mirror of
https://git.proxmox.com/git/mirror_zfs.git
synced 2025-01-15 12:40:26 +03:00
749 lines
18 KiB
C
749 lines
18 KiB
C
|
/*
|
||
|
* CDDL HEADER START
|
||
|
*
|
||
|
* The contents of this file are subject to the terms of the
|
||
|
* Common Development and Distribution License (the "License").
|
||
|
* You may not use this file except in compliance with the License.
|
||
|
*
|
||
|
* You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
|
||
|
* or http://www.opensolaris.org/os/licensing.
|
||
|
* See the License for the specific language governing permissions
|
||
|
* and limitations under the License.
|
||
|
*
|
||
|
* When distributing Covered Code, include this CDDL HEADER in each
|
||
|
* file and include the License file at usr/src/OPENSOLARIS.LICENSE.
|
||
|
* If applicable, add the following below this CDDL HEADER, with the
|
||
|
* fields enclosed by brackets "[]" replaced with your own identifying
|
||
|
* information: Portions Copyright [yyyy] [name of copyright owner]
|
||
|
*
|
||
|
* CDDL HEADER END
|
||
|
*/
|
||
|
/*
|
||
|
* Copyright (c) 2008, 2010, Oracle and/or its affiliates. All rights reserved.
|
||
|
*/
|
||
|
|
||
|
#include <sys/zfs_context.h>
|
||
|
#include <modes/modes.h>
|
||
|
#include <sys/crypto/common.h>
|
||
|
#include <sys/crypto/impl.h>
|
||
|
#include <sys/byteorder.h>
|
||
|
|
||
|
#ifdef __amd64
|
||
|
|
||
|
#ifdef _KERNEL
|
||
|
/* Workaround for no XMM kernel thread save/restore */
|
||
|
#define KPREEMPT_DISABLE kpreempt_disable()
|
||
|
#define KPREEMPT_ENABLE kpreempt_enable()
|
||
|
|
||
|
#else
|
||
|
#define KPREEMPT_DISABLE
|
||
|
#define KPREEMPT_ENABLE
|
||
|
#endif /* _KERNEL */
|
||
|
|
||
|
extern void gcm_mul_pclmulqdq(uint64_t *x_in, uint64_t *y, uint64_t *res);
|
||
|
static int intel_pclmulqdq_instruction_present(void);
|
||
|
#endif /* __amd64 */
|
||
|
|
||
|
struct aes_block {
|
||
|
uint64_t a;
|
||
|
uint64_t b;
|
||
|
};
|
||
|
|
||
|
|
||
|
/*
|
||
|
* gcm_mul()
|
||
|
* Perform a carry-less multiplication (that is, use XOR instead of the
|
||
|
* multiply operator) on *x_in and *y and place the result in *res.
|
||
|
*
|
||
|
* Byte swap the input (*x_in and *y) and the output (*res).
|
||
|
*
|
||
|
* Note: x_in, y, and res all point to 16-byte numbers (an array of two
|
||
|
* 64-bit integers).
|
||
|
*/
|
||
|
void
|
||
|
gcm_mul(uint64_t *x_in, uint64_t *y, uint64_t *res)
|
||
|
{
|
||
|
#ifdef __amd64
|
||
|
if (intel_pclmulqdq_instruction_present()) {
|
||
|
KPREEMPT_DISABLE;
|
||
|
gcm_mul_pclmulqdq(x_in, y, res);
|
||
|
KPREEMPT_ENABLE;
|
||
|
} else
|
||
|
#endif /* __amd64 */
|
||
|
{
|
||
|
static const uint64_t R = 0xe100000000000000ULL;
|
||
|
struct aes_block z = {0, 0};
|
||
|
struct aes_block v;
|
||
|
uint64_t x;
|
||
|
int i, j;
|
||
|
|
||
|
v.a = ntohll(y[0]);
|
||
|
v.b = ntohll(y[1]);
|
||
|
|
||
|
for (j = 0; j < 2; j++) {
|
||
|
x = ntohll(x_in[j]);
|
||
|
for (i = 0; i < 64; i++, x <<= 1) {
|
||
|
if (x & 0x8000000000000000ULL) {
|
||
|
z.a ^= v.a;
|
||
|
z.b ^= v.b;
|
||
|
}
|
||
|
if (v.b & 1ULL) {
|
||
|
v.b = (v.a << 63)|(v.b >> 1);
|
||
|
v.a = (v.a >> 1) ^ R;
|
||
|
} else {
|
||
|
v.b = (v.a << 63)|(v.b >> 1);
|
||
|
v.a = v.a >> 1;
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
res[0] = htonll(z.a);
|
||
|
res[1] = htonll(z.b);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
|
||
|
#define GHASH(c, d, t) \
|
||
|
xor_block((uint8_t *)(d), (uint8_t *)(c)->gcm_ghash); \
|
||
|
gcm_mul((uint64_t *)(void *)(c)->gcm_ghash, (c)->gcm_H, \
|
||
|
(uint64_t *)(void *)(t));
|
||
|
|
||
|
|
||
|
/*
|
||
|
* Encrypt multiple blocks of data in GCM mode. Decrypt for GCM mode
|
||
|
* is done in another function.
