to read when your thinking in Linux friendly VFS terms. 2) Replace vnode_t with struct inode. The Linux VFS doesn't have the notion of a vnode and there's absolutely no good reason to create one. There are in fact several good reasons to remove it. It just adds overhead on Linux if we were to manage one, it conplicates the code, and it likely will lead to bugs so there's a good change it will be out of date. The code has been updated to remove all need for this type. 3) Replace all vtype_t's with umode types. Along with this shift all uses of types to mode bits. The Solaris code would pass a vtype which is redundant with the Linux mode. Just update all the code to use the Linux mode macros and remove this redundancy. 4) Remove using of vn_* helpers and replace where needed with inode helpers. The big example here is creating iput_aync to replace vn_rele_async. Other vn helpers will be addressed as needed but they should be be emulated. They are a Solaris VFS'ism and should simply be replaced with Linux equivilants. 5) Update znode alloc/free code. Under Linux it's common to embed the inode specific data with the inode itself. This removes the need for an extra memory allocation. In zfs this information is called a znode and it now embeds the inode with it. Allocators have been updated accordingly. 6) Minimal integration with the vfs flags for setting up the super block and handling mount options has been added this code will need to be refined but functionally it's all there. This will be the first and last of these to large to review commits.
2011-02-08 22:16:06 +03:00
checkmode |= S_IWUSR;
2008-11-20 23:01:55 +03:00
if (working_mode & ACE_EXECUTE)
Prototype/structure update for Linux I appologize in advance why to many things ended up in this commit. When it could be seperated in to a whole series of commits teasing that all apart now would take considerable time and I'm not sure there's much merrit in it. As such I'll just summerize the intent of the changes which are all (or partly) in this commit. Broadly the intent is to remove as much Solaris specific code as possible and replace it with native Linux equivilants. More specifically: 1) Replace all instances of zfsvfs_t with zfs_sb_t. While the type is largely the same calling it private super block data rather than a zfsvfs is more consistent with how Linux names this. While non critical it makes the code easier to read when your thinking in Linux friendly VFS terms. 2) Replace vnode_t with struct inode. The Linux VFS doesn't have the notion of a vnode and there's absolutely no good reason to create one. There are in fact several good reasons to remove it. It just adds overhead on Linux if we were to manage one, it conplicates the code, and it likely will lead to bugs so there's a good change it will be out of date. The code has been updated to remove all need for this type. 3) Replace all vtype_t's with umode types. Along with this shift all uses of types to mode bits. The Solaris code would pass a vtype which is redundant with the Linux mode. Just update all the code to use the Linux mode macros and remove this redundancy. 4) Remove using of vn_* helpers and replace where needed with inode helpers. The big example here is creating iput_aync to replace vn_rele_async. Other vn helpers will be addressed as needed but they should be be emulated. They are a Solaris VFS'ism and should simply be replaced with Linux equivilants. 5) Update znode alloc/free code. Under Linux it's common to embed the inode specific data with the inode itself. This removes the need for an extra memory allocation. In zfs this information is called a znode and it now embeds the inode with it. Allocators have been updated accordingly. 6) Minimal integration with the vfs flags for setting up the super block and handling mount options has been added this code will need to be refined but functionally it's all there. This will be the first and last of these to large to review commits.
2011-02-08 22:16:06 +03:00
checkmode |= S_IXUSR;
2008-11-20 23:01:55 +03:00
Prototype/structure update for Linux I appologize in advance why to many things ended up in this commit. When it could be seperated in to a whole series of commits teasing that all apart now would take considerable time and I'm not sure there's much merrit in it. As such I'll just summerize the intent of the changes which are all (or partly) in this commit. Broadly the intent is to remove as much Solaris specific code as possible and replace it with native Linux equivilants. More specifically: 1) Replace all instances of zfsvfs_t with zfs_sb_t. While the type is largely the same calling it private super block data rather than a zfsvfs is more consistent with how Linux names this. While non critical it makes the code easier to read when your thinking in Linux friendly VFS terms. 2) Replace vnode_t with struct inode. The Linux VFS doesn't have the notion of a vnode and there's absolutely no good reason to create one. There are in fact several good reasons to remove it. It just adds overhead on Linux if we were to manage one, it conplicates the code, and it likely will lead to bugs so there's a good change it will be out of date. The code has been updated to remove all need for this type. 3) Replace all vtype_t's with umode types. Along with this shift all uses of types to mode bits. The Solaris code would pass a vtype which is redundant with the Linux mode. Just update all the code to use the Linux mode macros and remove this redundancy. 4) Remove using of vn_* helpers and replace where needed with inode helpers. The big example here is creating iput_aync to replace vn_rele_async. Other vn helpers will be addressed as needed but they should be be emulated. They are a Solaris VFS'ism and should simply be replaced with Linux equivilants. 5) Update znode alloc/free code. Under Linux it's common to embed the inode specific data with the inode itself. This removes the need for an extra memory allocation. In zfs this information is called a znode and it now embeds the inode with it. Allocators have been updated accordingly. 6) Minimal integration with the vfs flags for setting up the super block and handling mount options has been added this code will need to be refined but functionally it's all there. This will be the first and last of these to large to review commits.
