1
0
mirror of https://git.proxmox.com/git/mirror_zfs.git synced 2025-01-26 09:54:22 +03:00
mirror_zfs/include/zfeature_common.h

135 lines
3.9 KiB
C
Raw Normal View History

/*
* CDDL HEADER START
*
* The contents of this file are subject to the terms of the
* Common Development and Distribution License (the "License").
* You may not use this file except in compliance with the License.
*
* You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
* or http://www.opensolaris.org/os/licensing.
* See the License for the specific language governing permissions
* and limitations under the License.
*
* When distributing Covered Code, include this CDDL HEADER in each
* file and include the License file at usr/src/OPENSOLARIS.LICENSE.
* If applicable, add the following below this CDDL HEADER, with the
* fields enclosed by brackets "[]" replaced with your own identifying
* information: Portions Copyright [yyyy] [name of copyright owner]
*
* CDDL HEADER END
*/
/*
* Copyright (c) 2011, 2018 by Delphix. All rights reserved.
* Copyright (c) 2013 by Saso Kiselkov. All rights reserved.
* Copyright (c) 2013, Joyent, Inc. All rights reserved.
* Copyright (c) 2017, Intel Corporation.
*/
#ifndef _ZFEATURE_COMMON_H
#define _ZFEATURE_COMMON_H
#include <sys/fs/zfs.h>
#include <sys/inttypes.h>
#include <sys/types.h>
#ifdef __cplusplus
extern "C" {
#endif
struct zfeature_info;
typedef enum spa_feature {
SPA_FEATURE_NONE = -1,
SPA_FEATURE_ASYNC_DESTROY,
SPA_FEATURE_EMPTY_BPOBJ,
SPA_FEATURE_LZ4_COMPRESS,
SPA_FEATURE_MULTI_VDEV_CRASH_DUMP,
SPA_FEATURE_SPACEMAP_HISTOGRAM,
SPA_FEATURE_ENABLED_TXG,
SPA_FEATURE_HOLE_BIRTH,
SPA_FEATURE_EXTENSIBLE_DATASET,
SPA_FEATURE_EMBEDDED_DATA,
SPA_FEATURE_BOOKMARKS,
SPA_FEATURE_FS_SS_LIMIT,
Illumos 5027 - zfs large block support 5027 zfs large block support Reviewed by: Alek Pinchuk <pinchuk.alek@gmail.com> Reviewed by: George Wilson <george.wilson@delphix.com> Reviewed by: Josef 'Jeff' Sipek <josef.sipek@nexenta.com> Reviewed by: Richard Elling <richard.elling@richardelling.com> Reviewed by: Saso Kiselkov <skiselkov.ml@gmail.com> Reviewed by: Brian Behlendorf <behlendorf1@llnl.gov> Approved by: Dan McDonald <danmcd@omniti.com> References: https://www.illumos.org/issues/5027 https://github.com/illumos/illumos-gate/commit/b515258 Porting Notes: * Included in this patch is a tiny ISP2() cleanup in zio_init() from Illumos 5255. * Unlike the upstream Illumos commit this patch does not impose an arbitrary 128K block size limit on volumes. Volumes, like filesystems, are limited by the zfs_max_recordsize=1M module option. * By default the maximum record size is limited to 1M by the module option zfs_max_recordsize. This value may be safely increased up to 16M which is the largest block size supported by the on-disk format. At the moment, 1M blocks clearly offer a significant performance improvement but the benefits of going beyond this for the majority of workloads are less clear. * The illumos version of this patch increased DMU_MAX_ACCESS to 32M. This was determined not to be large enough when using 16M blocks because the zfs_make_xattrdir() function will fail (EFBIG) when assigning a TX. This was immediately observed under Linux because all newly created files must have a security xattr created and that was failing. Therefore, we've set DMU_MAX_ACCESS to 64M. * On 32-bit platforms a hard limit of 1M is set for blocks due to the limited virtual address space. We should be able to relax this one the ABD patches are merged. Ported-by: Brian Behlendorf <behlendorf1@llnl.gov> Closes #354
2014-11-03 23:15:08 +03:00
SPA_FEATURE_LARGE_BLOCKS,
Implement large_dnode pool feature Justification ------------- This feature adds support for variable length dnodes. Our motivation is to eliminate the overhead associated with using spill blocks. Spill blocks are used to store system attribute data (i.e. file metadata) that does not fit in the dnode's bonus buffer. By allowing a larger bonus buffer area the use of a spill block can be avoided. Spill blocks potentially incur an additional read I/O for every dnode in a dnode block. As a worst case example, reading 32 dnodes from a 16k dnode block and all of the spill blocks could issue 33 separate reads. Now suppose those dnodes have size 1024 and therefore don't need spill blocks. Then the worst case number of blocks read is reduced to from 33 to two--one per dnode block. In practice spill blocks may tend to be co-located on disk with the dnode blocks so the reduction in I/O would not be this drastic. In a badly fragmented pool, however, the improvement could be significant. ZFS-on-Linux systems that make heavy use of extended attributes would benefit from this feature. In particular, ZFS-on-Linux supports the xattr=sa dataset property which allows file extended attribute data to be stored in the dnode bonus buffer as an alternative to the traditional directory-based format. Workloads such as SELinux and the Lustre distributed filesystem often store enough xattr data to force spill bocks when xattr=sa is in effect. Large dnodes may therefore provide a performance benefit to such systems. Other use cases that may benefit from this feature include files with large ACLs and symbolic links with long target names. Furthermore, this feature may be desirable on other platforms in case future applications or features are developed that could make use of a larger bonus buffer area. Implementation -------------- The size of a dnode may be a multiple of 512 bytes up to the size of a dnode block (currently 16384 bytes). A dn_extra_slots field was added to the current on-disk dnode_phys_t structure to describe the size of the physical dnode on disk. The 8 bits for this field were taken from the zero filled dn_pad2 field. The field represents how many "extra" dnode_phys_t slots a dnode consumes in its dnode block. This convention results in a value of 0 for 512 byte dnodes which preserves on-disk format compatibility with older software. Similarly, the in-memory dnode_t structure has a new dn_num_slots field to represent the total number of dnode_phys_t slots consumed on disk. Thus dn->dn_num_slots is 1 greater than the corresponding dnp->dn_extra_slots. This difference in convention was adopted because, unlike on-disk structures, backward