mirror_zfs/module/zfs/vdev_mirror.c

802 lines
20 KiB
C
Raw Normal View History

2008-11-20 23:01:55 +03:00
/*
* CDDL HEADER START
*
* The contents of this file are subject to the terms of the
* Common Development and Distribution License (the "License").
* You may not use this file except in compliance with the License.
*
* You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
* or http://www.opensolaris.org/os/licensing.
* See the License for the specific language governing permissions
* and limitations under the License.
*
* When distributing Covered Code, include this CDDL HEADER in each
* file and include the License file at usr/src/OPENSOLARIS.LICENSE.
* If applicable, add the following below this CDDL HEADER, with the
* fields enclosed by brackets "[]" replaced with your own identifying
* information: Portions Copyright [yyyy] [name of copyright owner]
*
* CDDL HEADER END
*/
/*
* Copyright 2010 Sun Microsystems, Inc. All rights reserved.
2008-11-20 23:01:55 +03:00
* Use is subject to license terms.
*/
/*
OpenZFS 7090 - zfs should throttle allocations OpenZFS 7090 - zfs should throttle allocations Authored by: George Wilson <george.wilson@delphix.com> Reviewed by: Alex Reece <alex@delphix.com> Reviewed by: Christopher Siden <christopher.siden@delphix.com> Reviewed by: Dan Kimmel <dan.kimmel@delphix.com> Reviewed by: Matthew Ahrens <mahrens@delphix.com> Reviewed by: Paul Dagnelie <paul.dagnelie@delphix.com> Reviewed by: Prakash Surya <prakash.surya@delphix.com> Reviewed by: Sebastien Roy <sebastien.roy@delphix.com> Approved by: Matthew Ahrens <mahrens@delphix.com> Ported-by: Don Brady <don.brady@intel.com> Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov> When write I/Os are issued, they are issued in block order but the ZIO pipeline will drive them asynchronously through the allocation stage which can result in blocks being allocated out-of-order. It would be nice to preserve as much of the logical order as possible. In addition, the allocations are equally scattered across all top-level VDEVs but not all top-level VDEVs are created equally. The pipeline should be able to detect devices that are more capable of handling allocations and should allocate more blocks to those devices. This allows for dynamic allocation distribution when devices are imbalanced as fuller devices will tend to be slower than empty devices. The change includes a new pool-wide allocation queue which would throttle and order allocations in the ZIO pipeline. The queue would be ordered by issued time and offset and would provide an initial amount of allocation of work to each top-level vdev. The allocation logic utilizes a reservation system to reserve allocations that will be performed by the allocator. Once an allocation is successfully completed it's scheduled on a given top-level vdev. Each top-level vdev maintains a maximum number of allocations that it can handle (mg_alloc_queue_depth). The pool-wide reserved allocations (top-levels * mg_alloc_queue_depth) are distributed across the top-level vdevs metaslab groups and round robin across all eligible metaslab groups to distribute the work. As top-levels complete their work, they receive additional work from the pool-wide allocation queue until the allocation queue is emptied. OpenZFS-issue: https://www.illumos.org/issues/7090 OpenZFS-commit: https://github.com/openzfs/openzfs/commit/4756c3d7 Closes #5258 Porting Notes: - Maintained minimal stack in zio_done - Preserve linux-specific io sizes in zio_write_compress - Added module params and documentation - Updated to use optimize AVL cmp macros
2016-10-14 03:59:18 +03:00
* Copyright (c) 2012, 2015 by Delphix. All rights reserved.
*/
2008-11-20 23:01:55 +03:00
#include <sys/zfs_context.h>
#include <sys/spa.h>
#include <sys/vdev_impl.h>
#include <sys/zio.h>
#include <sys/abd.h>
2008-11-20 23:01:55 +03:00
#include <sys/fs/zfs.h>
/*
* Vdev mirror kstats
*/
static kstat_t *mirror_ksp = NULL;
typedef struct mirror_stats {
kstat_named_t vdev_mirror_stat_rotating_linear;
kstat_named_t vdev_mirror_stat_rotating_offset;
kstat_named_t vdev_mirror_stat_rotating_seek;
kstat_named_t vdev_mirror_stat_non_rotating_linear;
kstat_named_t vdev_mirror_stat_non_rotating_seek;
kstat_named_t vdev_mirror_stat_preferred_found;
kstat_named_t vdev_mirror_stat_preferred_not_found;
} mirror_stats_t;
static mirror_stats_t mirror_stats = {
/* New I/O follows directly the last I/O */
{ "rotating_linear", KSTAT_DATA_UINT64 },
/* New I/O is within zfs_vdev_mirror_rotating_seek_offset of the last */
{ "rotating_offset", KSTAT_DATA_UINT64 },
/* New I/O requires random seek */
{ "rotating_seek", KSTAT_DATA_UINT64 },
/* New I/O follows directly the last I/O (nonrot) */
{ "non_rotating_linear", KSTAT_DATA_UINT64 },
/* New I/O requires random seek (nonrot) */
{ "non_rotating_seek", KSTAT_DATA_UINT64 },
/* Preferred child vdev found */
{ "preferred_found", KSTAT_DATA_UINT64 },
/* Preferred child vdev not found or equal load */
{ "preferred_not_found", KSTAT_DATA_UINT64 },
};
#define MIRROR_STAT(stat) (mirror_stats.stat.value.ui64)
#define MIRROR_INCR(stat, val) atomic_add_64(&MIRROR_STAT(stat), val)
#define MIRROR_BUMP(stat) MIRROR_INCR(stat, 1)
void
vdev_mirror_stat_init(void)
{
mirror_ksp = kstat_create("zfs", 0, "vdev_mirror_stats",
"misc", KSTAT_TYPE_NAMED,
sizeof (mirror_stats) / sizeof (kstat_named_t), KSTAT_FLAG_VIRTUAL);
if (mirror_ksp != NULL) {
mirror_ksp->ks_data = &mirror_stats;
kstat_install(mirror_ksp);
}
}
void
vdev_mirror_stat_fini(void)
{
if (mirror_ksp != NULL) {
kstat_delete(mirror_ksp);
mirror_ksp = NULL;
}
}
2008-11-20 23:01:55 +03:00
/*
* Virtual device vector for mirroring.
*/
typedef struct mirror_child {
vdev_t *mc_vd;
uint64_t mc_offset;
int mc_error;
FreeBSD r256956: Improve ZFS N-way mirror read performance by using load and locality information. The existing algorithm selects a preferred leaf vdev based on offset of the zio request modulo the number of members in the mirror. It assumes the devices are of equal performance and that spreading the requests randomly over both drives will be sufficient to saturate them. In practice this results in the leaf vdevs being under utilized. The new algorithm takes into the following additional factors: * Load of the vdevs (number outstanding I/O requests) * The locality of last queued I/O vs the new I/O request. Within the locality calculation additional knowledge about the underlying vdev is considered such as; is the device backing the vdev a rotating media device. This results in performance increases across the board as well as significant increases for predominantly streaming loads and for configurations which don't have evenly performing devices. The following are results from a setup with 3 Way Mirror with 2 x HD's and 1 x SSD from a basic test running multiple parrallel dd's. With pre-fetch disabled (vfs.zfs.prefetch_disable=1): == Stripe Balanced (default) == Read 15360MB using bs: 1048576, readers: 3, took 161 seconds @ 95 MB/s == Load Balanced (zfslinux) == Read 15360MB using bs: 1048576, readers: 3, took 297 seconds @ 51 MB/s == Load Balanced (locality freebsd) == Read 15360MB using bs: 1048576, readers: 3, took 54 seconds @ 284 MB/s With pre-fetch enabled (vfs.zfs.prefetch_disable=0): == Stripe Balanced (default) == Read 15360MB using bs: 1048576, readers: 3, took 91 seconds @ 168 MB/s == Load Balanced (zfslinux) == Read 15360MB using bs: 1048576, readers: 3, took 108 seconds @ 142 MB/s == Load Balanced (locality freebsd) == Read 15360MB using bs: 1048576, readers: 3, took 48 seconds @ 320 MB/s In addition to the performance changes the code was also restructured, with the help of Justin Gibbs, to provide a more logical flow which also ensures vdevs loads are only calculated from the set of valid candidates. The following additional sysctls where added to allow the administrator to tune the behaviour of the load algorithm: * vfs.zfs.vdev.mirror.rotating_inc * vfs.zfs.vdev.mirror.rotating_seek_inc * vfs.zfs.vdev.mirror.rotating_seek_offset * vfs.zfs.vdev.mirror.non_rotating_inc * vfs.zfs.vdev.mirror.non_rotating_seek_inc These changes where based on work started by the zfsonlinux developers: https://github.com/zfsonlinux/zfs/pull/1487 Reviewed by: gibbs, mav, will MFC after: 2 weeks Sponsored by: Multiplay References: https://github.com/freebsd/freebsd@5c7a6f5d https://github.com/freebsd/freebsd@31b7f68d https://github.com/freebsd/freebsd@e186f564 Performance Testing: https://github.com/zfsonlinux/zfs/pull/4334#issuecomment-189057141 Porting notes: - The tunables were adjusted to have ZoL-style names. - The code was modified to use ZoL's vd_nonrot. - Fixes were done to make cstyle.pl happy - Merge conflicts were handled manually - freebsd/freebsd@e186f564bc946f82c76e0b34c2f0370ed9aea022 by my collegue Andriy Gapon has been included. It applied perfectly, but added a cstyle regression. - This replaces 556011dbec2d10579819078559a77630fc559112 entirely. - A typo "IO'a" has been corrected to say "IO's" - Descriptions of new tunables were added to man/man5/zfs-module-parameters.5. Ported-by: Richard Yao <ryao@gentoo.org> Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov> Closes #4334
2016-02-13 04:47:22 +03:00
int mc_load;
uint8_t mc_tried;
uint8_t mc_skipped;
uint8_t mc_speculative;
2008-11-20 23:01:55 +03:00
} mirror_child_t;
typedef struct mirror_map {
FreeBSD r256956: Improve ZFS N-way mirror read performance by using load and locality information. The existing algorithm selects a preferred leaf vdev based on offset of the zio request modulo the number of members in the mirror. It assumes the devices are of equal performance and that spreading the requests randomly over both drives will be sufficient to saturate them. In practice this results in the leaf vdevs being under utilized. The new algorithm takes into the following additional factors: * Load of the vdevs (number outstanding I/O requests) * The locality of last queued I/O vs the new I/O request. Within the locality calculation additional knowledge about the underlying vdev is considered such as; is the device backing the vdev a rotating media device. This results in performance increases across the board as well as significant increases for predominantly streaming loads and for configurations which don't have evenly performing devices. The following are results from a setup with 3 Way Mirror with 2 x HD's and 1 x SSD from a basic test running multiple parrallel dd's. With pre-fetch disabled (vfs.zfs.prefetch_disable=1): == Stripe Balanced (default) == Read 15360MB using bs: 1048576, readers: 3, took 161 seconds @ 95 MB/s == Load Balanced (zfslinux) == Read 15360MB using bs: 1048576, readers: 3, took 297 seconds @ 51 MB/s == Load Balanced (locality freebsd) == Read 15360MB using bs: 1048576, readers: 3, took 54 seconds @ 284 MB/s With pre-fetch enabled (vfs.zfs.prefetch_disable=0): == Stripe Balanced (default) == Read 15360MB using bs: 1048576, readers: 3, took 91 seconds @ 168 MB/s == Load Balanced (zfslinux) == Read 15360MB using bs: 1048576, readers: 3, took 108 seconds @ 142 MB/s == Load Balanced (locality freebsd) == Read 15360MB using bs: 1048576, readers: 3, took 48 seconds @ 320 MB/s In addition to the performance changes the code was also restructured, with the help of Justin Gibbs, to provide a more logical flow which also ensures vdevs loads are only calculated from the set of valid candidates. The following additional sysctls where added to allow the administrator to tune the behaviour of the load algorithm: * vfs.zfs.vdev.mirror.rotating_inc * vfs.zfs.vdev.mirror.rotating_seek_inc * vfs.zfs.vdev.mirror.rotating_seek_offset * vfs.zfs.vdev.mirror.non_rotating_inc * vfs.zfs.vdev.mirror.non_rotating_seek_inc These changes where based on work started by the zfsonlinux developers: https://github.com/zfsonlinux/zfs/pull/1487 Reviewed by: gibbs, mav, will MFC after: 2 weeks Sponsored by: Multiplay References: https://github.com/freebsd/freebsd@5c7a6f5d https://github.com/freebsd/freebsd@31b7f68d https://github.com/freebsd/freebsd@e186f564 Performance Testing: https://github.com/zfsonlinux/zfs/pull/4334#issuecomment-189057141 Porting notes: - The tunables were adjusted to have ZoL-style names. - The code was modified to use ZoL's vd_nonrot. - Fixes were done to make cstyle.pl happy - Merge conflicts were handled manually - freebsd/freebsd@e186f564bc946f82c76e0b34c2f0370ed9aea022 by my collegue Andriy Gapon has been included. It applied perfectly, but added a cstyle regression. - This replaces 556011dbec2d10579819078559a77630fc559112 entirely. - A typo "IO'a" has been corrected to say "IO's" - Descriptions of new tunables were added to man/man5/zfs-module-parameters.5. Ported-by: Richard Yao <ryao@gentoo.org> Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov> Closes #4334
2016-02-13 04:47:22 +03:00
int *mm_preferred;
int mm_preferred_cnt;
2008-11-20 23:01:55 +03:00
int mm_children;
FreeBSD r256956: Improve ZFS N-way mirror read performance by using load and locality information. The existing algorithm selects a preferred leaf vdev based on offset of the zio request modulo the number of members in the mirror. It assumes the devices are of equal performance and that spreading the requests randomly over both drives will be sufficient to saturate them. In practice this results in the leaf vdevs being under utilized. The new algorithm takes into the following additional factors: * Load of the vdevs (number outstanding I/O requests) * The locality of last queued I/O vs the new I/O request. Within the locality calculation additional knowledge about the underlying vdev is considered such as; is the device backing the vdev a rotating media device. This results in performance increases across the board as well as significant increases for predominantly streaming loads and for configurations which don't have evenly performing devices. The following are results from a setup with 3 Way Mirror with 2 x HD's and 1 x SSD from a basic test running multiple parrallel dd's. With pre-fetch disabled (vfs.zfs.prefetch_disable=1): == Stripe Balanced (default) == Read 15360MB using bs: 1048576, readers: 3, took 161 seconds @ 95 MB/s == Load Balanced (zfslinux) == Read 15360MB using bs: 1048576, readers: 3, took 297 seconds @ 51 MB/s == Load Balanced (locality freebsd) == Read 15360MB using bs: 1048576, readers: 3, took 54 seconds @ 284 MB/s With pre-fetch enabled (vfs.zfs.prefetch_disable=0): == Stripe Balanced (default) == Read 15360MB using bs: 1048576, readers: 3, took 91 seconds @ 168 MB/s == Load Balanced (zfslinux) == Read 15360MB using bs: 1048576, readers: 3, took 108 seconds @ 142 MB/s == Load Balanced (locality freebsd) == Read 15360MB using bs: 1048576, readers: 3, took 48 seconds @ 320 MB/s In addition to the performance changes the code was also restructured, with the help of Justin Gibbs, to provide a more logical flow which also ensures vdevs loads are only calculated from the set of valid candidates. The following additional sysctls where added to allow the administrator to tune the behaviour of the load algorithm: * vfs.zfs.vdev.mirror.rotating_inc * vfs.zfs.vdev.mirror.rotating_seek_inc * vfs.zfs.vdev.mirror.rotating_seek_offset * vfs.zfs.vdev.mirror.non_rotating_inc * vfs.zfs.vdev.mirror.non_rotating_seek_inc These changes where based on work started by the zfsonlinux developers: https://github.com/zfsonlinux/zfs/pull/1487 Reviewed by: gibbs, mav, will MFC after: 2 weeks Sponsored by: Multiplay References: https://github.com/freebsd/freebsd@5c7a6f5d https://github.com/freebsd/freebsd@31b7f68d https://github.com/freebsd/freebsd@e186f564 Performance Testing: https://github.com/zfsonlinux/zfs/pull/4334#issuecomment-189057141 Porting notes: - The tunables were adjusted to have ZoL-style names. - The code was modified to use ZoL's vd_nonrot. - Fixes were done to make cstyle.pl happy - Merge conflicts were handled manually - freebsd/freebsd@e186f564bc946f82c76e0b34c2f0370ed9aea022 by my collegue Andriy Gapon has been included. It applied perfectly, but added a cstyle regression. - This replaces 556011dbec2d10579819078559a77630fc559112 entirely. - A typo "IO'a" has been corrected to say "IO's" - Descriptions of new tunables were added to man/man5/zfs-module-parameters.5. Ported-by: Richard Yao <ryao@gentoo.org> Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov> Closes #4334
2016-02-13 04:47:22 +03:00
boolean_t mm_replacing;
boolean_t mm_root;
mirror_child_t mm_child[];
2008-11-20 23:01:55 +03:00
} mirror_map_t;
FreeBSD r256956: Improve ZFS N-way mirror read performance by using load and locality information. The existing algorithm selects a preferred leaf vdev based on offset of the zio request modulo the number of members in the mirror. It assumes the devices are of equal performance and that spreading the requests randomly over both drives will be sufficient to saturate them. In practice this results in the leaf vdevs being under utilized. The new algorithm takes into the following additional factors: * Load of the vdevs (number outstanding I/O requests) * The locality of last queued I/O vs the new I/O request. Within the locality calculation additional knowledge about the underlying vdev is considered such as; is the device backing the vdev a rotating media device. This results in performance increases across the board as well as significant increases for predominantly streaming loads and for configurations which don't have evenly performing devices. The following are results from a setup with 3 Way Mirror with 2 x HD's and 1 x SSD from a basic test running multiple parrallel dd's. With pre-fetch disabled (vfs.zfs.prefetch_disable=1): == Stripe Balanced (default) == Read 15360MB using bs: 1048576, readers: 3, took 161 seconds @ 95 MB/s == Load Balanced (zfslinux) == Read 15360MB using bs: 1048576, readers: 3, took 297 seconds @ 51 MB/s == Load Balanced (locality freebsd) == Read 15360MB using bs: 1048576, readers: 3, took 54 seconds @ 284 MB/s With pre-fetch enabled (vfs.zfs.prefetch_disable=0): == Stripe Balanced (default) == Read 15360MB using bs: 1048576, readers: 3, took 91 seconds @ 168 MB/s == Load Balanced (zfslinux) == Read 15360MB using bs: 1048576, readers: 3, took 108 seconds @ 142 MB/s == Load Balanced (locality freebsd) == Read 15360MB using bs: 1048576, readers: 3, took 48 seconds @ 320 MB/s In addition to the performance changes the code was also restructured, with the help of Justin Gibbs, to provide a more logical flow which also ensures vdevs loads are only calculated from the set of valid candidates. The following additional sysctls where added to allow the administrator to tune the behaviour of the load algorithm: * vfs.zfs.vdev.mirror.rotating_inc * vfs.zfs.vdev.mirror.rotating_seek_inc * vfs.zfs.vdev.mirror.rotating_seek_offset * vfs.zfs.vdev.mirror.non_rotating_inc * vfs.zfs.vdev.mirror.non_rotating_seek_inc These changes where based on work started by the zfsonlinux developers: https://github.com/zfsonlinux/zfs/pull/1487 Reviewed by: gibbs, mav, will MFC after: 2 weeks Sponsored by: Multiplay References: https://github.com/freebsd/freebsd@5c7a6f5d https://github.com/freebsd/freebsd@31b7f68d https://github.com/freebsd/freebsd@e186f564 Performance Testing: https://github.com/zfsonlinux/zfs/pull/4334#issuecomment-189057141 Porting notes: - The tunables were adjusted to have ZoL-style names. - The code was modified to use ZoL's vd_nonrot. - Fixes were done to make cstyle.pl happy - Merge conflicts were handled manually - freebsd/freebsd@e186f564bc946f82c76e0b34c2f0370ed9aea022 by my collegue Andriy Gapon has been included. It applied perfectly, but added a cstyle regression. - This replaces 556011dbec2d10579819078559a77630fc559112 entirely. - A typo "IO'a" has been corrected to say "IO's" - Descriptions of new tunables were added to man/man5/zfs-module-parameters.5. Ported-by: Richard Yao <ryao@gentoo.org> Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov> Closes #4334
2016-02-13 04:47:22 +03:00
static int vdev_mirror_shift = 21;
Improve N-way mirror performance The read bandwidth of an N-way mirror can by increased by 50%, and the IOPs by 10%, by more carefully selecting the preferred leaf vdev. The existing algorthm selects a perferred leaf vdev based on offset of the zio request modulo the number of members in the mirror. It assumes the drives are of equal performance and that spreading the requests randomly over both drives will be sufficient to saturate them. In practice this results in the leaf vdevs being under utilized. Utilization can be improved by preferentially selecting the leaf vdev with the least pending IO. This prevents leaf vdevs from being starved and compensates for performance differences between disks in the mirror. Faster vdevs will be sent more work and the mirror performance will not be limitted by the slowest drive. In the common case where all the pending queues are full and there is no single least busy leaf vdev a batching stratagy is employed. Of the N least busy vdevs one is selected with equal probability to be the preferred vdev for T microseconds. Compared to randomly selecting a vdev to break the tie batching the requests greatly improves the odds of merging the requests in the Linux elevator. The testing results show a significant performance improvement for all four workloads tested. The workloads were generated using the fio benchmark and are as follows. 1) 1MB sequential reads from 16 threads to 16 files (MB/s). 2) 4KB sequential reads from 16 threads to 16 files (MB/s). 3) 1MB random reads from 16 threads to 16 files (IOP/s). 4) 4KB random reads from 16 threads to 16 files (IOP/s). | Pristine | With 1461 | | Sequential Random | Sequential Random | | 1MB 4KB 1MB 4KB | 1MB 4KB 1MB 4KB | | MB/s MB/s IO/s IO/s | MB/s MB/s IO/s IO/s | ---------------+-----------------------+------------------------+ 2 Striped | 226 243 11 304 | 222 255 11 299 | 2 2-Way Mirror | 302 324 16 534 | 433 448 23 571 | 2 3-Way Mirror | 429 458 24 714 | 648 648 41 808 | 2 4-Way Mirror | 562 601 36 849 | 816 828 82 926 | Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov> Closes #1461
2013-05-31 23:07:59 +04:00
/*
FreeBSD r256956: Improve ZFS N-way mirror read performance by using load and locality information. The existing algorithm selects a preferred leaf vdev based on offset of the zio request modulo the number of members in the mirror. It assumes the devices are of equal performance and that spreading the requests randomly over both drives will be sufficient to saturate them. In practice this results in the leaf vdevs being under utilized. The new algorithm takes into the following additional factors: * Load of the vdevs (number outstanding I/O requests) * The locality of last queued I/O vs the new I/O request. Within the locality calculation additional knowledge about the underlying vdev is considered such as; is the device backing the vdev a rotating media device. This results in performance increases across the board as well as significant increases for predominantly streaming loads and for configurations which don't have evenly performing devices. The following are results from a setup with 3 Way Mirror with 2 x HD's and 1 x SSD from a basic test running multiple parrallel dd's. With pre-fetch disabled (vfs.zfs.prefetch_disable=1): == Stripe Balanced (default) == Read 15360MB using bs: 1048576, readers: 3, took 161 seconds @ 95 MB/s == Load Balanced (zfslinux) == Read 15360MB using bs: 1048576, readers: 3, took 297 seconds @ 51 MB/s == Load Balanced (locality freebsd) == Read 15360MB using bs: 1048576, readers: 3, took 54 seconds @ 284 MB/s With pre-fetch enabled (vfs.zfs.prefetch_disable=0): == Stripe Balanced (default) == Read 15360MB using bs: 1048576, readers: 3, took 91 seconds @ 168 MB/s == Load Balanced (zfslinux) == Read 15360MB using bs: 1048576, readers: 3, took 108 seconds @ 142 MB/s == Load Balanced (locality freebsd) == Read 15360MB using bs: 1048576, readers: 3, took 48 seconds @ 320 MB/s In addition to the performance changes the code was also restructured, with the help of Justin Gibbs, to provide a more logical flow which also ensures vdevs loads are only calculated from the set of valid candidates. The following additional sysctls where added to allow the administrator to tune the behaviour of the load algorithm: * vfs.zfs.vdev.mirror.rotating_inc * vfs.zfs.vdev.mirror.rotating_seek_inc * vfs.zfs.vdev.mirror.rotating_seek_offset * vfs.zfs.vdev.mirror.non_rotating_inc * vfs.zfs.vdev.mirror.non_rotating_seek_inc These changes where based on work started by the zfsonlinux developers: https://github.com/zfsonlinux/zfs/pull/1487 Reviewed by: gibbs, mav, will MFC after: 2 weeks Sponsored by: Multiplay References: https://github.com/freebsd/freebsd@5c7a6f5d https://github.com/freebsd/freebsd@31b7f68d https://github.com/freebsd/freebsd@e186f564 Performance Testing: https://github.com/zfsonlinux/zfs/pull/4334#issuecomment-189057141 Porting notes: - The tunables were adjusted to have ZoL-style names. - The code was modified to use ZoL's vd_nonrot. - Fixes were done to make cstyle.pl happy - Merge conflicts were handled manually - freebsd/freebsd@e186f564bc946f82c76e0b34c2f0370ed9aea022 by my collegue Andriy Gapon has been included. It applied perfectly, but added a cstyle regression. - This replaces 556011dbec2d10579819078559a77630fc559112 entirely. - A typo "IO'a" has been corrected to say "IO's" - Descriptions of new tunables were added to man/man5/zfs-module-parameters.5. Ported-by: Richard Yao <ryao@gentoo.org> Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov> Closes #4334
2016-02-13 04:47:22 +03:00
* The load configuration settings below are tuned by default for
* the case where all devices are of the same rotational type.
Improve N-way mirror performance The read bandwidth of an N-way mirror can by increased by 50%, and the IOPs by 10%, by more carefully selecting the preferred leaf vdev. The existing algorthm selects a perferred leaf vdev based on offset of the zio request modulo the number of members in the mirror. It assumes the drives are of equal performance and that spreading the requests randomly over both drives will be sufficient to saturate them. In practice this results in the leaf vdevs being under utilized. Utilization can be improved by preferentially selecting the leaf vdev with the least pending IO. This prevents leaf vdevs from being starved and compensates for performance differences between disks in the mirror. Faster vdevs will be sent more work and the mirror performance will not be limitted by the slowest drive. In the common case where all the pending queues are full and there is no single least busy leaf vdev a batching stratagy is employed. Of the N least busy vdevs one is selected with equal probability to be the preferred vdev for T microseconds. Compared to randomly selecting a vdev to break the tie batching the requests greatly improves the odds of merging the requests in the Linux elevator. The testing results show a significant performance improvement for all four workloads tested. The workloads were generated using the fio benchmark and are as follows. 1) 1MB sequential reads from 16 threads to 16 files (MB/s). 2) 4KB sequential reads from 16 threads to 16 files (MB/s). 3) 1MB random reads from 16 threads to 16 files (IOP/s). 4) 4KB random reads from 16 threads to 16 files (IOP/s). | Pristine | With 1461 | | Sequential Random | Sequential Random | | 1MB 4KB 1MB 4KB | 1MB 4KB 1MB 4KB | | MB/s MB/s IO/s IO/s | MB/s MB/s IO/s IO/s | ---------------+-----------------------+------------------------+ 2 Striped | 226 243 11 304 | 222 255 11 299 | 2 2-Way Mirror | 302 324 16 534 | 433 448 23 571 | 2 3-Way Mirror | 429 458 24 714 | 648 648 41 808 | 2 4-Way Mirror | 562 601 36 849 | 816 828 82 926 | Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov> Closes #1461
2013-05-31 23:07:59 +04:00
*
FreeBSD r256956: Improve ZFS N-way mirror read performance by using load and locality information. The existing algorithm selects a preferred leaf vdev based on offset of the zio request modulo the number of members in the mirror. It assumes the devices are of equal performance and that spreading the requests randomly over both drives will be sufficient to saturate them. In practice this results in the leaf vdevs being under utilized. The new algorithm takes into the following additional factors: * Load of the vdevs (number outstanding I/O requests) * The locality of last queued I/O vs the new I/O request. Within the locality calculation additional knowledge about the underlying vdev is considered such as; is the device backing the vdev a rotating media device. This results in performance increases across the board as well as significant increases for predominantly streaming loads and for configurations which don't have evenly performing devices. The following are results from a setup with 3 Way Mirror with 2 x HD's and 1 x SSD from a basic test running multiple parrallel dd's. With pre-fetch disabled (vfs.zfs.prefetch_disable=1): == Stripe Balanced (default) == Read 15360MB using bs: 1048576, readers: 3, took 161 seconds @ 95 MB/s == Load Balanced (zfslinux) == Read 15360MB using bs: 1048576, readers: 3, took 297 seconds @ 51 MB/s == Load Balanced (locality freebsd) == Read 15360MB using bs: 1048576, readers: 3, took 54 seconds @ 284 MB/s With pre-fetch enabled (vfs.zfs.prefetch_disable=0): == Stripe Balanced (default) == Read 15360MB using bs: 1048576, readers: 3, took 91 seconds @ 168 MB/s == Load Balanced (zfslinux) == Read 15360MB using bs: 1048576, readers: 3, took 108 seconds @ 142 MB/s == Load Balanced (locality freebsd) == Read 15360MB using bs: 1048576, readers: 3, took 48 seconds @ 320 MB/s In addition to the performance changes the code was also restructured, with the help of Justin Gibbs, to provide a more logical flow which also ensures vdevs loads are only calculated from the set of valid candidates. The following additional sysctls where added to allow the administrator to tune the behaviour of the load algorithm: * vfs.zfs.vdev.mirror.rotating_inc * vfs.zfs.vdev.mirror.rotating_seek_inc * vfs.zfs.vdev.mirror.rotating_seek_offset * vfs.zfs.vdev.mirror.non_rotating_inc * vfs.zfs.vdev.mirror.non_rotating_seek_inc These changes where based on work started by the zfsonlinux developers: https://github.com/zfsonlinux/zfs/pull/1487 Reviewed by: gibbs, mav, will MFC after: 2 weeks Sponsored by: Multiplay References: https://github.com/freebsd/freebsd@5c7a6f5d https://github.com/freebsd/freebsd@31b7f68d https://github.com/freebsd/freebsd@e186f564 Performance Testing: https://github.com/zfsonlinux/zfs/pull/4334#issuecomment-189057141 Porting notes: - The tunables were adjusted to have ZoL-style names. - The code was modified to use ZoL's vd_nonrot. - Fixes were done to make cstyle.pl happy - Merge conflicts were handled manually - freebsd/freebsd@e186f564bc946f82c76e0b34c2f0370ed9aea022 by my collegue Andriy Gapon has been included. It applied perfectly, but added a cstyle regression. - This replaces 556011dbec2d10579819078559a77630fc559112 entirely. - A typo "IO'a" has been corrected to say "IO's" - Descriptions of new tunables were added to man/man5/zfs-module-parameters.5. Ported-by: Richard Yao <ryao@gentoo.org> Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov> Closes #4334
2016-02-13 04:47:22 +03:00
* If there is a mixture of rotating and non-rotating media, setting
* zfs_vdev_mirror_non_rotating_seek_inc to 0 may well provide better results
* as it will direct more reads to the non-rotating vdevs which are more likely
* to have a higher performance.
Improve N-way mirror performance The read bandwidth of an N-way mirror can by increased by 50%, and the IOPs by 10%, by more carefully selecting the preferred leaf vdev. The existing algorthm selects a perferred leaf vdev based on offset of the zio request modulo the number of members in the mirror. It assumes the drives are of equal performance and that spreading the requests randomly over both drives will be sufficient to saturate them. In practice this results in the leaf vdevs being under utilized. Utilization can be improved by preferentially selecting the leaf vdev with the least pending IO. This prevents leaf vdevs from being starved and compensates for performance differences between disks in the mirror. Faster vdevs will be sent more work and the mirror performance will not be limitted by the slowest drive. In the common case where all the pending queues are full and there is no single least busy leaf vdev a batching stratagy is employed. Of the N least busy vdevs one is selected with equal probability to be the preferred vdev for T microseconds. Compared to randomly selecting a vdev to break the tie batching the requests greatly improves the odds of merging the requests in the Linux elevator. The testing results show a significant performance improvement for all four workloads tested. The workloads were generated using the fio benchmark and are as follows. 1) 1MB sequential reads from 16 threads to 16 files (MB/s). 2) 4KB sequential reads from 16 threads to 16 files (MB/s). 3) 1MB random reads from 16 threads to 16 files (IOP/s). 4) 4KB random reads from 16 threads to 16 files (IOP/s). | Pristine | With 1461 | | Sequential Random | Sequential Random | | 1MB 4KB 1MB 4KB | 1MB 4KB 1MB 4KB | | MB/s MB/s IO/s IO/s | MB/s MB/s IO/s IO/s | ---------------+-----------------------+------------------------+ 2 Striped | 226 243 11 304 | 222 255 11 299 | 2 2-Way Mirror | 302 324 16 534 | 433 448 23 571 | 2 3-Way Mirror | 429 458 24 714 | 648 648 41 808 | 2 4-Way Mirror | 562 601 36 849 | 816 828 82 926 | Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov> Closes #1461
2013-05-31 23:07:59 +04:00
*/
FreeBSD r256956: Improve ZFS N-way mirror read performance by using load and locality information. The existing algorithm selects a preferred leaf vdev based on offset of the zio request modulo the number of members in the mirror. It assumes the devices are of equal performance and that spreading the requests randomly over both drives will be sufficient to saturate them. In practice this results in the leaf vdevs being under utilized. The new algorithm takes into the following additional factors: * Load of the vdevs (number outstanding I/O requests) * The locality of last queued I/O vs the new I/O request. Within the locality calculation additional knowledge about the underlying vdev is considered such as; is the device backing the vdev a rotating media device. This results in performance increases across the board as well as significant increases for predominantly streaming loads and for configurations which don't have evenly performing devices. The following are results from a setup with 3 Way Mirror with 2 x HD's and 1 x SSD from a basic test running multiple parrallel dd's. With pre-fetch disabled (vfs.zfs.prefetch_disable=1): == Stripe Balanced (default) == Read 15360MB using bs: 1048576, readers: 3, took 161 seconds @ 95 MB/s == Load Balanced (zfslinux) == Read 15360MB using bs: 1048576, readers: 3, took 297 seconds @ 51 MB/s == Load Balanced (locality freebsd) == Read 15360MB using bs: 1048576, readers: 3, took 54 seconds @ 284 MB/s With pre-fetch enabled (vfs.zfs.prefetch_disable=0): == Stripe Balanced (default) == Read 15360MB using bs: 1048576, readers: 3, took 91 seconds @ 168 MB/s == Load Balanced (zfslinux) == Read 15360MB using bs: 1048576, readers: 3, took 108 seconds @ 142 MB/s == Load Balanced (locality freebsd) == Read 15360MB using bs: 1048576, readers: 3, took 48 seconds @ 320 MB/s In addition to the performance changes the code was also restructured, with the help of Justin Gibbs, to provide a more logical flow which also ensures vdevs loads are only calculated from the set of valid candidates. The following additional sysctls where added to allow the administrator to tune the behaviour of the load algorithm: * vfs.zfs.vdev.mirror.rotating_inc * vfs.zfs.vdev.mirror.rotating_seek_inc * vfs.zfs.vdev.mirror.rotating_seek_offset * vfs.zfs.vdev.mirror.non_rotating_inc * vfs.zfs.vdev.mirror.non_rotating_seek_inc These changes where based on work started by the zfsonlinux developers: https://github.com/zfsonlinux/zfs/pull/1487 Reviewed by: gibbs, mav, will MFC after: 2 weeks Sponsored by: Multiplay References: https://github.com/freebsd/freebsd@5c7a6f5d https://github.com/freebsd/freebsd@31b7f68d https://github.com/freebsd/freebsd@e186f564 Performance Testing: https://github.com/zfsonlinux/zfs/pull/4334#issuecomment-189057141 Porting notes: - The tunables were adjusted to have ZoL-style names. - The code was modified to use ZoL's vd_nonrot. - Fixes were done to make cstyle.pl happy - Merge conflicts were handled manually - freebsd/freebsd@e186f564bc946f82c76e0b34c2f0370ed9aea022 by my collegue Andriy Gapon has been included. It applied perfectly, but added a cstyle regression. - This replaces 556011dbec2d10579819078559a77630fc559112 entirely. - A typo "IO'a" has been corrected to say "IO's" - Descriptions of new tunables were added to man/man5/zfs-module-parameters.5. Ported-by: Richard Yao <ryao@gentoo.org> Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov> Closes #4334
2016-02-13 04:47:22 +03:00
/* Rotating media load calculation configuration. */
static int zfs_vdev_mirror_rotating_inc = 0;
static int zfs_vdev_mirror_rotating_seek_inc = 5;
static int zfs_vdev_mirror_rotating_seek_offset = 1 * 1024 * 1024;
/* Non-rotating media load calculation configuration. */
static int zfs_vdev_mirror_non_rotating_inc = 0;
static int zfs_vdev_mirror_non_rotating_seek_inc = 1;
static inline size_t
vdev_mirror_map_size(int children)
{
return (offsetof(mirror_map_t, mm_child[children]) +
sizeof (int) * children);
}
static inline mirror_map_t *
vdev_mirror_map_alloc(int children, boolean_t replacing, boolean_t root)
{
mirror_map_t *mm;
mm = kmem_zalloc(vdev_mirror_map_size(children), KM_SLEEP);
mm->mm_children = children;
mm->mm_replacing = replacing;
mm->mm_root = root;
mm->mm_preferred = (int *)((uintptr_t)mm +
offsetof(mirror_map_t, mm_child[children]));
return (mm);
}
2008-11-20 23:01:55 +03:00
static void
vdev_mirror_map_free(zio_t *zio)
{
mirror_map_t *mm = zio->io_vsd;
FreeBSD r256956: Improve ZFS N-way mirror read performance by using load and locality information. The existing algorithm selects a preferred leaf vdev based on offset of the zio request modulo the number of members in the mirror. It assumes the devices are of equal performance and that spreading the requests randomly over both drives will be sufficient to saturate them. In practice this results in the leaf vdevs being under utilized. The new algorithm takes into the following additional factors: * Load of the vdevs (number outstanding I/O requests) * The locality of last queued I/O vs the new I/O request. Within the locality calculation additional knowledge about the underlying vdev is considered such as; is the device backing the vdev a rotating media device. This results in performance increases across the board as well as significant increases for predominantly streaming loads and for configurations which don't have evenly performing devices. The following are results from a setup with 3 Way Mirror with 2 x HD's and 1 x SSD from a basic test running multiple parrallel dd's. With pre-fetch disabled (vfs.zfs.prefetch_disable=1): == Stripe Balanced (default) == Read 15360MB using bs: 1048576, readers: 3, took 161 seconds @ 95 MB/s == Load Balanced (zfslinux) == Read 15360MB using bs: 1048576, readers: 3, took 297 seconds @ 51 MB/s == Load Balanced (locality freebsd) == Read 15360MB using bs: 1048576, readers: 3, took 54 seconds @ 284 MB/s With pre-fetch enabled (vfs.zfs.prefetch_disable=0): == Stripe Balanced (default) == Read 15360MB using bs: 1048576, readers: 3, took 91 seconds @ 168 MB/s == Load Balanced (zfslinux) == Read 15360MB using bs: 1048576, readers: 3, took 108 seconds @ 142 MB/s == Load Balanced (locality freebsd) == Read 15360MB using bs: 1048576, readers: 3, took 48 seconds @ 320 MB/s In addition to the performance changes the code was also restructured, with the help of Justin Gibbs, to provide a more logical flow which also ensures vdevs loads are only calculated from the set of valid candidates. The following additional sysctls where added to allow the administrator to tune the behaviour of the load algorithm: * vfs.zfs.vdev.mirror.rotating_inc * vfs.zfs.vdev.mirror.rotating_seek_inc * vfs.zfs.vdev.mirror.rotating_seek_offset * vfs.zfs.vdev.mirror.non_rotating_inc * vfs.zfs.vdev.mirror.non_rotating_seek_inc These changes where based on work started by the zfsonlinux developers: https://github.com/zfsonlinux/zfs/pull/1487 Reviewed by: gibbs, mav, will MFC after: 2 weeks Sponsored by: Multiplay References: https://github.com/freebsd/freebsd@5c7a6f5d https://github.com/freebsd/freebsd@31b7f68d https://github.com/freebsd/freebsd@e186f564 Performance Testing: https://github.com/zfsonlinux/zfs/pull/4334#issuecomment-189057141 Porting notes: - The tunables were adjusted to have ZoL-style names. - The code was modified to use ZoL's vd_nonrot. - Fixes were done to make cstyle.pl happy - Merge conflicts were handled manually - freebsd/freebsd@e186f564bc946f82c76e0b34c2f0370ed9aea022 by my collegue Andriy Gapon has been included. It applied perfectly, but added a cstyle regression. - This replaces 556011dbec2d10579819078559a77630fc559112 entirely. - A typo "IO'a" has been corrected to say "IO's" - Descriptions of new tunables were added to man/man5/zfs-module-parameters.5. Ported-by: Richard Yao <ryao@gentoo.org> Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov> Closes #4334
2016-02-13 04:47:22 +03:00
kmem_free(mm, vdev_mirror_map_size(mm->mm_children));
}
static const zio_vsd_ops_t vdev_mirror_vsd_ops = {
.vsd_free = vdev_mirror_map_free,
.vsd_cksum_report = zio_vsd_default_cksum_report
};
Improve N-way mirror performance The read bandwidth of an N-way mirror can by increased by 50%, and the IOPs by 10%, by more carefully selecting the preferred leaf vdev. The existing algorthm selects a perferred leaf vdev based on offset of the zio request modulo the number of members in the mirror. It assumes the drives are of equal performance and that spreading the requests randomly over both drives will be sufficient to saturate them. In practice this results in the leaf vdevs being under utilized. Utilization can be improved by preferentially selecting the leaf vdev with the least pending IO. This prevents leaf vdevs from being starved and compensates for performance differences between disks in the mirror. Faster vdevs will be sent more work and the mirror performance will not be limitted by the slowest drive. In the common case where all the pending queues are full and there is no single least busy leaf vdev a batching stratagy is employed. Of the N least busy vdevs one is selected with equal probability to be the preferred vdev for T microseconds. Compared to randomly selecting a vdev to break the tie batching the requests greatly improves the odds of merging the requests in the Linux elevator. The testing results show a significant performance improvement for all four workloads tested. The workloads were generated using the fio benchmark and are as follows. 1) 1MB sequential reads from 16 threads to 16 files (MB/s). 2) 4KB sequential reads from 16 threads to 16 files (MB/s). 3) 1MB random reads from 16 threads to 16 files (IOP/s). 4) 4KB random reads from 16 threads to 16 files (IOP/s). | Pristine | With 1461 | | Sequential Random | Sequential Random | | 1MB 4KB 1MB 4KB | 1MB 4KB 1MB 4KB | | MB/s MB/s IO/s IO/s | MB/s MB/s IO/s IO/s | ---------------+-----------------------+------------------------+ 2 Striped | 226 243 11 304 | 222 255 11 299 | 2 2-Way Mirror | 302 324 16 534 | 433 448 23 571 | 2 3-Way Mirror | 429 458 24 714 | 648 648 41 808 | 2 4-Way Mirror | 562 601 36 849 | 816 828 82 926 | Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov> Closes #1461
2013-05-31 23:07:59 +04:00
static int
FreeBSD r256956: Improve ZFS N-way mirror read performance by using load and locality information. The existing algorithm selects a preferred leaf vdev based on offset of the zio request modulo the number of members in the mirror. It assumes the devices are of equal performance and that spreading the requests randomly over both drives will be sufficient to saturate them. In practice this results in the leaf vdevs being under utilized. The new algorithm takes into the following additional factors: * Load of the vdevs (number outstanding I/O requests) * The locality of last queued I/O vs the new I/O request. Within the locality calculation additional knowledge about the underlying vdev is considered such as; is the device backing the vdev a rotating media device. This results in performance increases across the board as well as significant increases for predominantly streaming loads and for configurations which don't have evenly performing devices. The following are results from a setup with 3 Way Mirror with 2 x HD's and 1 x SSD from a basic test running multiple parrallel dd's. With pre-fetch disabled (vfs.zfs.prefetch_disable=1): == Stripe Balanced (default) == Read 15360MB using bs: 1048576, readers: 3, took 161 seconds @ 95 MB/s == Load Balanced (zfslinux) == Read 15360MB using bs: 1048576, readers: 3, took 297 seconds @ 51 MB/s == Load Balanced (locality freebsd) == Read 15360MB using bs: 1048576, readers: 3, took 54 seconds @ 284 MB/s With pre-fetch enabled (vfs.zfs.prefetch_disable=0): == Stripe Balanced (default) == Read 15360MB using bs: 1048576, readers: 3, took 91 seconds @ 168 MB/s == Load Balanced (zfslinux) == Read 15360MB using bs: 1048576, readers: 3, took 108 seconds @ 142 MB/s == Load Balanced (locality freebsd) == Read 15360MB using bs: 1048576, readers: 3, took 48 seconds @ 320 MB/s In addition to the performance changes the code was also restructured, with the help of Justin Gibbs, to provide a more logical flow which also ensures vdevs loads are only calculated from the set of valid candidates. The following additional sysctls where added to allow the administrator to tune the behaviour of the load algorithm: * vfs.zfs.vdev.mirror.rotating_inc * vfs.zfs.vdev.mirror.rotating_seek_inc * vfs.zfs.vdev.mirror.rotating_seek_offset * vfs.zfs.vdev.mirror.non_rotating_inc * vfs.zfs.vdev.mirror.non_rotating_seek_inc These changes where based on work started by the zfsonlinux developers: https://github.com/zfsonlinux/zfs/pull/1487 Reviewed by: gibbs, mav, will MFC after: 2 weeks Sponsored by: Multiplay References: https://github.com/freebsd/freebsd@5c7a6f5d https://github.com/freebsd/freebsd@31b7f68d https://github.com/freebsd/freebsd@e186f564 Performance Testing: https://github.com/zfsonlinux/zfs/pull/4334#issuecomment-189057141 Porting notes: - The tunables were adjusted to have ZoL-style names. - The code was modified to use ZoL's vd_nonrot. - Fixes were done to make cstyle.pl happy - Merge conflicts were handled manually - freebsd/freebsd@e186f564bc946f82c76e0b34c2f0370ed9aea022 by my collegue Andriy Gapon has been included. It applied perfectly, but added a cstyle regression. - This replaces 556011dbec2d10579819078559a77630fc559112 entirely. - A typo "IO'a" has been corrected to say "IO's" - Descriptions of new tunables were added to man/man5/zfs-module-parameters.5. Ported-by: Richard Yao <ryao@gentoo.org> Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov> Closes #4334
2016-02-13 04:47:22 +03:00
vdev_mirror_load(mirror_map_t *mm, vdev_t *vd, uint64_t zio_offset)
Improve N-way mirror performance The read bandwidth of an N-way mirror can by increased by 50%, and the IOPs by 10%, by more carefully selecting the preferred leaf vdev. The existing algorthm selects a perferred leaf vdev based on offset of the zio request modulo the number of members in the mirror. It assumes the drives are of equal performance and that spreading the requests randomly over both drives will be sufficient to saturate them. In practice this results in the leaf vdevs being under utilized. Utilization can be improved by preferentially selecting the leaf vdev with the least pending IO. This prevents leaf vdevs from being starved and compensates for performance differences between disks in the mirror. Faster vdevs will be sent more work and the mirror performance will not be limitted by the slowest drive. In the common case where all the pending queues are full and there is no single least busy leaf vdev a batching stratagy is employed. Of the N least busy vdevs one is selected with equal probability to be the preferred vdev for T microseconds. Compared to randomly selecting a vdev to break the tie batching the requests greatly improves the odds of merging the requests in the Linux elevator. The testing results show a significant performance improvement for all four workloads tested. The workloads were generated using the fio benchmark and are as follows. 1) 1MB sequential reads from 16 threads to 16 files (MB/s). 2) 4KB sequential reads from 16 threads to 16 files (MB/s). 3) 1MB random reads from 16 threads to 16 files (IOP/s). 4) 4KB random reads from 16 threads to 16 files (IOP/s). | Pristine | With 1461 | | Sequential Random | Sequential Random | | 1MB 4KB 1MB 4KB | 1MB 4KB 1MB 4KB | | MB/s MB/s IO/s IO/s | MB/s MB/s IO/s IO/s | ---------------+-----------------------+------------------------+ 2 Striped | 226 243 11 304 | 222 255 11 299 | 2 2-Way Mirror | 302 324 16 534 | 433 448 23 571 | 2 3-Way Mirror | 429 458 24 714 | 648 648 41 808 | 2 4-Way Mirror | 562 601 36 849 | 816 828 82 926 | Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov> Closes #1461
2013-05-31 23:07:59 +04:00
{
uint64_t last_offset;
int64_t offset_diff;
FreeBSD r256956: Improve ZFS N-way mirror read performance by using load and locality information. The existing algorithm selects a preferred leaf vdev based on offset of the zio request modulo the number of members in the mirror. It assumes the devices are of equal performance and that spreading the requests randomly over both drives will be sufficient to saturate them. In practice this results in the leaf vdevs being under utilized. The new algorithm takes into the following additional factors: * Load of the vdevs (number outstanding I/O requests) * The locality of last queued I/O vs the new I/O request. Within the locality calculation additional knowledge about the underlying vdev is considered such as; is the device backing the vdev a rotating media device. This results in performance increases across the board as well as significant increases for predominantly streaming loads and for configurations which don't have evenly performing devices. The following are results from a setup with 3 Way Mirror with 2 x HD's and 1 x SSD from a basic test running multiple parrallel dd's. With pre-fetch disabled (vfs.zfs.prefetch_disable=1): == Stripe Balanced (default) == Read 15360MB using bs: 1048576, readers: 3, took 161 seconds @ 95 MB/s == Load Balanced (zfslinux) == Read 15360MB using bs: 1048576, readers: 3, took 297 seconds @ 51 MB/s == Load Balanced (locality freebsd) == Read 15360MB using bs: 1048576, readers: 3, took 54 seconds @ 284 MB/s With pre-fetch enabled (vfs.zfs.prefetch_disable=0): == Stripe Balanced (default) == Read 15360MB using bs: 1048576, readers: 3, took 91 seconds @ 168 MB/s == Load Balanced (zfslinux) == Read 15360MB using bs: 1048576, readers: 3, took 108 seconds @ 142 MB/s == Load Balanced (locality freebsd) == Read 15360MB using bs: 1048576, readers: 3, took 48 seconds @ 320 MB/s In addition to the performance changes the code was also restructured, with the help of Justin Gibbs, to provide a more logical flow which also ensures vdevs loads are only calculated from the set of valid candidates. The following additional sysctls where added to allow the administrator to tune the behaviour of the load algorithm: * vfs.zfs.vdev.mirror.rotating_inc * vfs.zfs.vdev.mirror.rotating_seek_inc * vfs.zfs.vdev.mirror.rotating_seek_offset * vfs.zfs.vdev.mirror.non_rotating_inc * vfs.zfs.vdev.mirror.non_rotating_seek_inc These changes where based on work started by the zfsonlinux developers: https://github.com/zfsonlinux/zfs/pull/1487 Reviewed by: gibbs, mav, will MFC after: 2 weeks Sponsored by: Multiplay References: https://github.com/freebsd/freebsd@5c7a6f5d https://github.com/freebsd/freebsd@31b7f68d https://github.com/freebsd/freebsd@e186f564 Performance Testing: https://github.com/zfsonlinux/zfs/pull/4334#issuecomment-189057141 Porting notes: - The tunables were adjusted to have ZoL-style names. - The code was modified to use ZoL's vd_nonrot. - Fixes were done to make cstyle.pl happy - Merge conflicts were handled manually - freebsd/freebsd@e186f564bc946f82c76e0b34c2f0370ed9aea022 by my collegue Andriy Gapon has been included. It applied perfectly, but added a cstyle regression. - This replaces 556011dbec2d10579819078559a77630fc559112 entirely. - A typo "IO'a" has been corrected to say "IO's" - Descriptions of new tunables were added to man/man5/zfs-module-parameters.5. Ported-by: Richard Yao <ryao@gentoo.org> Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov> Closes #4334
2016-02-13 04:47:22 +03:00
int load;
/* All DVAs have equal weight at the root. */
if (mm->mm_root)
return (INT_MAX);
/*
* We don't return INT_MAX if the device is resilvering i.e.
* vdev_resilver_txg != 0 as when tested performance was slightly
* worse overall when resilvering with compared to without.
