mirror_zfs/lib/libspl/include/sys/sysevent/Makefile.in

579 lines
18 KiB
Makefile
Raw Normal View History

# Makefile.in generated by automake 1.11.1 from Makefile.am.
# @configure_input@
# Copyright (C) 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002,
# 2003, 2004, 2005, 2006, 2007, 2008, 2009 Free Software Foundation,
# Inc.
# This Makefile.in is free software; the Free Software Foundation
# gives unlimited permission to copy and/or distribute it,
# with or without modifications, as long as this notice is preserved.
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY, to the extent permitted by law; without
# even the implied warranty of MERCHANTABILITY or FITNESS FOR A
# PARTICULAR PURPOSE.
@SET_MAKE@
VPATH = @srcdir@
pkgdatadir = $(datadir)/@PACKAGE@
pkgincludedir = $(includedir)/@PACKAGE@
pkglibdir = $(libdir)/@PACKAGE@
pkglibexecdir = $(libexecdir)/@PACKAGE@
am__cd = CDPATH="$${ZSH_VERSION+.}$(PATH_SEPARATOR)" && cd
install_sh_DATA = $(install_sh) -c -m 644
install_sh_PROGRAM = $(install_sh) -c
install_sh_SCRIPT = $(install_sh) -c
INSTALL_HEADER = $(INSTALL_DATA)
transform = $(program_transform_name)
NORMAL_INSTALL = :
PRE_INSTALL = :
POST_INSTALL = :
NORMAL_UNINSTALL = :
PRE_UNINSTALL = :
POST_UNINSTALL = :
build_triplet = @build@
host_triplet = @host@
target_triplet = @target@
Support custom build directories and move includes One of the neat tricks an autoconf style project is capable of is allow configurion/building in a directory other than the source directory. The major advantage to this is that you can build the project various different ways while making changes in a single source tree. For example, this project is designed to work on various different Linux distributions each of which work slightly differently. This means that changes need to verified on each of those supported distributions perferably before the change is committed to the public git repo. Using nfs and custom build directories makes this much easier. I now have a single source tree in nfs mounted on several different systems each running a supported distribution. When I make a change to the source base I suspect may break things I can concurrently build from the same source on all the systems each in their own subdirectory. wget -c http://github.com/downloads/behlendorf/zfs/zfs-x.y.z.tar.gz tar -xzf zfs-x.y.z.tar.gz cd zfs-x-y-z ------------------------- run concurrently ---------------------- <ubuntu system> <fedora system> <debian system> <rhel6 system> mkdir ubuntu mkdir fedora mkdir debian mkdir rhel6 cd ubuntu cd fedora cd debian cd rhel6 ../configure ../configure ../configure ../configure make make make make make check make check make check make check This change also moves many of the include headers from individual incude/sys directories under the modules directory in to a single top level include directory. This has the advantage of making the build rules cleaner and logically it makes a bit more sense.
2010-09-05 00:26:23 +04:00
subdir = lib/libspl/include/sys/sysevent
DIST_COMMON = $(libspl_HEADERS) $(srcdir)/Makefile.am \
$(srcdir)/Makefile.in
ACLOCAL_M4 = $(top_srcdir)/aclocal.m4
am__aclocal_m4_deps = \
$(top_srcdir)/config/always-no-unused-but-set-variable.m4 \
$(top_srcdir)/config/kernel-automount.m4 \
$(top_srcdir)/config/kernel-bdev-block-device-operations.m4 \
$(top_srcdir)/config/kernel-bdev-logical-size.m4 \
$(top_srcdir)/config/kernel-bdi-setup-and-register.m4 \
Add backing_device_info per-filesystem For a long time now the kernel has been moving away from using the pdflush daemon to write 'old' dirty pages to disk. The primary reason for this is because the pdflush daemon is single threaded and can be a limiting factor for performance. Since pdflush sequentially walks the dirty inode list for each super block any delay in processing can slow down dirty page writeback for all filesystems. The replacement for pdflush is called bdi (backing device info). The bdi system involves creating a per-filesystem control structure each with its own private sets of queues to manage writeback. The advantage is greater parallelism which improves performance and prevents a single filesystem from slowing writeback to the others. For a long time both systems co-existed in the kernel so it wasn't strictly required to implement the bdi scheme. However, as of Linux 2.6.36 kernels the pdflush functionality has been retired. Since ZFS already bypasses the page cache for most I/O this is only an issue for mmap(2) writes which must go through the page cache. Even then adding this missing support for newer kernels was overlooked because there are other mechanisms which can trigger writeback. However, there is one critical case where not implementing the bdi functionality can cause problems. If an application handles a page fault it can enter the balance_dirty_pages() callpath. This will result in the application hanging until the number of dirty pages in the system drops below the dirty ratio. Without a registered backing_device_info for the filesystem the dirty pages will not get written out. Thus the application will hang. As mentioned above this was less of an issue with older kernels because pdflush would eventually write out the dirty pages. This change adds a backing_device_info structure to the zfs_sb_t which is already allocated per-super block. It is then registered when the filesystem mounted and unregistered on unmount. It will not be registered for mounted snapshots which are read-only. This change will result in flush-<pool> thread being dynamically created and destroyed per-mounted filesystem for writeback. Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov> Closes #174
