2010-08-27 01:24:34 +04:00
|
|
|
/*
|
|
|
|
* CDDL HEADER START
|
|
|
|
*
|
|
|
|
* The contents of this file are subject to the terms of the
|
|
|
|
* Common Development and Distribution License (the "License").
|
|
|
|
* You may not use this file except in compliance with the License.
|
|
|
|
*
|
|
|
|
* You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
|
2022-07-12 00:16:13 +03:00
|
|
|
* or https://opensource.org/licenses/CDDL-1.0.
|
2010-08-27 01:24:34 +04:00
|
|
|
* See the License for the specific language governing permissions
|
|
|
|
* and limitations under the License.
|
|
|
|
*
|
|
|
|
* When distributing Covered Code, include this CDDL HEADER in each
|
|
|
|
* file and include the License file at usr/src/OPENSOLARIS.LICENSE.
|
|
|
|
* If applicable, add the following below this CDDL HEADER, with the
|
|
|
|
* fields enclosed by brackets "[]" replaced with your own identifying
|
|
|
|
* information: Portions Copyright [yyyy] [name of copyright owner]
|
|
|
|
*
|
|
|
|
* CDDL HEADER END
|
|
|
|
*/
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Copyright (c) 2010, Oracle and/or its affiliates. All rights reserved.
|
2015-05-14 01:15:56 +03:00
|
|
|
* Copyright 2015 Nexenta Systems, Inc. All rights reserved.
|
2018-05-24 23:38:47 +03:00
|
|
|
* Copyright (c) 2015, 2018 by Delphix. All rights reserved.
|
2016-01-30 23:20:58 +03:00
|
|
|
* Copyright 2016 Joyent, Inc.
|
2017-02-08 01:02:27 +03:00
|
|
|
* Copyright 2016 Igor Kozhukhov <ikozhukhov@gmail.com>
|
2010-08-27 01:24:34 +04:00
|
|
|
*/
|
|
|
|
|
|
|
|
/*
|
|
|
|
* zfs diff support
|
|
|
|
*/
|
|
|
|
#include <ctype.h>
|
|
|
|
#include <errno.h>
|
|
|
|
#include <libintl.h>
|
|
|
|
#include <string.h>
|
|
|
|
#include <sys/types.h>
|
|
|
|
#include <sys/stat.h>
|
|
|
|
#include <fcntl.h>
|
|
|
|
#include <stddef.h>
|
|
|
|
#include <unistd.h>
|
|
|
|
#include <stdio.h>
|
|
|
|
#include <stdlib.h>
|
|
|
|
#include <pthread.h>
|
|
|
|
#include <sys/zfs_ioctl.h>
|
|
|
|
#include <libzfs.h>
|
2022-12-13 02:30:51 +03:00
|
|
|
#include <libzutil.h>
|
2010-08-27 01:24:34 +04:00
|
|
|
#include "libzfs_impl.h"
|
|
|
|
|
|
|
|
#define ZDIFF_SNAPDIR "/.zfs/snapshot/"
|
|
|
|
#define ZDIFF_PREFIX "zfs-diff-%d"
|
|
|
|
|
|
|
|
#define ZDIFF_ADDED '+'
|
2021-12-10 01:50:41 +03:00
|
|
|
#define ZDIFF_MODIFIED "M"
|
2010-08-27 01:24:34 +04:00
|
|
|
#define ZDIFF_REMOVED '-'
|
2021-12-10 01:50:41 +03:00
|
|
|
#define ZDIFF_RENAMED "R"
|
2010-08-27 01:24:34 +04:00
|
|
|
|
2023-03-14 01:23:04 +03:00
|
|
|
#define ZDIFF_ADDED_COLOR ANSI_GREEN
|
2022-12-13 02:30:51 +03:00
|
|
|
#define ZDIFF_MODIFIED_COLOR ANSI_YELLOW
|
2023-03-14 01:23:04 +03:00
|
|
|
#define ZDIFF_REMOVED_COLOR ANSI_RED
|
|
|
|
#define ZDIFF_RENAMED_COLOR ANSI_BOLD_BLUE
|
2010-08-27 01:24:34 +04:00
|
|
|
|
|
|
|
/*
|
|
|
|
* Given a {dsname, object id}, get the object path
|
|
|
|
*/
|
|
|
|
static int
|
|
|
|
get_stats_for_obj(differ_info_t *di, const char *dsname, uint64_t obj,
|
|
|
|
char *pn, int maxlen, zfs_stat_t *sb)
|
|
|
|
{
|
2013-09-04 16:00:57 +04:00
|
|
|
zfs_cmd_t zc = {"\0"};
|
2010-08-27 01:24:34 +04:00
|
|
|
int error;
|
|
|
|
|
|
|
|
(void) strlcpy(zc.zc_name, dsname, sizeof (zc.zc_name));
|
|
|
|
zc.zc_obj = obj;
|
|
|
|
|
|
|
|
errno = 0;
|
2019-10-24 03:29:43 +03:00
|
|
|
error = zfs_ioctl(di->zhp->zfs_hdl, ZFS_IOC_OBJ_TO_STATS, &zc);
|
2010-08-27 01:24:34 +04:00
|
|
|
di->zerr = errno;
|
|
|
|
|
|
|
|
/* we can get stats even if we failed to get a path */
|
|
|
|
(void) memcpy(sb, &zc.zc_stat, sizeof (zfs_stat_t));
|
|
|
|
if (error == 0) {
|
|
|
|
ASSERT(di->zerr == 0);
|
|
|
|
(void) strlcpy(pn, zc.zc_value, maxlen);
|
|
|
|
return (0);
|
|
|
|
}
|
|
|
|
|
OpenZFS 9421, 9422 - zdb show possibly leaked objects
9421 zdb should detect and print out the number of "leaked" objects
9422 zfs diff and zdb should explicitly mark objects that are on
the deleted queue
It is possible for zfs to "leak" objects in such a way that they are not
freed, but are also not accessible via the POSIX interface. As the only
way to know that this is happened is to see one of them directly in a
zdb run, or by noting unaccounted space usage, zdb should be enhanced to
count these objects and return failure if some are detected.
We have access to the delete queue through the zfs_get_deleteq function;
we should call it in dump_znode to determine if the object is on the
delete queue. This is not the most efficient possible method, but it is
the simplest to implement, and should suffice for the common case where
there few objects on the delete queue.
Also zfs diff and zdb currently traverse every single dnode in a dataset
and tries to figure out the path of the object by following it's parent.
When an object is placed on the delete queue, for all practical purposes
it's already discarded, it's parent might not exist anymore, and another
object might now have the object number that belonged to the parent.
While all of the above makes sense, when trying to figure out the path
of an object that is on the delete queue, we can run into issues where
either it is impossible to determine the path because the parent is
gone, or another dnode has taken it's place and thus we are returned a
wrong path.
We should therefore avoid trying to determine the path of an object on
the delete queue and mark the object itself as being on the delete queue
to avoid confusion. To achieve this, we currently have two ideas:
1. When putting an object on the delete queue, change it's parent object
number to a known constant that means NULL.
2. When displaying objects, first check if it is present on the delete
queue.