2011-02-08 22:16:06 +03:00
error = secpolicy_vnode_access2(cr, ZTOI(check_zp), owner,
needed_bits & ~checkmode, needed_bits);
2008-11-20 23:01:55 +03:00
if (error == 0 && (working_mode & ACE_WRITE_OWNER))
error = secpolicy_vnode_chown(cr, owner);
2008-11-20 23:01:55 +03:00
if (error == 0 && (working_mode & ACE_WRITE_ACL))
error = secpolicy_vnode_setdac(cr, owner);
2008-11-20 23:01:55 +03:00
if (error == 0 && (working_mode &
(ACE_DELETE|ACE_DELETE_CHILD)))
error = secpolicy_vnode_remove(cr);
if (error == 0 && (working_mode & ACE_SYNCHRONIZE)) {
error = secpolicy_vnode_chown(cr, owner);
}
2008-11-20 23:01:55 +03:00
if (error == 0) {
/*
* See if any bits other than those already checked
* for are still present. If so then return EACCES
*/
if (working_mode & ~(ZFS_CHECKED_MASKS)) {
error = SET_ERROR(EACCES);
2008-11-20 23:01:55 +03:00
}
}
} else if (error == 0) {
Prototype/structure update for Linux I appologize in advance why to many things ended up in this commit. When it could be seperated in to a whole series of commits teasing that all apart now would take considerable time and I'm not sure there's much merrit in it. As such I'll just summerize the intent of the changes which are all (or partly) in this commit. Broadly the intent is to remove as much Solaris specific code as possible and replace it with native Linux equivilants. More specifically: 1) Replace all instances of zfsvfs_t with zfs_sb_t. While the type is largely the same calling it private super block data rather than a zfsvfs is more consistent with how Linux names this. While non critical it makes the code easier to read when your thinking in Linux friendly VFS terms. 2) Replace vnode_t with struct inode. The Linux VFS doesn't have the notion of a vnode and there's absolutely no good reason to create one. There are in fact several good reasons to remove it. It just adds overhead on Linux if we were to manage one, it conplicates the code, and it likely will lead to bugs so there's a good change it will be out of date. The code has been updated to remove all need for this type. 3) Replace all vtype_t's with umode types. Along with this shift all uses of types to mode bits. The Solaris code would pass a vtype which is redundant with the Linux mode. Just update all the code to use the Linux mode macros and remove this redundancy. 4) Remove using of vn_* helpers and replace where needed with inode helpers. The big example here is creating iput_aync to replace vn_rele_async. Other vn helpers will be addressed as needed but they should be be emulated. They are a Solaris VFS'ism and should simply be replaced with Linux equivilants. 5) Update znode alloc/free code. Under Linux it's common to embed the inode specific data with the inode itself. This removes the need for an extra memory allocation. In zfs this information is called a znode and it now embeds the inode with it. Allocators have been updated accordingly. 6) Minimal integration with the vfs flags for setting up the super block and handling mount options has been added this code will need to be refined but functionally it's all there. This will be the first and last of these to large to review commits.