2011-08-02 05:24:40 +04:00
$(top_srcdir)/config/kernel-bdi.m4 \
$(top_srcdir)/config/kernel-bio-empty-barrier.m4 \
$(top_srcdir)/config/kernel-bio-end-io-t-args.m4 \
$(top_srcdir)/config/kernel-bio-failfast.m4 \
$(top_srcdir)/config/kernel-bio-rw-syncio.m4 \
$(top_srcdir)/config/kernel-blk-end-request.m4 \
$(top_srcdir)/config/kernel-blk-fetch-request.m4 \
$(top_srcdir)/config/kernel-blk-queue-discard.m4 \
$(top_srcdir)/config/kernel-blk-queue-flush.m4 \
$(top_srcdir)/config/kernel-blk-queue-io-opt.m4 \
$(top_srcdir)/config/kernel-blk-queue-max-hw-sectors.m4 \
$(top_srcdir)/config/kernel-blk-queue-max-segments.m4 \
$(top_srcdir)/config/kernel-blk-queue-nonrot.m4 \
$(top_srcdir)/config/kernel-blk-queue-physical-block-size.m4 \
$(top_srcdir)/config/kernel-blk-requeue-request.m4 \
$(top_srcdir)/config/kernel-blk-rq-bytes.m4 \
$(top_srcdir)/config/kernel-blk-rq-pos.m4 \
$(top_srcdir)/config/kernel-blk-rq-sectors.m4 \
$(top_srcdir)/config/kernel-blkdev-get-by-path.m4 \
$(top_srcdir)/config/kernel-check-disk-size-change.m4 \
$(top_srcdir)/config/kernel-d-obtain-alias.m4 \
$(top_srcdir)/config/kernel-evict-inode.m4 \
$(top_srcdir)/config/kernel-fallocate.m4 \
$(top_srcdir)/config/kernel-fmode-t.m4 \
$(top_srcdir)/config/kernel-fsync.m4 \
$(top_srcdir)/config/kernel-get-disk-ro.m4 \
$(top_srcdir)/config/kernel-insert-inode-locked.m4 \
$(top_srcdir)/config/kernel-invalidate-bdev-args.m4 \
$(top_srcdir)/config/kernel-kobj-name-len.m4 \
Linux compat 2.6.39: mount_nodev() The .get_sb callback has been replaced by a .mount callback in the file_system_type structure. When using the new interface the caller must now use the mount_nodev() helper. Unfortunately, the new interface no longer passes the vfsmount down to the zfs layers. This poses a problem for the existing implementation because we currently save this pointer in the super block for latter use. It provides our only entry point in to the namespace layer for manipulating certain mount options. This needed to be done originally to allow commands like 'zfs set atime=off tank' to work properly. It also allowed me to keep more of the original Solaris code unmodified. Under Solaris there is a 1-to-1 mapping between a mount point and a file system so this is a fairly natural thing to do. However, under Linux they many be multiple entries in the namespace which reference the same filesystem. Thus keeping a back reference from the filesystem to the namespace is complicated. Rather than introduce some ugly hack to get the vfsmount and continue as before. I'm leveraging this API change to update the ZFS code to do things in a more natural way for Linux. This has the upside that is resolves the compatibility issue for the long term and fixes several other minor bugs which have been reported. This commit updates the code to remove this vfsmount back reference entirely. All modifications to filesystem mount options are now passed in to the kernel via a '-o remount'. This is the expected Linux mechanism and allows the namespace to properly handle any options which apply to it before passing them on to the file system itself. Aside from fixing the compatibility issue, removing the vfsmount has had the benefit of simplifying the code. This change which fairly involved has turned out nicely. Closes #246 Closes #217 Closes #187 Closes #248 Closes #231
2011-05-19 22:44:07 +04:00
$(top_srcdir)/config/kernel-mount-nodev.m4 \
$(top_srcdir)/config/kernel-open-bdev-exclusive.m4 \
$(top_srcdir)/config/kernel-rq-for-each_segment.m4 \
$(top_srcdir)/config/kernel-rq-is_sync.m4 \
$(top_srcdir)/config/kernel-security-inode-init.m4 \
$(top_srcdir)/config/kernel-set-nlink.m4 \
$(top_srcdir)/config/kernel-show-options.m4 \
Linux 3.1 compat, super_block->s_shrink The Linux 3.1 kernel has introduced the concept of per-filesystem shrinkers which are directly assoicated with a super block. Prior to this change there was one shared global shrinker. The zfs code relied on being able to call the global shrinker when the arc_meta_limit was exceeded. This would cause the VFS to drop references on a fraction of the dentries in the dcache. The ARC could then safely reclaim the memory used by these entries and honor the arc_meta_limit. Unfortunately, when per-filesystem shrinkers were added the old interfaces were made unavailable. This change adds support to use the new per-filesystem shrinker interface so we can continue to honor the arc_meta_limit. The major benefit of the new interface is that we can now target only the zfs filesystem for dentry and inode pruning. Thus we can minimize any impact on the caching of other filesystems. In the context of making this change several other important issues related to managing the ARC were addressed, they include: * The dnlc_reduce_cache() function which was called by the ARC to drop dentries for the Posix layer was replaced with a generic zfs_prune_t callback. The ZPL layer now registers a callback to drop these dentries removing a layering violation which dates back to the Solaris code. This callback can also be used by other ARC consumers such as Lustre. arc_add_prune_callback() arc_remove_prune_callback() * The arc_reduce_dnlc_percent module option has been changed to arc_meta_prune for clarity. The dnlc functions are specific to Solaris's VFS and have already been largely eliminated already. The replacement tunable now represents the number of bytes the prune callback will request when invoked. * Less