Authored by: Paul Dagnelie <pcd@delphix.com>
Reviewed by: Matt Ahrens <matt@delphix.com>
Reviewed by: Pavel Zakharov <pavel.zakharov@delphix.com>
Approved by: Matt Ahrens <mahrens@delphix.com>
Ported-by: Brian Behlendorf <behlendorf1@llnl.gov>
OpenZFS-issue: https://illumos.org/issues/9421
OpenZFS-issue: https://illumos.org/issues/9422
OpenZFS-commit: https://github.com/openzfs/openzfs/commit/45ae0dd9ca
Closes #7500
2017-07-06 20:35:20 +03:00
|
|
|
if (di->zerr == ESTALE) {
|
|
|
|
(void) snprintf(pn, maxlen, "(on_delete_queue)");
|
|
|
|
return (0);
|
|
|
|
} else if (di->zerr == EPERM) {
|
2010-08-27 01:24:34 +04:00
|
|
|
(void) snprintf(di->errbuf, sizeof (di->errbuf),
|
|
|
|
dgettext(TEXT_DOMAIN,
|
|
|
|
"The sys_config privilege or diff delegated permission "
|
|
|
|
"is needed\nto discover path names"));
|
|
|
|
return (-1);
|
Native Encryption for ZFS on Linux
This change incorporates three major pieces:
The first change is a keystore that manages wrapping
and encryption keys for encrypted datasets. These
commands mostly involve manipulating the new
DSL Crypto Key ZAP Objects that live in the MOS. Each
encrypted dataset has its own DSL Crypto Key that is
protected with a user's key. This level of indirection
allows users to change their keys without re-encrypting
their entire datasets. The change implements the new
subcommands "zfs load-key", "zfs unload-key" and
"zfs change-key" which allow the user to manage their
encryption keys and settings. In addition, several new
flags and properties have been added to allow dataset
creation and to make mounting and unmounting more
convenient.
The second piece of this patch provides the ability to
encrypt, decyrpt, and authenticate protected datasets.
Each object set maintains a Merkel tree of Message
Authentication Codes that protect the lower layers,
similarly to how checksums are maintained. This part
impacts the zio layer, which handles the actual
encryption and generation of MACs, as well as the ARC
and DMU, which need to be able to handle encrypted
buffers and protected data.
The last addition is the ability to do raw, encrypted
sends and receives. The idea here is to send raw
encrypted and compressed data and receive it exactly
as is on a backup system. This means that the dataset
on the receiving system is protected using the same
user key that is in use on the sending side. By doing
so, datasets can be efficiently backed up to an
untrusted system without fear of data being
compromised.
Reviewed by: Matthew Ahrens <mahrens@delphix.com>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Reviewed-by: Jorgen Lundman <lundman@lundman.net>
Signed-off-by: Tom Caputi <tcaputi@datto.com>
Closes #494
Closes #5769
2017-08-14 20:36:48 +03:00
|
|
|
} else if (di->zerr == EACCES) {
|
|
|
|
(void) snprintf(di->errbuf, sizeof (di->errbuf),
|
|
|
|
dgettext(TEXT_DOMAIN,
|
|
|
|
"Key must be loaded to discover path names"));
|
|
|
|
return (-1);
|
2010-08-27 01:24:34 +04:00
|
|
|
} else {
|
|
|
|
(void) snprintf(di->errbuf, sizeof (di->errbuf),
|
|
|
|
dgettext(TEXT_DOMAIN,
|
|
|
|
"Unable to determine path or stats for "
|
2010-08-26 20:52:39 +04:00
|
|
|
"object %lld in %s"), (longlong_t)obj, dsname);
|
2010-08-27 01:24:34 +04:00
|
|
|
return (-1);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* stream_bytes
|
|
|
|
*
|
|
|
|
* Prints a file name out a character at a time. If the character is
|
|
|
|
* not in the range of what we consider "printable" ASCII, display it
|
2015-05-16 00:14:56 +03:00
|
|
|
* as an escaped 4-digit octal value. ASCII values less than a space
|
2010-08-27 01:24:34 +04:00
|
|
|
* are all control characters and we declare the upper end as the
|
|
|
|
* DELete character. This also is the last 7-bit ASCII character.
|
|
|
|
* We choose to treat all 8-bit ASCII as not printable for this
|
|
|
|
* application.
|
|
|
|
*/
|
|
|
|
static void
|
|
|
|
stream_bytes(FILE *fp, const char *string)
|
|
|
|
{
|
2016-01-30 23:20:58 +03:00
|
|
|
char c;
|
|
|
|
|
|
|
|
while ((c = *string++) != '\0') {
|
|
|
|
if (c > ' ' && c != '\\' && c < '\177') {
|
2021-12-10 01:42:02 +03:00
|
|
|
(void) fputc(c, fp);
|
2016-01-30 23:20:58 +03:00
|
|
|
} else {
|
2021-12-10 01:42:02 +03:00
|
|
|
(void) fprintf(fp, "\\%04hho", (uint8_t)c);
|
2016-01-30 23:20:58 +03:00
|
|
|
}
|
2010-08-27 01:24:34 +04:00
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2022-12-13 02:30:51 +03:00
|
|
|
/*
|
|
|
|
* Takes the type of change (like `print_file`), outputs the appropriate color
|
|
|
|
*/
|
|
|
|
static const char *
|
|
|
|
type_to_color(char type)
|
|
|
|
{
|
|
|
|
if (type == '+')
|
|
|
|
return (ZDIFF_ADDED_COLOR);
|
|
|
|
else if (type == '-')
|
|
|
|
return (ZDIFF_REMOVED_COLOR);
|
|
|
|
else if (type == 'M')
|
|
|
|
return (ZDIFF_MODIFIED_COLOR);
|
|
|
|
else if (type == 'R')
|
|
|
|
return (ZDIFF_RENAMED_COLOR);
|
|
|
|
else
|
|
|
|
return (NULL);
|
|
|
|
}
|
|
|
|
|
|
|
|
|
2021-12-10 01:44:51 +03:00
|
|
|
static char
|
|
|
|
get_what(mode_t what)
|
2010-08-27 01:24:34 +04:00
|
|
|
{
|
|
|
|
switch (what & S_IFMT) {
|
|
|
|
case S_IFBLK:
|
2021-12-10 01:44:51 +03:00
