mirror_zfs/config/kernel-create-nameidata.m4

34 lines
871 B
Plaintext
Raw Normal View History

dnl #
dnl # 3.6 API change
dnl #
Perform KABI checks in parallel Reduce the time required for ./configure to perform the needed KABI checks by allowing kbuild to compile multiple test cases in parallel. This was accomplished by splitting each test's source code from the logic handling whether that code could be compiled or not. By introducing this split it's possible to minimize the number of times kbuild needs to be invoked. As importantly, it means all of the tests can be built in parallel. This does require a little extra care since we expect some tests to fail, so the --keep-going (-k) option must be provided otherwise some tests may not get compiled. Furthermore, since a failure during the kbuild modpost phase will result in an early exit; the final linking phase is limited to tests which passed the initial compilation and produced an object file. Once everything has been built the configure script proceeds as previously. The only significant difference is that it now merely needs to test for the existence of a .ko file to determine the result of a given test. This vastly speeds up the entire process. New test cases should use ZFS_LINUX_TEST_SRC to declare their test source code and ZFS_LINUX_TEST_RESULT to check the result. All of the existing kernel-*.m4 files have been updated accordingly, see config/kernel-current-time.m4 for a basic example. The legacy ZFS_LINUX_TRY_COMPILE macro has been kept to handle special cases but it's use is not encouraged. master (secs) patched (secs) ------------- ---------------- autogen.sh 61 68 configure 137 24 (~17% of current run time) make -j $(nproc) 44 44 make rpms 287 150 Reviewed-by: Tony Hutter <hutter2@llnl.gov> Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov> Closes #8547 Closes #9132 Closes #9341
2019-10-01 22:50:34 +03:00
AC_DEFUN([ZFS_AC_KERNEL_SRC_CREATE_NAMEIDATA], [
ZFS_LINUX_TEST_SRC([create_nameidata], [
#include <linux/fs.h>
#include <linux/sched.h>
Eliminate runtime function pointer mods in autotools checks PaX/GrSecurity patched kernels implement a dialect of C that relies on a GCC plugin for enforcement. A basic idea in this dialect is that function pointers in structures should not change during runtime. This causes code that modifies function pointers at runtime to fail to compile in many instances. The autotools checks rely on whether or not small test cases compile against a given kernel. Some autotools checks assume some default case if other cases fail. When one of these autotools checks tests a PaX/GrSecurity patched kernel by modifying a function pointer at runtime, the default case will be used. Early detection of such situations is possible by relying on compiler warnings, which are compiler errors when --enable-debug is used. Unfortunately, very few people build ZFS with --enable-debug. The more common situation is that these issues manifest themselves as runtime failures in the form of NULL pointer exceptions. Previous patches that addressed such issues with PaX/GrSecurity compatibility largely relied on rewriting autotools checks to avoid runtime function pointer modification or the addition of PaX/GrSecurity specific checks. This patch takes the previous work to its logical conclusion by eliminating the use of runtime function pointer modification. This permits the removal of PaX-specific autotools checks in favor of ones that work across all supported kernels. This should resolve issues that were reported to occur with PaX/GrSecurity-patched Linux 3.7.5 kernels on Gentoo Linux. https://bugs.gentoo.org/show_bug.cgi?id=457176 We should be able to prevent future regressions in PaX/GrSecurity compatibility by ensuring that all changes to ZFSOnLinux avoid runtime function pointer modification. At the same time, this does not solve the issue of silent failures triggering default cases in the autotools check, which is what permitted these regressions to become runtime failures in the first place. This will need to be addressed in a future patch. Reported-by: Marcin Mirosław <bug@mejor.pl> Signed-off-by: Richard Yao <ryao@cs.stonybrook.edu> Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov> Closes #1300
2013-02-15 03:54:04 +04:00
#ifdef HAVE_MKDIR_UMODE_T
Eliminate runtime function pointer mods in autotools checks PaX/GrSecurity patched kernels implement a dialect of C that relies on a GCC plugin for enforcement. A basic idea in this dialect is that function pointers in structures should not change during runtime. This causes code that modifies function pointers at runtime to fail to compile in many instances. The autotools checks rely on whether or not small test cases compile against a given kernel. Some autotools checks assume some default case if other cases fail. When one of these autotools checks tests a PaX/GrSecurity patched kernel by modifying a function pointer at runtime, the default case will be used. Early detection of such situations is possible by relying on compiler warnings, which are compiler errors when --enable-debug is used. Unfortunately, very few people build ZFS with --enable-debug. The more common situation is that these issues manifest themselves as runtime failures in the form of NULL pointer exceptions. Previous patches that addressed such issues with PaX/GrSecurity compatibility largely relied on rewriting autotools checks to avoid runtime function pointer modification or the addition of PaX/GrSecurity specific checks. This patch takes the previous work to its logical conclusion by eliminating the use of runtime function pointer modification. This permits the removal of PaX-specific autotools checks in favor of ones that work across all supported kernels. This should resolve issues that were reported to occur with PaX/GrSecurity-patched Linux 3.7.5 kernels on Gentoo Linux. https://bugs.gentoo.org/show_bug.cgi?id=457176 We should be able to prevent future regressions in PaX/GrSecurity compatibility by ensuring that all changes to ZFSOnLinux avoid runtime function pointer modification. At the same time, this does not solve the issue of silent failures triggering default cases in the autotools check, which is what permitted these regressions to become runtime failures in the first place. This will need to be addressed in a future patch. Reported-by: Marcin Mirosław <bug@mejor.pl> Signed-off-by: Richard Yao <ryao@cs.stonybrook.edu> Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov> Closes #1300
2013-02-15 03:54:04 +04:00
int inode_create(struct inode *inode ,struct dentry *dentry,
umode_t umode, struct nameidata *nidata) { return 0; }
#else
Eliminate runtime function pointer mods in autotools checks PaX/GrSecurity patched kernels implement a dialect of C that relies on a GCC plugin for enforcement. A basic idea in this dialect is that function pointers in structures should not change during runtime. This causes code that modifies function pointers at runtime to fail to compile in many instances. The autotools checks rely on whether or not small test cases compile against a given kernel. Some autotools checks assume some default case if other cases fail. When one of these autotools checks tests a PaX/GrSecurity patched kernel by modifying a function pointer at runtime, the default case will be used. Early detection of such situations is possible by relying on compiler warnings, which are compiler errors when --enable-debug is used. Unfortunately, very few people build ZFS with --enable-debug. The more common situation is that these issues manifest themselves as runtime failures in the form of NULL pointer exceptions. Previous patches that addressed such issues with PaX/GrSecurity compatibility largely relied on rewriting autotools checks to avoid runtime function pointer modification or the addition of PaX/GrSecurity specific checks. This patch takes the previous work to its logical conclusion by eliminating the use of runtime function pointer modification. This permits the removal of PaX-specific autotools checks in favor of ones that work across all supported kernels. This should resolve issues that were reported to occur with PaX/GrSecurity-patched Linux 3.7.5 kernels on Gentoo Linux. https://bugs.gentoo.org/show_bug.cgi?id=457176 We should be able to prevent future regressions in PaX/GrSecurity compatibility by ensuring that all changes to ZFSOnLinux avoid runtime function pointer modification. At the same time, this does not solve the issue of silent failures triggering default cases in the autotools check, which is what permitted these regressions to become runtime failures in the first place. This will need to be addressed in a future patch. Reported-by: Marcin Mirosław <bug@mejor.pl> Signed-off-by: Richard Yao <ryao@cs.stonybrook.edu> Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov> Closes #1300
2013-02-15 03:54:04 +04:00
int inode_create(struct inode *inode,struct dentry *dentry,
int umode, struct nameidata * nidata) { return 0; }
#endif
Eliminate runtime function pointer mods in autotools checks PaX/GrSecurity patched kernels implement a dialect of C that relies on a GCC plugin for enforcement. A basic idea in this dialect is that function pointers in structures should not change during runtime. This causes code that modifies function pointers at runtime to fail to compile in many instances. The autotools checks rely on whether or not small test cases compile against a given kernel. Some autotools checks assume some default case if other cases fail. When one of these autotools checks tests a PaX/GrSecurity patched kernel by modifying a function pointer at runtime, the default case will be used. Early detection of such situations is possible by relying on compiler warnings, which are compiler errors when --enable-debug is used. Unfortunately, very few people build ZFS with --enable-debug. The more common situation is that these issues manifest themselves as runtime failures in the form of NULL pointer exceptions. Previous patches that addressed such issues with PaX/GrSecurity compatibility largely relied on rewriting autotools checks to avoid runtime function pointer modification or the addition of PaX/GrSecurity specific checks. This patch takes the previous work to its logical conclusion by eliminating the use of runtime function pointer modification. This permits the removal of PaX-specific autotools checks in favor of ones that work across all supported kernels. This should resolve issues that were reported to occur with PaX/GrSecurity-patched Linux 3.7.5 kernels on Gentoo Linux. https://bugs.gentoo.org/show_bug.cgi?id=457176 We should be able to prevent future regressions in PaX/GrSecurity compatibility by ensuring that all changes to ZFSOnLinux avoid runtime function pointer modification. At the same time, this does not solve the issue of silent failures triggering default cases in the autotools check, which is what permitted these regressions to become runtime failures in the first place. This will need to be addressed in a future patch. Reported-by: Marcin Mirosław <bug@mejor.pl> Signed-off-by: Richard Yao <ryao@cs.stonybrook.edu> Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov> Closes #1300
2013-02-15 03:54:04 +04:00
static const struct inode_operations
iops __attribute__ ((unused)) = {
.create = inode_create,
};
Perform KABI checks in parallel Reduce the time required for ./configure to perform the needed KABI checks by allowing kbuild to compile multiple test cases in parallel. This was accomplished by splitting each test's source code from the logic handling whether that code could be compiled or not. By introducing this split it's possible to minimize the number of times kbuild needs to be invoked. As importantly, it means all of the tests can be built in parallel. This does require a little extra care since we expect some tests to fail, so the --keep-going (-k) option must be provided otherwise some tests may not get compiled. Furthermore, since a failure during the kbuild modpost phase will result in an early exit; the final linking phase is limited to tests which passed the initial compilation and produced an object file. Once everything has been built the configure script proceeds as previously. The only significant difference is that it now merely needs to test for the existence of a .ko file to determine the result of a given test. This vastly speeds up the entire process. New test cases should use ZFS_LINUX_TEST_SRC to declare their test source code and ZFS_LINUX_TEST_RESULT to check the result. All of the existing kernel-*.m4 files have been updated accordingly, see config/kernel-current-time.m4 for a basic example. The legacy ZFS_LINUX_TRY_COMPILE macro has been kept to handle special cases but it's use is not encouraged. master (secs) patched (secs) ------------- ---------------- autogen.sh 61 68 configure 137 24 (~17% of current run time) make -j $(nproc) 44 44 make rpms 287 150 Reviewed-by: Tony Hutter <hutter2@llnl.gov> Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov> Closes #8547 Closes #9132 Closes #9341
2019-10-01 22:50:34 +03:00
],[])
])
AC_DEFUN([ZFS_AC_KERNEL_CREATE_NAMEIDATA], [
AC_MSG_CHECKING([whether iops->create() passes nameidata])
ZFS_LINUX_TEST_RESULT([create_nameidata], [
AC_MSG_RESULT(yes)
AC_DEFINE(HAVE_CREATE_NAMEIDATA, 1,
Perform KABI checks in parallel Reduce the time required for ./configure to perform the needed KABI checks by allowing kbuild to compile multiple test cases in parallel. This was accomplished by splitting each test's source code from the logic handling whether that code could be compiled or not. By introducing this split it's possible to minimize the number of times kbuild needs to be invoked. As importantly, it means all of the tests can be built in parallel. This does require a little extra care since we expect some tests to fail, so the --keep-going (-k) option must be provided otherwise some tests may not get compiled. Furthermore, since a failure during the kbuild modpost phase will result in an early exit; the final linking phase is limited to tests which passed the initial compilation and produced an object file. Once everything has been built the configure script proceeds as previously. The only significant difference is that it now merely needs to test for the existence of a .ko file to determine the result of a given test. This vastly speeds up the entire process. New test cases should use ZFS_LINUX_TEST_SRC to declare their test source code and ZFS_LINUX_TEST_RESULT to check the result. All of the existing kernel-*.m4 files have been updated accordingly, see config/kernel-current-time.m4 for a basic example. The legacy ZFS_LINUX_TRY_COMPILE macro has been kept to handle special cases but it's use is not encouraged. master (secs) patched (secs) ------------- ---------------- autogen.sh 61 68 configure 137 24 (~17% of current run time) make -j $(nproc) 44 44 make rpms 287 150 Reviewed-by: Tony Hutter <hutter2@llnl.gov> Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov> Closes #8547 Closes #9132 Closes #9341
2019-10-01 22:50:34 +03:00
[iops->create() passes nameidata])
],[
AC_MSG_RESULT(no)
])
])