|
||
|
*/
|
||
|
int
|
||
|
gcm_mode_encrypt_contiguous_blocks(gcm_ctx_t *ctx, char *data, size_t length,
|
||
|
crypto_data_t *out, size_t block_size,
|
||
|
int (*encrypt_block)(const void *, const uint8_t *, uint8_t *),
|
||
|
void (*copy_block)(uint8_t *, uint8_t *),
|
||
|
void (*xor_block)(uint8_t *, uint8_t *))
|
||
|
{
|
||
|
size_t remainder = length;
|
||
|
size_t need = 0;
|
||
|
uint8_t *datap = (uint8_t *)data;
|
||
|
uint8_t *blockp;
|
||
|
uint8_t *lastp;
|
||
|
void *iov_or_mp;
|
||
|
offset_t offset;
|
||
|
uint8_t *out_data_1;
|
||
|
uint8_t *out_data_2;
|
||
|
size_t out_data_1_len;
|
||
|
uint64_t counter;
|
||
|
uint64_t counter_mask = ntohll(0x00000000ffffffffULL);
|
||
|
|
||
|
if (length + ctx->gcm_remainder_len < block_size) {
|
||
|
/* accumulate bytes here and return */
|
||
|
bcopy(datap,
|
||
|
(uint8_t *)ctx->gcm_remainder + ctx->gcm_remainder_len,
|
||
|
length);
|
||
|
ctx->gcm_remainder_len += length;
|
||
|
ctx->gcm_copy_to = datap;
|
||
|
return (CRYPTO_SUCCESS);
|
||
|
}
|
||
|
|
||
|
lastp = (uint8_t *)ctx->gcm_cb;
|
||
|
if (out != NULL)
|
||
|
crypto_init_ptrs(out, &iov_or_mp, &offset);
|
||
|
|
||
|
do {
|
||
|
/* Unprocessed data from last call. */
|
||
|
if (ctx->gcm_remainder_len > 0) {
|
||
|
need = block_size - ctx->gcm_remainder_len;
|
||
|
|
||
|
if (need > remainder)
|
||
|
return (CRYPTO_DATA_LEN_RANGE);
|
||
|
|
||
|
bcopy(datap, &((uint8_t *)ctx->gcm_remainder)
|
||
|
[ctx->gcm_remainder_len], need);
|
||
|
|
||
|
blockp = (uint8_t *)ctx->gcm_remainder;
|
||
|
} else {
|
||
|
blockp = datap;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Increment counter. Counter bits are confined
|
||
|
* to the bottom 32 bits of the counter block.
