mirror_zfs/module/zfs/zfs_ctldir.c

1011 lines
24 KiB
C
Raw Normal View History

/*
* CDDL HEADER START
*
* The contents of this file are subject to the terms of the
* Common Development and Distribution License (the "License").
* You may not use this file except in compliance with the License.
*
* You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
* or http://www.opensolaris.org/os/licensing.
* See the License for the specific language governing permissions
* and limitations under the License.
*
* When distributing Covered Code, include this CDDL HEADER in each
* file and include the License file at usr/src/OPENSOLARIS.LICENSE.
* If applicable, add the following below this CDDL HEADER, with the
* fields enclosed by brackets "[]" replaced with your own identifying
* information: Portions Copyright [yyyy] [name of copyright owner]
*
* CDDL HEADER END
*/
/*
*
* Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
* Copyright (C) 2011 Lawrence Livermore National Security, LLC.
* Produced at Lawrence Livermore National Laboratory (cf, DISCLAIMER).
* LLNL-CODE-403049.
* Rewritten for Linux by:
* Rohan Puri <rohan.puri15@gmail.com>
* Brian Behlendorf <behlendorf1@llnl.gov>
*/
/*
* ZFS control directory (a.k.a. ".zfs")
*
* This directory provides a common location for all ZFS meta-objects.
* Currently, this is only the 'snapshot' and 'shares' directory, but this may
* expand in the future. The elements are built dynamically, as the hierarchy
* does not actually exist on disk.
*
* For 'snapshot', we don't want to have all snapshots always mounted, because
* this would take up a huge amount of space in /etc/mnttab. We have three
* types of objects:
*
* ctldir ------> snapshotdir -------> snapshot
* |
* |
* V
* mounted fs
*
* The 'snapshot' node contains just enough information to lookup '..' and act
* as a mountpoint for the snapshot. Whenever we lookup a specific snapshot, we
* perform an automount of the underlying filesystem and return the
* corresponding inode.
*
* All mounts are handled automatically by an user mode helper which invokes
* the mount mount procedure. Unmounts are handled by allowing the mount
* point to expire so the kernel may automatically unmount it.
*
* The '.zfs', '.zfs/snapshot', and all directories created under
* '.zfs/snapshot' (ie: '.zfs/snapshot/<snapname>') all share the same
* share the same zfs_sb_t as the head filesystem (what '.zfs' lives under).
*
* File systems mounted on top of the '.zfs/snapshot/<snapname>' paths
* (ie: snapshots) are complete ZFS filesystems and have their own unique
* zfs_sb_t. However, the fsid reported by these mounts will be the same
* as that used by the parent zfs_sb_t to make NFS happy.
*/
#include <sys/types.h>
#include <sys/param.h>
#include <sys/time.h>
#include <sys/systm.h>
#include <sys/sysmacros.h>
#include <sys/pathname.h>
#include <sys/vfs.h>
#include <sys/vfs_opreg.h>
#include <sys/zfs_ctldir.h>
#include <sys/zfs_ioctl.h>
#include <sys/zfs_vfsops.h>
#include <sys/zfs_vnops.h>
#include <sys/stat.h>
#include <sys/dmu.h>
#include <sys/dsl_deleg.h>
#include <sys/mount.h>
#include <sys/zpl.h>
#include "zfs_namecheck.h"
/*
* Control Directory Tunables (.zfs)
*/
int zfs_expire_snapshot = ZFSCTL_EXPIRE_SNAPSHOT;
/*
* Dedicated task queue for unmounting snapshots.
*/
static taskq_t *zfs_expire_taskq;
static zfs_snapentry_t *
zfsctl_sep_alloc(void)
{
return kmem_zalloc(sizeof (zfs_snapentry_t), KM_SLEEP);
}
void
zfsctl_sep_free(zfs_snapentry_t *sep)
{
kmem_free(sep->se_name, MAXNAMELEN);
kmem_free(sep->se_path, PATH_MAX);
kmem_free(sep, sizeof (zfs_snapentry_t));
}
/*
* Attempt to expire an automounted snapshot, unmounts are attempted every
* 'zfs_expire_snapshot' seconds until they succeed. The work request is
* responsible for rescheduling itself and freeing the zfs_expire_snapshot_t.
