2008-11-20 23:01:55 +03:00
|
|
|
/*
|
|
|
|
* CDDL HEADER START
|
|
|
|
*
|
|
|
|
* The contents of this file are subject to the terms of the
|
|
|
|
* Common Development and Distribution License (the "License").
|
|
|
|
* You may not use this file except in compliance with the License.
|
|
|
|
*
|
|
|
|
* You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
|
|
|
|
* or http://www.opensolaris.org/os/licensing.
|
|
|
|
* See the License for the specific language governing permissions
|
|
|
|
* and limitations under the License.
|
|
|
|
*
|
|
|
|
* When distributing Covered Code, include this CDDL HEADER in each
|
|
|
|
* file and include the License file at usr/src/OPENSOLARIS.LICENSE.
|
|
|
|
* If applicable, add the following below this CDDL HEADER, with the
|
|
|
|
* fields enclosed by brackets "[]" replaced with your own identifying
|
|
|
|
* information: Portions Copyright [yyyy] [name of copyright owner]
|
|
|
|
*
|
|
|
|
* CDDL HEADER END
|
|
|
|
*/
|
|
|
|
/*
|
2010-05-29 00:45:14 +04:00
|
|
|
* Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
|
2018-09-06 04:33:36 +03:00
|
|
|
* Copyright (c) 2012, 2018 by Delphix. All rights reserved.
|
2013-08-02 00:02:10 +04:00
|
|
|
* Copyright (c) 2013 by Saso Kiselkov. All rights reserved.
|
2015-04-02 06:44:32 +03:00
|
|
|
* Copyright (c) 2014 Spectra Logic Corporation, All rights reserved.
|
2008-11-20 23:01:55 +03:00
|
|
|
*/
|
|
|
|
|
2010-05-29 00:45:14 +04:00
|
|
|
/* Portions Copyright 2010 Robert Milkowski */
|
|
|
|
|
2008-11-20 23:01:55 +03:00
|
|
|
#ifndef _SYS_DMU_OBJSET_H
|
|
|
|
#define _SYS_DMU_OBJSET_H
|
|
|
|
|
|
|
|
#include <sys/spa.h>
|
|
|
|
#include <sys/arc.h>
|
|
|
|
#include <sys/txg.h>
|
|
|
|
#include <sys/zfs_context.h>
|
|
|
|
#include <sys/dnode.h>
|
|
|
|
#include <sys/zio.h>
|
|
|
|
#include <sys/zil.h>
|
2010-05-29 00:45:14 +04:00
|
|
|
#include <sys/sa.h>
|
2018-07-10 20:49:50 +03:00
|
|
|
#include <sys/zfs_ioctl.h>
|
2008-11-20 23:01:55 +03:00
|
|
|
|
|
|
|
#ifdef __cplusplus
|
|
|
|
extern "C" {
|
|
|
|
#endif
|
|
|
|
|
2010-08-27 01:24:34 +04:00
|
|
|
extern krwlock_t os_lock;
|
|
|
|
|
2013-09-04 16:00:57 +04:00
|
|
|
struct dsl_pool;
|
2008-11-20 23:01:55 +03:00
|
|
|
struct dsl_dataset;
|
|
|
|
struct dmu_tx;
|
|
|
|
|
2018-02-14 01:54:54 +03:00
|
|
|
#define OBJSET_PHYS_SIZE_V1 1024
|
|
|
|
#define OBJSET_PHYS_SIZE_V2 2048
|
|
|
|
#define OBJSET_PHYS_SIZE_V3 4096
|
2009-07-03 02:44:48 +04:00
|
|
|
|
2010-05-29 00:45:14 +04:00
|
|
|
#define OBJSET_BUF_HAS_USERUSED(buf) \
|
2018-02-14 01:54:54 +03:00
|
|
|
(arc_buf_size(buf) >= OBJSET_PHYS_SIZE_V2)
|
|
|
|
#define OBJSET_BUF_HAS_PROJECTUSED(buf) \
|
|
|
|
(arc_buf_size(buf) >= OBJSET_PHYS_SIZE_V3)
|
2010-05-29 00:45:14 +04:00
|
|
|
|
2018-02-14 01:54:54 +03:00
|
|
|
#define OBJSET_FLAG_USERACCOUNTING_COMPLETE (1ULL << 0)
|
|
|
|
#define OBJSET_FLAG_USEROBJACCOUNTING_COMPLETE (1ULL << 1)
|
|
|
|
#define OBJSET_FLAG_PROJECTQUOTA_COMPLETE (1ULL << 2)
|
2009-07-03 02:44:48 +04:00
|
|
|
|
2018-03-20 21:55:21 +03:00
|
|
|
/*
|
|
|
|
* This mask defines the set of flags which are "portable", meaning
|
|
|
|
* that they can be preserved when doing a raw encrypted zfs send.
|
|
|
|
* Flags included in this mask will be protected by os_portable_mac
|
|
|
|
* when the block of dnodes is encrypted. No portable flags currently
|
|
|
|
* exist.
|
|
|
|
*/
|
Native Encryption for ZFS on Linux
This change incorporates three major pieces:
The first change is a keystore that manages wrapping
and encryption keys for encrypted datasets. These
commands mostly involve manipulating the new
DSL Crypto Key ZAP Objects that live in the MOS. Each
encrypted dataset has its own DSL Crypto Key that is
protected with a user's key. This level of indirection
allows users to change their keys without re-encrypting
their entire datasets. The change implements the new
subcommands "zfs load-key", "zfs unload-key" and
"zfs change-key" which allow the user to manage their
encryption keys and settings. In addition, several new
flags and properties have been added to allow dataset
creation and to make mounting and unmounting more
convenient.
The second piece of this patch provides the ability to
encrypt, decyrpt, and authenticate protected datasets.
Each object set maintains a Merkel tree of Message
Authentication Codes that protect the lower layers,
similarly to how checksums are maintained. This part
impacts the zio layer, which handles the actual
encryption and generation of MACs, as well as the ARC
and DMU, which need to be able to handle encrypted
buffers and protected data.
The last addition is the ability to do raw, encrypted
sends and receives. The idea here is to send raw
encrypted and compressed data and receive it exactly
as is on a backup system. This means that the dataset
on the receiving system is protected using the same
user key that is in use on the sending side. By doing
so, datasets can be efficiently backed up to an
untrusted system without fear of data being
compromised.
Reviewed by: Matthew Ahrens <mahrens@delphix.com>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Reviewed-by: Jorgen Lundman <lundman@lundman.net>
Signed-off-by: Tom Caputi <tcaputi@datto.com>
Closes #494
Closes #5769
2017-08-14 20:36:48 +03:00
|
|
|
#define OBJSET_CRYPT_PORTABLE_FLAGS_MASK (0)
|
|
|
|
|
2008-11-20 23:01:55 +03:00
|
|
|
typedef struct objset_phys {
|
|
|
|
dnode_phys_t os_meta_dnode;
|
|
|
|
zil_header_t os_zil_header;
|
|
|
|
uint64_t os_type;
|
2009-07-03 02:44:48 +04:00
|
|
|
uint64_t os_flags;
|
Native Encryption for ZFS on Linux
This change incorporates three major pieces:
The first change is a keystore that manages wrapping
and encryption keys for encrypted datasets. These
commands mostly involve manipulating the new
DSL Crypto Key ZAP Objects that live in the MOS. Each
encrypted dataset has its own DSL Crypto Key that is
protected with a user's key. This level of indirection
allows users to change their keys without re-encrypting
their entire datasets. The change implements the new
subcommands "zfs load-key", "zfs unload-key" and
"zfs change-key" which allow the user to manage their
encryption keys and settings. In addition, several new
flags and properties have been added to allow dataset
creation and to make mounting and unmounting more
convenient.