2011-02-08 22:16:06 +03:00
error = secpolicy_vnode_access2(cr, ZTOI(zp), owner,
needed_bits, needed_bits);
2008-11-20 23:01:55 +03:00
}
if (is_attr)
zrele(xzp);
2008-11-20 23:01:55 +03:00
return (error);
}
/*
Prototype/structure update for Linux I appologize in advance why to many things ended up in this commit. When it could be seperated in to a whole series of commits teasing that all apart now would take considerable time and I'm not sure there's much merrit in it. As such I'll just summerize the intent of the changes which are all (or partly) in this commit. Broadly the intent is to remove as much Solaris specific code as possible and replace it with native Linux equivilants. More specifically: 1) Replace all instances of zfsvfs_t with zfs_sb_t. While the type is largely the same calling it private super block data rather than a zfsvfs is more consistent with how Linux names this. While non critical it makes the code easier to read when your thinking in Linux friendly VFS terms. 2) Replace vnode_t with struct inode. The Linux VFS doesn't have the notion of a vnode and there's absolutely no good reason to create one. There are in fact several good reasons to remove it. It just adds overhead on Linux if we were to manage one, it conplicates the code, and it likely will lead to bugs so there's a good change it will be out of date. The code has been updated to remove all need for this type. 3) Replace all vtype_t's with umode types. Along with this shift all uses of types to mode bits. The Solaris code would pass a vtype which is redundant with the Linux mode. Just update all the code to use the Linux mode macros and remove this redundancy. 4) Remove using of vn_* helpers and replace where needed with inode helpers. The big example here is creating iput_aync to replace vn_rele_async. Other vn helpers will be addressed as needed but they should be be emulated. They are a Solaris VFS'ism and should simply be replaced with Linux equivilants. 5) Update znode alloc/free code. Under Linux it's common to embed the inode specific data with the inode itself. This removes the need for an extra memory allocation. In zfs this information is called a znode and it now embeds the inode with it. Allocators have been updated accordingly. 6) Minimal integration with the vfs flags for setting up the super block and handling mount options has been added this code will need to be refined but functionally it's all there. This will be the first and last of these to large to review commits.
2011-02-08 22:16:06 +03:00
* Translate traditional unix S_IRUSR/S_IWUSR/S_IXUSR mode into
* NFSv4-style ZFS ACL format and call zfs_zaccess()
2008-11-20 23:01:55 +03:00
*/
int
zfs_zaccess_rwx(znode_t *zp, mode_t mode, int flags, cred_t *cr)
{
return (zfs_zaccess(zp, zfs_unix_to_v4(mode >> 6), flags, B_FALSE, cr));
}
/*
* Access function for secpolicy_vnode_setattr
*/
int
zfs_zaccess_unix(znode_t *zp, mode_t mode, cred_t *cr)
{
int v4_mode = zfs_unix_to_v4(mode >> 6);
return (zfs_zaccess(zp, v4_mode, 0, B_FALSE, cr));
}
/* See zfs_zaccess_delete() */
static const boolean_t zfs_write_implies_delete_child = B_TRUE;
2008-11-20 23:01:55 +03:00
/*
* Determine whether delete access should be granted.
2008-11-20 23:01:55 +03:00
*
* The following chart outlines how we handle delete permissions which is
* how recent versions of windows (Windows 2008) handles it. The efficiency
* comes from not having to check the parent ACL where the object itself grants
* delete:
2008-11-20 23:01:55 +03:00
*
* -------------------------------------------------------
* | Parent Dir | Target Object Permissions |
2008-11-20 23:01:55 +03:00
* | permissions | |
* -------------------------------------------------------
* | | ACL Allows | ACL Denies| Delete |
* | | Delete | Delete | unspecified|
* -------------------------------------------------------
* | ACL Allows | Permit | Deny * | Permit |
* | DELETE_CHILD | | | |
2008-11-20 23:01:55 +03:00
* -------------------------------------------------------
* | ACL Denies | Permit | Deny | Deny |
* | DELETE_CHILD | | | |
2008-11-20 23:01:55 +03:00
* -------------------------------------------------------
* | ACL specifies | | | |
* | only allow | Permit | Deny * | Permit |
2008-11-20 23:01:55 +03:00
* | write and | | | |
* | execute | | | |
* -------------------------------------------------------
* | ACL denies | | | |
* | write and | Permit | Deny | Deny |
* | execute | | | |
* -------------------------------------------------------
* ^
* |
* Re. execute permission on the directory: if that's missing,
* the vnode lookup of the target will fail before we get here.
*
* Re [*] in the table above: NFSv4 would normally Permit delete for
* these two cells of the matrix.
* See acl.h for notes on which ACE_... flags should be checked for which
* operations. Specifically, the NFSv4 committee recommendation is in
* conflict with the Windows interpretation of DENY ACEs, where DENY ACEs
* should take precedence ahead of ALLOW ACEs.
*
* This implementation always consults the target object's ACL first.
* If a DENY ACE is present on the target object that specifies ACE_DELETE,
* delete access is denied. If an ALLOW ACE with ACE_DELETE is present on
* the target object, access is allowed. If and only if no entries with
* ACE_DELETE are present in the object's ACL, check the container's ACL
* for entries with ACE_DELETE_CHILD.
2008-11-20 23:01:55 +03:00
*
* A summary of the logic implemented from the table above is as follows:
*
* First check for DENY ACEs that apply.
* If either target or container has a deny, EACCES.