*/
static void
zfsctl_expire_snapshot(void *data)
{
zfs_snapentry_t *sep = (zfs_snapentry_t *)data;
zfs_sb_t *zsb = ITOZSB(sep->se_inode);
int error;
error = zfsctl_unmount_snapshot(zsb, sep->se_name, MNT_EXPIRE);
if (error == EBUSY)
sep->se_taskqid = taskq_dispatch_delay(zfs_expire_taskq,
zfsctl_expire_snapshot, sep, TQ_SLEEP,
ddi_get_lbolt() + zfs_expire_snapshot * HZ);
}
int
snapentry_compare(const void *a, const void *b)
{
const zfs_snapentry_t *sa = a;
const zfs_snapentry_t *sb = b;
int ret = strcmp(sa->se_name, sb->se_name);
if (ret < 0)
return (-1);
else if (ret > 0)
return (1);
else
return (0);
}
boolean_t
zfsctl_is_node(struct inode *ip)
{
return (ITOZ(ip)->z_is_ctldir);
}
boolean_t
zfsctl_is_snapdir(struct inode *ip)
{
return (zfsctl_is_node(ip) && (ip->i_ino <= ZFSCTL_INO_SNAPDIRS));
}
/*
* Allocate a new inode with the passed id and ops.
*/
static struct inode *
zfsctl_inode_alloc(zfs_sb_t *zsb, uint64_t id,
const struct file_operations *fops, const struct inode_operations *ops)
{
struct timespec now = current_fs_time(zsb->z_sb);
struct inode *ip;
znode_t *zp;
ip = new_inode(zsb->z_sb);
if (ip == NULL)
return (NULL);
zp = ITOZ(ip);
ASSERT3P(zp->z_dirlocks, ==, NULL);
ASSERT3P(zp->z_acl_cached, ==, NULL);
ASSERT3P(zp->z_xattr_cached, ==, NULL);
zp->z_id = id;
zp->z_unlinked = 0;
zp->z_atime_dirty = 0;
zp->z_zn_prefetch = 0;
zp->z_moved = 0;
zp->z_sa_hdl = NULL;
zp->z_blksz = 0;
zp->z_seq = 0;
zp->z_mapcnt = 0;
zp->z_gen = 0;
zp->z_size = 0;
zp->z_atime[0] = 0;
zp->z_atime[1] = 0;
zp->z_links = 0;
zp->z_pflags = 0;
zp->z_uid = 0;
zp->z_gid = 0;
zp->z_mode = 0;
zp->z_sync_cnt = 0;
zp->z_is_zvol = B_FALSE;
zp->z_is_mapped = B_FALSE;
zp->z_is_ctldir = B_TRUE;
zp->z_is_sa = B_FALSE;
Fix 'zfs rollback' on mounted file systems Rolling back a mounted filesystem with open file handles and cached dentries+inodes never worked properly in ZoL. The major issue was that Linux provides no easy mechanism for modules to invalidate the inode cache for a file system. Because of this it was possible that an inode from the previous filesystem would not get properly dropped from the cache during rolling back. Then a new inode with the same inode number would be create and collide with the existing cached inode. Ideally this would trigger an VERIFY() but in practice the error wasn't handled and it would just NULL reference. Luckily, this issue can be resolved by sprucing up the existing Solaris zfs_rezget() functionality for the Linux VFS. The way it works now is that when a file system is rolled back all the cached inodes will be traversed and refetched from disk. If a version of the cached inode exists on disk the in-core copy will be updated accordingly. If there is no match for that object on disk it will be unhashed from the inode cache and marked as stale. This will effectively make the inode unfindable for lookups allowing the inode number to be immediately recycled. The inode will then only be accessible from the cached dentries. Subsequent dentry lookups which reference a stale inode will result in the dentry being invalidated. Once invalidated the dentry will drop its reference on the inode