|
|
|
return ('B');
|
2010-08-27 01:24:34 +04:00
|
|
|
case S_IFCHR:
|
2021-12-10 01:44:51 +03:00
|
|
|
return ('C');
|
2010-08-27 01:24:34 +04:00
|
|
|
case S_IFDIR:
|
2021-12-10 01:44:51 +03:00
|
|
|
return ('/');
|
2010-08-26 22:54:51 +04:00
|
|
|
#ifdef S_IFDOOR
|
2010-08-27 01:24:34 +04:00
|
|
|
case S_IFDOOR:
|
2021-12-10 01:44:51 +03:00
|
|
|
return ('>');
|
2010-08-26 22:54:51 +04:00
|
|
|
#endif
|
2010-08-27 01:24:34 +04:00
|
|
|
case S_IFIFO:
|
2021-12-10 01:44:51 +03:00
|
|
|
return ('|');
|
2010-08-27 01:24:34 +04:00
|
|
|
case S_IFLNK:
|
2021-12-10 01:44:51 +03:00
|
|
|
return ('@');
|
2010-08-26 22:54:51 +04:00
|
|
|
#ifdef S_IFPORT
|
2010-08-27 01:24:34 +04:00
|
|
|
case S_IFPORT:
|
2021-12-10 01:44:51 +03:00
|
|
|
return ('P');
|
2010-08-26 22:54:51 +04:00
|
|
|
#endif
|
2010-08-27 01:24:34 +04:00
|
|
|
case S_IFSOCK:
|
2021-12-10 01:44:51 +03:00
|
|
|
return ('=');
|
2010-08-27 01:24:34 +04:00
|
|
|
case S_IFREG:
|
2021-12-10 01:44:51 +03:00
|
|
|
return ('F');
|
2010-08-27 01:24:34 +04:00
|
|
|
default:
|
2021-12-10 01:44:51 +03:00
|
|
|
return ('?');
|
2010-08-27 01:24:34 +04:00
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
static void
|
|
|
|
print_cmn(FILE *fp, differ_info_t *di, const char *file)
|
|
|
|
{
|
2021-12-10 02:02:52 +03:00
|
|
|
if (!di->no_mangle) {
|
|
|
|
stream_bytes(fp, di->dsmnt);
|
|
|
|
stream_bytes(fp, file);
|
|
|
|
} else {
|
|
|
|
(void) fputs(di->dsmnt, fp);
|
|
|
|
(void) fputs(file, fp);
|
|
|
|
}
|
2010-08-27 01:24:34 +04:00
|
|
|
}
|
|
|
|
|
|
|
|
static void
|
|
|
|
print_rename(FILE *fp, differ_info_t *di, const char *old, const char *new,
|
|
|
|
zfs_stat_t *isb)
|
|
|
|
{
|
2022-12-13 02:30:51 +03:00
|
|
|
if (isatty(fileno(fp)))
|
|
|
|
color_start(ZDIFF_RENAMED_COLOR);
|
2010-08-27 01:24:34 +04:00
|
|
|
if (di->timestamped)
|
|
|
|
(void) fprintf(fp, "%10lld.%09lld\t",
|
|
|
|
(longlong_t)isb->zs_ctime[0],
|
|
|
|
(longlong_t)isb->zs_ctime[1]);
|
2021-12-10 01:50:41 +03:00
|
|
|
(void) fputs(ZDIFF_RENAMED "\t", fp);
|
2021-12-10 01:44:51 +03:00
|
|
|
if (di->classify)
|
|
|
|
(void) fprintf(fp, "%c\t", get_what(isb->zs_mode));
|
2010-08-27 01:24:34 +04:00
|
|
|
print_cmn(fp, di, old);
|
2021-12-10 01:50:41 +03:00
|
|
|
(void) fputs(di->scripted ? "\t" : " -> ", fp);
|
2010-08-27 01:24:34 +04:00
|
|
|
print_cmn(fp, di, new);
|
2021-12-10 01:50:41 +03:00
|
|
|
(void) fputc('\n', fp);
|
2022-12-13 02:30:51 +03:00
|
|
|
|
|
|
|
if (isatty(fileno(fp)))
|
|
|
|
color_end();
|
2010-08-27 01:24:34 +04:00
|
|
|
}
|
|
|
|
|
|
|
|
static void
|
|
|
|
print_link_change(FILE *fp, differ_info_t *di, int delta, const char *file,
|
|
|
|
zfs_stat_t *isb)
|
|
|
|
{
|
2022-12-13 02:30:51 +03:00
|
|
|
if (isatty(fileno(fp)))
|
|
|
|
color_start(ZDIFF_MODIFIED_COLOR);
|
|
|
|
|
2010-08-27 01:24:34 +04:00
|
|
|
if (di->timestamped)
|
|
|
|
(void) fprintf(fp, "%10lld.%09lld\t",
|
|
|
|
(longlong_t)isb->zs_ctime[0],
|
|
|
|
(longlong_t)isb->zs_ctime[1]);
|
2021-12-10 01:50:41 +03:00
|
|
|
(void) fputs(ZDIFF_MODIFIED "\t", fp);
|
2021-12-10 01:44:51 +03:00
|
|
|
if (di->classify)
|
|
|
|
(void) fprintf(fp, "%c\t", get_what(isb->zs_mode));
|
2010-08-27 01:24:34 +04:00
|
|
|
print_cmn(fp, di, file);
|
2021-12-10 01:50:41 +03:00
|
|
|
(void) fprintf(fp, "\t(%+d)\n", delta);
|
2022-12-13 02:30:51 +03:00
|
|
|
if (isatty(fileno(fp)))
|
|
|
|
color_end();
|
2010-08-27 01:24:34 +04:00
|
|
|
}
|
|
|
|
|
|
|
|
static void
|
|
|
|
print_file(FILE *fp, differ_info_t *di, char type, const char *file,
|
|
|
|
zfs_stat_t *isb)
|
|
|
|
{
|
2022-12-13 02:30:51 +03:00
|
|
|
if (isatty(fileno(fp)))
|
|
|
|
color_start(type_to_color(type));
|
|
|
|
|
2010-08-27 01:24:34 +04:00
|
|
|
if (di->timestamped)
|
|
|
|
(void) fprintf(fp, "%10lld.%09lld\t",
|
|
|
|
(longlong_t)isb->zs_ctime[0],
|
|
|
|
(longlong_t)isb->zs_ctime[1]);
|
|
|
|
(void) fprintf(fp, "%c\t", type);
|
2021-12-10 01:44:51 +03:00
|
|
|
if (di->classify)
|
|
|
|
(void) fprintf(fp, "%c\t", get_what(isb->zs_mode));
|
2010-08-27 01:24:34 +04:00
|
|
|
print_cmn(fp, di, file);
|
2021-12-10 01:50:41 +03:00
|
|
|
(void) fputc('\n', fp);
|
2022-12-13 02:30:51 +03:00
|
|
|
|
|
|
|
if (isatty(fileno(fp)))
|
|
|
|
color_end();
|
2010-08-27 01:24:34 +04:00
|
|
|
}
|
|
|
|
|
|
|
|
static int
|
|
|
|
write_inuse_diffs_one(FILE *fp, differ_info_t *di, uint64_t dobj)
|
|
|
|
{
|
|
|
|
struct zfs_stat fsb, tsb;
|
|
|
|
mode_t fmode, tmode;
|
|
|
|
char fobjname[MAXPATHLEN], tobjname[MAXPATHLEN];
|
2021-06-05 00:00:39 +03:00
|
|
|
boolean_t already_logged = B_FALSE;
|
2010-08-27 01:24:34 +04:00
|
|
|
int fobjerr, tobjerr;
|
|
|
|
int change;
|
|
|
|
|
|
|
|
if (dobj == di->shares)
|
|
|
|
return (0);
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Check the from and to snapshots for info on the object. If
|
|
|
|
* we get ENOENT, then the object just didn't exist in that
|
|
|
|
* snapshot. If we get ENOTSUP, then we tried to get
|
|
|
|
* info on a non-ZPL object, which we don't care about anyway.
|
2021-06-05 00:00:39 +03:00
|
|
|
* For any other error we print a warning which includes the
|
|
|
|
* errno and continue.