*/
/* Fix zio_offset for leaf vdevs */
if (vd->vdev_ops->vdev_op_leaf)
zio_offset += VDEV_LABEL_START_SIZE;
FreeBSD r256956: Improve ZFS N-way mirror read performance by using load and locality information. The existing algorithm selects a preferred leaf vdev based on offset of the zio request modulo the number of members in the mirror. It assumes the devices are of equal performance and that spreading the requests randomly over both drives will be sufficient to saturate them. In practice this results in the leaf vdevs being under utilized. The new algorithm takes into the following additional factors: * Load of the vdevs (number outstanding I/O requests) * The locality of last queued I/O vs the new I/O request. Within the locality calculation additional knowledge about the underlying vdev is considered such as; is the device backing the vdev a rotating media device. This results in performance increases across the board as well as significant increases for predominantly streaming loads and for configurations which don't have evenly performing devices. The following are results from a setup with 3 Way Mirror with 2 x HD's and 1 x SSD from a basic test running multiple parrallel dd's. With pre-fetch disabled (vfs.zfs.prefetch_disable=1): == Stripe Balanced (default) == Read 15360MB using bs: 1048576, readers: 3, took 161 seconds @ 95 MB/s == Load Balanced (zfslinux) == Read 15360MB using bs: 1048576, readers: 3, took 297 seconds @ 51 MB/s == Load Balanced (locality freebsd) == Read 15360MB using bs: 1048576, readers: 3, took 54 seconds @ 284 MB/s With pre-fetch enabled (vfs.zfs.prefetch_disable=0): == Stripe Balanced (default) == Read 15360MB using bs: 1048576, readers: 3, took 91 seconds @ 168 MB/s == Load Balanced (zfslinux) == Read 15360MB using bs: 1048576, readers: 3, took 108 seconds @ 142 MB/s == Load Balanced (locality freebsd) == Read 15360MB using bs: 1048576, readers: 3, took 48 seconds @ 320 MB/s In addition to the performance changes the code was also restructured, with the help of Justin Gibbs, to provide a more logical flow which also ensures vdevs loads are only calculated from the set of valid candidates. The following additional sysctls where added to allow the administrator to tune the behaviour of the load algorithm: * vfs.zfs.vdev.mirror.rotating_inc * vfs.zfs.vdev.mirror.rotating_seek_inc * vfs.zfs.vdev.mirror.rotating_seek_offset * vfs.zfs.vdev.mirror.non_rotating_inc * vfs.zfs.vdev.mirror.non_rotating_seek_inc These changes where based on work started by the zfsonlinux developers: https://github.com/zfsonlinux/zfs/pull/1487 Reviewed by: gibbs, mav, will MFC after: 2 weeks Sponsored by: Multiplay References: https://github.com/freebsd/freebsd@5c7a6f5d https://github.com/freebsd/freebsd@31b7f68d https://github.com/freebsd/freebsd@e186f564 Performance Testing: https://github.com/zfsonlinux/zfs/pull/4334#issuecomment-189057141 Porting notes: - The tunables were adjusted to have ZoL-style names. - The code was modified to use ZoL's vd_nonrot. - Fixes were done to make cstyle.pl happy - Merge conflicts were handled manually - freebsd/freebsd@e186f564bc946f82c76e0b34c2f0370ed9aea022 by my collegue Andriy Gapon has been included. It applied perfectly, but added a cstyle regression. - This replaces 556011dbec2d10579819078559a77630fc559112 entirely. - A typo "IO'a" has been corrected to say "IO's" - Descriptions of new tunables were added to man/man5/zfs-module-parameters.5. Ported-by: Richard Yao <ryao@gentoo.org> Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov> Closes #4334
2016-02-13 04:47:22 +03:00
/* Standard load based on pending queue length. */
load = vdev_queue_length(vd);
last_offset = vdev_queue_last_offset(vd);
FreeBSD r256956: Improve ZFS N-way mirror read performance by using load and locality information. The existing algorithm selects a preferred leaf vdev based on offset of the zio request modulo the number of members in the mirror. It assumes the devices are of equal performance and that spreading the requests randomly over both drives will be sufficient to saturate them. In practice this results in the leaf vdevs being under utilized. The new algorithm takes into the following additional factors: * Load of the vdevs (number outstanding I/O requests) * The locality of last queued I/O vs the new I/O request. Within the locality calculation additional knowledge about the underlying vdev is considered such as; is the device backing the vdev a rotating media device. This results in performance increases across the board as well as significant increases for predominantly streaming loads and for configurations which don't have evenly performing devices. The following are results from a setup with 3 Way Mirror with 2 x HD's and 1 x SSD from a basic test running multiple parrallel dd's. With pre-fetch disabled (vfs.zfs.prefetch_disable=1): == Stripe Balanced (default) == Read 15360MB using bs: 1048576, readers: 3, took 161 seconds @ 95 MB/s == Load Balanced (zfslinux) == Read 15360MB using bs: 1048576, readers: 3, took 297 seconds @ 51 MB/s == Load Balanced (locality freebsd) == Read 15360MB using bs: 1048576, readers: 3, took 54 seconds @ 284 MB/s With pre-fetch enabled (vfs.zfs.prefetch_disable=0): == Stripe Balanced (default) == Read 15360MB using bs: 1048576, readers: 3, took 91 seconds @ 168 MB/s == Load Balanced (zfslinux) == Read 15360MB using bs: 1048576, readers: 3, took 108 seconds @ 142 MB/s == Load Balanced (locality freebsd) == Read 15360MB using bs: 1048576, readers: 3, took 48 seconds @ 320 MB/s In addition to the performance changes the code was also restructured, with the help of Justin Gibbs, to provide a more logical flow which also ensures vdevs loads are only calculated from the set of valid candidates. The following additional sysctls where added to allow the administrator to tune the behaviour of the load algorithm: * vfs.zfs.vdev.mirror.rotating_inc * vfs.zfs.vdev.mirror.rotating_seek_inc * vfs.zfs.vdev.mirror.rotating_seek_offset * vfs.zfs.vdev.mirror.non_rotating_inc * vfs.zfs.vdev.mirror.non_rotating_seek_inc These changes where based on work started by the zfsonlinux developers: https://github.com/zfsonlinux/zfs/pull/1487 Reviewed by: gibbs, mav, will MFC after: 2 weeks Sponsored by: Multiplay References: https://github.com/freebsd/freebsd@5c7a6f5d https://github.com/freebsd/freebsd@31b7f68d https://github.com/freebsd/freebsd@e186f564 Performance Testing: https://github.com/zfsonlinux/zfs/pull/4334#issuecomment-189057141 Porting notes: - The tunables were adjusted to have ZoL-style names. - The code was modified to use ZoL's vd_nonrot. - Fixes were done to make cstyle.pl happy - Merge conflicts were handled manually - freebsd/freebsd@e186f564bc946f82c76e0b34c2f0370ed9aea022 by my collegue Andriy Gapon has been included. It applied perfectly, but added a cstyle regression. - This replaces 556011dbec2d10579819078559a77630fc559112 entirely. - A typo "IO'a" has been corrected to say "IO's" - Descriptions of new tunables were added to man/man5/zfs-module-parameters.5. Ported-by: Richard Yao <ryao@gentoo.org> Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov> Closes #4334
2016-02-13 04:47:22 +03:00
if (vd->vdev_nonrot) {
/* Non-rotating media. */
if (last_offset == zio_offset) {
MIRROR_BUMP(vdev_mirror_stat_non_rotating_linear);
FreeBSD r256956: Improve ZFS N-way mirror read performance by using load and locality information. The existing algorithm selects a preferred leaf vdev based on offset of the zio request modulo the number of members in the mirror. It assumes the devices are of equal performance and that spreading the requests randomly over both drives will be sufficient to saturate them. In practice this results in the leaf vdevs being under utilized. The new algorithm takes into the following additional factors: * Load of the vdevs (number outstanding I/O requests) * The locality of last queued I/O vs the new I/O request. Within the locality calculation additional knowledge about the underlying vdev is considered such as; is the device backing the vdev a rotating media device. This results in performance increases across the board as well as significant increases for predominantly streaming loads and for configurations which don't have evenly performing devices. The following are results from a setup with 3 Way Mirror with 2 x HD's and 1 x SSD from a basic test running multiple parrallel dd's. With pre-fetch disabled (vfs.zfs.prefetch_disable=1): == Stripe Balanced (default) == Read 15360MB using bs: 1048576, readers: 3, took 161 seconds @ 95 MB/s == Load Balanced (zfslinux) == Read 15360MB using bs: 1048576, readers: 3, took 297 seconds @ 51 MB/s == Load Balanced (locality freebsd) == Read 15360MB using bs: 1048576, readers: 3, took 54 seconds @ 284 MB/s With pre-fetch enabled (vfs.zfs.prefetch_disable=0): == Stripe Balanced (default) == Read 15360MB using bs: 1048576, readers: 3, took 91 seconds @ 168 MB/s == Load Balanced (zfslinux) == Read 15360MB using bs: 1048576, readers: 3, took 108 seconds @ 142 MB/s == Load Balanced (locality freebsd) == Read 15360MB using bs: 1048576, readers: 3, took 48 seconds @ 320 MB/s In addition to the performance changes the code was also restructured, with the help of Justin Gibbs, to provide a more logical flow which also ensures vdevs loads are only calculated from the set of valid candidates. The following additional sysctls where added to allow the administrator to tune the behaviour of the load algorithm: * vfs.zfs.vdev.mirror.rotating_inc * vfs.zfs.vdev.mirror.rotating_seek_inc * vfs.zfs.vdev.mirror.rotating_seek_offset * vfs.zfs.vdev.mirror.non_rotating_inc * vfs.zfs.vdev.mirror.non_rotating_seek_inc These changes where based on work started by the zfsonlinux developers: https://github.com/zfsonlinux/zfs/pull/1487 Reviewed by: gibbs, mav, will MFC after: 2 weeks Sponsored by: Multiplay References: https://github.com/freebsd/freebsd@5c7a6f5d https://github.com/freebsd/freebsd@31b7f68d https://github.com/freebsd/freebsd@e186f564 Performance Testing: https://github.com/zfsonlinux/zfs/pull/4334#issuecomment-189057141 Porting notes: - The tunables were adjusted to have ZoL-style names. - The code was modified to use ZoL's vd_nonrot. - Fixes were done to make cstyle.pl happy - Merge conflicts were handled manually - freebsd/freebsd@e186f564bc946f82c76e0b34c2f0370ed9aea022 by my collegue Andriy Gapon has been included. It applied perfectly, but added a cstyle regression. - This replaces 556011dbec2d10579819078559a77630fc559112 entirely. - A typo "IO'a" has been corrected to say "IO's" - Descriptions of new tunables were added to man/man5/zfs-module-parameters.5. Ported-by: Richard Yao <ryao@gentoo.org> Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov> Closes #4334
2016-02-13 04:47:22 +03:00
return (load + zfs_vdev_mirror_non_rotating_inc);
}
FreeBSD r256956: Improve ZFS N-way mirror read performance by using load and locality information. The existing algorithm selects a preferred leaf vdev based on offset of the zio request modulo the number of members in the mirror. It assumes the devices are of equal performance and that spreading the requests randomly over both drives will be sufficient to saturate them. In practice this results in the leaf vdevs being under utilized. The new algorithm takes into the following additional factors: * Load of the vdevs (number outstanding I/O requests) * The locality of last queued I/O vs the new I/O request. Within the locality calculation additional knowledge about the underlying vdev is considered such as; is the device backing the vdev a rotating media device. This results in performance increases across the board as well as significant increases for predominantly streaming loads and for configurations which don't have evenly performing devices. The following are results from a setup with 3 Way Mirror with 2 x HD's and 1 x SSD from a basic test running multiple parrallel dd's. With pre-fetch disabled (vfs.zfs.prefetch_disable=1): == Stripe Balanced (default) == Read 15360MB using bs: 1048576, readers: 3, took 161 seconds @ 95 MB/s == Load Balanced (zfslinux) == Read 15360MB using bs: 1048576, readers: 3, took 297 seconds @ 51 MB/s == Load Balanced (locality freebsd) == Read 15360MB using bs: 1048576, readers: 3, took 54 seconds @ 284 MB/s With pre-fetch enabled (vfs.zfs.prefetch_disable=0): == Stripe Balanced (default) == Read 15360MB using bs: 1048576, readers: 3, took 91 seconds @ 168 MB/s == Load Balanced (zfslinux) == Read 15360MB using bs: 1048576, readers: 3, took 108 seconds @ 142 MB/s == Load Balanced (locality freebsd) == Read 15360MB using bs: 1048576, readers: 3, took 48 seconds @ 320 MB/s In addition to the performance changes the code was also restructured, with the help of Justin Gibbs, to provide a more logical flow which also ensures vdevs loads are only calculated from the set of valid candidates. The following additional sysctls where added to allow the administrator to tune the behaviour of the load algorithm: * vfs.zfs.vdev.mirror.rotating_inc * vfs.zfs.vdev.mirror.rotating_seek_inc * vfs.zfs.vdev.mirror.rotating_seek_offset * vfs.zfs.vdev.mirror.non_rotating_inc * vfs.zfs.vdev.mirror.non_rotating_seek_inc These changes where based on work started by the zfsonlinux developers: https://github.com/zfsonlinux/zfs/pull/1487 Reviewed by: gibbs, mav, will MFC after: 2 weeks Sponsored by: Multiplay References: https://github.com/freebsd/freebsd@5c7a6f5d https://github.com/freebsd/freebsd@31b7f68d https://github.com/freebsd/freebsd@e186f564 Performance Testing: https://github.com/zfsonlinux/zfs/pull/4334#issuecomment-189057141 Porting notes: - The tunables were adjusted to have ZoL-style names. - The code was modified to use ZoL's vd_nonrot. - Fixes were done to make cstyle.pl happy - Merge conflicts were handled manually - freebsd/freebsd@e186f564bc946f82c76e0b34c2f0370ed9aea022 by my collegue Andriy Gapon has been included. It applied perfectly, but added a cstyle regression. - This replaces 556011dbec2d10579819078559a77630fc559112 entirely. - A typo "IO'a" has been corrected to say "IO's" - Descriptions of new tunables were added to man/man5/zfs-module-parameters.5. Ported-by: Richard Yao <ryao@gentoo.org> Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov> Closes #4334
2016-02-13 04:47:22 +03:00
/*
* Apply a seek penalty even for non-rotating devices as
* sequential I/O's can be aggregated into fewer operations on
* the device, thus avoiding unnecessary per-command overhead
* and boosting performance.
*/
MIRROR_BUMP(vdev_mirror_stat_non_rotating_seek);
FreeBSD r256956: Improve ZFS N-way mirror read performance by using load and locality information. The existing algorithm selects a preferred leaf vdev based on offset of the zio request modulo the number of members in the mirror. It assumes the devices are of equal performance and that spreading the requests randomly over both drives will be sufficient to saturate them. In practice this results in the leaf vdevs being under utilized. The new algorithm takes into the following additional factors: * Load of the vdevs (number outstanding I/O requests) * The locality of last queued I/O vs the new I/O request. Within the locality calculation additional knowledge about the underlying vdev is considered such as; is the device backing the vdev a rotating media device. This results in performance increases across the board as well as significant increases for predominantly streaming loads and for configurations which don't have evenly performing devices. The following are results from a setup with 3 Way Mirror with 2 x HD's and 1 x SSD from a basic test running multiple parrallel dd's. With pre-fetch disabled (vfs.zfs.prefetch_disable=1): == Stripe Balanced (default) == Read 15360MB using bs: 1048576, readers: 3, took 161 seconds @ 95 MB/s == Load Balanced (zfslinux) == Read 15360MB using bs: 1048576, readers: 3, took 297 seconds @ 51 MB/s == Load Balanced (locality freebsd) == Read 15360MB using bs: 1048576, readers: 3, took 54 seconds @ 284 MB/s With pre-fetch enabled (vfs.zfs.prefetch_disable=0): == Stripe Balanced (default) == Read 15360MB using bs: 1048576, readers: 3, took 91 seconds @ 168 MB/s == Load Balanced (zfslinux) == Read 15360MB using bs: 1048576, readers: 3, took 108 seconds @ 142 MB/s == Load Balanced (locality freebsd) == Read 15360MB using bs: 1048576, readers: 3, took 48 seconds @ 320 MB/s In addition to the performance changes the code was also restructured, with the help of Justin Gibbs, to provide a more logical flow which also ensures vdevs loads are only calculated from the set of valid candidates. The following additional sysctls where added to allow the administrator to tune the behaviour of the load algorithm: * vfs.zfs.vdev.mirror.rotating_inc * vfs.zfs.vdev.mirror.rotating_seek_inc * vfs.zfs.vdev.mirror.rotating_seek_offset * vfs.zfs.vdev.mirror.non_rotating_inc * vfs.zfs.vdev.mirror.non_rotating_seek_inc These changes where based on work started by the zfsonlinux developers: https://github.com/zfsonlinux/zfs/pull/1487 Reviewed by: gibbs, mav, will MFC after: 2 weeks Sponsored by: Multiplay References: https://github.com/freebsd/freebsd@5c7a6f5d https://github.com/freebsd/freebsd@31b7f68d https://github.com/freebsd/freebsd@e186f564 Performance Testing: https://github.com/zfsonlinux/zfs/pull/4334#issuecomment-189057141 Porting notes: - The tunables were adjusted to have ZoL-style names. - The code was modified to use ZoL's vd_nonrot. - Fixes were done to make cstyle.pl happy - Merge conflicts were handled manually - freebsd/freebsd@e186f564bc946f82c76e0b34c2f0370ed9aea022 by my collegue Andriy Gapon has been included. It applied perfectly, but added a cstyle regression. - This replaces 556011dbec2d10579819078559a77630fc559112 entirely. - A typo "IO'a" has been corrected to say "IO's" - Descriptions of new tunables were added to man/man5/zfs-module-parameters.5. Ported-by: Richard Yao <ryao@gentoo.org> Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov> Closes #4334
2016-02-13 04:47:22 +03:00
return (load + zfs_vdev_mirror_non_rotating_seek_inc);
}
/* Rotating media I/O's which directly follow the last I/O. */
if (last_offset == zio_offset) {
MIRROR_BUMP(vdev_mirror_stat_rotating_linear);
FreeBSD r256956: Improve ZFS N-way mirror read performance by using load and locality information. The existing algorithm selects a preferred leaf vdev based on offset of the zio request modulo the number of members in the mirror. It assumes the devices are of equal performance and that spreading the requests randomly over both drives will be sufficient to saturate them. In practice this results in the leaf vdevs being under utilized. The new algorithm takes into the following additional factors: * Load of the vdevs (number outstanding I/O requests) * The locality of last queued I/O vs the new I/O request. Within the locality calculation additional knowledge about the underlying vdev is considered such as; is the device backing the vdev a rotating media device. This results in performance increases across the board as well as significant increases for predominantly streaming loads and for configurations which don't have evenly performing devices. The following are results from a setup with 3 Way Mirror with 2 x HD's and 1 x SSD from a basic test running multiple parrallel dd's. With pre-fetch disabled (vfs.zfs.prefetch_disable=1): == Stripe Balanced (default) == Read 15360MB using bs: 1048576, readers: 3, took 161 seconds @ 95 MB/s == Load Balanced (zfslinux) == Read 15360MB using bs: 1048576, readers: 3, took 297 seconds @ 51 MB/s == Load Balanced (locality freebsd) == Read 15360MB using bs: 1048576, readers: 3, took 54 seconds @ 284 MB/s With pre-fetch enabled (vfs.zfs.prefetch_disable=0): == Stripe Balanced (default) == Read 15360MB using bs: 1048576, readers: 3, took 91 seconds @ 168 MB/s == Load Balanced (zfslinux) == Read 15360MB using bs: 1048576, readers: 3, took 108 seconds @ 142 MB/s == Load Balanced (locality freebsd) == Read 15360MB using bs: 1048576, readers: 3, took 48 seconds @ 320 MB/s In addition to the performance changes the code was also restructured, with the help of Justin Gibbs, to provide a more logical flow which also ensures vdevs loads are only calculated from the set of valid candidates. The following additional sysctls where added to allow the administrator to tune the behaviour of the load algorithm: * vfs.zfs.vdev.mirror.rotating_inc * vfs.zfs.vdev.mirror.rotating_seek_inc * vfs.zfs.vdev.mirror.rotating_seek_offset * vfs.zfs.vdev.mirror.non_rotating_inc * vfs.zfs.vdev.mirror.non_rotating_seek_inc These changes where based on work started by the zfsonlinux developers: https://github.com/zfsonlinux/zfs/pull/1487 Reviewed by: gibbs, mav, will MFC after: 2 weeks Sponsored by: Multiplay References: https://github.com/freebsd/freebsd@5c7a6f5d https://github.com/freebsd/freebsd@31b7f68d https://github.com/freebsd/freebsd@e186f564 Performance Testing: https://github.com/zfsonlinux/zfs/pull/4334#issuecomment-189057141 Porting notes: - The tunables were adjusted to have ZoL-style names. - The code was modified to use ZoL's vd_nonrot. - Fixes were done to make cstyle.pl happy - Merge conflicts were handled manually - freebsd/freebsd@e186f564bc946f82c76e0b34c2f0370ed9aea022 by my collegue Andriy Gapon has been included. It applied perfectly, but added a cstyle regression. - This replaces 556011dbec2d10579819078559a77630fc559112 entirely. - A typo "IO'a" has been corrected to say "IO's" - Descriptions of new tunables were added to man/man5/zfs-module-parameters.5. Ported-by: Richard Yao <ryao@gentoo.org> Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov> Closes #4334
2016-02-13 04:47:22 +03:00
return (load + zfs_vdev_mirror_rotating_inc);
}
FreeBSD r256956: Improve ZFS N-way mirror read performance by using load and locality information. The existing algorithm selects a preferred leaf vdev based on offset of the zio request modulo the number of members in the mirror. It assumes the devices are of equal performance and that spreading the requests randomly over both drives will be sufficient to saturate them. In practice this results in the leaf vdevs being under utilized. The new algorithm takes into the following additional factors: * Load of the vdevs (number outstanding I/O requests) * The locality of last queued I/O vs the new I/O request. Within the locality calculation additional knowledge about the underlying vdev is considered such as; is the device backing the vdev a rotating media device. This results in performance increases across the board as well as significant increases for predominantly streaming loads and for configurations which don't have evenly performing devices. The following are results from a setup with 3 Way Mirror with 2 x HD's and 1 x SSD from a basic test running multiple parrallel dd's. With pre-fetch disabled (vfs.zfs.prefetch_disable=1): == Stripe Balanced (default) == Read 15360MB using bs: 1048576, readers: 3, took 161 seconds @ 95 MB/s == Load Balanced (zfslinux) == Read 15360MB using bs: 1048576, readers: 3, took 297 seconds @ 51 MB/s == Load Balanced (locality freebsd) == Read 15360MB using bs: 1048576, readers: 3, took 54 seconds @ 284 MB/s With pre-fetch enabled (vfs.zfs.prefetch_disable=0): == Stripe Balanced (default) == Read 15360MB using bs: 1048576, readers: 3, took 91 seconds @ 168 MB/s == Load Balanced (zfslinux) == Read 15360MB using bs: 1048576, readers: 3, took 108 seconds @ 142 MB/s == Load Balanced (locality freebsd) == Read 15360MB using bs: 1048576, readers: 3, took 48 seconds @ 320 MB/s In addition to the performance changes the code was also restructured, with the help of Justin Gibbs, to provide a more logical flow which also ensures vdevs loads are only calculated from the set of valid candidates. The following additional sysctls where added to allow the administrator to tune the behaviour of the load algorithm: * vfs.zfs.vdev.mirror.rotating_inc * vfs.zfs.vdev.mirror.rotating_seek_inc * vfs.zfs.vdev.mirror.rotating_seek_offset * vfs.zfs.vdev.mirror.non_rotating_inc * vfs.zfs.vdev.mirror.non_rotating_seek_inc These changes where based on work started by the zfsonlinux developers: https://github.com/zfsonlinux/zfs/pull/1487 Reviewed by: gibbs, mav, will MFC after: 2 weeks Sponsored by: Multiplay References: https://github.com/freebsd/freebsd@5c7a6f5d https://github.com/freebsd/freebsd@31b7f68d https://github.com/freebsd/freebsd@e186f564 Performance Testing: https://github.com/zfsonlinux/zfs/pull/4334#issuecomment-189057141 Porting notes: - The tunables were adjusted to have ZoL-style names. - The code was modified to use ZoL's vd_nonrot. - Fixes were done to make cstyle.pl happy - Merge conflicts were handled manually - freebsd/freebsd@e186f564bc946f82c76e0b34c2f0370ed9aea022 by my collegue Andriy Gapon has been included. It applied perfectly, but added a cstyle regression. - This replaces 556011dbec2d10579819078559a77630fc559112 entirely. - A typo "IO'a" has been corrected to say "IO's" - Descriptions of new tunables were added to man/man5/zfs-module-parameters.5. Ported-by: Richard Yao <ryao@gentoo.org> Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov> Closes #4334
2016-02-13 04:47:22 +03:00
/*
* Apply half the seek increment to I/O's within seek offset
* of the last I/O issued to this vdev as they should incur less
FreeBSD r256956: Improve ZFS N-way mirror read performance by using load and locality information. The existing algorithm selects a preferred leaf vdev based on offset of the zio request modulo the number of members in the mirror. It assumes the devices are of equal performance and that spreading the requests randomly over both drives will be sufficient to saturate them. In practice this results in the leaf vdevs being under utilized. The new algorithm takes into the following additional factors: * Load of the vdevs (number outstanding I/O requests) * The locality of last queued I/O vs the new I/O request. Within the locality calculation additional knowledge about the underlying vdev is considered such as; is the device backing the vdev a rotating media device. This results in performance increases across the board as well as significant increases for predominantly streaming loads and for configurations which don't have evenly performing devices. The following are results from a setup with 3 Way Mirror with 2 x HD's and 1 x SSD from a basic test running multiple parrallel dd's. With pre-fetch disabled (vfs.zfs.prefetch_disable=1): == Stripe Balanced (default) == Read 15360MB using bs: 1048576, readers: 3, took 161 seconds @ 95 MB/s == Load Balanced (zfslinux) == Read 15360MB using bs: 1048576, readers: 3, took 297 seconds @ 51 MB/s == Load Balanced (locality freebsd) == Read 15360MB using bs: 1048576, readers: 3, took 54 seconds @ 284 MB/s With pre-fetch enabled (vfs.zfs.prefetch_disable=0): == Stripe Balanced (default) == Read 15360MB using bs: 1048576, readers: 3, took 91 seconds @ 168 MB/s == Load Balanced (zfslinux) == Read 15360MB using bs: 1048576, readers: 3, took 108 seconds @ 142 MB/s == Load Balanced (locality freebsd) == Read 15360MB using bs: 1048576, readers: 3, took 48 seconds @ 320 MB/s In addition to the performance changes the code was also restructured, with the help of Justin Gibbs, to provide a more logical flow which also ensures vdevs loads are only calculated from the set of valid candidates. The following additional sysctls where added to allow the administrator to tune the behaviour of the load algorithm: * vfs.zfs.vdev.mirror.rotating_inc * vfs.zfs.vdev.mirror.rotating_seek_inc * vfs.zfs.vdev.mirror.rotating_seek_offset * vfs.zfs.vdev.mirror.non_rotating_inc * vfs.zfs.vdev.mirror.non_rotating_seek_inc These changes where based on work started by the zfsonlinux developers: https://github.com/zfsonlinux/zfs/pull/1487 Reviewed by: gibbs, mav, will MFC after: 2 weeks Sponsored by: Multiplay References: https://github.com/freebsd/freebsd@5c7a6f5d https://github.com/freebsd/freebsd@31b7f68d https://github.com/freebsd/freebsd@e186f564 Performance Testing: https://github.com/zfsonlinux/zfs/pull/4334#issuecomment-189057141 Porting notes: - The tunables were adjusted to have ZoL-style names. - The code was modified to use ZoL's vd_nonrot. - Fixes were done to make cstyle.pl happy - Merge conflicts were handled manually - freebsd/freebsd@e186f564bc946f82c76e0b34c2f0370ed9aea022 by my collegue Andriy Gapon has been included. It applied perfectly, but added a cstyle regression. - This replaces 556011dbec2d10579819078559a77630fc559112 entirely. - A typo "IO'a" has been corrected to say "IO's" - Descriptions of new tunables were added to man/man5/zfs-module-parameters.5. Ported-by: Richard Yao <ryao@gentoo.org> Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov> Closes #4334
2016-02-13 04:47:22 +03:00
* of a seek increment.
*/
offset_diff = (int64_t)(last_offset - zio_offset);
if (ABS(offset_diff) < zfs_vdev_mirror_rotating_seek_offset) {
MIRROR_BUMP(vdev_mirror_stat_rotating_offset);
FreeBSD r256956: Improve ZFS N-way mirror read performance by using load and locality information. The existing algorithm selects a preferred leaf vdev based on offset of the zio request modulo the number of members in the mirror. It assumes the devices are of equal performance and that spreading the requests randomly over both drives will be sufficient to saturate them. In practice this results in the leaf vdevs being under utilized. The new algorithm takes into the following additional factors: * Load of the vdevs (number outstanding I/O requests) * The locality of last queued I/O vs the new I/O request. Within the locality calculation additional knowledge about the underlying vdev is considered such as; is the device backing the vdev a rotating media device. This results in performance increases across the board as well as significant increases for predominantly streaming loads and for configurations which don't have evenly performing devices. The following are results from a setup with 3 Way Mirror with 2 x HD's and 1 x SSD from a basic test running multiple parrallel dd's. With pre-fetch disabled (vfs.zfs.prefetch_disable=1): == Stripe Balanced (default) == Read 15360MB using bs: 1048576, readers: 3, took 161 seconds @ 95 MB/s == Load Balanced (zfslinux) == Read 15360MB using bs: 1048576, readers: 3, took 297 seconds @ 51 MB/s == Load Balanced (locality freebsd) == Read 15360MB using bs: 1048576, readers: 3, took 54 seconds @ 284 MB/s With pre-fetch enabled (vfs.zfs.prefetch_disable=0): == Stripe Balanced (default) == Read 15360MB using bs: 1048576, readers: 3, took 91 seconds @ 168 MB/s == Load Balanced (zfslinux) == Read 15360MB using bs: 1048576, readers: 3, took 108 seconds @ 142 MB/s == Load Balanced (locality freebsd) == Read 15360MB using bs: 1048576, readers: 3, took 48 seconds @ 320 MB/s In addition to the performance changes the code was also restructured, with the help of Justin Gibbs, to provide a more logical flow which also ensures vdevs loads are only calculated from the set of valid candidates. The following additional sysctls where added to allow the administrator to tune the behaviour of the load algorithm: * vfs.zfs.vdev.mirror.rotating_inc * vfs.zfs.vdev.mirror.rotating_seek_inc * vfs.zfs.vdev.mirror.rotating_seek_offset * vfs.zfs.vdev.mirror.non_rotating_inc * vfs.zfs.vdev.mirror.non_rotating_seek_inc These changes where based on work started by the zfsonlinux developers: https://github.com/zfsonlinux/zfs/pull/1487 Reviewed by: gibbs, mav, will MFC after: 2 weeks Sponsored by: Multiplay References: https://github.com/freebsd/freebsd@5c7a6f5d https://github.com/freebsd/freebsd@31b7f68d https://github.com/freebsd/freebsd@e186f564 Performance Testing: https://github.com/zfsonlinux/zfs/pull/4334#issuecomment-189057141 Porting notes: - The tunables were adjusted to have ZoL-style names. - The code was modified to use ZoL's vd_nonrot. - Fixes were done to make cstyle.pl happy - Merge conflicts were handled manually - freebsd/freebsd@e186f564bc946f82c76e0b34c2f0370ed9aea022 by my collegue Andriy Gapon has been included. It applied perfectly, but added a cstyle regression. - This replaces 556011dbec2d10579819078559a77630fc559112 entirely. - A typo "IO'a" has been corrected to say "IO's" - Descriptions of new tunables were added to man/man5/zfs-module-parameters.5. Ported-by: Richard Yao <ryao@gentoo.org> Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov> Closes #4334
2016-02-13 04:47:22 +03:00
return (load + (zfs_vdev_mirror_rotating_seek_inc / 2));
}
FreeBSD r256956: Improve ZFS N-way mirror read performance by using load and locality information. The existing algorithm selects a preferred leaf vdev based on offset of the zio request modulo the number of members in the mirror. It assumes the devices are of equal performance and that spreading the requests randomly over both drives will be sufficient to saturate them. In practice this results in the leaf vdevs being under utilized. The new algorithm takes into the following additional factors: * Load of the vdevs (number outstanding I/O requests) * The locality of last queued I/O vs the new I/O request. Within the locality calculation additional knowledge about the underlying vdev is considered such as; is the device backing the vdev a rotating media device. This results in performance increases across the board as well as significant increases for predominantly streaming loads and for configurations which don't have evenly performing devices. The following are results from a setup with 3 Way Mirror with 2 x HD's and 1 x SSD from a basic test running multiple parrallel dd's. With pre-fetch disabled (vfs.zfs.prefetch_disable=1): == Stripe Balanced (default) == Read 15360MB using bs: 1048576, readers: 3, took 161 seconds @ 95 MB/s == Load Balanced (zfslinux) == Read 15360MB using bs: 1048576, readers: 3, took 297 seconds @ 51 MB/s == Load Balanced (locality freebsd) == Read 15360MB using bs: 1048576, readers: 3, took 54 seconds @ 284 MB/s With pre-fetch enabled (vfs.zfs.prefetch_disable=0): == Stripe Balanced (default) == Read 15360MB using bs: 1048576, readers: 3, took 91 seconds @ 168 MB/s == Load Balanced (zfslinux) == Read 15360MB using bs: 1048576, readers: 3, took 108 seconds @ 142 MB/s == Load Balanced (locality freebsd) == Read 15360MB using bs: 1048576, readers: 3, took 48 seconds @ 320 MB/s In addition to the performance changes the code was also restructured, with the help of Justin Gibbs, to provide a more logical flow which also ensures vdevs loads are only calculated from the set of valid candidates. The following additional sysctls where added to allow the administrator to tune the behaviour of the load algorithm: * vfs.zfs.vdev.mirror.rotating_inc * vfs.zfs.vdev.mirror.rotating_seek_inc * vfs.zfs.vdev.mirror.rotating_seek_offset * vfs.zfs.vdev.mirror.non_rotating_inc * vfs.zfs.vdev.mirror.non_rotating_seek_inc These changes where based on work started by the zfsonlinux developers: https://github.com/zfsonlinux/zfs/pull/1487 Reviewed by: gibbs, mav, will MFC after: 2 weeks Sponsored by: Multiplay References: https://github.com/freebsd/freebsd@5c7a6f5d https://github.com/freebsd/freebsd@31b7f68d https://github.com/freebsd/freebsd@e186f564 Performance Testing: https://github.com/zfsonlinux/zfs/pull/4334#issuecomment-189057141 Porting notes: - The tunables were adjusted to have ZoL-style names. - The code was modified to use ZoL's vd_nonrot. - Fixes were done to make cstyle.pl happy - Merge conflicts were handled manually - freebsd/freebsd@e186f564bc946f82c76e0b34c2f0370ed9aea022 by my collegue Andriy Gapon has been included. It applied perfectly, but added a cstyle regression. - This replaces 556011dbec2d10579819078559a77630fc559112 entirely. - A typo "IO'a" has been corrected to say "IO's" - Descriptions of new tunables were added to man/man5/zfs-module-parameters.5. Ported-by: Richard Yao <ryao@gentoo.org> Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov> Closes #4334
2016-02-13 04:47:22 +03:00
/* Apply the full seek increment to all other I/O's. */
MIRROR_BUMP(vdev_mirror_stat_rotating_seek);
FreeBSD r256956: Improve ZFS N-way mirror read performance by using load and locality information. The existing algorithm selects a preferred leaf vdev based on offset of the zio request modulo the number of members in the mirror. It assumes the devices are of equal performance and that spreading the requests randomly over both drives will be sufficient to saturate them. In practice this results in the leaf vdevs being under utilized. The new algorithm takes into the following additional factors: * Load of the vdevs (number outstanding I/O requests) * The locality of last queued I/O vs the new I/O request. Within the locality calculation additional knowledge about the underlying vdev is considered such as; is the device backing the vdev a rotating media device. This results in performance increases across the board as well as significant increases for predominantly streaming loads and for configurations which don't have evenly performing devices. The following are results from a setup with 3 Way Mirror with 2 x HD's and 1 x SSD from a basic test running multiple parrallel dd's. With pre-fetch disabled (vfs.zfs.prefetch_disable=1): == Stripe Balanced (default) == Read 15360MB using bs: 1048576, readers: 3, took 161 seconds @ 95 MB/s == Load Balanced (zfslinux) == Read 15360MB using bs: 1048576, readers: 3, took 297 seconds @ 51 MB/s == Load Balanced (locality freebsd) == Read 15360MB using bs: 1048576, readers: 3, took 54 seconds @ 284 MB/s With pre-fetch enabled (vfs.zfs.prefetch_disable=0): == Stripe Balanced (default) == Read 15360MB using bs: 1048576, readers: 3, took 91 seconds @ 168 MB/s == Load Balanced (zfslinux) == Read 15360MB using bs: 1048576, readers: 3, took 108 seconds @ 142 MB/s == Load Balanced (locality freebsd) == Read 15360MB using bs: 1048576, readers: 3, took 48 seconds @ 320 MB/s In addition to the performance changes the code was also restructured, with the help of Justin Gibbs, to provide a more logical flow which also ensures vdevs loads are only calculated from the set of valid candidates. The following additional sysctls where added to allow the administrator to tune the behaviour of the load algorithm: * vfs.zfs.vdev.mirror.rotating_inc * vfs.zfs.vdev.mirror.rotating_seek_inc * vfs.zfs.vdev.mirror.rotating_seek_offset * vfs.zfs.vdev.mirror.non_rotating_inc * vfs.zfs.vdev.mirror.non_rotating_seek_inc These changes where based on work started by the zfsonlinux developers: https://github.com/zfsonlinux/zfs/pull/1487 Reviewed by: gibbs, mav, will MFC after: 2 weeks Sponsored by: Multiplay References: https://github.com/freebsd/freebsd@5c7a6f5d https://github.com/freebsd/freebsd@31b7f68d https://github.com/freebsd/freebsd@e186f564 Performance Testing: https://github.com/zfsonlinux/zfs/pull/4334#issuecomment-189057141 Porting notes: - The tunables were adjusted to have ZoL-style names. - The code was modified to use ZoL's vd_nonrot. - Fixes were done to make cstyle.pl happy - Merge conflicts were handled manually - freebsd/freebsd@e186f564bc946f82c76e0b34c2f0370ed9aea022 by my collegue Andriy Gapon has been included. It applied perfectly, but added a cstyle regression. - This replaces 556011dbec2d10579819078559a77630fc559112 entirely. - A typo "IO'a" has been corrected to say "IO's" - Descriptions of new tunables were added to man/man5/zfs-module-parameters.5. Ported-by: Richard Yao <ryao@gentoo.org> Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov> Closes #4334
2016-02-13 04:47:22 +03:00
return (load + zfs_vdev_mirror_rotating_seek_inc);
Improve N-way mirror performance The read bandwidth of an N-way mirror can by increased by 50%, and the IOPs by 10%, by more carefully selecting the preferred leaf vdev. The existing algorthm selects a perferred leaf vdev based on offset of the zio request modulo the number of members in the mirror. It assumes the drives are of equal performance and that spreading the requests randomly over both drives will be sufficient to saturate them. In practice this results in the leaf vdevs being under utilized. Utilization can be improved by preferentially selecting the leaf vdev with the least pending IO. This prevents leaf vdevs from being starved and compensates for performance differences between disks in the mirror. Faster vdevs will be sent more work and the mirror performance will not be limitted by the slowest drive. In the common case where all the pending queues are full and there is no single least busy leaf vdev a batching stratagy is employed. Of the N least busy vdevs one is selected with equal probability to be the preferred vdev for T microseconds. Compared to randomly selecting a vdev to break the tie batching the requests greatly improves the odds of merging the requests in the Linux elevator. The testing results show a significant performance improvement for all four workloads tested. The workloads were generated using the fio benchmark and are as follows. 1) 1MB sequential reads from 16 threads to 16 files (MB/s). 2) 4KB sequential reads from 16 threads to 16 files (MB/s). 3) 1MB random reads from 16 threads to 16 files (IOP/s). 4) 4KB random reads from 16 threads to 16 files (IOP/s). | Pristine | With 1461 | | Sequential Random | Sequential Random | | 1MB 4KB 1MB 4KB | 1MB 4KB 1MB 4KB | | MB/s MB/s IO/s IO/s | MB/s MB/s IO/s IO/s | ---------------+-----------------------+------------------------+ 2 Striped | 226 243 11 304 | 222 255 11 299 | 2 2-Way Mirror | 302 324 16 534 | 433 448 23 571 | 2 3-Way Mirror | 429 458 24 714 | 648 648 41 808 | 2 4-Way Mirror | 562 601 36 849 | 816 828 82 926 | Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov> Closes #1461
2013-05-31 23:07:59 +04:00
}
Reduce stack for traverse_visitbp() recursion During pool import stack overflows may still occur due to the potentially deep recursion of traverse_visitbp(). This is most likely to occur when additional layers are added to the block device stack such as DM multipath. To minimize the stack usage for this call path the following changes were made: 1) Added the keywork 'noinline' to the vdev_*_map_alloc() functions to prevent them from being inlined by gcc. This reduced the stack usage of vdev_raidz_io_start() from 208 to 128 bytes, and vdev_mirror_io_start() from 144 to 128 bytes. 2) The 'saved_poolname' charater array in zfsdev_ioctl() was moved from the stack to the heap. This reduced the stack usage of zfsdev_ioctl() from 368 to 112 bytes. 3) The major saving came from slimming down traverse_visitbp() from from 224 to 144 bytes. Since this function is called recursively the 80 bytes saved per invokation adds up. The following changes were made: a) The 'hard' local variable was replaced by a TD_HARD() macro. b) The 'pd' local variable was replaced by 'td->td_pfd' references. c) The zbookmark_t was moved to the heap. This does cost us an additional memory allocation per recursion by that cost should still be minimal. The cost could be further reduced by adding a dedicated zbookmark_t slab cache. d) The variable declarations in 'if (BP_GET_LEVEL()) { }' were restructured to use the minimum amount of stack. This includes removing the 'cbp' local variable. Overall for the offending use case roughly 1584 of total stack space has been saved. This is enough to avoid overflowing the stack on stock kernels with 8k stacks. See #1778 for additional details. Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov> Signed-off-by: Ned Bass <bass6@llnl.gov> Closes #1778
2013-11-13 23:05:17 +04:00
/*
* Avoid inlining the function to keep vdev_mirror_io_start(), which
* is this functions only caller, as small as possible on the stack.
*/
noinline static mirror_map_t *
FreeBSD r256956: Improve ZFS N-way mirror read performance by using load and locality information. The existing algorithm selects a preferred leaf vdev based on offset of the zio request modulo the number of members in the mirror. It assumes the devices are of equal performance and that spreading the requests randomly over both drives will be sufficient to saturate them. In practice this results in the leaf vdevs being under utilized. The new algorithm takes into the following additional factors: * Load of the vdevs (number outstanding I/O requests) * The locality of last queued I/O vs the new I/O request. Within the locality calculation additional knowledge about the underlying vdev is considered such as; is the device backing the vdev a rotating media device. This results in performance increases across the board as well as significant increases for predominantly streaming loads and for configurations which don't have evenly performing devices. The following are results from a setup with 3 Way Mirror with 2 x HD's and 1 x SSD from a basic test running multiple parrallel dd's. With pre-fetch disabled (vfs.zfs.prefetch_disable=1): == Stripe Balanced (default) == Read 15360MB using bs: 1048576, readers: 3, took 161 seconds @ 95 MB/s == Load Balanced (zfslinux) == Read 15360MB using bs: 1048576, readers: 3, took 297 seconds @ 51 MB/s == Load Balanced (locality freebsd) == Read 15360MB using bs: 1048576, readers: 3, took 54 seconds @ 284 MB/s With pre-fetch enabled (vfs.zfs.prefetch_disable=0): == Stripe Balanced (default) == Read 15360MB using bs: 1048576, readers: 3, took 91 seconds @ 168 MB/s == Load Balanced (zfslinux) == Read 15360MB using bs: 1048576, readers: 3, took 108 seconds @ 142 MB/s == Load Balanced (locality freebsd) == Read 15360MB using bs: 1048576, readers: 3, took 48 seconds @ 320 MB/s In addition to the performance changes the code was also restructured, with the help of Justin Gibbs, to provide a more logical flow which also ensures vdevs loads are only calculated from the set of valid candidates. The following additional sysctls where added to allow the administrator to tune the behaviour of the load algorithm: * vfs.zfs.vdev.mirror.rotating_inc * vfs.zfs.vdev.mirror.rotating_seek_inc * vfs.zfs.vdev.mirror.rotating_seek_offset * vfs.zfs.vdev.mirror.non_rotating_inc * vfs.zfs.vdev.mirror.non_rotating_seek_inc These changes where based on work started by the zfsonlinux developers: https://github.com/zfsonlinux/zfs/pull/1487 Reviewed by: gibbs, mav, will MFC after: 2 weeks Sponsored by: Multiplay References: https://github.com/freebsd/freebsd@5c7a6f5d https://github.com/freebsd/freebsd@31b7f68d https://github.com/freebsd/freebsd@e186f564 Performance Testing: https://github.com/zfsonlinux/zfs/pull/4334#issuecomment-189057141 Porting notes: - The tunables were adjusted to have ZoL-style names. - The code was modified to use ZoL's vd_nonrot. - Fixes were done to make cstyle.pl happy - Merge conflicts were handled manually - freebsd/freebsd@e186f564bc946f82c76e0b34c2f0370ed9aea022 by my collegue Andriy Gapon has been included. It applied perfectly, but added a cstyle regression. - This replaces 556011dbec2d10579819078559a77630fc559112 entirely. - A typo "IO'a" has been corrected to say "IO's" - Descriptions of new tunables were added to man/man5/zfs-module-parameters.5. Ported-by: Richard Yao <ryao@gentoo.org> Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov> Closes #4334
2016-02-13 04:47:22 +03:00
vdev_mirror_map_init(zio_t *zio)
2008-11-20 23:01:55 +03:00
{
mirror_map_t *mm = NULL;
mirror_child_t *mc;
vdev_t *vd = zio->io_vd;
FreeBSD r256956: Improve ZFS N-way mirror read performance by using load and locality information. The existing algorithm selects a preferred leaf vdev based on offset of the zio request modulo the number of members in the mirror. It assumes the devices are of equal performance and that spreading the requests randomly over both drives will be sufficient to saturate them. In practice this results in the leaf vdevs being under utilized. The new algorithm takes into the following additional factors: * Load of the vdevs (number outstanding I/O requests) * The locality of last queued I/O vs the new I/O request. Within the locality calculation additional knowledge about the underlying vdev is considered such as; is the device backing the vdev a rotating media device. This results in performance increases across the board as well as significant increases for predominantly streaming loads and for configurations which don't have evenly performing devices. The following are results from a setup with 3 Way Mirror with 2 x HD's and 1 x SSD from a basic test running multiple parrallel dd's. With pre-fetch disabled (vfs.zfs.prefetch_disable=1): == Stripe Balanced (default) == Read 15360MB using bs: 1048576, readers: 3, took 161 seconds @ 95 MB/s == Load Balanced (zfslinux) == Read 15360MB using bs: 1048576, readers: 3, took 297 seconds @ 51 MB/s == Load Balanced (locality freebsd) == Read 15360MB using bs: 1048576, readers: 3, took 54 seconds @ 284 MB/s With pre-fetch enabled (vfs.zfs.prefetch_disable=0): == Stripe Balanced (default) == Read 15360MB using bs: 1048576, readers: 3, took 91 seconds @ 168 MB/s == Load Balanced (zfslinux) == Read 15360MB using bs: 1048576, readers: 3, took 108 seconds @ 142 MB/s == Load Balanced (locality freebsd) == Read 15360MB using bs: 1048576, readers: 3, took 48 seconds @ 320 MB/s In addition to the performance changes the code was also restructured, with the help of Justin Gibbs, to provide a more logical flow which also ensures vdevs loads are only calculated from the set of valid candidates. The following additional sysctls where added to allow the administrator to tune the behaviour of the load algorithm: * vfs.zfs.vdev.mirror.rotating_inc * vfs.zfs.vdev.mirror.rotating_seek_inc * vfs.zfs.vdev.mirror.rotating_seek_offset * vfs.zfs.vdev.mirror.non_rotating_inc * vfs.zfs.vdev.mirror.non_rotating_seek_inc These changes where based on work started by the zfsonlinux developers: https://github.com/zfsonlinux/zfs/pull/1487 Reviewed by: gibbs, mav, will MFC after: 2 weeks Sponsored by: Multiplay References: https://github.com/freebsd/freebsd@5c7a6f5d https://github.com/freebsd/freebsd@31b7f68d https://github.com/freebsd/freebsd@e186f564 Performance Testing: https://github.com/zfsonlinux/zfs/pull/4334#issuecomment-189057141 Porting notes: - The tunables were adjusted to have ZoL-style names. - The code was modified to use ZoL's vd_nonrot. - Fixes were done to make cstyle.pl happy - Merge conflicts were handled manually - freebsd/freebsd@e186f564bc946f82c76e0b34c2f0370ed9aea022 by my collegue Andriy Gapon has been included. It applied perfectly, but added a cstyle regression. - This replaces 556011dbec2d10579819078559a77630fc559112 entirely. - A typo "IO'a" has been corrected to say "IO's" - Descriptions of new tunables were added to man/man5/zfs-module-parameters.5. Ported-by: Richard Yao <ryao@gentoo.org> Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov> Closes #4334
2016-02-13 04:47:22 +03:00
int c;
2008-11-20 23:01:55 +03:00
if (vd == NULL) {
dva_t *dva = zio->io_bp->blk_dva;
spa_t *spa = zio->io_spa;
OpenZFS 9075 - Improve ZFS pool import/load process and corrupted pool recovery Some work has been done lately to improve the debugability of the ZFS pool load (and import) process. This includes: 7638 Refactor spa_load_impl into several functions 8961 SPA load/import should tell us why it failed 7277 zdb should be able to print zfs_dbgmsg's To iterate on top of that, there's a few changes that were made to make the import process more resilient and crash free. One of the first tasks during the pool load process is to parse a config provided from userland that describes what devices the pool is composed of. A vdev tree is generated from that config, and then all the vdevs are opened. The Meta Object Set (MOS) of the pool is accessed, and several metadata objects that are necessary to load the pool are read. The exact configuration of the pool is also stored inside the MOS. Since the configuration provided from userland is external and might not accurately describe the vdev tree of the pool at the txg that is being loaded, it cannot be relied upon to safely operate the pool. For that reason, the configuration in the MOS is read early on. In the past, the two configurations were compared together and if there was a mismatch then the load process was aborted and an error was returned. The latter was a good way to ensure a pool does not get corrupted, however it made the pool load process needlessly fragile in cases where the vdev configuration changed or the userland configuration was outdated. Since the MOS is stored in 3 copies, the configuration provided by userland doesn't have to be perfect in order to read its contents. Hence, a new approach has been adopted: The pool is first opened with the untrusted userland configuration just so that the real configuration can be read from the MOS. The trusted MOS configuration is then used to generate a new vdev tree and the pool is re-opened. When the pool is opened with an untrusted configuration, writes are disabled to avoid accidentally damaging it. During reads, some sanity checks are performed on block pointers to see if each DVA points to a known vdev; when the configuration is untrusted, instead of panicking the system if those checks fail we simply avoid issuing reads to the invalid DVAs. This new two-step pool load process now allows rewinding pools accross vdev tree changes such as device replacement, addition, etc. Loading a pool from an external config file in a clustering environment also becomes much safer now since the pool will import even if the config is outdated and didn't, for instance, register a recent device addition. With this code in place, it became relatively easy to implement a long-sought-after feature: the ability to import a pool with missing top level (i.e. non-redundant) devices. Note that since this almost guarantees some loss of data, this feature is for now restricted to a read-only import. Porting notes (ZTS): * Fix 'make dist' target in zpool_import * The maximum path length allowed by tar is 99 characters. Several of the new test cases exceeded this limit resulting in them not being included in the tarball. Shorten the names slightly. * Set/get tunables using accessor functions. * Get last synced txg via the "zfs_txg_history" mechanism. * Clear zinject handlers in cleanup for import_cache_device_replaced and import_rewind_device_replaced in order that the zpool can be exported if there is an error. * Increase FILESIZE to 8G in zfs-test.sh to allow for a larger ext4 file system to be created on ZFS_DISK2. Also, there's no need to partition ZFS_DISK2 at all. The partitioning had already been disabled for multipath devices. Among other things, the partitioning steals some space from the ext4 file system, makes it difficult to accurately calculate the paramters to parted and can make some of the tests fail. * Increase FS_SIZE and FILE_SIZE in the zpool_import test configuration now that FILESIZE is larger. * Write more data in order that device evacuation take lonnger in a couple tests. * Use mkdir -p to avoid errors when the directory already exists. * Remove use of sudo in import_rewind_config_changed. Authored by: Pavel Zakharov <pavel.zakharov@delphix.com> Reviewed by: George Wilson <george.wilson@delphix.com> Reviewed by: Matthew Ahrens <mahrens@delphix.com> Reviewed by: Andrew Stormont <andyjstormont@gmail.com> Approved by: Hans Rosenfeld <rosenfeld@grumpf.hope-2000.org> Ported-by: Tim Chase <tim@chase2k.com> Signed-off-by: Tim Chase <tim@chase2k.com> OpenZFS-issue: https://illumos.org/issues/9075 OpenZFS-commit: https://github.com/openzfs/openzfs/commit/619c0123 Closes #7459
2016-07-22 17:39:36 +03:00
dva_t dva_copy[SPA_DVAS_PER_BP];
2008-11-20 23:01:55 +03:00
OpenZFS 9075 - Improve ZFS pool import/load process and corrupted pool recovery Some work has been done lately to improve the debugability of the ZFS pool load (and import) process. This includes: 7638 Refactor spa_load_impl into several functions 8961 SPA load/import should tell us why it failed 7277 zdb should be able to print zfs_dbgmsg's To iterate on top of that, there's a few changes that were made to make the import process more resilient and crash free. One of the first tasks during the pool load process is to parse a config provided from userland that describes what devices the pool is composed of. A vdev tree is generated from that config, and then all the vdevs are opened. The Meta Object Set (MOS) of the pool is accessed, and several metadata objects that are necessary to load the pool are read. The exact configuration of the pool is also stored inside the MOS. Since the configuration provided from userland is external and might not accurately describe the vdev tree of the pool at the txg that is being loaded, it cannot be relied upon to safely operate the pool. For that reason, the configuration in the MOS is read early on. In the past, the two configurations were compared together and if there was a mismatch then the load process was aborted and an error was returned. The latter was a good way to ensure a pool does not get corrupted, however it made the pool load process needlessly fragile in cases where the vdev configuration changed or the userland configuration was outdated. Since the MOS is stored in 3 copies, the configuration provided by userland doesn't have to be perfect in order to read its contents. Hence, a new approach has been adopted: The pool is first opened with the untrusted userland configuration just so that the real configuration can be read from the MOS. The trusted MOS configuration is then used to generate a new vdev tree and the pool is re-opened. When the pool is opened with an untrusted configuration, writes are disabled to avoid accidentally damaging it. During reads, some sanity checks are performed on block pointers to see if each DVA points to a known vdev; when the configuration is untrusted, instead of panicking the system if those checks fail we simply avoid issuing reads to the invalid DVAs. This new two-step pool load process now allows rewinding pools accross vdev tree changes such as device replacement, addition, etc. Loading a pool from an external config file in a clustering environment also becomes much safer now since the pool will import even if the config is outdated and didn't, for instance, register a recent device addition. With this code in place, it became relatively easy to implement a long-sought-after feature: the ability to import a pool with missing top level (i.e. non-redundant) devices. Note that since this almost guarantees some loss of data, this feature is for now restricted to a read-only import. Porting notes (ZTS): * Fix 'make dist' target in zpool_import * The maximum path length allowed by tar is 99 characters. Several of the new test cases exceeded this limit resulting in them not being included in the tarball. Shorten the names slightly. * Set/get tunables using accessor functions. * Get last synced txg via the "zfs_txg_history" mechanism. * Clear zinject handlers in cleanup for import_cache_device_replaced and import_rewind_device_replaced in order that the zpool can be exported if there is an error. * Increase FILESIZE to 8G in zfs-test.sh to allow for a larger ext4 file system to be created on ZFS_DISK2. Also, there's no need to partition ZFS_DISK2 at all. The partitioning had already been disabled for multipath devices. Among other things, the partitioning steals some space from the ext4 file system, makes it difficult to accurately calculate the paramters to parted and can make some of the tests fail. * Increase FS_SIZE and FILE_SIZE in the zpool_import test configuration now that FILESIZE is larger. * Write more data in order that device evacuation take lonnger in a couple tests. * Use mkdir -p to avoid errors when the directory already exists. * Remove use of sudo in import_rewind_config_changed. Authored by: Pavel Zakharov <pavel.zakharov@delphix.com> Reviewed by: George Wilson <george.wilson@delphix.com> Reviewed by: Matthew Ahrens <mahrens@delphix.com> Reviewed by: Andrew Stormont <andyjstormont@gmail.com> Approved by: Hans Rosenfeld <rosenfeld@grumpf.hope-2000.org> Ported-by: Tim Chase <tim@chase2k.com> Signed-off-by: Tim Chase <tim@chase2k.com> OpenZFS-issue: https://illumos.org/issues/9075 OpenZFS-commit: https://github.com/openzfs/openzfs/commit/619c0123 Closes #7459
2016-07-22 17:39:36 +03:00
c = BP_GET_NDVAS(zio->io_bp);
/*
* If we do not trust the pool config, some DVAs might be
* invalid or point to vdevs that do not exist. We skip them.
*/
if (!spa_trust_config(spa)) {
ASSERT3U(zio->io_type, ==, ZIO_TYPE_READ);
int j = 0;
for (int i = 0; i < c; i++) {
if (zfs_dva_valid(spa, &dva[i], zio->io_bp))
dva_copy[j++] = dva[i];
}
if (j == 0) {
zio->io_vsd = NULL;
zio->io_error = ENXIO;
return (NULL);
}
if (j < c) {
dva = dva_copy;
c = j;
}
}
mm = vdev_mirror_map_alloc(c, B_FALSE, B_TRUE);
2008-11-20 23:01:55 +03:00
for (c = 0; c < mm->mm_children; c++) {
mc = &mm->mm_child[c];
mc->mc_vd = vdev_lookup_top(spa, DVA_GET_VDEV(&dva[c]));
mc->mc_offset = DVA_GET_OFFSET(&dva[c]);
}
} else {
FreeBSD r256956: Improve ZFS N-way mirror read performance by using load and locality information. The existing algorithm selects a preferred leaf vdev based on offset of the zio request modulo the number of members in the mirror. It assumes the devices are of equal performance and that spreading the requests randomly over both drives will be sufficient to saturate them. In practice this results in the leaf vdevs being under utilized. The new algorithm takes into the following additional factors: * Load of the vdevs (number outstanding I/O requests) * The locality of last queued I/O vs the new I/O request. Within the locality calculation additional knowledge about the underlying vdev is considered such as; is the device backing the vdev a rotating media device. This results in performance increases across the board as well as significant increases for predominantly streaming loads and for configurations which don't have evenly performing devices. The following are results from a setup with 3 Way Mirror with 2 x HD's and 1 x SSD from a basic test running multiple parrallel dd's. With pre-fetch disabled (vfs.zfs.prefetch_disable=1): == Stripe Balanced (default) == Read 15360MB using bs: 1048576, readers: 3, took 161 seconds @ 95 MB/s == Load Balanced (zfslinux) == Read 15360MB using bs: 1048576, readers: 3, took 297 seconds @ 51 MB/s == Load Balanced (locality freebsd) == Read 15360MB using bs: 1048576, readers: 3, took 54 seconds @ 284 MB/s With pre-fetch enabled (vfs.zfs.prefetch_disable=0): == Stripe Balanced (default) == Read 15360MB using bs: 1048576, readers: 3, took 91 seconds @ 168 MB/s == Load Balanced (zfslinux) == Read 15360MB using bs: 1048576, readers: 3, took 108 seconds @ 142 MB/s == Load Balanced (locality freebsd) == Read 15360MB using bs: 1048576, readers: 3, took 48 seconds @ 320 MB/s In addition to the performance changes the code was also restructured, with the help of Justin Gibbs, to provide a more logical flow which also ensures vdevs loads are only calculated from the set of valid candidates. The following additional sysctls where added to allow the administrator to tune the behaviour of the load algorithm: * vfs.zfs.vdev.mirror.rotating_inc * vfs.zfs.vdev.mirror.rotating_seek_inc * vfs.zfs.vdev.mirror.rotating_seek_offset * vfs.zfs.vdev.mirror.non_rotating_inc * vfs.zfs.vdev.mirror.non_rotating_seek_inc These changes where based on work started by the zfsonlinux developers: https://github.com/zfsonlinux/zfs/pull/1487 Reviewed by: gibbs, mav, will MFC after: 2 weeks Sponsored by: Multiplay References: https://github.com/freebsd/freebsd@5c7a6f5d https://github.com/freebsd/freebsd@31b7f68d https://github.com/freebsd/freebsd@e186f564 Performance Testing: https://github.com/zfsonlinux/zfs/pull/4334#issuecomment-189057141 Porting notes: - The tunables were adjusted to have ZoL-style names. - The code was modified to use ZoL's vd_nonrot. - Fixes were done to make cstyle.pl happy - Merge conflicts were handled manually - freebsd/freebsd@e186f564bc946f82c76e0b34c2f0370ed9aea022 by my collegue Andriy Gapon has been included. It applied perfectly, but added a cstyle regression. - This replaces 556011dbec2d10579819078559a77630fc559112 entirely. - A typo "IO'a" has been corrected to say "IO's" - Descriptions of new tunables were added to man/man5/zfs-module-parameters.5. Ported-by: Richard Yao <ryao@gentoo.org> Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov> Closes #4334
2016-02-13 04:47:22 +03:00
mm = vdev_mirror_map_alloc(vd->vdev_children,
(vd->vdev_ops == &vdev_replacing_ops ||
vd->vdev_ops == &vdev_spare_ops), B_FALSE);
2008-11-20 23:01:55 +03:00
for (c = 0; c < mm->mm_children; c++) {
mc = &mm->mm_child[c];
mc->mc_vd = vd->vdev_child[c];
mc->mc_offset = zio->io_offset;
}
}
zio->io_vsd = mm;
zio->io_vsd_ops = &vdev_mirror_vsd_ops;
2008-11-20 23:01:55 +03:00
return (mm);
}
static int
vdev_mirror_open(vdev_t *vd, uint64_t *asize, uint64_t *max_asize,
uint64_t *ashift)
2008-11-20 23:01:55 +03:00
{
int numerrors = 0;
2009-08-18 22:43:27 +04:00
int lasterror = 0;
2008-11-20 23:01:55 +03:00
if (vd->vdev_children == 0) {
vd->vdev_stat.vs_aux = VDEV_AUX_BAD_LABEL;
return (SET_ERROR(EINVAL));
2008-11-20 23:01:55 +03:00
}
2009-08-18 22:43:27 +04:00
vdev_open_children(vd);
2008-11-20 23:01:55 +03:00
for (int c = 0; c < vd->vdev_children; c++) {
2009-08-18 22:43:27 +04:00
vdev_t *cvd = vd->vdev_child[c];
if (cvd->vdev_open_error) {
lasterror = cvd->vdev_open_error;
2008-11-20 23:01:55 +03:00
numerrors++;
continue;
}
*asize = MIN(*asize - 1, cvd->vdev_asize - 1) + 1;
*max_asize = MIN(*max_asize - 1, cvd->vdev_max_asize - 1) + 1;
2008-11-20 23:01:55 +03:00
*ashift = MAX(*ashift, cvd->vdev_ashift);
}
if (numerrors == vd->vdev_children) {
OpenZFS 9075 - Improve ZFS pool import/load process and corrupted pool recovery Some work has been done lately to improve the debugability of the ZFS pool load (and import) process. This includes: 7638 Refactor spa_load_impl into several functions 8961 SPA load/import should tell us why it failed 7277 zdb should be able to print zfs_dbgmsg's To iterate on top of that, there's a few changes that were made to make the import process more resilient and crash free. One of the first tasks during the pool load process is to parse a config provided from userland that describes what devices the pool is composed of. A vdev tree is generated from that config, and then all the vdevs are opened. The Meta Object Set (MOS) of the pool is accessed, and several metadata objects that are necessary to load the pool are read. The exact configuration of the pool is also stored inside the MOS. Since the configuration provided from userland is external and might not accurately describe the vdev tree of the pool at the txg that is being loaded, it cannot be relied upon to safely operate the pool. For that reason, the configuration in the MOS is read early on. In the past, the two configurations were compared together and if there was a mismatch then the load process was aborted and an error was returned. The latter was a good way to ensure a pool does not get corrupted, however it made the pool load process needlessly fragile in cases where the vdev configuration changed or the userland configuration was outdated. Since the MOS is stored in 3 copies, the configuration provided by userland doesn't have to be perfect in order to read its contents. Hence, a new approach has been adopted: The pool is first opened with the untrusted userland configuration just so that the real configuration can be read from the MOS. The trusted MOS configuration is then used to generate a new vdev tree and the pool is re-opened. When the pool is opened with an untrusted configuration, writes are disabled to avoid accidentally damaging it. During reads, some sanity checks are performed on block pointers to see if each DVA points to a known vdev; when the configuration is untrusted, instead of panicking the system if those checks fail we simply avoid issuing reads to the invalid DVAs. This new two-step pool load process now allows rewinding pools accross vdev tree changes such as device replacement, addition, etc. Loading a pool from an external config file in a clustering environment also becomes much safer now since the pool will import even if the config is outdated and didn't, for instance, register a recent device addition. With this code in place, it became relatively easy to implement a long-sought-after feature: the ability to import a pool with missing top level (i.e. non-redundant) devices. Note that since this almost guarantees some loss of data, this feature is for now restricted to a read-only import. Porting notes (ZTS): * Fix 'make dist' target in zpool_import * The maximum path length allowed by tar is 99 characters. Several of the new test cases exceeded this limit resulting in them not being included in the tarball. Shorten the names slightly. * Set/get tunables using accessor functions. * Get last synced txg via the "zfs_txg_history" mechanism. * Clear zinject handlers in cleanup for import_cache_device_replaced and import_rewind_device_replaced in order that the zpool can be exported if there is an error. * Increase FILESIZE to 8G in zfs-test.sh to allow for a larger ext4 file system to be created on ZFS_DISK2. Also, there's no need to partition ZFS_DISK2 at all. The partitioning had already been disabled for multipath devices. Among other things, the partitioning steals some space from the ext4 file system, makes it difficult to accurately calculate the paramters to parted and can make some of the tests fail. * Increase FS_SIZE and FILE_SIZE in the zpool_import test configuration now that FILESIZE is larger. * Write more data in order that device evacuation take lonnger in a couple tests. * Use mkdir -p to avoid errors when the directory already exists. * Remove use of sudo in import_rewind_config_changed. Authored by: Pavel Zakharov <pavel.zakharov@delphix.com> Reviewed by: George Wilson <george.wilson@delphix.com> Reviewed by: Matthew Ahrens <mahrens@delphix.com> Reviewed by: Andrew Stormont <andyjstormont@gmail.com> Approved by: Hans Rosenfeld <rosenfeld@grumpf.hope-2000.org> Ported-by: Tim Chase <tim@chase2k.com> Signed-off-by: Tim Chase <tim@chase2k.com> OpenZFS-issue: https://illumos.org/issues/9075 OpenZFS-commit: https://github.com/openzfs/openzfs/commit/619c0123 Closes #7459
2016-07-22 17:39:36 +03:00
if (vdev_children_are_offline(vd))
vd->vdev_stat.vs_aux = VDEV_AUX_CHILDREN_OFFLINE;
else
vd->vdev_stat.vs_aux = VDEV_AUX_NO_REPLICAS;
2008-11-20 23:01:55 +03:00
return (lasterror);
}
return (0);
}
static void
vdev_mirror_close(vdev_t *vd)
{
for (int c = 0; c < vd->vdev_children; c++)
2008-11-20 23:01:55 +03:00
vdev_close(vd->vdev_child[c]);
}
static void
vdev_mirror_child_done(zio_t *zio)
{
mirror_child_t *mc = zio->io_private;
mc->mc_error = zio->io_error;
mc->mc_tried = 1;
mc->mc_skipped = 0;
}
static void
vdev_mirror_scrub_done(zio_t *zio)
{
mirror_child_t *mc = zio->io_private;
if (zio->io_error == 0) {
2009-02-18 23:51:31 +03:00
zio_t *pio;
OpenZFS 7090 - zfs should throttle allocations OpenZFS 7090 - zfs should throttle allocations Authored by: George Wilson <george.wilson@delphix.com> Reviewed by: Alex Reece <alex@delphix.com> Reviewed by: Christopher Siden <christopher.siden@delphix.com> Reviewed by: Dan Kimmel <dan.kimmel@delphix.com> Reviewed by: Matthew Ahrens <mahrens@delphix.com> Reviewed by: Paul Dagnelie <paul.dagnelie@delphix.com> Reviewed by: Prakash Surya <prakash.surya@delphix.com> Reviewed by: Sebastien Roy <sebastien.roy@delphix.com> Approved by: Matthew Ahrens <mahrens@delphix.com> Ported-by: Don Brady <don.brady@intel.com> Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov> When write I/Os are issued, they are issued in block order but the ZIO pipeline will drive them asynchronously through the allocation stage which can result in blocks being allocated out-of-order. It would be nice to preserve as much of the logical order as possible. In addition, the allocations are equally scattered across all top-level VDEVs but not all top-level VDEVs are created equally. The pipeline should be able to detect devices that are more capable of handling allocations and should allocate more blocks to those devices. This allows for dynamic allocation distribution when devices are imbalanced as fuller devices will tend to be slower than empty devices. The change includes a new pool-wide allocation queue which would throttle and order allocations in the ZIO pipeline. The queue would be ordered by issued time and offset and would provide an initial amount of allocation of work to each top-level vdev. The allocation logic utilizes a reservation system to reserve allocations that will be performed by the allocator. Once an allocation is successfully completed it's scheduled on a given top-level vdev. Each top-level vdev maintains a maximum number of allocations that it can handle (mg_alloc_queue_depth). The pool-wide reserved allocations (top-levels * mg_alloc_queue_depth) are distributed across the top-level vdevs metaslab groups and round robin across all eligible metaslab groups to distribute the work. As top-levels complete their work, they receive additional work from the pool-wide allocation queue until the allocation queue is emptied. OpenZFS-issue: https://www.illumos.org/issues/7090 OpenZFS-commit: https://github.com/openzfs/openzfs/commit/4756c3d7 Closes #5258 Porting Notes: - Maintained minimal stack in zio_done - Preserve linux-specific io sizes in zio_write_compress - Added module params and documentation - Updated to use optimize AVL cmp macros
2016-10-14 03:59:18 +03:00
zio_link_t *zl = NULL;
2009-02-18 23:51:31 +03:00
mutex_enter(&zio->io_lock);
OpenZFS 7090 - zfs should throttle allocations OpenZFS 7090 - zfs should throttle allocations Authored by: George Wilson <george.wilson@delphix.com> Reviewed by: Alex Reece <alex@delphix.com> Reviewed by: Christopher Siden <christopher.siden@delphix.com> Reviewed by: Dan Kimmel <dan.kimmel@delphix.com> Reviewed by: Matthew Ahrens <mahrens@delphix.com> Reviewed by: Paul Dagnelie <paul.dagnelie@delphix.com> Reviewed by: Prakash Surya <prakash.surya@delphix.com> Reviewed by: Sebastien Roy <sebastien.roy@delphix.com> Approved by: Matthew Ahrens <mahrens@delphix.com> Ported-by: Don Brady <don.brady@intel.com> Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov> When write I/Os are issued, they are issued in block order but the ZIO pipeline will drive them asynchronously through the allocation stage which can result in blocks being allocated out-of-order. It would be nice to preserve as much of the logical order as possible. In addition, the allocations are equally scattered across all top-level VDEVs but not all top-level VDEVs are created equally. The pipeline should be able to detect devices that are more capable of handling allocations and should allocate more blocks to those devices. This allows for dynamic allocation distribution when devices are imbalanced as fuller devices will tend to be slower than empty devices. The change includes a new pool-wide allocation queue which would throttle and order allocations in the ZIO pipeline. The queue would be ordered by issued time and offset and would provide an initial amount of allocation of work to each top-level vdev. The allocation logic utilizes a reservation system to reserve allocations that will be performed by the allocator. Once an allocation is successfully completed it's scheduled on a given top-level vdev. Each top-level vdev maintains a maximum number of allocations that it can handle (mg_alloc_queue_depth). The pool-wide reserved allocations (top-levels * mg_alloc_queue_depth) are distributed across the top-level vdevs metaslab groups and round robin across all eligible metaslab groups to distribute the work. As top-levels complete their work, they receive additional work from the pool-wide allocation queue until the allocation queue is emptied. OpenZFS-issue: https://www.illumos.org/issues/7090 OpenZFS-commit: https://github.com/openzfs/openzfs/commit/4756c3d7 Closes #5258 Porting Notes: - Maintained minimal stack in zio_done - Preserve linux-specific io sizes in zio_write_compress - Added module params and documentation - Updated to use optimize AVL cmp macros
2016-10-14 03:59:18 +03:00
while ((pio = zio_walk_parents(zio, &zl)) != NULL) {
2009-02-18 23:51:31 +03:00
mutex_enter(&pio->io_lock);
ASSERT3U(zio->io_size, >=, pio->io_size);
abd_copy(pio->io_abd, zio->io_abd, pio->io_size);
2009-02-18 23:51:31 +03:00
mutex_exit(&pio->io_lock);
}
mutex_exit(&zio->io_lock);
2008-11-20 23:01:55 +03:00
}
abd_free(zio->io_abd);
2008-11-20 23:01:55 +03:00
mc->mc_error = zio->io_error;
mc->mc_tried = 1;
mc->mc_skipped = 0;
}
/*
FreeBSD r256956: Improve ZFS N-way mirror read performance by using load and locality information. The existing algorithm selects a preferred leaf vdev based on offset of the zio request modulo the number of members in the mirror. It assumes the devices are of equal performance and that spreading the requests randomly over both drives will be sufficient to saturate them. In practice this results in the leaf vdevs being under utilized. The new algorithm takes into the following additional factors: * Load of the vdevs (number outstanding I/O requests) * The locality of last queued I/O vs the new I/O request. Within the locality calculation additional knowledge about the underlying vdev is considered such as; is the device backing the vdev a rotating media device. This results in performance increases across the board as well as significant increases for predominantly streaming loads and for configurations which don't have evenly performing devices. The following are results from a setup with 3 Way Mirror with 2 x HD's and 1 x SSD from a basic test running multiple parrallel dd's. With pre-fetch disabled (vfs.zfs.prefetch_disable=1): == Stripe Balanced (default) == Read 15360MB using bs: 1048576, readers: 3, took 161 seconds @ 95 MB/s == Load Balanced (zfslinux) == Read 15360MB using bs: 1048576, readers: 3, took 297 seconds @ 51 MB/s == Load Balanced (locality freebsd) == Read 15360MB using bs: 1048576, readers: 3, took 54 seconds @ 284 MB/s With pre-fetch enabled (vfs.zfs.prefetch_disable=0): == Stripe Balanced (default) == Read 15360MB using bs: 1048576, readers: 3, took 91 seconds @ 168 MB/s == Load Balanced (zfslinux) == Read 15360MB using bs: 1048576, readers: 3, took 108 seconds @ 142 MB/s == Load Balanced (locality freebsd) == Read 15360MB using bs: 1048576, readers: 3, took 48 seconds @ 320 MB/s In addition to the performance changes the code was also restructured, with the help of Justin Gibbs, to provide a more logical flow which also ensures vdevs loads are only calculated from the set of valid candidates. The following additional sysctls where added to allow the administrator to tune the behaviour of the load algorithm: * vfs.zfs.vdev.mirror.rotating_inc * vfs.zfs.vdev.mirror.rotating_seek_inc * vfs.zfs.vdev.mirror.rotating_seek_offset * vfs.zfs.vdev.mirror.non_rotating_inc * vfs.zfs.vdev.mirror.non_rotating_seek_inc These changes where based on work started by the zfsonlinux developers: https://github.com/zfsonlinux/zfs/pull/1487 Reviewed by: gibbs, mav, will MFC after: 2 weeks Sponsored by: Multiplay References: https://github.com/freebsd/freebsd@5c7a6f5d https://github.com/freebsd/freebsd@31b7f68d https://github.com/freebsd/freebsd@e186f564 Performance Testing: https://github.com/zfsonlinux/zfs/pull/4334#issuecomment-189057141 Porting notes: - The tunables were adjusted to have ZoL-style names. - The code was modified to use ZoL's vd_nonrot. - Fixes were done to make cstyle.pl happy - Merge conflicts were handled manually - freebsd/freebsd@e186f564bc946f82c76e0b34c2f0370ed9aea022 by my collegue Andriy Gapon has been included. It applied perfectly, but added a cstyle regression. - This replaces 556011dbec2d10579819078559a77630fc559112 entirely. - A typo "IO'a" has been corrected to say "IO's" - Descriptions of new tunables were added to man/man5/zfs-module-parameters.5. Ported-by: Richard Yao <ryao@gentoo.org> Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov> Closes #4334
2016-02-13 04:47:22 +03:00
* Check the other, lower-index DVAs to see if they're on the same
* vdev as the child we picked. If they are, use them since they
* are likely to have been allocated from the primary metaslab in
* use at the time, and hence are more likely to have locality with
* single-copy data.
*/
static int
vdev_mirror_dva_select(zio_t *zio, int p)
{
dva_t *dva = zio->io_bp->blk_dva;
mirror_map_t *mm = zio->io_vsd;
int preferred;
int c;
preferred = mm->mm_preferred[p];
for (p--; p >= 0; p--) {
c = mm->mm_preferred[p];
if (DVA_GET_VDEV(&dva[c]) == DVA_GET_VDEV(&dva[preferred]))
preferred = c;
}
return (preferred);
}
static int
vdev_mirror_preferred_child_randomize(zio_t *zio)
{
mirror_map_t *mm = zio->io_vsd;
int p;
if (mm->mm_root) {
p = spa_get_random(mm->mm_preferred_cnt);
return (vdev_mirror_dva_select(zio, p));
}
/*
* To ensure we don't always favour the first matching vdev,
* which could lead to wear leveling issues on SSD's, we
* use the I/O offset as a pseudo random seed into the vdevs
* which have the lowest load.
*/
p = (zio->io_offset >> vdev_mirror_shift) % mm->mm_preferred_cnt;
return (mm->mm_preferred[p]);
}
/*
* Try to find a vdev whose DTL doesn't contain the block we want to read
* prefering vdevs based on determined load.
*
2008-11-20 23:01:55 +03:00
* Try to find a child whose DTL doesn't contain the block we want to read.
* If we can't, try the read on any vdev we haven't already tried.
*/
static int
vdev_mirror_child_select(zio_t *zio)
{
mirror_map_t *mm = zio->io_vsd;
uint64_t txg = zio->io_txg;
FreeBSD r256956: Improve ZFS N-way mirror read performance by using load and locality information. The existing algorithm selects a preferred leaf vdev based on offset of the zio request modulo the number of members in the mirror. It assumes the devices are of equal performance and that spreading the requests randomly over both drives will be sufficient to saturate them. In practice this results in the leaf vdevs being under utilized. The new algorithm takes into the following additional factors: * Load of the vdevs (number outstanding I/O requests) * The locality of last queued I/O vs the new I/O request. Within the locality calculation additional knowledge about the underlying vdev is considered such as; is the device backing the vdev a rotating media device. This results in performance increases across the board as well as significant increases for predominantly streaming loads and for configurations which don't have evenly performing devices. The following are results from a setup with 3 Way Mirror with 2 x HD's and 1 x SSD from a basic test running multiple parrallel dd's. With pre-fetch disabled (vfs.zfs.prefetch_disable=1): == Stripe Balanced (default) == Read 15360MB using bs: 1048576, readers: 3, took 161 seconds @ 95 MB/s == Load Balanced (zfslinux) == Read 15360MB using bs: 1048576, readers: 3, took 297 seconds @ 51 MB/s == Load Balanced (locality freebsd) == Read 15360MB using bs: 1048576, readers: 3, took 54 seconds @ 284 MB/s With pre-fetch enabled (vfs.zfs.prefetch_disable=0): == Stripe Balanced (default) == Read 15360MB using bs: 1048576, readers: 3, took 91 seconds @ 168 MB/s == Load Balanced (zfslinux) == Read 15360MB using bs: 1048576, readers: 3, took 108 seconds @ 142 MB/s == Load Balanced (locality freebsd) == Read 15360MB using bs: 1048576, readers: 3, took 48 seconds @ 320 MB/s In addition to the performance changes the code was also restructured, with the help of Justin Gibbs, to provide a more logical flow which also ensures vdevs loads are only calculated from the set of valid candidates. The following additional sysctls where added to allow the administrator to tune the behaviour of the load algorithm: * vfs.zfs.vdev.mirror.rotating_inc * vfs.zfs.vdev.mirror.rotating_seek_inc * vfs.zfs.vdev.mirror.rotating_seek_offset * vfs.zfs.vdev.mirror.non_rotating_inc * vfs.zfs.vdev.mirror.non_rotating_seek_inc These changes where based on work started by the zfsonlinux developers: https://github.com/zfsonlinux/zfs/pull/1487 Reviewed by: gibbs, mav, will MFC after: 2 weeks Sponsored by: Multiplay References: https://github.com/freebsd/freebsd@5c7a6f5d https://github.com/freebsd/freebsd@31b7f68d https://github.com/freebsd/freebsd@e186f564 Performance Testing: https://github.com/zfsonlinux/zfs/pull/4334#issuecomment-189057141 Porting notes: - The tunables were adjusted to have ZoL-style names. - The code was modified to use ZoL's vd_nonrot. - Fixes were done to make cstyle.pl happy - Merge conflicts were handled manually - freebsd/freebsd@e186f564bc946f82c76e0b34c2f0370ed9aea022 by my collegue Andriy Gapon has been included. It applied perfectly, but added a cstyle regression. - This replaces 556011dbec2d10579819078559a77630fc559112 entirely. - A typo "IO'a" has been corrected to say "IO's" - Descriptions of new tunables were added to man/man5/zfs-module-parameters.5. Ported-by: Richard Yao <ryao@gentoo.org> Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov> Closes #4334
2016-02-13 04:47:22 +03:00
int c, lowest_load;
2008-11-20 23:01:55 +03:00
ASSERT(zio->io_bp == NULL || BP_PHYSICAL_BIRTH(zio->io_bp) == txg);
2008-11-20 23:01:55 +03:00
FreeBSD r256956: Improve ZFS N-way mirror read performance by using load and locality information. The existing algorithm selects a preferred leaf vdev based on offset of the zio request modulo the number of members in the mirror. It assumes the devices are of equal performance and that spreading the requests randomly over both drives will be sufficient to saturate them. In practice this results in the leaf vdevs being under utilized. The new algorithm takes into the following additional factors: * Load of the vdevs (number outstanding I/O requests) * The locality of last queued I/O vs the new I/O request. Within the locality calculation additional knowledge about the underlying vdev is considered such as; is the device backing the vdev a rotating media device. This results in performance increases across the board as well as significant increases for predominantly streaming loads and for configurations which don't have evenly performing devices. The following are results from a setup with 3 Way Mirror with 2 x HD's and 1 x SSD from a basic test running multiple parrallel dd's. With pre-fetch disabled (vfs.zfs.prefetch_disable=1): == Stripe Balanced (default) == Read 15360MB using bs: 1048576, readers: 3, took 161 seconds @ 95 MB/s == Load Balanced (zfslinux) == Read 15360MB using bs: 1048576, readers: 3, took 297 seconds @ 51 MB/s == Load Balanced (locality freebsd) == Read 15360MB using bs: 1048576, readers: 3, took 54 seconds @ 284 MB/s With pre-fetch enabled (vfs.zfs.prefetch_disable=0): == Stripe Balanced (default) == Read 15360MB using bs: 1048576, readers: 3, took 91 seconds @ 168 MB/s == Load Balanced (zfslinux) == Read 15360MB using bs: 1048576, readers: 3, took 108 seconds @ 142 MB/s == Load Balanced (locality freebsd) == Read 15360MB using bs: 1048576, readers: 3, took 48 seconds @ 320 MB/s In addition to the performance changes the code was also restructured, with the help of Justin Gibbs, to provide a more logical flow which also ensures vdevs loads are only calculated from the set of valid candidates. The following additional sysctls where added to allow the administrator to tune the behaviour of the load algorithm: * vfs.zfs.vdev.mirror.rotating_inc * vfs.zfs.vdev.mirror.rotating_seek_inc * vfs.zfs.vdev.mirror.rotating_seek_offset * vfs.zfs.vdev.mirror.non_rotating_inc * vfs.zfs.vdev.mirror.non_rotating_seek_inc These changes where based on work started by the zfsonlinux developers: https://github.com/zfsonlinux/zfs/pull/1487 Reviewed by: gibbs, mav, will MFC after: 2 weeks Sponsored by: Multiplay References: https://github.com/freebsd/freebsd@5c7a6f5d https://github.com/freebsd/freebsd@31b7f68d https://github.com/freebsd/freebsd@e186f564 Performance Testing: https://github.com/zfsonlinux/zfs/pull/4334#issuecomment-189057141 Porting notes: - The tunables were adjusted to have ZoL-style names. - The code was modified to use ZoL's vd_nonrot. - Fixes were done to make cstyle.pl happy - Merge conflicts were handled manually - freebsd/freebsd@e186f564bc946f82c76e0b34c2f0370ed9aea022 by my collegue Andriy Gapon has been included. It applied perfectly, but added a cstyle regression. - This replaces 556011dbec2d10579819078559a77630fc559112 entirely. - A typo "IO'a" has been corrected to say "IO's" - Descriptions of new tunables were added to man/man5/zfs-module-parameters.5. Ported-by: Richard Yao <ryao@gentoo.org> Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov> Closes #4334
2016-02-13 04:47:22 +03:00
lowest_load = INT_MAX;
mm->mm_preferred_cnt = 0;
for (c = 0; c < mm->mm_children; c++) {
mirror_child_t *mc;
2008-11-20 23:01:55 +03:00
mc = &mm->mm_child[c];
if (mc->mc_tried || mc->mc_skipped)
continue;
FreeBSD r256956: Improve ZFS N-way mirror read performance by using load and locality information. The existing algorithm selects a preferred leaf vdev based on offset of the zio request modulo the number of members in the mirror. It assumes the devices are of equal performance and that spreading the requests randomly over both drives will be sufficient to saturate them. In practice this results in the leaf vdevs being under utilized. The new algorithm takes into the following additional factors: * Load of the vdevs (number outstanding I/O requests) * The locality of last queued I/O vs the new I/O request. Within the locality calculation additional knowledge about the underlying vdev is considered such as; is the device backing the vdev a rotating media device. This results in performance increases across the board as well as significant increases for predominantly streaming loads and for configurations which don't have evenly performing devices. The following are results from a setup with 3 Way Mirror with 2 x HD's and 1 x SSD from a basic test running multiple parrallel dd's. With pre-fetch disabled (vfs.zfs.prefetch_disable=1): == Stripe Balanced (default) == Read 15360MB using bs: 1048576, readers: 3, took 161 seconds @ 95 MB/s == Load Balanced (zfslinux) == Read 15360MB using bs: 1048576, readers: 3, took 297 seconds @ 51 MB/s == Load Balanced (locality freebsd) == Read 15360MB using bs: 1048576, readers: 3, took 54 seconds @ 284 MB/s With pre-fetch enabled (vfs.zfs.prefetch_disable=0): == Stripe Balanced (default) == Read 15360MB using bs: 1048576, readers: 3, took 91 seconds @ 168 MB/s == Load Balanced (zfslinux) == Read 15360MB using bs: 1048576, readers: 3, took 108 seconds @ 142 MB/s == Load Balanced (locality freebsd) == Read 15360MB using bs: 1048576, readers: 3, took 48 seconds @ 320 MB/s In addition to the performance changes the code was also restructured, with the help of Justin Gibbs, to provide a more logical flow which also ensures vdevs loads are only calculated from the set of valid candidates. The following additional sysctls where added to allow the administrator to tune the behaviour of the load algorithm: * vfs.zfs.vdev.mirror.rotating_inc * vfs.zfs.vdev.mirror.rotating_seek_inc * vfs.zfs.vdev.mirror.rotating_seek_offset * vfs.zfs.vdev.mirror.non_rotating_inc * vfs.zfs.vdev.mirror.non_rotating_seek_inc These changes where based on work started by the zfsonlinux developers: https://github.com/zfsonlinux/zfs/pull/1487 Reviewed by: gibbs, mav, will MFC after: 2 weeks Sponsored by: Multiplay References: https://github.com/freebsd/freebsd@5c7a6f5d https://github.com/freebsd/freebsd@31b7f68d https://github.com/freebsd/freebsd@e186f564 Performance Testing: https://github.com/zfsonlinux/zfs/pull/4334#issuecomment-189057141 Porting notes: - The tunables were adjusted to have ZoL-style names. - The code was modified to use ZoL's vd_nonrot. - Fixes were done to make cstyle.pl happy - Merge conflicts were handled manually - freebsd/freebsd@e186f564bc946f82c76e0b34c2f0370ed9aea022 by my collegue Andriy Gapon has been included. It applied perfectly, but added a cstyle regression. - This replaces 556011dbec2d10579819078559a77630fc559112 entirely. - A typo "IO'a" has been corrected to say "IO's" - Descriptions of new tunables were added to man/man5/zfs-module-parameters.5. Ported-by: Richard Yao <ryao@gentoo.org> Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov> Closes #4334
2016-02-13 04:47:22 +03:00
if (mc->mc_vd == NULL || !vdev_readable(mc->mc_vd)) {
mc->mc_error = SET_ERROR(ENXIO);
2008-11-20 23:01:55 +03:00
mc->mc_tried = 1; /* don't even try */
mc->mc_skipped = 1;
continue;
}
FreeBSD r256956: Improve ZFS N-way mirror read performance by using load and locality information. The existing algorithm selects a preferred leaf vdev based on offset of the zio request modulo the number of members in the mirror. It assumes the devices are of equal performance and that spreading the requests randomly over both drives will be sufficient to saturate them. In practice this results in the leaf vdevs being under utilized. The new algorithm takes into the following additional factors: * Load of the vdevs (number outstanding I/O requests) * The locality of last queued I/O vs the new I/O request. Within the locality calculation additional knowledge about the underlying vdev is considered such as; is the device backing the vdev a rotating media device. This results in performance increases across the board as well as significant increases for predominantly streaming loads and for configurations which don't have evenly performing devices. The following are results from a setup with 3 Way Mirror with 2 x HD's and 1 x SSD from a basic test running multiple parrallel dd's. With pre-fetch disabled (vfs.zfs.prefetch_disable=1): == Stripe Balanced (default) == Read 15360MB using bs: 1048576, readers: 3, took 161 seconds @ 95 MB/s == Load Balanced (zfslinux) == Read 15360MB using bs: 1048576, readers: 3, took 297 seconds @ 51 MB/s == Load Balanced (locality freebsd) == Read 15360MB using bs: 1048576, readers: 3, took 54 seconds @ 284 MB/s With pre-fetch enabled (vfs.zfs.prefetch_disable=0): == Stripe Balanced (default) == Read 15360MB using bs: 1048576, readers: 3, took 91 seconds @ 168 MB/s == Load Balanced (zfslinux) == Read 15360MB using bs: 1048576, readers: 3, took 108 seconds @ 142 MB/s == Load Balanced (locality freebsd) == Read 15360MB using bs: 1048576, readers: 3, took 48 seconds @ 320 MB/s In addition to the performance changes the code was also restructured, with the help of Justin Gibbs, to provide a more logical flow which also ensures vdevs loads are only calculated from the set of valid candidates. The following additional sysctls where added to allow the administrator to tune the behaviour of the load algorithm: * vfs.zfs.vdev.mirror.rotating_inc * vfs.zfs.vdev.mirror.rotating_seek_inc * vfs.zfs.vdev.mirror.rotating_seek_offset * vfs.zfs.vdev.mirror.non_rotating_inc * vfs.zfs.vdev.mirror.non_rotating_seek_inc These changes where based on work started by the zfsonlinux developers: https://github.com/zfsonlinux/zfs/pull/1487 Reviewed by: gibbs, mav, will MFC after: 2 weeks Sponsored by: Multiplay References: https://github.com/freebsd/freebsd@5c7a6f5d https://github.com/freebsd/freebsd@31b7f68d https://github.com/freebsd/freebsd@e186f564 Performance Testing: https://github.com/zfsonlinux/zfs/pull/4334#issuecomment-189057141 Porting notes: - The tunables were adjusted to have ZoL-style names. - The code was modified to use ZoL's vd_nonrot. - Fixes were done to make cstyle.pl happy - Merge conflicts were handled manually - freebsd/freebsd@e186f564bc946f82c76e0b34c2f0370ed9aea022 by my collegue Andriy Gapon has been included. It applied perfectly, but added a cstyle regression. - This replaces 556011dbec2d10579819078559a77630fc559112 entirely. - A typo "IO'a" has been corrected to say "IO's" - Descriptions of new tunables were added to man/man5/zfs-module-parameters.5. Ported-by: Richard Yao <ryao@gentoo.org> Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov> Closes #4334
2016-02-13 04:47:22 +03:00
if (vdev_dtl_contains(mc->mc_vd, DTL_MISSING, txg, 1)) {
mc->mc_error = SET_ERROR(ESTALE);
mc->mc_skipped = 1;
mc->mc_speculative = 1;
continue;
}
mc->mc_load = vdev_mirror_load(mm, mc->mc_vd, mc->mc_offset);
if (mc->mc_load > lowest_load)
continue;
if (mc->mc_load < lowest_load) {
lowest_load = mc->mc_load;
mm->mm_preferred_cnt = 0;
}
mm->mm_preferred[mm->mm_preferred_cnt] = c;
mm->mm_preferred_cnt++;
}
if (mm->mm_preferred_cnt == 1) {
MIRROR_BUMP(vdev_mirror_stat_preferred_found);
FreeBSD r256956: Improve ZFS N-way mirror read performance by using load and locality information. The existing algorithm selects a preferred leaf vdev based on offset of the zio request modulo the number of members in the mirror. It assumes the devices are of equal performance and that spreading the requests randomly over both drives will be sufficient to saturate them. In practice this results in the leaf vdevs being under utilized. The new algorithm takes into the following additional factors: * Load of the vdevs (number outstanding I/O requests) * The locality of last queued I/O vs the new I/O request. Within the locality calculation additional knowledge about the underlying vdev is considered such as; is the device backing the vdev a rotating media device. This results in performance increases across the board as well as significant increases for predominantly streaming loads and for configurations which don't have evenly performing devices. The following are results from a setup with 3 Way Mirror with 2 x HD's and 1 x SSD from a basic test running multiple parrallel dd's. With pre-fetch disabled (vfs.zfs.prefetch_disable=1): == Stripe Balanced (default) == Read 15360MB using bs: 1048576, readers: 3, took 161 seconds @ 95 MB/s == Load Balanced (zfslinux) == Read 15360MB using bs: 1048576, readers: 3, took 297 seconds @ 51 MB/s == Load Balanced (locality freebsd) == Read 15360MB using bs: 1048576, readers: 3, took 54 seconds @ 284 MB/s With pre-fetch enabled (vfs.zfs.prefetch_disable=0): == Stripe Balanced (default) == Read 15360MB using bs: 1048576, readers: 3, took 91 seconds @ 168 MB/s == Load Balanced (zfslinux) == Read 15360MB using bs: 1048576, readers: 3, took 108 seconds @ 142 MB/s == Load Balanced (locality freebsd) == Read 15360MB using bs: 1048576, readers: 3, took 48 seconds @ 320 MB/s In addition to the performance changes the code was also restructured, with the help of Justin Gibbs, to provide a more logical flow which also ensures vdevs loads are only calculated from the set of valid candidates. The following additional sysctls where added to allow the administrator to tune the behaviour of the load algorithm: * vfs.zfs.vdev.mirror.rotating_inc * vfs.zfs.vdev.mirror.rotating_seek_inc * vfs.zfs.vdev.mirror.rotating_seek_offset * vfs.zfs.vdev.mirror.non_rotating_inc * vfs.zfs.vdev.mirror.non_rotating_seek_inc These changes where based on work started by the zfsonlinux developers: https://github.com/zfsonlinux/zfs/pull/1487 Reviewed by: gibbs, mav, will MFC after: 2 weeks Sponsored by: Multiplay References: https://github.com/freebsd/freebsd@5c7a6f5d https://github.com/freebsd/freebsd@31b7f68d https://github.com/freebsd/freebsd@e186f564 Performance Testing: https://github.com/zfsonlinux/zfs/pull/4334#issuecomment-189057141 Porting notes: - The tunables were adjusted to have ZoL-style names. - The code was modified to use ZoL's vd_nonrot. - Fixes were done to make cstyle.pl happy - Merge conflicts were handled manually - freebsd/freebsd@e186f564bc946f82c76e0b34c2f0370ed9aea022 by my collegue Andriy Gapon has been included. It applied perfectly, but added a cstyle regression. - This replaces 556011dbec2d10579819078559a77630fc559112 entirely. - A typo "IO'a" has been corrected to say "IO's" - Descriptions of new tunables were added to man/man5/zfs-module-parameters.5. Ported-by: Richard Yao <ryao@gentoo.org> Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov> Closes #4334
2016-02-13 04:47:22 +03:00
return (mm->mm_preferred[0]);
}
FreeBSD r256956: Improve ZFS N-way mirror read performance by using load and locality information. The existing algorithm selects a preferred leaf vdev based on offset of the zio request modulo the number of members in the mirror. It assumes the devices are of equal performance and that spreading the requests randomly over both drives will be sufficient to saturate them. In practice this results in the leaf vdevs being under utilized. The new algorithm takes into the following additional factors: * Load of the vdevs (number outstanding I/O requests) * The locality of last queued I/O vs the new I/O request. Within the locality calculation additional knowledge about the underlying vdev is considered such as; is the device backing the vdev a rotating media device. This results in performance increases across the board as well as significant increases for predominantly streaming loads and for configurations which don't have evenly performing devices. The following are results from a setup with 3 Way Mirror with 2 x HD's and 1 x SSD from a basic test running multiple parrallel dd's. With pre-fetch disabled (vfs.zfs.prefetch_disable=1): == Stripe Balanced (default) == Read 15360MB using bs: 1048576, readers: 3, took 161 seconds @ 95 MB/s == Load Balanced (zfslinux) == Read 15360MB using bs: 1048576, readers: 3, took 297 seconds @ 51 MB/s == Load Balanced (locality freebsd) == Read 15360MB using bs: 1048576, readers: 3, took 54 seconds @ 284 MB/s With pre-fetch enabled (vfs.zfs.prefetch_disable=0): == Stripe Balanced (default) == Read 15360MB using bs: 1048576, readers: 3, took 91 seconds @ 168 MB/s == Load Balanced (zfslinux) == Read 15360MB using bs: 1048576, readers: 3, took 108 seconds @ 142 MB/s == Load Balanced (locality freebsd) == Read 15360MB using bs: 1048576, readers: 3, took 48 seconds @ 320 MB/s In addition to the performance changes the code was also restructured, with the help of Justin Gibbs, to provide a more logical flow which also ensures vdevs loads are only calculated from the set of valid candidates. The following additional sysctls where added to allow the administrator to tune the behaviour of the load algorithm: * vfs.zfs.vdev.mirror.rotating_inc * vfs.zfs.vdev.mirror.rotating_seek_inc * vfs.zfs.vdev.mirror.rotating_seek_offset * vfs.zfs.vdev.mirror.non_rotating_inc * vfs.zfs.vdev.mirror.non_rotating_seek_inc These changes where based on work started by the zfsonlinux developers: https://github.com/zfsonlinux/zfs/pull/1487 Reviewed by: gibbs, mav, will MFC after: 2 weeks Sponsored by: Multiplay References: https://github.com/freebsd/freebsd@5c7a6f5d https://github.com/freebsd/freebsd@31b7f68d https://github.com/freebsd/freebsd@e186f564 Performance Testing: https://github.com/zfsonlinux/zfs/pull/4334#issuecomment-189057141 Porting notes: - The tunables were adjusted to have ZoL-style names. - The code was modified to use ZoL's vd_nonrot. - Fixes were done to make cstyle.pl happy - Merge conflicts were handled manually - freebsd/freebsd@e186f564bc946f82c76e0b34c2f0370ed9aea022 by my collegue Andriy Gapon has been included. It applied perfectly, but added a cstyle regression. - This replaces 556011dbec2d10579819078559a77630fc559112 entirely. - A typo "IO'a" has been corrected to say "IO's" - Descriptions of new tunables were added to man/man5/zfs-module-parameters.5. Ported-by: Richard Yao <ryao@gentoo.org> Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov> Closes #4334
2016-02-13 04:47:22 +03:00
if (mm->mm_preferred_cnt > 1) {
MIRROR_BUMP(vdev_mirror_stat_preferred_not_found);
return (vdev_mirror_preferred_child_randomize(zio));
}
2008-11-20 23:01:55 +03:00
/*
* Every device is either missing or has this txg in its DTL.
* Look for any child we haven't already tried before giving up.
*/
FreeBSD r256956: Improve ZFS N-way mirror read performance by using load and locality information. The existing algorithm selects a preferred leaf vdev based on offset of the zio request modulo the number of members in the mirror. It assumes the devices are of equal performance and that spreading the requests randomly over both drives will be sufficient to saturate them. In practice this results in the leaf vdevs being under utilized. The new algorithm takes into the following additional factors: * Load of the vdevs (number outstanding I/O requests) * The locality of last queued I/O vs the new I/O request. Within the locality calculation additional knowledge about the underlying vdev is considered such as; is the device backing the vdev a rotating media device. This results in performance increases across the board as well as significant increases for predominantly streaming loads and for configurations which don't have evenly performing devices. The following are results from a setup with 3 Way Mirror with 2 x HD's and 1 x SSD from a basic test running multiple parrallel dd's. With pre-fetch disabled (vfs.zfs.prefetch_disable=1): == Stripe Balanced (default) == Read 15360MB using bs: 1048576, readers: 3, took 161 seconds @ 95 MB/s == Load Balanced (zfslinux) == Read 15360MB using bs: 1048576, readers: 3, took 297 seconds @ 51 MB/s == Load Balanced (locality freebsd) == Read 15360MB using bs: 1048576, readers: 3, took 54 seconds @ 284 MB/s With pre-fetch enabled (vfs.zfs.prefetch_disable=0): == Stripe Balanced (default) == Read 15360MB using bs: 1048576, readers: 3, took 91 seconds @ 168 MB/s == Load Balanced (zfslinux) == Read 15360MB using bs: 1048576, readers: 3, took 108 seconds @ 142 MB/s == Load Balanced (locality freebsd) == Read 15360MB using bs: 1048576, readers: 3, took 48 seconds @ 320 MB/s In addition to the performance changes the code was also restructured, with the help of Justin Gibbs, to provide a more logical flow which also ensures vdevs loads are only calculated from the set of valid candidates. The following additional sysctls where added to allow the administrator to tune the behaviour of the load algorithm: * vfs.zfs.vdev.mirror.rotating_inc * vfs.zfs.vdev.mirror.rotating_seek_inc * vfs.zfs.vdev.mirror.rotating_seek_offset * vfs.zfs.vdev.mirror.non_rotating_inc * vfs.zfs.vdev.mirror.non_rotating_seek_inc These changes where based on work started by the zfsonlinux developers: https://github.com/zfsonlinux/zfs/pull/1487 Reviewed by: gibbs, mav, will MFC after: 2 weeks Sponsored by: Multiplay References: https://github.com/freebsd/freebsd@5c7a6f5d https://github.com/freebsd/freebsd@31b7f68d https://github.com/freebsd/freebsd@e186f564 Performance Testing: https://github.com/zfsonlinux/zfs/pull/4334#issuecomment-189057141 Porting notes: - The tunables were adjusted to have ZoL-style names. - The code was modified to use ZoL's vd_nonrot. - Fixes were done to make cstyle.pl happy - Merge conflicts were handled manually - freebsd/freebsd@e186f564bc946f82c76e0b34c2f0370ed9aea022 by my collegue Andriy Gapon has been included. It applied perfectly, but added a cstyle regression. - This replaces 556011dbec2d10579819078559a77630fc559112 entirely. - A typo "IO'a" has been corrected to say "IO's" - Descriptions of new tunables were added to man/man5/zfs-module-parameters.5. Ported-by: Richard Yao <ryao@gentoo.org> Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov> Closes #4334
2016-02-13 04:47:22 +03:00
for (c = 0; c < mm->mm_children; c++) {
if (!mm->mm_child[c].mc_tried)
2008-11-20 23:01:55 +03:00
return (c);
FreeBSD r256956: Improve ZFS N-way mirror read performance by using load and locality information. The existing algorithm selects a preferred leaf vdev based on offset of the zio request modulo the number of members in the mirror. It assumes the devices are of equal performance and that spreading the requests randomly over both drives will be sufficient to saturate them. In practice this results in the leaf vdevs being under utilized. The new algorithm takes into the following additional factors: * Load of the vdevs (number outstanding I/O requests) * The locality of last queued I/O vs the new I/O request. Within the locality calculation additional knowledge about the underlying vdev is considered such as; is the device backing the vdev a rotating media device. This results in performance increases across the board as well as significant increases for predominantly streaming loads and for configurations which don't have evenly performing devices. The following are results from a setup with 3 Way Mirror with 2 x HD's and 1 x SSD from a basic test running multiple parrallel dd's. With pre-fetch disabled (vfs.zfs.prefetch_disable=1): == Stripe Balanced (default) == Read 15360MB using bs: 1048576, readers: 3, took 161 seconds @ 95 MB/s == Load Balanced (zfslinux) == Read 15360MB using bs: 1048576, readers: 3, took 297 seconds @ 51 MB/s == Load Balanced (locality freebsd) == Read 15360MB using bs: 1048576, readers: 3, took 54 seconds @ 284 MB/s With pre-fetch enabled (vfs.zfs.prefetch_disable=0): == Stripe Balanced (default) == Read 15360MB using bs: 1048576, readers: 3, took 91 seconds @ 168 MB/s == Load Balanced (zfslinux) == Read 15360MB using bs: 1048576, readers: 3, took 108 seconds @ 142 MB/s == Load Balanced (locality freebsd) == Read 15360MB using bs: 1048576, readers: 3, took 48 seconds @ 320 MB/s In addition to the performance changes the code was also restructured, with the help of Justin Gibbs, to provide a more logical flow which also ensures vdevs loads are only calculated from the set of valid candidates. The following additional sysctls where added to allow the administrator to tune the behaviour of the load algorithm: * vfs.zfs.vdev.mirror.rotating_inc * vfs.zfs.vdev.mirror.rotating_seek_inc * vfs.zfs.vdev.mirror.rotating_seek_offset * vfs.zfs.vdev.mirror.non_rotating_inc * vfs.zfs.vdev.mirror.non_rotating_seek_inc These changes where based on work started by the zfsonlinux developers: https://github.com/zfsonlinux/zfs/pull/1487 Reviewed by: gibbs, mav, will MFC after: 2 weeks Sponsored by: Multiplay References: https://github.com/freebsd/freebsd@5c7a6f5d https://github.com/freebsd/freebsd@31b7f68d https://github.com/freebsd/freebsd@e186f564 Performance Testing: https://github.com/zfsonlinux/zfs/pull/4334#issuecomment-189057141 Porting notes: - The tunables were adjusted to have ZoL-style names. - The code was modified to use ZoL's vd_nonrot. - Fixes were done to make cstyle.pl happy - Merge conflicts were handled manually - freebsd/freebsd@e186f564bc946f82c76e0b34c2f0370ed9aea022 by my collegue Andriy Gapon has been included. It applied perfectly, but added a cstyle regression. - This replaces 556011dbec2d10579819078559a77630fc559112 entirely. - A typo "IO'a" has been corrected to say "IO's" - Descriptions of new tunables were added to man/man5/zfs-module-parameters.5. Ported-by: Richard Yao <ryao@gentoo.org> Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov> Closes #4334
2016-02-13 04:47:22 +03:00
}
2008-11-20 23:01:55 +03:00
/*
* Every child failed. There's no place left to look.
*/
return (-1);
}
static void
2008-11-20 23:01:55 +03:00
vdev_mirror_io_start(zio_t *zio)
{
mirror_map_t *mm;
mirror_child_t *mc;
int c, children;
FreeBSD r256956: Improve ZFS N-way mirror read performance by using load and locality information. The existing algorithm selects a preferred leaf vdev based on offset of the zio request modulo the number of members in the mirror. It assumes the devices are of equal performance and that spreading the requests randomly over both drives will be sufficient to saturate them. In practice this results in the leaf vdevs being under utilized. The new algorithm takes into the following additional factors: * Load of the vdevs (number outstanding I/O requests) * The locality of last queued I/O vs the new I/O request. Within the locality calculation additional knowledge about the underlying vdev is considered such as; is the device backing the vdev a rotating media device. This results in performance increases across the board as well as significant increases for predominantly streaming loads and for configurations which don't have evenly performing devices. The following are results from a setup with 3 Way Mirror with 2 x HD's and 1 x SSD from a basic test running multiple parrallel dd's. With pre-fetch disabled (vfs.zfs.prefetch_disable=1): == Stripe Balanced (default) == Read 15360MB using bs: 1048576, readers: 3, took 161 seconds @ 95 MB/s == Load Balanced (zfslinux) == Read 15360MB using bs: 1048576, readers: 3, took 297 seconds @ 51 MB/s == Load Balanced (locality freebsd) == Read 15360MB using bs: 1048576, readers: 3, took 54 seconds @ 284 MB/s With pre-fetch enabled (vfs.zfs.prefetch_disable=0): == Stripe Balanced (default) == Read 15360MB using bs: 1048576, readers: 3, took 91 seconds @ 168 MB/s == Load Balanced (zfslinux) == Read 15360MB using bs: 1048576, readers: 3, took 108 seconds @ 142 MB/s == Load Balanced (locality freebsd) == Read 15360MB using bs: 1048576, readers: 3, took 48 seconds @ 320 MB/s In addition to the performance changes the code was also restructured, with the help of Justin Gibbs, to provide a more logical flow which also ensures vdevs loads are only calculated from the set of valid candidates. The following additional sysctls where added to allow the administrator to tune the behaviour of the load algorithm: * vfs.zfs.vdev.mirror.rotating_inc * vfs.zfs.vdev.mirror.rotating_seek_inc * vfs.zfs.vdev.mirror.rotating_seek_offset * vfs.zfs.vdev.mirror.non_rotating_inc * vfs.zfs.vdev.mirror.non_rotating_seek_inc These changes where based on work started by the zfsonlinux developers: https://github.com/zfsonlinux/zfs/pull/1487 Reviewed by: gibbs, mav, will MFC after: 2 weeks Sponsored by: Multiplay References: https://github.com/freebsd/freebsd@5c7a6f5d https://github.com/freebsd/freebsd@31b7f68d https://github.com/freebsd/freebsd@e186f564 Performance Testing: https://github.com/zfsonlinux/zfs/pull/4334#issuecomment-189057141 Porting notes: - The tunables were adjusted to have ZoL-style names. - The code was modified to use ZoL's vd_nonrot. - Fixes were done to make cstyle.pl happy - Merge conflicts were handled manually - freebsd/freebsd@e186f564bc946f82c76e0b34c2f0370ed9aea022 by my collegue Andriy Gapon has been included. It applied perfectly, but added a cstyle regression. - This replaces 556011dbec2d10579819078559a77630fc559112 entirely. - A typo "IO'a" has been corrected to say "IO's" - Descriptions of new tunables were added to man/man5/zfs-module-parameters.5. Ported-by: Richard Yao <ryao@gentoo.org> Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov> Closes #4334
2016-02-13 04:47:22 +03:00
mm = vdev_mirror_map_init(zio);
2008-11-20 23:01:55 +03:00
OpenZFS 9075 - Improve ZFS pool import/load process and corrupted pool recovery Some work has been done lately to improve the debugability of the ZFS pool load (and import) process. This includes: 7638 Refactor spa_load_impl into several functions 8961 SPA load/import should tell us why it failed 7277 zdb should be able to print zfs_dbgmsg's To iterate on top of that, there's a few changes that were made to make the import process more resilient and crash free. One of the first tasks during the pool load process is to parse a config provided from userland that describes what devices the pool is composed of. A vdev tree is generated from that config, and then all the vdevs are opened. The Meta Object Set (MOS) of the pool is accessed, and several metadata objects that are necessary to load the pool are read. The exact configuration of the pool is also stored inside the MOS. Since the configuration provided from userland is external and might not accurately describe the vdev tree of the pool at the txg that is being loaded, it cannot be relied upon to safely operate the pool. For that reason, the configuration in the MOS is read early on. In the past, the two configurations were compared together and if there was a mismatch then the load process was aborted and an error was returned. The latter was a good way to ensure a pool does not get corrupted, however it made the pool load process needlessly fragile in cases where the vdev configuration changed or the userland configuration was outdated. Since the MOS is stored in 3 copies, the configuration provided by userland doesn't have to be perfect in order to read its contents. Hence, a new approach has been adopted: The pool is first opened with the untrusted userland configuration just so that the real configuration can be read from the MOS. The trusted MOS configuration is then used to generate a new vdev tree and the pool is re-opened. When the pool is opened with an untrusted configuration, writes are disabled to avoid accidentally damaging it. During reads, some sanity checks are performed on block pointers to see if each DVA points to a known vdev; when the configuration is untrusted, instead of panicking the system if those checks fail we simply avoid issuing reads to the invalid DVAs. This new two-step pool load process now allows rewinding pools accross vdev tree changes such as device replacement, addition, etc. Loading a pool from an external config file in a clustering environment also becomes much safer now since the pool will import even if the config is outdated and didn't, for instance, register a recent device addition. With this code in place, it became relatively easy to implement a long-sought-after feature: the ability to import a pool with missing top level (i.e. non-redundant) devices. Note that since this almost guarantees some loss of data, this feature is for now restricted to a read-only import. Porting notes (ZTS): * Fix 'make dist' target in zpool_import * The maximum path length allowed by tar is 99 characters. Several of the new test cases exceeded this limit resulting in them not being included in the tarball. Shorten the names slightly. * Set/get tunables using accessor functions. * Get last synced txg via the "zfs_txg_history" mechanism. * Clear zinject handlers in cleanup for import_cache_device_replaced and import_rewind_device_replaced in order that the zpool can be exported if there is an error. * Increase FILESIZE to 8G in zfs-test.sh to allow for a larger ext4 file system to be created on ZFS_DISK2. Also, there's no need to partition ZFS_DISK2 at all. The partitioning had already been disabled for multipath devices. Among other things, the partitioning steals some space from the ext4 file system, makes it difficult to accurately calculate the paramters to parted and can make some of the tests fail. * Increase FS_SIZE and FILE_SIZE in the zpool_import test configuration now that FILESIZE is larger. * Write more data in order that device evacuation take lonnger in a couple tests. * Use mkdir -p to avoid errors when the directory already exists. * Remove use of sudo in import_rewind_config_changed. Authored by: Pavel Zakharov <pavel.zakharov@delphix.com> Reviewed by: George Wilson <george.wilson@delphix.com> Reviewed by: Matthew Ahrens <mahrens@delphix.com> Reviewed by: Andrew Stormont <andyjstormont@gmail.com> Approved by: Hans Rosenfeld <rosenfeld@grumpf.hope-2000.org> Ported-by: Tim Chase <tim@chase2k.com> Signed-off-by: Tim Chase <tim@chase2k.com> OpenZFS-issue: https://illumos.org/issues/9075 OpenZFS-commit: https://github.com/openzfs/openzfs/commit/619c0123 Closes #7459
2016-07-22 17:39:36 +03:00
if (mm == NULL) {
ASSERT(!spa_trust_config(zio->io_spa));
ASSERT(zio->io_type == ZIO_TYPE_READ);
zio_execute(zio);
return;
}
2008-11-20 23:01:55 +03:00
if (zio->io_type == ZIO_TYPE_READ) {
OpenZFS 9290 - device removal reduces redundancy of mirrors Mirrors are supposed to provide redundancy in the face of whole-disk failure and silent damage (e.g. some data on disk is not right, but ZFS hasn't detected the whole device as being broken). However, the current device removal implementation bypasses some of the mirror's redundancy. Note that in no case is incorrect data returned, but we might get a checksum error when we should have been able to find the right data. There are two underlying problems: 1. When we remove a mirror device, we only read one side of the mirror. Since we can't verify the checksum, this side may be silently bad, but the good data is on the other side of the mirror (which we didn't read). This can cause the removal to "bake in" the busted data – all copies of the data in the new location are the same, busted version, while we left the good version behind. The fix for this is to read and copy both sides of the mirror. If the old and new vdevs are mirrors, we will read both sides of the old mirror, and write each copy to the corresponding side of the new mirror. (If the old and new vdevs have a different number of children, we will do this as best as possible.) Even though we aren't verifying checksums, this ensures that as long as there's a good copy of the data, we'll have a good copy after the removal, even if there's silent damage to one side of the mirror. If we're removing a mirror that has some silent damage, we'll have exactly the same damage in the new location (assuming that the new location is also a mirror). 2. When we read from an indirect vdev that points to a mirror vdev, we only consider one copy of the data. This can lead to reduced effective redundancy, because we might read a bad copy of the data from one side of the mirror, and not retry the other, good side of the mirror. Note that the problem is not with the removal process, but rather after the removal has completed (having copied correct data to both sides of the mirror), if one side of the new mirror is silently damaged, we encounter the problem when reading the relocated data via the indirect vdev. Also note that the problem doesn't occur when ZFS knows that one side of the mirror is bad, e.g. when a disk entirely fails or is offlined. The impact is that reads (from indirect vdevs that point to mirrors) may return a checksum error even though the good data exists on one side of the mirror, and scrub doesn't repair all data on the mirror (if some of it is pointed to via an indirect vdev). The fix for this is complicated by "split blocks" - one logical block may be split into two (or more) pieces with each piece moved to a different new location. In this case we need to read all versions of each split (one from each side of the mirror), and figure out which combination of versions results in the correct checksum, and then repair the incorrect versions. This ensures that we supply the same redundancy whether you use device removal or not. For example, if a mirror has small silent errors on all of its children, we can still reconstruct the correct data, as long as those errors are at sufficiently-separated offsets (specifically, separated by the largest block size - default of 128KB, but up to 16MB). Porting notes: * A new indirect vdev check was moved from dsl_scan_needs_resilver_cb() to dsl_scan_needs_resilver(), which was added to ZoL as part of the sequential scrub work. * Passed NULL for zfs_ereport_post_checksum()'s zbookmark_phys_t parameter. The extra parameter is unique to ZoL. * When posting indirect checksum errors the ABD can be passed directly, zfs_ereport_post_checksum() is not yet ABD-aware in OpenZFS. Authored by: Matthew Ahrens <mahrens@delphix.com> Reviewed by: Tim Chase <tim@chase2k.com> Reviewed by: Brian Behlendorf <behlendorf1@llnl.gov> Ported-by: Tim Chase <tim@chase2k.com> OpenZFS-issue: https://illumos.org/issues/9290 OpenZFS-commit: https://github.com/openzfs/openzfs/pull/591 Closes #6900
2018-02-13 22:37:56 +03:00
if (zio->io_bp != NULL &&
(zio->io_flags & ZIO_FLAG_SCRUB) && !mm->mm_replacing) {
2008-11-20 23:01:55 +03:00
/*
OpenZFS 9290 - device removal reduces redundancy of mirrors Mirrors are supposed to provide redundancy in the face of whole-disk failure and silent damage (e.g. some data on disk is not right, but ZFS hasn't detected the whole device as being broken). However, the current device removal implementation bypasses some of the mirror's redundancy. Note that in no case is incorrect data returned, but we might get a checksum error when we should have been able to find the right data. There are two underlying problems: 1. When we remove a mirror device, we only read one side of the mirror. Since we can't verify the checksum, this side may be silently bad, but the good data is on the other side of the mirror (which we didn't read). This can cause the removal to "bake in" the busted data – all copies of the data in the new location are the same, busted version, while we left the good version behind. The fix for this is to read and copy both sides of the mirror. If the old and new vdevs are mirrors, we will read both sides of the old mirror, and write each copy to the corresponding side of the new mirror. (If the old and new vdevs have a different number of children, we will do this as best as possible.) Even though we aren't verifying checksums, this ensures that as long as there's a good copy of the data, we'll have a good copy after the removal, even if there's silent damage to one side of the mirror. If we're removing a mirror that has some silent damage, we'll have exactly the same damage in the new location (assuming that the new location is also a mirror). 2. When we read from an indirect vdev that points to a mirror vdev, we only consider one copy of the data. This can lead to reduced effective redundancy, because we might read a bad copy of the data from one side of the mirror, and not retry the other, good side of the mirror. Note that the problem is not with the removal process, but rather after the removal has completed (having copied correct data to both sides of the mirror), if one side of the new mirror is silently damaged, we encounter the problem when reading the relocated data via the indirect vdev. Also note that the problem doesn't occur when ZFS knows that one side of the mirror is bad, e.g. when a disk entirely fails or is offlined. The impact is that reads (from indirect vdevs that point to mirrors) may return a checksum error even though the good data exists on one side of the mirror, and scrub doesn't repair all data on the mirror (if some of it is pointed to via an indirect vdev). The fix for this is complicated by "split blocks" - one logical block may be split into two (or more) pieces with each piece moved to a different new location. In this case we need to read all versions of each split (one from each side of the mirror), and figure out which combination of versions results in the correct checksum, and then repair the incorrect versions. This ensures that we supply the same redundancy whether you use device removal or not. For example, if a mirror has small silent errors on all of its children, we can still reconstruct the correct data, as long as those errors are at sufficiently-separated offsets (specifically, separated by the largest block size - default of 128KB, but up to 16MB). Porting notes: * A new indirect vdev check was moved from dsl_scan_needs_resilver_cb() to dsl_scan_needs_resilver(), which was added to ZoL as part of the sequential scrub work. * Passed NULL for zfs_ereport_post_checksum()'s zbookmark_phys_t parameter. The extra parameter is unique to ZoL. * When posting indirect checksum errors the ABD can be passed directly, zfs_ereport_post_checksum() is not yet ABD-aware in OpenZFS. Authored by: Matthew Ahrens <mahrens@delphix.com> Reviewed by: Tim Chase <tim@chase2k.com> Reviewed by: Brian Behlendorf <behlendorf1@llnl.gov> Ported-by: Tim Chase <tim@chase2k.com> OpenZFS-issue: https://illumos.org/issues/9290 OpenZFS-commit: https://github.com/openzfs/openzfs/pull/591 Closes #6900
2018-02-13 22:37:56 +03:00
* For scrubbing reads (if we can verify the
* checksum here, as indicated by io_bp being
* non-NULL) we need to allocate a read buffer for
* each child and issue reads to all children. If
* any child succeeds, it will copy its data into
* zio->io_data in vdev_mirror_scrub_done.
2008-11-20 23:01:55 +03:00
*/
for (c = 0; c < mm->mm_children; c++) {
mc = &mm->mm_child[c];
zio_nowait(zio_vdev_child_io(zio, zio->io_bp,
mc->mc_vd, mc->mc_offset,
abd_alloc_sametype(zio->io_abd,
zio->io_size), zio->io_size,
zio->io_type, zio->io_priority, 0,
2008-11-20 23:01:55 +03:00
vdev_mirror_scrub_done, mc));
}
zio_execute(zio);
return;
2008-11-20 23:01:55 +03:00
}
/*
* For normal reads just pick one child.
*/
c = vdev_mirror_child_select(zio);
children = (c >= 0);
} else {
ASSERT(zio->io_type == ZIO_TYPE_WRITE);
/*
2009-01-16 00:59:39 +03:00
* Writes go to all children.
2008-11-20 23:01:55 +03:00
*/
2009-01-16 00:59:39 +03:00
c = 0;
children = mm->mm_children;
2008-11-20 23:01:55 +03:00
}
while (children--) {
mc = &mm->mm_child[c];
zio_nowait(zio_vdev_child_io(zio, zio->io_bp,
mc->mc_vd, mc->mc_offset, zio->io_abd, zio->io_size,
zio->io_type, zio->io_priority, 0,
vdev_mirror_child_done, mc));
2008-11-20 23:01:55 +03:00
c++;
}
zio_execute(zio);
2008-11-20 23:01:55 +03:00
}
static int
vdev_mirror_worst_error(mirror_map_t *mm)
{
int error[2] = { 0, 0 };
for (int c = 0; c < mm->mm_children; c++) {
mirror_child_t *mc = &mm->mm_child[c];
int s = mc->mc_speculative;
error[s] = zio_worst_error(error[s], mc->mc_error);
}
return (error[0] ? error[0] : error[1]);
}
static void
2008-11-20 23:01:55 +03:00
vdev_mirror_io_done(zio_t *zio)
{
mirror_map_t *mm = zio->io_vsd;
mirror_child_t *mc;
int c;
int good_copies = 0;
int unexpected_errors = 0;
OpenZFS 9075 - Improve ZFS pool import/load process and corrupted pool recovery Some work has been done lately to improve the debugability of the ZFS pool load (and import) process. This includes: 7638 Refactor spa_load_impl into several functions 8961 SPA load/import should tell us why it failed 7277 zdb should be able to print zfs_dbgmsg's To iterate on top of that, there's a few changes that were made to make the import process more resilient and crash free. One of the first tasks during the pool load process is to parse a config provided from userland that describes what devices the pool is composed of. A vdev tree is generated from that config, and then all the vdevs are opened. The Meta Object Set (MOS) of the pool is accessed, and several metadata objects that are necessary to load the pool are read. The exact configuration of the pool is also stored inside the MOS. Since the configuration provided from userland is external and might not accurately describe the vdev tree of the pool at the txg that is being loaded, it cannot be relied upon to safely operate the pool. For that reason, the configuration in the MOS is read early on. In the past, the two configurations were compared together and if there was a mismatch then the load process was aborted and an error was returned. The latter was a good way to ensure a pool does not get corrupted, however it made the pool load process needlessly fragile in cases where the vdev configuration changed or the userland configuration was outdated. Since the MOS is stored in 3 copies, the configuration provided by userland doesn't have to be perfect in order to read its contents. Hence, a new approach has been adopted: The pool is first opened with the untrusted userland configuration just so that the real configuration can be read from the MOS. The trusted MOS configuration is then used to generate a new vdev tree and the pool is re-opened. When the pool is opened with an untrusted configuration, writes are disabled to avoid accidentally damaging it. During reads, some sanity checks are performed on block pointers to see if each DVA points to a known vdev; when the configuration is untrusted, instead of panicking the system if those checks fail we simply avoid issuing reads to the invalid DVAs. This new two-step pool load process now allows rewinding pools accross vdev tree changes such as device replacement, addition, etc. Loading a pool from an external config file in a clustering environment also becomes much safer now since the pool will import even if the config is outdated and didn't, for instance, register a recent device addition. With this code in place, it became relatively easy to implement a long-sought-after feature: the ability to import a pool with missing top level (i.e. non-redundant) devices. Note that since this almost guarantees some loss of data, this feature is for now restricted to a read-only import. Porting notes (ZTS): * Fix 'make dist' target in zpool_import * The maximum path length allowed by tar is 99 characters. Several of the new test cases exceeded this limit resulting in them not being included in the tarball. Shorten the names slightly. * Set/get tunables using accessor functions. * Get last synced txg via the "zfs_txg_history" mechanism. * Clear zinject handlers in cleanup for import_cache_device_replaced and import_rewind_device_replaced in order that the zpool can be exported if there is an error. * Increase FILESIZE to 8G in zfs-test.sh to allow for a larger ext4 file system to be created on ZFS_DISK2. Also, there's no need to partition ZFS_DISK2 at all. The partitioning had already been disabled for multipath devices. Among other things, the partitioning steals some space from the ext4 file system, makes it difficult to accurately calculate the paramters to parted and can make some of the tests fail. * Increase FS_SIZE and FILE_SIZE in the zpool_import test configuration now that FILESIZE is larger. * Write more data in order that device evacuation take lonnger in a couple tests. * Use mkdir -p to avoid errors when the directory already exists. * Remove use of sudo in import_rewind_config_changed. Authored by: Pavel Zakharov <pavel.zakharov@delphix.com> Reviewed by: George Wilson <george.wilson@delphix.com> Reviewed by: Matthew Ahrens <mahrens@delphix.com> Reviewed by: Andrew Stormont <andyjstormont@gmail.com> Approved by: Hans Rosenfeld <rosenfeld@grumpf.hope-2000.org> Ported-by: Tim Chase <tim@chase2k.com> Signed-off-by: Tim Chase <tim@chase2k.com> OpenZFS-issue: https://illumos.org/issues/9075 OpenZFS-commit: https://github.com/openzfs/openzfs/commit/619c0123 Closes #7459
2016-07-22 17:39:36 +03:00
if (mm == NULL)
return;
2008-11-20 23:01:55 +03:00
for (c = 0; c < mm->mm_children; c++) {
mc = &mm->mm_child[c];
if (mc->mc_error) {
if (!mc->mc_skipped)
unexpected_errors++;
} else if (mc->mc_tried) {
good_copies++;
2008-11-20 23:01:55 +03:00
}
}
if (zio->io_type == ZIO_TYPE_WRITE) {
/*
* XXX -- for now, treat partial writes as success.
*
* Now that we support write reallocation, it would be better
* to treat partial failure as real failure unless there are
* no non-degraded top-level vdevs left, and not update DTLs
* if we intend to reallocate.
2008-11-20 23:01:55 +03:00
*/
/* XXPOLICY */
if (good_copies != mm->mm_children) {
/*
* Always require at least one good copy.
*
* For ditto blocks (io_vd == NULL), require
* all copies to be good.
*
* XXX -- for replacing vdevs, there's no great answer.
* If the old device is really dead, we may not even
* be able to access it -- so we only want to
* require good writes to the new device. But if
* the new device turns out to be flaky, we want
* to be able to detach it -- which requires all
* writes to the old device to have succeeded.
*/
if (good_copies == 0 || zio->io_vd == NULL)
zio->io_error = vdev_mirror_worst_error(mm);
}
return;
2008-11-20 23:01:55 +03:00
}
ASSERT(zio->io_type == ZIO_TYPE_READ);
/*
* If we don't have a good copy yet, keep trying other children.
*/
/* XXPOLICY */
if (good_copies == 0 && (c = vdev_mirror_child_select(zio)) != -1) {
ASSERT(c >= 0 && c < mm->mm_children);
mc = &mm->mm_child[c];
zio_vdev_io_redone(zio);
zio_nowait(zio_vdev_child_io(zio, zio->io_bp,
mc->mc_vd, mc->mc_offset, zio->io_abd, zio->io_size,
ZIO_TYPE_READ, zio->io_priority, 0,
2008-11-20 23:01:55 +03:00
vdev_mirror_child_done, mc));
return;
2008-11-20 23:01:55 +03:00
}
/* XXPOLICY */
if (good_copies == 0) {
zio->io_error = vdev_mirror_worst_error(mm);
2008-11-20 23:01:55 +03:00
ASSERT(zio->io_error != 0);
}
2008-11-20 23:01:55 +03:00
2009-01-16 00:59:39 +03:00
if (good_copies && spa_writeable(zio->io_spa) &&
2008-11-20 23:01:55 +03:00
(unexpected_errors ||
(zio->io_flags & ZIO_FLAG_RESILVER) ||
((zio->io_flags & ZIO_FLAG_SCRUB) && mm->mm_replacing))) {
/*
* Use the good data we have in hand to repair damaged children.
*/
for (c = 0; c < mm->mm_children; c++) {
/*
* Don't rewrite known good children.
* Not only is it unnecessary, it could
* actually be harmful: if the system lost
* power while rewriting the only good copy,
* there would be no good copies left!
*/
mc = &mm->mm_child[c];
if (mc->mc_error == 0) {
if (mc->mc_tried)
continue;
OpenZFS 9290 - device removal reduces redundancy of mirrors Mirrors are supposed to provide redundancy in the face of whole-disk failure and silent damage (e.g. some data on disk is not right, but ZFS hasn't detected the whole device as being broken). However, the current device removal implementation bypasses some of the mirror's redundancy. Note that in no case is incorrect data returned, but we might get a checksum error when we should have been able to find the right data. There are two underlying problems: 1. When we remove a mirror device, we only read one side of the mirror. Since we can't verify the checksum, this side may be silently bad, but the good data is on the other side of the mirror (which we didn't read). This can cause the removal to "bake in" the busted data – all copies of the data in the new location are the same, busted version, while we left the good version behind. The fix for this is to read and copy both sides of the mirror. If the old and new vdevs are mirrors, we will read both sides of the old mirror, and write each copy to the corresponding side of the new mirror. (If the old and new vdevs have a different number of children, we will do this as best as possible.) Even though we aren't verifying checksums, this ensures that as long as there's a good copy of the data, we'll have a good copy after the removal, even if there's silent damage to one side of the mirror. If we're removing a mirror that has some silent damage, we'll have exactly the same damage in the new location (assuming that the new location is also a mirror). 2. When we read from an indirect vdev that points to a mirror vdev, we only consider one copy of the data. This can lead to reduced effective redundancy, because we might read a bad copy of the data from one side of the mirror, and not retry the other, good side of the mirror. Note that the problem is not with the removal process, but rather after the removal has completed (having copied correct data to both sides of the mirror), if one side of the new mirror is silently damaged, we encounter the problem when reading the relocated data via the indirect vdev. Also note that the problem doesn't occur when ZFS knows that one side of the mirror is bad, e.g. when a disk entirely fails or is offlined. The impact is that reads (from indirect vdevs that point to mirrors) may return a checksum error even though the good data exists on one side of the mirror, and scrub doesn't repair all data on the mirror (if some of it is pointed to via an indirect vdev). The fix for this is complicated by "split blocks" - one logical block may be split into two (or more) pieces with each piece moved to a different new location. In this case we need to read all versions of each split (one from each side of the mirror), and figure out which combination of versions results in the correct checksum, and then repair the incorrect versions. This ensures that we supply the same redundancy whether you use device removal or not. For example, if a mirror has small silent errors on all of its children, we can still reconstruct the correct data, as long as those errors are at sufficiently-separated offsets (specifically, separated by the largest block size - default of 128KB, but up to 16MB). Porting notes: * A new indirect vdev check was moved from dsl_scan_needs_resilver_cb() to dsl_scan_needs_resilver(), which was added to ZoL as part of the sequential scrub work. * Passed NULL for zfs_ereport_post_checksum()'s zbookmark_phys_t parameter. The extra parameter is unique to ZoL. * When posting indirect checksum errors the ABD can be passed directly, zfs_ereport_post_checksum() is not yet ABD-aware in OpenZFS. Authored by: Matthew Ahrens <mahrens@delphix.com> Reviewed by: Tim Chase <tim@chase2k.com> Reviewed by: Brian Behlendorf <behlendorf1@llnl.gov> Ported-by: Tim Chase <tim@chase2k.com> OpenZFS-issue: https://illumos.org/issues/9290 OpenZFS-commit: https://github.com/openzfs/openzfs/pull/591 Closes #6900
2018-02-13 22:37:56 +03:00
/*
* We didn't try this child. We need to
* repair it if:
* 1. it's a scrub (in which case we have
* tried everything that was healthy)
* - or -
* 2. it's an indirect vdev (in which case
* it could point to any other vdev, which
* might have a bad DTL)
* - or -
* 3. the DTL indicates that this data is
* missing from this vdev
*/
2008-11-20 23:01:55 +03:00
if (!(zio->io_flags & ZIO_FLAG_SCRUB) &&
OpenZFS 9290 - device removal reduces redundancy of mirrors Mirrors are supposed to provide redundancy in the face of whole-disk failure and silent damage (e.g. some data on disk is not right, but ZFS hasn't detected the whole device as being broken). However, the current device removal implementation bypasses some of the mirror's redundancy. Note that in no case is incorrect data returned, but we might get a checksum error when we should have been able to find the right data. There are two underlying problems: 1. When we remove a mirror device, we only read one side of the mirror. Since we can't verify the checksum, this side may be silently bad, but the good data is on the other side of the mirror (which we didn't read). This can cause the removal to "bake in" the busted data – all copies of the data in the new location are the same, busted version, while we left the good version behind. The fix for this is to read and copy both sides of the mirror. If the old and new vdevs are mirrors, we will read both sides of the old mirror, and write each copy to the corresponding side of the new mirror. (If the old and new vdevs have a different number of children, we will do this as best as possible.) Even though we aren't verifying checksums, this ensures that as long as there's a good copy of the data, we'll have a good copy after the removal, even if there's silent damage to one side of the mirror. If we're removing a mirror that has some silent damage, we'll have exactly the same damage in the new location (assuming that the new location is also a mirror). 2. When we read from an indirect vdev that points to a mirror vdev, we only consider one copy of the data. This can lead to reduced effective redundancy, because we might read a bad copy of the data from one side of the mirror, and not retry the other, good side of the mirror. Note that the problem is not with the removal process, but rather after the removal has completed (having copied correct data to both sides of the mirror), if one side of the new mirror is silently damaged, we encounter the problem when reading the relocated data via the indirect vdev. Also note that the problem doesn't occur when ZFS knows that one side of the mirror is bad, e.g. when a disk entirely fails or is offlined. The impact is that reads (from indirect vdevs that point to mirrors) may return a checksum error even though the good data exists on one side of the mirror, and scrub doesn't repair all data on the mirror (if some of it is pointed to via an indirect vdev). The fix for this is complicated by "split blocks" - one logical block may be split into two (or more) pieces with each piece moved to a different new location. In this case we need to read all versions of each split (one from each side of the mirror), and figure out which combination of versions results in the correct checksum, and then repair the incorrect versions. This ensures that we supply the same redundancy whether you use device removal or not. For example, if a mirror has small silent errors on all of its children, we can still reconstruct the correct data, as long as those errors are at sufficiently-separated offsets (specifically, separated by the largest block size - default of 128KB, but up to 16MB). Porting notes: * A new indirect vdev check was moved from dsl_scan_needs_resilver_cb() to dsl_scan_needs_resilver(), which was added to ZoL as part of the sequential scrub work. * Passed NULL for zfs_ereport_post_checksum()'s zbookmark_phys_t parameter. The extra parameter is unique to ZoL. * When posting indirect checksum errors the ABD can be passed directly, zfs_ereport_post_checksum() is not yet ABD-aware in OpenZFS. Authored by: Matthew Ahrens <mahrens@delphix.com> Reviewed by: Tim Chase <tim@chase2k.com> Reviewed by: Brian Behlendorf <behlendorf1@llnl.gov> Ported-by: Tim Chase <tim@chase2k.com> OpenZFS-issue: https://illumos.org/issues/9290 OpenZFS-commit: https://github.com/openzfs/openzfs/pull/591 Closes #6900
2018-02-13 22:37:56 +03:00
mc->mc_vd->vdev_ops != &vdev_indirect_ops &&
2009-01-16 00:59:39 +03:00
!vdev_dtl_contains(mc->mc_vd, DTL_PARTIAL,
2008-11-20 23:01:55 +03:00
zio->io_txg, 1))
continue;
mc->mc_error = SET_ERROR(ESTALE);
2008-11-20 23:01:55 +03:00
}
zio_nowait(zio_vdev_child_io(zio, zio->io_bp,
mc->mc_vd, mc->mc_offset,
zio->io_abd, zio->io_size,
Illumos #4045 write throttle & i/o scheduler performance work 4045 zfs write throttle & i/o scheduler performance work 1. The ZFS i/o scheduler (vdev_queue.c) now divides i/os into 5 classes: sync read, sync write, async read, async write, and scrub/resilver. The scheduler issues a number of concurrent i/os from each class to the device. Once a class has been selected, an i/o is selected from this class using either an elevator algorithem (async, scrub classes) or FIFO (sync classes). The number of concurrent async write i/os is tuned dynamically based on i/o load, to achieve good sync i/o latency when there is not a high load of writes, and good write throughput when there is. See the block comment in vdev_queue.c (reproduced below) for more details. 2. The write throttle (dsl_pool_tempreserve_space() and txg_constrain_throughput()) is rewritten to produce much more consistent delays when under constant load. The new write throttle is based on the amount of dirty data, rather than guesses about future performance of the system. When there is a lot of dirty data, each transaction (e.g. write() syscall) will be delayed by the same small amount. This eliminates the "brick wall of wait" that the old write throttle could hit, causing all transactions to wait several seconds until the next txg opens. One of the keys to the new write throttle is decrementing the amount of dirty data as i/o completes, rather than at the end of spa_sync(). Note that the write throttle is only applied once the i/o scheduler is issuing the maximum number of outstanding async writes. See the block comments in dsl_pool.c and above dmu_tx_delay() (reproduced below) for more details. This diff has several other effects, including: * the commonly-tuned global variable zfs_vdev_max_pending has been removed; use per-class zfs_vdev_*_max_active values or zfs_vdev_max_active instead. * the size of each txg (meaning the amount of dirty data written, and thus the time it takes to write out) is now controlled differently. There is no longer an explicit time goal; the primary determinant is amount of dirty data. Systems that are under light or medium load will now often see that a txg is always syncing, but the impact to performance (e.g. read latency) is minimal. Tune zfs_dirty_data_max and zfs_dirty_data_sync to control this. * zio_taskq_batch_pct = 75 -- Only use 75% of all CPUs for compression, checksum, etc. This improves latency by not allowing these CPU-intensive tasks to consume all CPU (on machines with at least 4 CPU's; the percentage is rounded up). --matt APPENDIX: problems with the current i/o scheduler The current ZFS i/o scheduler (vdev_queue.c) is deadline based. The problem with this is that if there are always i/os pending, then certain classes of i/os can see very long delays. For example, if there are always synchronous reads outstanding, then no async writes will be serviced until they become "past due". One symptom of this situation is that each pass of the txg sync takes at least several seconds (typically 3 seconds). If many i/os become "past due" (their deadline is in the past), then we must service all of these overdue i/os before any new i/os. This happens when we enqueue a batch of async writes for the txg sync, with deadlines 2.5 seconds in the future. If we can't complete all the i/os in 2.5 seconds (e.g. because there were always reads pending), then these i/os will become past due. Now we must service all the "async" writes (which could be hundreds of megabytes) before we service any reads, introducing considerable latency to synchronous i/os (reads or ZIL writes). Notes on porting to ZFS on Linux: - zio_t gained new members io_physdone and io_phys_children. Because object caches in the Linux port call the constructor only once at allocation time, objects may contain residual data when retrieved from the cache. Therefore zio_create() was updated to zero out the two new fields. - vdev_mirror_pending() relied on the depth of the per-vdev pending queue (vq->vq_pending_tree) to select the least-busy leaf vdev to read from. This tree has been replaced by vq->vq_active_tree which is now used for the same purpose. - vdev_queue_init() used the value of zfs_vdev_max_pending to determine the number of vdev I/O buffers to pre-allocate. That global no longer exists, so we instead use the sum of the *_max_active values for each of the five I/O classes described above. - The Illumos implementation of dmu_tx_delay() delays a transaction by sleeping in condition variable embedded in the thread (curthread->t_delay_cv). We do not have an equivalent CV to use in Linux, so this change replaced the delay logic with a wrapper called zfs_sleep_until(). This wrapper could be adopted upstream and in other downstream ports to abstract away operating system-specific delay logic. - These tunables are added as module parameters, and descriptions added to the zfs-module-parameters.5 man page. spa_asize_inflation zfs_deadman_synctime_ms zfs_vdev_max_active zfs_vdev_async_write_active_min_dirty_percent zfs_vdev_async_write_active_max_dirty_percent zfs_vdev_async_read_max_active zfs_vdev_async_read_min_active zfs_vdev_async_write_max_active zfs_vdev_async_write_min_active zfs_vdev_scrub_max_active zfs_vdev_scrub_min_active zfs_vdev_sync_read_max_active zfs_vdev_sync_read_min_active zfs_vdev_sync_write_max_active zfs_vdev_sync_write_min_active zfs_dirty_data_max_percent zfs_delay_min_dirty_percent zfs_dirty_data_max_max_percent zfs_dirty_data_max zfs_dirty_data_max_max zfs_dirty_data_sync zfs_delay_scale The latter four have type unsigned long, whereas they are uint64_t in Illumos. This accommodates Linux's module_param() supported types, but means they may overflow on 32-bit architectures. The values zfs_dirty_data_max and zfs_dirty_data_max_max are the most likely to overflow on 32-bit systems, since they express physical RAM sizes in bytes. In fact, Illumos initializes zfs_dirty_data_max_max to 2^32 which does overflow. To resolve that, this port instead initializes it in arc_init() to 25% of physical RAM, and adds the tunable zfs_dirty_data_max_max_percent to override that percentage. While this solution doesn't completely avoid the overflow issue, it should be a reasonable default for most systems, and the minority of affected systems can work around the issue by overriding the defaults. - Fixed reversed logic in comment above zfs_delay_scale declaration. - Clarified comments in vdev_queue.c regarding when per-queue minimums take effect. - Replaced dmu_tx_write_limit in the dmu_tx kstat file with dmu_tx_dirty_delay and dmu_tx_dirty_over_max. The first counts how many times a transaction has been delayed because the pool dirty data has exceeded zfs_delay_min_dirty_percent. The latter counts how many times the pool dirty data has exceeded zfs_dirty_data_max (which we expect to never happen). - The original patch would have regressed the bug fixed in zfsonlinux/zfs@c418410, which prevented users from setting the zfs_vdev_aggregation_limit tuning larger than SPA_MAXBLOCKSIZE. A similar fix is added to vdev_queue_aggregate(). - In vdev_queue_io_to_issue(), dynamically allocate 'zio_t search' on the heap instead of the stack. In Linux we can't afford such large structures on the stack. Reviewed by: George Wilson <george.wilson@delphix.com> Reviewed by: Adam Leventhal <ahl@delphix.com> Reviewed by: Christopher Siden <christopher.siden@delphix.com> Reviewed by: Ned Bass <bass6@llnl.gov> Reviewed by: Brendan Gregg <brendan.gregg@joyent.com> Approved by: Robert Mustacchi <rm@joyent.com> References: http://www.illumos.org/issues/4045 illumos/illumos-gate@69962b5647e4a8b9b14998733b765925381b727e Ported-by: Ned Bass <bass6@llnl.gov> Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov> Closes #1913
2013-08-29 07:01:20 +04:00
ZIO_TYPE_WRITE, ZIO_PRIORITY_ASYNC_WRITE,
2009-01-16 00:59:39 +03:00
ZIO_FLAG_IO_REPAIR | (unexpected_errors ?
ZIO_FLAG_SELF_HEAL : 0), NULL, NULL));
2008-11-20 23:01:55 +03:00
}
}
}
static void
vdev_mirror_state_change(vdev_t *vd, int faulted, int degraded)
{
OpenZFS 9075 - Improve ZFS pool import/load process and corrupted pool recovery Some work has been done lately to improve the debugability of the ZFS pool load (and import) process. This includes: 7638 Refactor spa_load_impl into several functions 8961 SPA load/import should tell us why it failed 7277 zdb should be able to print zfs_dbgmsg's To iterate on top of that, there's a few changes that were made to make the import process more resilient and crash free. One of the first tasks during the pool load process is to parse a config provided from userland that describes what devices the pool is composed of. A vdev tree is generated from that config, and then all the vdevs are opened. The Meta Object Set (MOS) of the pool is accessed, and several metadata objects that are necessary to load the pool are read. The exact configuration of the pool is also stored inside the MOS. Since the configuration provided from userland is external and might not accurately describe the vdev tree of the pool at the txg that is being loaded, it cannot be relied upon to safely operate the pool. For that reason, the configuration in the MOS is read early on. In the past, the two configurations were compared together and if there was a mismatch then the load process was aborted and an error was returned. The latter was a good way to ensure a pool does not get corrupted, however it made the pool load process needlessly fragile in cases where the vdev configuration changed or the userland configuration was outdated. Since the MOS is stored in 3 copies, the configuration provided by userland doesn't have to be perfect in order to read its contents. Hence, a new approach has been adopted: The pool is first opened with the untrusted userland configuration just so that the real configuration can be read from the MOS. The trusted MOS configuration is then used to generate a new vdev tree and the pool is re-opened. When the pool is opened with an untrusted configuration, writes are disabled to avoid accidentally damaging it. During reads, some sanity checks are performed on block pointers to see if each DVA points to a known vdev; when the configuration is untrusted, instead of panicking the system if those checks fail we simply avoid issuing reads to the invalid DVAs. This new two-step pool load process now allows rewinding pools accross vdev tree changes such as device replacement, addition, etc. Loading a pool from an external config file in a clustering environment also becomes much safer now since the pool will import even if the config is outdated and didn't, for instance, register a recent device addition. With this code in place, it became relatively easy to implement a long-sought-after feature: the ability to import a pool with missing top level (i.e. non-redundant) devices. Note that since this almost guarantees some loss of data, this feature is for now restricted to a read-only import. Porting notes (ZTS): * Fix 'make dist' target in zpool_import * The maximum path length allowed by tar is 99 characters. Several of the new test cases exceeded this limit resulting in them not being included in the tarball. Shorten the names slightly. * Set/get tunables using accessor functions. * Get last synced txg via the "zfs_txg_history" mechanism. * Clear zinject handlers in cleanup for import_cache_device_replaced and import_rewind_device_replaced in order that the zpool can be exported if there is an error. * Increase FILESIZE to 8G in zfs-test.sh to allow for a larger ext4 file system to be created on ZFS_DISK2. Also, there's no need to partition ZFS_DISK2 at all. The partitioning had already been disabled for multipath devices. Among other things, the partitioning steals some space from the ext4 file system, makes it difficult to accurately calculate the paramters to parted and can make some of the tests fail. * Increase FS_SIZE and FILE_SIZE in the zpool_import test configuration now that FILESIZE is larger. * Write more data in order that device evacuation take lonnger in a couple tests. * Use mkdir -p to avoid errors when the directory already exists. * Remove use of sudo in import_rewind_config_changed. Authored by: Pavel Zakharov <pavel.zakharov@delphix.com> Reviewed by: George Wilson <george.wilson@delphix.com> Reviewed by: Matthew Ahrens <mahrens@delphix.com> Reviewed by: Andrew Stormont <andyjstormont@gmail.com> Approved by: Hans Rosenfeld <rosenfeld@grumpf.hope-2000.org> Ported-by: Tim Chase <tim@chase2k.com> Signed-off-by: Tim Chase <tim@chase2k.com> OpenZFS-issue: https://illumos.org/issues/9075 OpenZFS-commit: https://github.com/openzfs/openzfs/commit/619c0123 Closes #7459
2016-07-22 17:39:36 +03:00
if (faulted == vd->vdev_children) {
if (vdev_children_are_offline(vd)) {
vdev_set_state(vd, B_FALSE, VDEV_STATE_OFFLINE,
VDEV_AUX_CHILDREN_OFFLINE);
} else {
vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
VDEV_AUX_NO_REPLICAS);
}
} else if (degraded + faulted != 0) {
2008-11-20 23:01:55 +03:00
vdev_set_state(vd, B_FALSE, VDEV_STATE_DEGRADED, VDEV_AUX_NONE);
OpenZFS 9075 - Improve ZFS pool import/load process and corrupted pool recovery Some work has been done lately to improve the debugability of the ZFS pool load (and import) process. This includes: 7638 Refactor spa_load_impl into several functions 8961 SPA load/import should tell us why it failed 7277 zdb should be able to print zfs_dbgmsg's To iterate on top of that, there's a few changes that were made to make the import process more resilient and crash free. One of the first tasks during the pool load process is to parse a config provided from userland that describes what devices the pool is composed of. A vdev tree is generated from that config, and then all the vdevs are opened. The Meta Object Set (MOS) of the pool is accessed, and several metadata objects that are necessary to load the pool are read. The exact configuration of the pool is also stored inside the MOS. Since the configuration provided from userland is external and might not accurately describe the vdev tree of the pool at the txg that is being loaded, it cannot be relied upon to safely operate the pool. For that reason, the configuration in the MOS is read early on. In the past, the two configurations were compared together and if there was a mismatch then the load process was aborted and an error was returned. The latter was a good way to ensure a pool does not get corrupted, however it made the pool load process needlessly fragile in cases where the vdev configuration changed or the userland configuration was outdated. Since the MOS is stored in 3 copies, the configuration provided by userland doesn't have to be perfect in order to read its contents. Hence, a new approach has been adopted: The pool is first opened with the untrusted userland configuration just so that the real configuration can be read from the MOS. The trusted MOS configuration is then used to generate a new vdev tree and the pool is re-opened. When the pool is opened with an untrusted configuration, writes are disabled to avoid accidentally damaging it. During reads, some sanity checks are performed on block pointers to see if each DVA points to a known vdev; when the configuration is untrusted, instead of panicking the system if those checks fail we simply avoid issuing reads to the invalid DVAs. This new two-step pool load process now allows rewinding pools accross vdev tree changes such as device replacement, addition, etc. Loading a pool from an external config file in a clustering environment also becomes much safer now since the pool will import even if the config is outdated and didn't, for instance, register a recent device addition. With this code in place, it became relatively easy to implement a long-sought-after feature: the ability to import a pool with missing top level (i.e. non-redundant) devices. Note that since this almost guarantees some loss of data, this feature is for now restricted to a read-only import. Porting notes (ZTS): * Fix 'make dist' target in zpool_import * The maximum path length allowed by tar is 99 characters. Several of the new test cases exceeded this limit resulting in them not being included in the tarball. Shorten the names slightly. * Set/get tunables using accessor functions. * Get last synced txg via the "zfs_txg_history" mechanism. * Clear zinject handlers in cleanup for import_cache_device_replaced and import_rewind_device_replaced in order that the zpool can be exported if there is an error. * Increase FILESIZE to 8G in zfs-test.sh to allow for a larger ext4 file system to be created on ZFS_DISK2. Also, there's no need to partition ZFS_DISK2 at all. The partitioning had already been disabled for multipath devices. Among other things, the partitioning steals some space from the ext4 file system, makes it difficult to accurately calculate the paramters to parted and can make some of the tests fail. * Increase FS_SIZE and FILE_SIZE in the zpool_import test configuration now that FILESIZE is larger. * Write more data in order that device evacuation take lonnger in a couple tests. * Use mkdir -p to avoid errors when the directory already exists. * Remove use of sudo in import_rewind_config_changed. Authored by: Pavel Zakharov <pavel.zakharov@delphix.com> Reviewed by: George Wilson <george.wilson@delphix.com> Reviewed by: Matthew Ahrens <mahrens@delphix.com> Reviewed by: Andrew Stormont <andyjstormont@gmail.com> Approved by: Hans Rosenfeld <rosenfeld@grumpf.hope-2000.org> Ported-by: Tim Chase <tim@chase2k.com> Signed-off-by: Tim Chase <tim@chase2k.com> OpenZFS-issue: https://illumos.org/issues/9075 OpenZFS-commit: https://github.com/openzfs/openzfs/commit/619c0123 Closes #7459
2016-07-22 17:39:36 +03:00
} else {
2008-11-20 23:01:55 +03:00
vdev_set_state(vd, B_FALSE, VDEV_STATE_HEALTHY, VDEV_AUX_NONE);
OpenZFS 9075 - Improve ZFS pool import/load process and corrupted pool recovery Some work has been done lately to improve the debugability of the ZFS pool load (and import) process. This includes: 7638 Refactor spa_load_impl into several functions 8961 SPA load/import should tell us why it failed 7277 zdb should be able to print zfs_dbgmsg's To iterate on top of that, there's a few changes that were made to make the import process more resilient and crash free. One of the first tasks during the pool load process is to parse a config provided from userland that describes what devices the pool is composed of. A vdev tree is generated from that config, and then all the vdevs are opened. The Meta Object Set (MOS) of the pool is accessed, and several metadata objects that are necessary to load the pool are read. The exact configuration of the pool is also stored inside the MOS. Since the configuration provided from userland is external and might not accurately describe the vdev tree of the pool at the txg that is being loaded, it cannot be relied upon to safely operate the pool. For that reason, the configuration in the MOS is read early on. In the past, the two configurations were compared together and if there was a mismatch then the load process was aborted and an error was returned. The latter was a good way to ensure a pool does not get corrupted, however it made the pool load process needlessly fragile in cases where the vdev configuration changed or the userland configuration was outdated. Since the MOS is stored in 3 copies, the configuration provided by userland doesn't have to be perfect in order to read its contents. Hence, a new approach has been adopted: The pool is first opened with the untrusted userland configuration just so that the real configuration can be read from the MOS. The trusted MOS configuration is then used to generate a new vdev tree and the pool is re-opened. When the pool is opened with an untrusted configuration, writes are disabled to avoid accidentally damaging it. During reads, some sanity checks are performed on block pointers to see if each DVA points to a known vdev; when the configuration is untrusted, instead of panicking the system if those checks fail we simply avoid issuing reads to the invalid DVAs. This new two-step pool load process now allows rewinding pools accross vdev tree changes such as device replacement, addition, etc. Loading a pool from an external config file in a clustering environment also becomes much safer now since the pool will import even if the config is outdated and didn't, for instance, register a recent device addition. With this code in place, it became relatively easy to implement a long-sought-after feature: the ability to import a pool with missing top level (i.e. non-redundant) devices. Note that since this almost guarantees some loss of data, this feature is for now restricted to a read-only import. Porting notes (ZTS): * Fix 'make dist' target in zpool_import * The maximum path length allowed by tar is 99 characters. Several of the new test cases exceeded this limit resulting in them not being included in the tarball. Shorten the names slightly. * Set/get tunables using accessor functions. * Get last synced txg via the "zfs_txg_history" mechanism. * Clear zinject handlers in cleanup for import_cache_device_replaced and import_rewind_device_replaced in order that the zpool can be exported if there is an error. * Increase FILESIZE to 8G in zfs-test.sh to allow for a larger ext4 file system to be created on ZFS_DISK2. Also, there's no need to partition ZFS_DISK2 at all. The partitioning had already been disabled for multipath devices. Among other things, the partitioning steals some space from the ext4 file system, makes it difficult to accurately calculate the paramters to parted and can make some of the tests fail. * Increase FS_SIZE and FILE_SIZE in the zpool_import test configuration now that FILESIZE is larger. * Write more data in order that device evacuation take lonnger in a couple tests. * Use mkdir -p to avoid errors when the directory already exists. * Remove use of sudo in import_rewind_config_changed. Authored by: Pavel Zakharov <pavel.zakharov@delphix.com> Reviewed by: George Wilson <george.wilson@delphix.com> Reviewed by: Matthew Ahrens <mahrens@delphix.com> Reviewed by: Andrew Stormont <andyjstormont@gmail.com> Approved by: Hans Rosenfeld <rosenfeld@grumpf.hope-2000.org> Ported-by: Tim Chase <tim@chase2k.com> Signed-off-by: Tim Chase <tim@chase2k.com> OpenZFS-issue: https://illumos.org/issues/9075 OpenZFS-commit: https://github.com/openzfs/openzfs/commit/619c0123 Closes #7459
2016-07-22 17:39:36 +03:00
}
2008-11-20 23:01:55 +03:00
}
vdev_ops_t vdev_mirror_ops = {
vdev_mirror_open,
vdev_mirror_close,
vdev_default_asize,
vdev_mirror_io_start,
vdev_mirror_io_done,
vdev_mirror_state_change,
NULL,
NULL,
NULL,
OpenZFS 7614, 9064 - zfs device evacuation/removal OpenZFS 7614 - zfs device evacuation/removal OpenZFS 9064 - remove_mirror should wait for device removal to complete This project allows top-level vdevs to be removed from the storage pool with "zpool remove", reducing the total amount of storage in the pool. This operation copies all allocated regions of the device to be removed onto other devices, recording the mapping from old to new location. After the removal is complete, read and free operations to the removed (now "indirect") vdev must be remapped and performed at the new location on disk. The indirect mapping table is kept in memory whenever the pool is loaded, so there is minimal performance overhead when doing operations on the indirect vdev. The size of the in-memory mapping table will be reduced when its entries become "obsolete" because they are no longer used by any block pointers in the pool. An entry becomes obsolete when all the blocks that use it are freed. An entry can also become obsolete when all the snapshots that reference it are deleted, and the block pointers that reference it have been "remapped" in all filesystems/zvols (and clones). Whenever an indirect block is written, all the block pointers in it will be "remapped" to their new (concrete) locations if possible. This process can be accelerated by using the "zfs remap" command to proactively rewrite all indirect blocks that reference indirect (removed) vdevs. Note that when a device is removed, we do not verify the checksum of the data that is copied. This makes the process much faster, but if it were used on redundant vdevs (i.e. mirror or raidz vdevs), it would be possible to copy the wrong data, when we have the correct data on e.g. the other side of the mirror. At the moment, only mirrors and simple top-level vdevs can be removed and no removal is allowed if any of the top-level vdevs are raidz. Porting Notes: * Avoid zero-sized kmem_alloc() in vdev_compact_children(). The device evacuation code adds a dependency that vdev_compact_children() be able to properly empty the vdev_child array by setting it to NULL and zeroing vdev_children. Under Linux, kmem_alloc() and related functions return a sentinel pointer rather than NULL for zero-sized allocations. * Remove comment regarding "mpt" driver where zfs_remove_max_segment is initialized to SPA_MAXBLOCKSIZE. Change zfs_condense_indirect_commit_entry_delay_ticks to zfs_condense_indirect_commit_entry_delay_ms for consistency with most other tunables in which delays are specified in ms. * ZTS changes: Use set_tunable rather than mdb Use zpool sync as appropriate Use sync_pool instead of sync Kill jobs during test_removal_with_operation to allow unmount/export Don't add non-disk names such as "mirror" or "raidz" to $DISKS Use $TEST_BASE_DIR instead of /tmp Increase HZ from 100 to 1000 which is more common on Linux removal_multiple_indirection.ksh Reduce iterations in order to not time out on the code coverage builders. removal_resume_export: Functionally, the test case is correct but there exists a race where the kernel thread hasn't been fully started yet and is not visible. Wait for up to 1 second for the removal thread to be started before giving up on it. Also, increase the amount of data copied in order that the removal not finish before the export has a chance to fail. * MMP compatibility, the concept of concrete versus non-concrete devices has slightly changed the semantics of vdev_writeable(). Update mmp_random_leaf_impl() accordingly. * Updated dbuf_remap() to handle the org.zfsonlinux:large_dnode pool feature which is not supported by OpenZFS. * Added support for new vdev removal tracepoints. * Test cases removal_with_zdb and removal_condense_export have been intentionally disabled. When run manually they pass as intended, but when running in the automated test environment they produce unreliable results on the latest Fedora release. They may work better once the upstream pool import refectoring is merged into ZoL at which point they will be re-enabled. Authored by: Matthew Ahrens <mahrens@delphix.com> Reviewed-by: Alex Reece <alex@delphix.com> Reviewed-by: George Wilson <george.wilson@delphix.com> Reviewed-by: John Kennedy <john.kennedy@delphix.com> Reviewed-by: Prakash Surya <prakash.surya@delphix.com> Reviewed by: Richard Laager <rlaager@wiktel.com> Reviewed by: Tim Chase <tim@chase2k.com> Reviewed by: Brian Behlendorf <behlendorf1@llnl.gov> Approved by: Garrett D'Amore <garrett@damore.org> Ported-by: Tim Chase <tim@chase2k.com> Signed-off-by: Tim Chase <tim@chase2k.com> OpenZFS-issue: https://www.illumos.org/issues/7614 OpenZFS-commit: https://github.com/openzfs/openzfs/commit/f539f1eb Closes #6900
2016-09-22 19:30:13 +03:00
NULL,
2008-11-20 23:01:55 +03:00
VDEV_TYPE_MIRROR, /* name of this vdev type */
B_FALSE /* not a leaf vdev */
};
vdev_ops_t vdev_replacing_ops = {
vdev_mirror_open,
vdev_mirror_close,
vdev_default_asize,
vdev_mirror_io_start,
vdev_mirror_io_done,
vdev_mirror_state_change,
NULL,
NULL,
NULL,
OpenZFS 7614, 9064 - zfs device evacuation/removal OpenZFS 7614 - zfs device evacuation/removal OpenZFS 9064 - remove_mirror should wait for device removal to complete This project allows top-level vdevs to be removed from the storage pool with "zpool remove", reducing the total amount of storage in the pool. This operation copies all allocated regions of the device to be removed onto other devices, recording the mapping from old to new location. After the removal is complete, read and free operations to the removed (now "indirect") vdev must be remapped and performed at the new location on disk. The indirect mapping table is kept in memory whenever the pool is loaded, so there is minimal performance overhead when doing operations on the indirect vdev. The size of the in-memory mapping table will be reduced when its entries become "obsolete" because they are no longer used by any block pointers in the pool. An entry becomes obsolete when all the blocks that use it are freed. An entry can also become obsolete when all the snapshots that reference it are deleted, and the block pointers that reference it have been "remapped" in all filesystems/zvols (and clones). Whenever an indirect block is written, all the block pointers in it will be "remapped" to their new (concrete) locations if possible. This process can be accelerated by using the "zfs remap" command to proactively rewrite all indirect blocks that reference indirect (removed) vdevs. Note that when a device is removed, we do not verify the checksum of the data that is copied. This makes the process much faster, but if it were used on redundant vdevs (i.e. mirror or raidz vdevs), it would be possible to copy the wrong data, when we have the correct data on e.g. the other side of the mirror. At the moment, only mirrors and simple top-level vdevs can be removed and no removal is allowed if any of the top-level vdevs are raidz. Porting Notes: * Avoid zero-sized kmem_alloc() in vdev_compact_children(). The device evacuation code adds a dependency that vdev_compact_children() be able to properly empty the vdev_child array by setting it to NULL and zeroing vdev_children. Under Linux, kmem_alloc() and related functions return a sentinel pointer rather than NULL for zero-sized allocations. * Remove comment regarding "mpt" driver where zfs_remove_max_segment is initialized to SPA_MAXBLOCKSIZE. Change zfs_condense_indirect_commit_entry_delay_ticks to zfs_condense_indirect_commit_entry_delay_ms for consistency with most other tunables in which delays are specified in ms. * ZTS changes: Use set_tunable rather than mdb Use zpool sync as appropriate Use sync_pool instead of sync Kill jobs during test_removal_with_operation to allow unmount/export Don't add non-disk names such as "mirror" or "raidz" to $DISKS Use $TEST_BASE_DIR instead of /tmp Increase HZ from 100 to 1000 which is more common on Linux removal_multiple_indirection.ksh Reduce iterations in order to not time out on the code coverage builders. removal_resume_export: Functionally, the test case is correct but there exists a race where the kernel thread hasn't been fully started yet and is not visible. Wait for up to 1 second for the removal thread to be started before giving up on it. Also, increase the amount of data copied in order that the removal not finish before the export has a chance to fail. * MMP compatibility, the concept of concrete versus non-concrete devices has slightly changed the semantics of vdev_writeable(). Update mmp_random_leaf_impl() accordingly. * Updated dbuf_remap() to handle the org.zfsonlinux:large_dnode pool feature which is not supported by OpenZFS. * Added support for new vdev removal tracepoints. * Test cases removal_with_zdb and removal_condense_export have been intentionally disabled. When run manually they pass as intended, but when running in the automated test environment they produce unreliable results on the latest Fedora release. They may work better once the upstream pool import refectoring is merged into ZoL at which point they will be re-enabled. Authored by: Matthew Ahrens <mahrens@delphix.com> Reviewed-by: Alex Reece <alex@delphix.com> Reviewed-by: George Wilson <george.wilson@delphix.com> Reviewed-by: John Kennedy <john.kennedy@delphix.com> Reviewed-by: Prakash Surya <prakash.surya@delphix.com> Reviewed by: Richard Laager <rlaager@wiktel.com> Reviewed by: Tim Chase <tim@chase2k.com> Reviewed by: Brian Behlendorf <behlendorf1@llnl.gov> Approved by: Garrett D'Amore <garrett@damore.org> Ported-by: Tim Chase <tim@chase2k.com> Signed-off-by: Tim Chase <tim@chase2k.com> OpenZFS-issue: https://www.illumos.org/issues/7614 OpenZFS-commit: https://github.com/openzfs/openzfs/commit/f539f1eb Closes #6900
2016-09-22 19:30:13 +03:00
NULL,
2008-11-20 23:01:55 +03:00
VDEV_TYPE_REPLACING, /* name of this vdev type */
B_FALSE /* not a leaf vdev */
};
vdev_ops_t vdev_spare_ops = {
vdev_mirror_open,
vdev_mirror_close,
vdev_default_asize,
vdev_mirror_io_start,
vdev_mirror_io_done,
vdev_mirror_state_change,
NULL,
NULL,
NULL,
OpenZFS 7614, 9064 - zfs device evacuation/removal OpenZFS 7614 - zfs device evacuation/removal OpenZFS 9064 - remove_mirror should wait for device removal to complete This project allows top-level vdevs to be removed from the storage pool with "zpool remove", reducing the total amount of storage in the pool. This operation copies all allocated regions of the device to be removed onto other devices, recording the mapping from old to new location. After the removal is complete, read and free operations to the removed (now "indirect") vdev must be remapped and performed at the new location on disk. The indirect mapping table is kept in memory whenever the pool is loaded, so there is minimal performance overhead when doing operations on the indirect vdev. The size of the in-memory mapping table will be reduced when its entries become "obsolete" because they are no longer used by any block pointers in the pool. An entry becomes obsolete when all the blocks that use it are freed. An entry can also become obsolete when all the snapshots that reference it are deleted, and the block pointers that reference it have been "remapped" in all filesystems/zvols (and clones). Whenever an indirect block is written, all the block pointers in it will be "remapped" to their new (concrete) locations if possible. This process can be accelerated by using the "zfs remap" command to proactively rewrite all indirect blocks that reference indirect (removed) vdevs. Note that when a device is removed, we do not verify the checksum of the data that is copied. This makes the process much faster, but if it were used on redundant vdevs (i.e. mirror or raidz vdevs), it would be possible to copy the wrong data, when we have the correct data on e.g. the other side of the mirror. At the moment, only mirrors and simple top-level vdevs can be removed and no removal is allowed if any of the top-level vdevs are raidz. Porting Notes: * Avoid zero-sized kmem_alloc() in vdev_compact_children(). The device evacuation code adds a dependency that vdev_compact_children() be able to properly empty the vdev_child array by setting it to NULL and zeroing vdev_children. Under Linux, kmem_alloc() and related functions return a sentinel pointer rather than NULL for zero-sized allocations. * Remove comment regarding "mpt" driver where zfs_remove_max_segment is initialized to SPA_MAXBLOCKSIZE. Change zfs_condense_indirect_commit_entry_delay_ticks to zfs_condense_indirect_commit_entry_delay_ms for consistency with most other tunables in which delays are specified in ms. * ZTS changes: Use set_tunable rather than mdb Use zpool sync as appropriate Use sync_pool instead of sync Kill jobs during test_removal_with_operation to allow unmount/export Don't add non-disk names such as "mirror" or "raidz" to $DISKS Use $TEST_BASE_DIR instead of /tmp Increase HZ from 100 to 1000 which is more common on Linux removal_multiple_indirection.ksh Reduce iterations in order to not time out on the code coverage builders. removal_resume_export: Functionally, the test case is correct but there exists a race where the kernel thread hasn't been fully started yet and is not visible. Wait for up to 1 second for the removal thread to be started before giving up on it. Also, increase the amount of data copied in order that the removal not finish before the export has a chance to fail. * MMP compatibility, the concept of concrete versus non-concrete devices has slightly changed the semantics of vdev_writeable(). Update mmp_random_leaf_impl() accordingly. * Updated dbuf_remap() to handle the org.zfsonlinux:large_dnode pool feature which is not supported by OpenZFS. * Added support for new vdev removal tracepoints. * Test cases removal_with_zdb and removal_condense_export have been intentionally disabled. When run manually they pass as intended, but when running in the automated test environment they produce unreliable results on the latest Fedora release. They may work better once the upstream pool import refectoring is merged into ZoL at which point they will be re-enabled. Authored by: Matthew Ahrens <mahrens@delphix.com> Reviewed-by: Alex Reece <alex@delphix.com> Reviewed-by: George Wilson <george.wilson@delphix.com> Reviewed-by: John Kennedy <john.kennedy@delphix.com> Reviewed-by: Prakash Surya <prakash.surya@delphix.com> Reviewed by: Richard Laager <rlaager@wiktel.com> Reviewed by: Tim Chase <tim@chase2k.com> Reviewed by: Brian Behlendorf <behlendorf1@llnl.gov> Approved by: Garrett D'Amore <garrett@damore.org> Ported-by: Tim Chase <tim@chase2k.com> Signed-off-by: Tim Chase <tim@chase2k.com> OpenZFS-issue: https://www.illumos.org/issues/7614 OpenZFS-commit: https://github.com/openzfs/openzfs/commit/f539f1eb Closes #6900
2016-09-22 19:30:13 +03:00
NULL,
2008-11-20 23:01:55 +03:00
VDEV_TYPE_SPARE, /* name of this vdev type */
B_FALSE /* not a leaf vdev */
};
Improve N-way mirror performance The read bandwidth of an N-way mirror can by increased by 50%, and the IOPs by 10%, by more carefully selecting the preferred leaf vdev. The existing algorthm selects a perferred leaf vdev based on offset of the zio request modulo the number of members in the mirror. It assumes the drives are of equal performance and that spreading the requests randomly over both drives will be sufficient to saturate them. In practice this results in the leaf vdevs being under utilized. Utilization can be improved by preferentially selecting the leaf vdev with the least pending IO. This prevents leaf vdevs from being starved and compensates for performance differences between disks in the mirror. Faster vdevs will be sent more work and the mirror performance will not be limitted by the slowest drive. In the common case where all the pending queues are full and there is no single least busy leaf vdev a batching stratagy is employed. Of the N least busy vdevs one is selected with equal probability to be the preferred vdev for T microseconds. Compared to randomly selecting a vdev to break the tie batching the requests greatly improves the odds of merging the requests in the Linux elevator. The testing results show a significant performance improvement for all four workloads tested. The workloads were generated using the fio benchmark and are as follows. 1) 1MB sequential reads from 16 threads to 16 files (MB/s). 2) 4KB sequential reads from 16 threads to 16 files (MB/s). 3) 1MB random reads from 16 threads to 16 files (IOP/s). 4) 4KB random reads from 16 threads to 16 files (IOP/s). | Pristine | With 1461 | | Sequential Random | Sequential Random | | 1MB 4KB 1MB 4KB | 1MB 4KB 1MB 4KB | | MB/s MB/s IO/s IO/s | MB/s MB/s IO/s IO/s | ---------------+-----------------------+------------------------+ 2 Striped | 226 243 11 304 | 222 255 11 299 | 2 2-Way Mirror | 302 324 16 534 | 433 448 23 571 | 2 3-Way Mirror | 429 458 24 714 | 648 648 41 808 | 2 4-Way Mirror | 562 601 36 849 | 816 828 82 926 | Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov> Closes #1461
2013-05-31 23:07:59 +04:00
#if defined(_KERNEL) && defined(HAVE_SPL)
/* BEGIN CSTYLED */
FreeBSD r256956: Improve ZFS N-way mirror read performance by using load and locality information. The existing algorithm selects a preferred leaf vdev based on offset of the zio request modulo the number of members in the mirror. It assumes the devices are of equal performance and that spreading the requests randomly over both drives will be sufficient to saturate them. In practice this results in the leaf vdevs being under utilized. The new algorithm takes into the following additional factors: * Load of the vdevs (number outstanding I/O requests) * The locality of last queued I/O vs the new I/O request. Within the locality calculation additional knowledge about the underlying vdev is considered such as; is the device backing the vdev a rotating media device. This results in performance increases across the board as well as significant increases for predominantly streaming loads and for configurations which don't have evenly performing devices. The following are results from a setup with 3 Way Mirror with 2 x HD's and 1 x SSD from a basic test running multiple parrallel dd's. With pre-fetch disabled (vfs.zfs.prefetch_disable=1): == Stripe Balanced (default) == Read 15360MB using bs: 1048576, readers: 3, took 161 seconds @ 95 MB/s == Load Balanced (zfslinux) == Read 15360MB using bs: 1048576, readers: 3, took 297 seconds @ 51 MB/s == Load Balanced (locality freebsd) == Read 15360MB using bs: 1048576, readers: 3, took 54 seconds @ 284 MB/s With pre-fetch enabled (vfs.zfs.prefetch_disable=0): == Stripe Balanced (default) == Read 15360MB using bs: 1048576, readers: 3, took 91 seconds @ 168 MB/s == Load Balanced (zfslinux) == Read 15360MB using bs: 1048576, readers: 3, took 108 seconds @ 142 MB/s == Load Balanced (locality freebsd) == Read 15360MB using bs: 1048576, readers: 3, took 48 seconds @ 320 MB/s In addition to the performance changes the code was also restructured, with the help of Justin Gibbs, to provide a more logical flow which also ensures vdevs loads are only calculated from the set of valid candidates. The following additional sysctls where added to allow the administrator to tune the behaviour of the load algorithm: * vfs.zfs.vdev.mirror.rotating_inc * vfs.zfs.vdev.mirror.rotating_seek_inc * vfs.zfs.vdev.mirror.rotating_seek_offset * vfs.zfs.vdev.mirror.non_rotating_inc * vfs.zfs.vdev.mirror.non_rotating_seek_inc These changes where based on work started by the zfsonlinux developers: https://github.com/zfsonlinux/zfs/pull/1487 Reviewed by: gibbs, mav, will MFC after: 2 weeks Sponsored by: Multiplay References: https://github.com/freebsd/freebsd@5c7a6f5d https://github.com/freebsd/freebsd@31b7f68d https://github.com/freebsd/freebsd@e186f564 Performance Testing: https://github.com/zfsonlinux/zfs/pull/4334#issuecomment-189057141 Porting notes: - The tunables were adjusted to have ZoL-style names. - The code was modified to use ZoL's vd_nonrot. - Fixes were done to make cstyle.pl happy - Merge conflicts were handled manually - freebsd/freebsd@e186f564bc946f82c76e0b34c2f0370ed9aea022 by my collegue Andriy Gapon has been included. It applied perfectly, but added a cstyle regression. - This replaces 556011dbec2d10579819078559a77630fc559112 entirely. - A typo "IO'a" has been corrected to say "IO's" - Descriptions of new tunables were added to man/man5/zfs-module-parameters.5. Ported-by: Richard Yao <ryao@gentoo.org> Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov> Closes #4334
2016-02-13 04:47:22 +03:00
module_param(zfs_vdev_mirror_rotating_inc, int, 0644);
MODULE_PARM_DESC(zfs_vdev_mirror_rotating_inc,
"Rotating media load increment for non-seeking I/O's");
module_param(zfs_vdev_mirror_rotating_seek_inc, int, 0644);
MODULE_PARM_DESC(zfs_vdev_mirror_rotating_seek_inc,
"Rotating media load increment for seeking I/O's");
module_param(zfs_vdev_mirror_rotating_seek_offset, int, 0644);
FreeBSD r256956: Improve ZFS N-way mirror read performance by using load and locality information. The existing algorithm selects a preferred leaf vdev based on offset of the zio request modulo the number of members in the mirror. It assumes the devices are of equal performance and that spreading the requests randomly over both drives will be sufficient to saturate them. In practice this results in the leaf vdevs being under utilized. The new algorithm takes into the following additional factors: * Load of the vdevs (number outstanding I/O requests) * The locality of last queued I/O vs the new I/O request. Within the locality calculation additional knowledge about the underlying vdev is considered such as; is the device backing the vdev a rotating media device. This results in performance increases across the board as well as significant increases for predominantly streaming loads and for configurations which don't have evenly performing devices. The following are results from a setup with 3 Way Mirror with 2 x HD's and 1 x SSD from a basic test running multiple parrallel dd's. With pre-fetch disabled (vfs.zfs.prefetch_disable=1): == Stripe Balanced (default) == Read 15360MB using bs: 1048576, readers: 3, took 161 seconds @ 95 MB/s == Load Balanced (zfslinux) == Read 15360MB using bs: 1048576, readers: 3, took 297 seconds @ 51 MB/s == Load Balanced (locality freebsd) == Read 15360MB using bs: 1048576, readers: 3, took 54 seconds @ 284 MB/s With pre-fetch enabled (vfs.zfs.prefetch_disable=0): == Stripe Balanced (default) == Read 15360MB using bs: 1048576, readers: 3, took 91 seconds @ 168 MB/s == Load Balanced (zfslinux) == Read 15360MB using bs: 1048576, readers: 3, took 108 seconds @ 142 MB/s == Load Balanced (locality freebsd) == Read 15360MB using bs: 1048576, readers: 3, took 48 seconds @ 320 MB/s In addition to the performance changes the code was also restructured, with the help of Justin Gibbs, to provide a more logical flow which also ensures vdevs loads are only calculated from the set of valid candidates. The following additional sysctls where added to allow the administrator to tune the behaviour of the load algorithm: * vfs.zfs.vdev.mirror.rotating_inc * vfs.zfs.vdev.mirror.rotating_seek_inc * vfs.zfs.vdev.mirror.rotating_seek_offset * vfs.zfs.vdev.mirror.non_rotating_inc * vfs.zfs.vdev.mirror.non_rotating_seek_inc These changes where based on work started by the zfsonlinux developers: https://github.com/zfsonlinux/zfs/pull/1487 Reviewed by: gibbs, mav, will MFC after: 2 weeks Sponsored by: Multiplay References: https://github.com/freebsd/freebsd@5c7a6f5d https://github.com/freebsd/freebsd@31b7f68d https://github.com/freebsd/freebsd@e186f564 Performance Testing: https://github.com/zfsonlinux/zfs/pull/4334#issuecomment-189057141 Porting notes: - The tunables were adjusted to have ZoL-style names. - The code was modified to use ZoL's vd_nonrot. - Fixes were done to make cstyle.pl happy - Merge conflicts were handled manually - freebsd/freebsd@e186f564bc946f82c76e0b34c2f0370ed9aea022 by my collegue Andriy Gapon has been included. It applied perfectly, but added a cstyle regression. - This replaces 556011dbec2d10579819078559a77630fc559112 entirely. - A typo "IO'a" has been corrected to say "IO's" - Descriptions of new tunables were added to man/man5/zfs-module-parameters.5. Ported-by: Richard Yao <ryao@gentoo.org> Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov> Closes #4334
2016-02-13 04:47:22 +03:00
MODULE_PARM_DESC(zfs_vdev_mirror_rotating_seek_offset,
"Offset in bytes from the last I/O which "
"triggers a reduced rotating media seek increment");
module_param(zfs_vdev_mirror_non_rotating_inc, int, 0644);
MODULE_PARM_DESC(zfs_vdev_mirror_non_rotating_inc,
"Non-rotating media load increment for non-seeking I/O's");
module_param(zfs_vdev_mirror_non_rotating_seek_inc, int, 0644);
MODULE_PARM_DESC(zfs_vdev_mirror_non_rotating_seek_inc,
"Non-rotating media load increment for seeking I/O's");
/* END CSTYLED */
Improve N-way mirror performance The read bandwidth of an N-way mirror can by increased by 50%, and the IOPs by 10%, by more carefully selecting the preferred leaf vdev. The existing algorthm selects a perferred leaf vdev based on offset of the zio request modulo the number of members in the mirror. It assumes the drives are of equal performance and that spreading the requests randomly over both drives will be sufficient to saturate them. In practice this results in the leaf vdevs being under utilized. Utilization can be improved by preferentially selecting the leaf vdev with the least pending IO. This prevents leaf vdevs from being starved and compensates for performance differences between disks in the mirror. Faster vdevs will be sent more work and the mirror performance will not be limitted by the slowest drive. In the common case where all the pending queues are full and there is no single least busy leaf vdev a batching stratagy is employed. Of the N least busy vdevs one is selected with equal probability to be the preferred vdev for T microseconds. Compared to randomly selecting a vdev to break the tie batching the requests greatly improves the odds of merging the requests in the Linux elevator. The testing results show a significant performance improvement for all four workloads tested. The workloads were generated using the fio benchmark and are as follows. 1) 1MB sequential reads from 16 threads to 16 files (MB/s). 2) 4KB sequential reads from 16 threads to 16 files (MB/s). 3) 1MB random reads from 16 threads to 16 files (IOP/s). 4) 4KB random reads from 16 threads to 16 files (IOP/s). | Pristine | With 1461 | | Sequential Random | Sequential Random | | 1MB 4KB 1MB 4KB | 1MB 4KB 1MB 4KB | | MB/s MB/s IO/s IO/s | MB/s MB/s IO/s IO/s | ---------------+-----------------------+------------------------+ 2 Striped | 226 243 11 304 | 222 255 11 299 | 2 2-Way Mirror | 302 324 16 534 | 433 448 23 571 | 2 3-Way Mirror | 429 458 24 714 | 648 648 41 808 | 2 4-Way Mirror | 562 601 36 849 | 816 828 82 926 | Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov> Closes #1461
2013-05-31 23:07:59 +04:00
#endif