allowing it to be safely pruned from the cache. Special care is taken for negative dentries since they do not reference any inode. These dentires will be invalidate based on when they were added to the dentry cache. Entries added before the last rollback will be invalidate to prevent them from masking real files in the dataset. Two nice side effects of this fix are: * Removes the dependency on spl_invalidate_inodes(), it can now be safely removed from the SPL when we choose to do so. * zfs_znode_alloc() no longer requires a dentry to be passed. This effectively reverts this portition of the code to its upstream counterpart. The dentry is not instantiated more correctly in the Linux ZPL layer. Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov> Signed-off-by: Ned Bass <bass6@llnl.gov> Closes #795
2013-01-16 04:41:09 +04:00
zp->z_is_stale = B_FALSE;
ip->i_ino = id;
ip->i_mode = (S_IFDIR | S_IRUGO | S_IXUGO);
ip->i_uid = 0;
ip->i_gid = 0;
ip->i_blkbits = SPA_MINBLOCKSHIFT;
ip->i_atime = now;
ip->i_mtime = now;
ip->i_ctime = now;
ip->i_fop = fops;
ip->i_op = ops;
if (insert_inode_locked(ip)) {
unlock_new_inode(ip);
iput(ip);
return (NULL);
}
mutex_enter(&zsb->z_znodes_lock);
list_insert_tail(&zsb->z_all_znodes, zp);
zsb->z_nr_znodes++;
membar_producer();
mutex_exit(&zsb->z_znodes_lock);
unlock_new_inode(ip);
return (ip);
}
/*
* Lookup the inode with given id, it will be allocated if needed.
*/
static struct inode *
zfsctl_inode_lookup(zfs_sb_t *zsb, uint64_t id,
const struct file_operations *fops, const struct inode_operations *ops)
{
struct inode *ip = NULL;
while (ip == NULL) {
ip = ilookup(zsb->z_sb, (unsigned long)id);
if (ip)
break;
/* May fail due to concurrent zfsctl_inode_alloc() */
ip = zfsctl_inode_alloc(zsb, id, fops, ops);
}
return (ip);
}
/*
* Free zfsctl inode specific structures, currently there are none.
*/
void
zfsctl_inode_destroy(struct inode *ip)
{
return;
}
/*
* An inode is being evicted from the cache.
*/
void
zfsctl_inode_inactive(struct inode *ip)
{
if (zfsctl_is_snapdir(ip))
zfsctl_snapdir_inactive(ip);
}
/*
* Create the '.zfs' directory. This directory is cached as part of the VFS
* structure. This results in a hold on the zfs_sb_t. The code in zfs_umount()
* therefore checks against a vfs_count of 2 instead of 1. This reference
* is removed when the ctldir is destroyed in the unmount. All other entities
* under the '.zfs' directory are created dynamically as needed.
*
* Because the dynamically created '.zfs' directory entries assume the use
* of 64-bit inode numbers this support must be disabled on 32-bit systems.
*/
int
zfsctl_create(zfs_sb_t *zsb)
{
#if defined(CONFIG_64BIT)
ASSERT(zsb->z_ctldir == NULL);
zsb->z_ctldir = zfsctl_inode_alloc(zsb, ZFSCTL_INO_ROOT,
&zpl_fops_root, &zpl_ops_root);
if (zsb->z_ctldir == NULL)
return (ENOENT);
return (0);
#else
return (EOPNOTSUPP);
#endif /* CONFIG_64BIT */
}
/*
* Destroy the '.zfs' directory. Only called when the filesystem is unmounted.
*/
void
zfsctl_destroy(zfs_sb_t *zsb)
{
iput(zsb->z_ctldir);
zsb->z_ctldir = NULL;
}
/*
* Given a root znode, retrieve the associated .zfs directory.
* Add a hold to the vnode and return it.