|
2010-08-27 01:24:34 +04:00
|
|
|
*/
|
2021-06-05 00:00:39 +03:00
|
|
|
|
2010-08-27 01:24:34 +04:00
|
|
|
fobjerr = get_stats_for_obj(di, di->fromsnap, dobj, fobjname,
|
|
|
|
MAXPATHLEN, &fsb);
|
2021-06-05 00:00:39 +03:00
|
|
|
if (fobjerr && di->zerr != ENOTSUP && di->zerr != ENOENT) {
|
2024-01-23 02:28:18 +03:00
|
|
|
zfs_error_aux(di->zhp->zfs_hdl, "%s", zfs_strerror(di->zerr));
|
2021-06-05 00:00:39 +03:00
|
|
|
zfs_error(di->zhp->zfs_hdl, di->zerr, di->errbuf);
|
|
|
|
/*
|
|
|
|
* Let's not print an error for the same object more than
|
|
|
|
* once if it happens in both snapshots
|
|
|
|
*/
|
|
|
|
already_logged = B_TRUE;
|
|
|
|
}
|
2010-08-27 01:24:34 +04:00
|
|
|
|
|
|
|
tobjerr = get_stats_for_obj(di, di->tosnap, dobj, tobjname,
|
|
|
|
MAXPATHLEN, &tsb);
|
|
|
|
|
2021-06-05 00:00:39 +03:00
|
|
|
if (tobjerr && di->zerr != ENOTSUP && di->zerr != ENOENT) {
|
|
|
|
if (!already_logged) {
|
2021-06-05 02:04:37 +03:00
|
|
|
zfs_error_aux(di->zhp->zfs_hdl,
|
2024-01-23 02:28:18 +03:00
|
|
|
"%s", zfs_strerror(di->zerr));
|
2021-06-05 00:00:39 +03:00
|
|
|
zfs_error(di->zhp->zfs_hdl, di->zerr, di->errbuf);
|
|
|
|
}
|
|
|
|
}
|
2010-08-27 01:24:34 +04:00
|
|
|
/*
|
|
|
|
* Unallocated object sharing the same meta dnode block
|
|
|
|
*/
|
|
|
|
if (fobjerr && tobjerr) {
|
|
|
|
di->zerr = 0;
|
|
|
|
return (0);
|
|
|
|
}
|
|
|
|
|
|
|
|
di->zerr = 0; /* negate get_stats_for_obj() from side that failed */
|
|
|
|
fmode = fsb.zs_mode & S_IFMT;
|
|
|
|
tmode = tsb.zs_mode & S_IFMT;
|
|
|
|
if (fmode == S_IFDIR || tmode == S_IFDIR || fsb.zs_links == 0 ||
|
|
|
|
tsb.zs_links == 0)
|
|
|
|
change = 0;
|
|
|
|
else
|
|
|
|
change = tsb.zs_links - fsb.zs_links;
|
|
|
|
|
|
|
|
if (fobjerr) {
|
|
|
|
if (change) {
|
|
|
|
print_link_change(fp, di, change, tobjname, &tsb);
|
|
|
|
return (0);
|
|
|
|
}
|
|
|
|
print_file(fp, di, ZDIFF_ADDED, tobjname, &tsb);
|
|
|
|
return (0);
|
|
|
|
} else if (tobjerr) {
|
|
|
|
if (change) {
|
|
|
|
print_link_change(fp, di, change, fobjname, &fsb);
|
|
|
|
return (0);
|
|
|
|
}
|
|
|
|
print_file(fp, di, ZDIFF_REMOVED, fobjname, &fsb);
|
|
|
|
return (0);
|
|
|
|
}
|
|
|
|
|
|
|
|
if (fmode != tmode && fsb.zs_gen == tsb.zs_gen)
|
|
|
|
tsb.zs_gen++; /* Force a generational difference */
|
|
|
|
|
|
|
|
/* Simple modification or no change */
|
|
|
|
if (fsb.zs_gen == tsb.zs_gen) {
|
|
|
|
/* No apparent changes. Could we assert !this? */
|
|
|
|
if (fsb.zs_ctime[0] == tsb.zs_ctime[0] &&
|
|
|
|
fsb.zs_ctime[1] == tsb.zs_ctime[1])
|
|
|
|
return (0);
|
|
|
|
if (change) {
|
|
|
|
print_link_change(fp, di, change,
|
|
|
|
change > 0 ? fobjname : tobjname, &tsb);
|
2015-11-12 05:33:52 +03:00
|
|
|
} else if (strcmp(fobjname, tobjname) == 0) {
|
2021-12-10 01:50:41 +03:00
|
|
|
print_file(fp, di, *ZDIFF_MODIFIED, fobjname, &tsb);
|
2010-08-27 01:24:34 +04:00
|
|
|
} else {
|
|
|
|
print_rename(fp, di, fobjname, tobjname, &tsb);
|
|
|
|
}
|
|
|
|
return (0);
|
|
|
|
} else {
|
|
|
|
/* file re-created or object re-used */
|
|
|
|
print_file(fp, di, ZDIFF_REMOVED, fobjname, &fsb);
|
|
|
|
print_file(fp, di, ZDIFF_ADDED, tobjname, &tsb);
|
|
|
|
return (0);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
static int
|
|
|
|
write_inuse_diffs(FILE *fp, differ_info_t *di, dmu_diff_record_t *dr)
|
|
|
|
{
|
|
|
|
uint64_t o;
|
|
|
|
int err;
|
|
|
|
|
|
|
|
for (o = dr->ddr_first; o <= dr->ddr_last; o++) {
|
2017-02-08 01:02:27 +03:00
|
|
|
if ((err = write_inuse_diffs_one(fp, di, o)) != 0)
|
2010-08-27 01:24:34 +04:00
|
|
|
return (err);
|
|
|
|
}
|
|
|
|
return (0);
|
|
|
|
}
|
|
|
|
|
|
|
|
static int
|
|
|
|
describe_free(FILE *fp, differ_info_t *di, uint64_t object, char *namebuf,
|
|
|
|
int maxlen)
|
|
|
|
{
|
|
|
|
struct zfs_stat sb;
|
|
|
|
|
2021-06-05 00:00:39 +03:00
|
|
|
(void) get_stats_for_obj(di, di->fromsnap, object, namebuf,
|
|
|
|
maxlen, &sb);
|
|
|
|
|
2018-05-24 23:38:47 +03:00
|
|
|
/* Don't print if in the delete queue on from side */
|
2021-06-05 00:00:39 +03:00
|
|
|
if (di->zerr == ESTALE || di->zerr == ENOENT) {
|
2018-05-24 23:38:47 +03:00
|
|
|
di->zerr = 0;
|
|
|
|
return (0);
|
|
|
|
}
|
2010-08-27 01:24:34 +04:00
|
|
|
|
|
|
|
print_file(fp, di, ZDIFF_REMOVED, namebuf, &sb);
|
|
|
|
return (0);
|
|
|
|
}
|
|
|
|
|
|
|
|
static int
|
|
|
|
write_free_diffs(FILE *fp, differ_info_t *di, dmu_diff_record_t *dr)
|
|
|
|
{
|
2013-09-04 16:00:57 +04:00
|
|
|
zfs_cmd_t zc = {"\0"};
|
2010-08-27 01:24:34 +04:00
|
|
|
libzfs_handle_t *lhdl = di->zhp->zfs_hdl;
|
|
|
|
char fobjname[MAXPATHLEN];
|
|
|
|
|
|
|
|
(void) strlcpy(zc.zc_name, di->fromsnap, sizeof (zc.zc_name));
|
|
|
|
zc.zc_obj = dr->ddr_first - 1;
|
|
|
|
|
|
|
|
ASSERT(di->zerr == 0);
|
|
|
|
|
|
|
|
while (zc.zc_obj < dr->ddr_last) {
|
|
|
|
int err;
|
|
|
|
|
2019-10-24 03:29:43 +03:00
|
|
|
err = zfs_ioctl(lhdl, ZFS_IOC_NEXT_OBJ, &zc);
|
2010-08-27 01:24:34 +04:00
|
|
|
if (err == 0) {
|
|
|
|
if (zc.zc_obj == di->shares) {
|
|
|
|
zc.zc_obj++;
|
|
|
|
continue;
|
|
|
|
}
|
|
|
|
if (zc.zc_obj > dr->ddr_last) {
|
|
|
|
break;
|
|
|
|
}
|
Cleanup: Address Clang's static analyzer's unused code complaints
These were categorized as the following:
* Dead assignment 23
* Dead increment 4
* Dead initialization 6
* Dead nested assignment 18
Most of these are harmless, but since actual issues can hide among them,
we correct them.
That said, there were a few return values that were being ignored that
appeared to merit some correction:
* `destroy_callback()` in `cmd/zfs/zfs_main.c` ignored the error from
`destroy_batched()`. We handle it by returning -1 if there is an
error.
* `zfs_do_upgrade()` in `cmd/zfs/zfs_main.c` ignored the error from
`zfs_for_each()`. We handle it by doing a binary OR of the error
value from the subsequent `zfs_for_each()` call to the existing
value. This is how errors are mostly handled inside `zfs_for_each()`.
The error value here is passed to exit from the zfs command, so doing
a binary or on it is better than what we did previously.
* `get_zap_prop()` in `module/zfs/zcp_get.c` ignored the error from
`dsl_prop_get_ds()` when the property is not of type string. We
return an error when it does. There is a small concern that the
`zfs_get_temporary_prop()` call would handle things, but in the case
that it does not, we would be pushing an uninitialized numval onto
the lua stack. It is expected that `dsl_prop_get_ds()` will succeed
anytime that `zfs_get_temporary_prop()` does, so that not giving it a
chance to fix things is not a problem.
* `draid_merge_impl()` in `tests/zfs-tests/cmd/draid.c` used
`nvlist_add_nvlist()` twice in ways in which errors are expected to
be impossible, so we switch to `fnvlist_add_nvlist()`.