*
* Delete access can then be summarized as follows:
* 1: The object to be deleted grants ACE_DELETE, or
* 2: The containing directory grants ACE_DELETE_CHILD.
* In a Windows system, that would be the end of the story.
* In this system, (2) has some complications...
* 2a: "sticky" bit on a directory adds restrictions, and
* 2b: existing ACEs from previous versions of ZFS may
* not carry ACE_DELETE_CHILD where they should, so we
* also allow delete when ACE_WRITE_DATA is granted.
*
* Note: 2b is technically a work-around for a prior bug,
* which hopefully can go away some day. For those who
* no longer need the work around, and for testing, this
* work-around is made conditional via the tunable:
* zfs_write_implies_delete_child
2008-11-20 23:01:55 +03:00
*/
int
zfs_zaccess_delete(znode_t *dzp, znode_t *zp, cred_t *cr)
{
uint32_t wanted_dirperms;
2008-11-20 23:01:55 +03:00
uint32_t dzp_working_mode = 0;
uint32_t zp_working_mode = 0;
int dzp_error, zp_error;
boolean_t dzpcheck_privs;
boolean_t zpcheck_privs;
2008-11-20 23:01:55 +03:00
if (zp->z_pflags & (ZFS_IMMUTABLE | ZFS_NOUNLINK))
return (SET_ERROR(EPERM));
2008-11-20 23:01:55 +03:00
/*
* Case 1:
* If target object grants ACE_DELETE then we are done. This is
* indicated by a return value of 0. For this case we don't worry
* about the sticky bit because sticky only applies to the parent
* directory and this is the child access result.
*
* If we encounter a DENY ACE here, we're also done (EACCES).
* Note that if we hit a DENY ACE here (on the target) it should
* take precedence over a DENY ACE on the container, so that when
* we have more complete auditing support we will be able to
* report an access failure against the specific target.
* (This is part of why we're checking the target first.)
2008-11-20 23:01:55 +03:00
*/
zp_error = zfs_zaccess_common(zp, ACE_DELETE, &zp_working_mode,
&zpcheck_privs, B_FALSE, cr);
if (zp_error == EACCES) {
/* We hit a DENY ACE. */
if (!zpcheck_privs)
return (SET_ERROR(zp_error));
return (secpolicy_vnode_remove(cr));
}
if (zp_error == 0)
2008-11-20 23:01:55 +03:00
return (0);
/*
* Case 2:
* If the containing directory grants ACE_DELETE_CHILD,
* or we're in backward compatibility mode and the
* containing directory has ACE_WRITE_DATA, allow.
* Case 2b is handled with wanted_dirperms.
2008-11-20 23:01:55 +03:00
*/
wanted_dirperms = ACE_DELETE_CHILD;
if (zfs_write_implies_delete_child)
wanted_dirperms |= ACE_WRITE_DATA;
dzp_error = zfs_zaccess_common(dzp, wanted_dirperms,
&dzp_working_mode, &dzpcheck_privs, B_FALSE, cr);
if (dzp_error == EACCES) {
/* We hit a DENY ACE. */
if (!dzpcheck_privs)
return (SET_ERROR(dzp_error));
return (secpolicy_vnode_remove(cr));
}
2008-11-20 23:01:55 +03:00
/*
* Cases 2a, 2b (continued)
*
* Note: dzp_working_mode now contains any permissions
* that were NOT granted. Therefore, if any of the
* wanted_dirperms WERE granted, we will have:
* dzp_working_mode != wanted_dirperms
* We're really asking if ANY of those permissions
* were granted, and if so, grant delete access.
2008-11-20 23:01:55 +03:00
*/
if (dzp_working_mode != wanted_dirperms)
dzp_error = 0;
2008-11-20 23:01:55 +03:00
/*
* dzp_error is 0 if the container granted us permissions to "modify".
* If we do not have permission via one or more ACEs, our current
* privileges may still permit us to modify the container.
*
* dzpcheck_privs is false when i.e. the FS is read-only.
* Otherwise, do privilege checks for the container.
2008-11-20 23:01:55 +03:00
*/
if (dzp_error != 0 && dzpcheck_privs) {
uid_t owner;
2008-11-20 23:01:55 +03:00
/*
* The secpolicy call needs the requested access and
* the current access mode of the container, but it
* only knows about Unix-style modes (VEXEC, VWRITE),
* so this must condense the fine-grained ACE bits into
* Unix modes.
*
* The VEXEC flag is easy, because we know that has
* always been checked before we get here (during the
* lookup of the target vnode). The container has not
* granted us permissions to "modify", so we do not set
* the VWRITE flag in the current access mode.