*/
struct inode *
zfsctl_root(znode_t *zp)
{
ASSERT(zfs_has_ctldir(zp));
igrab(ZTOZSB(zp)->z_ctldir);
return (ZTOZSB(zp)->z_ctldir);
}
/*ARGSUSED*/
int
zfsctl_fid(struct inode *ip, fid_t *fidp)
{
znode_t *zp = ITOZ(ip);
zfs_sb_t *zsb = ITOZSB(ip);
uint64_t object = zp->z_id;
zfid_short_t *zfid;
int i;
ZFS_ENTER(zsb);
if (fidp->fid_len < SHORT_FID_LEN) {
fidp->fid_len = SHORT_FID_LEN;
ZFS_EXIT(zsb);
return (ENOSPC);
}
zfid = (zfid_short_t *)fidp;
zfid->zf_len = SHORT_FID_LEN;
for (i = 0; i < sizeof (zfid->zf_object); i++)
zfid->zf_object[i] = (uint8_t)(object >> (8 * i));
/* .zfs znodes always have a generation number of 0 */
for (i = 0; i < sizeof (zfid->zf_gen); i++)
zfid->zf_gen[i] = 0;
ZFS_EXIT(zsb);
return (0);
}
static int
zfsctl_snapshot_zname(struct inode *ip, const char *name, int len, char *zname)
{
objset_t *os = ITOZSB(ip)->z_os;
if (snapshot_namecheck(name, NULL, NULL) != 0)
return (EILSEQ);
dmu_objset_name(os, zname);
if ((strlen(zname) + 1 + strlen(name)) >= len)
return (ENAMETOOLONG);
(void) strcat(zname, "@");
(void) strcat(zname, name);
return (0);
}
static int
zfsctl_snapshot_zpath(struct path *path, int len, char *zpath)
{
char *path_buffer, *path_ptr;
int path_len, error = 0;
path_buffer = kmem_alloc(len, KM_SLEEP);
path_ptr = d_path(path, path_buffer, len);
if (IS_ERR(path_ptr)) {
error = -PTR_ERR(path_ptr);
goto out;
}
path_len = path_buffer + len - 1 - path_ptr;
if (path_len > len) {
error = EFAULT;
goto out;
}
memcpy(zpath, path_ptr, path_len);
zpath[path_len] = '\0';
out:
kmem_free(path_buffer, len);
return (error);
}
/*
* Special case the handling of "..".
*/
/* ARGSUSED */
int
zfsctl_root_lookup(struct inode *dip, char *name, struct inode **ipp,
int flags, cred_t *cr, int *direntflags, pathname_t *realpnp)
{
zfs_sb_t *zsb = ITOZSB(dip);
int error = 0;
ZFS_ENTER(zsb);
if (strcmp(name, "..") == 0) {
*ipp = dip->i_sb->s_root->d_inode;
} else if (strcmp(name, ZFS_SNAPDIR_NAME) == 0) {
*ipp = zfsctl_inode_lookup(zsb, ZFSCTL_INO_SNAPDIR,
&zpl_fops_snapdir, &zpl_ops_snapdir);
} else if (strcmp(name, ZFS_SHAREDIR_NAME) == 0) {
*ipp = zfsctl_inode_lookup(zsb, ZFSCTL_INO_SHARES,
&zpl_fops_shares, &zpl_ops_shares);
} else {
*ipp = NULL;
}
if (*ipp == NULL)
error = ENOENT;
ZFS_EXIT(zsb);
return (error);
}
/*
* Lookup entry point for the 'snapshot' directory. Try to open the
* snapshot if it exist, creating the pseudo filesystem inode as necessary.
* Perform a mount of the associated dataset on top of the inode.
*/
/* ARGSUSED */
int
zfsctl_snapdir_lookup(struct inode *dip, char *name, struct inode **ipp,
int flags, cred_t *cr, int *direntflags, pathname_t *realpnp)
{
zfs_sb_t *zsb = ITOZSB(dip);
uint64_t id;
int error;
ZFS_ENTER(zsb);
error = dmu_snapshot_lookup(zsb->z_os, name, &id);
if (error) {
ZFS_EXIT(zsb);
return (error);
}
*ipp = zfsctl_inode_lookup(zsb, ZFSCTL_INO_SNAPDIRS - id,
&simple_dir_operations, &simple_dir_inode_operations);
if (*ipp) {
#ifdef HAVE_AUTOMOUNT
(*ipp)->i_flags |= S_AUTOMOUNT;
#endif /* HAVE_AUTOMOUNT */
} else {
error = ENOENT;
}
ZFS_EXIT(zsb);
return (error);
}
static void
zfsctl_rename_snap(zfs_sb_t *zsb, zfs_snapentry_t *sep, const char *name)
{
avl_index_t where;
ASSERT(MUTEX_HELD(&zsb->z_ctldir_lock));
ASSERT(sep != NULL);
/*
* Change the name in the AVL tree.
