mirror of
https://git.proxmox.com/git/mirror_zfs.git
synced 2024-12-30 21:09:38 +03:00
2449 lines
62 KiB
C
2449 lines
62 KiB
C
|
/*
|
||
|
* CDDL HEADER START
|
||
|
*
|
||
|
* The contents of this file are subject to the terms of the
|
||
|
* Common Development and Distribution License (the "License").
|
||
|
* You may not use this file except in compliance with the License.
|
||
|
*
|
||
|
* You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
|
||
|
* or http://www.opensolaris.org/os/licensing.
|
||
|
* See the License for the specific language governing permissions
|
||
|
* and limitations under the License.
|
||
|
*
|
||
|
* When distributing Covered Code, include this CDDL HEADER in each
|
||
|
* file and include the License file at usr/src/OPENSOLARIS.LICENSE.
|
||
|
* If applicable, add the following below this CDDL HEADER, with the
|
||
|
* fields enclosed by brackets "[]" replaced with your own identifying
|
||
|
* information: Portions Copyright [yyyy] [name of copyright owner]
|
||
|
*
|
||
|
* CDDL HEADER END
|
||
|
*/
|
||
|
/*
|
||
|
* Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
|
||
|
* Copyright (c) 2011 Pawel Jakub Dawidek <pawel@dawidek.net>.
|
||
|
* All rights reserved.
|
||
|
* Copyright (c) 2012, 2015 by Delphix. All rights reserved.
|
||
|
* Copyright (c) 2014 Integros [integros.com]
|
||
|
* Copyright 2016 Nexenta Systems, Inc. All rights reserved.
|
||
|
*/
|
||
|
|
||
|
/* Portions Copyright 2010 Robert Milkowski */
|
||
|
|
||
|
#include <sys/types.h>
|
||
|
#include <sys/param.h>
|
||
|
#include <sys/systm.h>
|
||
|
#include <sys/kernel.h>
|
||
|
#include <sys/sysmacros.h>
|
||
|
#include <sys/kmem.h>
|
||
|
#include <sys/acl.h>
|
||
|
#include <sys/vnode.h>
|
||
|
#include <sys/vfs.h>
|
||
|
#include <sys/mntent.h>
|
||
|
#include <sys/mount.h>
|
||
|
#include <sys/cmn_err.h>
|
||
|
#include <sys/zfs_znode.h>
|
||
|
#include <sys/zfs_dir.h>
|
||
|
#include <sys/zil.h>
|
||
|
#include <sys/fs/zfs.h>
|
||
|
#include <sys/dmu.h>
|
||
|
#include <sys/dsl_prop.h>
|
||
|
#include <sys/dsl_dataset.h>
|
||
|
#include <sys/dsl_deleg.h>
|
||
|
#include <sys/spa.h>
|
||
|
#include <sys/zap.h>
|
||
|
#include <sys/sa.h>
|
||
|
#include <sys/sa_impl.h>
|
||
|
#include <sys/policy.h>
|
||
|
#include <sys/atomic.h>
|
||
|
#include <sys/zfs_ioctl.h>
|
||
|
#include <sys/zfs_ctldir.h>
|
||
|
#include <sys/zfs_fuid.h>
|
||
|
#include <sys/sunddi.h>
|
||
|
#include <sys/dmu_objset.h>
|
||
|
#include <sys/dsl_dir.h>
|
||
|
#include <sys/spa_boot.h>
|
||
|
#include <sys/jail.h>
|
||
|
#include <ufs/ufs/quota.h>
|
||
|
#include <sys/zfs_quota.h>
|
||
|
|
||
|
#include "zfs_comutil.h"
|
||
|
|
||
|
#ifndef MNTK_VMSETSIZE_BUG
|
||
|
#define MNTK_VMSETSIZE_BUG 0
|
||
|
#endif
|
||
|
#ifndef MNTK_NOMSYNC
|
||
|
#define MNTK_NOMSYNC 8
|
||
|
#endif
|
||
|
|
||
|
/* BEGIN CSTYLED */
|
||
|
struct mtx zfs_debug_mtx;
|
||
|
MTX_SYSINIT(zfs_debug_mtx, &zfs_debug_mtx, "zfs_debug", MTX_DEF);
|
||
|
|
||
|
SYSCTL_NODE(_vfs, OID_AUTO, zfs, CTLFLAG_RW, 0, "ZFS file system");
|
||
|
|
||
|
int zfs_super_owner;
|
||
|
SYSCTL_INT(_vfs_zfs, OID_AUTO, super_owner, CTLFLAG_RW, &zfs_super_owner, 0,
|
||
|
"File system owner can perform privileged operation on his file systems");
|
||
|
|
||
|
int zfs_debug_level;
|
||
|
SYSCTL_INT(_vfs_zfs, OID_AUTO, debug, CTLFLAG_RWTUN, &zfs_debug_level, 0,
|
||
|
"Debug level");
|
||
|
|
||
|
SYSCTL_NODE(_vfs_zfs, OID_AUTO, version, CTLFLAG_RD, 0, "ZFS versions");
|
||
|
static int zfs_version_acl = ZFS_ACL_VERSION;
|
||
|
SYSCTL_INT(_vfs_zfs_version, OID_AUTO, acl, CTLFLAG_RD, &zfs_version_acl, 0,
|
||
|
"ZFS_ACL_VERSION");
|
||
|
static int zfs_version_spa = SPA_VERSION;
|
||
|
SYSCTL_INT(_vfs_zfs_version, OID_AUTO, spa, CTLFLAG_RD, &zfs_version_spa, 0,
|
||
|
"SPA_VERSION");
|
||
|
static int zfs_version_zpl = ZPL_VERSION;
|
||
|
SYSCTL_INT(_vfs_zfs_version, OID_AUTO, zpl, CTLFLAG_RD, &zfs_version_zpl, 0,
|
||
|
"ZPL_VERSION");
|
||
|
/* END CSTYLED */
|
||
|
|
||
|
static int zfs_quotactl(vfs_t *vfsp, int cmds, uid_t id, void *arg);
|
||
|
static int zfs_mount(vfs_t *vfsp);
|
||
|
static int zfs_umount(vfs_t *vfsp, int fflag);
|
||
|
static int zfs_root(vfs_t *vfsp, int flags, vnode_t **vpp);
|
||
|
static int zfs_statfs(vfs_t *vfsp, struct statfs *statp);
|
||
|
static int zfs_vget(vfs_t *vfsp, ino_t ino, int flags, vnode_t **vpp);
|
||
|
static int zfs_sync(vfs_t *vfsp, int waitfor);
|
||
|
static int zfs_checkexp(vfs_t *vfsp, struct sockaddr *nam, int *extflagsp,
|
||
|
struct ucred **credanonp, int *numsecflavors, int **secflavors);
|
||
|
static int zfs_fhtovp(vfs_t *vfsp, fid_t *fidp, int flags, vnode_t **vpp);
|
||
|
static void zfs_freevfs(vfs_t *vfsp);
|
||
|
|
||
|
struct vfsops zfs_vfsops = {
|
||
|
.vfs_mount = zfs_mount,
|
||
|
.vfs_unmount = zfs_umount,
|
||
|
#if __FreeBSD_version >= 1300049
|
||
|
.vfs_root = vfs_cache_root,
|
||
|
.vfs_cachedroot = zfs_root,
|
||
|
#else
|
||
|
.vfs_root = zfs_root,
|
||
|
#endif
|
||
|
.vfs_statfs = zfs_statfs,
|
||
|
.vfs_vget = zfs_vget,
|
||
|
.vfs_sync = zfs_sync,
|
||
|
.vfs_checkexp = zfs_checkexp,
|
||
|
.vfs_fhtovp = zfs_fhtovp,
|
||
|
.vfs_quotactl = zfs_quotactl,
|
||
|
};
|
||
|
|
||
|
VFS_SET(zfs_vfsops, zfs, VFCF_JAIL | VFCF_DELEGADMIN);
|
||
|
|
||
|
/*
|
||
|
* We need to keep a count of active fs's.
|
||
|
* This is necessary to prevent our module
|
||
|
* from being unloaded after a umount -f
|
||
|
*/
|
||
|
static uint32_t zfs_active_fs_count = 0;
|
||
|
|
||
|
int
|
||
|
zfs_get_temporary_prop(dsl_dataset_t *ds, zfs_prop_t zfs_prop, uint64_t *val,
|
||
|
char *setpoint)
|
||
|
{
|
||
|
int error;
|
||
|
zfsvfs_t *zfvp;
|
||
|
vfs_t *vfsp;
|
||
|
objset_t *os;
|
||
|
uint64_t tmp = *val;
|
||
|
|
||
|
error = dmu_objset_from_ds(ds, &os);
|
||
|
if (error != 0)
|
||
|
return (error);
|
||
|
|
||
|
error = getzfsvfs_impl(os, &zfvp);
|
||
|
if (error != 0)
|
||
|
return (error);
|
||
|
if (zfvp == NULL)
|
||
|
return (ENOENT);
|
||
|
vfsp = zfvp->z_vfs;
|
||
|
switch (zfs_prop) {
|
||
|
case ZFS_PROP_ATIME:
|
||
|
if (vfs_optionisset(vfsp, MNTOPT_NOATIME, NULL))
|
||
|
tmp = 0;
|
||
|
if (vfs_optionisset(vfsp, MNTOPT_ATIME, NULL))
|
||
|
tmp = 1;
|
||
|
break;
|
||
|
case ZFS_PROP_DEVICES:
|
||
|
if (vfs_optionisset(vfsp, MNTOPT_NODEVICES, NULL))
|
||
|
tmp = 0;
|
||
|
if (vfs_optionisset(vfsp, MNTOPT_DEVICES, NULL))
|
||
|
tmp = 1;
|
||
|
break;
|
||
|
case ZFS_PROP_EXEC:
|
||
|
if (vfs_optionisset(vfsp, MNTOPT_NOEXEC, NULL))
|
||
|
tmp = 0;
|
||
|
if (vfs_optionisset(vfsp, MNTOPT_EXEC, NULL))
|
||
|
tmp = 1;
|
||
|
break;
|
||
|
case ZFS_PROP_SETUID:
|
||
|
if (vfs_optionisset(vfsp, MNTOPT_NOSETUID, NULL))
|
||
|
tmp = 0;
|
||
|
if (vfs_optionisset(vfsp, MNTOPT_SETUID, NULL))
|
||
|
tmp = 1;
|
||
|
break;
|
||
|
case ZFS_PROP_READONLY:
|
||
|
if (vfs_optionisset(vfsp, MNTOPT_RW, NULL))
|
||
|
tmp = 0;
|
||
|
if (vfs_optionisset(vfsp, MNTOPT_RO, NULL))
|
||
|
tmp = 1;
|
||
|
break;
|
||
|
case ZFS_PROP_XATTR:
|
||
|
if (zfvp->z_flags & ZSB_XATTR)
|
||
|
tmp = zfvp->z_xattr;
|
||
|
break;
|
||
|
case ZFS_PROP_NBMAND:
|
||
|
if (vfs_optionisset(vfsp, MNTOPT_NONBMAND, NULL))
|
||
|
tmp = 0;
|
||
|
if (vfs_optionisset(vfsp, MNTOPT_NBMAND, NULL))
|
||
|
tmp = 1;
|
||
|
break;
|
||
|
default:
|
||
|
vfs_unbusy(vfsp);
|
||
|
return (ENOENT);
|
||
|
}
|
||
|
|
||
|
vfs_unbusy(vfsp);
|
||
|
if (tmp != *val) {
|
||
|
(void) strcpy(setpoint, "temporary");
|
||
|
*val = tmp;
|
||
|
}
|
||
|
return (0);
|
||
|
}
|
||
|
|
||
|
static int
|
||
|
zfs_getquota(zfsvfs_t *zfsvfs, uid_t id, int isgroup, struct dqblk64 *dqp)
|
||
|
{
|
||
|
int error = 0;
|
||
|
char buf[32];
|
||
|
uint64_t usedobj, quotaobj;
|
||
|
uint64_t quota, used = 0;
|
||
|
timespec_t now;
|
||
|
|
||
|
usedobj = isgroup ? DMU_GROUPUSED_OBJECT : DMU_USERUSED_OBJECT;
|
||
|
quotaobj = isgroup ? zfsvfs->z_groupquota_obj : zfsvfs->z_userquota_obj;
|
||
|
|
||
|
if (quotaobj == 0 || zfsvfs->z_replay) {
|
||
|
error = ENOENT;
|
||
|
goto done;
|
||
|
}
|
||
|
(void) sprintf(buf, "%llx", (longlong_t)id);
|
||
|
if ((error = zap_lookup(zfsvfs->z_os, quotaobj,
|
||
|
buf, sizeof (quota), 1, "a)) != 0) {
|
||
|
dprintf("%s(%d): quotaobj lookup failed\n",
|
||
|
__FUNCTION__, __LINE__);
|
||
|
goto done;
|
||
|
}
|
||
|
/*
|
||
|
* quota(8) uses bsoftlimit as "quoota", and hardlimit as "limit".
|
||
|
* So we set them to be the same.
|
||
|
*/
|
||
|
dqp->dqb_bsoftlimit = dqp->dqb_bhardlimit = btodb(quota);
|
||
|
error = zap_lookup(zfsvfs->z_os, usedobj, buf, sizeof (used), 1, &used);
|
||
|
if (error && error != ENOENT) {
|
||
|
dprintf("%s(%d): usedobj failed; %d\n",
|
||
|
__FUNCTION__, __LINE__, error);
|
||
|
goto done;
|
||
|
}
|
||
|
dqp->dqb_curblocks = btodb(used);
|
||
|
dqp->dqb_ihardlimit = dqp->dqb_isoftlimit = 0;
|
||
|
vfs_timestamp(&now);
|
||
|
/*
|
||
|
* Setting this to 0 causes FreeBSD quota(8) to print
|
||
|
* the number of days since the epoch, which isn't
|
||
|
* particularly useful.