|
||
|
*/
|
||
|
counter = ntohll(ctx->gcm_cb[1] & counter_mask);
|
||
|
counter = htonll(counter + 1);
|
||
|
counter &= counter_mask;
|
||
|
ctx->gcm_cb[1] = (ctx->gcm_cb[1] & ~counter_mask) | counter;
|
||
|
|
||
|
encrypt_block(ctx->gcm_keysched, (uint8_t *)ctx->gcm_cb,
|
||
|
(uint8_t *)ctx->gcm_tmp);
|
||
|
xor_block(blockp, (uint8_t *)ctx->gcm_tmp);
|
||
|
|
||
|
lastp = (uint8_t *)ctx->gcm_tmp;
|
||
|
|
||
|
ctx->gcm_processed_data_len += block_size;
|
||
|
|
||
|
if (out == NULL) {
|
||
|
if (ctx->gcm_remainder_len > 0) {
|
||
|
bcopy(blockp, ctx->gcm_copy_to,
|
||
|
ctx->gcm_remainder_len);
|
||
|
bcopy(blockp + ctx->gcm_remainder_len, datap,
|
||
|
need);
|
||
|
}
|
||
|
} else {
|
||
|
crypto_get_ptrs(out, &iov_or_mp, &offset, &out_data_1,
|
||
|
&out_data_1_len, &out_data_2, block_size);
|
||
|
|
||
|
/* copy block to where it belongs */
|
||
|
if (out_data_1_len == block_size) {
|
||
|
copy_block(lastp, out_data_1);
|
||
|
} else {
|
||
|
bcopy(lastp, out_data_1, out_data_1_len);
|
||
|
if (out_data_2 != NULL) {
|
||
|
bcopy(lastp + out_data_1_len,
|
||
|
out_data_2,
|
||
|
block_size - out_data_1_len);
|
||
|
}
|
||
|
}
|
||
|
/* update offset */
|
||
|
out->cd_offset += block_size;
|
||
|
}
|
||
|
|
||
|
/* add ciphertext to the hash */
|
||
|
GHASH(ctx, ctx->gcm_tmp, ctx->gcm_ghash);
|
||
|
|
||
|
/* Update pointer to next block of data to be processed. */
|
||
|
if (ctx->gcm_remainder_len != 0) {
|
||
|
datap += need;
|
||
|
ctx->gcm_remainder_len = 0;
|
||
|
} else {
|
||
|
datap += block_size;
|
||
|
}
|
||
|
|
||
|
remainder = (size_t)&data[length] - (size_t)datap;
|
||
|
|
||
|
/* Incomplete last block. */
|
||
|
if (remainder > 0 && remainder < block_size) {
|
||
|
bcopy(datap, ctx->gcm_remainder, remainder);
|
||
|
ctx->gcm_remainder_len = remainder;
|
||
|
ctx->gcm_copy_to = datap;
|
||
|
goto out;
|
||
|
}
|
||
|
ctx->gcm_copy_to = NULL;
|
||
|
|
||
|
} while (remainder > 0);
|
||
|
out:
|
||
|
return (CRYPTO_SUCCESS);
|
||
|
}
|
||
|
|
||
|
/* ARGSUSED */
|
||
|
int
|
||
|
gcm_encrypt_final(gcm_ctx_t *ctx, crypto_data_t *out, size_t block_size,
|
||
|
int (*encrypt_block)(const void *, const uint8_t *, uint8_t *),
|
||
|
void (*copy_block)(uint8_t *, uint8_t *),
|
||
|
void (*xor_block)(uint8_t *, uint8_t *))
|
||
|
{
|
||
|
uint64_t counter_mask = ntohll(0x00000000ffffffffULL);
|
||
|
uint8_t *ghash, *macp = NULL;
|
||
|
int i, rv;
|
||
|
|
||
|
if (out->cd_length <
|
||
|
(ctx->gcm_remainder_len + ctx->gcm_tag_len)) {
|
||
|
return (CRYPTO_DATA_LEN_RANGE);
|
||
|
}
|
||
|
|
||
|
ghash = (uint8_t *)ctx->gcm_ghash;
|
||
|
|
||
|
if (ctx->gcm_remainder_len > 0) {
|
||
|
uint64_t counter;
|
||
|
uint8_t *tmpp = (uint8_t *)ctx->gcm_tmp;
|
||
|
|
||
|
/*
|
||
|
* Here is where we deal with data that is not a
|
||
|
* multiple of the block size.
|
||
|
*/
|
||
|
|
||
|
/*
|
||
|
* Increment counter.