The second piece of this patch provides the ability to
encrypt, decyrpt, and authenticate protected datasets.
Each object set maintains a Merkel tree of Message
Authentication Codes that protect the lower layers,
similarly to how checksums are maintained. This part
impacts the zio layer, which handles the actual
encryption and generation of MACs, as well as the ARC
and DMU, which need to be able to handle encrypted
buffers and protected data.
The last addition is the ability to do raw, encrypted
sends and receives. The idea here is to send raw
encrypted and compressed data and receive it exactly
as is on a backup system. This means that the dataset
on the receiving system is protected using the same
user key that is in use on the sending side. By doing
so, datasets can be efficiently backed up to an
untrusted system without fear of data being
compromised.
Reviewed by: Matthew Ahrens <mahrens@delphix.com>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Reviewed-by: Jorgen Lundman <lundman@lundman.net>
Signed-off-by: Tom Caputi <tcaputi@datto.com>
Closes #494
Closes #5769
2017-08-14 20:36:48 +03:00
|
|
|
uint8_t os_portable_mac[ZIO_OBJSET_MAC_LEN];
|
|
|
|
uint8_t os_local_mac[ZIO_OBJSET_MAC_LEN];
|
2018-02-14 01:54:54 +03:00
|
|
|
char os_pad0[OBJSET_PHYS_SIZE_V2 - sizeof (dnode_phys_t)*3 -
|
Native Encryption for ZFS on Linux
This change incorporates three major pieces:
The first change is a keystore that manages wrapping
and encryption keys for encrypted datasets. These
commands mostly involve manipulating the new
DSL Crypto Key ZAP Objects that live in the MOS. Each
encrypted dataset has its own DSL Crypto Key that is
protected with a user's key. This level of indirection
allows users to change their keys without re-encrypting
their entire datasets. The change implements the new
subcommands "zfs load-key", "zfs unload-key" and
"zfs change-key" which allow the user to manage their
encryption keys and settings. In addition, several new
flags and properties have been added to allow dataset
creation and to make mounting and unmounting more
convenient.
The second piece of this patch provides the ability to
encrypt, decyrpt, and authenticate protected datasets.
Each object set maintains a Merkel tree of Message
Authentication Codes that protect the lower layers,
similarly to how checksums are maintained. This part
impacts the zio layer, which handles the actual
encryption and generation of MACs, as well as the ARC
and DMU, which need to be able to handle encrypted
buffers and protected data.
The last addition is the ability to do raw, encrypted
sends and receives. The idea here is to send raw
encrypted and compressed data and receive it exactly
as is on a backup system. This means that the dataset
on the receiving system is protected using the same
user key that is in use on the sending side. By doing
so, datasets can be efficiently backed up to an
untrusted system without fear of data being
compromised.
Reviewed by: Matthew Ahrens <mahrens@delphix.com>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Reviewed-by: Jorgen Lundman <lundman@lundman.net>
Signed-off-by: Tom Caputi <tcaputi@datto.com>
Closes #494
Closes #5769
2017-08-14 20:36:48 +03:00
|
|
|
sizeof (zil_header_t) - sizeof (uint64_t)*2 -
|
|
|
|
2*ZIO_OBJSET_MAC_LEN];
|
2009-07-03 02:44:48 +04:00
|
|
|
dnode_phys_t os_userused_dnode;
|
|
|
|
dnode_phys_t os_groupused_dnode;
|
2018-02-14 01:54:54 +03:00
|
|
|
dnode_phys_t os_projectused_dnode;
|
|
|
|
char os_pad1[OBJSET_PHYS_SIZE_V3 - OBJSET_PHYS_SIZE_V2 -
|
|
|
|
sizeof (dnode_phys_t)];
|
2008-11-20 23:01:55 +03:00
|
|
|
} objset_phys_t;
|
|
|
|
|
2016-10-04 21:46:10 +03:00
|
|
|
typedef int (*dmu_objset_upgrade_cb_t)(objset_t *);
|
|
|
|
|
2018-07-10 20:49:50 +03:00
|
|
|
#define OBJSET_PROP_UNINITIALIZED ((uint64_t)-1)
|
2008-11-20 23:01:55 +03:00
|
|
|
struct objset {
|
|
|
|
/* Immutable: */
|
|
|
|
struct dsl_dataset *os_dsl_dataset;
|
|
|
|
spa_t *os_spa;
|
|
|
|
arc_buf_t *os_phys_buf;
|
|
|
|
objset_phys_t *os_phys;
|
Native Encryption for ZFS on Linux
This change incorporates three major pieces:
The first change is a keystore that manages wrapping
and encryption keys for encrypted datasets. These
commands mostly involve manipulating the new
DSL Crypto Key ZAP Objects that live in the MOS. Each
encrypted dataset has its own DSL Crypto Key that is
protected with a user's key. This level of indirection
allows users to change their keys without re-encrypting
their entire datasets. The change implements the new
subcommands "zfs load-key", "zfs unload-key" and
"zfs change-key" which allow the user to manage their
encryption keys and settings. In addition, several new
flags and properties have been added to allow dataset
creation and to make mounting and unmounting more
convenient.
The second piece of this patch provides the ability to
encrypt, decyrpt, and authenticate protected datasets.
Each object set maintains a Merkel tree of Message
Authentication Codes that protect the lower layers,
similarly to how checksums are maintained. This part
impacts the zio layer, which handles the actual
encryption and generation of MACs, as well as the ARC
and DMU, which need to be able to handle encrypted
buffers and protected data.
The last addition is the ability to do raw, encrypted
sends and receives. The idea here is to send raw
encrypted and compressed data and receive it exactly
as is on a backup system. This means that the dataset
on the receiving system is protected using the same
user key that is in use on the sending side. By doing
so, datasets can be efficiently backed up to an
untrusted system without fear of data being
compromised.