|
||
|
*/
|
||
|
dqp->dqb_btime = dqp->dqb_itime = now.tv_sec;
|
||
|
done:
|
||
|
return (error);
|
||
|
}
|
||
|
|
||
|
static int
|
||
|
zfs_quotactl(vfs_t *vfsp, int cmds, uid_t id, void *arg)
|
||
|
{
|
||
|
zfsvfs_t *zfsvfs = vfsp->vfs_data;
|
||
|
struct thread *td;
|
||
|
int cmd, type, error = 0;
|
||
|
int bitsize;
|
||
|
zfs_userquota_prop_t quota_type;
|
||
|
struct dqblk64 dqblk = { 0 };
|
||
|
|
||
|
td = curthread;
|
||
|
cmd = cmds >> SUBCMDSHIFT;
|
||
|
type = cmds & SUBCMDMASK;
|
||
|
|
||
|
ZFS_ENTER(zfsvfs);
|
||
|
if (id == -1) {
|
||
|
switch (type) {
|
||
|
case USRQUOTA:
|
||
|
id = td->td_ucred->cr_ruid;
|
||
|
break;
|
||
|
case GRPQUOTA:
|
||
|
id = td->td_ucred->cr_rgid;
|
||
|
break;
|
||
|
default:
|
||
|
error = EINVAL;
|
||
|
if (cmd == Q_QUOTAON || cmd == Q_QUOTAOFF)
|
||
|
vfs_unbusy(vfsp);
|
||
|
goto done;
|
||
|
}
|
||
|
}
|
||
|
/*
|
||
|
* Map BSD type to:
|
||
|
* ZFS_PROP_USERUSED,
|
||
|
* ZFS_PROP_USERQUOTA,
|
||
|
* ZFS_PROP_GROUPUSED,
|
||
|
* ZFS_PROP_GROUPQUOTA
|
||
|
*/
|
||
|
switch (cmd) {
|
||
|
case Q_SETQUOTA:
|
||
|
case Q_SETQUOTA32:
|
||
|
if (type == USRQUOTA)
|
||
|
quota_type = ZFS_PROP_USERQUOTA;
|
||
|
else if (type == GRPQUOTA)
|
||
|
quota_type = ZFS_PROP_GROUPQUOTA;
|
||
|
else
|
||
|
error = EINVAL;
|
||
|
break;
|
||
|
case Q_GETQUOTA:
|
||
|
case Q_GETQUOTA32:
|
||
|
if (type == USRQUOTA)
|
||
|
quota_type = ZFS_PROP_USERUSED;
|
||
|
else if (type == GRPQUOTA)
|
||
|
quota_type = ZFS_PROP_GROUPUSED;
|
||
|
else
|
||
|
error = EINVAL;
|
||
|
break;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Depending on the cmd, we may need to get
|
||
|
* the ruid and domain (see fuidstr_to_sid?),
|
||
|
* the fuid (how?), or other information.
|
||
|
* Create fuid using zfs_fuid_create(zfsvfs, id,
|
||
|
* ZFS_OWNER or ZFS_GROUP, cr, &fuidp)?
|
||
|
* I think I can use just the id?
|
||
|
*
|
||
|
* Look at zfs_id_overquota() to look up a quota.
|
||
|
* zap_lookup(something, quotaobj, fuidstring,
|
||
|
* sizeof (long long), 1, "a)
|
||
|
*
|
||
|
* See zfs_set_userquota() to set a quota.
|
||
|
*/
|
||
|
if ((uint32_t)type >= MAXQUOTAS) {
|
||
|
error = EINVAL;
|
||
|
goto done;
|
||
|
}
|
||
|
|
||
|
switch (cmd) {
|
||
|
case Q_GETQUOTASIZE:
|
||
|
bitsize = 64;
|
||
|
error = copyout(&bitsize, arg, sizeof (int));
|
||
|
break;
|
||
|
case Q_QUOTAON:
|
||
|
// As far as I can tell, you can't turn quotas on or off on zfs
|
||
|
error = 0;
|
||
|
vfs_unbusy(vfsp);
|
||
|
break;
|
||
|
case Q_QUOTAOFF:
|
||
|
error = ENOTSUP;
|
||
|
vfs_unbusy(vfsp);
|
||
|
break;
|
||
|
case Q_SETQUOTA:
|
||
|
error = copyin(&dqblk, arg, sizeof (dqblk));
|
||
|
if (error == 0)
|
||
|
error = zfs_set_userquota(zfsvfs, quota_type,
|
||
|
"", id, dbtob(dqblk.dqb_bhardlimit));
|
||
|
break;
|
||
|
case Q_GETQUOTA:
|
||
|
error = zfs_getquota(zfsvfs, id, type == GRPQUOTA, &dqblk);
|
||
|
if (error == 0)
|
||
|
error = copyout(&dqblk, arg, sizeof (dqblk));
|
||
|
break;
|
||
|
default:
|
||
|
error = EINVAL;
|
||
|
break;
|
||
|
}
|
||
|
done:
|
||
|
ZFS_EXIT(zfsvfs);
|
||
|
return (error);
|
||
|
}
|
||
|
|
||
|
|
||
|
boolean_t
|
||
|
zfs_is_readonly(zfsvfs_t *zfsvfs)
|
||
|
{
|
||
|
return (!!(zfsvfs->z_vfs->vfs_flag & VFS_RDONLY));
|
||
|
}
|
||
|
|
||
|
/*ARGSUSED*/
|
||
|
static int
|
||
|
zfs_sync(vfs_t *vfsp, int waitfor)
|
||
|
{
|
||
|
|
||
|
/*
|
||
|
* Data integrity is job one. We don't want a compromised kernel
|
||
|
* writing to the storage pool, so we never sync during panic.
|
||
|
*/
|
||
|
if (panicstr)
|
||
|
return (0);
|
||
|
|
||
|
/*
|
||
|
* Ignore the system syncher. ZFS already commits async data
|
||
|
* at zfs_txg_timeout intervals.
|
||
|
*/
|
||
|
if (waitfor == MNT_LAZY)
|
||
|
return (0);
|
||
|
|
||
|
if (vfsp != NULL) {
|
||
|
/*
|
||
|
* Sync a specific filesystem.
|
||
|
*/
|
||
|
zfsvfs_t *zfsvfs = vfsp->vfs_data;
|
||
|
dsl_pool_t *dp;
|
||
|
int error;
|
||
|
|
||
|
error = vfs_stdsync(vfsp, waitfor);
|
||
|
if (error != 0)
|
||
|
return (error);
|
||
|
|
||
|
ZFS_ENTER(zfsvfs);
|
||
|
dp = dmu_objset_pool(zfsvfs->z_os);
|
||
|
|
||
|
/*
|
||
|
* If the system is shutting down, then skip any
|
||
|
* filesystems which may exist on a suspended pool.
|
||
|
*/
|
||
|
if (rebooting && spa_suspended(dp->dp_spa)) {
|
||
|
ZFS_EXIT(zfsvfs);
|
||
|
return (0);
|
||
|
}
|
||
|
|
||
|
if (zfsvfs->z_log != NULL)
|
||
|
zil_commit(zfsvfs->z_log, 0);
|
||
|
|
||
|
ZFS_EXIT(zfsvfs);
|
||
|
} else {
|
||
|
/*
|
||
|
* Sync all ZFS filesystems. This is what happens when you
|
||
|
* run sync(1M). Unlike other filesystems, ZFS honors the
|
||
|
* request by waiting for all pools to commit all dirty data.
|
||
|
*/
|
||
|
spa_sync_allpools();
|
||
|
}
|
||
|
|
||
|
return (0);
|
||
|
}
|
||
|
|
||
|
static void
|
||
|
atime_changed_cb(void *arg, uint64_t newval)
|
||
|
{
|
||
|
zfsvfs_t *zfsvfs = arg;
|
||
|
|
||
|
if (newval == TRUE) {
|
||
|
zfsvfs->z_atime = TRUE;
|
||
|
zfsvfs->z_vfs->vfs_flag &= ~MNT_NOATIME;
|
||
|
vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_NOATIME);
|
||
|
vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_ATIME, NULL, 0);
|
||
|
} else {
|
||
|
zfsvfs->z_atime = FALSE;
|
||
|
zfsvfs->z_vfs->vfs_flag |= MNT_NOATIME;
|
||
|
vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_ATIME);
|
||
|
vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_NOATIME, NULL, 0);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
static void
|
||
|
xattr_changed_cb(void *arg, uint64_t newval)
|
||
|
{
|
||
|
zfsvfs_t *zfsvfs = arg;
|
||
|
|
||
|
if (newval == ZFS_XATTR_OFF) {
|
||
|
zfsvfs->z_flags &= ~ZSB_XATTR;
|
||
|
} else {
|
||
|
zfsvfs->z_flags |= ZSB_XATTR;
|
||
|
|
||
|
if (newval == ZFS_XATTR_SA)
|
||
|
zfsvfs->z_xattr_sa = B_TRUE;
|
||
|
else
|
||
|
zfsvfs->z_xattr_sa = B_FALSE;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
static void
|
||
|
blksz_changed_cb(void *arg, uint64_t newval)
|
||
|
{
|
||
|
zfsvfs_t *zfsvfs = arg;
|
||
|
ASSERT3U(newval, <=, spa_maxblocksize(dmu_objset_spa(zfsvfs->z_os)));
|
||
|
ASSERT3U(newval, >=, SPA_MINBLOCKSIZE);
|
||
|
ASSERT(ISP2(newval));
|
||
|
|
||
|
zfsvfs->z_max_blksz = newval;
|
||
|
zfsvfs->z_vfs->mnt_stat.f_iosize = newval;
|
||
|
}
|
||
|
|
||
|
static void
|
||
|
readonly_changed_cb(void *arg, uint64_t newval)
|
||
|
{
|
||
|
zfsvfs_t *zfsvfs = arg;
|
||
|
|
||
|
if (newval) {
|
||
|
/* XXX locking on vfs_flag? */
|
||
|
zfsvfs->z_vfs->vfs_flag |= VFS_RDONLY;
|
||
|
vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_RW);
|
||
|
vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_RO, NULL, 0);
|
||
|
} else {
|
||
|
/* XXX locking on vfs_flag? */
|
||
|
zfsvfs->z_vfs->vfs_flag &= ~VFS_RDONLY;
|
||
|
vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_RO);
|
||
|
vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_RW, NULL, 0);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
static void
|
||
|
setuid_changed_cb(void *arg, uint64_t newval)
|
||
|
{
|
||
|
zfsvfs_t *zfsvfs = arg;
|
||
|
|
||
|
if (newval == FALSE) {
|
||
|
zfsvfs->z_vfs->vfs_flag |= VFS_NOSETUID;
|
||
|
vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_SETUID);
|
||
|
vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_NOSETUID, NULL, 0);
|
||
|
} else {
|
||
|
zfsvfs->z_vfs->vfs_flag &= ~VFS_NOSETUID;
|
||
|
vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_NOSETUID);
|
||
|
vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_SETUID, NULL, 0);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
static void
|
||
|
exec_changed_cb(void *arg, uint64_t newval)
|
||
|
{
|
||
|
zfsvfs_t *zfsvfs = arg;
|
||
|
|
||
|
if (newval == FALSE) {
|
||
|
zfsvfs->z_vfs->vfs_flag |= VFS_NOEXEC;
|
||
|
vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_EXEC);
|
||
|
vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_NOEXEC, NULL, 0);
|
||
|
} else {
|
||
|
zfsvfs->z_vfs->vfs_flag &= ~VFS_NOEXEC;
|
||
|
vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_NOEXEC);
|
||
|
vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_EXEC, NULL, 0);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* The nbmand mount option can be changed at mount time.
|
||
|
* We can't allow it to be toggled on live file systems or incorrect
|
||
|
* behavior may be seen from cifs clients
|
||
|
*
|
||
|
* This property isn't registered via dsl_prop_register(), but this callback
|
||
|
* will be called when a file system is first mounted
|
||
|
*/
|
||
|
static void
|
||
|
nbmand_changed_cb(void *arg, uint64_t newval)
|
||
|
{
|
||
|
zfsvfs_t *zfsvfs = arg;
|
||
|
if (newval == FALSE) {
|
||
|
vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_NBMAND);
|
||
|
vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_NONBMAND, NULL, 0);
|
||
|
} else {
|
||
|
vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_NONBMAND);
|
||
|
vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_NBMAND, NULL, 0);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
static void
|
||
|
snapdir_changed_cb(void *arg, uint64_t newval)
|
||
|
{
|
||
|
zfsvfs_t *zfsvfs = arg;
|
||
|
|
||
|
zfsvfs->z_show_ctldir = newval;
|
||
|
}
|
||
|
|
||
|
static void
|
||
|
vscan_changed_cb(void *arg, uint64_t newval)
|
||
|
{
|
||
|
zfsvfs_t *zfsvfs = arg;
|
||
|
|
||
|
zfsvfs->z_vscan = newval;
|
||
|
}
|
||
|
|
||
|
static void
|
||
|
acl_mode_changed_cb(void *arg, uint64_t newval)
|
||
|
{
|
||
|
zfsvfs_t *zfsvfs = arg;
|
||
|
|
||
|
zfsvfs->z_acl_mode = newval;
|
||
|
}
|
||
|
|
||
|
static void
|
||
|
acl_inherit_changed_cb(void *arg, uint64_t newval)
|
||
|
{
|
||
|
zfsvfs_t *zfsvfs = arg;
|
||
|
|
||
|
zfsvfs->z_acl_inherit = newval;
|
||
|
}
|
||
|
|
||
|
static int
|
||
|
zfs_register_callbacks(vfs_t *vfsp)
|
||
|
{
|
||
|
struct dsl_dataset *ds = NULL;
|
||
|
objset_t *os = NULL;
|
||
|
zfsvfs_t *zfsvfs = NULL;
|
||
|
uint64_t nbmand;
|
||
|
boolean_t readonly = B_FALSE;
|
||
|
boolean_t do_readonly = B_FALSE;
|
||
|
boolean_t setuid = B_FALSE;
|
||
|
boolean_t do_setuid = B_FALSE;
|
||
|
boolean_t exec = B_FALSE;
|
||
|
boolean_t do_exec = B_FALSE;
|
||
|
boolean_t xattr = B_FALSE;
|
||
|
boolean_t atime = B_FALSE;
|
||
|
boolean_t do_atime = B_FALSE;
|
||
|
boolean_t do_xattr = B_FALSE;
|
||
|
int error = 0;
|
||
|
|
||
|
ASSERT(vfsp);
|
||
|
zfsvfs = vfsp->vfs_data;
|
||
|
ASSERT(zfsvfs);
|
||
|
os = zfsvfs->z_os;
|
||
|
|
||
|
/*
|
||
|
* This function can be called for a snapshot when we update snapshot's
|
||
|
* mount point, which isn't really supported.
|
||
|
*/
|
||
|
if (dmu_objset_is_snapshot(os))
|
||
|
return (EOPNOTSUPP);
|
||
|
|
||
|
/*
|
||
|
* The act of registering our callbacks will destroy any mount
|
||
|
* options we may have. In order to enable temporary overrides
|
||
|
* of mount options, we stash away the current values and
|
||
|
* restore them after we register the callbacks.