|
||
|
*/
|
||
|
counter = ntohll(ctx->gcm_cb[1] & counter_mask);
|
||
|
counter = htonll(counter + 1);
|
||
|
counter &= counter_mask;
|
||
|
ctx->gcm_cb[1] = (ctx->gcm_cb[1] & ~counter_mask) | counter;
|
||
|
|
||
|
encrypt_block(ctx->gcm_keysched, (uint8_t *)ctx->gcm_cb,
|
||
|
(uint8_t *)ctx->gcm_tmp);
|
||
|
|
||
|
macp = (uint8_t *)ctx->gcm_remainder;
|
||
|
bzero(macp + ctx->gcm_remainder_len,
|
||
|
block_size - ctx->gcm_remainder_len);
|
||
|
|
||
|
/* XOR with counter block */
|
||
|
for (i = 0; i < ctx->gcm_remainder_len; i++) {
|
||
|
macp[i] ^= tmpp[i];
|
||
|
}
|
||
|
|
||
|
/* add ciphertext to the hash */
|
||
|
GHASH(ctx, macp, ghash);
|
||
|
|
||
|
ctx->gcm_processed_data_len += ctx->gcm_remainder_len;
|
||
|
}
|
||
|
|
||
|
ctx->gcm_len_a_len_c[1] =
|
||
|
htonll(CRYPTO_BYTES2BITS(ctx->gcm_processed_data_len));
|
||
|
GHASH(ctx, ctx->gcm_len_a_len_c, ghash);
|
||
|
encrypt_block(ctx->gcm_keysched, (uint8_t *)ctx->gcm_J0,
|
||
|
(uint8_t *)ctx->gcm_J0);
|
||
|
xor_block((uint8_t *)ctx->gcm_J0, ghash);
|
||
|
|
||
|
if (ctx->gcm_remainder_len > 0) {
|
||
|
rv = crypto_put_output_data(macp, out, ctx->gcm_remainder_len);
|
||
|
if (rv != CRYPTO_SUCCESS)
|
||
|
return (rv);
|
||
|
}
|
||
|
out->cd_offset += ctx->gcm_remainder_len;
|
||
|
ctx->gcm_remainder_len = 0;
|
||
|
rv = crypto_put_output_data(ghash, out, ctx->gcm_tag_len);
|
||
|
if (rv != CRYPTO_SUCCESS)
|
||
|
return (rv);
|
||
|
out->cd_offset += ctx->gcm_tag_len;
|
||
|
|
||
|
return (CRYPTO_SUCCESS);
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* This will only deal with decrypting the last block of the input that
|
||
|
* might not be a multiple of block length.
|
||
|
*/
|
||
|
static void
|
||
|
gcm_decrypt_incomplete_block(gcm_ctx_t *ctx, size_t block_size, size_t index,
|
||
|
int (*encrypt_block)(const void *, const uint8_t *, uint8_t *),
|
||
|
void (*xor_block)(uint8_t *, uint8_t *))
|
||
|
{
|
||
|
uint8_t *datap, *outp, *counterp;
|
||
|
uint64_t counter;
|
||
|
uint64_t counter_mask = ntohll(0x00000000ffffffffULL);
|
||
|
int i;
|
||
|
|
||
|
/*
|
||
|
* Increment counter.
|
||
|
* Counter bits are confined to the bottom 32 bits
|
||
|
*/
|
||
|
counter = ntohll(ctx->gcm_cb[1] & counter_mask);
|
||
|
counter = htonll(counter + 1);
|
||
|
counter &= counter_mask;
|
||
|
ctx->gcm_cb[1] = (ctx->gcm_cb[1] & ~counter_mask) | counter;
|
||
|
|
||
|
datap = (uint8_t *)ctx->gcm_remainder;
|
||
|
outp = &((ctx->gcm_pt_buf)[index]);
|
||
|
counterp = (uint8_t *)ctx->gcm_tmp;
|
||
|
|
||
|
/* authentication tag */
|
||
|
bzero((uint8_t *)ctx->gcm_tmp, block_size);
|
||
|
bcopy(datap, (uint8_t *)ctx->gcm_tmp, ctx->gcm_remainder_len);
|
||
|
|
||
|
/* add ciphertext to the hash */
|
||
|
GHASH(ctx, ctx->gcm_tmp, ctx->gcm_ghash);
|
||
|
|
||
|
/* decrypt remaining ciphertext */
|
||
|
encrypt_block(ctx->gcm_keysched, (uint8_t *)ctx->gcm_cb, counterp);
|
||
|
|
||
|
/* XOR with counter block */
|
||
|
for (i = 0; i < ctx->gcm_remainder_len; i++) {
|
||
|
outp[i] = datap[i] ^ counterp[i];
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/* ARGSUSED */
|
||
|
int
|
||
|
gcm_mode_decrypt_contiguous_blocks(gcm_ctx_t *ctx, char *data, size_t length,
|
||
|
crypto_data_t *out, size_t block_size,
|
||
|
int (*encrypt_block)(const void *, const uint8_t *, uint8_t *),
|
||
|
void (*copy_block)(uint8_t *, uint8_t *),
|
||
|
void (*xor_block)(uint8_t *, uint8_t *))
|
||
|
{
|
||
|
size_t new_len;
|
||
|
uint8_t *new;
|
||
|
|
||
|
/*
|
||
|
* Copy contiguous ciphertext input blocks to plaintext buffer.
|
||
|
* Ciphertext will be decrypted in the final.
