mirror_zfs/tests/zfs-tests/cmd/crypto_test.c

1247 lines
30 KiB
C
Raw Normal View History

/*
* SPDX-License-Identifier: MIT
*
* Copyright (c) 2025, Rob Norris <robn@despairlabs.com>
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to
* deal in the Software without restriction, including without limitation the
* rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
* sell copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
* IN THE SOFTWARE.
*/
/*
* This is a userspace test driver for the ICP. It has two modes:
*
* "correctness" (-c <testfile>):
* Load a file full of test vectors. For each implementation of the named
* algorithm, loop over the tests, and run encrypt and decrypt with the
* provided parameters and confirm they either do (result=valid) or do not
* (result=invalid) succeed.
*
* "performance" (-p <alg>)
* For each implementation of the named algorithm, run 1000 rounds of
* encrypt() on a range of power-2 sizes of input data from 2^10 (1K) to
* 2^19 (512K).
*/
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <errno.h>
#include <getopt.h>
#include <sys/crypto/icp.h>
#include <sys/crypto/api.h>
/* for zfs_nicenum, zfs_nicebytes */
#include <libzutil.h>
/* ========== */
/* types and data for both modes */
/* valid test algorithms */
typedef enum {
ALG_NONE,
ALG_AES_GCM,
ALG_AES_CCM,
} crypto_test_alg_t;
/*
* Generally the ICP expects zero-length data to still require a valid
* (non-NULL) pointer, even though it will never read from it. This is a
* convenient valid item for tjat case.
*/
static uint8_t val_empty[1] = {0};
/* Strings for error returns */
static const char *crypto_errstr[] = {
[CRYPTO_SUCCESS] = "CRYPTO_SUCCESS",
[CRYPTO_HOST_MEMORY] = "CRYPTO_HOST_MEMORY",
[CRYPTO_FAILED] = "CRYPTO_FAILED",
[CRYPTO_ARGUMENTS_BAD] = "CRYPTO_ARGUMENTS_BAD",
[CRYPTO_DATA_LEN_RANGE] = "CRYPTO_DATA_LEN_RANGE",
[CRYPTO_ENCRYPTED_DATA_LEN_RANGE] = "CRYPTO_ENCRYPTED_DATA_LEN_RANGE",
[CRYPTO_KEY_SIZE_RANGE] = "CRYPTO_KEY_SIZE_RANGE",
[CRYPTO_KEY_TYPE_INCONSISTENT] = "CRYPTO_KEY_TYPE_INCONSISTENT",
[CRYPTO_MECHANISM_INVALID] = "CRYPTO_MECHANISM_INVALID",
[CRYPTO_MECHANISM_PARAM_INVALID] = "CRYPTO_MECHANISM_PARAM_INVALID",
[CRYPTO_SIGNATURE_INVALID] = "CRYPTO_SIGNATURE_INVALID",
[CRYPTO_BUFFER_TOO_SMALL] = "CRYPTO_BUFFER_TOO_SMALL",
[CRYPTO_NOT_SUPPORTED] = "CRYPTO_NOT_SUPPORTED",
[CRYPTO_INVALID_CONTEXT] = "CRYPTO_INVALID_CONTEXT",
[CRYPTO_INVALID_MAC] = "CRYPTO_INVALID_MAC",
[CRYPTO_MECH_NOT_SUPPORTED] = "CRYPTO_MECH_NOT_SUPPORTED",
[CRYPTO_INVALID_PROVIDER_ID] = "CRYPTO_INVALID_PROVIDER_ID",
[CRYPTO_BUSY] = "CRYPTO_BUSY",
[CRYPTO_UNKNOWN_PROVIDER] = "CRYPTO_UNKNOWN_PROVIDER",
};
/* what to output; driven by -v switch */
typedef enum {
OUT_SUMMARY,
OUT_FAIL,
OUT_ALL,
} crypto_test_outmode_t;
/* ========== */
/* types and data for correctness tests */
/* most ICP inputs are separate val & len */
typedef struct {
uint8_t *val;
size_t len;
} crypto_test_val_t;
/* tests can be expected to pass (valid) or expected to fail (invalid) */
typedef enum {
RS_NONE = 0,
RS_VALID,
RS_INVALID,
} crypto_test_result_t;
/* a single test, loaded from the test file */
typedef struct crypto_test crypto_test_t;
struct crypto_test {
crypto_test_t *next; /* ptr to next test */
char *fileloc; /* file:line of test in file */
crypto_test_alg_t alg; /* alg, for convenience */
/* id, comment and flags are for output */
uint64_t id;
char *comment;
char *flags;
/*
* raw test params. these are hex strings in the test file, which
* we convert on load.