|
||
|
*/
|
||
|
if (vfs_optionisset(vfsp, MNTOPT_RO, NULL) ||
|
||
|
!spa_writeable(dmu_objset_spa(os))) {
|
||
|
readonly = B_TRUE;
|
||
|
do_readonly = B_TRUE;
|
||
|
} else if (vfs_optionisset(vfsp, MNTOPT_RW, NULL)) {
|
||
|
readonly = B_FALSE;
|
||
|
do_readonly = B_TRUE;
|
||
|
}
|
||
|
if (vfs_optionisset(vfsp, MNTOPT_NOSETUID, NULL)) {
|
||
|
setuid = B_FALSE;
|
||
|
do_setuid = B_TRUE;
|
||
|
} else if (vfs_optionisset(vfsp, MNTOPT_SETUID, NULL)) {
|
||
|
setuid = B_TRUE;
|
||
|
do_setuid = B_TRUE;
|
||
|
}
|
||
|
if (vfs_optionisset(vfsp, MNTOPT_NOEXEC, NULL)) {
|
||
|
exec = B_FALSE;
|
||
|
do_exec = B_TRUE;
|
||
|
} else if (vfs_optionisset(vfsp, MNTOPT_EXEC, NULL)) {
|
||
|
exec = B_TRUE;
|
||
|
do_exec = B_TRUE;
|
||
|
}
|
||
|
if (vfs_optionisset(vfsp, MNTOPT_NOXATTR, NULL)) {
|
||
|
zfsvfs->z_xattr = xattr = ZFS_XATTR_OFF;
|
||
|
do_xattr = B_TRUE;
|
||
|
} else if (vfs_optionisset(vfsp, MNTOPT_XATTR, NULL)) {
|
||
|
zfsvfs->z_xattr = xattr = ZFS_XATTR_DIR;
|
||
|
do_xattr = B_TRUE;
|
||
|
} else if (vfs_optionisset(vfsp, MNTOPT_DIRXATTR, NULL)) {
|
||
|
zfsvfs->z_xattr = xattr = ZFS_XATTR_DIR;
|
||
|
do_xattr = B_TRUE;
|
||
|
} else if (vfs_optionisset(vfsp, MNTOPT_SAXATTR, NULL)) {
|
||
|
zfsvfs->z_xattr = xattr = ZFS_XATTR_SA;
|
||
|
do_xattr = B_TRUE;
|
||
|
}
|
||
|
if (vfs_optionisset(vfsp, MNTOPT_NOATIME, NULL)) {
|
||
|
atime = B_FALSE;
|
||
|
do_atime = B_TRUE;
|
||
|
} else if (vfs_optionisset(vfsp, MNTOPT_ATIME, NULL)) {
|
||
|
atime = B_TRUE;
|
||
|
do_atime = B_TRUE;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* We need to enter pool configuration here, so that we can use
|
||
|
* dsl_prop_get_int_ds() to handle the special nbmand property below.
|
||
|
* dsl_prop_get_integer() can not be used, because it has to acquire
|
||
|
* spa_namespace_lock and we can not do that because we already hold
|
||
|
* z_teardown_lock. The problem is that spa_write_cachefile() is called
|
||
|
* with spa_namespace_lock held and the function calls ZFS vnode
|
||
|
* operations to write the cache file and thus z_teardown_lock is
|
||
|
* acquired after spa_namespace_lock.
|
||
|
*/
|
||
|
ds = dmu_objset_ds(os);
|
||
|
dsl_pool_config_enter(dmu_objset_pool(os), FTAG);
|
||
|
|
||
|
/*
|
||
|
* nbmand is a special property. It can only be changed at
|
||
|
* mount time.
|
||
|
*
|
||
|
* This is weird, but it is documented to only be changeable
|
||
|
* at mount time.
|
||
|
*/
|
||
|
if (vfs_optionisset(vfsp, MNTOPT_NONBMAND, NULL)) {
|
||
|
nbmand = B_FALSE;
|
||
|
} else if (vfs_optionisset(vfsp, MNTOPT_NBMAND, NULL)) {
|
||
|
nbmand = B_TRUE;
|
||
|
} else if ((error = dsl_prop_get_int_ds(ds, "nbmand", &nbmand) != 0)) {
|
||
|
dsl_pool_config_exit(dmu_objset_pool(os), FTAG);
|
||
|
return (error);
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Register property callbacks.
|
||
|
*
|
||
|
* It would probably be fine to just check for i/o error from
|
||
|
* the first prop_register(), but I guess I like to go
|
||
|
* overboard...
|
||
|
*/
|
||
|
error = dsl_prop_register(ds,
|
||
|
zfs_prop_to_name(ZFS_PROP_ATIME), atime_changed_cb, zfsvfs);
|
||
|
error = error ? error : dsl_prop_register(ds,
|
||
|
zfs_prop_to_name(ZFS_PROP_XATTR), xattr_changed_cb, zfsvfs);
|
||
|
error = error ? error : dsl_prop_register(ds,
|
||
|
zfs_prop_to_name(ZFS_PROP_RECORDSIZE), blksz_changed_cb, zfsvfs);
|
||
|
error = error ? error : dsl_prop_register(ds,
|
||
|
zfs_prop_to_name(ZFS_PROP_READONLY), readonly_changed_cb, zfsvfs);
|
||
|
error = error ? error : dsl_prop_register(ds,
|
||
|
zfs_prop_to_name(ZFS_PROP_SETUID), setuid_changed_cb, zfsvfs);
|
||
|
error = error ? error : dsl_prop_register(ds,
|
||
|
zfs_prop_to_name(ZFS_PROP_EXEC), exec_changed_cb, zfsvfs);
|
||
|
error = error ? error : dsl_prop_register(ds,
|
||
|
zfs_prop_to_name(ZFS_PROP_SNAPDIR), snapdir_changed_cb, zfsvfs);
|
||
|
error = error ? error : dsl_prop_register(ds,
|
||
|
zfs_prop_to_name(ZFS_PROP_ACLMODE), acl_mode_changed_cb, zfsvfs);
|
||
|
error = error ? error : dsl_prop_register(ds,
|
||
|
zfs_prop_to_name(ZFS_PROP_ACLINHERIT), acl_inherit_changed_cb,
|
||
|
zfsvfs);
|
||
|
error = error ? error : dsl_prop_register(ds,
|
||
|
zfs_prop_to_name(ZFS_PROP_VSCAN), vscan_changed_cb, zfsvfs);
|
||
|
dsl_pool_config_exit(dmu_objset_pool(os), FTAG);
|
||
|
if (error)
|
||
|
goto unregister;
|
||
|
|
||
|
/*
|
||
|
* Invoke our callbacks to restore temporary mount options.
|
||
|
*/
|
||
|
if (do_readonly)
|
||
|
readonly_changed_cb(zfsvfs, readonly);
|
||
|
if (do_setuid)
|
||
|
setuid_changed_cb(zfsvfs, setuid);
|
||
|
if (do_exec)
|
||
|
exec_changed_cb(zfsvfs, exec);
|
||
|
if (do_xattr)
|
||
|
xattr_changed_cb(zfsvfs, xattr);
|
||
|
if (do_atime)
|
||
|
atime_changed_cb(zfsvfs, atime);
|
||
|
|
||
|
nbmand_changed_cb(zfsvfs, nbmand);
|
||
|
|
||
|
return (0);
|
||
|
|
||
|
unregister:
|
||
|
dsl_prop_unregister_all(ds, zfsvfs);
|
||
|
return (error);
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Associate this zfsvfs with the given objset, which must be owned.
|
||
|
* This will cache a bunch of on-disk state from the objset in the
|
||
|
* zfsvfs.
|
||
|
*/
|
||
|
static int
|
||
|
zfsvfs_init(zfsvfs_t *zfsvfs, objset_t *os)
|
||
|
{
|
||
|
int error;
|
||
|
uint64_t val;
|
||
|
|
||
|
zfsvfs->z_max_blksz = SPA_OLD_MAXBLOCKSIZE;
|
||
|
zfsvfs->z_show_ctldir = ZFS_SNAPDIR_VISIBLE;
|
||
|
zfsvfs->z_os = os;
|
||
|
|
||
|
error = zfs_get_zplprop(os, ZFS_PROP_VERSION, &zfsvfs->z_version);
|
||
|
if (error != 0)
|
||
|
return (error);
|
||
|
if (zfsvfs->z_version >
|
||
|
zfs_zpl_version_map(spa_version(dmu_objset_spa(os)))) {
|
||
|
(void) printf("Can't mount a version %lld file system "
|
||
|
"on a version %lld pool\n. Pool must be upgraded to mount "
|
||
|
"this file system.", (u_longlong_t)zfsvfs->z_version,
|
||
|
(u_longlong_t)spa_version(dmu_objset_spa(os)));
|
||
|
return (SET_ERROR(ENOTSUP));
|
||
|
}
|
||
|
error = zfs_get_zplprop(os, ZFS_PROP_NORMALIZE, &val);
|
||
|
if (error != 0)
|
||
|
return (error);
|
||
|
zfsvfs->z_norm = (int)val;
|
||
|
|
||
|
error = zfs_get_zplprop(os, ZFS_PROP_UTF8ONLY, &val);
|
||
|
if (error != 0)
|
||
|
return (error);
|
||
|
zfsvfs->z_utf8 = (val != 0);
|
||
|
|
||
|
error = zfs_get_zplprop(os, ZFS_PROP_CASE, &val);
|
||
|
if (error != 0)
|
||
|
return (error);
|
||
|
zfsvfs->z_case = (uint_t)val;
|
||
|
|
||
|
/*
|
||
|
* Fold case on file systems that are always or sometimes case
|
||
|
* insensitive.
|
||
|
*/
|
||
|
if (zfsvfs->z_case == ZFS_CASE_INSENSITIVE ||
|
||
|
zfsvfs->z_case == ZFS_CASE_MIXED)
|
||
|
zfsvfs->z_norm |= U8_TEXTPREP_TOUPPER;
|
||
|
|
||
|
zfsvfs->z_use_fuids = USE_FUIDS(zfsvfs->z_version, zfsvfs->z_os);
|
||
|
zfsvfs->z_use_sa = USE_SA(zfsvfs->z_version, zfsvfs->z_os);
|
||
|
|
||
|
uint64_t sa_obj = 0;
|
||
|
if (zfsvfs->z_use_sa) {
|
||
|
/* should either have both of these objects or none */
|
||
|
error = zap_lookup(os, MASTER_NODE_OBJ, ZFS_SA_ATTRS, 8, 1,
|
||
|
&sa_obj);
|
||
|
if (error != 0)
|
||
|
return (error);
|
||
|
}
|
||
|
|
||
|
error = sa_setup(os, sa_obj, zfs_attr_table, ZPL_END,
|
||
|
&zfsvfs->z_attr_table);
|
||
|
if (error != 0)
|
||
|
return (error);
|
||
|
|
||
|
if (zfsvfs->z_version >= ZPL_VERSION_SA)
|
||
|
sa_register_update_callback(os, zfs_sa_upgrade);
|
||
|
|
||
|
error = zap_lookup(os, MASTER_NODE_OBJ, ZFS_ROOT_OBJ, 8, 1,
|
||
|
&zfsvfs->z_root);
|
||
|
if (error != 0)
|
||
|
return (error);
|
||
|
ASSERT(zfsvfs->z_root != 0);
|
||
|
|
||
|
error = zap_lookup(os, MASTER_NODE_OBJ, ZFS_UNLINKED_SET, 8, 1,
|
||
|
&zfsvfs->z_unlinkedobj);
|
||
|
if (error != 0)
|
||
|
return (error);
|
||
|
|
||
|
error = zap_lookup(os, MASTER_NODE_OBJ,
|
||
|
zfs_userquota_prop_prefixes[ZFS_PROP_USERQUOTA],
|
||
|
8, 1, &zfsvfs->z_userquota_obj);
|
||
|
if (error == ENOENT)
|
||
|
zfsvfs->z_userquota_obj = 0;
|
||
|
else if (error != 0)
|
||
|
return (error);
|
||
|
|
||
|
error = zap_lookup(os, MASTER_NODE_OBJ,
|
||
|
zfs_userquota_prop_prefixes[ZFS_PROP_GROUPQUOTA],
|
||
|
8, 1, &zfsvfs->z_groupquota_obj);
|
||
|
if (error == ENOENT)
|
||
|
zfsvfs->z_groupquota_obj = 0;
|
||
|
else if (error != 0)
|
||
|
return (error);
|
||
|
|
||
|
error = zap_lookup(os, MASTER_NODE_OBJ,
|
||
|
zfs_userquota_prop_prefixes[ZFS_PROP_PROJECTQUOTA],
|
||
|
8, 1, &zfsvfs->z_projectquota_obj);
|
||
|
if (error == ENOENT)
|
||
|
zfsvfs->z_projectquota_obj = 0;
|
||
|
else if (error != 0)
|
||
|
return (error);
|
||
|
|
||
|
error = zap_lookup(os, MASTER_NODE_OBJ,
|
||
|
zfs_userquota_prop_prefixes[ZFS_PROP_USEROBJQUOTA],
|
||
|
8, 1, &zfsvfs->z_userobjquota_obj);
|
||
|
if (error == ENOENT)
|
||
|
zfsvfs->z_userobjquota_obj = 0;
|
||
|
else if (error != 0)
|
||
|
return (error);
|
||
|
|
||
|
error = zap_lookup(os, MASTER_NODE_OBJ,
|
||
|
zfs_userquota_prop_prefixes[ZFS_PROP_GROUPOBJQUOTA],
|
||
|
8, 1, &zfsvfs->z_groupobjquota_obj);
|
||
|
if (error == ENOENT)
|
||
|
zfsvfs->z_groupobjquota_obj = 0;
|
||
|
else if (error != 0)
|
||
|
return (error);
|
||
|
|
||
|
error = zap_lookup(os, MASTER_NODE_OBJ,
|
||
|
zfs_userquota_prop_prefixes[ZFS_PROP_PROJECTOBJQUOTA],
|
||
|
8, 1, &zfsvfs->z_projectobjquota_obj);
|
||
|
if (error == ENOENT)
|
||
|
zfsvfs->z_projectobjquota_obj = 0;
|
||
|
else if (error != 0)
|
||
|
return (error);
|
||
|
|
||
|
error = zap_lookup(os, MASTER_NODE_OBJ, ZFS_FUID_TABLES, 8, 1,
|
||
|
&zfsvfs->z_fuid_obj);
|
||
|
if (error == ENOENT)
|
||
|
zfsvfs->z_fuid_obj = 0;
|
||
|
else if (error != 0)
|
||
|
return (error);
|
||
|
|
||
|
error = zap_lookup(os, MASTER_NODE_OBJ, ZFS_SHARES_DIR, 8, 1,
|
||
|
&zfsvfs->z_shares_dir);
|
||
|
if (error == ENOENT)
|
||
|
zfsvfs->z_shares_dir = 0;
|
||
|
else if (error != 0)
|
||
|
return (error);
|
||
|
|
||
|
/*
|
||
|
* Only use the name cache if we are looking for a
|
||
|
* name on a file system that does not require normalization
|
||
|
* or case folding. We can also look there if we happen to be
|
||
|
* on a non-normalizing, mixed sensitivity file system IF we
|
||
|
* are looking for the exact name (which is always the case on
|
||
|
* FreeBSD).