aggressively invoke the prune callback. We used to call this whenever we exceeded the arc_meta_limit however that's not strictly correct since it results in over zeleous reclaim of dentries and inodes. It is now only called once the arc_meta_limit is exceeded and every effort has been made to evict other data from the ARC cache. * More promptly manage exceeding the arc_meta_limit. When reading meta data in to the cache if a buffer was unable to be recycled notify the arc_reclaim thread to invoke the required prune. * Added arcstat_prune kstat which is incremented when the ARC is forced to request that a consumer prune its cache. Remember this will only occur when the ARC has no other choice. If it can evict buffers safely without invoking the prune callback it will. * This change is also expected to resolve the unexpect collapses of the ARC cache. This would occur because when exceeded just the arc_meta_limit reclaim presure would be excerted on the arc_c value via arc_shrink(). This effectively shrunk the entire cache when really we just needed to reclaim meta data. Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov> Closes #466 Closes #292
2011-12-23 00:20:43 +04:00
$(top_srcdir)/config/kernel-shrink.m4 \
$(top_srcdir)/config/kernel-truncate-setsize.m4 \
$(top_srcdir)/config/kernel-xattr-handler.m4 \
$(top_srcdir)/config/kernel.m4 \
$(top_srcdir)/config/user-arch.m4 \
$(top_srcdir)/config/user-frame-larger-than.m4 \
$(top_srcdir)/config/user-ioctl.m4 \
$(top_srcdir)/config/user-libblkid.m4 \
$(top_srcdir)/config/user-libuuid.m4 \
$(top_srcdir)/config/user-nptl_guard_within_stack.m4 \
$(top_srcdir)/config/user-selinux.m4 \
$(top_srcdir)/config/user-udev.m4 \
$(top_srcdir)/config/user-zlib.m4 $(top_srcdir)/config/user.m4 \
$(top_srcdir)/config/zfs-build.m4 \
$(top_srcdir)/config/zfs-meta.m4 $(top_srcdir)/configure.ac
am__configure_deps = $(am__aclocal_m4_deps) $(CONFIGURE_DEPENDENCIES) \
$(ACLOCAL_M4)
mkinstalldirs = $(install_sh) -d
CONFIG_HEADER = $(top_builddir)/zfs_config.h
CONFIG_CLEAN_FILES =
CONFIG_CLEAN_VPATH_FILES =
AM_V_GEN = $(am__v_GEN_$(V))
am__v_GEN_ = $(am__v_GEN_$(AM_DEFAULT_VERBOSITY))
am__v_GEN_0 = @echo " GEN " $@;
AM_V_at = $(am__v_at_$(V))
am__v_at_ = $(am__v_at_$(AM_DEFAULT_VERBOSITY))
am__v_at_0 = @
SOURCES =
DIST_SOURCES =
am__vpath_adj_setup = srcdirstrip=`echo "$(srcdir)" | sed 's|.|.|g'`;
am__vpath_adj = case $$p in \
$(srcdir)/*) f=`echo "$$p" | sed "s|^$$srcdirstrip/||"`;; \
*) f=$$p;; \
esac;
am__strip_dir = f=`echo $$p | sed -e 's|^.*/||'`;
am__install_max = 40
am__nobase_strip_setup = \
srcdirstrip=`echo "$(srcdir)" | sed 's/[].[^$$\\*|]/\\\\&/g'`
am__nobase_strip = \
for p in $$list; do echo "$$p"; done | sed -e "s|$$srcdirstrip/||"
am__nobase_list = $(am__nobase_strip_setup); \
for p in $$list; do echo "$$p $$p"; done | \
sed "s| $$srcdirstrip/| |;"' / .*\//!s/ .*/ ./; s,\( .*\)/[^/]*$$,\1,' | \
$(AWK) 'BEGIN { files["."] = "" } { files[$$2] = files[$$2] " " $$1; \
if (++n[$$2] == $(am__install_max)) \
{ print $$2, files[$$2]; n[$$2] = 0; files[$$2] = "" } } \
END { for (dir in files) print dir, files[dir] }'
am__base_list = \
sed '$$!N;$$!N;$$!N;$$!N;$$!N;$$!N;$$!N;s/\n/ /g' | \
sed '$$!N;$$!N;$$!N;$$!N;s/\n/ /g'
Support custom build directories and move includes One of the neat tricks an autoconf style project is capable of is allow configurion/building in a directory other than the source directory. The major advantage to this is that you can build the project various different ways while making changes in a single source tree. For example, this project is designed to work on various different Linux distributions each of which work slightly differently. This means that changes need to verified on each of those supported distributions perferably before the change is committed to the public git repo. Using nfs and custom build directories makes this much easier. I now have a single source tree in nfs mounted on several different systems each running a supported distribution. When I make a change to the source base I suspect may break things I can concurrently build from the same source on all the systems each in their own subdirectory. wget -c http://github.com/downloads/behlendorf/zfs/zfs-x.y.z.tar.gz tar -xzf zfs-x.y.z.tar.gz cd zfs-x-y-z ------------------------- run concurrently ---------------------- <ubuntu system> <fedora system> <debian system> <rhel6 system> mkdir ubuntu mkdir fedora mkdir debian mkdir rhel6 cd ubuntu cd fedora cd debian cd rhel6 ../configure ../configure ../configure ../configure make make make make make check make check make check make check This change also moves many of the include headers from individual incude/sys directories under the modules directory in to a single top level include directory. This has the advantage of making the build rules cleaner and logically it makes a bit more sense.
2010-09-05 00:26:23 +04:00
am__installdirs = "$(DESTDIR)$(libspldir)"
HEADERS = $(libspl_HEADERS)
ETAGS = etags
CTAGS = ctags
DISTFILES = $(DIST_COMMON) $(DIST_SOURCES) $(TEXINFOS) $(EXTRA_DIST)
ACLOCAL = @ACLOCAL@
ALIEN = @ALIEN@
ALIEN_VERSION = @ALIEN_VERSION@
AMTAR = @AMTAR@
AM_DEFAULT_VERBOSITY = @AM_DEFAULT_VERBOSITY@
AR = @AR@
AUTOCONF = @AUTOCONF@
AUTOHEADER = @AUTOHEADER@
AUTOMAKE = @AUTOMAKE@
AWK = @AWK@
CC = @CC@
CCAS = @CCAS@
CCASDEPMODE = @CCASDEPMODE@
CCASFLAGS = @CCASFLAGS@
CCDEPMODE = @CCDEPMODE@
CFLAGS = @CFLAGS@
CPP = @CPP@
CPPFLAGS = @CPPFLAGS@
CYGPATH_W = @CYGPATH_W@
DEBUG_CFLAGS = @DEBUG_CFLAGS@
DEBUG_STACKFLAGS = @DEBUG_STACKFLAGS@
DEBUG_ZFS = @DEBUG_ZFS@
DEFAULT_INIT_DIR = @DEFAULT_INIT_DIR@