Reviewed by: Matthew Ahrens <mahrens@delphix.com>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Reviewed-by: Jorgen Lundman <lundman@lundman.net>
Signed-off-by: Tom Caputi <tcaputi@datto.com>
Closes #494
Closes #5769
2017-08-14 20:36:48 +03:00
|
|
|
boolean_t os_encrypted;
|
|
|
|
|
2010-08-27 01:24:34 +04:00
|
|
|
/*
|
2015-04-02 06:44:32 +03:00
|
|
|
* The following "special" dnodes have no parent, are exempt
|
|
|
|
* from dnode_move(), and are not recorded in os_dnodes, but they
|
|
|
|
* root their descendents in this objset using handles anyway, so
|
|
|
|
* that all access to dnodes from dbufs consistently uses handles.
|
2010-08-27 01:24:34 +04:00
|
|
|
*/
|
|
|
|
dnode_handle_t os_meta_dnode;
|
|
|
|
dnode_handle_t os_userused_dnode;
|
|
|
|
dnode_handle_t os_groupused_dnode;
|
2018-02-14 01:54:54 +03:00
|
|
|
dnode_handle_t os_projectused_dnode;
|
2008-11-20 23:01:55 +03:00
|
|
|
zilog_t *os_zil;
|
2010-05-29 00:45:14 +04:00
|
|
|
|
2015-04-02 06:44:32 +03:00
|
|
|
list_node_t os_evicting_node;
|
|
|
|
|
2010-05-29 00:45:14 +04:00
|
|
|
/* can change, under dsl_dir's locks: */
|
Implement large_dnode pool feature
Justification
-------------
This feature adds support for variable length dnodes. Our motivation is
to eliminate the overhead associated with using spill blocks. Spill
blocks are used to store system attribute data (i.e. file metadata) that
does not fit in the dnode's bonus buffer. By allowing a larger bonus
buffer area the use of a spill block can be avoided. Spill blocks
potentially incur an additional read I/O for every dnode in a dnode
block. As a worst case example, reading 32 dnodes from a 16k dnode block
and all of the spill blocks could issue 33 separate reads. Now suppose
those dnodes have size 1024 and therefore don't need spill blocks. Then
the worst case number of blocks read is reduced to from 33 to two--one
per dnode block. In practice spill blocks may tend to be co-located on
disk with the dnode blocks so the reduction in I/O would not be this
drastic. In a badly fragmented pool, however, the improvement could be
significant.
ZFS-on-Linux systems that make heavy use of extended attributes would
benefit from this feature. In particular, ZFS-on-Linux supports the
xattr=sa dataset property which allows file extended attribute data
to be stored in the dnode bonus buffer as an alternative to the
traditional directory-based format. Workloads such as SELinux and the
Lustre distributed filesystem often store enough xattr data to force
spill bocks when xattr=sa is in effect. Large dnodes may therefore
provide a performance benefit to such systems.
Other use cases that may benefit from this feature include files with
large ACLs and symbolic links with long target names. Furthermore,
this feature may be desirable on other platforms in case future
applications or features are developed that could make use of a
larger bonus buffer area.
Implementation
--------------
The size of a dnode may be a multiple of 512 bytes up to the size of
a dnode block (currently 16384 bytes). A dn_extra_slots field was
added to the current on-disk dnode_phys_t structure to describe the
size of the physical dnode on disk. The 8 bits for this field were
taken from the zero filled dn_pad2 field. The field represents how
many "extra" dnode_phys_t slots a dnode consumes in its dnode block.
This convention results in a value of 0 for 512 byte dnodes which
preserves on-disk format compatibility with older software.
Similarly, the in-memory dnode_t structure has a new dn_num_slots field
to represent the total number of dnode_phys_t slots consumed on disk.
Thus dn->dn_num_slots is 1 greater than the corresponding
dnp->dn_extra_slots. This difference in convention was adopted
because, unlike on-disk structures, backward compatibility is not a
concern for in-memory objects, so we used a more natural way to
represent size for a dnode_t.
The default size for newly created dnodes is determined by the value of
a new "dnodesize" dataset property. By default the property is set to
"legacy" which is compatible with older software. Setting the property
to "auto" will allow the filesystem to choose the most suitable dnode
size. Currently this just sets the default dnode size to 1k, but future
code improvements could dynamically choose a size based on observed
workload patterns. Dnodes of varying sizes can coexist within the same
dataset and even within the same dnode block. For example, to enable
automatically-sized dnodes, run
# zfs set dnodesize=auto tank/fish
The user can also specify literal values for the dnodesize property.
These are currently limited to powers of two from 1k to 16k. The
power-of-2 limitation is only for simplicity of the user interface.
Internally the implementation can handle any multiple of 512 up to 16k,
and consumers of the DMU API can specify any legal dnode value.
The size of a new dnode is determined at object allocation time and
stored as a new field in the znode in-memory structure. New DMU
interfaces are added to allow the consumer to specify the dnode size
that a newly allocated object should use. Existing interfaces are
unchanged to avoid having to update every call site and to preserve
compatibility with external consumers such as Lustre. The new
interfaces names are given below. The versions of these functions that
don't take a dnodesize parameter now just call the _dnsize() versions
with a dnodesize of 0, which means use the legacy dnode size.
New DMU interfaces:
dmu_object_alloc_dnsize()
dmu_object_claim_dnsize()
dmu_object_reclaim_dnsize()
New ZAP interfaces:
zap_create_dnsize()
zap_create_norm_dnsize()
zap_create_flags_dnsize()
zap_create_claim_norm_dnsize()
zap_create_link_dnsize()
The constant DN_MAX_BONUSLEN is renamed to DN_OLD_MAX_BONUSLEN. The
spa_maxdnodesize() function should be used to determine the maximum
bonus length for a pool.
These are a few noteworthy changes to key functions:
* The prototype for dnode_hold_impl() now takes a "slots" parameter.
When the DNODE_MUST_BE_FREE flag is set, this parameter is used to
ensure the hole at the specified object offset is large enough to
hold the dnode being created. The slots parameter is also used
to ensure a dnode does not span multiple dnode blocks. In both of
these cases, if a failure occurs, ENOSPC is returned. Keep in mind,
these failure cases are only possible when using DNODE_MUST_BE_FREE.
If the DNODE_MUST_BE_ALLOCATED flag is set, "slots" must be 0.
dnode_hold_impl() will check if the requested dnode is already
consumed as an extra dnode slot by an large dnode, in which case
it returns ENOENT.
* The function dmu_object_alloc() advances to the next dnode block
if dnode_hold_impl() returns an error for a requested object.
This is because the beginning of the next dnode block is the only
location it can safely assume to either be a hole or a valid
starting point for a dnode.
* dnode_next_offset_level() and other functions that iterate
through dnode blocks may no longer use a simple array indexing
scheme. These now use the current dnode's dn_num_slots field to
advance to the next dnode in the block. This is to ensure we
properly skip the current dnode's bonus area and don't interpret it
as a valid dnode.
zdb
---
The zdb command was updated to display a dnode's size under the
"dnsize" column when the object is dumped.
For ZIL create log records, zdb will now display the slot count for
the object.
ztest
-----
Ztest chooses a random dnodesize for every newly created object. The
random distribution is more heavily weighted toward small dnodes to
better simulate real-world datasets.
Unused bonus buffer space is filled with non-zero values computed from
the object number, dataset id, offset, and generation number. This
helps ensure that the dnode traversal code properly skips the interior
regions of large dnodes, and that these interior regions are not
overwritten by data belonging to other dnodes. A new test visits each
object in a dataset. It verifies that the actual dnode size matches what
was stored in the ztest block tag when it was created. It also verifies
that the unused bonus buffer space is filled with the expected data
patterns.
ZFS Test Suite
--------------
Added six new large dnode-specific tests, and integrated the dnodesize
property into existing tests for zfs allow and send/recv.
Send/Receive
------------
ZFS send streams for datasets containing large dnodes cannot be received
on pools that don't support the large_dnode feature. A send stream with
large dnodes sets a DMU_BACKUP_FEATURE_LARGE_DNODE flag which will be
unrecognized by an incompatible receiving pool so that the zfs receive
will fail gracefully.