|
||
|
*/
|
||
|
zfsvfs->z_use_namecache = !zfsvfs->z_norm ||
|
||
|
((zfsvfs->z_case == ZFS_CASE_MIXED) &&
|
||
|
!(zfsvfs->z_norm & ~U8_TEXTPREP_TOUPPER));
|
||
|
|
||
|
return (0);
|
||
|
}
|
||
|
|
||
|
taskq_t *zfsvfs_taskq;
|
||
|
|
||
|
static void
|
||
|
zfsvfs_task_unlinked_drain(void *context, int pending __unused)
|
||
|
{
|
||
|
|
||
|
zfs_unlinked_drain((zfsvfs_t *)context);
|
||
|
}
|
||
|
|
||
|
int
|
||
|
zfsvfs_create(const char *osname, boolean_t readonly, zfsvfs_t **zfvp)
|
||
|
{
|
||
|
objset_t *os;
|
||
|
zfsvfs_t *zfsvfs;
|
||
|
int error;
|
||
|
boolean_t ro = (readonly || (strchr(osname, '@') != NULL));
|
||
|
|
||
|
/*
|
||
|
* XXX: Fix struct statfs so this isn't necessary!
|
||
|
*
|
||
|
* The 'osname' is used as the filesystem's special node, which means
|
||
|
* it must fit in statfs.f_mntfromname, or else it can't be
|
||
|
* enumerated, so libzfs_mnttab_find() returns NULL, which causes
|
||
|
* 'zfs unmount' to think it's not mounted when it is.
|
||
|
*/
|
||
|
if (strlen(osname) >= MNAMELEN)
|
||
|
return (SET_ERROR(ENAMETOOLONG));
|
||
|
|
||
|
zfsvfs = kmem_zalloc(sizeof (zfsvfs_t), KM_SLEEP);
|
||
|
|
||
|
error = dmu_objset_own(osname, DMU_OST_ZFS, ro, B_TRUE, zfsvfs,
|
||
|
&os);
|
||
|
if (error != 0) {
|
||
|
kmem_free(zfsvfs, sizeof (zfsvfs_t));
|
||
|
return (error);
|
||
|
}
|
||
|
|
||
|
error = zfsvfs_create_impl(zfvp, zfsvfs, os);
|
||
|
|
||
|
return (error);
|
||
|
}
|
||
|
|
||
|
|
||
|
int
|
||
|
zfsvfs_create_impl(zfsvfs_t **zfvp, zfsvfs_t *zfsvfs, objset_t *os)
|
||
|
{
|
||
|
int error;
|
||
|
|
||
|
zfsvfs->z_vfs = NULL;
|
||
|
zfsvfs->z_parent = zfsvfs;
|
||
|
|
||
|
mutex_init(&zfsvfs->z_znodes_lock, NULL, MUTEX_DEFAULT, NULL);
|
||
|
mutex_init(&zfsvfs->z_lock, NULL, MUTEX_DEFAULT, NULL);
|
||
|
list_create(&zfsvfs->z_all_znodes, sizeof (znode_t),
|
||
|
offsetof(znode_t, z_link_node));
|
||
|
TASK_INIT(&zfsvfs->z_unlinked_drain_task, 0,
|
||
|
zfsvfs_task_unlinked_drain, zfsvfs);
|
||
|
#ifdef DIAGNOSTIC
|
||
|
rrm_init(&zfsvfs->z_teardown_lock, B_TRUE);
|
||
|
#else
|
||
|
rrm_init(&zfsvfs->z_teardown_lock, B_FALSE);
|
||
|
#endif
|
||
|
rw_init(&zfsvfs->z_teardown_inactive_lock, NULL, RW_DEFAULT, NULL);
|
||
|
rw_init(&zfsvfs->z_fuid_lock, NULL, RW_DEFAULT, NULL);
|
||
|
for (int i = 0; i != ZFS_OBJ_MTX_SZ; i++)
|
||
|
mutex_init(&zfsvfs->z_hold_mtx[i], NULL, MUTEX_DEFAULT, NULL);
|
||
|
|
||
|
error = zfsvfs_init(zfsvfs, os);
|
||
|
if (error != 0) {
|
||
|
dmu_objset_disown(os, B_TRUE, zfsvfs);
|
||
|
*zfvp = NULL;
|
||
|
kmem_free(zfsvfs, sizeof (zfsvfs_t));
|
||
|
return (error);
|
||
|
}
|
||
|
|
||
|
*zfvp = zfsvfs;
|
||
|
return (0);
|
||
|
}
|
||
|
|
||
|
static int
|
||
|
zfsvfs_setup(zfsvfs_t *zfsvfs, boolean_t mounting)
|
||
|
{
|
||
|
int error;
|
||
|
|
||
|
/*
|
||
|
* Check for a bad on-disk format version now since we
|
||
|
* lied about owning the dataset readonly before.
|
||
|
*/
|
||
|
if (!(zfsvfs->z_vfs->vfs_flag & VFS_RDONLY) &&
|
||
|
dmu_objset_incompatible_encryption_version(zfsvfs->z_os))
|
||
|
return (SET_ERROR(EROFS));
|
||
|
|
||
|
error = zfs_register_callbacks(zfsvfs->z_vfs);
|
||
|
if (error)
|
||
|
return (error);
|
||
|
|
||
|
zfsvfs->z_log = zil_open(zfsvfs->z_os, zfs_get_data);
|
||
|
|
||
|
/*
|
||
|
* If we are not mounting (ie: online recv), then we don't
|
||
|
* have to worry about replaying the log as we blocked all
|
||
|
* operations out since we closed the ZIL.
|
||
|
*/
|
||
|
if (mounting) {
|
||
|
boolean_t readonly;
|
||
|
|
||
|
/*
|
||
|
* During replay we remove the read only flag to
|
||
|
* allow replays to succeed.
|
||
|
*/
|
||
|
readonly = zfsvfs->z_vfs->vfs_flag & VFS_RDONLY;
|
||
|
if (readonly != 0) {
|
||
|
zfsvfs->z_vfs->vfs_flag &= ~VFS_RDONLY;
|
||
|
} else {
|
||
|
dsl_dir_t *dd;
|
||
|
|
||
|
zfs_unlinked_drain(zfsvfs);
|
||
|
dd = zfsvfs->z_os->os_dsl_dataset->ds_dir;
|
||
|
dd->dd_activity_cancelled = B_FALSE;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Parse and replay the intent log.
|
||
|
*
|
||
|
* Because of ziltest, this must be done after
|
||
|
* zfs_unlinked_drain(). (Further note: ziltest
|
||
|
* doesn't use readonly mounts, where
|
||
|
* zfs_unlinked_drain() isn't called.) This is because
|
||
|
* ziltest causes spa_sync() to think it's committed,
|
||
|
* but actually it is not, so the intent log contains
|
||
|
* many txg's worth of changes.
|
||
|
*
|
||
|
* In particular, if object N is in the unlinked set in
|
||
|
* the last txg to actually sync, then it could be
|
||
|
* actually freed in a later txg and then reallocated
|
||
|
* in a yet later txg. This would write a "create
|
||
|
* object N" record to the intent log. Normally, this
|
||
|
* would be fine because the spa_sync() would have
|
||
|
* written out the fact that object N is free, before
|
||
|
* we could write the "create object N" intent log
|
||
|
* record.
|
||
|
*
|
||
|
* But when we are in ziltest mode, we advance the "open
|
||
|
* txg" without actually spa_sync()-ing the changes to
|
||
|
* disk. So we would see that object N is still
|
||
|
* allocated and in the unlinked set, and there is an
|
||
|
* intent log record saying to allocate it.
|
||
|
*/
|
||
|
if (spa_writeable(dmu_objset_spa(zfsvfs->z_os))) {
|
||
|
if (zil_replay_disable) {
|
||
|
zil_destroy(zfsvfs->z_log, B_FALSE);
|
||
|
} else {
|
||
|
boolean_t use_nc = zfsvfs->z_use_namecache;
|
||
|
zfsvfs->z_use_namecache = B_FALSE;
|
||
|
zfsvfs->z_replay = B_TRUE;
|
||
|
zil_replay(zfsvfs->z_os, zfsvfs,
|
||
|
zfs_replay_vector);
|
||
|
zfsvfs->z_replay = B_FALSE;
|
||
|
zfsvfs->z_use_namecache = use_nc;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/* restore readonly bit */
|
||
|
if (readonly != 0)
|
||
|
zfsvfs->z_vfs->vfs_flag |= VFS_RDONLY;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Set the objset user_ptr to track its zfsvfs.
|
||
|
*/
|
||
|
mutex_enter(&zfsvfs->z_os->os_user_ptr_lock);
|
||
|
dmu_objset_set_user(zfsvfs->z_os, zfsvfs);
|
||
|
mutex_exit(&zfsvfs->z_os->os_user_ptr_lock);
|
||
|
|
||
|
return (0);
|
||
|
}
|
||
|
|
||
|
extern krwlock_t zfsvfs_lock; /* in zfs_znode.c */
|
||
|
|
||
|
void
|
||
|
zfsvfs_free(zfsvfs_t *zfsvfs)
|
||
|
{
|
||
|
int i;
|
||
|
|
||
|
/*
|
||
|
* This is a barrier to prevent the filesystem from going away in
|
||
|
* zfs_znode_move() until we can safely ensure that the filesystem is
|
||
|
* not unmounted. We consider the filesystem valid before the barrier
|
||
|
* and invalid after the barrier.
|
||
|
*/
|
||
|
rw_enter(&zfsvfs_lock, RW_READER);
|
||
|
rw_exit(&zfsvfs_lock);
|
||
|
|
||
|
zfs_fuid_destroy(zfsvfs);
|
||
|
|
||
|
mutex_destroy(&zfsvfs->z_znodes_lock);
|
||
|
mutex_destroy(&zfsvfs->z_lock);
|
||
|
ASSERT(zfsvfs->z_nr_znodes == 0);
|
||
|
list_destroy(&zfsvfs->z_all_znodes);
|
||
|
rrm_destroy(&zfsvfs->z_teardown_lock);
|
||
|
rw_destroy(&zfsvfs->z_teardown_inactive_lock);
|
||
|
rw_destroy(&zfsvfs->z_fuid_lock);
|
||
|
for (i = 0; i != ZFS_OBJ_MTX_SZ; i++)
|
||
|
mutex_destroy(&zfsvfs->z_hold_mtx[i]);
|
||
|
kmem_free(zfsvfs, sizeof (zfsvfs_t));
|
||
|
}
|
||
|
|
||
|
static void
|
||
|
zfs_set_fuid_feature(zfsvfs_t *zfsvfs)
|
||
|
{
|
||
|
zfsvfs->z_use_fuids = USE_FUIDS(zfsvfs->z_version, zfsvfs->z_os);
|
||
|
if (zfsvfs->z_vfs) {
|
||
|
if (zfsvfs->z_use_fuids) {
|
||
|
vfs_set_feature(zfsvfs->z_vfs, VFSFT_XVATTR);
|
||
|
vfs_set_feature(zfsvfs->z_vfs, VFSFT_SYSATTR_VIEWS);
|
||
|
vfs_set_feature(zfsvfs->z_vfs, VFSFT_ACEMASKONACCESS);
|
||
|
vfs_set_feature(zfsvfs->z_vfs, VFSFT_ACLONCREATE);
|
||
|
vfs_set_feature(zfsvfs->z_vfs, VFSFT_ACCESS_FILTER);
|
||
|
vfs_set_feature(zfsvfs->z_vfs, VFSFT_REPARSE);
|
||
|
} else {
|
||
|
vfs_clear_feature(zfsvfs->z_vfs, VFSFT_XVATTR);
|
||
|
vfs_clear_feature(zfsvfs->z_vfs, VFSFT_SYSATTR_VIEWS);
|
||
|
vfs_clear_feature(zfsvfs->z_vfs, VFSFT_ACEMASKONACCESS);
|
||
|
vfs_clear_feature(zfsvfs->z_vfs, VFSFT_ACLONCREATE);
|
||
|
vfs_clear_feature(zfsvfs->z_vfs, VFSFT_ACCESS_FILTER);
|
||
|
vfs_clear_feature(zfsvfs->z_vfs, VFSFT_REPARSE);
|
||
|
}
|
||
|
}
|
||
|
zfsvfs->z_use_sa = USE_SA(zfsvfs->z_version, zfsvfs->z_os);
|
||
|
}
|
||
|
|
||
|
static int
|
||
|
zfs_domount(vfs_t *vfsp, char *osname)
|
||
|
{
|
||
|
uint64_t recordsize, fsid_guid;
|
||
|
int error = 0;
|
||
|
zfsvfs_t *zfsvfs;
|
||
|
|
||
|
ASSERT(vfsp);
|
||
|
ASSERT(osname);
|
||
|
|
||
|
error = zfsvfs_create(osname, vfsp->mnt_flag & MNT_RDONLY, &zfsvfs);
|
||
|
if (error)
|
||
|
return (error);
|
||
|
zfsvfs->z_vfs = vfsp;
|
||
|
|
||
|
if ((error = dsl_prop_get_integer(osname,
|
||
|
"recordsize", &recordsize, NULL)))
|
||
|
goto out;
|
||
|
zfsvfs->z_vfs->vfs_bsize = SPA_MINBLOCKSIZE;
|
||
|
zfsvfs->z_vfs->mnt_stat.f_iosize = recordsize;
|
||
|
|
||
|
vfsp->vfs_data = zfsvfs;
|
||
|
vfsp->mnt_flag |= MNT_LOCAL;
|
||
|
vfsp->mnt_kern_flag |= MNTK_LOOKUP_SHARED;
|
||
|
vfsp->mnt_kern_flag |= MNTK_SHARED_WRITES;
|
||
|
vfsp->mnt_kern_flag |= MNTK_EXTENDED_SHARED;
|
||
|
/*
|
||
|
* This can cause a loss of coherence between ARC and page cache
|
||
|
* on ZoF - unclear if the problem is in FreeBSD or ZoF
|
||
|
*/
|
||
|
vfsp->mnt_kern_flag |= MNTK_NO_IOPF; /* vn_io_fault can be used */
|
||
|
vfsp->mnt_kern_flag |= MNTK_NOMSYNC;
|
||
|
vfsp->mnt_kern_flag |= MNTK_VMSETSIZE_BUG;
|
||
|
|
||
|
/*
|
||
|
* The fsid is 64 bits, composed of an 8-bit fs type, which
|
||
|
* separates our fsid from any other filesystem types, and a
|
||
|
* 56-bit objset unique ID. The objset unique ID is unique to
|
||
|
* all objsets open on this system, provided by unique_create().