DEFAULT_INIT_SCRIPT = @DEFAULT_INIT_SCRIPT@
DEFAULT_PACKAGE = @DEFAULT_PACKAGE@
DEFS = @DEFS@
DEPDIR = @DEPDIR@
DPKG = @DPKG@
DPKGBUILD = @DPKGBUILD@
DPKGBUILD_VERSION = @DPKGBUILD_VERSION@
DPKG_VERSION = @DPKG_VERSION@
DSYMUTIL = @DSYMUTIL@
DUMPBIN = @DUMPBIN@
ECHO_C = @ECHO_C@
ECHO_N = @ECHO_N@
ECHO_T = @ECHO_T@
EGREP = @EGREP@
EXEEXT = @EXEEXT@
FGREP = @FGREP@
FRAME_LARGER_THAN = @FRAME_LARGER_THAN@
GREP = @GREP@
HAVE_ALIEN = @HAVE_ALIEN@
HAVE_DPKG = @HAVE_DPKG@
HAVE_DPKGBUILD = @HAVE_DPKGBUILD@
HAVE_MAKEPKG = @HAVE_MAKEPKG@
HAVE_PACMAN = @HAVE_PACMAN@
HAVE_RPM = @HAVE_RPM@
HAVE_RPMBUILD = @HAVE_RPMBUILD@
INSTALL = @INSTALL@
INSTALL_DATA = @INSTALL_DATA@
INSTALL_PROGRAM = @INSTALL_PROGRAM@
INSTALL_SCRIPT = @INSTALL_SCRIPT@
INSTALL_STRIP_PROGRAM = @INSTALL_STRIP_PROGRAM@
KERNELCPPFLAGS = @KERNELCPPFLAGS@
KERNELMAKE_PARAMS = @KERNELMAKE_PARAMS@
LD = @LD@
LDFLAGS = @LDFLAGS@
LIBBLKID = @LIBBLKID@
LIBOBJS = @LIBOBJS@
LIBS = @LIBS@
LIBSELINUX = @LIBSELINUX@
LIBTOOL = @LIBTOOL@
LIBUUID = @LIBUUID@
LINUX = @LINUX@
LINUX_OBJ = @LINUX_OBJ@
LINUX_SYMBOLS = @LINUX_SYMBOLS@
LINUX_VERSION = @LINUX_VERSION@
LIPO = @LIPO@
LN_S = @LN_S@
LTLIBOBJS = @LTLIBOBJS@
MAINT = @MAINT@
MAKEINFO = @MAKEINFO@
MAKEPKG = @MAKEPKG@
MAKEPKG_VERSION = @MAKEPKG_VERSION@
MKDIR_P = @MKDIR_P@
NM = @NM@
NMEDIT = @NMEDIT@
NO_UNUSED_BUT_SET_VARIABLE = @NO_UNUSED_BUT_SET_VARIABLE@
OBJDUMP = @OBJDUMP@
OBJEXT = @OBJEXT@
OTOOL = @OTOOL@
OTOOL64 = @OTOOL64@
PACKAGE = @PACKAGE@
PACKAGE_BUGREPORT = @PACKAGE_BUGREPORT@
PACKAGE_NAME = @PACKAGE_NAME@
PACKAGE_STRING = @PACKAGE_STRING@
PACKAGE_TARNAME = @PACKAGE_TARNAME@
PACKAGE_VERSION = @PACKAGE_VERSION@
PACMAN = @PACMAN@
PACMAN_VERSION = @PACMAN_VERSION@
PATH_SEPARATOR = @PATH_SEPARATOR@
RANLIB = @RANLIB@
RPM = @RPM@
RPMBUILD = @RPMBUILD@
RPMBUILD_VERSION = @RPMBUILD_VERSION@
RPM_VERSION = @RPM_VERSION@
SED = @SED@
SET_MAKE = @SET_MAKE@
SHELL = @SHELL@
SPL = @SPL@
SPL_OBJ = @SPL_OBJ@
SPL_SYMBOLS = @SPL_SYMBOLS@
SPL_VERSION = @SPL_VERSION@
STRIP = @STRIP@
TARGET_ASM_DIR = @TARGET_ASM_DIR@
VENDOR = @VENDOR@
VERSION = @VERSION@
ZFS_CONFIG = @ZFS_CONFIG@
ZFS_META_ALIAS = @ZFS_META_ALIAS@
ZFS_META_AUTHOR = @ZFS_META_AUTHOR@
ZFS_META_DATA = @ZFS_META_DATA@
ZFS_META_LICENSE = @ZFS_META_LICENSE@
ZFS_META_LT_AGE = @ZFS_META_LT_AGE@
ZFS_META_LT_CURRENT = @ZFS_META_LT_CURRENT@
ZFS_META_LT_REVISION = @ZFS_META_LT_REVISION@
ZFS_META_NAME = @ZFS_META_NAME@
ZFS_META_RELEASE = @ZFS_META_RELEASE@
ZFS_META_VERSION = @ZFS_META_VERSION@
ZLIB = @ZLIB@
abs_builddir = @abs_builddir@
abs_srcdir = @abs_srcdir@
abs_top_builddir = @abs_top_builddir@
abs_top_srcdir = @abs_top_srcdir@
ac_ct_CC = @ac_ct_CC@
ac_ct_DUMPBIN = @ac_ct_DUMPBIN@
am__include = @am__include@
am__leading_dot = @am__leading_dot@
am__quote = @am__quote@
am__tar = @am__tar@
am__untar = @am__untar@
bindir = @bindir@
build = @build@
build_alias = @build_alias@
build_cpu = @build_cpu@
build_os = @build_os@
build_vendor = @build_vendor@
builddir = @builddir@
datadir = @datadir@
datarootdir = @datarootdir@
docdir = @docdir@
dvidir = @dvidir@
exec_prefix = @exec_prefix@
host = @host@
host_alias = @host_alias@
host_cpu = @host_cpu@
host_os = @host_os@
host_vendor = @host_vendor@
htmldir = @htmldir@
includedir = @includedir@
infodir = @infodir@
install_sh = @install_sh@
libdir = @libdir@
libexecdir = @libexecdir@
localedir = @localedir@
localstatedir = @localstatedir@
lt_ECHO = @lt_ECHO@
mandir = @mandir@
mkdir_p = @mkdir_p@
oldincludedir = @oldincludedir@
pdfdir = @pdfdir@
prefix = @prefix@
program_transform_name = @program_transform_name@
psdir = @psdir@
sbindir = @sbindir@
sharedstatedir = @sharedstatedir@
srcdir = @srcdir@
sysconfdir = @sysconfdir@
target = @target@
target_alias = @target_alias@
target_cpu = @target_cpu@
target_os = @target_os@
target_vendor = @target_vendor@
top_build_prefix = @top_build_prefix@
top_builddir = @top_builddir@
top_srcdir = @top_srcdir@
udevdir = @udevdir@
udevruledir = @udevruledir@
Support custom build directories and move includes One of the neat tricks an autoconf style project is capable of is allow configurion/building in a directory other than the source directory. The major advantage to this is that you can build the project various different ways while making changes in a single source tree. For example, this project is designed to work on various different Linux distributions each of which work slightly differently. This means that changes need to verified on each of those supported distributions perferably before the change is committed to the public git repo. Using nfs and custom build directories makes this much easier. I now have a single source tree in nfs mounted on several different systems each running a supported distribution. When I make a change to the source base I suspect may break things I can concurrently build from the same source on all the systems each in their own subdirectory. wget -c http://github.com/downloads/behlendorf/zfs/zfs-x.y.z.tar.gz tar -xzf zfs-x.y.z.tar.gz cd zfs-x-y-z ------------------------- run concurrently ---------------------- <ubuntu system> <fedora system> <debian system> <rhel6 system> mkdir ubuntu mkdir fedora mkdir debian mkdir rhel6 cd ubuntu cd fedora cd debian cd rhel6 ../configure ../configure ../configure ../configure make make make make make check make check make check make check This change also moves many of the include headers from individual incude/sys directories under the modules directory in to a single top level include directory. This has the advantage of making the build rules cleaner and logically it makes a bit more sense.