|
||
|
*/
|
||
|
if (length > 0) {
|
||
|
new_len = ctx->gcm_pt_buf_len + length;
|
||
|
new = vmem_alloc(new_len, ctx->gcm_kmflag);
|
||
|
bcopy(ctx->gcm_pt_buf, new, ctx->gcm_pt_buf_len);
|
||
|
vmem_free(ctx->gcm_pt_buf, ctx->gcm_pt_buf_len);
|
||
|
if (new == NULL)
|
||
|
return (CRYPTO_HOST_MEMORY);
|
||
|
|
||
|
ctx->gcm_pt_buf = new;
|
||
|
ctx->gcm_pt_buf_len = new_len;
|
||
|
bcopy(data, &ctx->gcm_pt_buf[ctx->gcm_processed_data_len],
|
||
|
length);
|
||
|
ctx->gcm_processed_data_len += length;
|
||
|
}
|
||
|
|
||
|
ctx->gcm_remainder_len = 0;
|
||
|
return (CRYPTO_SUCCESS);
|
||
|
}
|
||
|
|
||
|
int
|
||
|
gcm_decrypt_final(gcm_ctx_t *ctx, crypto_data_t *out, size_t block_size,
|
||
|
int (*encrypt_block)(const void *, const uint8_t *, uint8_t *),
|
||
|
void (*xor_block)(uint8_t *, uint8_t *))
|
||
|
{
|
||
|
size_t pt_len;
|
||
|
size_t remainder;
|
||
|
uint8_t *ghash;
|
||
|
uint8_t *blockp;
|
||
|
uint8_t *cbp;
|
||
|
uint64_t counter;
|
||
|
uint64_t counter_mask = ntohll(0x00000000ffffffffULL);
|
||
|
int processed = 0, rv;
|
||
|
|
||
|
ASSERT(ctx->gcm_processed_data_len == ctx->gcm_pt_buf_len);
|
||
|
|
||
|
pt_len = ctx->gcm_processed_data_len - ctx->gcm_tag_len;
|
||
|
ghash = (uint8_t *)ctx->gcm_ghash;
|
||
|
blockp = ctx->gcm_pt_buf;
|
||
|
remainder = pt_len;
|
||
|
while (remainder > 0) {
|
||
|
/* Incomplete last block */
|
||
|
if (remainder < block_size) {
|
||
|
bcopy(blockp, ctx->gcm_remainder, remainder);
|
||
|
ctx->gcm_remainder_len = remainder;
|
||
|
/*
|
||
|
* not expecting anymore ciphertext, just
|
||
|
* compute plaintext for the remaining input
|
||
|
*/
|
||
|
gcm_decrypt_incomplete_block(ctx, block_size,
|
||
|
processed, encrypt_block, xor_block);
|
||
|
ctx->gcm_remainder_len = 0;
|
||
|
goto out;
|
||
|
}
|
||
|
/* add ciphertext to the hash */
|
||
|
GHASH(ctx, blockp, ghash);
|
||
|
|
||
|
/*
|
||
|
* Increment counter.
|
||
|
* Counter bits are confined to the bottom 32 bits
|
||
|
*/
|
||
|
counter = ntohll(ctx->gcm_cb[1] & counter_mask);
|
||
|
counter = htonll(counter + 1);
|
||
|
counter &= counter_mask;
|
||
|
ctx->gcm_cb[1] = (ctx->gcm_cb[1] & ~counter_mask) | counter;
|
||
|
|
||
|
cbp = (uint8_t *)ctx->gcm_tmp;
|
||
|
encrypt_block(ctx->gcm_keysched, (uint8_t *)ctx->gcm_cb, cbp);
|
||
|
|
||
|
/* XOR with ciphertext */
|
||
|
xor_block(cbp, blockp);
|
||
|
|
||
|
processed += block_size;
|
||
|
blockp += block_size;
|
||
|
remainder -= block_size;
|
||
|
}
|
||
|
out:
|
||
|
ctx->gcm_len_a_len_c[1] = htonll(CRYPTO_BYTES2BITS(pt_len));
|
||
|
GHASH(ctx, ctx->gcm_len_a_len_c, ghash);
|
||
|
encrypt_block(ctx->gcm_keysched, (uint8_t *)ctx->gcm_J0,
|
||
|
(uint8_t *)ctx->gcm_J0);
|
||
|
xor_block((uint8_t *)ctx->gcm_J0, ghash);
|
||
|
|
||
|
/* compare the input authentication tag with what we calculated */
|
||
|
if (bcmp(&ctx->gcm_pt_buf[pt_len], ghash, ctx->gcm_tag_len)) {
|
||
|
/* They don't match */
|
||
|
return (CRYPTO_INVALID_MAC);
|
||
|
} else {
|
||
|
rv = crypto_put_output_data(ctx->gcm_pt_buf, out, pt_len);
|
||
|
if (rv != CRYPTO_SUCCESS)
|
||
|
return (rv);
|
||
|
out->cd_offset += pt_len;
|
||
|
}
|
||
|
return (CRYPTO_SUCCESS);
|
||
|
}
|
||
|
|
||
|
static int
|
||
|
gcm_validate_args(CK_AES_GCM_PARAMS *gcm_param)
|
||
|
{
|
||
|
size_t tag_len;
|
||
|
|
||
|
/*
|
||
|
* Check the length of the authentication tag (in bits).