A few notable ones did not merit use of the return value, so we
suppressed it with `(void)`:
* `write_free_diffs()` in `lib/libzfs/libzfs_diff.c` ignored the error
value from `describe_free()`. A look through the commit history
revealed that this was intentional.
* `arc_evict_hdr()` in `module/zfs/arc.c` did not need to use the
returned handle from `arc_hdr_realloc()` because it is already
referenced in lists.
* `spa_vdev_detach()` in `module/zfs/spa.c` has a comment explicitly
saying not to use the error from `vdev_label_init()` because whatever
causes the error could be the reason why a detach is being done.
Unfortunately, I am not presently able to analyze the kernel modules
with Clang's static analyzer, so I could have missed some cases of this.
In cases where reports were present in code that is duplicated between
Linux and FreeBSD, I made a conscious effort to fix the FreeBSD version
too.
After this commit is merged, regressions like dee8934 should become
extremely obvious with Clang's static analyzer since a regression would
appear in the results as the only instance of unused code. That assumes
that Coverity does not catch the issue first.
My local branch with fixes from all of my outstanding non-draft pull
requests shows 118 reports from Clang's static anlayzer after this
patch. That is down by 51 from 169.
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Reviewed-by: Cedric Berger <cedric@precidata.com>
Signed-off-by: Richard Yao <richard.yao@alumni.stonybrook.edu>
Closes #13986
2022-10-14 23:37:54 +03:00
|
|
|
(void) describe_free(fp, di, zc.zc_obj, fobjname,
|
2010-08-27 01:24:34 +04:00
|
|
|
MAXPATHLEN);
|
|
|
|
} else if (errno == ESRCH) {
|
|
|
|
break;
|
|
|
|
} else {
|
|
|
|
(void) snprintf(di->errbuf, sizeof (di->errbuf),
|
|
|
|
dgettext(TEXT_DOMAIN,
|
|
|
|
"next allocated object (> %lld) find failure"),
|
2010-08-26 20:52:39 +04:00
|
|
|
(longlong_t)zc.zc_obj);
|
2010-08-27 01:24:34 +04:00
|
|
|
di->zerr = errno;
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
if (di->zerr)
|
|
|
|
return (-1);
|
|
|
|
return (0);
|
|
|
|
}
|
|
|
|
|
|
|
|
static void *
|
|
|
|
differ(void *arg)
|
|
|
|
{
|
|
|
|
differ_info_t *di = arg;
|
|
|
|
dmu_diff_record_t dr;
|
|
|
|
FILE *ofp;
|
|
|
|
int err = 0;
|
|
|
|
|
|
|
|
if ((ofp = fdopen(di->outputfd, "w")) == NULL) {
|
|
|
|
di->zerr = errno;
|
2024-01-23 02:28:18 +03:00
|
|
|
strlcpy(di->errbuf, zfs_strerror(errno), sizeof (di->errbuf));
|
2010-08-27 01:24:34 +04:00
|
|
|
(void) close(di->datafd);
|
|
|
|
return ((void *)-1);
|
|
|
|
}
|
|
|
|
|
|
|
|
for (;;) {
|
|
|
|
char *cp = (char *)&dr;
|
|
|
|
int len = sizeof (dr);
|
|
|
|
int rv;
|
|
|
|
|
|
|
|
do {
|
|
|
|
rv = read(di->datafd, cp, len);
|
|
|
|
cp += rv;
|
|
|
|
len -= rv;
|
|
|
|
} while (len > 0 && rv > 0);
|
|
|
|
|
|
|
|
if (rv < 0 || (rv == 0 && len != sizeof (dr))) {
|
|
|
|
di->zerr = EPIPE;
|
|
|
|
break;
|
|
|
|
} else if (rv == 0) {
|
|
|
|
/* end of file at a natural breaking point */
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
|
|
|
|
switch (dr.ddr_type) {
|
|
|
|
case DDR_FREE:
|
|
|
|
err = write_free_diffs(ofp, di, &dr);
|
|
|
|
break;
|
|
|
|
case DDR_INUSE:
|
|
|
|
err = write_inuse_diffs(ofp, di, &dr);
|
|
|
|
break;
|
|
|
|
default:
|
|
|
|
di->zerr = EPIPE;
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
|
|
|
|
if (err || di->zerr)
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
|
|
|
|
(void) fclose(ofp);
|
|
|
|
(void) close(di->datafd);
|
|
|
|
if (err)
|
|
|
|
return ((void *)-1);
|
|
|
|
if (di->zerr) {
|
2019-05-20 03:31:54 +03:00
|
|
|
ASSERT(di->zerr == EPIPE);
|
2010-08-27 01:24:34 +04:00
|
|
|
(void) snprintf(di->errbuf, sizeof (di->errbuf),
|
|
|
|
dgettext(TEXT_DOMAIN,
|
|
|
|
"Internal error: bad data from diff IOCTL"));
|
|
|
|
return ((void *)-1);
|
|
|
|
}
|
|
|
|
return ((void *)0);
|
|
|
|
}
|
|
|
|
|
|
|
|
static int
|
|
|
|
make_temp_snapshot(differ_info_t *di)
|
|
|
|
{
|
|
|
|
libzfs_handle_t *hdl = di->zhp->zfs_hdl;
|
2013-09-04 16:00:57 +04:00
|
|
|
zfs_cmd_t zc = {"\0"};
|
2010-08-27 01:24:34 +04:00
|
|
|
|
|
|
|
(void) snprintf(zc.zc_value, sizeof (zc.zc_value),
|
|
|
|
ZDIFF_PREFIX, getpid());
|
|
|
|
(void) strlcpy(zc.zc_name, di->ds, sizeof (zc.zc_name));
|
|
|
|
zc.zc_cleanup_fd = di->cleanupfd;
|
|
|
|
|
2019-10-24 03:29:43 +03:00
|
|
|
if (zfs_ioctl(hdl, ZFS_IOC_TMP_SNAPSHOT, &zc) != 0) {
|
2010-08-27 01:24:34 +04:00
|
|
|
int err = errno;
|
|
|
|
if (err == EPERM) {
|
|
|
|
(void) snprintf(di->errbuf, sizeof (di->errbuf),
|
|
|
|
dgettext(TEXT_DOMAIN, "The diff delegated "
|
|
|
|
"permission is needed in order\nto create a "
|
|
|
|
"just-in-time snapshot for diffing\n"));
|
|
|
|
return (zfs_error(hdl, EZFS_DIFF, di->errbuf));
|
|
|
|
} else {
|
|
|
|
(void) snprintf(di->errbuf, sizeof (di->errbuf),
|
|
|
|
dgettext(TEXT_DOMAIN, "Cannot create just-in-time "
|
|
|
|
"snapshot of '%s'"), zc.zc_name);
|
|
|
|
return (zfs_standard_error(hdl, err, di->errbuf));
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
di->tmpsnap = zfs_strdup(hdl, zc.zc_value);
|
|
|
|
di->tosnap = zfs_asprintf(hdl, "%s@%s", di->ds, di->tmpsnap);
|
|
|
|
return (0);
|
|
|
|
}
|
|
|
|
|
|
|
|
static void
|
|
|
|
teardown_differ_info(differ_info_t *di)
|
|
|
|
{
|
|
|
|
free(di->ds);
|
|
|
|
free(di->dsmnt);
|
|
|
|
free(di->fromsnap);
|
|
|
|
free(di->frommnt);
|
|
|
|
free(di->tosnap);
|
|
|
|
free(di->tmpsnap);
|
|
|
|
free(di->tomnt);
|
|
|
|
(void) close(di->cleanupfd);
|
|
|
|
}
|
|
|
|
|
|
|
|
static int
|
|
|
|
get_snapshot_names(differ_info_t *di, const char *fromsnap,
|
|
|
|
const char *tosnap)
|
|
|
|
{
|
|
|
|
libzfs_handle_t *hdl = di->zhp->zfs_hdl;
|
|
|
|
char *atptrf = NULL;
|
|
|
|
char *atptrt = NULL;
|
|
|
|
int fdslen, fsnlen;
|
|
|
|
int tdslen, tsnlen;
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Can accept
|
2016-12-09 21:59:36 +03:00
|
|
|
* fdslen fsnlen tdslen tsnlen
|
|
|
|
* dataset@snap1
|
|
|
|
* 0. dataset@snap1 dataset@snap2 >0 >1 >0 >1
|
|
|
|