2010-09-05 00:26:23 +04:00
libspldir = $(includedir)/libspl/sys/sysevent
libspl_HEADERS = \
$(top_srcdir)/lib/libspl/include/sys/sysevent/eventdefs.h
all: all-am
.SUFFIXES:
$(srcdir)/Makefile.in: @MAINTAINER_MODE_TRUE@ $(srcdir)/Makefile.am $(am__configure_deps)
@for dep in $?; do \
case '$(am__configure_deps)' in \
*$$dep*) \
( cd $(top_builddir) && $(MAKE) $(AM_MAKEFLAGS) am--refresh ) \
&& { if test -f $@; then exit 0; else break; fi; }; \
exit 1;; \
esac; \
done; \
Support custom build directories and move includes One of the neat tricks an autoconf style project is capable of is allow configurion/building in a directory other than the source directory. The major advantage to this is that you can build the project various different ways while making changes in a single source tree. For example, this project is designed to work on various different Linux distributions each of which work slightly differently. This means that changes need to verified on each of those supported distributions perferably before the change is committed to the public git repo. Using nfs and custom build directories makes this much easier. I now have a single source tree in nfs mounted on several different systems each running a supported distribution. When I make a change to the source base I suspect may break things I can concurrently build from the same source on all the systems each in their own subdirectory. wget -c http://github.com/downloads/behlendorf/zfs/zfs-x.y.z.tar.gz tar -xzf zfs-x.y.z.tar.gz cd zfs-x-y-z ------------------------- run concurrently ---------------------- <ubuntu system> <fedora system> <debian system> <rhel6 system> mkdir ubuntu mkdir fedora mkdir debian mkdir rhel6 cd ubuntu cd fedora cd debian cd rhel6 ../configure ../configure ../configure ../configure make make make make make check make check make check make check This change also moves many of the include headers from individual incude/sys directories under the modules directory in to a single top level include directory. This has the advantage of making the build rules cleaner and logically it makes a bit more sense.
2010-09-05 00:26:23 +04:00
echo ' cd $(top_srcdir) && $(AUTOMAKE) --gnu lib/libspl/include/sys/sysevent/Makefile'; \
$(am__cd) $(top_srcdir) && \
Support custom build directories and move includes One of the neat tricks an autoconf style project is capable of is allow configurion/building in a directory other than the source directory. The major advantage to this is that you can build the project various different ways while making changes in a single source tree. For example, this project is designed to work on various different Linux distributions each of which work slightly differently. This means that changes need to verified on each of those supported distributions perferably before the change is committed to the public git repo. Using nfs and custom build directories makes this much easier. I now have a single source tree in nfs mounted on several different systems each running a supported distribution. When I make a change to the source base I suspect may break things I can concurrently build from the same source on all the systems each in their own subdirectory. wget -c http://github.com/downloads/behlendorf/zfs/zfs-x.y.z.tar.gz tar -xzf zfs-x.y.z.tar.gz cd zfs-x-y-z ------------------------- run concurrently ---------------------- <ubuntu system> <fedora system> <debian system> <rhel6 system> mkdir ubuntu mkdir fedora mkdir debian mkdir rhel6 cd ubuntu cd fedora cd debian cd rhel6 ../configure ../configure ../configure ../configure make make make make make check make check make check make check This change also moves many of the include headers from individual incude/sys directories under the modules directory in to a single top level include directory. This has the advantage of making the build rules cleaner and logically it makes a bit more sense.
2010-09-05 00:26:23 +04:00
$(AUTOMAKE) --gnu lib/libspl/include/sys/sysevent/Makefile
.PRECIOUS: Makefile
Makefile: $(srcdir)/Makefile.in $(top_builddir)/config.status
@case '$?' in \
*config.status*) \
cd $(top_builddir) && $(MAKE) $(AM_MAKEFLAGS) am--refresh;; \
*) \
echo ' cd $(top_builddir) && $(SHELL) ./config.status $(subdir)/$@ $(am__depfiles_maybe)'; \
cd $(top_builddir) && $(SHELL) ./config.status $(subdir)/$@ $(am__depfiles_maybe);; \
esac;
$(top_builddir)/config.status: $(top_srcdir)/configure $(CONFIG_STATUS_DEPENDENCIES)
cd $(top_builddir) && $(MAKE) $(AM_MAKEFLAGS) am--refresh
$(top_srcdir)/configure: @MAINTAINER_MODE_TRUE@ $(am__configure_deps)
cd $(top_builddir) && $(MAKE) $(AM_MAKEFLAGS) am--refresh
$(ACLOCAL_M4): @MAINTAINER_MODE_TRUE@ $(am__aclocal_m4_deps)
cd $(top_builddir) && $(MAKE) $(AM_MAKEFLAGS) am--refresh
$(am__aclocal_m4_deps):
mostlyclean-libtool:
-rm -f *.lo
clean-libtool:
-rm -rf .libs _libs
Support custom build directories and move includes One of the neat tricks an autoconf style project is capable of is allow configurion/building in a directory other than the source directory. The major advantage to this is that you can build the project various different ways while making changes in a single source tree. For example, this project is designed to work on various different Linux distributions each of which work slightly differently. This means that changes need to verified on each of those supported distributions perferably before the change is committed to the public git repo. Using nfs and custom build directories makes this much easier. I now have a single source tree in nfs mounted on several different systems each running a supported distribution. When I make a change to the source base I suspect may break things I can concurrently build from the same source on all the systems each in their own subdirectory. wget -c http://github.com/downloads/behlendorf/zfs/zfs-x.y.z.tar.gz tar -xzf zfs-x.y.z.tar.gz cd zfs-x-y-z ------------------------- run concurrently ---------------------- <ubuntu system> <fedora system> <debian system> <rhel6 system> mkdir ubuntu mkdir fedora mkdir debian mkdir rhel6 cd ubuntu cd fedora cd debian cd rhel6 ../configure ../configure ../configure ../configure make make make make make check make check make check make check This change also moves many of the include headers from individual incude/sys directories under the modules directory in to a single top level include directory. This has the advantage of making the build rules cleaner and logically it makes a bit more sense.