*/
avl_remove(&zsb->z_ctldir_snaps, sep);
(void) strcpy(sep->se_name, name);
VERIFY(avl_find(&zsb->z_ctldir_snaps, sep, &where) == NULL);
avl_insert(&zsb->z_ctldir_snaps, sep, where);
}
/*
* Renaming a directory under '.zfs/snapshot' will automatically trigger
* a rename of the snapshot to the new given name. The rename is confined
* to the '.zfs/snapshot' directory snapshots cannot be moved elsewhere.
*/
/*ARGSUSED*/
int
zfsctl_snapdir_rename(struct inode *sdip, char *sname,
struct inode *tdip, char *tname, cred_t *cr, int flags)
{
zfs_sb_t *zsb = ITOZSB(sdip);
zfs_snapentry_t search, *sep;
avl_index_t where;
char *to, *from, *real;
int error;
ZFS_ENTER(zsb);
to = kmem_alloc(MAXNAMELEN, KM_SLEEP);
from = kmem_alloc(MAXNAMELEN, KM_SLEEP);
real = kmem_alloc(MAXNAMELEN, KM_SLEEP);
if (zsb->z_case == ZFS_CASE_INSENSITIVE) {
error = dmu_snapshot_realname(zsb->z_os, sname, real,
MAXNAMELEN, NULL);
if (error == 0) {
sname = real;
} else if (error != ENOTSUP) {
goto out;
}
}
error = zfsctl_snapshot_zname(sdip, sname, MAXNAMELEN, from);
if (!error)
error = zfsctl_snapshot_zname(tdip, tname, MAXNAMELEN, to);
if (!error)
error = zfs_secpolicy_rename_perms(from, to, cr);
if (error)
goto out;
/*
* Cannot move snapshots out of the snapdir.
*/
if (sdip != tdip) {
error = EINVAL;
goto out;
}
/*
* No-op when names are identical.
*/
if (strcmp(sname, tname) == 0) {
error = 0;
goto out;
}
mutex_enter(&zsb->z_ctldir_lock);
error = dmu_objset_rename(from, to, B_FALSE);
if (error)
goto out_unlock;
search.se_name = (char *)sname;
sep = avl_find(&zsb->z_ctldir_snaps, &search, &where);
if (sep)
zfsctl_rename_snap(zsb, sep, tname);
out_unlock:
mutex_exit(&zsb->z_ctldir_lock);
out:
kmem_free(from, MAXNAMELEN);
kmem_free(to, MAXNAMELEN);
kmem_free(real, MAXNAMELEN);
ZFS_EXIT(zsb);
return (error);
}
/*
* Removing a directory under '.zfs/snapshot' will automatically trigger
* the removal of the snapshot with the given name.
*/
/* ARGSUSED */
int
zfsctl_snapdir_remove(struct inode *dip, char *name, cred_t *cr, int flags)
{
zfs_sb_t *zsb = ITOZSB(dip);
char *snapname, *real;
int error;
ZFS_ENTER(zsb);
snapname = kmem_alloc(MAXNAMELEN, KM_SLEEP);
real = kmem_alloc(MAXNAMELEN, KM_SLEEP);
if (zsb->z_case == ZFS_CASE_INSENSITIVE) {
error = dmu_snapshot_realname(zsb->z_os, name, real,
MAXNAMELEN, NULL);
if (error == 0) {
name = real;
} else if (error != ENOTSUP) {
goto out;
}
}
error = zfsctl_snapshot_zname(dip, name, MAXNAMELEN, snapname);
if (!error)
error = zfs_secpolicy_destroy_perms(snapname, cr);
if (error)
goto out;
error = zfsctl_unmount_snapshot(zsb, name, MNT_FORCE);
if ((error == 0) || (error == ENOENT))
error = dmu_objset_destroy(snapname, B_FALSE);
out:
kmem_free(snapname, MAXNAMELEN);
kmem_free(real, MAXNAMELEN);
ZFS_EXIT(zsb);
return (error);
}
/*
* Creating a directory under '.zfs/snapshot' will automatically trigger
* the creation of a new snapshot with the given name.
*/
/* ARGSUSED */
int
zfsctl_snapdir_mkdir(struct inode *dip, char *dirname, vattr_t *vap,
struct inode **ipp, cred_t *cr, int flags)
{
zfs_sb_t *zsb = ITOZSB(dip);
char *dsname;
int error;
dsname = kmem_alloc(MAXNAMELEN, KM_SLEEP);
if (snapshot_namecheck(dirname, NULL, NULL) != 0) {
error = EILSEQ;
goto out;
}
dmu_objset_name(zsb->z_os, dsname);
error = zfs_secpolicy_snapshot_perms(dsname, cr);
if (error)
goto out;
if (error == 0) {
error = dmu_objset_snapshot(dsname, dirname,
NULL, NULL, B_FALSE, B_FALSE, -1);
if (error)
goto out;
error = zfsctl_snapdir_lookup(dip, dirname, ipp,
0, cr, NULL, NULL);
}
out:
kmem_free(dsname, MAXNAMELEN);
return (error);
}
/*
* When a .zfs/snapshot/<snapshot> inode is evicted they must be removed
* from the snapshot list. This will normally happen as part of the auto
* unmount, however in the case of a manual snapshot unmount this will be
* the only notification we receive.
*/
void
zfsctl_snapdir_inactive(struct inode *ip)
{
zfs_sb_t *zsb = ITOZSB(ip);
zfs_snapentry_t *sep, *next;
mutex_enter(&zsb->z_ctldir_lock);
sep = avl_first(&zsb->z_ctldir_snaps);
while (sep != NULL) {
next = AVL_NEXT(&zsb->z_ctldir_snaps, sep);
if (sep->se_inode == ip) {
avl_remove(&zsb->z_ctldir_snaps, sep);
taskq_cancel_id(zfs_expire_taskq, sep->se_taskqid);
zfsctl_sep_free(sep);
break;
}
sep = next;
}
mutex_exit(&zsb->z_ctldir_lock);
}
/*
* Attempt to unmount a snapshot by making a call to user space.
* There is no assurance that this can or will succeed, is just a
* best effort. In the case where it does fail, perhaps because
* it's in use, the unmount will fail harmlessly.
*/
#define SET_UNMOUNT_CMD \
"exec 0</dev/null " \
" 1>/dev/null " \
" 2>/dev/null; " \
"umount -t zfs -n %s'%s'"
static int
__zfsctl_unmount_snapshot(zfs_snapentry_t *sep, int flags)
{
char *argv[] = { "/bin/sh", "-c", NULL, NULL };
char *envp[] = { NULL };
int error;
argv[2] = kmem_asprintf(SET_UNMOUNT_CMD,
flags & MNT_FORCE ? "-f " : "", sep->se_path);
error = call_usermodehelper(argv[0], argv, envp, UMH_WAIT_PROC);
strfree(argv[2]);
/*
* The umount system utility will return 256 on error. We must
* assume this error is because the file system is busy so it is
* converted to the more sensible EBUSY.
*/
if (error)
error = EBUSY;
/*
* This was the result of a manual unmount, cancel the delayed work
* to prevent zfsctl_expire_snapshot() from attempting a unmount.