*/
crypto_test_val_t iv;
crypto_test_val_t key;
crypto_test_val_t msg;
crypto_test_val_t ct;
crypto_test_val_t aad;
crypto_test_val_t tag;
/* expected result */
crypto_test_result_t result;
};
/* ========== */
/* test file loader */
/*
* helper; split a 'key: value\n' line into separate key and value. original
* line is modified; \0 will be inserted at end of key and end of value.
*/
static boolean_t
split_kv(char *line, char **kp, char **vp)
{
char *c = strstr(line, ":");
if (c == NULL)
return (B_FALSE);
*c++ = '\0';
while (*c == ' ')
c++;
char *v = c;
c = strchr(v, '\n');
if (c != NULL) {
*c++ = '\0';
if (*c != '\0')
return (B_FALSE);
}
*kp = line;
*vp = v;
return (B_TRUE);
}
/*
* helper; parse decimal number to uint64
*/
static boolean_t
parse_num(char *v, uint64_t *np)
{
char *c = NULL;
errno = 0;
uint64_t n = strtoull(v, &c, 10);
if (*v == '\0' || *c != '\0' || errno != 0 ||
n >= UINT32_MAX || n == 0)
return (B_FALSE);
*np = n;
return (B_TRUE);
}
/*
* load tests from the test file. returns a linked list of tests, and the
* test algorithm in *algp.
*/
static crypto_test_t *
load_tests(const char *filepath, crypto_test_alg_t *algp)
{
crypto_test_t *tests = NULL, *tail = NULL;
char *buf = NULL;
size_t buflen = 0;
FILE *fh = NULL;
if ((fh = fopen(filepath, "r")) == NULL) {
fprintf(stderr, "E: couldn't open %s: %s\n",
filepath, strerror(errno));
goto err;
}
/* extract the filename part from the path, for nicer output */
const char *filename = &filepath[strlen(filepath)-1];
while (filename != filepath) {
if (*filename == '/') {
filename++;
break;
}
filename--;
}
int lineno = 0;
crypto_test_alg_t alg = ALG_NONE;
uint64_t ntests = 0;
crypto_test_t *test = NULL;
uint64_t ncommitted = 0;
char *k, *v;
ssize_t nread;
while ((nread = getline(&buf, &buflen, fh)) != -1 || errno == 0) {
/* track line number for output and for test->fileloc */
lineno++;
if (nread < 2 && test != NULL) {
/*
* blank line or end of file; close out any test in
* progress and commit it.
*/
if (test->id == 0 ||
test->iv.val == NULL ||
test->key.val == NULL ||
test->msg.val == NULL ||
test->ct.val == NULL ||
test->aad.val == NULL ||
test->tag.val == NULL ||
test->result == RS_NONE) {
fprintf(stderr, "E: incomplete test [%s:%d]\n",
filename, lineno);
goto err;
}
/* commit the test, ie, add it to the list */
if (tail == NULL)
tests = tail = test;
else {
tail->next = test;
tail = test;
}
ncommitted++;
test = NULL;
}
if (nread == -1)
/* end of file and tests finished, done */
break;
if (nread < 2 && ncommitted == 0) {
/*
* blank line after header, make sure the header is
* complete.
*/
if (alg == ALG_NONE || ntests == 0) {
fprintf(stderr, "E: incomplete header "
"[%s:%d]\n", filename, lineno);
goto err;
}
}
if (nread < 2) {
/*
* blank line and the header is committed, and no
* current test, so the next test will start on the
* next line.
*/
test = calloc(1, sizeof (crypto_test_t));
int len = strlen(filename) + 10;
test->fileloc = calloc(len, 1);
snprintf(test->fileloc, len, "%s:%d",
filename, lineno+1);
test->alg = alg;
continue;
}
/*
* must be a k:v line. if there is a current test, then this
* line is part of it, otherwise it's a header line
*/
if (!split_kv(buf, &k, &v)) {
fprintf(stderr, "E: malformed line [%s:%d]\n",
filename, lineno);
goto err;
}
if (test == NULL) {
/* no current test, so a header key */
/*
* typical header:
*
* algorithm: AES-GCM
* tests: 316
*/
if (strcmp(k, "algorithm") == 0) {
if (alg != ALG_NONE)
goto err_dup_key;
if (strcmp(v, "AES-GCM") == 0)
alg = ALG_AES_GCM;
else if (strcmp(v, "AES-CCM") == 0)
alg = ALG_AES_CCM;
else {
fprintf(stderr,
"E: unknown algorithm [%s:%d]: "
"%s\n", filename, lineno, v);
goto err;
}
} else if (strcmp(k, "tests") == 0) {
if (ntests > 0)
goto err_dup_key;
if (!parse_num(v, &ntests)) {
fprintf(stderr,
"E: invalid number of tests "
"[%s:%d]: %s\n", filename, lineno,
v);
goto err;
}
} else {
fprintf(stderr, "E: unknown header key "
"[%s:%d]: %s\n", filename, lineno, k);
goto err;
}
continue;
}
/* test key */
/*
* typical test:
*
* id: 48
* comment: Flipped bit 63 in tag
* flags: ModifiedTag
* iv: 505152535455565758595a5b
* key: 000102030405060708090a0b0c0d0e0f
* msg: 202122232425262728292a2b2c2d2e2f
* ct: eb156d081ed6b6b55f4612f021d87b39
* aad:
* tag: d8847dbc326a066988c77ad3863e6083
* result: invalid
*/
if (strcmp(k, "id") == 0) {
if (test->id > 0)
goto err_dup_key;
if (!parse_num(v, &test->id)) {
fprintf(stderr,
"E: invalid test id [%s:%d]: %s\n",
filename, lineno, v);
goto err;
}
continue;
} else if (strcmp(k, "comment") == 0) {
if (test->comment != NULL)
goto err_dup_key;
test->comment = strdup(v);
continue;
} else if (strcmp(k, "flags") == 0) {
if (test->flags != NULL)
goto err_dup_key;
test->flags = strdup(v);
continue;
} else if (strcmp(k, "result") == 0) {
if (test->result != RS_NONE)
goto err_dup_key;
if (strcmp(v, "valid") == 0)
test->result = RS_VALID;
else if (strcmp(v, "invalid") == 0)
test->result = RS_INVALID;
else {
fprintf(stderr,
"E: unknown test result [%s:%d]: %s\n",
filename, lineno, v);
goto err;
}
continue;
}
/*
* for the test param keys, we set up a pointer to the right
* field in the test struct, and then work through that
* pointer.
*/
crypto_test_val_t *vp = NULL;
if (strcmp(buf, "iv") == 0)
vp = &test->iv;
else if (strcmp(buf, "key") == 0)
vp = &test->key;
else if (strcmp(buf, "msg") == 0)
vp = &test->msg;
else if (strcmp(buf, "ct") == 0)
vp = &test->ct;
else if (strcmp(buf, "aad") == 0)
vp = &test->aad;
else if (strcmp(buf, "tag") == 0)
vp = &test->tag;
else {
fprintf(stderr, "E: unknown key [%s:%d]: %s\n",
filename, lineno, buf);
goto err;
}
if (vp->val != NULL)
goto err_dup_key;
/* sanity; these are hex bytes so must be two chars per byte. */
size_t vlen = strlen(v);
if ((vlen & 1) == 1) {
fprintf(stderr, "E: value length not even "
"[%s:%d]: %s\n", filename, lineno, buf);
goto err;
}
/*
* zero-length params are allowed, but ICP requires a non-NULL
* value pointer, so we give it one and also use that as
* a marker for us to know that we've filled this value.
*/
if (vlen == 0) {
vp->val = val_empty;
continue;
}
/*
* convert incoming value from hex to raw. allocate space
* half as long as the length, then loop the chars and
* convert from ascii to 4-bit values, shifting or or-ing
* as appropriate.
*/
vp->len = vlen/2;
vp->val = calloc(vp->len, 1);
for (int i = 0; i < vlen; i++) {
char c = v[i];
if (!((c >= '0' && c <= '9') ||
(c >= 'a' && c <= 'f'))) {
fprintf(stderr, "E: invalid hex char "
"[%s:%d]: %c\n", filename, lineno, c);
goto err;
}
uint8_t n = ((c <= '9') ? (c-0x30) : (c-0x57)) & 0xf;
if ((i & 1) == 0)
vp->val[i/2] = n << 4;
else
vp->val[i/2] |= n;
}
}
if (errno != 0) {
fprintf(stderr, "E: couldn't read %s: %s\n",
filepath, strerror(errno));
goto err;
}
free(buf);
fclose(fh);
if (tests == NULL)
fprintf(stderr, "E: no tests in %s\n", filepath);
*algp = alg;
return (tests);
/*
* jump target for duplicate key error. this is so common that it's easier
* to just have a single error point.
*/
err_dup_key:
fprintf(stderr, "E: duplicate key [%s:%d]: %s\n", filename, lineno, k);
err:
if (buf != NULL)
free(buf);
if (fh != NULL)
fclose(fh);
/*
* XXX we should probably free all the tests here, but the test file
* is generated and this is a one-shot program, so it's really
* not worth the effort today
*/
return (NULL);
}
/* ========== */
/* ICP algorithm implementation selection */
/*
* It's currently not really possible to query the ICP for which
* implementations it supports. Also, not all GCM implementations work
* with all AES implementations. For now, we keep a hardcoded list of
* valid combinations.
*/
static const char *aes_impl[] = {
"generic",
"x86_64",
"aesni",
};
static const char *aes_gcm_impl[][2] = {
{ "generic", "generic" },
{ "x86_64", "generic" },
{ "aesni", "generic" },
{ "generic", "pclmulqdq" },
{ "x86_64", "pclmulqdq" },
{ "aesni", "pclmulqdq" },
{ "x86_64", "avx" },
{ "aesni", "avx" },
};
/* signature of function to call after setting implementation params */
typedef void (*alg_cb_t)(const char *alginfo, void *arg);
/* loop over each AES-CCM implementation */
static void
foreach_aes_ccm(alg_cb_t cb, void *arg, crypto_test_outmode_t outmode)
{
char alginfo[64];
for (int i = 0; i < ARRAY_SIZE(aes_impl); i++) {
snprintf(alginfo, sizeof (alginfo), "AES-CCM [%s]",
aes_impl[i]);
int err = -aes_impl_set(aes_impl[i]);
if (err != 0 && outmode != OUT_SUMMARY)
printf("W: %s couldn't enable AES impl '%s': %s\n",
alginfo, aes_impl[i], strerror(err));
cb(alginfo, (err == 0) ? arg : NULL);
}
}
/* loop over each AES-GCM implementation */
static void
foreach_aes_gcm(alg_cb_t cb, void *arg, crypto_test_outmode_t outmode)
{
char alginfo[64];
for (int i = 0; i < ARRAY_SIZE(aes_gcm_impl); i++) {
const char *aes_impl = aes_gcm_impl[i][0];
const char *gcm_impl = aes_gcm_impl[i][1];
snprintf(alginfo, sizeof (alginfo), "AES-GCM [%s+%s]",
aes_impl, gcm_impl);
int err = -aes_impl_set(aes_impl);
if (err != 0 && outmode != OUT_SUMMARY)
printf("W: %s couldn't enable AES impl '%s': %s\n",
alginfo, aes_impl, strerror(err));
if (err == 0) {
err = -gcm_impl_set(gcm_impl);
if (err != 0 && outmode != OUT_SUMMARY) {
printf("W: %s couldn't enable "
"GCM impl '%s': %s\n",
alginfo, gcm_impl, strerror(err));
}
}
cb(alginfo, (err == 0) ? arg : NULL);
}
}
/* ========== */
/* ICP lowlevel drivers */
/*
* initialise the mechanism (algorithm description) with the wanted parameters
* for the next operation.
*
* mech must be allocated and mech->cm_params point to space large enough
* to hold the parameters for the given algorithm.
*
* decrypt is true if setting up for decryption, false for encryption.
*/
static void
init_mech(crypto_mechanism_t *mech, crypto_test_alg_t alg,
uint8_t *iv, size_t ivlen,
uint8_t *aad, size_t aadlen,
size_t msglen, size_t taglen,
boolean_t decrypt)
{
switch (alg) {
case ALG_AES_GCM: {
mech->cm_type = crypto_mech2id(SUN_CKM_AES_GCM);
mech->cm_param_len = sizeof (CK_AES_GCM_PARAMS);
CK_AES_GCM_PARAMS *p = (CK_AES_GCM_PARAMS *)mech->cm_param;
p->pIv = (uchar_t *)iv;
p->ulIvLen = ivlen;
p->ulIvBits = ivlen << 3;
p->pAAD = aad;
p->ulAADLen = aadlen;
p->ulTagBits = taglen << 3;
break;
}
case ALG_AES_CCM: {
mech->cm_type = crypto_mech2id(SUN_CKM_AES_CCM);
mech->cm_param_len = sizeof (CK_AES_CCM_PARAMS);
CK_AES_CCM_PARAMS *p = (CK_AES_CCM_PARAMS *)mech->cm_param;
p->nonce = iv;
p->ulNonceSize = ivlen;
p->authData = aad;
p->ulAuthDataSize = aadlen;
p->ulMACSize = taglen;
/*
* ICP CCM needs the MAC len in the data size for decrypt,
* even if the buffer isn't that big.
*/
p->ulDataSize = msglen + (decrypt ? taglen : 0);
break;
}
default:
abort();
}
}
/*
* call crypto_encrypt() with the given inputs.
*
* mech: previously initialised by init_mech
* key, keylen: raw data and length of key
* msg, msglen: raw data and length of message
* out, outlen: buffer to write output to (min msglen+taglen)
* usecp: if not NULL, recieves microseconds in crypto_encrypt()
*/
static int
encrypt_one(crypto_mechanism_t *mech,
const uint8_t *key, size_t keylen,
const uint8_t *msg, size_t msglen,
uint8_t *out, size_t outlen,
uint64_t *usecp)
{
crypto_key_t k = {
.ck_data = (uint8_t *)key,
.ck_length = keylen << 3,
};
crypto_data_t i = {
.cd_format = CRYPTO_DATA_RAW,
.cd_offset = 0,
.cd_length = msglen,
.cd_raw = {
.iov_base = (char *)msg,
.iov_len = msglen,
},
};
crypto_data_t o = {
.cd_format = CRYPTO_DATA_RAW,
.cd_offset = 0,
.cd_length = outlen,
.cd_raw = {
.iov_base = (char *)out,
.iov_len = outlen,
},
};
struct timeval start, end, diff;
if (usecp != NULL)
gettimeofday(&start, NULL);
int rv = crypto_encrypt(mech, &i, &k, NULL, &o);
if (usecp != NULL) {
gettimeofday(&end, NULL);
timersub(&end, &start, &diff);
*usecp =
((uint64_t)diff.tv_sec) * 1000000 + (uint64_t)diff.tv_usec;
}
return (rv);
}
/*
* call crypto_decrypt() with the given inputs.
*
* mech: previously initialised by init_mech
* key, keylen: raw data and length of key
* ct, ctlen: raw data and length of ciphertext
* tag, taglen: raw data and length of tag (MAC)
* out, outlen: buffer to write output to (min ctlen)
* usecp: if not NULL, recieves microseconds in crypto_decrypt()
*/
static int
decrypt_one(crypto_mechanism_t *mech,
const uint8_t *key, size_t keylen,
const uint8_t *ct, size_t ctlen,
const uint8_t *tag, size_t taglen,
uint8_t *out, size_t outlen,
uint64_t *usecp)
{
uint8_t inbuf[1024];
crypto_key_t k = {
.ck_data = (uint8_t *)key,
.ck_length = keylen << 3,
};
memcpy(inbuf, ct, ctlen);
memcpy(inbuf + ctlen, tag, taglen);
crypto_data_t i = {
.cd_format = CRYPTO_DATA_RAW,
.cd_offset = 0,
.cd_length = ctlen + taglen,
.cd_raw = {
.iov_base = (char *)inbuf,
.iov_len = ctlen + taglen,
},
};
crypto_data_t o = {
.cd_format = CRYPTO_DATA_RAW,
.cd_offset = 0,
.cd_length = outlen,
.cd_raw = {
.iov_base = (char *)out,
.iov_len = outlen
},
};
struct timeval start, end, diff;
if (usecp != NULL)
gettimeofday(&start, NULL);
int rv = crypto_decrypt(mech, &i, &k, NULL, &o);
if (usecp != NULL) {
gettimeofday(&end, NULL);
timersub(&start, &end, &diff);
*usecp =
((uint64_t)diff.tv_sec) * 1000000 + (uint64_t)diff.tv_usec;
}
return (rv);
}
/* ========== */
/* correctness tests */
/*
* helper; dump the provided data as hex, with a string prefix
*/
static void
hexdump(const char *str, const uint8_t *src, uint_t len)
{
printf("%12s:", str);
int i = 0;
while (i < len) {
if (i % 4 == 0)
printf(" ");
printf("%02x", src[i]);
i++;
if (i % 16 == 0 && i < len) {
printf("\n");
if (i < len)
printf(" ");
}
}
printf("\n");
}
/*
* analyse test result and on failure, print useful output for debugging.
*
* test: the test we ran
* encrypt_rv: return value from crypto_encrypt()
* encrypt_buf: the output buffer from crypto_encrypt()
* decrypt_rv: return value from crypto_decrypt()
* decrypt_buf: the output buffer from crypto_decrypt()
* outmode: output mode (summary, fail, all)
*/
static boolean_t
test_result(const crypto_test_t *test, int encrypt_rv, uint8_t *encrypt_buf,
int decrypt_rv, uint8_t *decrypt_buf, crypto_test_outmode_t outmode)
{
boolean_t ct_match = B_FALSE, tag_match = B_FALSE, msg_match = B_FALSE;
boolean_t encrypt_pass = B_FALSE, decrypt_pass = B_FALSE;
boolean_t pass = B_FALSE;
/* check if the encrypt output matches the expected ciphertext */
if (memcmp(encrypt_buf, test->ct.val, test->msg.len) == 0)
ct_match = B_TRUE;
/*
* check if the tag at the end of the encrypt output matches the
* expected tag
*/
if (memcmp(encrypt_buf + test->msg.len, test->tag.val,
test->tag.len) == 0)
tag_match = B_TRUE;
/* check if the decrypt output matches the expected plaintext */
if (memcmp(decrypt_buf, test->msg.val, test->msg.len) == 0)
msg_match = B_TRUE;
if (test->result == RS_VALID) {
/*
* a "valid" test is where the params describe an
* encrypt/decrypt cycle that should succeed. we consider
* these to have passed the test if crypto_encrypt() and
* crypto_decrypt() return success, and the output data
* matches the expected values from the test params.
*/
if (encrypt_rv == CRYPTO_SUCCESS) {
if (ct_match && tag_match)
encrypt_pass = B_TRUE;
}
if (decrypt_rv == CRYPTO_SUCCESS) {
if (msg_match)
decrypt_pass = B_TRUE;
}
} else {
/*
* an "invalid" test is where the params describe an
* encrypt/decrypt cycle that should _not_ succeed.
*
* for decrypt, we only need to check the result from
* crypto_decrypt(), because decrypt checks the the tag (MAC)
* as part of its operation.
*
* for encrypt, the tag (MAC) is an output of the encryption
* function, so if encryption succeeds, we have to check that
* the returned tag matches the expected tag.
*/
if (encrypt_rv != CRYPTO_SUCCESS || !tag_match)
encrypt_pass = B_TRUE;
if (decrypt_rv != CRYPTO_SUCCESS)
decrypt_pass = B_TRUE;
}
/* the test as a whole passed if both encrypt and decrypt passed */
pass = (encrypt_pass && decrypt_pass);
/* if the test passed we may not have to output anything */
if (outmode == OUT_SUMMARY || (outmode == OUT_FAIL && pass))
return (pass);
/* print summary of test result */
printf("%s[%lu]: encrypt=%s decrypt=%s\n", test->fileloc, test->id,
encrypt_pass ? "PASS" : "FAIL",
decrypt_pass ? "PASS" : "FAIL");
if (!pass) {
/*
* if the test didn't pass, print any comment or flags field
* from the test params, which if present can help
* understanding what the ICP did wrong
*/
if (test->comment != NULL)
printf(" comment: %s\n", test->comment);
if (test->flags != NULL)
printf(" flags: %s\n", test->flags);
}
if (!encrypt_pass) {
/* encrypt failed */
/* print return value from crypto_encrypt() */
printf(" encrypt rv = 0x%02x [%s]\n", encrypt_rv,
crypto_errstr[encrypt_rv] ?
crypto_errstr[encrypt_rv] : "???");
/* print mismatched ciphertext */
if (!ct_match) {
printf(" ciphertexts don't match:\n");
hexdump("got", encrypt_buf, test->msg.len);
hexdump("expected", test->ct.val, test->msg.len);
}
/* print mistmatched tag (MAC) */
if (!tag_match) {
printf(" tags don't match:\n");
hexdump("got", encrypt_buf + test->msg.len,
test->tag.len);
hexdump("expected", test->tag.val, test->tag.len);
}
}
if (!decrypt_pass) {
/* decrypt failed */
/* print return value from crypto_decrypt() */
printf(" decrypt rv = 0x%02x [%s]\n", decrypt_rv,
crypto_errstr[decrypt_rv] ?
crypto_errstr[decrypt_rv] : "???");
/* print mismatched plaintext */
if (!msg_match) {
printf(" plaintexts don't match:\n");
hexdump("got", decrypt_buf, test->msg.len);
hexdump("expected", test->msg.val, test->msg.len);
}
}
if (!pass)
printf("\n");
return (pass);
}
/*
* run the given list of tests.
*
* alginfo: a prefix for the test summary, showing the ICP algo implementation
* in use for this run.
* tests: first test in test list
* outmode: output mode, passed to test_result()
*/
static int
run_tests(const char *alginfo, const crypto_test_t *tests,
crypto_test_outmode_t outmode)
{
int ntests = 0, npass = 0;
/*
* allocate space for the mechanism description, and alg-specific
* params, and hook them up.
*/
crypto_mechanism_t mech = {};
union {
CK_AES_GCM_PARAMS gcm;
CK_AES_CCM_PARAMS ccm;
} params = {};
mech.cm_param = (caddr_t)&params;
/* space for encrypt/decrypt output */
uint8_t encrypt_buf[1024];
uint8_t decrypt_buf[1024];
for (const crypto_test_t *test = tests; test != NULL;
test = test->next) {
ntests++;
/* setup mechanism description for encrypt, then encrypt */
init_mech(&mech, test->alg, test->iv.val, test->iv.len,
test->aad.val, test->aad.len, test->msg.len, test->tag.len,
B_FALSE);
int encrypt_rv = encrypt_one(&mech,
test->key.val, test->key.len,
test->msg.val, test->msg.len,
encrypt_buf, test->msg.len + test->tag.len, NULL);
/* setup mechanism description for decrypt, then decrypt */
init_mech(&mech, test->alg, test->iv.val, test->iv.len,
test->aad.val, test->aad.len, test->msg.len, test->tag.len,
B_TRUE);
int decrypt_rv = decrypt_one(&mech,
test->key.val, test->key.len,
test->ct.val, test->ct.len,
test->tag.val, test->tag.len,
decrypt_buf, test->ct.len, NULL);
/* consider results and if it passed, count it */
if (test_result(test, encrypt_rv, encrypt_buf,
decrypt_rv, decrypt_buf, outmode))
npass++;
}
printf("%s: tests=%d: passed=%d failed=%d\n",
alginfo, ntests, npass, ntests-npass);
return (ntests != npass);
}
/* args for run_test_alg_cb */
typedef struct {
crypto_test_t *tests;
crypto_test_outmode_t outmode;
int failed;
} run_test_alg_args_t;
/* per-alg-impl function for correctness test runs */
static void
run_test_alg_cb(const char *alginfo, void *arg)
{
if (arg == NULL) {
printf("%s: [not supported on this platform]\n", alginfo);
return;
}
run_test_alg_args_t *args = arg;
args->failed += run_tests(alginfo, args->tests, args->outmode);
}
/* main function for correctness tests */
static int
runtests_main(const char *filename, crypto_test_outmode_t outmode)
{
crypto_test_alg_t alg = ALG_NONE;
crypto_test_t *tests = load_tests(filename, &alg);
if (tests == NULL)
return (1);
icp_init();
run_test_alg_args_t args = {
.tests = tests,
.outmode = outmode,
.failed = 0,
};
switch (alg) {
case ALG_AES_CCM:
foreach_aes_ccm(run_test_alg_cb, &args, outmode);
break;
case ALG_AES_GCM:
foreach_aes_gcm(run_test_alg_cb, &args, outmode);
break;
default:
abort();
}
icp_fini();
return (args.failed);
}
/* ========== */
/* performance tests */
/* helper; fill the given buffer with random data */
static int
fill_random(uint8_t *v, size_t sz)
{
int fd = open("/dev/urandom", O_RDONLY);
if (fd < 0)
return (errno);
while (sz > 0) {
ssize_t r = read(fd, v, sz);
if (r < 0) {
close(fd);
return (errno);
}
v += r;
sz -= r;
}
close(fd);
return (0);
}
/* args for perf_alg_cb */
typedef struct {
crypto_test_alg_t alg;
uint8_t *msg;
uint8_t *out;
uint8_t key[32];
uint8_t iv[12];
} perf_alg_args_t;
#define PERF_MSG_SHIFT_MIN (10) /* min test size 2^10 == 1K */
#define PERF_MSG_SHIFT_MAX (19) /* max test size 2^19 == 512K */
#define PERF_ROUNDS (1000) /* 1000 rounds per test */