* 1. dataset@snap1 @snap2 >0 >1 ==0 >1
|
|
|
|
* 2. dataset@snap1 dataset >0 >1 >0 ==0
|
|
|
|
* 3. @snap1 dataset@snap2 ==0 >1 >0 >1
|
|
|
|
* 4. @snap1 dataset ==0 >1 >0 ==0
|
2010-08-27 01:24:34 +04:00
|
|
|
*/
|
|
|
|
if (tosnap == NULL) {
|
|
|
|
/* only a from snapshot given, must be valid */
|
|
|
|
(void) snprintf(di->errbuf, sizeof (di->errbuf),
|
|
|
|
dgettext(TEXT_DOMAIN,
|
|
|
|
"Badly formed snapshot name %s"), fromsnap);
|
|
|
|
|
|
|
|
if (!zfs_validate_name(hdl, fromsnap, ZFS_TYPE_SNAPSHOT,
|
|
|
|
B_FALSE)) {
|
|
|
|
return (zfs_error(hdl, EZFS_INVALIDNAME,
|
|
|
|
di->errbuf));
|
|
|
|
}
|
|
|
|
|
|
|
|
atptrf = strchr(fromsnap, '@');
|
|
|
|
ASSERT(atptrf != NULL);
|
|
|
|
fdslen = atptrf - fromsnap;
|
|
|
|
|
|
|
|
di->fromsnap = zfs_strdup(hdl, fromsnap);
|
|
|
|
di->ds = zfs_strdup(hdl, fromsnap);
|
|
|
|
di->ds[fdslen] = '\0';
|
|
|
|
|
|
|
|
/* the to snap will be a just-in-time snap of the head */
|
|
|
|
return (make_temp_snapshot(di));
|
|
|
|
}
|
|
|
|
|
|
|
|
(void) snprintf(di->errbuf, sizeof (di->errbuf),
|
|
|
|
dgettext(TEXT_DOMAIN,
|
|
|
|
"Unable to determine which snapshots to compare"));
|
|
|
|
|
|
|
|
atptrf = strchr(fromsnap, '@');
|
|
|
|
atptrt = strchr(tosnap, '@');
|
|
|
|
fdslen = atptrf ? atptrf - fromsnap : strlen(fromsnap);
|
|
|
|
tdslen = atptrt ? atptrt - tosnap : strlen(tosnap);
|
|
|
|
fsnlen = strlen(fromsnap) - fdslen; /* includes @ sign */
|
|
|
|
tsnlen = strlen(tosnap) - tdslen; /* includes @ sign */
|
|
|
|
|
2016-12-09 21:59:36 +03:00
|
|
|
if (fsnlen <= 1 || tsnlen == 1 || (fdslen == 0 && tdslen == 0)) {
|
2010-08-27 01:24:34 +04:00
|
|
|
return (zfs_error(hdl, EZFS_INVALIDNAME, di->errbuf));
|
|
|
|
} else if ((fdslen > 0 && tdslen > 0) &&
|
|
|
|
((tdslen != fdslen || strncmp(fromsnap, tosnap, fdslen) != 0))) {
|
|
|
|
/*
|
|
|
|
* not the same dataset name, might be okay if
|
|
|
|
* tosnap is a clone of a fromsnap descendant.
|
|
|
|
*/
|
2016-06-16 00:28:36 +03:00
|
|
|
char origin[ZFS_MAX_DATASET_NAME_LEN];
|
undocumented libzfs API changes broke "zfs list"
While OpenZFS does permit breaking changes to the libzfs API, we should
avoid these changes when reasonably possible, and take steps to mitigate
the impact to consumers when changes are necessary.
Commit e4288a8397bb1f made a libzfs API change that is especially
difficult for consumers because there is no change to the function
signatures, only to their behavior. Therefore, consumers can't notice
that there was a change at compile time. Also, the API change was
incompletely and incorrectly documented.
The commit message mentions `zfs_get_prop()` [sic], but all callers of
`get_numeric_property()` are impacted: `zfs_prop_get()`,
`zfs_prop_get_numeric()`, and `zfs_prop_get_int()`.
`zfs_prop_get_int()` always calls `get_numeric_property(src=NULL)`, so
it assumes that the filesystem is not mounted. This means that e.g.
`zfs_prop_get_int(ZFS_PROP_MOUNTED)` always returns 0.
The documentation says that to preserve the previous behavior, callers
should initialize `*src=ZPROP_SRC_NONE`, and some callers were changed
to do that. However, the existing behavior is actually preserved by
initializing `*src=ZPROP_SRC_ALL`, not `NONE`.
The code comment above `zfs_prop_get()` says, "src: ... NULL will be
treated as ZPROP_SRC_ALL.". However, the code actually treats NULL as
ZPROP_SRC_NONE. i.e. `zfs_prop_get(src=NULL)` assumes that the
filesystem is not mounted.
There are several existing calls which use `src=NULL` which are impacted
by the API change, most noticeably those used by `zfs list`, which now
assumes that filesystems are not mounted. For example,
`zfs list -o name,mounted` previously indicated whether a filesystem was
mounted or not, but now it always (incorrectly) indicates that the
filesystem is not mounted (`MOUNTED: no`). Similarly, properties that
are set at mount time are ignored. E.g. `zfs list -o name,atime` may
display an incorrect value if it was set at mount time.
To address these problems, this commit reverts commit e4288a8397bb1f:
"zfs get: don't lookup mount options when using "-s local""
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Matthew Ahrens <mahrens@delphix.com>
Closes #11999
2021-05-06 21:24:56 +03:00
|
|
|
zprop_source_t src;
|
2010-08-27 01:24:34 +04:00
|
|
|
zfs_handle_t *zhp;
|
|
|
|
|
|
|
|
di->ds = zfs_alloc(di->zhp->zfs_hdl, tdslen + 1);
|
Cleanup: Switch to strlcpy from strncpy
Coverity found a bug in `zfs_secpolicy_create_clone()` where it is
possible for us to pass an unterminated string when `zfs_get_parent()`
returns an error. Upon inspection, it is clear that using `strlcpy()`
would have avoided this issue.
Looking at the codebase, there are a number of other uses of `strncpy()`
that are unsafe and even when it is used safely, switching to
`strlcpy()` would make the code more readable. Therefore, we switch all
instances where we use `strncpy()` to use `strlcpy()`.
Unfortunately, we do not portably have access to `strlcpy()` in
tests/zfs-tests/cmd/zfs_diff-socket.c because it does not link to
libspl. Modifying the appropriate Makefile.am to try to link to it
resulted in an error from the naming choice used in the file. Trying to
disable the check on the file did not work on FreeBSD because Clang
ignores `#undef` when a definition is provided by `-Dstrncpy(...)=...`.
We workaround that by explictly including the C file from libspl into
the test. This makes things build correctly everywhere.
We add a deprecation warning to `config/Rules.am` and suppress it on the
remaining `strncpy()` usage. `strlcpy()` is not portably avaliable in
tests/zfs-tests/cmd/zfs_diff-socket.c, so we use `snprintf()` there as a
substitute.
This patch does not tackle the related problem of `strcpy()`, which is
even less safe. Thankfully, a quick inspection found that it is used far
more correctly than strncpy() was used. A quick inspection did not find
any problems with `strcpy()` usage outside of zhack, but it should be
said that I only checked around 90% of them.
Lastly, some of the fields in kstat_t varied in size by 1 depending on
whether they were in userspace or in the kernel. The origin of this
discrepancy appears to be 04a479f7066ccdaa23a6546955303b172f4a6909 where
it was made for no apparent reason. It conflicts with the comment on
KSTAT_STRLEN, so we shrink the kernel field sizes to match the userspace
field sizes.
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Reviewed-by: Ryan Moeller <ryan@iXsystems.com>
Signed-off-by: Richard Yao <richard.yao@alumni.stonybrook.edu>
Closes #13876
2022-09-28 02:35:29 +03:00
|
|
|
(void) strlcpy(di->ds, tosnap, tdslen + 1);
|
2010-08-27 01:24:34 +04:00
|
|
|
|
|
|
|
zhp = zfs_open(hdl, di->ds, ZFS_TYPE_FILESYSTEM);
|
|
|
|
while (zhp != NULL) {
|
2015-05-14 01:15:56 +03:00
|
|
|
if (zfs_prop_get(zhp, ZFS_PROP_ORIGIN, origin,
|
|
|
|
sizeof (origin), &src, NULL, 0, B_FALSE) != 0) {
|
|
|
|
(void) zfs_close(zhp);
|
|
|
|
zhp = NULL;
|
|
|
|
break;
|
|
|
|
}
|
2010-08-27 01:24:34 +04:00
|
|
|
if (strncmp(origin, fromsnap, fsnlen) == 0)
|
|
|
|
break;
|
|
|
|
|
|
|
|
(void) zfs_close(zhp);
|
|
|
|
zhp = zfs_open(hdl, origin, ZFS_TYPE_FILESYSTEM);
|
|
|
|
}
|
|
|
|
|
|
|
|
if (zhp == NULL) {
|
|
|
|
(void) snprintf(di->errbuf, sizeof (di->errbuf),
|
|
|
|
dgettext(TEXT_DOMAIN,
|
|
|
|
"Not an earlier snapshot from the same fs"));
|
|
|
|
return (zfs_error(hdl, EZFS_INVALIDNAME, di->errbuf));
|
|
|
|
} else {
|
|
|
|
(void) zfs_close(zhp);
|
|
|
|
}
|
|
|
|
|
|
|
|
di->isclone = B_TRUE;
|
|
|
|
di->fromsnap = zfs_strdup(hdl, fromsnap);
|
2022-03-16 21:51:28 +03:00
|
|
|
if (tsnlen)
|
2010-08-27 01:24:34 +04:00
|
|
|
di->tosnap = zfs_strdup(hdl, tosnap);
|
2022-03-16 21:51:28 +03:00
|
|
|
else
|
2010-08-27 01:24:34 +04:00
|
|
|
return (make_temp_snapshot(di));
|
|
|
|
} else {
|
|
|
|
int dslen = fdslen ? fdslen : tdslen;
|
|
|
|
|
|
|
|
di->ds = zfs_alloc(hdl, dslen + 1);
|
Cleanup: Switch to strlcpy from strncpy
Coverity found a bug in `zfs_secpolicy_create_clone()` where it is
possible for us to pass an unterminated string when `zfs_get_parent()`
returns an error. Upon inspection, it is clear that using `strlcpy()`
would have avoided this issue.
Looking at the codebase, there are a number of other uses of `strncpy()`
that are unsafe and even when it is used safely, switching to
`strlcpy()` would make the code more readable. Therefore, we switch all
instances where we use `strncpy()` to use `strlcpy()`.
Unfortunately, we do not portably have access to `strlcpy()` in
tests/zfs-tests/cmd/zfs_diff-socket.c because it does not link to
libspl. Modifying the appropriate Makefile.am to try to link to it
resulted in an error from the naming choice used in the file. Trying to
disable the check on the file did not work on FreeBSD because Clang
ignores `#undef` when a definition is provided by `-Dstrncpy(...)=...`.
We workaround that by explictly including the C file from libspl into
the test. This makes things build correctly everywhere.
We add a deprecation warning to `config/Rules.am` and suppress it on the
remaining `strncpy()` usage. `strlcpy()` is not portably avaliable in
tests/zfs-tests/cmd/zfs_diff-socket.c, so we use `snprintf()` there as a
substitute.
This patch does not tackle the related problem of `strcpy()`, which is
even less safe. Thankfully, a quick inspection found that it is used far
more correctly than strncpy() was used. A quick inspection did not find
any problems with `strcpy()` usage outside of zhack, but it should be
said that I only checked around 90% of them.
Lastly, some of the fields in kstat_t varied in size by 1 depending on
whether they were in userspace or in the kernel. The origin of this
discrepancy appears to be 04a479f7066ccdaa23a6546955303b172f4a6909 where
it was made for no apparent reason. It conflicts with the comment on
KSTAT_STRLEN, so we shrink the kernel field sizes to match the userspace
field sizes.
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Reviewed-by: Ryan Moeller <ryan@iXsystems.com>
Signed-off-by: Richard Yao <richard.yao@alumni.stonybrook.edu>
Closes #13876
2022-09-28 02:35:29 +03:00
|
|
|
(void) strlcpy(di->ds, fdslen ? fromsnap : tosnap, dslen + 1);
|
2010-08-27 01:24:34 +04:00
|
|
|
|
|
|
|
di->fromsnap = zfs_asprintf(hdl, "%s%s", di->ds, atptrf);
|
|
|
|
if (tsnlen) {
|
|
|
|
di->tosnap = zfs_asprintf(hdl, "%s%s", di->ds, atptrt);
|
|
|
|
} else {
|
|
|
|
return (make_temp_snapshot(di));
|
|
|
|
}
|
|
|
|
}
|
|
|
|
return (0);
|
|
|
|
}
|
|
|
|
|
|
|
|
static int
|
|
|
|
get_mountpoint(differ_info_t *di, char *dsnm, char **mntpt)
|
|
|
|
{
|
|
|
|
boolean_t mounted;
|
|
|
|
|
|
|
|
mounted = is_mounted(di->zhp->zfs_hdl, dsnm, mntpt);
|
|
|
|
if (mounted == B_FALSE) {
|
|
|
|
(void) snprintf(di->errbuf, sizeof (di->errbuf),
|
|
|
|
dgettext(TEXT_DOMAIN,
|
|
|
|
"Cannot diff an unmounted snapshot"));
|
|
|
|
return (zfs_error(di->zhp->zfs_hdl, EZFS_BADTYPE, di->errbuf));
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Avoid a double slash at the beginning of root-mounted datasets */
|
|
|
|
if (**mntpt == '/' && *(*mntpt + 1) == '\0')
|
|
|
|
**mntpt = '\0';
|
|
|
|
return (0);
|
|
|
|
}
|
|
|
|
|
|
|
|
static int
|
|
|
|
get_mountpoints(differ_info_t *di)
|
|
|
|
{
|
|
|
|
char *strptr;
|
|
|
|
char *frommntpt;
|
|
|
|
|
|
|
|
/*
|
|
|
|
* first get the mountpoint for the parent dataset
|
|
|
|
*/
|
|
|
|
if (get_mountpoint(di, di->ds, &di->dsmnt) != 0)
|
|
|
|
return (-1);
|
|
|
|
|
|
|
|
strptr = strchr(di->tosnap, '@');
|
|
|
|
ASSERT3P(strptr, !=, NULL);
|
|
|
|
di->tomnt = zfs_asprintf(di->zhp->zfs_hdl, "%s%s%s", di->dsmnt,
|
|
|
|
ZDIFF_SNAPDIR, ++strptr);
|
|
|
|
|
|
|
|
strptr = strchr(di->fromsnap, '@');
|
|
|
|
ASSERT3P(strptr, !=, NULL);
|
|
|
|
|
|
|
|
frommntpt = di->dsmnt;
|
|
|
|
if (di->isclone) {
|
|
|
|
char *mntpt;
|
|
|
|
int err;
|
|
|
|
|
|
|
|
*strptr = '\0';
|
|
|
|
err = get_mountpoint(di, di->fromsnap, &mntpt);
|
|
|
|
*strptr = '@';
|
|
|
|
if (err != 0)
|
|
|
|
return (-1);
|
|
|
|
frommntpt = mntpt;
|
|
|
|
}
|
|
|
|
|
|
|
|
di->frommnt = zfs_asprintf(di->zhp->zfs_hdl, "%s%s%s", frommntpt,
|
|
|
|
ZDIFF_SNAPDIR, ++strptr);
|
|
|
|
|
|
|
|
if (di->isclone)
|
|
|
|
free(frommntpt);
|
|
|
|
|
|
|
|
return (0);
|
|
|
|
}
|
|
|
|
|
|
|
|
static int
|
|
|
|
setup_differ_info(zfs_handle_t *zhp, const char *fromsnap,
|
|
|
|
const char *tosnap, differ_info_t *di)
|
|
|
|
{
|
|
|
|
di->zhp = zhp;
|
|
|
|
|
2021-04-08 23:17:38 +03:00
|
|
|
di->cleanupfd = open(ZFS_DEV, O_RDWR | O_CLOEXEC);
|
2010-08-27 01:24:34 +04:00
|
|
|
VERIFY(di->cleanupfd >= 0);
|
|
|
|
|
|
|
|
if (get_snapshot_names(di, fromsnap, tosnap) != 0)
|
|
|
|
return (-1);
|
|
|
|
|
|
|
|
if (get_mountpoints(di) != 0)
|
|
|
|
return (-1);
|
|
|
|
|
|
|
|
if (find_shares_object(di) != 0)
|
|
|
|
return (-1);
|
|
|
|
|
|
|
|
return (0);
|
|
|
|
}
|
|
|
|
|
|
|
|
int
|
|
|
|
zfs_show_diffs(zfs_handle_t *zhp, int outfd, const char *fromsnap,
|
|
|
|
const char *tosnap, int flags)
|
|
|
|
{
|
2013-09-04 16:00:57 +04:00
|
|
|
zfs_cmd_t zc = {"\0"};
|
2022-06-08 16:08:10 +03:00
|
|
|
char errbuf[ERRBUFLEN];
|
2010-08-27 01:24:34 +04:00
|
|
|
differ_info_t di = { 0 };
|
|
|
|
pthread_t tid;
|
|
|
|
int pipefd[2];
|
|
|
|
int iocerr;
|
|
|
|
|
|
|
|
(void) snprintf(errbuf, sizeof (errbuf),
|
|
|
|
dgettext(TEXT_DOMAIN, "zfs diff failed"));
|
|
|
|
|
|
|
|
if (setup_differ_info(zhp, fromsnap, tosnap, &di)) {
|
|
|
|
teardown_differ_info(&di);
|
|
|
|
return (-1);
|
|
|
|
}
|
|
|
|
|
2021-04-08 23:17:38 +03:00
|
|
|
if (pipe2(pipefd, O_CLOEXEC)) {
|
2024-01-23 02:28:18 +03:00
|
|
|
zfs_error_aux(zhp->zfs_hdl, "%s", zfs_strerror(errno));
|
2010-08-27 01:24:34 +04:00
|
|
|
teardown_differ_info(&di);
|
|
|
|
return (zfs_error(zhp->zfs_hdl, EZFS_PIPEFAILED, errbuf));
|
|
|
|
}
|
|
|
|
|
|
|
|
di.scripted = (flags & ZFS_DIFF_PARSEABLE);
|
|
|
|
di.classify = (flags & ZFS_DIFF_CLASSIFY);
|
|
|
|
di.timestamped = (flags & ZFS_DIFF_TIMESTAMP);
|
2021-12-10 02:02:52 +03:00
|
|
|
di.no_mangle = (flags & ZFS_DIFF_NO_MANGLE);
|
2010-08-27 01:24:34 +04:00
|
|
|
|
|
|
|
di.outputfd = outfd;
|
|
|
|
di.datafd = pipefd[0];
|
|
|
|
|
|
|
|
if (pthread_create(&tid, NULL, differ, &di)) {
|
2024-01-23 02:28:18 +03:00
|
|
|
zfs_error_aux(zhp->zfs_hdl, "%s", zfs_strerror(errno));
|
2010-08-27 01:24:34 +04:00
|
|
|
(void) close(pipefd[0]);
|
|
|
|
(void) close(pipefd[1]);
|
|
|
|
teardown_differ_info(&di);
|
|
|
|
return (zfs_error(zhp->zfs_hdl,
|
|
|
|
EZFS_THREADCREATEFAILED, errbuf));
|
|
|
|
}
|
|
|
|
|
|
|
|
/* do the ioctl() */
|
|
|
|
(void) strlcpy(zc.zc_value, di.fromsnap, strlen(di.fromsnap) + 1);
|
|
|
|
(void) strlcpy(zc.zc_name, di.tosnap, strlen(di.tosnap) + 1);
|
|
|
|
zc.zc_cookie = pipefd[1];
|
|
|
|
|
2019-10-24 03:29:43 +03:00
|
|
|
iocerr = zfs_ioctl(zhp->zfs_hdl, ZFS_IOC_DIFF, &zc);
|
2010-08-27 01:24:34 +04:00
|
|
|
if (iocerr != 0) {
|
|
|
|
(void) snprintf(errbuf, sizeof (errbuf),
|
|
|
|
dgettext(TEXT_DOMAIN, "Unable to obtain diffs"));
|
|
|
|
if (errno == EPERM) {
|
|
|
|
zfs_error_aux(zhp->zfs_hdl, dgettext(TEXT_DOMAIN,
|
|
|
|
"\n The sys_mount privilege or diff delegated "
|
|
|
|
"permission is needed\n to execute the "
|
|
|
|
"diff ioctl"));
|
|
|
|
} else if (errno == EXDEV) {
|
|
|
|
zfs_error_aux(zhp->zfs_hdl, dgettext(TEXT_DOMAIN,
|
|
|
|
"\n Not an earlier snapshot from the same fs"));
|
|
|
|
} else if (errno != EPIPE || di.zerr == 0) {
|
2024-01-23 02:28:18 +03:00
|
|
|
zfs_error_aux(zhp->zfs_hdl, "%s", zfs_strerror(errno));
|
2010-08-27 01:24:34 +04:00
|
|
|
}
|
|
|
|
(void) close(pipefd[1]);
|
|
|
|
(void) pthread_cancel(tid);
|
|
|
|
(void) pthread_join(tid, NULL);
|
|
|
|
teardown_differ_info(&di);
|
|
|
|
if (di.zerr != 0 && di.zerr != EPIPE) {
|
2024-01-23 02:28:18 +03:00
|
|
|
zfs_error_aux(zhp->zfs_hdl, "%s",
|
|
|
|
zfs_strerror(di.zerr));
|
2010-08-27 01:24:34 +04:00
|
|
|
return (zfs_error(zhp->zfs_hdl, EZFS_DIFF, di.errbuf));
|
|
|
|
} else {
|
|
|
|
return (zfs_error(zhp->zfs_hdl, EZFS_DIFFDATA, errbuf));
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
(void) close(pipefd[1]);
|
|
|
|
(void) pthread_join(tid, NULL);
|
|
|
|
|
|
|
|
if (di.zerr != 0) {
|
2024-01-23 02:28:18 +03:00
|
|
|
zfs_error_aux(zhp->zfs_hdl, "%s", zfs_strerror(di.zerr));
|
2010-08-27 01:24:34 +04:00
|
|
|
return (zfs_error(zhp->zfs_hdl, EZFS_DIFF, di.errbuf));
|
|
|
|
}
|
|
|
|
teardown_differ_info(&di);
|
|
|
|
return (0);
|
|
|
|
}
|