compatibility is not a concern for in-memory objects, so we used a more natural way to represent size for a dnode_t. The default size for newly created dnodes is determined by the value of a new "dnodesize" dataset property. By default the property is set to "legacy" which is compatible with older software. Setting the property to "auto" will allow the filesystem to choose the most suitable dnode size. Currently this just sets the default dnode size to 1k, but future code improvements could dynamically choose a size based on observed workload patterns. Dnodes of varying sizes can coexist within the same dataset and even within the same dnode block. For example, to enable automatically-sized dnodes, run # zfs set dnodesize=auto tank/fish The user can also specify literal values for the dnodesize property. These are currently limited to powers of two from 1k to 16k. The power-of-2 limitation is only for simplicity of the user interface. Internally the implementation can handle any multiple of 512 up to 16k, and consumers of the DMU API can specify any legal dnode value. The size of a new dnode is determined at object allocation time and stored as a new field in the znode in-memory structure. New DMU interfaces are added to allow the consumer to specify the dnode size that a newly allocated object should use. Existing interfaces are unchanged to avoid having to update every call site and to preserve compatibility with external consumers such as Lustre. The new interfaces names are given below. The versions of these functions that don't take a dnodesize parameter now just call the _dnsize() versions with a dnodesize of 0, which means use the legacy dnode size. New DMU interfaces: dmu_object_alloc_dnsize() dmu_object_claim_dnsize() dmu_object_reclaim_dnsize() New ZAP interfaces: zap_create_dnsize() zap_create_norm_dnsize() zap_create_flags_dnsize() zap_create_claim_norm_dnsize() zap_create_link_dnsize() The constant DN_MAX_BONUSLEN is renamed to DN_OLD_MAX_BONUSLEN. The spa_maxdnodesize() function should be used to determine the maximum bonus length for a pool. These are a few noteworthy changes to key functions: * The prototype for dnode_hold_impl() now takes a "slots" parameter. When the DNODE_MUST_BE_FREE flag is set, this parameter is used to ensure the hole at the specified object offset is large enough to hold the dnode being created. The slots parameter is also used to ensure a dnode does not span multiple dnode blocks. In both of these cases, if a failure occurs, ENOSPC is returned. Keep in mind, these failure cases are only possible when using DNODE_MUST_BE_FREE. If the DNODE_MUST_BE_ALLOCATED flag is set, "slots" must be 0. dnode_hold_impl() will check if the requested dnode is already consumed as an extra dnode slot by an large dnode, in which case it returns ENOENT. * The function dmu_object_alloc() advances to the next dnode block if dnode_hold_impl() returns an error for a requested object. This is because the beginning of the next dnode block is the only location it can safely assume to either be a hole or a valid starting point for a dnode. * dnode_next_offset_level() and other functions that iterate through dnode blocks may no longer use a simple array indexing scheme. These now use the current dnode's dn_num_slots field to advance to the next dnode in the block. This is to ensure we properly skip the current dnode's bonus area and don't interpret it as a valid dnode. zdb --- The zdb command was updated to display a dnode's size under the "dnsize" column when the object is dumped. For ZIL create log records, zdb will now display the slot count for the object. ztest ----- Ztest chooses a random dnodesize for every newly created object. The random distribution is more heavily weighted toward small dnodes to better simulate real-world datasets. Unused bonus buffer space is filled with non-zero values computed from the object number, dataset id, offset, and generation number. This helps ensure that the dnode traversal code properly skips the interior regions of large dnodes, and that these interior regions are not overwritten by data belonging to other dnodes. A new test visits each object in a dataset. It verifies that the actual dnode size matches what was stored in the ztest block tag when it was created. It also verifies that the unused bonus buffer space is filled with the expected data patterns. ZFS Test Suite -------------- Added six new large dnode-specific tests, and integrated the dnodesize property into existing tests for zfs allow and send/recv. Send/Receive ------------ ZFS send streams for datasets containing large dnodes cannot be received on pools that don't support the large_dnode feature. A send stream with large dnodes sets a DMU_BACKUP_FEATURE_LARGE_DNODE flag which will be unrecognized by an incompatible receiving pool so that the zfs receive will fail gracefully. While not implemented here, it may be possible to generate a backward-compatible send stream from a dataset containing large dnodes. The implementation may be tricky, however, because the send object record for a large dnode would need to be resized to a 512 byte dnode, possibly kicking in a spill block in the process. This means we would need to construct a new SA layout and possibly register it in the SA layout object. The SA layout is normally just sent as an ordinary object record. But if we are constructing new layouts while generating the send stream we'd have to build the SA layout object dynamically and send it at the end of the stream. For sending and receiving between pools that do support large dnodes, the drr_object send record type is extended with a new field to store the dnode slot count. This field was repurposed from unused padding in the structure. ZIL Replay ---------- The dnode slot count is stored in the uppermost 8 bits of the lr_foid field. The bits were unused as the object id is currently capped at 48 bits. Resizing Dnodes --------------- It should be possible to resize a dnode when it is dirtied if the current dnodesize dataset property differs from the dnode's size, but this functionality is not currently implemented. Clearly a dnode can only grow if there are sufficient contiguous unused slots in the dnode block, but it should