*/
if ((error == 0) && !(flags & MNT_EXPIRE))
taskq_cancel_id(zfs_expire_taskq, sep->se_taskqid);
return (error);
}
int
zfsctl_unmount_snapshot(zfs_sb_t *zsb, char *name, int flags)
{
zfs_snapentry_t search;
zfs_snapentry_t *sep;
int error = 0;
mutex_enter(&zsb->z_ctldir_lock);
search.se_name = name;
sep = avl_find(&zsb->z_ctldir_snaps, &search, NULL);
if (sep) {
avl_remove(&zsb->z_ctldir_snaps, sep);
mutex_exit(&zsb->z_ctldir_lock);
error = __zfsctl_unmount_snapshot(sep, flags);
mutex_enter(&zsb->z_ctldir_lock);
if (error == EBUSY)
avl_add(&zsb->z_ctldir_snaps, sep);
else
zfsctl_sep_free(sep);
} else {
error = ENOENT;
}
mutex_exit(&zsb->z_ctldir_lock);
ASSERT3S(error, >=, 0);
return (error);
}
/*
* Traverse all mounted snapshots and attempt to unmount them. This
* is best effort, on failure EEXIST is returned and count will be set
* to the number of file snapshots which could not be unmounted.
*/
int
zfsctl_unmount_snapshots(zfs_sb_t *zsb, int flags, int *count)
{
zfs_snapentry_t *sep, *next;
int error = 0;
*count = 0;
ASSERT(zsb->z_ctldir != NULL);
mutex_enter(&zsb->z_ctldir_lock);
sep = avl_first(&zsb->z_ctldir_snaps);
while (sep != NULL) {
next = AVL_NEXT(&zsb->z_ctldir_snaps, sep);
avl_remove(&zsb->z_ctldir_snaps, sep);
mutex_exit(&zsb->z_ctldir_lock);
error = __zfsctl_unmount_snapshot(sep, flags);
mutex_enter(&zsb->z_ctldir_lock);
if (error == EBUSY) {
avl_add(&zsb->z_ctldir_snaps, sep);
(*count)++;
} else {
zfsctl_sep_free(sep);
}
sep = next;
}
mutex_exit(&zsb->z_ctldir_lock);
return ((*count > 0) ? EEXIST : 0);
}
#define SET_MOUNT_CMD \
"exec 0</dev/null " \
" 1>/dev/null " \
" 2>/dev/null; " \
"mount -t zfs -n '%s' '%s'"
int
zfsctl_mount_snapshot(struct path *path, int flags)
{
struct dentry *dentry = path->dentry;
struct inode *ip = dentry->d_inode;
zfs_sb_t *zsb = ITOZSB(ip);
char *full_name, *full_path;
zfs_snapentry_t *sep;
zfs_snapentry_t search;
char *argv[] = { "/bin/sh", "-c", NULL, NULL };
char *envp[] = { NULL };
int error;
ZFS_ENTER(zsb);
full_name = kmem_zalloc(MAXNAMELEN, KM_SLEEP);
full_path = kmem_zalloc(PATH_MAX, KM_SLEEP);
error = zfsctl_snapshot_zname(ip, dname(dentry), MAXNAMELEN, full_name);
if (error)
goto error;
error = zfsctl_snapshot_zpath(path, PATH_MAX, full_path);
if (error)
goto error;
/*
* Attempt to mount the snapshot from user space. Normally this
* would be done using the vfs_kern_mount() function, however that
* function is marked GPL-only and cannot be used. On error we
* careful to log the real error to the console and return EISDIR
* to safely abort the automount. This should be very rare.
*/
argv[2] = kmem_asprintf(SET_MOUNT_CMD, full_name, full_path);
error = call_usermodehelper(argv[0], argv, envp, UMH_WAIT_PROC);
strfree(argv[2]);
if (error) {
printk("ZFS: Unable to automount %s at %s: %d\n",
full_name, full_path, error);
error = EISDIR;
goto error;
}
mutex_enter(&zsb->z_ctldir_lock);
/*
* Ensure a previous entry does not exist, if it does safely remove
* it any cancel the outstanding expiration. This can occur when a
* snapshot is manually unmounted and then an automount is triggered.