*/
owner = zfs_fuid_map_id(ZTOZSB(dzp),
KUID_TO_SUID(ZTOI(dzp)->i_uid), cr, ZFS_OWNER);
dzp_error = secpolicy_vnode_access2(cr, ZTOI(dzp),
owner, S_IXUSR, S_IWUSR|S_IXUSR);
}
if (dzp_error != 0) {
/*
* Note: We may have dzp_error = -1 here (from
* zfs_zacess_common). Don't return that.
*/
return (SET_ERROR(EACCES));
}
2008-11-20 23:01:55 +03:00
2008-11-20 23:01:55 +03:00
/*
* At this point, we know that the directory permissions allow
* us to modify, but we still need to check for the additional
* restrictions that apply when the "sticky bit" is set.
*
* Yes, zfs_sticky_remove_access() also checks this bit, but
* checking it here and skipping the call below is nice when
* you're watching all of this with dtrace.
2008-11-20 23:01:55 +03:00
*/
if ((dzp->z_mode & S_ISVTX) == 0)
return (0);
2008-11-20 23:01:55 +03:00
/*
* zfs_sticky_remove_access will succeed if:
* 1. The sticky bit is absent.
* 2. We pass the sticky bit restrictions.
* 3. We have privileges that always allow file removal.
*/
return (zfs_sticky_remove_access(dzp, zp, cr));
2008-11-20 23:01:55 +03:00
}
int
zfs_zaccess_rename(znode_t *sdzp, znode_t *szp, znode_t *tdzp,
znode_t *tzp, cred_t *cr)
{
int add_perm;
int error;
if (szp->z_pflags & ZFS_AV_QUARANTINED)
return (SET_ERROR(EACCES));
2008-11-20 23:01:55 +03:00
Prototype/structure update for Linux I appologize in advance why to many things ended up in this commit. When it could be seperated in to a whole series of commits teasing that all apart now would take considerable time and I'm not sure there's much merrit in it. As such I'll just summerize the intent of the changes which are all (or partly) in this commit. Broadly the intent is to remove as much Solaris specific code as possible and replace it with native Linux equivilants. More specifically: 1) Replace all instances of zfsvfs_t with zfs_sb_t. While the type is largely the same calling it private super block data rather than a zfsvfs is more consistent with how Linux names this. While non critical it makes the code easier to read when your thinking in Linux friendly VFS terms. 2) Replace vnode_t with struct inode. The Linux VFS doesn't have the notion of a vnode and there's absolutely no good reason to create one. There are in fact several good reasons to remove it. It just adds overhead on Linux if we were to manage one, it conplicates the code, and it likely will lead to bugs so there's a good change it will be out of date. The code has been updated to remove all need for this type. 3) Replace all vtype_t's with umode types. Along with this shift all uses of types to mode bits. The Solaris code would pass a vtype which is redundant with the Linux mode. Just update all the code to use the Linux mode macros and remove this redundancy. 4) Remove using of vn_* helpers and replace where needed with inode helpers. The big example here is creating iput_aync to replace vn_rele_async. Other vn helpers will be addressed as needed but they should be be emulated. They are a Solaris VFS'ism and should simply be replaced with Linux equivilants. 5) Update znode alloc/free code. Under Linux it's common to embed the inode specific data with the inode itself. This removes the need for an extra memory allocation. In zfs this information is called a znode and it now embeds the inode with it. Allocators have been updated accordingly. 6) Minimal integration with the vfs flags for setting up the super block and handling mount options has been added this code will need to be refined but functionally it's all there. This will be the first and last of these to large to review commits.
2011-02-08 22:16:06 +03:00
add_perm = S_ISDIR(ZTOI(szp)->i_mode) ?
2008-11-20 23:01:55 +03:00
ACE_ADD_SUBDIRECTORY : ACE_ADD_FILE;
/*
* Rename permissions are combination of delete permission +
* add file/subdir permission.
*/
/*
* first make sure we do the delete portion.
*
* If that succeeds then check for add_file/add_subdir permissions
*/
if ((error = zfs_zaccess_delete(sdzp, szp, cr)))
2008-11-20 23:01:55 +03:00
return (error);
/*
* If we have a tzp, see if we can delete it?
*/
if (tzp) {
if ((error = zfs_zaccess_delete(tdzp, tzp, cr)))
2008-11-20 23:01:55 +03:00
return (error);
}
/*
* Now check for add permissions
*/
error = zfs_zaccess(tdzp, add_perm, 0, B_FALSE, cr);
return (error);
}