always be possible to shrink a dnode. Growing dnodes may be useful to reduce fragmentation in a pool with many spill blocks in use. Shrinking dnodes may be useful to allow sending a dataset to a pool that doesn't support the large_dnode feature. Feature Reference Counting -------------------------- The reference count for the large_dnode pool feature tracks the number of datasets that have ever contained a dnode of size larger than 512 bytes. The first time a large dnode is created in a dataset the dataset is converted to an extensible dataset. This is a one-way operation and the only way to decrement the feature count is to destroy the dataset, even if the dataset no longer contains any large dnodes. The complexity of reference counting on a per-dnode basis was too high, so we chose to track it on a per-dataset basis similarly to the large_block feature. Signed-off-by: Ned Bass <bass6@llnl.gov> Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov> Closes #3542
2016-03-17 04:25:34 +03:00
SPA_FEATURE_LARGE_DNODE,
OpenZFS 4185 - add new cryptographic checksums to ZFS: SHA-512, Skein, Edon-R Reviewed by: George Wilson <george.wilson@delphix.com> Reviewed by: Prakash Surya <prakash.surya@delphix.com> Reviewed by: Saso Kiselkov <saso.kiselkov@nexenta.com> Reviewed by: Richard Lowe <richlowe@richlowe.net> Approved by: Garrett D'Amore <garrett@damore.org> Ported by: Tony Hutter <hutter2@llnl.gov> OpenZFS-issue: https://www.illumos.org/issues/4185 OpenZFS-commit: https://github.com/openzfs/openzfs/commit/45818ee Porting Notes: This code is ported on top of the Illumos Crypto Framework code: https://github.com/zfsonlinux/zfs/pull/4329/commits/b5e030c8dbb9cd393d313571dee4756fbba8c22d The list of porting changes includes: - Copied module/icp/include/sha2/sha2.h directly from illumos - Removed from module/icp/algs/sha2/sha2.c: #pragma inline(SHA256Init, SHA384Init, SHA512Init) - Added 'ctx' to lib/libzfs/libzfs_sendrecv.c:zio_checksum_SHA256() since it now takes in an extra parameter. - Added CTASSERT() to assert.h from for module/zfs/edonr_zfs.c - Added skein & edonr to libicp/Makefile.am - Added sha512.S. It was generated from sha512-x86_64.pl in Illumos. - Updated ztest.c with new fletcher_4_*() args; used NULL for new CTX argument. - In icp/algs/edonr/edonr_byteorder.h, Removed the #if defined(__linux) section to not #include the non-existant endian.h. - In skein_test.c, renane NULL to 0 in "no test vector" array entries to get around a compiler warning. - Fixup test files: - Rename <sys/varargs.h> -> <varargs.h>, <strings.h> -> <string.h>, - Remove <note.h> and define NOTE() as NOP. - Define u_longlong_t - Rename "#!/usr/bin/ksh" -> "#!/bin/ksh -p" - Rename NULL to 0 in "no test vector" array entries to get around a compiler warning. - Remove "for isa in $($ISAINFO); do" stuff - Add/update Makefiles - Add some userspace headers like stdio.h/stdlib.h in places of sys/types.h. - EXPORT_SYMBOL *_Init/*_Update/*_Final... routines in ICP modules. - Update scripts/zfs2zol-patch.sed - include <sys/sha2.h> in sha2_impl.h - Add sha2.h to include/sys/Makefile.am - Add skein and edonr dirs to icp Makefile - Add new checksums to zpool_get.cfg - Move checksum switch block from zfs_secpolicy_setprop() to zfs_check_settable() - Fix -Wuninitialized error in edonr_byteorder.h on PPC - Fix stack frame size errors on ARM32 - Don't unroll loops in Skein on 32-bit to save stack space - Add memory barriers in sha2.c on 32-bit to save stack space - Add filetest_001_pos.ksh checksum sanity test - Add option to write psudorandom data in file_write utility
2016-06-16 01:47:05 +03:00
SPA_FEATURE_SHA512,
SPA_FEATURE_SKEIN,
SPA_FEATURE_EDONR,
SPA_FEATURE_USEROBJ_ACCOUNTING,
Native Encryption for ZFS on Linux This change incorporates three major pieces: The first change is a keystore that manages wrapping and encryption keys for encrypted datasets. These commands mostly involve manipulating the new DSL Crypto Key ZAP Objects that live in the MOS. Each encrypted dataset has its own DSL Crypto Key that is protected with a user's key. This level of indirection allows users to change their keys without re-encrypting their entire datasets. The change implements the new subcommands "zfs load-key", "zfs unload-key" and "zfs change-key" which allow the user to manage their encryption keys and settings. In addition, several new flags and properties have been added to allow dataset creation and to make mounting and unmounting more convenient. The second piece of this patch provides the ability to encrypt, decyrpt, and authenticate protected datasets. Each object set maintains a Merkel tree of Message Authentication Codes that protect the lower layers, similarly to how checksums are maintained. This part impacts the zio layer, which handles the actual encryption and generation of MACs, as well as the ARC and DMU, which need to be able to handle encrypted buffers and protected data. The last addition is the ability to do raw, encrypted sends and receives. The idea here is to send raw encrypted and compressed data and receive it exactly as is on a backup system. This means that the dataset on the receiving system is protected using the same user key that is in use on the sending side. By doing so, datasets can be efficiently backed up to an untrusted system without fear of data being compromised. Reviewed by: Matthew Ahrens <mahrens@delphix.com> Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov> Reviewed-by: Jorgen Lundman <lundman@lundman.net> Signed-off-by: Tom Caputi <tcaputi@datto.com> Closes #494 Closes #5769
2017-08-14 20:36:48 +03:00
SPA_FEATURE_ENCRYPTION,