*/
search.se_name = full_name;
sep = avl_find(&zsb->z_ctldir_snaps, &search, NULL);
if (sep) {
avl_remove(&zsb->z_ctldir_snaps, sep);
taskq_cancel_id(zfs_expire_taskq, sep->se_taskqid);
zfsctl_sep_free(sep);
}
sep = zfsctl_sep_alloc();
sep->se_name = full_name;
sep->se_path = full_path;
sep->se_inode = ip;
avl_add(&zsb->z_ctldir_snaps, sep);
sep->se_taskqid = taskq_dispatch_delay(zfs_expire_taskq,
zfsctl_expire_snapshot, sep, TQ_SLEEP,
ddi_get_lbolt() + zfs_expire_snapshot * HZ);
mutex_exit(&zsb->z_ctldir_lock);
error:
if (error) {
kmem_free(full_name, MAXNAMELEN);
kmem_free(full_path, PATH_MAX);
}
ZFS_EXIT(zsb);
return (error);
}
/*
* Check if this super block has a matching objset id.
*/
static int
zfsctl_test_super(struct super_block *sb, void *objsetidp)
{
zfs_sb_t *zsb = sb->s_fs_info;
uint64_t objsetid = *(uint64_t *)objsetidp;
return (dmu_objset_id(zsb->z_os) == objsetid);
}
/*
* Prevent a new super block from being allocated if an existing one
* could not be located. We only want to preform a lookup operation.
*/
static int
zfsctl_set_super(struct super_block *sb, void *objsetidp)
{
return (-EEXIST);
}
int
zfsctl_lookup_objset(struct super_block *sb, uint64_t objsetid, zfs_sb_t **zsbp)
{
zfs_sb_t *zsb = sb->s_fs_info;
struct super_block *sbp;
zfs_snapentry_t *sep;
uint64_t id;
int error;
ASSERT(zsb->z_ctldir != NULL);
mutex_enter(&zsb->z_ctldir_lock);
/*
* Verify that the snapshot is mounted.
*/
sep = avl_first(&zsb->z_ctldir_snaps);
while (sep != NULL) {
error = dmu_snapshot_lookup(zsb->z_os, sep->se_name, &id);
if (error)
goto out;
if (id == objsetid)
break;
sep = AVL_NEXT(&zsb->z_ctldir_snaps, sep);
}
if (sep != NULL) {
/*
* Lookup the mounted root rather than the covered mount
* point. This may fail if the snapshot has just been
* unmounted by an unrelated user space process. This
* race cannot occur to an expired mount point because
* we hold the zsb->z_ctldir_lock to prevent the race.
*/
sbp = zpl_sget(&zpl_fs_type, zfsctl_test_super,
zfsctl_set_super, 0, &id);
if (IS_ERR(sbp)) {
error = -PTR_ERR(sbp);
} else {
*zsbp = sbp->s_fs_info;
deactivate_super(sbp);
}
} else {
error = EINVAL;
}
out:
mutex_exit(&zsb->z_ctldir_lock);
ASSERT3S(error, >=, 0);
return (error);
}
/* ARGSUSED */
int
zfsctl_shares_lookup(struct inode *dip, char *name, struct inode **ipp,
int flags, cred_t *cr, int *direntflags, pathname_t *realpnp)
{
zfs_sb_t *zsb = ITOZSB(dip);
struct inode *ip;
znode_t *dzp;
int error;
ZFS_ENTER(zsb);
if (zsb->z_shares_dir == 0) {
ZFS_EXIT(zsb);
return (ENOTSUP);
}
error = zfs_zget(zsb, zsb->z_shares_dir, &dzp);
if (error) {
ZFS_EXIT(zsb);
return (error);
}
error = zfs_lookup(ZTOI(dzp), name, &ip, 0, cr, NULL, NULL);
iput(ZTOI(dzp));
ZFS_EXIT(zsb);
return (error);
}
/*
* Initialize the various pieces we'll need to create and manipulate .zfs
* directories. Currently this is unused but available.
*/
void
zfsctl_init(void)
{
zfs_expire_taskq = taskq_create("z_unmount", 1, maxclsyspri,
1, 8, TASKQ_PREPOPULATE);
}
/*
* Cleanup the various pieces we needed for .zfs directories. In particular
* ensure the expiry timer is canceled safely.
*/
void
zfsctl_fini(void)
{
taskq_destroy(zfs_expire_taskq);
}
module_param(zfs_expire_snapshot, int, 0644);
MODULE_PARM_DESC(zfs_expire_snapshot, "Seconds to expire .zfs/snapshot");