While not implemented here, it may be possible to generate a
backward-compatible send stream from a dataset containing large
dnodes. The implementation may be tricky, however, because the send
object record for a large dnode would need to be resized to a 512
byte dnode, possibly kicking in a spill block in the process. This
means we would need to construct a new SA layout and possibly
register it in the SA layout object. The SA layout is normally just
sent as an ordinary object record. But if we are constructing new
layouts while generating the send stream we'd have to build the SA
layout object dynamically and send it at the end of the stream.
For sending and receiving between pools that do support large dnodes,
the drr_object send record type is extended with a new field to store
the dnode slot count. This field was repurposed from unused padding
in the structure.
ZIL Replay
----------
The dnode slot count is stored in the uppermost 8 bits of the lr_foid
field. The bits were unused as the object id is currently capped at
48 bits.
Resizing Dnodes
---------------
It should be possible to resize a dnode when it is dirtied if the
current dnodesize dataset property differs from the dnode's size, but
this functionality is not currently implemented. Clearly a dnode can
only grow if there are sufficient contiguous unused slots in the
dnode block, but it should always be possible to shrink a dnode.
Growing dnodes may be useful to reduce fragmentation in a pool with
many spill blocks in use. Shrinking dnodes may be useful to allow
sending a dataset to a pool that doesn't support the large_dnode
feature.
Feature Reference Counting
--------------------------
The reference count for the large_dnode pool feature tracks the
number of datasets that have ever contained a dnode of size larger
than 512 bytes. The first time a large dnode is created in a dataset
the dataset is converted to an extensible dataset. This is a one-way
operation and the only way to decrement the feature count is to
destroy the dataset, even if the dataset no longer contains any large
dnodes. The complexity of reference counting on a per-dnode basis was
too high, so we chose to track it on a per-dataset basis similarly to
the large_block feature.
Signed-off-by: Ned Bass <bass6@llnl.gov>
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Closes #3542
2016-03-17 04:25:34 +03:00
|
|
|
uint64_t os_dnodesize; /* default dnode size for new objects */
|
2014-05-23 20:21:07 +04:00
|
|
|
enum zio_checksum os_checksum;
|
|
|
|
enum zio_compress os_compress;
|
Add zstd support to zfs
This PR adds two new compression types, based on ZStandard:
- zstd: A basic ZStandard compression algorithm Available compression.
Levels for zstd are zstd-1 through zstd-19, where the compression
increases with every level, but speed decreases.
- zstd-fast: A faster version of the ZStandard compression algorithm
zstd-fast is basically a "negative" level of zstd. The compression
decreases with every level, but speed increases.
Available compression levels for zstd-fast:
- zstd-fast-1 through zstd-fast-10
- zstd-fast-20 through zstd-fast-100 (in increments of 10)
- zstd-fast-500 and zstd-fast-1000
For more information check the man page.
Implementation details:
Rather than treat each level of zstd as a different algorithm (as was
done historically with gzip), the block pointer `enum zio_compress`
value is simply zstd for all levels, including zstd-fast, since they all
use the same decompression function.
The compress= property (a 64bit unsigned integer) uses the lower 7 bits
to store the compression algorithm (matching the number of bits used in
a block pointer, as the 8th bit was borrowed for embedded block
pointers). The upper bits are used to store the compression level.
It is necessary to be able to determine what compression level was used
when later reading a block back, so the concept used in LZ4, where the
first 32bits of the on-disk value are the size of the compressed data
(since the allocation is rounded up to the nearest ashift), was
extended, and we store the version of ZSTD and the level as well as the
compressed size. This value is returned when decompressing a block, so
that if the block needs to be recompressed (L2ARC, nop-write, etc), that
the same parameters will be used to result in the matching checksum.
All of the internal ZFS code ( `arc_buf_hdr_t`, `objset_t`,
`zio_prop_t`, etc.) uses the separated _compress and _complevel
variables. Only the properties ZAP contains the combined/bit-shifted
value. The combined value is split when the compression_changed_cb()
callback is called, and sets both objset members (os_compress and
os_complevel).
The userspace tools all use the combined/bit-shifted value.
Additional notes:
zdb can now also decode the ZSTD compression header (flag -Z) and
inspect the size, version and compression level saved in that header.
For each record, if it is ZSTD compressed, the parameters of the decoded
compression header get printed.
ZSTD is included with all current tests and new tests are added
as-needed.
Per-dataset feature flags now get activated when the property is set.
If a compression algorithm requires a feature flag, zfs activates the
feature when the property is set, rather than waiting for the first
block to be born. This is currently only used by zstd but can be
extended as needed.
Portions-Sponsored-By: The FreeBSD Foundation
Co-authored-by: Allan Jude <allanjude@freebsd.org>
Co-authored-by: Brian Behlendorf <behlendorf1@llnl.gov>
Co-authored-by: Sebastian Gottschall <s.gottschall@dd-wrt.com>
Co-authored-by: Kjeld Schouten-Lebbing <kjeld@schouten-lebbing.nl>
Co-authored-by: Michael Niewöhner <foss@mniewoehner.de>
Signed-off-by: Allan Jude <allan@klarasystems.com>
Signed-off-by: Allan Jude <allanjude@freebsd.org>
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Sebastian Gottschall <s.gottschall@dd-wrt.com>
Signed-off-by: Kjeld Schouten-Lebbing <kjeld@schouten-lebbing.nl>
Signed-off-by: Michael Niewöhner <foss@mniewoehner.de>
Closes #6247
Closes #9024
Closes #10277
Closes #10278
2020-08-18 20:10:17 +03:00
|
|
|
uint8_t os_complevel;
|
2010-05-29 00:45:14 +04:00
|
|
|
uint8_t os_copies;
|
2014-05-23 20:21:07 +04:00
|
|
|
enum zio_checksum os_dedup_checksum;
|
|
|
|
boolean_t os_dedup_verify;
|
|
|
|
zfs_logbias_op_t os_logbias;
|
|
|
|
zfs_cache_type_t os_primary_cache;
|
|
|
|
zfs_cache_type_t os_secondary_cache;
|
|
|
|
zfs_sync_type_t os_sync;
|
|
|
|
zfs_redundant_metadata_type_t os_redundant_metadata;
|
2019-07-26 20:54:14 +03:00
|
|
|
uint64_t os_recordsize;
|
2018-07-10 20:49:50 +03:00
|
|
|
/*
|
|
|
|
* The next four values are used as a cache of whatever's on disk, and
|
|
|
|
* are initialized the first time these properties are queried. Before
|
|
|
|
* being initialized with their real values, their values are
|
|
|
|
* OBJSET_PROP_UNINITIALIZED.
|
|
|
|
*/
|
|
|
|
uint64_t os_version;
|
|
|
|
uint64_t os_normalization;
|
|
|
|
uint64_t os_utf8only;
|
|
|
|
uint64_t os_casesensitivity;
|
2018-09-06 04:33:36 +03:00
|
|
|
/*
|
|
|
|
* The largest zpl file block allowed in special class.
|
|
|
|
* cached here instead of zfsvfs for easier access.