/* per-alg-impl function for performance test runs */
static void
perf_alg_cb(const char *alginfo, void *arg)
{
char buf[10];
printf("%-28s", alginfo);
if (arg == NULL) {
printf("[not supported on this platform]\n");
return;
}
perf_alg_args_t *args = arg;
/* space for mechanism description */
crypto_mechanism_t mech = {};
union {
CK_AES_GCM_PARAMS gcm;
CK_AES_CCM_PARAMS ccm;
} params = {};
mech.cm_param = (caddr_t)&params;
/* loop for each power-2 input size */
for (int i = PERF_MSG_SHIFT_MIN; i <= PERF_MSG_SHIFT_MAX; i++) {
/* size of input */
size_t sz = 1<<i;
/* initialise mechanism */
init_mech(&mech, args->alg, args->iv, sizeof (args->iv),
val_empty, 0, sz, 16, B_FALSE);
/* run N rounds and accumulate total time */
uint64_t total = 0;
for (int round = 0; round < PERF_ROUNDS; round++) {
uint64_t usec;
encrypt_one(&mech, args->key, sizeof (args->key),
args->msg, sz, args->out, sz+16, &usec);
total += usec;
}
/*
* print avg time per round. zfs_nicetime expects nanoseconds,
* so we multiply first
*/
zfs_nicetime((total*1000)/PERF_ROUNDS, buf, sizeof (buf));
printf(" %5s", buf);
}
printf("\n");
}
/* main function for performance tests */
static int
perf_main(const char *algname, crypto_test_outmode_t outmode)
{
perf_alg_args_t args;
if (strcmp(algname, "AES-CCM") == 0)
args.alg = ALG_AES_CCM;
else if (strcmp(algname, "AES-GCM") == 0)
args.alg = ALG_AES_GCM;
else {
fprintf(stderr, "E: unknown algorithm: %s\n", algname);
return (1);
}
/*
* test runs are often slow, but the very first ones won't be. by
* disabling buffering, we can display results immediately, and
* the user quickly gets an idea of what to expect
*/
setvbuf(stdout, NULL, _IONBF, 0);
/* allocate random data for encrypt input */
size_t maxsz = (1<<PERF_MSG_SHIFT_MAX);
args.msg = malloc(maxsz);
VERIFY0(fill_random(args.msg, maxsz));
/* allocate space for output, +16 bytes for tag */
args.out = malloc(maxsz+16);
/* fill key and iv */
VERIFY0(fill_random(args.key, sizeof (args.key)));
VERIFY0(fill_random(args.iv, sizeof (args.iv)));
icp_init();
/* print header */
char buf[10];
printf("avg encrypt (%4d rounds) ", PERF_ROUNDS);
for (int i = PERF_MSG_SHIFT_MIN; i <= PERF_MSG_SHIFT_MAX; i++) {
zfs_nicebytes(1<<i, buf, sizeof (buf));
printf(" %5s", buf);
}
printf("\n");
/* loop over all implementations of the wanted algorithm */
switch (args.alg) {
case ALG_AES_CCM:
foreach_aes_ccm(perf_alg_cb, &args, outmode);
break;
case ALG_AES_GCM:
foreach_aes_gcm(perf_alg_cb, &args, outmode);
break;
default:
abort();
}
icp_fini();
return (0);
}
/* ========== */
/* main entry */
static void
usage(void)
{
fprintf(stderr,
"usage: crypto_test [-v] < -c <testfile> | -p <alg> >\n");
exit(1);
}
int
main(int argc, char **argv)
{
crypto_test_outmode_t outmode = OUT_SUMMARY;
const char *filename = NULL;
const char *algname = NULL;
int c;
while ((c = getopt(argc, argv, "c:p:v")) != -1) {
switch (c) {
case 'c':
filename = optarg;
break;
case 'p':
algname = optarg;
break;
case 'v':
outmode = (outmode == OUT_SUMMARY) ? OUT_FAIL : OUT_ALL;
break;
case '?':
usage();
}
}
argc -= optind;
argv += optind;
if (filename != NULL && algname != NULL) {
fprintf(stderr, "E: can't use -c and -p together\n");
usage();
}
if (argc != 0)
usage();
if (filename)
return (runtests_main(filename, outmode));
return (perf_main(algname, outmode));
}