2010-09-05 00:26:23 +04:00
install-libsplHEADERS: $(libspl_HEADERS)
@$(NORMAL_INSTALL)
Support custom build directories and move includes One of the neat tricks an autoconf style project is capable of is allow configurion/building in a directory other than the source directory. The major advantage to this is that you can build the project various different ways while making changes in a single source tree. For example, this project is designed to work on various different Linux distributions each of which work slightly differently. This means that changes need to verified on each of those supported distributions perferably before the change is committed to the public git repo. Using nfs and custom build directories makes this much easier. I now have a single source tree in nfs mounted on several different systems each running a supported distribution. When I make a change to the source base I suspect may break things I can concurrently build from the same source on all the systems each in their own subdirectory. wget -c http://github.com/downloads/behlendorf/zfs/zfs-x.y.z.tar.gz tar -xzf zfs-x.y.z.tar.gz cd zfs-x-y-z ------------------------- run concurrently ---------------------- <ubuntu system> <fedora system> <debian system> <rhel6 system> mkdir ubuntu mkdir fedora mkdir debian mkdir rhel6 cd ubuntu cd fedora cd debian cd rhel6 ../configure ../configure ../configure ../configure make make make make make check make check make check make check This change also moves many of the include headers from individual incude/sys directories under the modules directory in to a single top level include directory. This has the advantage of making the build rules cleaner and logically it makes a bit more sense.
2010-09-05 00:26:23 +04:00
test -z "$(libspldir)" || $(MKDIR_P) "$(DESTDIR)$(libspldir)"
@list='$(libspl_HEADERS)'; test -n "$(libspldir)" || list=; \
for p in $$list; do \
if test -f "$$p"; then d=; else d="$(srcdir)/"; fi; \
echo "$$d$$p"; \
done | $(am__base_list) | \
while read files; do \
echo " $(INSTALL_HEADER) $$files '$(DESTDIR)$(libspldir)'"; \
$(INSTALL_HEADER) $$files "$(DESTDIR)$(libspldir)" || exit $$?; \
done
Support custom build directories and move includes One of the neat tricks an autoconf style project is capable of is allow configurion/building in a directory other than the source directory. The major advantage to this is that you can build the project various different ways while making changes in a single source tree. For example, this project is designed to work on various different Linux distributions each of which work slightly differently. This means that changes need to verified on each of those supported distributions perferably before the change is committed to the public git repo. Using nfs and custom build directories makes this much easier. I now have a single source tree in nfs mounted on several different systems each running a supported distribution. When I make a change to the source base I suspect may break things I can concurrently build from the same source on all the systems each in their own subdirectory. wget -c http://github.com/downloads/behlendorf/zfs/zfs-x.y.z.tar.gz tar -xzf zfs-x.y.z.tar.gz cd zfs-x-y-z ------------------------- run concurrently ---------------------- <ubuntu system> <fedora system> <debian system> <rhel6 system> mkdir ubuntu mkdir fedora mkdir debian mkdir rhel6 cd ubuntu cd fedora cd debian cd rhel6 ../configure ../configure ../configure ../configure make make make make make check make check make check make check This change also moves many of the include headers from individual incude/sys directories under the modules directory in to a single top level include directory. This has the advantage of making the build rules cleaner and logically it makes a bit more sense.
2010-09-05 00:26:23 +04:00
uninstall-libsplHEADERS:
@$(NORMAL_UNINSTALL)
Support custom build directories and move includes One of the neat tricks an autoconf style project is capable of is allow configurion/building in a directory other than the source directory. The major advantage to this is that you can build the project various different ways while making changes in a single source tree. For example, this project is designed to work on various different Linux distributions each of which work slightly differently. This means that changes need to verified on each of those supported distributions perferably before the change is committed to the public git repo. Using nfs and custom build directories makes this much easier. I now have a single source tree in nfs mounted on several different systems each running a supported distribution. When I make a change to the source base I suspect may break things I can concurrently build from the same source on all the systems each in their own subdirectory. wget -c http://github.com/downloads/behlendorf/zfs/zfs-x.y.z.tar.gz tar -xzf zfs-x.y.z.tar.gz cd zfs-x-y-z ------------------------- run concurrently ---------------------- <ubuntu system> <fedora system> <debian system> <rhel6 system> mkdir ubuntu mkdir fedora mkdir debian mkdir rhel6 cd ubuntu cd fedora cd debian cd rhel6 ../configure ../configure ../configure ../configure make make make make make check make check make check make check This change also moves many of the include headers from individual incude/sys directories under the modules directory in to a single top level include directory. This has the advantage of making the build rules cleaner and logically it makes a bit more sense.
2010-09-05 00:26:23 +04:00
@list='$(libspl_HEADERS)'; test -n "$(libspldir)" || list=; \
files=`for p in $$list; do echo $$p; done | sed -e 's|^.*/||'`; \
test -n "$$files" || exit 0; \
Support custom build directories and move includes One of the neat tricks an autoconf style project is capable of is allow configurion/building in a directory other than the source directory. The major advantage to this is that you can build the project various different ways while making changes in a single source tree. For example, this project is designed to work on various different Linux distributions each of which work slightly differently. This means that changes need to verified on each of those supported distributions perferably before the change is committed to the public git repo. Using nfs and custom build directories makes this much easier. I now have a single source tree in nfs mounted on several different systems each running a supported distribution. When I make a change to the source base I suspect may break things I can concurrently build from the same source on all the systems each in their own subdirectory. wget -c http://github.com/downloads/behlendorf/zfs/zfs-x.y.z.tar.gz tar -xzf zfs-x.y.z.tar.gz cd zfs-x-y-z ------------------------- run concurrently ---------------------- <ubuntu system> <fedora system> <debian system> <rhel6 system> mkdir ubuntu mkdir fedora mkdir debian mkdir rhel6 cd ubuntu cd fedora cd debian cd rhel6 ../configure ../configure ../configure ../configure make make make make make check make check make check make check This change also moves many of the include headers from individual incude/sys directories under the modules directory in to a single top level include directory. This has the advantage of making the build rules cleaner and logically it makes a bit more sense.