Project Quota on ZFS Project quota is a new ZFS system space/object usage accounting and enforcement mechanism. Similar as user/group quota, project quota is another dimension of system quota. It bases on the new object attribute - project ID. Project ID is a numerical value to indicate to which project an object belongs. An object only can belong to one project though you (the object owner or privileged user) can change the object project ID via 'chattr -p' or 'zfs project [-s] -p' explicitly. The object also can inherit the project ID from its parent when created if the parent has the project inherit flag (that can be set via 'chattr +P' or 'zfs project -s [-p]'). By accounting the spaces/objects belong to the same project, we can know how many spaces/objects used by the project. And if we set the upper limit then we can control the spaces/objects that are consumed by such project. It is useful when multiple groups and users cooperate for the same project, or a user/group needs to participate in multiple projects. Support the following commands and functionalities: zfs set projectquota@project zfs set projectobjquota@project zfs get projectquota@project zfs get projectobjquota@project zfs get projectused@project zfs get projectobjused@project zfs projectspace zfs allow projectquota zfs allow projectobjquota zfs allow projectused zfs allow projectobjused zfs unallow projectquota zfs unallow projectobjquota zfs unallow projectused zfs unallow projectobjused chattr +/-P chattr -p project_id lsattr -p This patch also supports tree quota based on the project quota via "zfs project" commands set as following: zfs project [-d|-r] <file|directory ...> zfs project -C [-k] [-r] <file|directory ...> zfs project -c [-0] [-d|-r] [-p id] <file|directory ...> zfs project [-p id] [-r] [-s] <file|directory ...> For "df [-i] $DIR" command, if we set INHERIT (project ID) flag on the $DIR, then the proejct [obj]quota and [obj]used values for the $DIR's project ID will be shown as the total/free (avail) resource. Keep the same behavior as EXT4/XFS does. Reviewed-by: Andreas Dilger <andreas.dilger@intel.com> Reviewed-by Ned Bass <bass6@llnl.gov> Reviewed-by: Matthew Ahrens <mahrens@delphix.com> Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov> Signed-off-by: Fan Yong <fan.yong@intel.com> TEST_ZIMPORT_POOLS="zol-0.6.1 zol-0.6.2 master" Change-Id: Ib4f0544602e03fb61fd46a849d7ba51a6005693c Closes #6290
2018-02-14 01:54:54 +03:00
SPA_FEATURE_PROJECT_QUOTA,
OpenZFS 7614, 9064 - zfs device evacuation/removal OpenZFS 7614 - zfs device evacuation/removal OpenZFS 9064 - remove_mirror should wait for device removal to complete This project allows top-level vdevs to be removed from the storage pool with "zpool remove", reducing the total amount of storage in the pool. This operation copies all allocated regions of the device to be removed onto other devices, recording the mapping from old to new location. After the removal is complete, read and free operations to the removed (now "indirect") vdev must be remapped and performed at the new location on disk. The indirect mapping table is kept in memory whenever the pool is loaded, so there is minimal performance overhead when doing operations on the indirect vdev. The size of the in-memory mapping table will be reduced when its entries become "obsolete" because they are no longer used by any block pointers in the pool. An entry becomes obsolete when all the blocks that use it are freed. An entry can also become obsolete when all the snapshots that reference it are deleted, and the block pointers that reference it have been "remapped" in all filesystems/zvols (and clones). Whenever an indirect block is written, all the block pointers in it will be "remapped" to their new (concrete) locations if possible. This process can be accelerated by using the "zfs remap" command to proactively rewrite all indirect blocks that reference indirect (removed) vdevs. Note that when a device is removed, we do not verify the checksum of the data that is copied. This makes the process much faster, but if it were used on redundant vdevs (i.e. mirror or raidz vdevs), it would be possible to copy the wrong data, when we have the correct data on e.g. the other side of the mirror. At the moment, only mirrors and simple top-level vdevs can be removed and no removal is allowed if any of the top-level vdevs are raidz. Porting Notes: * Avoid zero-sized kmem_alloc() in vdev_compact_children(). The device evacuation code adds a dependency that vdev_compact_children() be able to properly empty the vdev_child array by setting it to NULL and zeroing vdev_children. Under Linux, kmem_alloc() and related functions return a sentinel pointer rather than NULL for zero-sized allocations. * Remove comment regarding "mpt" driver where zfs_remove_max_segment is initialized to SPA_MAXBLOCKSIZE. Change zfs_condense_indirect_commit_entry_delay_ticks to zfs_condense_indirect_commit_entry_delay_ms for consistency with most other tunables in which delays are specified in ms. * ZTS changes: Use set_tunable rather than mdb Use zpool sync as appropriate Use sync_pool instead of sync Kill jobs during test_removal_with_operation to allow unmount/export Don't add non-disk names such as "mirror" or "raidz" to $DISKS Use $TEST_BASE_DIR instead of /tmp Increase HZ from 100 to 1000 which is more common on Linux removal_multiple_indirection.ksh Reduce iterations in order to not time out on the code coverage builders. removal_resume_export: Functionally, the test case is correct but there exists a race where the kernel thread hasn't been fully started yet and is not visible. Wait for up to 1 second for the removal thread to be started before giving up on it. Also, increase the amount of data copied in order that the removal not finish before the export has a chance to fail. * MMP compatibility, the concept of concrete versus non-concrete devices has slightly changed the semantics of vdev_writeable(). Update mmp_random_leaf_impl() accordingly. * Updated dbuf_remap() to handle the org.zfsonlinux:large_dnode pool feature which is not supported by OpenZFS. * Added support for new vdev removal tracepoints. * Test cases removal_with_zdb and removal_condense_export have been intentionally disabled. When run manually they pass as intended, but when running in the automated test environment they produce unreliable results on the latest Fedora release. They may work better once the upstream pool import refectoring is merged into ZoL at which point they will be re-enabled. Authored by: Matthew Ahrens <mahrens@delphix.com> Reviewed-by: Alex Reece <alex@delphix.com> Reviewed-by: George Wilson <george.wilson@delphix.com> Reviewed-by: John Kennedy <john.kennedy@delphix.com> Reviewed-by: Prakash Surya <prakash.surya@delphix.com> Reviewed by: Richard Laager <rlaager@wiktel.com> Reviewed by: Tim Chase <tim@chase2k.com> Reviewed by: Brian Behlendorf <behlendorf1@llnl.gov> Approved by: Garrett D'Amore <garrett@damore.org> Ported-by: Tim Chase <tim@chase2k.com> Signed-off-by: Tim Chase <tim@chase2k.com> OpenZFS-issue: https://www.illumos.org/issues/7614 OpenZFS-commit: https://github.com/openzfs/openzfs/commit/f539f1eb Closes #6900
2016-09-22 19:30:13 +03:00
SPA_FEATURE_DEVICE_REMOVAL,
SPA_FEATURE_OBSOLETE_COUNTS,
OpenZFS 9166 - zfs storage pool checkpoint Details about the motivation of this feature and its usage can be found in this blogpost: https://sdimitro.github.io/post/zpool-checkpoint/ A lightning talk of this feature can be found here: https://www.youtube.com/watch?v=fPQA8K40jAM Implementation details can be found in big block comment of spa_checkpoint.c Side-changes that are relevant to this commit but not explained elsewhere: * renames members of "struct metaslab trees to be shorter without losing meaning * space_map_{alloc,truncate}() accept a block size as a parameter. The reason is that in the current state all space maps that we allocate through the DMU use a global tunable (space_map_blksz) which defauls to 4KB. This is ok for metaslab space maps in terms of bandwirdth since they are scattered all over the disk. But for other space maps this default is probably not what we want. Examples are device removal's vdev_obsolete_sm or vdev_chedkpoint_sm from this review. Both of these have a 1:1 relationship with each vdev and could benefit from a bigger block size. Porting notes: * The part of dsl_scan_sync() which handles async destroys has been moved into the new dsl_process_async_destroys() function. * Remove "VERIFY(!(flags & FWRITE))" in "kernel.c" so zhack can write to block device backed pools. * ZTS: * Fix get_txg() in zpool_sync_001_pos due to "checkpoint_txg". * Don't use large dd block sizes on /dev/urandom under Linux in checkpoint_capacity. * Adopt Delphix-OS's setting of 4 (spa_asize_inflation = SPA_DVAS_PER_BP + 1) for the checkpoint_capacity test to speed its attempts to fill the pool * Create the base and nested pools with sync=disabled to speed up the "setup" phase. * Clear labels in test pool between checkpoint tests to avoid duplicate pool issues. * The import_rewind_device_replaced test has been marked as "known to fail" for the reasons listed in its DISCLAIMER. * New module parameters: zfs_spa_discard_memory_limit, zfs_remove_max_bytes_pause (not documented - debugging only) vdev_max_ms_count (formerly metaslabs_per_vdev) vdev_min_ms_count Authored by: Serapheim Dimitropoulos <serapheim.dimitro@delphix.com> Reviewed by: Matthew Ahrens <mahrens@delphix.com> Reviewed by: John Kennedy <john.kennedy@delphix.com> Reviewed by: Dan Kimmel <dan.kimmel@delphix.com> Reviewed by: Brian Behlendorf <behlendorf1@llnl.gov> Approved by: Richard Lowe <richlowe@richlowe.net> Ported-by: Tim Chase <tim@chase2k.com> Signed-off-by: Tim Chase <tim@chase2k.com> OpenZFS-issue: https://illumos.org/issues/9166 OpenZFS-commit: https://github.com/openzfs/openzfs/commit/7159fdb8 Closes #7570
2016-12-17 01:11:29 +03:00
SPA_FEATURE_POOL_CHECKPOINT,
OpenZFS 9238 - ZFS Spacemap Encoding V2 Motivation ========== The current space map encoding has the following disadvantages: [1] Assuming 512 sector size each entry can represent at most 16MB for a segment. This makes the encoding very inefficient for large regions of space. [2] As vdev-wide space maps have started to be used by new features (i.e. device removal, zpool checkpoint) we've started imposing limits in the vdevs that can be used with them based on the maximum addressable offset (currently 64PB for a top-level vdev). New encoding ============ The layout can be found at space_map.h and it remains backwards compatible with the old one. The introduced two-word entry format, besides extending the limits imposed by the single-entry layout, also includes a vdev field and some extra padding after its prefix. The extra padding after the prefix should is reserved for future usage (e.g. new prefixes for future encodings or new fields for flags). The new vdev field not only makes the space maps more self-descriptive, but also opens the doors for pool-wide space maps (expected to be used in the log spacemap project). One final important note is that the number of bits used for vdevs is reduced to 24 bits for blkptrs. That was decided as we don't know of any setups that use more than 16M vdevs for the time being and we wanted to fit the vdev field in the space map. In addition that gives us some extra bits in dva_t. Other references: ================= The new encoding is also discussed towards the end of the Log Space Map presentation from 2017's OpenZFS summit. Link: https://www.youtube.com/watch?v=jj2IxRkl5bQ Authored by: Serapheim Dimitropoulos <serapheim@delphix.com> Reviewed by: Matt Ahrens <mahrens@delphix.com> Reviewed by: George Wilson <gwilson@zfsmail.com> Reviewed by: Brian Behlendorf <behlendorf1@llnl.gov> Approved by: Gordon Ross <gwr@nexenta.com> Ported-by: Tim Chase <tim@chase2k.com> Signed-off-by: Tim Chase <tim@chase2k.com> OpenZFS-commit: https://github.com/openzfs/openzfs/commit/90a56e6d OpenZFS-issue: https://www.illumos.org/issues/9238 Closes #7665
2017-08-04 19:30:49 +03:00
SPA_FEATURE_SPACEMAP_V2,
SPA_FEATURE_ALLOCATION_CLASSES,
SPA_FEATURE_RESILVER_DEFER,
SPA_FEATURE_BOOKMARK_V2,
Implement Redacted Send/Receive Redacted send/receive allows users to send subsets of their data to a target system. One possible use case for this feature is to not transmit sensitive information to a data warehousing, test/dev, or analytics environment. Another is to save space by not replicating unimportant data within a given dataset, for example in backup tools like zrepl. Redacted send/receive is a three-stage process. First, a clone (or clones) is made of the snapshot to be sent to the target. In this clone (or clones), all unnecessary or unwanted data is removed or modified. This clone is then snapshotted to create the "redaction snapshot" (or snapshots). Second, the new zfs redact command is used to create a redaction bookmark. The redaction bookmark stores the list of blocks in a snapshot that were modified by the redaction snapshot(s). Finally, the redaction bookmark is passed as a parameter to zfs send. When sending to the snapshot that was redacted, the redaction bookmark is used to filter out blocks that contain sensitive or unwanted information, and those blocks are not included in the send stream. When sending from the redaction bookmark, the blocks it contains are considered as candidate blocks in addition to those blocks in the destination snapshot that were modified since the creation_txg of the redaction bookmark. This step is necessary to allow the target to rehydrate data in the case where some blocks are accidentally or unnecessarily modified in the redaction snapshot. The changes to bookmarks to enable fast space estimation involve adding deadlists to bookmarks. There is also logic to manage the life cycles of these deadlists. The new size estimation process operates in cases where previously an accurate estimate could not be provided. In those cases, a send is performed where no data blocks are read, reducing the runtime significantly and providing a byte-accurate size estimate. Reviewed-by: Dan Kimmel <dan.kimmel@delphix.com> Reviewed-by: Matt Ahrens <mahrens@delphix.com> Reviewed-by: Prashanth Sreenivasa <pks@delphix.com> Reviewed-by: John Kennedy <john.kennedy@delphix.com> Reviewed-by: George Wilson <george.wilson@delphix.com> Reviewed-by: Chris Williamson <chris.williamson@delphix.com> Reviewed-by: Pavel Zhakarov <pavel.zakharov@delphix.com> Reviewed-by: Sebastien Roy <sebastien.roy@delphix.com> Reviewed-by: Prakash Surya <prakash.surya@delphix.com> Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov> Signed-off-by: Paul Dagnelie <pcd@delphix.com> Closes #7958
2019-06-19 19:48:13 +03:00
SPA_FEATURE_REDACTION_BOOKMARKS,
SPA_FEATURE_REDACTED_DATASETS,
SPA_FEATURE_BOOKMARK_WRITTEN,
Log Spacemap Project = Motivation At Delphix we've seen a lot of customer systems where fragmentation is over 75% and random writes take a performance hit because a lot of time is spend on I/Os that update on-disk space accounting metadata. Specifically, we seen cases where 20% to 40% of sync time is spend after sync pass 1 and ~30% of the I/Os on the system is spent updating spacemaps. The problem is that these pools have existed long enough that we've touched almost every metaslab at least once, and random writes scatter frees across all metaslabs every TXG, thus appending to their spacemaps and resulting in many I/Os. To give an example, assuming that every VDEV has 200 metaslabs and our writes fit within a single spacemap block (generally 4K) we have 200 I/Os. Then if we assume 2 levels of indirection, we need 400 additional I/Os and since we are talking about metadata for which we keep 2 extra copies for redundancy we need to triple that number, leading to a total of 1800 I/Os per VDEV every TXG. We could try and decrease the number of metaslabs so we have less I/Os per TXG but then each metaslab would cover a wider range on disk and thus would take more time to be loaded in memory from disk. In addition, after it's loaded, it's range tree would consume more memory. Another idea would be to just increase the spacemap block size which would allow us to fit more entries within an I/O block resulting in fewer I/Os per metaslab and a speedup in loading time. The problem is still that we don't deal with the number of I/Os going up as the number of metaslabs is increasing and the fact is that we generally write a lot to a few metaslabs and a little to the rest of them. Thus, just increasing the block size would actually waste bandwidth because we won't be utilizing our bigger block size. = About this patch This patch introduces the Log Spacemap project which provides the solution to the above problem while taking into account all the aforementioned tradeoffs. The details on how it achieves that can be found in the references sections below and in the code (see Big Theory Statement in spa_log_spacemap.c). Even though the change is fairly constraint within the metaslab and lower-level SPA codepaths, there is a side-change that is user-facing. The change is that VDEV IDs from VDEV holes will no longer be reused. To give some background and reasoning for this, when a log device is removed and its VDEV structure was replaced with a hole (or was compacted; if at the end of the vdev array), its vdev_id could be reused by devices added after that. Now with the pool-wide space maps recording the vdev ID, this behavior can cause problems (e.g. is this entry referring to a segment in the new vdev or the removed log?). Thus, to simplify things the ID reuse behavior is gone and now vdev IDs for top-level vdevs are truly unique within a pool. = Testing The illumos implementation of this feature has been used internally for a year and has been in production for ~6 months. For this patch specifically there don't seem to be any regressions introduced to ZTS and I have been running zloop for a week without any related problems. = Performance Analysis (Linux Specific) All performance results and analysis for illumos can be found in the links of the references. Redoing the same experiments in Linux gave similar results. Below are the specifics of the Linux run. After the pool reached stable state the percentage of the time spent in pass 1 per TXG was 64% on average for the stock bits while the log spacemap bits stayed at 95% during the experiment (graph: sdimitro.github.io/img/linux-lsm/PercOfSyncInPassOne.png). Sync times per TXG were 37.6 seconds on average for the stock bits and 22.7 seconds for the log spacemap bits (related graph: sdimitro.github.io/img/linux-lsm/SyncTimePerTXG.png). As a result the log spacemap bits were able to push more TXGs, which is also the reason why all graphs quantified per TXG have more entries for the log spacemap bits. Another interesting aspect in terms of txg syncs is that the stock bits had 22% of their TXGs reach sync pass 7, 55% reach sync pass 8, and 20% reach 9. The log space map bits reached sync pass 4 in 79% of their TXGs, sync pass 7 in 19%, and sync pass 8 at 1%. This emphasizes the fact that not only we spend less time on metadata but we also iterate less times to convergence in spa_sync() dirtying objects. [related graphs: stock- sdimitro.github.io/img/linux-lsm/NumberOfPassesPerTXGStock.png lsm- sdimitro.github.io/img/linux-lsm/NumberOfPassesPerTXGLSM.png] Finally, the improvement in IOPs that the userland gains from the change is approximately 40%. There is a consistent win in IOPS as you can see from the graphs below but the absolute amount of improvement that the log spacemap gives varies within each minute interval. sdimitro.github.io/img/linux-lsm/StockVsLog3Days.png sdimitro.github.io/img/linux-lsm/StockVsLog10Hours.png = Porting to Other Platforms For people that want to port this commit to other platforms below is a list of ZoL commits that this patch depends on: Make zdb results for checkpoint tests consistent db587941c5ff6dea01932bb78f70db63cf7f38ba Update vdev_is_spacemap_addressable() for new spacemap encoding 419ba5914552c6185afbe1dd17b3ed4b0d526547 Simplify spa_sync by breaking it up to smaller functions 8dc2197b7b1e4d7ebc1420ea30e51c6541f1d834 Factor metaslab_load_wait() in metaslab_load() b194fab0fb6caad18711abccaff3c69ad8b3f6d3 Rename range_tree_verify to range_tree_verify_not_present df72b8bebe0ebac0b20e0750984bad182cb6564a Change target size of metaslabs from 256GB to 16GB c853f382db731e15a87512f4ef1101d14d778a55 zdb -L should skip leak detection altogether 21e7cf5da89f55ce98ec1115726b150e19eefe89 vs_alloc can underflow in L2ARC vdevs 7558997d2f808368867ca7e5234e5793446e8f3f Simplify log vdev removal code 6c926f426a26ffb6d7d8e563e33fc176164175cb Get rid of space_map_update() for ms_synced_length 425d3237ee88abc53d8522a7139c926d278b4b7f Introduce auxiliary metaslab histograms 928e8ad47d3478a3d5d01f0dd6ae74a9371af65e Error path in metaslab_load_impl() forgets to drop ms_sync_lock 8eef997679ba54547f7d361553d21b3291f41ae7 = References Background, Motivation, and Internals of the Feature - OpenZFS 2017 Presentation: youtu.be/jj2IxRkl5bQ - Slides: slideshare.net/SerapheimNikolaosDim/zfs-log-spacemaps-project Flushing Algorithm Internals & Performance Results (Illumos Specific) - Blogpost: sdimitro.github.io/post/zfs-lsm-flushing/ - OpenZFS 2018 Presentation: youtu.be/x6D2dHRjkxw - Slides: slideshare.net/SerapheimNikolaosDim/zfs-log-spacemap-flushing-algorithm Upstream Delphix Issues: DLPX-51539, DLPX-59659, DLPX-57783, DLPX-61438, DLPX-41227, DLPX-59320 DLPX-63385 Reviewed-by: Sean Eric Fagan <sef@ixsystems.com> Reviewed-by: Matt Ahrens <matt@delphix.com> Reviewed-by: George Wilson <gwilson@delphix.com> Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov> Signed-off-by: Serapheim Dimitropoulos <serapheim@delphix.com> Closes #8442
2019-07-16 20:11:49 +03:00
SPA_FEATURE_LOG_SPACEMAP,
SPA_FEATURE_LIVELIST,
Add device rebuild feature The device_rebuild feature enables sequential reconstruction when resilvering. Mirror vdevs can be rebuilt in LBA order which may more quickly restore redundancy depending on the pools average block size, overall fragmentation and the performance characteristics of the devices. However, block checksums cannot be verified as part of the rebuild thus a scrub is automatically started after the sequential resilver completes. The new '-s' option has been added to the `zpool attach` and `zpool replace` command to request sequential reconstruction instead of healing reconstruction when resilvering. zpool attach -s <pool> <existing vdev> <new vdev> zpool replace -s <pool> <old vdev> <new vdev> The `zpool status` output has been updated to report the progress of sequential resilvering in the same way as healing resilvering. The one notable difference is that multiple sequential resilvers may be in progress as long as they're operating on different top-level vdevs. The `zpool wait -t resilver` command was extended to wait on sequential resilvers. From this perspective they are no different than healing resilvers. Sequential resilvers cannot be supported for RAIDZ, but are compatible with the dRAID feature being developed. As part of this change the resilver_restart_* tests were moved in to the functional/replacement directory. Additionally, the replacement tests were renamed and extended to verify both resilvering and rebuilding. Original-patch-by: Isaac Huang <he.huang@intel.com> Reviewed-by: Tony Hutter <hutter2@llnl.gov> Reviewed-by: John Poduska <jpoduska@datto.com> Co-authored-by: Mark Maybee <mmaybee@cray.com> Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov> Closes #10349
2020-07-03 21:05:50 +03:00
SPA_FEATURE_DEVICE_REBUILD,
Add zstd support to zfs This PR adds two new compression types, based on ZStandard: - zstd: A basic ZStandard compression algorithm Available compression. Levels for zstd are zstd-1 through zstd-19, where the compression increases with every level, but speed decreases. - zstd-fast: A faster version of the ZStandard compression algorithm zstd-fast is basically a "negative" level of zstd. The compression decreases with every level, but speed increases. Available compression levels for zstd-fast: - zstd-fast-1 through zstd-fast-10 - zstd-fast-20 through zstd-fast-100 (in increments of 10) - zstd-fast-500 and zstd-fast-1000 For more information check the man page. Implementation details: Rather than treat each level of zstd as a different algorithm (as was done historically with gzip), the block pointer `enum zio_compress` value is simply zstd for all levels, including zstd-fast, since they all use the same decompression function. The compress= property (a 64bit unsigned integer) uses the lower 7 bits to store the compression algorithm (matching the number of bits used in a block pointer, as the 8th bit was borrowed for embedded block pointers). The upper bits are used to store the compression level. It is necessary to be able to determine what compression level was used when later reading a block back, so the concept used in LZ4, where the first 32bits of the on-disk value are the size of the compressed data (since the allocation is rounded up to the nearest ashift), was extended, and we store the version of ZSTD and the level as well as the compressed size. This value is returned when decompressing a block, so that if the block needs to be recompressed (L2ARC, nop-write, etc), that the same parameters will be used to result in the matching checksum. All of the internal ZFS code ( `arc_buf_hdr_t`, `objset_t`, `zio_prop_t`, etc.) uses the separated _compress and _complevel variables. Only the properties ZAP contains the combined/bit-shifted value. The combined value is split when the compression_changed_cb() callback is called, and sets both objset members (os_compress and os_complevel). The userspace tools all use the combined/bit-shifted value. Additional notes: zdb can now also decode the ZSTD compression header (flag -Z) and inspect the size, version and compression level saved in that header. For each record, if it is ZSTD compressed, the parameters of the decoded compression header get printed. ZSTD is included with all current tests and new tests are added as-needed. Per-dataset feature flags now get activated when the property is set. If a compression algorithm requires a feature flag, zfs activates the feature when the property is set, rather than waiting for the first block to be born. This is currently only used by zstd but can be extended as needed. Portions-Sponsored-By: The FreeBSD Foundation Co-authored-by: Allan Jude <allanjude@freebsd.org> Co-authored-by: Brian Behlendorf <behlendorf1@llnl.gov> Co-authored-by: Sebastian Gottschall <s.gottschall@dd-wrt.com> Co-authored-by: Kjeld Schouten-Lebbing <kjeld@schouten-lebbing.nl> Co-authored-by: Michael Niewöhner <foss@mniewoehner.de> Signed-off-by: Allan Jude <allan@klarasystems.com> Signed-off-by: Allan Jude <allanjude@freebsd.org> Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov> Signed-off-by: Sebastian Gottschall <s.gottschall@dd-wrt.com> Signed-off-by: Kjeld Schouten-Lebbing <kjeld@schouten-lebbing.nl> Signed-off-by: Michael Niewöhner <foss@mniewoehner.de> Closes #6247 Closes #9024 Closes #10277 Closes #10278
2020-08-18 20:10:17 +03:00
SPA_FEATURE_ZSTD_COMPRESS,
Distributed Spare (dRAID) Feature This patch adds a new top-level vdev type called dRAID, which stands for Distributed parity RAID. This pool configuration allows all dRAID vdevs to participate when rebuilding to a distributed hot spare device. This can substantially reduce the total time required to restore full parity to pool with a failed device. A dRAID pool can be created using the new top-level `draid` type. Like `raidz`, the desired redundancy is specified after the type: `draid[1,2,3]`. No additional information is required to create the pool and reasonable default values will be chosen based on the number of child vdevs in the dRAID vdev. zpool create <pool> draid[1,2,3] <vdevs...> Unlike raidz, additional optional dRAID configuration values can be provided as part of the draid type as colon separated values. This allows administrators to fully specify a layout for either performance or capacity reasons. The supported options include: zpool create <pool> \ draid[<parity>][:<data>d][:<children>c][:<spares>s] \ <vdevs...> - draid[parity] - Parity level (default 1) - draid[:<data>d] - Data devices per group (default 8) - draid[:<children>c] - Expected number of child vdevs - draid[:<spares>s] - Distributed hot spares (default 0) Abbreviated example `zpool status` output for a 68 disk dRAID pool with two distributed spares using special allocation classes. ``` pool: tank state: ONLINE config: NAME STATE READ WRITE CKSUM slag7 ONLINE 0 0 0 draid2:8d:68c:2s-0 ONLINE 0 0 0 L0 ONLINE 0 0 0 L1 ONLINE 0 0 0 ... U25 ONLINE 0 0 0 U26 ONLINE 0 0 0 spare-53 ONLINE 0 0 0 U27 ONLINE 0 0 0 draid2-0-0 ONLINE 0 0 0 U28 ONLINE 0 0 0 U29 ONLINE 0 0 0 ... U42 ONLINE 0 0 0 U43 ONLINE 0 0 0 special mirror-1 ONLINE 0 0 0 L5 ONLINE 0 0 0 U5 ONLINE 0 0 0 mirror-2 ONLINE 0 0 0 L6 ONLINE 0 0 0 U6 ONLINE 0 0 0 spares draid2-0-0 INUSE currently in use draid2-0-1 AVAIL ``` When adding test coverage for the new dRAID vdev type the following options were added to the ztest command. These options are leverages by zloop.sh to test a wide range of dRAID configurations. -K draid|raidz|random - kind of RAID to test -D <value> - dRAID data drives per group -S <value> - dRAID distributed hot spares -R <value> - RAID parity (raidz or dRAID) The zpool_create, zpool_import, redundancy, replacement and fault test groups have all been updated provide test coverage for the dRAID feature. Co-authored-by: Isaac Huang <he.huang@intel.com> Co-authored-by: Mark Maybee <mmaybee@cray.com> Co-authored-by: Don Brady <don.brady@delphix.com> Co-authored-by: Matthew Ahrens <mahrens@delphix.com> Co-authored-by: Brian Behlendorf <behlendorf1@llnl.gov> Reviewed-by: Mark Maybee <mmaybee@cray.com> Reviewed-by: Matt Ahrens <matt@delphix.com> Reviewed-by: Tony Hutter <hutter2@llnl.gov> Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov> Closes #10102
2020-11-14 00:51:51 +03:00
SPA_FEATURE_DRAID,
SPA_FEATURES
} spa_feature_t;
#define SPA_FEATURE_DISABLED (-1ULL)
typedef enum zfeature_flags {
/* Can open pool readonly even if this feature is not supported. */
ZFEATURE_FLAG_READONLY_COMPAT = (1 << 0),
/*
* Is this feature necessary to load the pool? i.e. do we need this
* feature to read the full feature list out of the MOS?
*/
ZFEATURE_FLAG_MOS = (1 << 1),
/* Activate this feature at the same time it is enabled. */
ZFEATURE_FLAG_ACTIVATE_ON_ENABLE = (1 << 2),
/* Each dataset has a field set if it has ever used this feature. */
ZFEATURE_FLAG_PER_DATASET = (1 << 3)
} zfeature_flags_t;
typedef enum zfeature_type {
ZFEATURE_TYPE_BOOLEAN,
ZFEATURE_TYPE_UINT64_ARRAY,
ZFEATURE_NUM_TYPES
} zfeature_type_t;
typedef struct zfeature_info {
spa_feature_t fi_feature;
const char *fi_uname; /* User-facing feature name */
const char *fi_guid; /* On-disk feature identifier */
const char *fi_desc; /* Feature description */
zfeature_flags_t fi_flags;
boolean_t fi_zfs_mod_supported; /* supported by running zfs module */
zfeature_type_t fi_type; /* Only relevant for PER_DATASET features */
/* array of dependencies, terminated by SPA_FEATURE_NONE */
const spa_feature_t *fi_depends;
} zfeature_info_t;
typedef int (zfeature_func_t)(zfeature_info_t *, void *);
#define ZFS_FEATURE_DEBUG
extern zfeature_info_t spa_feature_table[SPA_FEATURES];
extern boolean_t zfeature_is_valid_guid(const char *);
extern boolean_t zfeature_is_supported(const char *);
extern int zfeature_lookup_guid(const char *, spa_feature_t *);
extern int zfeature_lookup_name(const char *, spa_feature_t *);
extern boolean_t zfeature_depends_on(spa_feature_t, spa_feature_t);
extern void zpool_feature_init(void);
#ifdef __cplusplus
}
#endif
#endif /* _ZFEATURE_COMMON_H */