|
||
|
* The 8-bit fs type must be put in the low bits of fsid[1]
|
||
|
* because that's where other Solaris filesystems put it.
|
||
|
*/
|
||
|
fsid_guid = dmu_objset_fsid_guid(zfsvfs->z_os);
|
||
|
ASSERT((fsid_guid & ~((1ULL<<56)-1)) == 0);
|
||
|
vfsp->vfs_fsid.val[0] = fsid_guid;
|
||
|
vfsp->vfs_fsid.val[1] = ((fsid_guid>>32) << 8) |
|
||
|
(vfsp->mnt_vfc->vfc_typenum & 0xFF);
|
||
|
|
||
|
/*
|
||
|
* Set features for file system.
|
||
|
*/
|
||
|
zfs_set_fuid_feature(zfsvfs);
|
||
|
if (zfsvfs->z_case == ZFS_CASE_INSENSITIVE) {
|
||
|
vfs_set_feature(vfsp, VFSFT_DIRENTFLAGS);
|
||
|
vfs_set_feature(vfsp, VFSFT_CASEINSENSITIVE);
|
||
|
vfs_set_feature(vfsp, VFSFT_NOCASESENSITIVE);
|
||
|
} else if (zfsvfs->z_case == ZFS_CASE_MIXED) {
|
||
|
vfs_set_feature(vfsp, VFSFT_DIRENTFLAGS);
|
||
|
vfs_set_feature(vfsp, VFSFT_CASEINSENSITIVE);
|
||
|
}
|
||
|
vfs_set_feature(vfsp, VFSFT_ZEROCOPY_SUPPORTED);
|
||
|
|
||
|
if (dmu_objset_is_snapshot(zfsvfs->z_os)) {
|
||
|
uint64_t pval;
|
||
|
|
||
|
atime_changed_cb(zfsvfs, B_FALSE);
|
||
|
readonly_changed_cb(zfsvfs, B_TRUE);
|
||
|
if ((error = dsl_prop_get_integer(osname,
|
||
|
"xattr", &pval, NULL)))
|
||
|
goto out;
|
||
|
xattr_changed_cb(zfsvfs, pval);
|
||
|
zfsvfs->z_issnap = B_TRUE;
|
||
|
zfsvfs->z_os->os_sync = ZFS_SYNC_DISABLED;
|
||
|
|
||
|
mutex_enter(&zfsvfs->z_os->os_user_ptr_lock);
|
||
|
dmu_objset_set_user(zfsvfs->z_os, zfsvfs);
|
||
|
mutex_exit(&zfsvfs->z_os->os_user_ptr_lock);
|
||
|
} else {
|
||
|
if ((error = zfsvfs_setup(zfsvfs, B_TRUE)))
|
||
|
goto out;
|
||
|
}
|
||
|
|
||
|
vfs_mountedfrom(vfsp, osname);
|
||
|
|
||
|
if (!zfsvfs->z_issnap)
|
||
|
zfsctl_create(zfsvfs);
|
||
|
out:
|
||
|
if (error) {
|
||
|
dmu_objset_disown(zfsvfs->z_os, B_TRUE, zfsvfs);
|
||
|
zfsvfs_free(zfsvfs);
|
||
|
} else {
|
||
|
atomic_inc_32(&zfs_active_fs_count);
|
||
|
}
|
||
|
|
||
|
return (error);
|
||
|
}
|
||
|
|
||
|
void
|
||
|
zfs_unregister_callbacks(zfsvfs_t *zfsvfs)
|
||
|
{
|
||
|
objset_t *os = zfsvfs->z_os;
|
||
|
|
||
|
if (!dmu_objset_is_snapshot(os))
|
||
|
dsl_prop_unregister_all(dmu_objset_ds(os), zfsvfs);
|
||
|
}
|
||
|
|
||
|
#ifdef SECLABEL
|
||
|
/*
|
||
|
* Convert a decimal digit string to a uint64_t integer.
|
||
|
*/
|
||
|
static int
|
||
|
str_to_uint64(char *str, uint64_t *objnum)
|
||
|
{
|
||
|
uint64_t num = 0;
|
||
|
|
||
|
while (*str) {
|
||
|
if (*str < '0' || *str > '9')
|
||
|
return (SET_ERROR(EINVAL));
|
||
|
|
||
|
num = num*10 + *str++ - '0';
|
||
|
}
|
||
|
|
||
|
*objnum = num;
|
||
|
return (0);
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* The boot path passed from the boot loader is in the form of
|
||
|
* "rootpool-name/root-filesystem-object-number'. Convert this
|
||
|
* string to a dataset name: "rootpool-name/root-filesystem-name".
|
||
|
*/
|
||
|
static int
|
||
|
zfs_parse_bootfs(char *bpath, char *outpath)
|
||
|
{
|
||
|
char *slashp;
|
||
|
uint64_t objnum;
|
||
|
int error;
|
||
|
|
||
|
if (*bpath == 0 || *bpath == '/')
|
||
|
return (SET_ERROR(EINVAL));
|
||
|
|
||
|
(void) strcpy(outpath, bpath);
|
||
|
|
||
|
slashp = strchr(bpath, '/');
|
||
|
|
||
|
/* if no '/', just return the pool name */
|
||
|
if (slashp == NULL) {
|
||
|
return (0);
|
||
|
}
|
||
|
|
||
|
/* if not a number, just return the root dataset name */
|
||
|
if (str_to_uint64(slashp+1, &objnum)) {
|
||
|
return (0);
|
||
|
}
|
||
|
|
||
|
*slashp = '\0';
|
||
|
error = dsl_dsobj_to_dsname(bpath, objnum, outpath);
|
||
|
*slashp = '/';
|
||
|
|
||
|
return (error);
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Check that the hex label string is appropriate for the dataset being
|
||
|
* mounted into the global_zone proper.
|
||
|
*
|
||
|
* Return an error if the hex label string is not default or
|
||
|
* admin_low/admin_high. For admin_low labels, the corresponding
|
||
|
* dataset must be readonly.
|
||
|
*/
|
||
|
int
|
||
|
zfs_check_global_label(const char *dsname, const char *hexsl)
|
||
|
{
|
||
|
if (strcasecmp(hexsl, ZFS_MLSLABEL_DEFAULT) == 0)
|
||
|
return (0);
|
||
|
if (strcasecmp(hexsl, ADMIN_HIGH) == 0)
|
||
|
return (0);
|
||
|
if (strcasecmp(hexsl, ADMIN_LOW) == 0) {
|
||
|
/* must be readonly */
|
||
|
uint64_t rdonly;
|
||
|
|
||
|
if (dsl_prop_get_integer(dsname,
|
||
|
zfs_prop_to_name(ZFS_PROP_READONLY), &rdonly, NULL))
|
||
|
return (SET_ERROR(EACCES));
|
||
|
return (rdonly ? 0 : EACCES);
|
||
|
}
|
||
|
return (SET_ERROR(EACCES));
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Determine whether the mount is allowed according to MAC check.
|
||
|
* by comparing (where appropriate) label of the dataset against
|
||
|
* the label of the zone being mounted into. If the dataset has
|
||
|
* no label, create one.
|
||
|
*
|
||
|
* Returns 0 if access allowed, error otherwise (e.g. EACCES)
|
||
|
*/
|
||
|
static int
|
||
|
zfs_mount_label_policy(vfs_t *vfsp, char *osname)
|
||
|
{
|
||
|
int error, retv;
|
||
|
zone_t *mntzone = NULL;
|
||
|
ts_label_t *mnt_tsl;
|
||
|
bslabel_t *mnt_sl;
|
||
|
bslabel_t ds_sl;
|
||
|
char ds_hexsl[MAXNAMELEN];
|
||
|
|
||
|
retv = EACCES; /* assume the worst */
|
||
|
|
||
|
/*
|
||
|
* Start by getting the dataset label if it exists.
|
||
|
*/
|
||
|
error = dsl_prop_get(osname, zfs_prop_to_name(ZFS_PROP_MLSLABEL),
|
||
|
1, sizeof (ds_hexsl), &ds_hexsl, NULL);
|
||
|
if (error)
|
||
|
return (SET_ERROR(EACCES));
|
||
|
|
||
|
/*
|
||
|
* If labeling is NOT enabled, then disallow the mount of datasets
|
||
|
* which have a non-default label already. No other label checks
|
||
|
* are needed.
|
||
|
*/
|
||
|
if (!is_system_labeled()) {
|
||
|
if (strcasecmp(ds_hexsl, ZFS_MLSLABEL_DEFAULT) == 0)
|
||
|
return (0);
|
||
|
return (SET_ERROR(EACCES));
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Get the label of the mountpoint. If mounting into the global
|
||
|
* zone (i.e. mountpoint is not within an active zone and the
|
||
|
* zoned property is off), the label must be default or
|
||
|
* admin_low/admin_high only; no other checks are needed.
|
||
|
*/
|
||
|
mntzone = zone_find_by_any_path(vfsp->vfs_mntpt, B_FALSE);
|
||
|
if (mntzone->zone_id == GLOBAL_ZONEID) {
|
||
|
uint64_t zoned;
|
||
|
|
||
|
zone_rele(mntzone);
|
||
|
|
||
|
if (dsl_prop_get_integer(osname,
|
||
|
zfs_prop_to_name(ZFS_PROP_ZONED), &zoned, NULL))
|
||
|
return (SET_ERROR(EACCES));
|
||
|
if (!zoned)
|
||
|
return (zfs_check_global_label(osname, ds_hexsl));
|
||
|
else
|
||
|
/*
|
||
|
* This is the case of a zone dataset being mounted
|
||
|
* initially, before the zone has been fully created;
|
||
|
* allow this mount into global zone.
|
||
|
*/
|
||
|
return (0);
|
||
|
}
|
||
|
|
||
|
mnt_tsl = mntzone->zone_slabel;
|
||
|
ASSERT(mnt_tsl != NULL);
|
||
|
label_hold(mnt_tsl);
|
||
|
mnt_sl = label2bslabel(mnt_tsl);
|
||
|
|
||
|
if (strcasecmp(ds_hexsl, ZFS_MLSLABEL_DEFAULT) == 0) {
|
||
|
/*
|
||
|
* The dataset doesn't have a real label, so fabricate one.
|
||
|
*/
|
||
|
char *str = NULL;
|
||
|
|
||
|
if (l_to_str_internal(mnt_sl, &str) == 0 &&
|
||
|
dsl_prop_set_string(osname,
|
||
|
zfs_prop_to_name(ZFS_PROP_MLSLABEL),
|
||
|
ZPROP_SRC_LOCAL, str) == 0)
|
||
|
retv = 0;
|
||
|
if (str != NULL)
|
||
|
kmem_free(str, strlen(str) + 1);
|
||
|
} else if (hexstr_to_label(ds_hexsl, &ds_sl) == 0) {
|
||
|
/*
|
||
|
* Now compare labels to complete the MAC check. If the
|
||
|
* labels are equal then allow access. If the mountpoint
|
||
|
* label dominates the dataset label, allow readonly access.
|
||
|
* Otherwise, access is denied.
|
||
|
*/
|
||
|
if (blequal(mnt_sl, &ds_sl))
|
||
|
retv = 0;
|
||
|
else if (bldominates(mnt_sl, &ds_sl)) {
|
||
|
vfs_setmntopt(vfsp, MNTOPT_RO, NULL, 0);
|
||
|
retv = 0;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
label_rele(mnt_tsl);
|
||
|
zone_rele(mntzone);
|
||
|
return (retv);
|
||
|
}
|
||
|
#endif /* SECLABEL */
|
||
|
|
||
|
static int
|
||
|
getpoolname(const char *osname, char *poolname)
|
||
|
{
|
||
|
char *p;
|
||
|
|
||
|
p = strchr(osname, '/');
|
||
|
if (p == NULL) {
|
||
|
if (strlen(osname) >= MAXNAMELEN)
|
||
|
return (ENAMETOOLONG);
|
||
|
(void) strcpy(poolname, osname);
|
||
|
} else {
|
||
|
if (p - osname >= MAXNAMELEN)
|
||
|
return (ENAMETOOLONG);
|
||
|
(void) strncpy(poolname, osname, p - osname);
|
||
|
poolname[p - osname] = '\0';
|
||
|
}
|
||
|
return (0);
|
||
|
}
|
||
|
|
||
|
/*ARGSUSED*/
|
||
|
static int
|
||
|
zfs_mount(vfs_t *vfsp)
|
||
|
{
|
||
|
kthread_t *td = curthread;
|
||
|
vnode_t *mvp = vfsp->mnt_vnodecovered;
|
||
|
cred_t *cr = td->td_ucred;
|
||
|
char *osname;
|
||
|
int error = 0;
|
||
|
int canwrite;
|
||
|
|
||
|
if (vfs_getopt(vfsp->mnt_optnew, "from", (void **)&osname, NULL))
|
||
|
return (SET_ERROR(EINVAL));
|
||
|
|
||
|
/*
|
||
|
* If full-owner-access is enabled and delegated administration is
|
||
|
* turned on, we must set nosuid.
|
||
|
*/
|
||
|
if (zfs_super_owner &&
|
||
|
dsl_deleg_access(osname, ZFS_DELEG_PERM_MOUNT, cr) != ECANCELED) {
|
||
|
secpolicy_fs_mount_clearopts(cr, vfsp);
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Check for mount privilege?
|
||
|
*
|
||
|
* If we don't have privilege then see if
|
||
|
* we have local permission to allow it
|
||
|
*/
|
||
|
error = secpolicy_fs_mount(cr, mvp, vfsp);
|
||
|
if (error) {
|
||
|
if (dsl_deleg_access(osname, ZFS_DELEG_PERM_MOUNT, cr) != 0)
|
||
|
goto out;
|
||
|
|
||
|
if (!(vfsp->vfs_flag & MS_REMOUNT)) {
|
||
|
vattr_t vattr;
|
||
|
|
||
|
/*
|
||
|
* Make sure user is the owner of the mount point
|
||
|
* or has sufficient privileges.
|
||
|
*/
|
||
|
|
||
|
vattr.va_mask = AT_UID;
|
||
|
|
||
|
vn_lock(mvp, LK_SHARED | LK_RETRY);
|
||
|
if (VOP_GETATTR(mvp, &vattr, cr)) {
|
||
|
VOP_UNLOCK1(mvp);
|
||
|
goto out;
|
||
|
}
|
||
|
|
||
|
if (secpolicy_vnode_owner(mvp, cr, vattr.va_uid) != 0 &&
|
||
|
VOP_ACCESS(mvp, VWRITE, cr, td) != 0) {
|
||
|
VOP_UNLOCK1(mvp);
|
||
|
goto out;
|
||
|
}
|
||
|
VOP_UNLOCK1(mvp);
|
||
|
}
|
||
|
|
||
|
secpolicy_fs_mount_clearopts(cr, vfsp);
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Refuse to mount a filesystem if we are in a local zone and the
|
||
|
* dataset is not visible.
|
||
|
*/
|
||
|
if (!INGLOBALZONE(curproc) &&
|
||
|
(!zone_dataset_visible(osname, &canwrite) || !canwrite)) {
|
||
|
error = SET_ERROR(EPERM);
|
||
|
goto out;
|
||
|
}
|
||
|
|
||
|
#ifdef SECLABEL
|
||
|
error = zfs_mount_label_policy(vfsp, osname);
|
||
|
if (error)
|
||
|
goto out;
|
||
|
#endif
|
||
|
|
||
|
vfsp->vfs_flag |= MNT_NFS4ACLS;
|
||
|
|
||
|
/*
|
||
|
* When doing a remount, we simply refresh our temporary properties
|
||
|
* according to those options set in the current VFS options.
|
||
|
*/
|
||
|
if (vfsp->vfs_flag & MS_REMOUNT) {
|
||
|
zfsvfs_t *zfsvfs = vfsp->vfs_data;
|
||
|
|
||
|
/*
|
||
|
* Refresh mount options with z_teardown_lock blocking I/O while
|
||
|
* the filesystem is in an inconsistent state.
|
||
|
* The lock also serializes this code with filesystem
|
||
|
* manipulations between entry to zfs_suspend_fs() and return
|
||
|
* from zfs_resume_fs().
|
||
|
*/
|
||
|
rrm_enter(&zfsvfs->z_teardown_lock, RW_WRITER, FTAG);
|
||
|
zfs_unregister_callbacks(zfsvfs);
|
||
|
error = zfs_register_callbacks(vfsp);
|
||
|
rrm_exit(&zfsvfs->z_teardown_lock, FTAG);
|
||
|
goto out;
|
||
|
}
|
||
|
|
||
|
/* Initial root mount: try hard to import the requested root pool. */
|
||
|
if ((vfsp->vfs_flag & MNT_ROOTFS) != 0 &&
|
||
|
(vfsp->vfs_flag & MNT_UPDATE) == 0) {
|
||
|
char pname[MAXNAMELEN];
|
||
|
|
||
|
error = getpoolname(osname, pname);
|
||
|
if (error == 0)
|
||
|
error = spa_import_rootpool(pname);
|
||
|
if (error)
|
||
|
goto out;
|
||
|
}
|
||
|
DROP_GIANT();
|
||
|
error = zfs_domount(vfsp, osname);
|
||
|
PICKUP_GIANT();
|
||
|
|
||
|
out:
|
||
|
return (error);
|
||
|
}
|
||
|
|
||
|
static int
|
||
|
zfs_statfs(vfs_t *vfsp, struct statfs *statp)
|
||
|
{
|
||
|
zfsvfs_t *zfsvfs = vfsp->vfs_data;
|
||
|
uint64_t refdbytes, availbytes, usedobjs, availobjs;
|
||
|
|
||
|
statp->f_version = STATFS_VERSION;
|
||
|
|
||
|
ZFS_ENTER(zfsvfs);
|
||
|
|
||
|
dmu_objset_space(zfsvfs->z_os,
|
||
|
&refdbytes, &availbytes, &usedobjs, &availobjs);
|
||
|
|
||
|
/*
|
||
|
* The underlying storage pool actually uses multiple block sizes.
|
||
|
* We report the fragsize as the smallest block size we support,
|
||
|
* and we report our blocksize as the filesystem's maximum blocksize.
|
||
|
*/
|
||
|
statp->f_bsize = SPA_MINBLOCKSIZE;
|
||
|
statp->f_iosize = zfsvfs->z_vfs->mnt_stat.f_iosize;
|
||
|
|
||
|
/*
|
||
|
* The following report "total" blocks of various kinds in the
|
||
|
* file system, but reported in terms of f_frsize - the
|
||
|
* "fragment" size.
|
||
|
*/
|
||
|
|
||
|
statp->f_blocks = (refdbytes + availbytes) >> SPA_MINBLOCKSHIFT;
|
||
|
statp->f_bfree = availbytes / statp->f_bsize;
|
||
|
statp->f_bavail = statp->f_bfree; /* no root reservation */
|
||
|
|
||
|
/*
|
||
|
* statvfs() should really be called statufs(), because it assumes
|
||
|
* static metadata. ZFS doesn't preallocate files, so the best
|
||
|
* we can do is report the max that could possibly fit in f_files,
|
||
|
* and that minus the number actually used in f_ffree.
|
||
|
* For f_ffree, report the smaller of the number of object available
|
||
|
* and the number of blocks (each object will take at least a block).
|
||
|
*/
|
||
|
statp->f_ffree = MIN(availobjs, statp->f_bfree);
|
||
|
statp->f_files = statp->f_ffree + usedobjs;
|
||
|
|
||
|
/*
|
||
|
* We're a zfs filesystem.
|
||
|
*/
|
||
|
strlcpy(statp->f_fstypename, "zfs",
|
||
|
sizeof (statp->f_fstypename));
|
||
|
|
||
|
strlcpy(statp->f_mntfromname, vfsp->mnt_stat.f_mntfromname,
|
||
|
sizeof (statp->f_mntfromname));
|
||
|
strlcpy(statp->f_mntonname, vfsp->mnt_stat.f_mntonname,
|
||
|
sizeof (statp->f_mntonname));
|
||
|
|
||
|
statp->f_namemax = MAXNAMELEN - 1;
|
||
|
|
||
|
ZFS_EXIT(zfsvfs);
|
||
|
return (0);
|
||
|
}
|
||
|
|
||
|
static int
|
||
|
zfs_root(vfs_t *vfsp, int flags, vnode_t **vpp)
|
||
|
{
|
||
|
zfsvfs_t *zfsvfs = vfsp->vfs_data;
|
||
|
znode_t *rootzp;
|
||
|
int error;
|
||
|
|
||
|
ZFS_ENTER(zfsvfs);
|
||
|
|
||
|
error = zfs_zget(zfsvfs, zfsvfs->z_root, &rootzp);
|
||
|
if (error == 0)
|
||
|
*vpp = ZTOV(rootzp);
|
||
|
|
||
|
ZFS_EXIT(zfsvfs);
|
||
|
|
||
|
if (error == 0) {
|
||
|
error = vn_lock(*vpp, flags);
|
||
|
if (error != 0) {
|
||
|
VN_RELE(*vpp);
|
||
|
*vpp = NULL;
|
||
|
}
|
||
|
}
|
||
|
return (error);
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Teardown the zfsvfs::z_os.
|
||
|
*
|
||
|
* Note, if 'unmounting' is FALSE, we return with the 'z_teardown_lock'
|
||
|
* and 'z_teardown_inactive_lock' held.
|
||
|
*/
|
||
|
static int
|
||
|
zfsvfs_teardown(zfsvfs_t *zfsvfs, boolean_t unmounting)
|
||
|
{
|
||
|
znode_t *zp;
|
||
|
dsl_dir_t *dd;
|
||
|
|
||
|
/*
|
||
|
* If someone has not already unmounted this file system,
|
||
|
* drain the zrele_taskq to ensure all active references to the
|
||
|
* zfsvfs_t have been handled only then can it be safely destroyed.
|
||
|
*/
|
||
|
if (zfsvfs->z_os) {
|
||
|
/*
|
||
|
* If we're unmounting we have to wait for the list to
|
||
|
* drain completely.
|
||
|
*
|
||
|
* If we're not unmounting there's no guarantee the list
|
||
|
* will drain completely, but zreles run from the taskq
|
||
|
* may add the parents of dir-based xattrs to the taskq
|
||
|
* so we want to wait for these.
|
||
|
*
|
||
|
* We can safely read z_nr_znodes without locking because the
|
||
|
* VFS has already blocked operations which add to the
|
||
|
* z_all_znodes list and thus increment z_nr_znodes.
|
||
|
*/
|
||
|
int round = 0;
|
||
|
while (zfsvfs->z_nr_znodes > 0) {
|
||
|
taskq_wait_outstanding(dsl_pool_zrele_taskq(
|
||
|
dmu_objset_pool(zfsvfs->z_os)), 0);
|
||
|
if (++round > 1 && !unmounting)
|
||
|
break;
|
||
|
}
|
||
|
}
|
||
|
rrm_enter(&zfsvfs->z_teardown_lock, RW_WRITER, FTAG);
|
||
|
|
||
|
if (!unmounting) {
|
||
|
/*
|
||
|
* We purge the parent filesystem's vfsp as the parent
|
||
|
* filesystem and all of its snapshots have their vnode's
|
||
|
* v_vfsp set to the parent's filesystem's vfsp. Note,
|
||
|
* 'z_parent' is self referential for non-snapshots.
|
||
|
*/
|
||
|
#ifdef FREEBSD_NAMECACHE
|
||
|
cache_purgevfs(zfsvfs->z_parent->z_vfs, true);
|
||
|
#endif
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Close the zil. NB: Can't close the zil while zfs_inactive
|
||
|
* threads are blocked as zil_close can call zfs_inactive.
|
||
|
*/
|
||
|
if (zfsvfs->z_log) {
|
||
|
zil_close(zfsvfs->z_log);
|
||
|
zfsvfs->z_log = NULL;
|
||
|
}
|
||
|
|
||
|
rw_enter(&zfsvfs->z_teardown_inactive_lock, RW_WRITER);
|
||
|
|
||
|
/*
|
||
|
* If we are not unmounting (ie: online recv) and someone already
|
||
|
* unmounted this file system while we were doing the switcheroo,
|
||
|
* or a reopen of z_os failed then just bail out now.
|
||
|
*/
|
||
|
if (!unmounting && (zfsvfs->z_unmounted || zfsvfs->z_os == NULL)) {
|
||
|
rw_exit(&zfsvfs->z_teardown_inactive_lock);
|
||
|
rrm_exit(&zfsvfs->z_teardown_lock, FTAG);
|
||
|
return (SET_ERROR(EIO));
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* At this point there are no vops active, and any new vops will
|
||
|
* fail with EIO since we have z_teardown_lock for writer (only
|
||
|
* relavent for forced unmount).
|
||
|
*
|
||
|
* Release all holds on dbufs.
|
||
|
*/
|
||
|
mutex_enter(&zfsvfs->z_znodes_lock);
|
||
|
for (zp = list_head(&zfsvfs->z_all_znodes); zp != NULL;
|
||
|
zp = list_next(&zfsvfs->z_all_znodes, zp))
|
||
|
if (zp->z_sa_hdl) {
|
||
|
ASSERT(ZTOV(zp)->v_count >= 0);
|
||
|
zfs_znode_dmu_fini(zp);
|
||
|
}
|
||
|
mutex_exit(&zfsvfs->z_znodes_lock);
|
||
|
|
||
|
/*
|
||
|
* If we are unmounting, set the unmounted flag and let new vops
|
||
|
* unblock. zfs_inactive will have the unmounted behavior, and all
|
||
|
* other vops will fail with EIO.
|
||
|
*/
|
||
|
if (unmounting) {
|
||
|
zfsvfs->z_unmounted = B_TRUE;
|
||
|
rw_exit(&zfsvfs->z_teardown_inactive_lock);
|
||
|
rrm_exit(&zfsvfs->z_teardown_lock, FTAG);
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* z_os will be NULL if there was an error in attempting to reopen
|
||
|
* zfsvfs, so just return as the properties had already been
|
||
|
* unregistered and cached data had been evicted before.
|
||
|
*/
|
||
|
if (zfsvfs->z_os == NULL)
|
||
|
return (0);
|
||
|
|
||
|
/*
|
||
|
* Unregister properties.
|
||
|
*/
|
||
|
zfs_unregister_callbacks(zfsvfs);
|
||
|
|
||
|
/*
|
||
|
* Evict cached data
|
||
|
*/
|
||
|
if (!zfs_is_readonly(zfsvfs))
|
||
|
txg_wait_synced(dmu_objset_pool(zfsvfs->z_os), 0);
|
||
|
dmu_objset_evict_dbufs(zfsvfs->z_os);
|
||
|
dd = zfsvfs->z_os->os_dsl_dataset->ds_dir;
|
||
|
dsl_dir_cancel_waiters(dd);
|
||
|
|
||
|
return (0);
|
||
|
}
|
||
|
|
||
|
/*ARGSUSED*/
|
||
|
static int
|
||
|
zfs_umount(vfs_t *vfsp, int fflag)
|
||
|
{
|
||
|
kthread_t *td = curthread;
|
||
|
zfsvfs_t *zfsvfs = vfsp->vfs_data;
|
||
|
objset_t *os;
|
||
|
cred_t *cr = td->td_ucred;
|
||
|
int ret;
|
||
|
|
||
|
ret = secpolicy_fs_unmount(cr, vfsp);
|
||
|
if (ret) {
|
||
|
if (dsl_deleg_access((char *)vfsp->vfs_resource,
|
||
|
ZFS_DELEG_PERM_MOUNT, cr))
|
||
|
return (ret);
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Unmount any snapshots mounted under .zfs before unmounting the
|
||
|
* dataset itself.
|
||
|
*/
|
||
|
if (zfsvfs->z_ctldir != NULL) {
|
||
|
if ((ret = zfsctl_umount_snapshots(vfsp, fflag, cr)) != 0)
|
||
|
return (ret);
|
||
|
}
|
||
|
|
||
|
if (fflag & MS_FORCE) {
|
||
|
/*
|
||
|
* Mark file system as unmounted before calling
|
||
|
* vflush(FORCECLOSE). This way we ensure no future vnops
|
||
|
* will be called and risk operating on DOOMED vnodes.
|
||
|
*/
|
||
|
rrm_enter(&zfsvfs->z_teardown_lock, RW_WRITER, FTAG);
|
||
|
zfsvfs->z_unmounted = B_TRUE;
|
||
|
rrm_exit(&zfsvfs->z_teardown_lock, FTAG);
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Flush all the files.
|
||
|
*/
|
||
|
ret = vflush(vfsp, 0, (fflag & MS_FORCE) ? FORCECLOSE : 0, td);
|
||
|
if (ret != 0)
|
||
|
return (ret);
|
||
|
while (taskqueue_cancel(zfsvfs_taskq->tq_queue,
|
||
|
&zfsvfs->z_unlinked_drain_task, NULL) != 0)
|
||
|
taskqueue_drain(zfsvfs_taskq->tq_queue,
|
||
|
&zfsvfs->z_unlinked_drain_task);
|
||
|
|
||
|
VERIFY(zfsvfs_teardown(zfsvfs, B_TRUE) == 0);
|
||
|
os = zfsvfs->z_os;
|
||
|
|
||
|
/*
|
||
|
* z_os will be NULL if there was an error in
|
||
|
* attempting to reopen zfsvfs.
|
||
|
*/
|
||
|
if (os != NULL) {
|
||
|
/*
|
||
|
* Unset the objset user_ptr.
|
||
|
*/
|
||
|
mutex_enter(&os->os_user_ptr_lock);
|
||
|
dmu_objset_set_user(os, NULL);
|
||
|
mutex_exit(&os->os_user_ptr_lock);
|
||
|
|
||
|
/*
|
||
|
* Finally release the objset
|
||
|
*/
|
||
|
dmu_objset_disown(os, B_TRUE, zfsvfs);
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* We can now safely destroy the '.zfs' directory node.
|
||
|
*/
|
||
|
if (zfsvfs->z_ctldir != NULL)
|
||
|
zfsctl_destroy(zfsvfs);
|
||
|
zfs_freevfs(vfsp);
|
||
|
|
||
|
return (0);
|
||
|
}
|
||
|
|
||
|
static int
|
||
|
zfs_vget(vfs_t *vfsp, ino_t ino, int flags, vnode_t **vpp)
|
||
|
{
|
||
|
zfsvfs_t *zfsvfs = vfsp->vfs_data;
|
||
|
znode_t *zp;
|
||
|
int err;
|
||
|
|
||
|
/*
|
||
|
* zfs_zget() can't operate on virtual entries like .zfs/ or
|
||
|
* .zfs/snapshot/ directories, that's why we return EOPNOTSUPP.
|
||
|
* This will make NFS to switch to LOOKUP instead of using VGET.
|
||
|
*/
|
||
|
if (ino == ZFSCTL_INO_ROOT || ino == ZFSCTL_INO_SNAPDIR ||
|
||
|
(zfsvfs->z_shares_dir != 0 && ino == zfsvfs->z_shares_dir))
|
||
|
return (EOPNOTSUPP);
|
||
|
|
||
|
ZFS_ENTER(zfsvfs);
|
||
|
err = zfs_zget(zfsvfs, ino, &zp);
|
||
|
if (err == 0 && zp->z_unlinked) {
|
||
|
vrele(ZTOV(zp));
|
||
|
err = EINVAL;
|
||
|
}
|
||
|
if (err == 0)
|
||
|
*vpp = ZTOV(zp);
|
||
|
ZFS_EXIT(zfsvfs);
|
||
|
if (err == 0) {
|
||
|
err = vn_lock(*vpp, flags);
|
||
|
if (err != 0)
|
||
|
vrele(*vpp);
|
||
|
}
|
||
|
if (err != 0)
|
||
|
*vpp = NULL;
|
||
|
return (err);
|
||
|
}
|
||
|
|
||
|
static int
|
||
|
zfs_checkexp(vfs_t *vfsp, struct sockaddr *nam, int *extflagsp,
|
||
|
struct ucred **credanonp, int *numsecflavors, int **secflavors)
|
||
|
{
|
||
|
zfsvfs_t *zfsvfs = vfsp->vfs_data;
|
||
|
|
||
|
/*
|
||
|
* If this is regular file system vfsp is the same as
|
||
|
* zfsvfs->z_parent->z_vfs, but if it is snapshot,
|
||
|
* zfsvfs->z_parent->z_vfs represents parent file system
|
||
|
* which we have to use here, because only this file system
|
||
|
* has mnt_export configured.
|
||
|
*/
|
||
|
return (vfs_stdcheckexp(zfsvfs->z_parent->z_vfs, nam, extflagsp,
|
||
|
credanonp, numsecflavors, secflavors));
|
||
|
}
|
||
|
|
||
|
CTASSERT(SHORT_FID_LEN <= sizeof (struct fid));
|
||
|
CTASSERT(LONG_FID_LEN <= sizeof (struct fid));
|
||
|
|
||
|
static int
|
||
|
zfs_fhtovp(vfs_t *vfsp, fid_t *fidp, int flags, vnode_t **vpp)
|
||
|
{
|
||
|
struct componentname cn;
|
||
|
zfsvfs_t *zfsvfs = vfsp->vfs_data;
|
||
|
znode_t *zp;
|
||
|
vnode_t *dvp;
|
||
|
uint64_t object = 0;
|
||
|
uint64_t fid_gen = 0;
|
||
|
uint64_t gen_mask;
|
||
|
uint64_t zp_gen;
|
||
|
int i, err;
|
||
|
|
||
|
*vpp = NULL;
|
||
|
|
||
|
ZFS_ENTER(zfsvfs);
|
||
|
|
||
|
/*
|
||
|
* On FreeBSD we can get snapshot's mount point or its parent file
|
||
|
* system mount point depending if snapshot is already mounted or not.
|
||
|
*/
|
||
|
if (zfsvfs->z_parent == zfsvfs && fidp->fid_len == LONG_FID_LEN) {
|
||
|
zfid_long_t *zlfid = (zfid_long_t *)fidp;
|
||
|
uint64_t objsetid = 0;
|
||
|
uint64_t setgen = 0;
|
||
|
|
||
|
for (i = 0; i < sizeof (zlfid->zf_setid); i++)
|
||
|
objsetid |= ((uint64_t)zlfid->zf_setid[i]) << (8 * i);
|
||
|
|
||
|
for (i = 0; i < sizeof (zlfid->zf_setgen); i++)
|
||
|
setgen |= ((uint64_t)zlfid->zf_setgen[i]) << (8 * i);
|
||
|
|
||
|
ZFS_EXIT(zfsvfs);
|
||
|
|
||
|
err = zfsctl_lookup_objset(vfsp, objsetid, &zfsvfs);
|
||
|
if (err)
|
||
|
return (SET_ERROR(EINVAL));
|
||
|
ZFS_ENTER(zfsvfs);
|
||
|
}
|
||
|
|
||
|
if (fidp->fid_len == SHORT_FID_LEN || fidp->fid_len == LONG_FID_LEN) {
|
||
|
zfid_short_t *zfid = (zfid_short_t *)fidp;
|
||
|
|
||
|
for (i = 0; i < sizeof (zfid->zf_object); i++)
|
||
|
object |= ((uint64_t)zfid->zf_object[i]) << (8 * i);
|
||
|
|
||
|
for (i = 0; i < sizeof (zfid->zf_gen); i++)
|
||
|
fid_gen |= ((uint64_t)zfid->zf_gen[i]) << (8 * i);
|
||
|
} else {
|
||
|
ZFS_EXIT(zfsvfs);
|
||
|
return (SET_ERROR(EINVAL));
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* A zero fid_gen means we are in .zfs or the .zfs/snapshot
|
||
|
* directory tree. If the object == zfsvfs->z_shares_dir, then
|
||
|
* we are in the .zfs/shares directory tree.
|
||
|
*/
|
||
|
if ((fid_gen == 0 &&
|
||
|
(object == ZFSCTL_INO_ROOT || object == ZFSCTL_INO_SNAPDIR)) ||
|
||
|
(zfsvfs->z_shares_dir != 0 && object == zfsvfs->z_shares_dir)) {
|
||
|
ZFS_EXIT(zfsvfs);
|
||
|
VERIFY0(zfsctl_root(zfsvfs, LK_SHARED, &dvp));
|
||
|
if (object == ZFSCTL_INO_SNAPDIR) {
|
||
|
cn.cn_nameptr = "snapshot";
|
||
|
cn.cn_namelen = strlen(cn.cn_nameptr);
|
||
|
cn.cn_nameiop = LOOKUP;
|
||
|
cn.cn_flags = ISLASTCN | LOCKLEAF;
|
||
|
cn.cn_lkflags = flags;
|
||
|
VERIFY0(VOP_LOOKUP(dvp, vpp, &cn));
|
||
|
vput(dvp);
|
||
|
} else if (object == zfsvfs->z_shares_dir) {
|
||
|
/*
|
||
|
* XXX This branch must not be taken,
|
||
|
* if it is, then the lookup below will
|
||
|
* explode.
|
||
|
*/
|
||
|
cn.cn_nameptr = "shares";
|
||
|
cn.cn_namelen = strlen(cn.cn_nameptr);
|
||
|
cn.cn_nameiop = LOOKUP;
|
||
|
cn.cn_flags = ISLASTCN;
|
||
|
cn.cn_lkflags = flags;
|
||
|
VERIFY0(VOP_LOOKUP(dvp, vpp, &cn));
|
||
|
vput(dvp);
|
||
|
} else {
|
||
|
*vpp = dvp;
|
||
|
}
|
||
|
return (err);
|
||
|
}
|
||
|
|
||
|
gen_mask = -1ULL >> (64 - 8 * i);
|
||
|
|
||
|
dprintf("getting %llu [%u mask %llx]\n", object, fid_gen, gen_mask);
|
||
|
if ((err = zfs_zget(zfsvfs, object, &zp))) {
|
||
|
ZFS_EXIT(zfsvfs);
|
||
|
return (err);
|
||
|
}
|
||
|
(void) sa_lookup(zp->z_sa_hdl, SA_ZPL_GEN(zfsvfs), &zp_gen,
|
||
|
sizeof (uint64_t));
|
||
|
zp_gen = zp_gen & gen_mask;
|
||
|
if (zp_gen == 0)
|
||
|
zp_gen = 1;
|
||
|
if (zp->z_unlinked || zp_gen != fid_gen) {
|
||
|
dprintf("znode gen (%u) != fid gen (%u)\n", zp_gen, fid_gen);
|
||
|
vrele(ZTOV(zp));
|
||
|
ZFS_EXIT(zfsvfs);
|
||
|
return (SET_ERROR(EINVAL));
|
||
|
}
|
||
|
|
||
|
*vpp = ZTOV(zp);
|
||
|
ZFS_EXIT(zfsvfs);
|
||
|
err = vn_lock(*vpp, flags);
|
||
|
if (err == 0)
|
||
|
vnode_create_vobject(*vpp, zp->z_size, curthread);
|
||
|
else
|
||
|
*vpp = NULL;
|
||
|
return (err);
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Block out VOPs and close zfsvfs_t::z_os
|
||
|
*
|
||
|
* Note, if successful, then we return with the 'z_teardown_lock' and
|
||
|
* 'z_teardown_inactive_lock' write held. We leave ownership of the underlying
|
||
|
* dataset and objset intact so that they can be atomically handed off during
|
||
|
* a subsequent rollback or recv operation and the resume thereafter.
|
||
|
*/
|
||
|
int
|
||
|
zfs_suspend_fs(zfsvfs_t *zfsvfs)
|
||
|
{
|
||
|
int error;
|
||
|
|
||
|
if ((error = zfsvfs_teardown(zfsvfs, B_FALSE)) != 0)
|
||
|
return (error);
|
||
|
|
||
|
return (0);
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Rebuild SA and release VOPs. Note that ownership of the underlying dataset
|
||
|
* is an invariant across any of the operations that can be performed while the
|
||
|
* filesystem was suspended. Whether it succeeded or failed, the preconditions
|
||
|
* are the same: the relevant objset and associated dataset are owned by
|
||
|
* zfsvfs, held, and long held on entry.
|
||
|
*/
|
||
|
int
|
||
|
zfs_resume_fs(zfsvfs_t *zfsvfs, dsl_dataset_t *ds)
|
||
|
{
|
||
|
int err;
|
||
|
znode_t *zp;
|
||
|
|
||
|
ASSERT(RRM_WRITE_HELD(&zfsvfs->z_teardown_lock));
|
||
|
ASSERT(RW_WRITE_HELD(&zfsvfs->z_teardown_inactive_lock));
|
||
|
|
||
|
/*
|
||
|
* We already own this, so just update the objset_t, as the one we
|
||
|
* had before may have been evicted.
|
||
|
*/
|
||
|
objset_t *os;
|
||
|
VERIFY3P(ds->ds_owner, ==, zfsvfs);
|
||
|
VERIFY(dsl_dataset_long_held(ds));
|
||
|
dsl_pool_t *dp = spa_get_dsl(dsl_dataset_get_spa(ds));
|
||
|
dsl_pool_config_enter(dp, FTAG);
|
||
|
VERIFY0(dmu_objset_from_ds(ds, &os));
|
||
|
dsl_pool_config_exit(dp, FTAG);
|
||
|
|
||
|
err = zfsvfs_init(zfsvfs, os);
|
||
|
if (err != 0)
|
||
|
goto bail;
|
||
|
|
||
|
ds->ds_dir->dd_activity_cancelled = B_FALSE;
|
||
|
VERIFY(zfsvfs_setup(zfsvfs, B_FALSE) == 0);
|
||
|
|
||
|
zfs_set_fuid_feature(zfsvfs);
|
||
|
|
||
|
/*
|
||
|
* Attempt to re-establish all the active znodes with
|
||
|
* their dbufs. If a zfs_rezget() fails, then we'll let
|
||
|
* any potential callers discover that via ZFS_ENTER_VERIFY_VP
|
||
|
* when they try to use their znode.
|
||
|
*/
|
||
|
mutex_enter(&zfsvfs->z_znodes_lock);
|
||
|
for (zp = list_head(&zfsvfs->z_all_znodes); zp;
|
||
|
zp = list_next(&zfsvfs->z_all_znodes, zp)) {
|
||
|
(void) zfs_rezget(zp);
|
||
|
}
|
||
|
mutex_exit(&zfsvfs->z_znodes_lock);
|
||
|
|
||
|
bail:
|
||
|
/* release the VOPs */
|
||
|
rw_exit(&zfsvfs->z_teardown_inactive_lock);
|
||
|
rrm_exit(&zfsvfs->z_teardown_lock, FTAG);
|
||
|
|
||
|
if (err) {
|
||
|
/*
|
||
|
* Since we couldn't setup the sa framework, try to force
|
||
|
* unmount this file system.
|
||
|
*/
|
||
|
if (vn_vfswlock(zfsvfs->z_vfs->vfs_vnodecovered) == 0) {
|
||
|
vfs_ref(zfsvfs->z_vfs);
|
||
|
(void) dounmount(zfsvfs->z_vfs, MS_FORCE, curthread);
|
||
|
}
|
||
|
}
|
||
|
return (err);
|
||
|
}
|
||
|
|
||
|
static void
|
||
|
zfs_freevfs(vfs_t *vfsp)
|
||
|
{
|
||
|
zfsvfs_t *zfsvfs = vfsp->vfs_data;
|
||
|
|
||
|
zfsvfs_free(zfsvfs);
|
||
|
|
||
|
atomic_dec_32(&zfs_active_fs_count);
|
||
|
}
|
||
|
|
||
|
#ifdef __i386__
|
||
|
static int desiredvnodes_backup;
|
||
|
#endif
|
||
|
|
||
|
static void
|
||
|
zfs_vnodes_adjust(void)
|
||
|
{
|
||
|
#ifdef __i386__
|
||
|
int newdesiredvnodes;
|
||
|
|
||
|
desiredvnodes_backup = desiredvnodes;
|
||
|
|
||
|
/*
|
||
|
* We calculate newdesiredvnodes the same way it is done in
|
||
|
* vntblinit(). If it is equal to desiredvnodes, it means that
|
||
|
* it wasn't tuned by the administrator and we can tune it down.
|
||
|
*/
|
||
|
newdesiredvnodes = min(maxproc + vm_cnt.v_page_count / 4, 2 *
|
||
|
vm_kmem_size / (5 * (sizeof (struct vm_object) +
|
||
|
sizeof (struct vnode))));
|
||
|
if (newdesiredvnodes == desiredvnodes)
|
||
|
desiredvnodes = (3 * newdesiredvnodes) / 4;
|
||
|
#endif
|
||
|
}
|
||
|
|
||
|
static void
|
||
|
zfs_vnodes_adjust_back(void)
|
||
|
{
|
||
|
|
||
|
#ifdef __i386__
|
||
|
desiredvnodes = desiredvnodes_backup;
|
||
|
#endif
|
||
|
}
|
||
|
|
||
|
void
|
||
|
zfs_init(void)
|
||
|
{
|
||
|
|
||
|
printf("ZFS filesystem version: " ZPL_VERSION_STRING "\n");
|
||
|
|
||
|
/*
|
||
|
* Initialize .zfs directory structures
|
||
|
*/
|
||
|
zfsctl_init();
|
||
|
|
||
|
/*
|
||
|
* Initialize znode cache, vnode ops, etc...
|
||
|
*/
|
||
|
zfs_znode_init();
|
||
|
|
||
|
/*
|
||
|
* Reduce number of vnodes. Originally number of vnodes is calculated
|
||
|
* with UFS inode in mind. We reduce it here, because it's too big for
|
||
|
* ZFS/i386.
|
||
|
*/
|
||
|
zfs_vnodes_adjust();
|
||
|
|
||
|
dmu_objset_register_type(DMU_OST_ZFS, zfs_space_delta_cb);
|
||
|
|
||
|
zfsvfs_taskq = taskq_create("zfsvfs", 1, minclsyspri, 0, 0, 0);
|
||
|
}
|
||
|
|
||
|
void
|
||
|
zfs_fini(void)
|
||
|
{
|
||
|
taskq_destroy(zfsvfs_taskq);
|
||
|
zfsctl_fini();
|
||
|
zfs_znode_fini();
|
||
|
zfs_vnodes_adjust_back();
|
||
|
}
|
||
|
|
||
|
int
|
||
|
zfs_busy(void)
|
||
|
{
|
||
|
return (zfs_active_fs_count != 0);
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Release VOPs and unmount a suspended filesystem.
|
||
|
*/
|
||
|
int
|
||
|
zfs_end_fs(zfsvfs_t *zfsvfs, dsl_dataset_t *ds)
|
||
|
{
|
||
|
ASSERT(RRM_WRITE_HELD(&zfsvfs->z_teardown_lock));
|
||
|
ASSERT(RW_WRITE_HELD(&zfsvfs->z_teardown_inactive_lock));
|
||
|
|
||
|
/*
|
||
|
* We already own this, so just hold and rele it to update the
|
||
|
* objset_t, as the one we had before may have been evicted.
|
||
|
*/
|
||
|
objset_t *os;
|
||
|
VERIFY3P(ds->ds_owner, ==, zfsvfs);
|
||
|
VERIFY(dsl_dataset_long_held(ds));
|
||
|
dsl_pool_t *dp = spa_get_dsl(dsl_dataset_get_spa(ds));
|
||
|
dsl_pool_config_enter(dp, FTAG);
|
||
|
VERIFY0(dmu_objset_from_ds(ds, &os));
|
||
|
dsl_pool_config_exit(dp, FTAG);
|
||
|
zfsvfs->z_os = os;
|
||
|
|
||
|
/* release the VOPs */
|
||
|
rw_exit(&zfsvfs->z_teardown_inactive_lock);
|
||
|
rrm_exit(&zfsvfs->z_teardown_lock, FTAG);
|
||
|
|
||
|
/*
|
||
|
* Try to force unmount this file system.
|
||
|
*/
|
||
|
(void) zfs_umount(zfsvfs->z_vfs, 0);
|
||
|
zfsvfs->z_unmounted = B_TRUE;
|
||
|
return (0);
|
||
|
}
|
||
|
|
||
|
int
|
||
|
zfs_set_version(zfsvfs_t *zfsvfs, uint64_t newvers)
|
||
|
{
|
||
|
int error;
|
||
|
objset_t *os = zfsvfs->z_os;
|
||
|
dmu_tx_t *tx;
|
||
|
|
||
|
if (newvers < ZPL_VERSION_INITIAL || newvers > ZPL_VERSION)
|
||
|
return (SET_ERROR(EINVAL));
|
||
|
|
||
|
if (newvers < zfsvfs->z_version)
|
||
|
return (SET_ERROR(EINVAL));
|
||
|
|
||
|
if (zfs_spa_version_map(newvers) >
|
||
|
spa_version(dmu_objset_spa(zfsvfs->z_os)))
|
||
|
return (SET_ERROR(ENOTSUP));
|
||
|
|
||
|
tx = dmu_tx_create(os);
|
||
|
dmu_tx_hold_zap(tx, MASTER_NODE_OBJ, B_FALSE, ZPL_VERSION_STR);
|
||
|
if (newvers >= ZPL_VERSION_SA && !zfsvfs->z_use_sa) {
|
||
|
dmu_tx_hold_zap(tx, MASTER_NODE_OBJ, B_TRUE,
|
||
|
ZFS_SA_ATTRS);
|
||
|
dmu_tx_hold_zap(tx, DMU_NEW_OBJECT, FALSE, NULL);
|
||
|
}
|
||
|
error = dmu_tx_assign(tx, TXG_WAIT);
|
||
|
if (error) {
|
||
|
dmu_tx_abort(tx);
|
||
|
return (error);
|
||
|
}
|
||
|
|
||
|
error = zap_update(os, MASTER_NODE_OBJ, ZPL_VERSION_STR,
|
||
|
8, 1, &newvers, tx);
|
||
|
|
||
|
if (error) {
|
||
|
dmu_tx_commit(tx);
|
||
|
return (error);
|
||
|
}
|
||
|
|
||
|
if (newvers >= ZPL_VERSION_SA && !zfsvfs->z_use_sa) {
|
||
|
uint64_t sa_obj;
|
||
|
|
||
|
ASSERT3U(spa_version(dmu_objset_spa(zfsvfs->z_os)), >=,
|
||
|
SPA_VERSION_SA);
|
||
|
sa_obj = zap_create(os, DMU_OT_SA_MASTER_NODE,
|
||
|
DMU_OT_NONE, 0, tx);
|
||
|
|
||
|
error = zap_add(os, MASTER_NODE_OBJ,
|
||
|
ZFS_SA_ATTRS, 8, 1, &sa_obj, tx);
|
||
|
ASSERT0(error);
|
||
|
|
||
|
VERIFY(0 == sa_set_sa_object(os, sa_obj));
|
||
|
sa_register_update_callback(os, zfs_sa_upgrade);
|
||
|
}
|
||
|
|
||
|
spa_history_log_internal_ds(dmu_objset_ds(os), "upgrade", tx,
|
||
|
"from %lu to %lu", zfsvfs->z_version, newvers);
|
||
|
|
||
|
dmu_tx_commit(tx);
|
||
|
|
||
|
zfsvfs->z_version = newvers;
|
||
|
os->os_version = newvers;
|
||
|
|
||
|
zfs_set_fuid_feature(zfsvfs);
|
||
|
|
||
|
return (0);
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Read a property stored within the master node.
|
||
|
*/
|
||
|
int
|
||
|
zfs_get_zplprop(objset_t *os, zfs_prop_t prop, uint64_t *value)
|
||
|
{
|
||
|
uint64_t *cached_copy = NULL;
|
||
|
|
||
|
/*
|
||
|
* Figure out where in the objset_t the cached copy would live, if it
|
||
|
* is available for the requested property.
|
||
|
*/
|
||
|
if (os != NULL) {
|
||
|
switch (prop) {
|
||
|
case ZFS_PROP_VERSION:
|
||
|
cached_copy = &os->os_version;
|
||
|
break;
|
||
|
case ZFS_PROP_NORMALIZE:
|
||
|
cached_copy = &os->os_normalization;
|
||
|
break;
|
||
|
case ZFS_PROP_UTF8ONLY:
|
||
|
cached_copy = &os->os_utf8only;
|
||
|
break;
|
||
|
case ZFS_PROP_CASE:
|
||
|
cached_copy = &os->os_casesensitivity;
|
||
|
break;
|
||
|
default:
|
||
|
break;
|
||
|
}
|
||
|
}
|
||
|
if (cached_copy != NULL && *cached_copy != OBJSET_PROP_UNINITIALIZED) {
|
||
|
*value = *cached_copy;
|
||
|
return (0);
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* If the property wasn't cached, look up the file system's value for
|
||
|
* the property. For the version property, we look up a slightly
|
||
|
* different string.
|
||
|
*/
|
||
|
const char *pname;
|
||
|
int error = ENOENT;
|
||
|
if (prop == ZFS_PROP_VERSION) {
|
||
|
pname = ZPL_VERSION_STR;
|
||
|
} else {
|
||
|
pname = zfs_prop_to_name(prop);
|
||
|
}
|
||
|
|
||
|
if (os != NULL) {
|
||
|
ASSERT3U(os->os_phys->os_type, ==, DMU_OST_ZFS);
|
||
|
error = zap_lookup(os, MASTER_NODE_OBJ, pname, 8, 1, value);
|
||
|
}
|
||
|
|
||
|
if (error == ENOENT) {
|
||
|
/* No value set, use the default value */
|
||
|
switch (prop) {
|
||
|
case ZFS_PROP_VERSION:
|
||
|
*value = ZPL_VERSION;
|
||
|
break;
|
||
|
case ZFS_PROP_NORMALIZE:
|
||
|
case ZFS_PROP_UTF8ONLY:
|
||
|
*value = 0;
|
||
|
break;
|
||
|
case ZFS_PROP_CASE:
|
||
|
*value = ZFS_CASE_SENSITIVE;
|
||
|
break;
|
||
|
default:
|
||
|
return (error);
|
||
|
}
|
||
|
error = 0;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* If one of the methods for getting the property value above worked,
|
||
|
* copy it into the objset_t's cache.
|
||
|
*/
|
||
|
if (error == 0 && cached_copy != NULL) {
|
||
|
*cached_copy = *value;
|
||
|
}
|
||
|
|
||
|
return (error);
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Return true if the coresponding vfs's unmounted flag is set.
|
||
|
* Otherwise return false.
|
||
|
* If this function returns true we know VFS unmount has been initiated.
|
||
|
*/
|
||
|
boolean_t
|
||
|
zfs_get_vfs_flag_unmounted(objset_t *os)
|
||
|
{
|
||
|
zfsvfs_t *zfvp;
|
||
|
boolean_t unmounted = B_FALSE;
|
||
|
|
||
|
ASSERT(dmu_objset_type(os) == DMU_OST_ZFS);
|
||
|
|
||
|
mutex_enter(&os->os_user_ptr_lock);
|
||
|
zfvp = dmu_objset_get_user(os);
|
||
|
if (zfvp != NULL && zfvp->z_vfs != NULL &&
|
||
|
(zfvp->z_vfs->mnt_kern_flag & MNTK_UNMOUNT))
|
||
|
unmounted = B_TRUE;
|
||
|
mutex_exit(&os->os_user_ptr_lock);
|
||
|
|
||
|
return (unmounted);
|
||
|
}
|
||
|
|
||
|
#ifdef _KERNEL
|
||
|
void
|
||
|
zfsvfs_update_fromname(const char *oldname, const char *newname)
|
||
|
{
|
||
|
char tmpbuf[MAXPATHLEN];
|
||
|
struct mount *mp;
|
||
|
char *fromname;
|
||
|
size_t oldlen;
|
||
|
|
||
|
oldlen = strlen(oldname);
|
||
|
|
||
|
mtx_lock(&mountlist_mtx);
|
||
|
TAILQ_FOREACH(mp, &mountlist, mnt_list) {
|
||
|
fromname = mp->mnt_stat.f_mntfromname;
|
||
|
if (strcmp(fromname, oldname) == 0) {
|
||
|
(void) strlcpy(fromname, newname,
|
||
|
sizeof (mp->mnt_stat.f_mntfromname));
|
||
|
continue;
|
||
|
}
|
||
|
if (strncmp(fromname, oldname, oldlen) == 0 &&
|
||
|
(fromname[oldlen] == '/' || fromname[oldlen] == '@')) {
|
||
|
(void) snprintf(tmpbuf, sizeof (tmpbuf), "%s%s",
|
||
|
newname, fromname + oldlen);
|
||
|
(void) strlcpy(fromname, tmpbuf,
|
||
|
sizeof (mp->mnt_stat.f_mntfromname));
|
||
|
continue;
|
||
|
}
|
||
|
}
|
||
|
mtx_unlock(&mountlist_mtx);
|
||
|
}
|
||
|
#endif
|