2010-09-05 00:26:23 +04:00
echo " ( cd '$(DESTDIR)$(libspldir)' && rm -f" $$files ")"; \
cd "$(DESTDIR)$(libspldir)" && rm -f $$files
ID: $(HEADERS) $(SOURCES) $(LISP) $(TAGS_FILES)
list='$(SOURCES) $(HEADERS) $(LISP) $(TAGS_FILES)'; \
unique=`for i in $$list; do \
if test -f "$$i"; then echo $$i; else echo $(srcdir)/$$i; fi; \
done | \
$(AWK) '{ files[$$0] = 1; nonempty = 1; } \
END { if (nonempty) { for (i in files) print i; }; }'`; \
mkid -fID $$unique
tags: TAGS
TAGS: $(HEADERS) $(SOURCES) $(TAGS_DEPENDENCIES) \
$(TAGS_FILES) $(LISP)
set x; \
here=`pwd`; \
list='$(SOURCES) $(HEADERS) $(LISP) $(TAGS_FILES)'; \
unique=`for i in $$list; do \
if test -f "$$i"; then echo $$i; else echo $(srcdir)/$$i; fi; \
done | \
$(AWK) '{ files[$$0] = 1; nonempty = 1; } \
END { if (nonempty) { for (i in files) print i; }; }'`; \
shift; \
if test -z "$(ETAGS_ARGS)$$*$$unique"; then :; else \
test -n "$$unique" || unique=$$empty_fix; \
if test $$# -gt 0; then \
$(ETAGS) $(ETAGSFLAGS) $(AM_ETAGSFLAGS) $(ETAGS_ARGS) \
"$$@" $$unique; \
else \
$(ETAGS) $(ETAGSFLAGS) $(AM_ETAGSFLAGS) $(ETAGS_ARGS) \
$$unique; \
fi; \
fi
ctags: CTAGS
CTAGS: $(HEADERS) $(SOURCES) $(TAGS_DEPENDENCIES) \
$(TAGS_FILES) $(LISP)
list='$(SOURCES) $(HEADERS) $(LISP) $(TAGS_FILES)'; \
unique=`for i in $$list; do \
if test -f "$$i"; then echo $$i; else echo $(srcdir)/$$i; fi; \
done | \
$(AWK) '{ files[$$0] = 1; nonempty = 1; } \
END { if (nonempty) { for (i in files) print i; }; }'`; \
test -z "$(CTAGS_ARGS)$$unique" \
|| $(CTAGS) $(CTAGSFLAGS) $(AM_CTAGSFLAGS) $(CTAGS_ARGS) \
$$unique
GTAGS:
here=`$(am__cd) $(top_builddir) && pwd` \
&& $(am__cd) $(top_srcdir) \
&& gtags -i $(GTAGS_ARGS) "$$here"
distclean-tags:
-rm -f TAGS ID GTAGS GRTAGS GSYMS GPATH tags
distdir: $(DISTFILES)
@srcdirstrip=`echo "$(srcdir)" | sed 's/[].[^$$\\*]/\\\\&/g'`; \
topsrcdirstrip=`echo "$(top_srcdir)" | sed 's/[].[^$$\\*]/\\\\&/g'`; \
list='$(DISTFILES)'; \
dist_files=`for file in $$list; do echo $$file; done | \
sed -e "s|^$$srcdirstrip/||;t" \
-e "s|^$$topsrcdirstrip/|$(top_builddir)/|;t"`; \
case $$dist_files in \
*/*) $(MKDIR_P) `echo "$$dist_files" | \
sed '/\//!d;s|^|$(distdir)/|;s,/[^/]*$$,,' | \
sort -u` ;; \
esac; \
for file in $$dist_files; do \
if test -f $$file || test -d $$file; then d=.; else d=$(srcdir); fi; \
if test -d $$d/$$file; then \
dir=`echo "/$$file" | sed -e 's,/[^/]*$$,,'`; \
if test -d "$(distdir)/$$file"; then \
find "$(distdir)/$$file" -type d ! -perm -700 -exec chmod u+rwx {} \;; \
fi; \
if test -d $(srcdir)/$$file && test $$d != $(srcdir); then \
cp -fpR $(srcdir)/$$file "$(distdir)$$dir" || exit 1; \
find "$(distdir)/$$file" -type d ! -perm -700 -exec chmod u+rwx {} \;; \
fi; \
cp -fpR $$d/$$file "$(distdir)$$dir" || exit 1; \
else \
test -f "$(distdir)/$$file" \
|| cp -p $$d/$$file "$(distdir)/$$file" \
|| exit 1; \
fi; \
done
check-am: all-am
check: check-am
all-am: Makefile $(HEADERS)
installdirs:
Support custom build directories and move includes One of the neat tricks an autoconf style project is capable of is allow configurion/building in a directory other than the source directory. The major advantage to this is that you can build the project various different ways while making changes in a single source tree. For example, this project is designed to work on various different Linux distributions each of which work slightly differently. This means that changes need to verified on each of those supported distributions perferably before the change is committed to the public git repo. Using nfs and custom build directories makes this much easier. I now have a single source tree in nfs mounted on several different systems each running a supported distribution. When I make a change to the source base I suspect may break things I can concurrently build from the same source on all the systems each in their own subdirectory. wget -c http://github.com/downloads/behlendorf/zfs/zfs-x.y.z.tar.gz tar -xzf zfs-x.y.z.tar.gz cd zfs-x-y-z ------------------------- run concurrently ---------------------- <ubuntu system> <fedora system> <debian system> <rhel6 system> mkdir ubuntu mkdir fedora mkdir debian mkdir rhel6 cd ubuntu cd fedora cd debian cd rhel6 ../configure ../configure ../configure ../configure make make make make make check make check make check make check This change also moves many of the include headers from individual incude/sys directories under the modules directory in to a single top level include directory. This has the advantage of making the build rules cleaner and logically it makes a bit more sense.