|
|
|
|
*/
|
|
|
|
int os_zpl_special_smallblock;
|
2008-11-20 23:01:55 +03:00
|
|
|
|
2017-01-27 22:43:42 +03:00
|
|
|
/*
|
|
|
|
* Pointer is constant; the blkptr it points to is protected by
|
|
|
|
* os_dsl_dataset->ds_bp_rwlock
|
|
|
|
*/
|
|
|
|
blkptr_t *os_rootbp;
|
|
|
|
|
2008-11-20 23:01:55 +03:00
|
|
|
/* no lock needed: */
|
|
|
|
struct dmu_tx *os_synctx; /* XXX sketchy */
|
2008-12-03 23:09:06 +03:00
|
|
|
zil_header_t os_zil_header;
|
2021-06-10 19:42:31 +03:00
|
|
|
multilist_t os_synced_dnodes;
|
2009-07-03 02:44:48 +04:00
|
|
|
uint64_t os_flags;
|
2016-05-17 04:02:29 +03:00
|
|
|
uint64_t os_freed_dnodes;
|
|
|
|
boolean_t os_rescan_dnodes;
|
2018-04-17 21:06:54 +03:00
|
|
|
boolean_t os_raw_receive;
|
2008-11-20 23:01:55 +03:00
|
|
|
|
Native Encryption for ZFS on Linux
This change incorporates three major pieces:
The first change is a keystore that manages wrapping
and encryption keys for encrypted datasets. These
commands mostly involve manipulating the new
DSL Crypto Key ZAP Objects that live in the MOS. Each
encrypted dataset has its own DSL Crypto Key that is
protected with a user's key. This level of indirection
allows users to change their keys without re-encrypting
their entire datasets. The change implements the new
subcommands "zfs load-key", "zfs unload-key" and
"zfs change-key" which allow the user to manage their
encryption keys and settings. In addition, several new
flags and properties have been added to allow dataset
creation and to make mounting and unmounting more
convenient.
The second piece of this patch provides the ability to
encrypt, decyrpt, and authenticate protected datasets.
Each object set maintains a Merkel tree of Message
Authentication Codes that protect the lower layers,
similarly to how checksums are maintained. This part
impacts the zio layer, which handles the actual
encryption and generation of MACs, as well as the ARC
and DMU, which need to be able to handle encrypted
buffers and protected data.
The last addition is the ability to do raw, encrypted
sends and receives. The idea here is to send raw
encrypted and compressed data and receive it exactly
as is on a backup system. This means that the dataset
on the receiving system is protected using the same
user key that is in use on the sending side. By doing
so, datasets can be efficiently backed up to an
untrusted system without fear of data being
compromised.
Reviewed by: Matthew Ahrens <mahrens@delphix.com>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Reviewed-by: Jorgen Lundman <lundman@lundman.net>
Signed-off-by: Tom Caputi <tcaputi@datto.com>
Closes #494
Closes #5769
2017-08-14 20:36:48 +03:00
|
|
|
/* os_phys_buf should be written raw next txg */
|
2018-02-01 23:37:24 +03:00
|
|
|
boolean_t os_next_write_raw[TXG_SIZE];
|
Native Encryption for ZFS on Linux
This change incorporates three major pieces:
The first change is a keystore that manages wrapping
and encryption keys for encrypted datasets. These
commands mostly involve manipulating the new
DSL Crypto Key ZAP Objects that live in the MOS. Each
encrypted dataset has its own DSL Crypto Key that is
protected with a user's key. This level of indirection
allows users to change their keys without re-encrypting
their entire datasets. The change implements the new
subcommands "zfs load-key", "zfs unload-key" and
"zfs change-key" which allow the user to manage their
encryption keys and settings. In addition, several new
flags and properties have been added to allow dataset
creation and to make mounting and unmounting more
convenient.
The second piece of this patch provides the ability to
encrypt, decyrpt, and authenticate protected datasets.
Each object set maintains a Merkel tree of Message
Authentication Codes that protect the lower layers,
similarly to how checksums are maintained. This part
impacts the zio layer, which handles the actual
encryption and generation of MACs, as well as the ARC
and DMU, which need to be able to handle encrypted
buffers and protected data.
The last addition is the ability to do raw, encrypted
sends and receives. The idea here is to send raw
encrypted and compressed data and receive it exactly
as is on a backup system. This means that the dataset
on the receiving system is protected using the same
user key that is in use on the sending side. By doing
so, datasets can be efficiently backed up to an
untrusted system without fear of data being
compromised.
Reviewed by: Matthew Ahrens <mahrens@delphix.com>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Reviewed-by: Jorgen Lundman <lundman@lundman.net>
Signed-off-by: Tom Caputi <tcaputi@datto.com>
Closes #494
Closes #5769
2017-08-14 20:36:48 +03:00
|
|
|
|
2008-11-20 23:01:55 +03:00
|
|
|
/* Protected by os_obj_lock */
|
|
|
|
kmutex_t os_obj_lock;
|
OpenZFS 8199 - multi-threaded dmu_object_alloc()
dmu_object_alloc() is single-threaded, so when multiple threads are
creating files in a single filesystem, they spend a lot of time waiting
for the os_obj_lock. To improve performance of multi-threaded file
creation, we must make dmu_object_alloc() typically not grab any
filesystem-wide locks.
The solution is to have a "next object to allocate" for each CPU. Each
of these "next object"s is in a different block of the dnode object, so
that concurrent allocation holds dnodes in different dbufs. When a
thread's "next object" reaches the end of a chunk of objects (by default
4 blocks worth -- 128 dnodes), it will be reset to the per-objset
os_obj_next, which will be increased by a chunk of objects (128). Only
when manipulating the os_obj_next will we need to grab the os_obj_lock.
This decreases lock contention dramatically, because each thread only
needs to grab the os_obj_lock briefly, once per 128 allocations.
This results in a 70% performance improvement to multi-threaded object
creation (where each thread is creating objects in its own directory),
from 67,000/sec to 115,000/sec, with 8 CPUs.
Work sponsored by Intel Corp.
Authored by: Matthew Ahrens <mahrens@delphix.com>
Reviewed-by: Ned Bass <bass6@llnl.gov>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Ported-by: Matthew Ahrens <mahrens@delphix.com>
Signed-off-by: Matthew Ahrens <mahrens@delphix.com>
OpenZFS-issue: https://www.illumos.org/issues/8199
OpenZFS-commit: https://github.com/openzfs/openzfs/pull/374
Closes #4703
Closes #6117
2016-05-13 07:16:36 +03:00
|
|
|
uint64_t os_obj_next_chunk;
|
|
|
|
|
|
|
|
/* Per-CPU next object to allocate, protected by atomic ops. */
|
|
|
|
uint64_t *os_obj_next_percpu;
|
|
|
|
int os_obj_next_percpu_len;
|
2008-11-20 23:01:55 +03:00
|
|
|
|
|
|
|
/* Protected by os_lock */
|
|
|
|
kmutex_t os_lock;
|
2021-06-10 19:42:31 +03:00
|
|
|
multilist_t os_dirty_dnodes[TXG_SIZE];
|
2008-11-20 23:01:55 +03:00
|
|
|
list_t os_dnodes;
|
|
|
|
list_t os_downgraded_dbufs;
|
|
|
|
|
2018-02-14 01:54:54 +03:00
|
|
|
/* Protects changes to DMU_{USER,GROUP,PROJECT}USED_OBJECT */
|
2017-03-21 04:36:00 +03:00
|
|
|
kmutex_t os_userused_lock;
|
|
|
|
|
2008-11-20 23:01:55 +03:00
|
|
|
/* stuff we store for the user */
|
|
|
|
kmutex_t os_user_ptr_lock;
|
|
|
|
void *os_user_ptr;
|
2010-05-29 00:45:14 +04:00
|
|
|
sa_os_t *os_sa;
|
2016-10-04 21:46:10 +03:00
|
|
|
|
|
|
|
/* kernel thread to upgrade this dataset */
|
|
|
|
kmutex_t os_upgrade_lock;
|
|
|
|
taskqid_t os_upgrade_id;
|
|
|
|
dmu_objset_upgrade_cb_t os_upgrade_cb;
|
|
|
|
boolean_t os_upgrade_exit;
|
|
|
|
int os_upgrade_status;
|
2010-05-29 00:45:14 +04:00
|
|
|
};
|
|
|
|
|
|
|
|
#define DMU_META_OBJSET 0
|
2008-11-20 23:01:55 +03:00
|
|
|
#define DMU_META_DNODE_OBJECT 0
|
2009-07-03 02:44:48 +04:00
|
|
|
#define DMU_OBJECT_IS_SPECIAL(obj) ((int64_t)(obj) <= 0)
|
2010-08-27 01:24:34 +04:00
|
|
|
#define DMU_META_DNODE(os) ((os)->os_meta_dnode.dnh_dnode)
|
|
|
|
#define DMU_USERUSED_DNODE(os) ((os)->os_userused_dnode.dnh_dnode)
|
|
|
|
#define DMU_GROUPUSED_DNODE(os) ((os)->os_groupused_dnode.dnh_dnode)
|
2018-02-14 01:54:54 +03:00
|
|
|
#define DMU_PROJECTUSED_DNODE(os) ((os)->os_projectused_dnode.dnh_dnode)
|
2008-11-20 23:01:55 +03:00
|
|
|
|
|
|
|
/* called from zpl */
|
2022-04-19 21:38:30 +03:00
|
|
|
int dmu_objset_hold(const char *name, const void *tag, objset_t **osp);
|
|
|
|
int dmu_objset_hold_flags(const char *name, boolean_t decrypt, const void *tag,
|
Native Encryption for ZFS on Linux
This change incorporates three major pieces:
The first change is a keystore that manages wrapping
and encryption keys for encrypted datasets. These
commands mostly involve manipulating the new
DSL Crypto Key ZAP Objects that live in the MOS. Each
encrypted dataset has its own DSL Crypto Key that is
protected with a user's key. This level of indirection
allows users to change their keys without re-encrypting
their entire datasets. The change implements the new
subcommands "zfs load-key", "zfs unload-key" and
"zfs change-key" which allow the user to manage their
encryption keys and settings. In addition, several new
flags and properties have been added to allow dataset
creation and to make mounting and unmounting more
convenient.
The second piece of this patch provides the ability to
encrypt, decyrpt, and authenticate protected datasets.
Each object set maintains a Merkel tree of Message
Authentication Codes that protect the lower layers,
similarly to how checksums are maintained. This part
impacts the zio layer, which handles the actual
encryption and generation of MACs, as well as the ARC
and DMU, which need to be able to handle encrypted
buffers and protected data.
The last addition is the ability to do raw, encrypted
sends and receives. The idea here is to send raw
encrypted and compressed data and receive it exactly
as is on a backup system. This means that the dataset
on the receiving system is protected using the same
user key that is in use on the sending side. By doing
so, datasets can be efficiently backed up to an
untrusted system without fear of data being
compromised.
Reviewed by: Matthew Ahrens <mahrens@delphix.com>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Reviewed-by: Jorgen Lundman <lundman@lundman.net>
Signed-off-by: Tom Caputi <tcaputi@datto.com>
Closes #494
Closes #5769
2017-08-14 20:36:48 +03:00
|
|
|
objset_t **osp);
|
2010-05-29 00:45:14 +04:00
|
|
|
int dmu_objset_own(const char *name, dmu_objset_type_t type,
|
2022-04-19 21:38:30 +03:00
|
|
|
boolean_t readonly, boolean_t decrypt, const void *tag, objset_t **osp);
|
2015-05-06 19:07:55 +03:00
|
|
|
int dmu_objset_own_obj(struct dsl_pool *dp, uint64_t obj,
|
Native Encryption for ZFS on Linux
This change incorporates three major pieces:
The first change is a keystore that manages wrapping
and encryption keys for encrypted datasets. These
commands mostly involve manipulating the new
DSL Crypto Key ZAP Objects that live in the MOS. Each
encrypted dataset has its own DSL Crypto Key that is
protected with a user's key. This level of indirection
allows users to change their keys without re-encrypting
their entire datasets. The change implements the new
subcommands "zfs load-key", "zfs unload-key" and
"zfs change-key" which allow the user to manage their
encryption keys and settings. In addition, several new
flags and properties have been added to allow dataset
creation and to make mounting and unmounting more
convenient.
The second piece of this patch provides the ability to
encrypt, decyrpt, and authenticate protected datasets.
Each object set maintains a Merkel tree of Message
Authentication Codes that protect the lower layers,
similarly to how checksums are maintained. This part
impacts the zio layer, which handles the actual
encryption and generation of MACs, as well as the ARC
and DMU, which need to be able to handle encrypted
buffers and protected data.
The last addition is the ability to do raw, encrypted
sends and receives. The idea here is to send raw
encrypted and compressed data and receive it exactly
as is on a backup system. This means that the dataset
on the receiving system is protected using the same
user key that is in use on the sending side. By doing
so, datasets can be efficiently backed up to an
untrusted system without fear of data being
compromised.
Reviewed by: Matthew Ahrens <mahrens@delphix.com>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Reviewed-by: Jorgen Lundman <lundman@lundman.net>
Signed-off-by: Tom Caputi <tcaputi@datto.com>
Closes #494
Closes #5769
2017-08-14 20:36:48 +03:00
|
|
|
dmu_objset_type_t type, boolean_t readonly, boolean_t decrypt,
|
2022-04-19 21:38:30 +03:00
|
|
|
const void *tag, objset_t **osp);
|
2018-02-21 15:55:55 +03:00
|
|
|
void dmu_objset_refresh_ownership(struct dsl_dataset *ds,
|
2022-04-19 21:38:30 +03:00
|
|
|
struct dsl_dataset **newds, boolean_t decrypt, const void *tag);
|
|
|
|
void dmu_objset_rele(objset_t *os, const void *tag);
|
|
|
|
void dmu_objset_rele_flags(objset_t *os, boolean_t decrypt, const void *tag);
|
|
|
|
void dmu_objset_disown(objset_t *os, boolean_t decrypt, const void *tag);
|
2010-05-29 00:45:14 +04:00
|
|
|
int dmu_objset_from_ds(struct dsl_dataset *ds, objset_t **osp);
|
|
|
|
|
2008-11-20 23:01:55 +03:00
|
|
|
void dmu_objset_stats(objset_t *os, nvlist_t *nv);
|
|
|
|
void dmu_objset_fast_stat(objset_t *os, dmu_objset_stats_t *stat);
|
|
|
|
void dmu_objset_space(objset_t *os, uint64_t *refdbytesp, uint64_t *availbytesp,
|
|
|
|
uint64_t *usedobjsp, uint64_t *availobjsp);
|
|
|
|
uint64_t dmu_objset_fsid_guid(objset_t *os);
|
2013-09-04 16:00:57 +04:00
|
|
|
int dmu_objset_find_dp(struct dsl_pool *dp, uint64_t ddobj,
|
|
|
|
int func(struct dsl_pool *, struct dsl_dataset *, void *),
|
|
|
|
void *arg, int flags);
|
|
|
|
void dmu_objset_evict_dbufs(objset_t *os);
|
2018-06-20 07:51:18 +03:00
|
|
|
inode_timespec_t dmu_objset_snap_cmtime(objset_t *os);
|
2008-11-20 23:01:55 +03:00
|
|
|
|
|
|
|
/* called from dsl */
|
2010-05-29 00:45:14 +04:00
|
|
|
void dmu_objset_sync(objset_t *os, zio_t *zio, dmu_tx_t *tx);
|
|
|
|
boolean_t dmu_objset_is_dirty(objset_t *os, uint64_t txg);
|
Native Encryption for ZFS on Linux
This change incorporates three major pieces:
The first change is a keystore that manages wrapping
and encryption keys for encrypted datasets. These
commands mostly involve manipulating the new
DSL Crypto Key ZAP Objects that live in the MOS. Each
encrypted dataset has its own DSL Crypto Key that is
protected with a user's key. This level of indirection
allows users to change their keys without re-encrypting
their entire datasets. The change implements the new
subcommands "zfs load-key", "zfs unload-key" and
"zfs change-key" which allow the user to manage their
encryption keys and settings. In addition, several new
flags and properties have been added to allow dataset
creation and to make mounting and unmounting more
convenient.
The second piece of this patch provides the ability to
encrypt, decyrpt, and authenticate protected datasets.
Each object set maintains a Merkel tree of Message
Authentication Codes that protect the lower layers,
similarly to how checksums are maintained. This part
impacts the zio layer, which handles the actual
encryption and generation of MACs, as well as the ARC
and DMU, which need to be able to handle encrypted
buffers and protected data.
The last addition is the ability to do raw, encrypted
sends and receives. The idea here is to send raw
encrypted and compressed data and receive it exactly
as is on a backup system. This means that the dataset
on the receiving system is protected using the same
user key that is in use on the sending side. By doing
so, datasets can be efficiently backed up to an
untrusted system without fear of data being
compromised.
Reviewed by: Matthew Ahrens <mahrens@delphix.com>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Reviewed-by: Jorgen Lundman <lundman@lundman.net>
Signed-off-by: Tom Caputi <tcaputi@datto.com>
Closes #494
Closes #5769
2017-08-14 20:36:48 +03:00
|
|
|
objset_t *dmu_objset_create_impl_dnstats(spa_t *spa, struct dsl_dataset *ds,
|
|
|
|
blkptr_t *bp, dmu_objset_type_t type, int levels, int blksz, int ibs,
|
|
|
|
dmu_tx_t *tx);
|
2010-05-29 00:45:14 +04:00
|
|
|
objset_t *dmu_objset_create_impl(spa_t *spa, struct dsl_dataset *ds,
|
2008-11-20 23:01:55 +03:00
|
|
|
blkptr_t *bp, dmu_objset_type_t type, dmu_tx_t *tx);
|
|
|
|
int dmu_objset_open_impl(spa_t *spa, struct dsl_dataset *ds, blkptr_t *bp,
|
2010-05-29 00:45:14 +04:00
|
|
|
objset_t **osp);
|
|
|
|
void dmu_objset_evict(objset_t *os);
|
Improve zfs receive performance with lightweight write
The performance of `zfs receive` can be bottlenecked on the CPU consumed
by the `receive_writer` thread, especially when receiving streams with
small compressed block sizes. Much of the CPU is spent creating and
destroying dbuf's and arc buf's, one for each `WRITE` record in the send
stream.
This commit introduces the concept of "lightweight writes", which allows
`zfs receive` to write to the DMU by providing an ABD, and instantiating
only a new type of `dbuf_dirty_record_t`. The dbuf and arc buf for this
"dirty leaf block" are not instantiated.
Because there is no dbuf with the dirty data, this mechanism doesn't
support reading from "lightweight-dirty" blocks (they would see the
on-disk state rather than the dirty data). Since the dedup-receive code
has been removed, `zfs receive` is write-only, so this works fine.
Because there are no arc bufs for the received data, the received data
is no longer cached in the ARC.
Testing a receive of a stream with average compressed block size of 4KB,
this commit improves performance by 50%, while also reducing CPU usage
by 50% of a CPU. On a per-block basis, CPU consumed by receive_writer()
and dbuf_evict() is now 1/7th (14%) of what it was.
Baseline: 450MB/s, CPU in receive_writer() 40% + dbuf_evict() 35%
New: 670MB/s, CPU in receive_writer() 17% + dbuf_evict() 0%
The code is also restructured in a few ways:
Added a `dr_dnode` field to the dbuf_dirty_record_t. This simplifies
some existing code that no longer needs `DB_DNODE_ENTER()` and related
routines. The new field is needed by the lightweight-type dirty record.
To ensure that the `dr_dnode` field remains valid until the dirty record
is freed, we have to ensure that the `dnode_move()` doesn't relocate the
dnode_t. To do this we keep a hold on the dnode until it's zio's have
completed. This is already done by the user-accounting code
(`userquota_updates_task()`), this commit extends that so that it always
keeps the dnode hold until zio completion (see `dnode_rele_task()`).
`dn_dirty_txg` was previously zeroed when the dnode was synced. This
was not necessary, since its meaning can be "when was this dnode last
dirtied". This change simplifies the new `dnode_rele_task()` code.
Removed some dead code related to `DRR_WRITE_BYREF` (dedup receive).
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Reviewed-by: Paul Dagnelie <pcd@delphix.com>
Reviewed-by: George Wilson <gwilson@delphix.com>
Signed-off-by: Matthew Ahrens <mahrens@delphix.com>
Closes #11105
2020-12-11 21:26:02 +03:00
|
|
|
void dmu_objset_sync_done(objset_t *os, dmu_tx_t *tx);
|
2010-05-29 00:45:14 +04:00
|
|
|
void dmu_objset_userquota_get_ids(dnode_t *dn, boolean_t before, dmu_tx_t *tx);
|
|
|
|
boolean_t dmu_objset_userused_enabled(objset_t *os);
|
2020-11-16 20:10:29 +03:00
|
|
|
void dmu_objset_userspace_upgrade(objset_t *os);
|
2009-07-03 02:44:48 +04:00
|
|
|
boolean_t dmu_objset_userspace_present(objset_t *os);
|
2016-10-04 21:46:10 +03:00
|
|
|
boolean_t dmu_objset_userobjused_enabled(objset_t *os);
|
2016-11-10 00:51:12 +03:00
|
|
|
boolean_t dmu_objset_userobjspace_upgradable(objset_t *os);
|
2016-10-04 21:46:10 +03:00
|
|
|
boolean_t dmu_objset_userobjspace_present(objset_t *os);
|
2017-11-08 22:12:59 +03:00
|
|
|
boolean_t dmu_objset_incompatible_encryption_version(objset_t *os);
|
2018-02-14 01:54:54 +03:00
|
|
|
boolean_t dmu_objset_projectquota_enabled(objset_t *os);
|
|
|
|
boolean_t dmu_objset_projectquota_present(objset_t *os);
|
|
|
|
boolean_t dmu_objset_projectquota_upgradable(objset_t *os);
|
|
|
|
void dmu_objset_id_quota_upgrade(objset_t *os);
|
File incorrectly zeroed when receiving incremental stream that toggles -L
Background:
By increasing the recordsize property above the default of 128KB, a
filesystem may have "large" blocks. By default, a send stream of such a
filesystem does not contain large WRITE records, instead it decreases
objects' block sizes to 128KB and splits the large blocks into 128KB
blocks, allowing the large-block filesystem to be received by a system
that does not support the `large_blocks` feature. A send stream
generated by `zfs send -L` (or `--large-block`) preserves the large
block size on the receiving system, by using large WRITE records.
When receiving an incremental send stream for a filesystem with large
blocks, if the send stream's -L flag was toggled, a bug is encountered
in which the file's contents are incorrectly zeroed out. The contents
of any blocks that were not modified by this send stream will be lost.
"Toggled" means that the previous send used `-L`, but this incremental
does not use `-L` (-L to no-L); or that the previous send did not use
`-L`, but this incremental does use `-L` (no-L to -L).
Changes:
This commit addresses the problem with several changes to the semantics
of zfs send/receive:
1. "-L to no-L" incrementals are rejected. If the previous send used
`-L`, but this incremental does not use `-L`, the `zfs receive` will
fail with this error message:
incremental send stream requires -L (--large-block), to match
previous receive.
2. "no-L to -L" incrementals are handled correctly, preserving the
smaller (128KB) block size of any already-received files that used large
blocks on the sending system but were split by `zfs send` without the
`-L` flag.
3. A new send stream format flag is added, `SWITCH_TO_LARGE_BLOCKS`.
This feature indicates that we can correctly handle "no-L to -L"
incrementals. This flag is currently not set on any send streams. In
the future, we intend for incremental send streams of snapshots that
have large blocks to use `-L` by default, and these streams will also
have the `SWITCH_TO_LARGE_BLOCKS` feature set. This ensures that streams
from the default use of `zfs send` won't encounter the bug mentioned
above, because they can't be received by software with the bug.
Implementation notes:
To facilitate accessing the ZPL's generation number,
`zfs_space_delta_cb()` has been renamed to `zpl_get_file_info()` and
restructured to fill in a struct with ZPL-specific info including owner
and generation.
In the "no-L to -L" case, if this is a compressed send stream (from
`zfs send -cL`), large WRITE records that are being written to small
(128KB) blocksize files need to be decompressed so that they can be
written split up into multiple blocks. The zio pipeline will recompress
each smaller block individually.
A new test case, `send-L_toggle`, is added, which tests the "no-L to -L"
case and verifies that we get an error for the "-L to no-L" case.
Reviewed-by: Paul Dagnelie <pcd@delphix.com>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Matthew Ahrens <mahrens@delphix.com>
Closes #6224
Closes #10383
2020-06-09 20:41:01 +03:00
|
|
|
int dmu_get_file_info(objset_t *os, dmu_object_type_t bonustype,
|
|
|
|
const void *data, zfs_file_info_t *zfi);
|
2016-10-04 21:46:10 +03:00
|
|
|
|
2013-09-04 16:00:57 +04:00
|
|
|
int dmu_fsname(const char *snapname, char *buf);
|
2008-11-20 23:01:55 +03:00
|
|
|
|
2015-04-02 06:44:32 +03:00
|
|
|
void dmu_objset_evict_done(objset_t *os);
|
OpenZFS 7793 - ztest fails assertion in dmu_tx_willuse_space
Reviewed by: Steve Gonczi <steve.gonczi@delphix.com>
Reviewed by: George Wilson <george.wilson@delphix.com>
Reviewed by: Pavel Zakharov <pavel.zakharov@delphix.com>
Ported-by: Brian Behlendorf <behlendorf1@llnl.gov>
Background information: This assertion about tx_space_* verifies that we
are not dirtying more stuff than we thought we would. We “need” to know
how much we will dirty so that we can check if we should fail this
transaction with ENOSPC/EDQUOT, in dmu_tx_assign(). While the
transaction is open (i.e. between dmu_tx_assign() and dmu_tx_commit() —
typically less than a millisecond), we call dbuf_dirty() on the exact
blocks that will be modified. Once this happens, the temporary
accounting in tx_space_* is unnecessary, because we know exactly what
blocks are newly dirtied; we call dnode_willuse_space() to track this
more exact accounting.
The fundamental problem causing this bug is that dmu_tx_hold_*() relies
on the current state in the DMU (e.g. dn_nlevels) to predict how much
will be dirtied by this transaction, but this state can change before we
actually perform the transaction (i.e. call dbuf_dirty()).
This bug will be fixed by removing the assertion that the tx_space_*
accounting is perfectly accurate (i.e. we never dirty more than was
predicted by dmu_tx_hold_*()). By removing the requirement that this
accounting be perfectly accurate, we can also vastly simplify it, e.g.
removing most of the logic in dmu_tx_count_*().
The new tx space accounting will be very approximate, and may be more or
less than what is actually dirtied. It will still be used to determine
if this transaction will put us over quota. Transactions that are marked
by dmu_tx_mark_netfree() will be excepted from this check. We won’t make
an attempt to determine how much space will be freed by the transaction
— this was rarely accurate enough to determine if a transaction should
be permitted when we are over quota, which is why dmu_tx_mark_netfree()
was introduced in 2014.
We also won’t attempt to give “credit” when overwriting existing blocks,
if those blocks may be freed. This allows us to remove the
do_free_accounting logic in dbuf_dirty(), and associated routines. This
logic attempted to predict what will be on disk when this txg syncs, to
know if the overwritten block will be freed (i.e. exists, and has no
snapshots).
OpenZFS-issue: https://www.illumos.org/issues/7793
OpenZFS-commit: https://github.com/openzfs/openzfs/commit/3704e0a
Upstream bugs: DLPX-32883a
Closes #5804
Porting notes:
- DNODE_SIZE replaced with DNODE_MIN_SIZE in dmu_tx_count_dnode(),
Using the default dnode size would be slightly better.
- DEBUG_DMU_TX wrappers and configure option removed.
- Resolved _by_dnode() conflicts these changes have not yet been
applied to OpenZFS.
2017-03-07 20:51:59 +03:00
|
|
|
void dmu_objset_willuse_space(objset_t *os, int64_t space, dmu_tx_t *tx);
|
2015-04-02 06:44:32 +03:00
|
|
|
|
2010-08-27 01:24:34 +04:00
|
|
|
void dmu_objset_init(void);
|
|
|
|
void dmu_objset_fini(void);
|
|
|
|
|
2008-11-20 23:01:55 +03:00
|
|
|
#ifdef __cplusplus
|
|
|
|
}
|
|
|
|
#endif
|
|
|
|
|
|
|
|
#endif /* _SYS_DMU_OBJSET_H */
|