|
||
|
*/
|
||
|
tag_len = gcm_param->ulTagBits;
|
||
|
switch (tag_len) {
|
||
|
case 32:
|
||
|
case 64:
|
||
|
case 96:
|
||
|
case 104:
|
||
|
case 112:
|
||
|
case 120:
|
||
|
case 128:
|
||
|
break;
|
||
|
default:
|
||
|
return (CRYPTO_MECHANISM_PARAM_INVALID);
|
||
|
}
|
||
|
|
||
|
if (gcm_param->ulIvLen == 0)
|
||
|
return (CRYPTO_MECHANISM_PARAM_INVALID);
|
||
|
|
||
|
return (CRYPTO_SUCCESS);
|
||
|
}
|
||
|
|
||
|
static void
|
||
|
gcm_format_initial_blocks(uchar_t *iv, ulong_t iv_len,
|
||
|
gcm_ctx_t *ctx, size_t block_size,
|
||
|
void (*copy_block)(uint8_t *, uint8_t *),
|
||
|
void (*xor_block)(uint8_t *, uint8_t *))
|
||
|
{
|
||
|
uint8_t *cb;
|
||
|
ulong_t remainder = iv_len;
|
||
|
ulong_t processed = 0;
|
||
|
uint8_t *datap, *ghash;
|
||
|
uint64_t len_a_len_c[2];
|
||
|
|
||
|
ghash = (uint8_t *)ctx->gcm_ghash;
|
||
|
cb = (uint8_t *)ctx->gcm_cb;
|
||
|
if (iv_len == 12) {
|
||
|
bcopy(iv, cb, 12);
|
||
|
cb[12] = 0;
|
||
|
cb[13] = 0;
|
||
|
cb[14] = 0;
|
||
|
cb[15] = 1;
|
||
|
/* J0 will be used again in the final */
|
||
|
copy_block(cb, (uint8_t *)ctx->gcm_J0);
|
||
|
} else {
|
||
|
/* GHASH the IV */
|
||
|
do {
|
||
|
if (remainder < block_size) {
|
||
|
bzero(cb, block_size);
|
||
|
bcopy(&(iv[processed]), cb, remainder);
|
||
|
datap = (uint8_t *)cb;
|
||
|
remainder = 0;
|
||
|
} else {
|
||
|
datap = (uint8_t *)(&(iv[processed]));
|
||
|
processed += block_size;
|
||
|
remainder -= block_size;
|
||
|
}
|
||
|
GHASH(ctx, datap, ghash);
|
||
|
} while (remainder > 0);
|
||
|
|
||
|
len_a_len_c[0] = 0;
|
||
|
len_a_len_c[1] = htonll(CRYPTO_BYTES2BITS(iv_len));
|
||
|
GHASH(ctx, len_a_len_c, ctx->gcm_J0);
|
||
|
|
||
|
/* J0 will be used again in the final */
|
||
|
copy_block((uint8_t *)ctx->gcm_J0, (uint8_t *)cb);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* The following function is called at encrypt or decrypt init time
|
||
|
* for AES GCM mode.
|
||
|
*/
|
||
|
int
|
||
|
gcm_init(gcm_ctx_t *ctx, unsigned char *iv, size_t iv_len,
|
||
|
unsigned char *auth_data, size_t auth_data_len, size_t block_size,
|
||
|
int (*encrypt_block)(const void *, const uint8_t *, uint8_t *),
|
||
|
void (*copy_block)(uint8_t *, uint8_t *),
|
||
|
void (*xor_block)(uint8_t *, uint8_t *))
|
||
|
{
|
||
|
uint8_t *ghash, *datap, *authp;
|
||
|
size_t remainder, processed;
|
||
|
|
||
|
/* encrypt zero block to get subkey H */
|
||
|
bzero(ctx->gcm_H, sizeof (ctx->gcm_H));
|
||
|
encrypt_block(ctx->gcm_keysched, (uint8_t *)ctx->gcm_H,
|
||
|
(uint8_t *)ctx->gcm_H);
|
||
|
|
||
|
gcm_format_initial_blocks(iv, iv_len, ctx, block_size,
|
||
|
copy_block, xor_block);
|
||
|
|
||
|
authp = (uint8_t *)ctx->gcm_tmp;
|
||
|
ghash = (uint8_t *)ctx->gcm_ghash;
|
||
|
bzero(authp, block_size);
|
||
|
bzero(ghash, block_size);
|
||
|
|
||
|
processed = 0;
|
||
|
remainder = auth_data_len;
|
||
|
do {
|
||
|
if (remainder < block_size) {
|
||
|
/*
|
||
|
* There's not a block full of data, pad rest of
|
||
|
* buffer with zero
|
||
|
*/
|
||
|
bzero(authp, block_size);
|
||
|
bcopy(&(auth_data[processed]), authp, remainder);
|
||
|
datap = (uint8_t *)authp;
|
||
|
remainder = 0;
|
||
|
} else {
|
||
|
datap = (uint8_t *)(&(auth_data[processed]));
|
||
|
processed += block_size;
|
||
|
remainder -= block_size;
|
||
|
}
|
||
|
|
||
|
/* add auth data to the hash */
|
||
|
GHASH(ctx, datap, ghash);
|
||
|
|
||
|
} while (remainder > 0);
|
||
|
|
||
|
return (CRYPTO_SUCCESS);
|
||
|
}
|
||
|
|
||
|
int
|
||
|
gcm_init_ctx(gcm_ctx_t *gcm_ctx, char *param, size_t block_size,
|
||
|
int (*encrypt_block)(const void *, const uint8_t *, uint8_t *),
|
||
|
void (*copy_block)(uint8_t *, uint8_t *),
|
||
|
void (*xor_block)(uint8_t *, uint8_t *))
|
||
|
{
|
||
|
int rv;
|
||
|
CK_AES_GCM_PARAMS *gcm_param;
|
||
|
|
||
|
if (param != NULL) {
|
||
|
gcm_param = (CK_AES_GCM_PARAMS *)(void *)param;
|
||
|
|
||
|
if ((rv = gcm_validate_args(gcm_param)) != 0) {
|
||
|
return (rv);
|
||
|
}
|
||
|
|
||
|
gcm_ctx->gcm_tag_len = gcm_param->ulTagBits;
|
||
|
gcm_ctx->gcm_tag_len >>= 3;
|
||
|
gcm_ctx->gcm_processed_data_len = 0;
|
||
|
|
||
|
/* these values are in bits */
|
||
|
gcm_ctx->gcm_len_a_len_c[0]
|
||
|
= htonll(CRYPTO_BYTES2BITS(gcm_param->ulAADLen));
|
||
|
|
||
|
rv = CRYPTO_SUCCESS;
|
||
|
gcm_ctx->gcm_flags |= GCM_MODE;
|
||
|
} else {
|
||
|
rv = CRYPTO_MECHANISM_PARAM_INVALID;
|
||
|
goto out;
|
||
|
}
|
||
|
|
||
|
if (gcm_init(gcm_ctx, gcm_param->pIv, gcm_param->ulIvLen,
|
||
|
gcm_param->pAAD, gcm_param->ulAADLen, block_size,
|
||
|
encrypt_block, copy_block, xor_block) != 0) {
|
||
|
rv = CRYPTO_MECHANISM_PARAM_INVALID;
|
||
|
}
|
||
|
out:
|
||
|
return (rv);
|
||
|
}
|
||
|
|
||
|
int
|
||
|
gmac_init_ctx(gcm_ctx_t *gcm_ctx, char *param, size_t block_size,
|
||
|
int (*encrypt_block)(const void *, const uint8_t *, uint8_t *),
|
||
|
void (*copy_block)(uint8_t *, uint8_t *),
|
||
|
void (*xor_block)(uint8_t *, uint8_t *))
|
||
|
{
|
||
|
int rv;
|
||
|
CK_AES_GMAC_PARAMS *gmac_param;
|
||
|
|
||
|
if (param != NULL) {
|
||
|
gmac_param = (CK_AES_GMAC_PARAMS *)(void *)param;
|
||
|
|
||
|
gcm_ctx->gcm_tag_len = CRYPTO_BITS2BYTES(AES_GMAC_TAG_BITS);
|
||
|
gcm_ctx->gcm_processed_data_len = 0;
|
||
|
|
||
|
/* these values are in bits */
|
||
|
gcm_ctx->gcm_len_a_len_c[0]
|
||
|
= htonll(CRYPTO_BYTES2BITS(gmac_param->ulAADLen));
|
||
|
|
||
|
rv = CRYPTO_SUCCESS;
|
||
|
gcm_ctx->gcm_flags |= GMAC_MODE;
|
||
|
} else {
|
||
|
rv = CRYPTO_MECHANISM_PARAM_INVALID;
|
||
|
goto out;
|
||
|
}
|
||
|
|
||
|
if (gcm_init(gcm_ctx, gmac_param->pIv, AES_GMAC_IV_LEN,
|
||
|
gmac_param->pAAD, gmac_param->ulAADLen, block_size,
|
||
|
encrypt_block, copy_block, xor_block) != 0) {
|
||
|
rv = CRYPTO_MECHANISM_PARAM_INVALID;
|
||
|
}
|
||
|
out:
|
||
|
return (rv);
|
||
|
}
|
||
|
|
||
|
void *
|
||
|
gcm_alloc_ctx(int kmflag)
|
||
|
{
|
||
|
gcm_ctx_t *gcm_ctx;
|
||
|
|
||
|
if ((gcm_ctx = kmem_zalloc(sizeof (gcm_ctx_t), kmflag)) == NULL)
|
||
|
return (NULL);
|
||
|
|
||
|
gcm_ctx->gcm_flags = GCM_MODE;
|
||
|
return (gcm_ctx);
|
||
|
}
|
||
|
|
||
|
void *
|
||
|
gmac_alloc_ctx(int kmflag)
|
||
|
{
|
||
|
gcm_ctx_t *gcm_ctx;
|
||
|
|
||
|
if ((gcm_ctx = kmem_zalloc(sizeof (gcm_ctx_t), kmflag)) == NULL)
|
||
|
return (NULL);
|
||
|
|
||
|
gcm_ctx->gcm_flags = GMAC_MODE;
|
||
|
return (gcm_ctx);
|
||
|
}
|
||
|
|
||
|
void
|
||
|
gcm_set_kmflag(gcm_ctx_t *ctx, int kmflag)
|
||
|
{
|
||
|
ctx->gcm_kmflag = kmflag;
|
||
|
}
|
||
|
|
||
|
|
||
|
#ifdef __amd64
|
||
|
|
||
|
#define INTEL_PCLMULQDQ_FLAG (1 << 1)
|
||
|
|
||
|
/*
|
||
|
* Return 1 if executing on Intel with PCLMULQDQ instructions,
|
||
|
* otherwise 0 (i.e., Intel without PCLMULQDQ or AMD64).
|
||
|
* Cache the result, as the CPU can't change.
|
||
|
*
|
||
|
* Note: the userland version uses getisax(). The kernel version uses
|
||
|
* is_x86_featureset().
|
||
|
*/
|
||
|
static int
|
||
|
intel_pclmulqdq_instruction_present(void)
|
||
|
{
|
||
|
static int cached_result = -1;
|
||
|
unsigned eax, ebx, ecx, edx;
|
||
|
unsigned func, subfunc;
|
||
|
|
||
|
if (cached_result == -1) { /* first time */
|
||
|
/* check for an intel cpu */
|
||
|
func = 0;
|
||
|
subfunc = 0;
|
||
|
|
||
|
__asm__ __volatile__(
|
||
|
"cpuid"
|
||
|
: "=a" (eax), "=b" (ebx), "=c" (ecx), "=d" (edx)
|
||
|
: "a"(func), "c"(subfunc));
|
||
|
|
||
|
if (memcmp((char *) (&ebx), "Genu", 4) == 0 &&
|
||
|
memcmp((char *) (&edx), "ineI", 4) == 0 &&
|
||
|
memcmp((char *) (&ecx), "ntel", 4) == 0) {
|
||
|
|
||
|
func = 1;
|
||
|
subfunc = 0;
|
||
|
|
||
|
/* check for aes-ni instruction set */
|
||
|
__asm__ __volatile__(
|
||
|
"cpuid"
|
||
|
: "=a" (eax), "=b" (ebx), "=c" (ecx), "=d" (edx)
|
||
|
: "a"(func), "c"(subfunc));
|
||
|
|
||
|
cached_result = !!(ecx & INTEL_PCLMULQDQ_FLAG);
|
||
|
} else {
|
||
|
cached_result = 0;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
return (cached_result);
|
||
|
}
|
||
|
|
||
|
#endif /* __amd64 */
|