2010-09-05 00:26:23 +04:00
for dir in "$(DESTDIR)$(libspldir)"; do \
test -z "$$dir" || $(MKDIR_P) "$$dir"; \
done
install: install-am
install-exec: install-exec-am
install-data: install-data-am
uninstall: uninstall-am
install-am: all-am
@$(MAKE) $(AM_MAKEFLAGS) install-exec-am install-data-am
installcheck: installcheck-am
install-strip:
$(MAKE) $(AM_MAKEFLAGS) INSTALL_PROGRAM="$(INSTALL_STRIP_PROGRAM)" \
install_sh_PROGRAM="$(INSTALL_STRIP_PROGRAM)" INSTALL_STRIP_FLAG=-s \
`test -z '$(STRIP)' || \
echo "INSTALL_PROGRAM_ENV=STRIPPROG='$(STRIP)'"` install
mostlyclean-generic:
clean-generic:
distclean-generic:
-test -z "$(CONFIG_CLEAN_FILES)" || rm -f $(CONFIG_CLEAN_FILES)
-test . = "$(srcdir)" || test -z "$(CONFIG_CLEAN_VPATH_FILES)" || rm -f $(CONFIG_CLEAN_VPATH_FILES)
maintainer-clean-generic:
@echo "This command is intended for maintainers to use"
@echo "it deletes files that may require special tools to rebuild."
clean: clean-am
clean-am: clean-generic clean-libtool mostlyclean-am
distclean: distclean-am
-rm -f Makefile
distclean-am: clean-am distclean-generic distclean-tags
dvi: dvi-am
dvi-am:
html: html-am
html-am:
info: info-am
info-am:
Support custom build directories and move includes One of the neat tricks an autoconf style project is capable of is allow configurion/building in a directory other than the source directory. The major advantage to this is that you can build the project various different ways while making changes in a single source tree. For example, this project is designed to work on various different Linux distributions each of which work slightly differently. This means that changes need to verified on each of those supported distributions perferably before the change is committed to the public git repo. Using nfs and custom build directories makes this much easier. I now have a single source tree in nfs mounted on several different systems each running a supported distribution. When I make a change to the source base I suspect may break things I can concurrently build from the same source on all the systems each in their own subdirectory. wget -c http://github.com/downloads/behlendorf/zfs/zfs-x.y.z.tar.gz tar -xzf zfs-x.y.z.tar.gz cd zfs-x-y-z ------------------------- run concurrently ---------------------- <ubuntu system> <fedora system> <debian system> <rhel6 system> mkdir ubuntu mkdir fedora mkdir debian mkdir rhel6 cd ubuntu cd fedora cd debian cd rhel6 ../configure ../configure ../configure ../configure make make make make make check make check make check make check This change also moves many of the include headers from individual incude/sys directories under the modules directory in to a single top level include directory. This has the advantage of making the build rules cleaner and logically it makes a bit more sense.
2010-09-05 00:26:23 +04:00
install-data-am: install-libsplHEADERS
install-dvi: install-dvi-am
install-dvi-am:
install-exec-am:
install-html: install-html-am
install-html-am:
install-info: install-info-am
install-info-am:
install-man:
install-pdf: install-pdf-am
install-pdf-am:
install-ps: install-ps-am
install-ps-am:
installcheck-am:
maintainer-clean: maintainer-clean-am
-rm -f Makefile
maintainer-clean-am: distclean-am maintainer-clean-generic
mostlyclean: mostlyclean-am
mostlyclean-am: mostlyclean-generic mostlyclean-libtool
pdf: pdf-am
pdf-am:
ps: ps-am
ps-am:
Support custom build directories and move includes One of the neat tricks an autoconf style project is capable of is allow configurion/building in a directory other than the source directory. The major advantage to this is that you can build the project various different ways while making changes in a single source tree. For example, this project is designed to work on various different Linux distributions each of which work slightly differently. This means that changes need to verified on each of those supported distributions perferably before the change is committed to the public git repo. Using nfs and custom build directories makes this much easier. I now have a single source tree in nfs mounted on several different systems each running a supported distribution. When I make a change to the source base I suspect may break things I can concurrently build from the same source on all the systems each in their own subdirectory. wget -c http://github.com/downloads/behlendorf/zfs/zfs-x.y.z.tar.gz tar -xzf zfs-x.y.z.tar.gz cd zfs-x-y-z ------------------------- run concurrently ---------------------- <ubuntu system> <fedora system> <debian system> <rhel6 system> mkdir ubuntu mkdir fedora mkdir debian mkdir rhel6 cd ubuntu cd fedora cd debian cd rhel6 ../configure ../configure ../configure ../configure make make make make make check make check make check make check This change also moves many of the include headers from individual incude/sys directories under the modules directory in to a single top level include directory. This has the advantage of making the build rules cleaner and logically it makes a bit more sense.
2010-09-05 00:26:23 +04:00
uninstall-am: uninstall-libsplHEADERS
.MAKE: install-am install-strip
.PHONY: CTAGS GTAGS all all-am check check-am clean clean-generic \
clean-libtool ctags distclean distclean-generic \
distclean-libtool distclean-tags distdir dvi dvi-am html \
html-am info info-am install install-am install-data \
install-data-am install-dvi install-dvi-am install-exec \
install-exec-am install-html install-html-am install-info \
Support custom build directories and move includes One of the neat tricks an autoconf style project is capable of is allow configurion/building in a directory other than the source directory. The major advantage to this is that you can build the project various different ways while making changes in a single source tree. For example, this project is designed to work on various different Linux distributions each of which work slightly differently. This means that changes need to verified on each of those supported distributions perferably before the change is committed to the public git repo. Using nfs and custom build directories makes this much easier. I now have a single source tree in nfs mounted on several different systems each running a supported distribution. When I make a change to the source base I suspect may break things I can concurrently build from the same source on all the systems each in their own subdirectory. wget -c http://github.com/downloads/behlendorf/zfs/zfs-x.y.z.tar.gz tar -xzf zfs-x.y.z.tar.gz cd zfs-x-y-z ------------------------- run concurrently ---------------------- <ubuntu system> <fedora system> <debian system> <rhel6 system> mkdir ubuntu mkdir fedora mkdir debian mkdir rhel6 cd ubuntu cd fedora cd debian cd rhel6 ../configure ../configure ../configure ../configure make make make make make check make check make check make check This change also moves many of the include headers from individual incude/sys directories under the modules directory in to a single top level include directory. This has the advantage of making the build rules cleaner and logically it makes a bit more sense.
2010-09-05 00:26:23 +04:00
install-info-am install-libsplHEADERS install-man install-pdf \
install-pdf-am install-ps install-ps-am install-strip \
installcheck installcheck-am installdirs maintainer-clean \
maintainer-clean-generic mostlyclean mostlyclean-generic \
mostlyclean-libtool pdf pdf-am ps ps-am tags uninstall \
uninstall-am uninstall-libsplHEADERS
# Tell versions [3.59,3.63) of GNU make to not export all variables.
# Otherwise a system limit (for SysV at least) may be exceeded.
.NOEXPORT: