2008-11-20 23:01:55 +03:00
|
|
|
/*
|
|
|
|
* CDDL HEADER START
|
|
|
|
*
|
|
|
|
* The contents of this file are subject to the terms of the
|
|
|
|
* Common Development and Distribution License (the "License").
|
|
|
|
* You may not use this file except in compliance with the License.
|
|
|
|
*
|
|
|
|
* You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
|
|
|
|
* or http://www.opensolaris.org/os/licensing.
|
|
|
|
* See the License for the specific language governing permissions
|
|
|
|
* and limitations under the License.
|
|
|
|
*
|
|
|
|
* When distributing Covered Code, include this CDDL HEADER in each
|
|
|
|
* file and include the License file at usr/src/OPENSOLARIS.LICENSE.
|
|
|
|
* If applicable, add the following below this CDDL HEADER, with the
|
|
|
|
* fields enclosed by brackets "[]" replaced with your own identifying
|
|
|
|
* information: Portions Copyright [yyyy] [name of copyright owner]
|
|
|
|
*
|
|
|
|
* CDDL HEADER END
|
|
|
|
*/
|
|
|
|
/*
|
2010-05-29 00:45:14 +04:00
|
|
|
* Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
|
Log Spacemap Project
= Motivation
At Delphix we've seen a lot of customer systems where fragmentation
is over 75% and random writes take a performance hit because a lot
of time is spend on I/Os that update on-disk space accounting metadata.
Specifically, we seen cases where 20% to 40% of sync time is spend
after sync pass 1 and ~30% of the I/Os on the system is spent updating
spacemaps.
The problem is that these pools have existed long enough that we've
touched almost every metaslab at least once, and random writes
scatter frees across all metaslabs every TXG, thus appending to
their spacemaps and resulting in many I/Os. To give an example,
assuming that every VDEV has 200 metaslabs and our writes fit within
a single spacemap block (generally 4K) we have 200 I/Os. Then if we
assume 2 levels of indirection, we need 400 additional I/Os and
since we are talking about metadata for which we keep 2 extra copies
for redundancy we need to triple that number, leading to a total of
1800 I/Os per VDEV every TXG.
We could try and decrease the number of metaslabs so we have less
I/Os per TXG but then each metaslab would cover a wider range on
disk and thus would take more time to be loaded in memory from disk.
In addition, after it's loaded, it's range tree would consume more
memory.
Another idea would be to just increase the spacemap block size
which would allow us to fit more entries within an I/O block
resulting in fewer I/Os per metaslab and a speedup in loading time.
The problem is still that we don't deal with the number of I/Os
going up as the number of metaslabs is increasing and the fact
is that we generally write a lot to a few metaslabs and a little
to the rest of them. Thus, just increasing the block size would
actually waste bandwidth because we won't be utilizing our bigger
block size.
= About this patch
This patch introduces the Log Spacemap project which provides the
solution to the above problem while taking into account all the
aforementioned tradeoffs. The details on how it achieves that can
be found in the references sections below and in the code (see
Big Theory Statement in spa_log_spacemap.c).
Even though the change is fairly constraint within the metaslab
and lower-level SPA codepaths, there is a side-change that is
user-facing. The change is that VDEV IDs from VDEV holes will no
longer be reused. To give some background and reasoning for this,
when a log device is removed and its VDEV structure was replaced
with a hole (or was compacted; if at the end of the vdev array),
its vdev_id could be reused by devices added after that. Now
with the pool-wide space maps recording the vdev ID, this behavior
can cause problems (e.g. is this entry referring to a segment in
the new vdev or the removed log?). Thus, to simplify things the
ID reuse behavior is gone and now vdev IDs for top-level vdevs
are truly unique within a pool.
= Testing
The illumos implementation of this feature has been used internally
for a year and has been in production for ~6 months. For this patch
specifically there don't seem to be any regressions introduced to
ZTS and I have been running zloop for a week without any related
problems.
= Performance Analysis (Linux Specific)
All performance results and analysis for illumos can be found in
the links of the references. Redoing the same experiments in Linux
gave similar results. Below are the specifics of the Linux run.
After the pool reached stable state the percentage of the time
spent in pass 1 per TXG was 64% on average for the stock bits
while the log spacemap bits stayed at 95% during the experiment
(graph: sdimitro.github.io/img/linux-lsm/PercOfSyncInPassOne.png).
Sync times per TXG were 37.6 seconds on average for the stock
bits and 22.7 seconds for the log spacemap bits (related graph:
sdimitro.github.io/img/linux-lsm/SyncTimePerTXG.png). As a result
the log spacemap bits were able to push more TXGs, which is also
the reason why all graphs quantified per TXG have more entries for
the log spacemap bits.
Another interesting aspect in terms of txg syncs is that the stock
bits had 22% of their TXGs reach sync pass 7, 55% reach sync pass 8,
and 20% reach 9. The log space map bits reached sync pass 4 in 79%
of their TXGs, sync pass 7 in 19%, and sync pass 8 at 1%. This
emphasizes the fact that not only we spend less time on metadata
but we also iterate less times to convergence in spa_sync() dirtying
objects.
[related graphs:
stock- sdimitro.github.io/img/linux-lsm/NumberOfPassesPerTXGStock.png
lsm- sdimitro.github.io/img/linux-lsm/NumberOfPassesPerTXGLSM.png]
Finally, the improvement in IOPs that the userland gains from the
change is approximately 40%. There is a consistent win in IOPS as
you can see from the graphs below but the absolute amount of
improvement that the log spacemap gives varies within each minute
interval.
sdimitro.github.io/img/linux-lsm/StockVsLog3Days.png
sdimitro.github.io/img/linux-lsm/StockVsLog10Hours.png
= Porting to Other Platforms
For people that want to port this commit to other platforms below
is a list of ZoL commits that this patch depends on:
Make zdb results for checkpoint tests consistent
db587941c5ff6dea01932bb78f70db63cf7f38ba
Update vdev_is_spacemap_addressable() for new spacemap encoding
419ba5914552c6185afbe1dd17b3ed4b0d526547
Simplify spa_sync by breaking it up to smaller functions
8dc2197b7b1e4d7ebc1420ea30e51c6541f1d834
Factor metaslab_load_wait() in metaslab_load()
b194fab0fb6caad18711abccaff3c69ad8b3f6d3
Rename range_tree_verify to range_tree_verify_not_present
df72b8bebe0ebac0b20e0750984bad182cb6564a
Change target size of metaslabs from 256GB to 16GB
c853f382db731e15a87512f4ef1101d14d778a55
zdb -L should skip leak detection altogether
21e7cf5da89f55ce98ec1115726b150e19eefe89
vs_alloc can underflow in L2ARC vdevs
7558997d2f808368867ca7e5234e5793446e8f3f
Simplify log vdev removal code
6c926f426a26ffb6d7d8e563e33fc176164175cb
Get rid of space_map_update() for ms_synced_length
425d3237ee88abc53d8522a7139c926d278b4b7f
Introduce auxiliary metaslab histograms
928e8ad47d3478a3d5d01f0dd6ae74a9371af65e
Error path in metaslab_load_impl() forgets to drop ms_sync_lock
8eef997679ba54547f7d361553d21b3291f41ae7
= References
Background, Motivation, and Internals of the Feature
- OpenZFS 2017 Presentation:
youtu.be/jj2IxRkl5bQ
- Slides:
slideshare.net/SerapheimNikolaosDim/zfs-log-spacemaps-project
Flushing Algorithm Internals & Performance Results
(Illumos Specific)
- Blogpost:
sdimitro.github.io/post/zfs-lsm-flushing/
- OpenZFS 2018 Presentation:
youtu.be/x6D2dHRjkxw
- Slides:
slideshare.net/SerapheimNikolaosDim/zfs-log-spacemap-flushing-algorithm
Upstream Delphix Issues:
DLPX-51539, DLPX-59659, DLPX-57783, DLPX-61438, DLPX-41227, DLPX-59320
DLPX-63385
Reviewed-by: Sean Eric Fagan <sef@ixsystems.com>
Reviewed-by: Matt Ahrens <matt@delphix.com>
Reviewed-by: George Wilson <gwilson@delphix.com>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Serapheim Dimitropoulos <serapheim@delphix.com>
Closes #8442
2019-07-16 20:11:49 +03:00
|
|
|
* Copyright (c) 2012, 2019 by Delphix. All rights reserved.
|
2008-11-20 23:01:55 +03:00
|
|
|
*/
|
|
|
|
|
|
|
|
#ifndef _SYS_ZFS_DEBUG_H
|
|
|
|
#define _SYS_ZFS_DEBUG_H
|
|
|
|
|
2013-10-09 06:37:38 +04:00
|
|
|
#ifdef __cplusplus
|
|
|
|
extern "C" {
|
|
|
|
#endif
|
|
|
|
|
2008-11-20 23:01:55 +03:00
|
|
|
#ifndef TRUE
|
|
|
|
#define TRUE 1
|
|
|
|
#endif
|
|
|
|
|
|
|
|
#ifndef FALSE
|
|
|
|
#define FALSE 0
|
|
|
|
#endif
|
|
|
|
|
|
|
|
extern int zfs_flags;
|
2012-01-21 03:02:57 +04:00
|
|
|
extern int zfs_recover;
|
2014-06-06 01:20:08 +04:00
|
|
|
extern int zfs_free_leak_on_eio;
|
2018-03-22 01:37:32 +03:00
|
|
|
extern int zfs_dbgmsg_enable;
|
2008-11-20 23:01:55 +03:00
|
|
|
|
2017-01-12 22:52:56 +03:00
|
|
|
#define ZFS_DEBUG_DPRINTF (1 << 0)
|
|
|
|
#define ZFS_DEBUG_DBUF_VERIFY (1 << 1)
|
|
|
|
#define ZFS_DEBUG_DNODE_VERIFY (1 << 2)
|
|
|
|
#define ZFS_DEBUG_SNAPNAMES (1 << 3)
|
|
|
|
#define ZFS_DEBUG_MODIFY (1 << 4)
|
2017-01-04 02:18:33 +03:00
|
|
|
/* 1<<5 was previously used, try not to reuse */
|
2017-01-12 22:52:56 +03:00
|
|
|
#define ZFS_DEBUG_ZIO_FREE (1 << 6)
|
|
|
|
#define ZFS_DEBUG_HISTOGRAM_VERIFY (1 << 7)
|
|
|
|
#define ZFS_DEBUG_METASLAB_VERIFY (1 << 8)
|
2017-07-26 09:09:48 +03:00
|
|
|
#define ZFS_DEBUG_SET_ERROR (1 << 9)
|
OpenZFS 7614, 9064 - zfs device evacuation/removal
OpenZFS 7614 - zfs device evacuation/removal
OpenZFS 9064 - remove_mirror should wait for device removal to complete
This project allows top-level vdevs to be removed from the storage pool
with "zpool remove", reducing the total amount of storage in the pool.
This operation copies all allocated regions of the device to be removed
onto other devices, recording the mapping from old to new location.
After the removal is complete, read and free operations to the removed
(now "indirect") vdev must be remapped and performed at the new location
on disk. The indirect mapping table is kept in memory whenever the pool
is loaded, so there is minimal performance overhead when doing operations
on the indirect vdev.
The size of the in-memory mapping table will be reduced when its entries
become "obsolete" because they are no longer used by any block pointers
in the pool. An entry becomes obsolete when all the blocks that use
it are freed. An entry can also become obsolete when all the snapshots
that reference it are deleted, and the block pointers that reference it
have been "remapped" in all filesystems/zvols (and clones). Whenever an
indirect block is written, all the block pointers in it will be "remapped"
to their new (concrete) locations if possible. This process can be
accelerated by using the "zfs remap" command to proactively rewrite all
indirect blocks that reference indirect (removed) vdevs.
Note that when a device is removed, we do not verify the checksum of
the data that is copied. This makes the process much faster, but if it
were used on redundant vdevs (i.e. mirror or raidz vdevs), it would be
possible to copy the wrong data, when we have the correct data on e.g.
the other side of the mirror.
At the moment, only mirrors and simple top-level vdevs can be removed
and no removal is allowed if any of the top-level vdevs are raidz.
Porting Notes:
* Avoid zero-sized kmem_alloc() in vdev_compact_children().
The device evacuation code adds a dependency that
vdev_compact_children() be able to properly empty the vdev_child
array by setting it to NULL and zeroing vdev_children. Under Linux,
kmem_alloc() and related functions return a sentinel pointer rather
than NULL for zero-sized allocations.
* Remove comment regarding "mpt" driver where zfs_remove_max_segment
is initialized to SPA_MAXBLOCKSIZE.
Change zfs_condense_indirect_commit_entry_delay_ticks to
zfs_condense_indirect_commit_entry_delay_ms for consistency with
most other tunables in which delays are specified in ms.
* ZTS changes:
Use set_tunable rather than mdb
Use zpool sync as appropriate
Use sync_pool instead of sync
Kill jobs during test_removal_with_operation to allow unmount/export
Don't add non-disk names such as "mirror" or "raidz" to $DISKS
Use $TEST_BASE_DIR instead of /tmp
Increase HZ from 100 to 1000 which is more common on Linux
removal_multiple_indirection.ksh
Reduce iterations in order to not time out on the code
coverage builders.
removal_resume_export:
Functionally, the test case is correct but there exists a race
where the kernel thread hasn't been fully started yet and is
not visible. Wait for up to 1 second for the removal thread
to be started before giving up on it. Also, increase the
amount of data copied in order that the removal not finish
before the export has a chance to fail.
* MMP compatibility, the concept of concrete versus non-concrete devices
has slightly changed the semantics of vdev_writeable(). Update
mmp_random_leaf_impl() accordingly.
* Updated dbuf_remap() to handle the org.zfsonlinux:large_dnode pool
feature which is not supported by OpenZFS.
* Added support for new vdev removal tracepoints.
* Test cases removal_with_zdb and removal_condense_export have been
intentionally disabled. When run manually they pass as intended,
but when running in the automated test environment they produce
unreliable results on the latest Fedora release.
They may work better once the upstream pool import refectoring is
merged into ZoL at which point they will be re-enabled.
Authored by: Matthew Ahrens <mahrens@delphix.com>
Reviewed-by: Alex Reece <alex@delphix.com>
Reviewed-by: George Wilson <george.wilson@delphix.com>
Reviewed-by: John Kennedy <john.kennedy@delphix.com>
Reviewed-by: Prakash Surya <prakash.surya@delphix.com>
Reviewed by: Richard Laager <rlaager@wiktel.com>
Reviewed by: Tim Chase <tim@chase2k.com>
Reviewed by: Brian Behlendorf <behlendorf1@llnl.gov>
Approved by: Garrett D'Amore <garrett@damore.org>
Ported-by: Tim Chase <tim@chase2k.com>
Signed-off-by: Tim Chase <tim@chase2k.com>
OpenZFS-issue: https://www.illumos.org/issues/7614
OpenZFS-commit: https://github.com/openzfs/openzfs/commit/f539f1eb
Closes #6900
2016-09-22 19:30:13 +03:00
|
|
|
#define ZFS_DEBUG_INDIRECT_REMAP (1 << 10)
|
2019-03-29 19:13:20 +03:00
|
|
|
#define ZFS_DEBUG_TRIM (1 << 11)
|
Log Spacemap Project
= Motivation
At Delphix we've seen a lot of customer systems where fragmentation
is over 75% and random writes take a performance hit because a lot
of time is spend on I/Os that update on-disk space accounting metadata.
Specifically, we seen cases where 20% to 40% of sync time is spend
after sync pass 1 and ~30% of the I/Os on the system is spent updating
spacemaps.
The problem is that these pools have existed long enough that we've
touched almost every metaslab at least once, and random writes
scatter frees across all metaslabs every TXG, thus appending to
their spacemaps and resulting in many I/Os. To give an example,
assuming that every VDEV has 200 metaslabs and our writes fit within
a single spacemap block (generally 4K) we have 200 I/Os. Then if we
assume 2 levels of indirection, we need 400 additional I/Os and
since we are talking about metadata for which we keep 2 extra copies
for redundancy we need to triple that number, leading to a total of
1800 I/Os per VDEV every TXG.
We could try and decrease the number of metaslabs so we have less
I/Os per TXG but then each metaslab would cover a wider range on
disk and thus would take more time to be loaded in memory from disk.
In addition, after it's loaded, it's range tree would consume more
memory.
Another idea would be to just increase the spacemap block size
which would allow us to fit more entries within an I/O block
resulting in fewer I/Os per metaslab and a speedup in loading time.
The problem is still that we don't deal with the number of I/Os
going up as the number of metaslabs is increasing and the fact
is that we generally write a lot to a few metaslabs and a little
to the rest of them. Thus, just increasing the block size would
actually waste bandwidth because we won't be utilizing our bigger
block size.
= About this patch
This patch introduces the Log Spacemap project which provides the
solution to the above problem while taking into account all the
aforementioned tradeoffs. The details on how it achieves that can
be found in the references sections below and in the code (see
Big Theory Statement in spa_log_spacemap.c).
Even though the change is fairly constraint within the metaslab
and lower-level SPA codepaths, there is a side-change that is
user-facing. The change is that VDEV IDs from VDEV holes will no
longer be reused. To give some background and reasoning for this,
when a log device is removed and its VDEV structure was replaced
with a hole (or was compacted; if at the end of the vdev array),
its vdev_id could be reused by devices added after that. Now
with the pool-wide space maps recording the vdev ID, this behavior
can cause problems (e.g. is this entry referring to a segment in
the new vdev or the removed log?). Thus, to simplify things the
ID reuse behavior is gone and now vdev IDs for top-level vdevs
are truly unique within a pool.
= Testing
The illumos implementation of this feature has been used internally
for a year and has been in production for ~6 months. For this patch
specifically there don't seem to be any regressions introduced to
ZTS and I have been running zloop for a week without any related
problems.
= Performance Analysis (Linux Specific)
All performance results and analysis for illumos can be found in
the links of the references. Redoing the same experiments in Linux
gave similar results. Below are the specifics of the Linux run.
After the pool reached stable state the percentage of the time
spent in pass 1 per TXG was 64% on average for the stock bits
while the log spacemap bits stayed at 95% during the experiment
(graph: sdimitro.github.io/img/linux-lsm/PercOfSyncInPassOne.png).
Sync times per TXG were 37.6 seconds on average for the stock
bits and 22.7 seconds for the log spacemap bits (related graph:
sdimitro.github.io/img/linux-lsm/SyncTimePerTXG.png). As a result
the log spacemap bits were able to push more TXGs, which is also
the reason why all graphs quantified per TXG have more entries for
the log spacemap bits.
Another interesting aspect in terms of txg syncs is that the stock
bits had 22% of their TXGs reach sync pass 7, 55% reach sync pass 8,
and 20% reach 9. The log space map bits reached sync pass 4 in 79%
of their TXGs, sync pass 7 in 19%, and sync pass 8 at 1%. This
emphasizes the fact that not only we spend less time on metadata
but we also iterate less times to convergence in spa_sync() dirtying
objects.
[related graphs:
stock- sdimitro.github.io/img/linux-lsm/NumberOfPassesPerTXGStock.png
lsm- sdimitro.github.io/img/linux-lsm/NumberOfPassesPerTXGLSM.png]
Finally, the improvement in IOPs that the userland gains from the
change is approximately 40%. There is a consistent win in IOPS as
you can see from the graphs below but the absolute amount of
improvement that the log spacemap gives varies within each minute
interval.
sdimitro.github.io/img/linux-lsm/StockVsLog3Days.png
sdimitro.github.io/img/linux-lsm/StockVsLog10Hours.png
= Porting to Other Platforms
For people that want to port this commit to other platforms below
is a list of ZoL commits that this patch depends on:
Make zdb results for checkpoint tests consistent
db587941c5ff6dea01932bb78f70db63cf7f38ba
Update vdev_is_spacemap_addressable() for new spacemap encoding
419ba5914552c6185afbe1dd17b3ed4b0d526547
Simplify spa_sync by breaking it up to smaller functions
8dc2197b7b1e4d7ebc1420ea30e51c6541f1d834
Factor metaslab_load_wait() in metaslab_load()
b194fab0fb6caad18711abccaff3c69ad8b3f6d3
Rename range_tree_verify to range_tree_verify_not_present
df72b8bebe0ebac0b20e0750984bad182cb6564a
Change target size of metaslabs from 256GB to 16GB
c853f382db731e15a87512f4ef1101d14d778a55
zdb -L should skip leak detection altogether
21e7cf5da89f55ce98ec1115726b150e19eefe89
vs_alloc can underflow in L2ARC vdevs
7558997d2f808368867ca7e5234e5793446e8f3f
Simplify log vdev removal code
6c926f426a26ffb6d7d8e563e33fc176164175cb
Get rid of space_map_update() for ms_synced_length
425d3237ee88abc53d8522a7139c926d278b4b7f
Introduce auxiliary metaslab histograms
928e8ad47d3478a3d5d01f0dd6ae74a9371af65e
Error path in metaslab_load_impl() forgets to drop ms_sync_lock
8eef997679ba54547f7d361553d21b3291f41ae7
= References
Background, Motivation, and Internals of the Feature
- OpenZFS 2017 Presentation:
youtu.be/jj2IxRkl5bQ
- Slides:
slideshare.net/SerapheimNikolaosDim/zfs-log-spacemaps-project
Flushing Algorithm Internals & Performance Results
(Illumos Specific)
- Blogpost:
sdimitro.github.io/post/zfs-lsm-flushing/
- OpenZFS 2018 Presentation:
youtu.be/x6D2dHRjkxw
- Slides:
slideshare.net/SerapheimNikolaosDim/zfs-log-spacemap-flushing-algorithm
Upstream Delphix Issues:
DLPX-51539, DLPX-59659, DLPX-57783, DLPX-61438, DLPX-41227, DLPX-59320
DLPX-63385
Reviewed-by: Sean Eric Fagan <sef@ixsystems.com>
Reviewed-by: Matt Ahrens <matt@delphix.com>
Reviewed-by: George Wilson <gwilson@delphix.com>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Serapheim Dimitropoulos <serapheim@delphix.com>
Closes #8442
2019-07-16 20:11:49 +03:00
|
|
|
#define ZFS_DEBUG_LOG_SPACEMAP (1 << 12)
|
Set aside a metaslab for ZIL blocks
Mixing ZIL and normal allocations has several problems:
1. The ZIL allocations are allocated, written to disk, and then a few
seconds later freed. This leaves behind holes (free segments) where the
ZIL blocks used to be, which increases fragmentation, which negatively
impacts performance.
2. When under moderate load, ZIL allocations are of 128KB. If the pool
is fairly fragmented, there may not be many free chunks of that size.
This causes ZFS to load more metaslabs to locate free segments of 128KB
or more. The loading happens synchronously (from zil_commit()), and can
take around a second even if the metaslab's spacemap is cached in the
ARC. All concurrent synchronous operations on this filesystem must wait
while the metaslab is loading. This can cause a significant performance
impact.
3. If the pool is very fragmented, there may be zero free chunks of
128KB or more. In this case, the ZIL falls back to txg_wait_synced(),
which has an enormous performance impact.
These problems can be eliminated by using a dedicated log device
("slog"), even one with the same performance characteristics as the
normal devices.
This change sets aside one metaslab from each top-level vdev that is
preferentially used for ZIL allocations (vdev_log_mg,
spa_embedded_log_class). From an allocation perspective, this is
similar to having a dedicated log device, and it eliminates the
above-mentioned performance problems.
Log (ZIL) blocks can be allocated from the following locations. Each
one is tried in order until the allocation succeeds:
1. dedicated log vdevs, aka "slog" (spa_log_class)
2. embedded slog metaslabs (spa_embedded_log_class)
3. other metaslabs in normal vdevs (spa_normal_class)
The space required for the embedded slog metaslabs is usually between
0.5% and 1.0% of the pool, and comes out of the existing 3.2% of "slop"
space that is not available for user data.
On an all-ssd system with 4TB storage, 87% fragmentation, 60% capacity,
and recordsize=8k, testing shows a ~50% performance increase on random
8k sync writes. On even more fragmented systems (which hit problem #3
above and call txg_wait_synced()), the performance improvement can be
arbitrarily large (>100x).
Reviewed-by: Serapheim Dimitropoulos <serapheim@delphix.com>
Reviewed-by: George Wilson <gwilson@delphix.com>
Reviewed-by: Don Brady <don.brady@delphix.com>
Reviewed-by: Mark Maybee <mark.maybee@delphix.com>
Signed-off-by: Matthew Ahrens <mahrens@delphix.com>
Closes #11389
2021-01-22 02:12:54 +03:00
|
|
|
#define ZFS_DEBUG_METASLAB_ALLOC (1 << 13)
|
2008-11-20 23:01:55 +03:00
|
|
|
|
2019-10-25 23:38:37 +03:00
|
|
|
extern void __set_error(const char *file, const char *func, int line, int err);
|
2018-10-15 22:14:22 +03:00
|
|
|
extern void __zfs_dbgmsg(char *buf);
|
|
|
|
extern void __dprintf(boolean_t dprint, const char *file, const char *func,
|
Swap DTRACE_PROBE* with Linux tracepoints
This patch leverages Linux tracepoints from within the ZFS on Linux
code base. It also refactors the debug code to bring it back in sync
with Illumos.
The information exported via tracepoints can be used for a variety of
reasons (e.g. debugging, tuning, general exploration/understanding,
etc). It is advantageous to use Linux tracepoints as the mechanism to
export this kind of information (as opposed to something else) for a
number of reasons:
* A number of external tools can make use of our tracepoints
"automatically" (e.g. perf, systemtap)
* Tracepoints are designed to be extremely cheap when disabled
* It's one of the "accepted" ways to export this kind of
information; many other kernel subsystems use tracepoints too.
Unfortunately, though, there are a few caveats as well:
* Linux tracepoints appear to only be available to GPL licensed
modules due to the way certain kernel functions are exported.
Thus, to actually make use of the tracepoints introduced by this
patch, one might have to patch and re-compile the kernel;
exporting the necessary functions to non-GPL modules.
* Prior to upstream kernel version v3.14-rc6-30-g66cc69e, Linux
tracepoints are not available for unsigned kernel modules
(tracepoints will get disabled due to the module's 'F' taint).
Thus, one either has to sign the zfs kernel module prior to
loading it, or use a kernel versioned v3.14-rc6-30-g66cc69e or
newer.
Assuming the above two requirements are satisfied, lets look at an
example of how this patch can be used and what information it exposes
(all commands run as 'root'):
# list all zfs tracepoints available
$ ls /sys/kernel/debug/tracing/events/zfs
enable filter zfs_arc__delete
zfs_arc__evict zfs_arc__hit zfs_arc__miss
zfs_l2arc__evict zfs_l2arc__hit zfs_l2arc__iodone
zfs_l2arc__miss zfs_l2arc__read zfs_l2arc__write
zfs_new_state__mfu zfs_new_state__mru
# enable all zfs tracepoints, clear the tracepoint ring buffer
$ echo 1 > /sys/kernel/debug/tracing/events/zfs/enable
$ echo 0 > /sys/kernel/debug/tracing/trace
# import zpool called 'tank', inspect tracepoint data (each line was
# truncated, they're too long for a commit message otherwise)
$ zpool import tank
$ cat /sys/kernel/debug/tracing/trace | head -n35
# tracer: nop
#
# entries-in-buffer/entries-written: 1219/1219 #P:8
#
# _-----=> irqs-off
# / _----=> need-resched
# | / _---=> hardirq/softirq
# || / _--=> preempt-depth
# ||| / delay
# TASK-PID CPU# |||| TIMESTAMP FUNCTION
# | | | |||| | |
lt-zpool-30132 [003] .... 91344.200050: zfs_arc__miss: hdr...
z_rd_int/0-30156 [003] .... 91344.200611: zfs_new_state__mru...
lt-zpool-30132 [003] .... 91344.201173: zfs_arc__miss: hdr...
z_rd_int/1-30157 [003] .... 91344.201756: zfs_new_state__mru...
lt-zpool-30132 [003] .... 91344.201795: zfs_arc__miss: hdr...
z_rd_int/2-30158 [003] .... 91344.202099: zfs_new_state__mru...
lt-zpool-30132 [003] .... 91344.202126: zfs_arc__hit: hdr ...
lt-zpool-30132 [003] .... 91344.202130: zfs_arc__hit: hdr ...
lt-zpool-30132 [003] .... 91344.202134: zfs_arc__hit: hdr ...
lt-zpool-30132 [003] .... 91344.202146: zfs_arc__miss: hdr...
z_rd_int/3-30159 [003] .... 91344.202457: zfs_new_state__mru...
lt-zpool-30132 [003] .... 91344.202484: zfs_arc__miss: hdr...
z_rd_int/4-30160 [003] .... 91344.202866: zfs_new_state__mru...
lt-zpool-30132 [003] .... 91344.202891: zfs_arc__hit: hdr ...
lt-zpool-30132 [001] .... 91344.203034: zfs_arc__miss: hdr...
z_rd_iss/1-30149 [001] .... 91344.203749: zfs_new_state__mru...
lt-zpool-30132 [001] .... 91344.203789: zfs_arc__hit: hdr ...
lt-zpool-30132 [001] .... 91344.203878: zfs_arc__miss: hdr...
z_rd_iss/3-30151 [001] .... 91344.204315: zfs_new_state__mru...
lt-zpool-30132 [001] .... 91344.204332: zfs_arc__hit: hdr ...
lt-zpool-30132 [001] .... 91344.204337: zfs_arc__hit: hdr ...
lt-zpool-30132 [001] .... 91344.204352: zfs_arc__hit: hdr ...
lt-zpool-30132 [001] .... 91344.204356: zfs_arc__hit: hdr ...
lt-zpool-30132 [001] .... 91344.204360: zfs_arc__hit: hdr ...
To highlight the kind of detailed information that is being exported
using this infrastructure, I've taken the first tracepoint line from the
output above and reformatted it such that it fits in 80 columns:
lt-zpool-30132 [003] .... 91344.200050: zfs_arc__miss:
hdr {
dva 0x1:0x40082
birth 15491
cksum0 0x163edbff3a
flags 0x640
datacnt 1
type 1
size 2048
spa 3133524293419867460
state_type 0
access 0
mru_hits 0
mru_ghost_hits 0
mfu_hits 0
mfu_ghost_hits 0
l2_hits 0
refcount 1
} bp {
dva0 0x1:0x40082
dva1 0x1:0x3000e5
dva2 0x1:0x5a006e
cksum 0x163edbff3a:0x75af30b3dd6:0x1499263ff5f2b:0x288bd118815e00
lsize 2048
} zb {
objset 0
object 0
level -1
blkid 0
}
For the specific tracepoint shown here, 'zfs_arc__miss', data is
exported detailing the arc_buf_hdr_t (hdr), blkptr_t (bp), and
zbookmark_t (zb) that caused the ARC miss (down to the exact DVA!).
This kind of precise and detailed information can be extremely valuable
when trying to answer certain kinds of questions.
For anybody unfamiliar but looking to build on this, I found the XFS
source code along with the following three web links to be extremely
helpful:
* http://lwn.net/Articles/379903/
* http://lwn.net/Articles/381064/
* http://lwn.net/Articles/383362/
I should also node the more "boring" aspects of this patch:
* The ZFS_LINUX_COMPILE_IFELSE autoconf macro was modified to
support a sixth paramter. This parameter is used to populate the
contents of the new conftest.h file. If no sixth parameter is
provided, conftest.h will be empty.
* The ZFS_LINUX_TRY_COMPILE_HEADER autoconf macro was introduced.
This macro is nearly identical to the ZFS_LINUX_TRY_COMPILE macro,
except it has support for a fifth option that is then passed as
the sixth parameter to ZFS_LINUX_COMPILE_IFELSE.
These autoconf changes were needed to test the availability of the Linux
tracepoint macros. Due to the odd nature of the Linux tracepoint macro
API, a separate ".h" must be created (the path and filename is used
internally by the kernel's define_trace.h file).
* The HAVE_DECLARE_EVENT_CLASS autoconf macro was introduced. This
is to determine if we can safely enable the Linux tracepoint
functionality. We need to selectively disable the tracepoint code
due to the kernel exporting certain functions as GPL only. Without
this check, the build process will fail at link time.
In addition, the SET_ERROR macro was modified into a tracepoint as well.
To do this, the 'sdt.h' file was moved into the 'include/sys' directory
and now contains a userspace portion and a kernel space portion. The
dprintf and zfs_dbgmsg* interfaces are now implemented as tracepoint as
well.
Signed-off-by: Prakash Surya <surya1@llnl.gov>
Signed-off-by: Ned Bass <bass6@llnl.gov>
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
2014-06-13 21:54:48 +04:00
|
|
|
int line, const char *fmt, ...);
|
2019-01-18 21:16:56 +03:00
|
|
|
|
|
|
|
/*
|
|
|
|
* Some general principles for using zfs_dbgmsg():
|
|
|
|
* 1. We don't want to pollute the log with typically-irrelevant messages,
|
|
|
|
* so don't print too many messages in the "normal" code path - O(1)
|
|
|
|
* per txg.
|
|
|
|
* 2. We want to know for sure what happened, so make the message specific
|
|
|
|
* (e.g. *which* thing am I operating on).
|
|
|
|
* 3. Do print a message when something unusual or unexpected happens
|
|
|
|
* (e.g. error cases).
|
|
|
|
* 4. Print a message when making user-initiated on-disk changes.
|
|
|
|
*
|
|
|
|
* Note that besides principle 1, another reason that we don't want to
|
|
|
|
* use zfs_dbgmsg in high-frequency routines is the potential impact
|
|
|
|
* that it can have on performance.
|
|
|
|
*/
|
2015-09-01 23:19:10 +03:00
|
|
|
#define zfs_dbgmsg(...) \
|
2018-03-22 01:37:32 +03:00
|
|
|
if (zfs_dbgmsg_enable) \
|
2018-10-15 22:14:22 +03:00
|
|
|
__dprintf(B_FALSE, __FILE__, __func__, __LINE__, __VA_ARGS__)
|
2018-03-22 01:37:32 +03:00
|
|
|
|
|
|
|
#ifdef ZFS_DEBUG
|
|
|
|
/*
|
|
|
|
* To enable this:
|
|
|
|
*
|
|
|
|
* $ echo 1 >/sys/module/zfs/parameters/zfs_flags
|
|
|
|
*/
|
|
|
|
#define dprintf(...) \
|
|
|
|
if (zfs_flags & ZFS_DEBUG_DPRINTF) \
|
2018-10-15 22:14:22 +03:00
|
|
|
__dprintf(B_TRUE, __FILE__, __func__, __LINE__, __VA_ARGS__)
|
2018-03-22 01:37:32 +03:00
|
|
|
#else
|
|
|
|
#define dprintf(...) ((void)0)
|
|
|
|
#endif /* ZFS_DEBUG */
|
2010-05-29 00:45:14 +04:00
|
|
|
|
2013-10-09 06:37:38 +04:00
|
|
|
extern void zfs_panic_recover(const char *fmt, ...);
|
|
|
|
|
|
|
|
extern void zfs_dbgmsg_init(void);
|
|
|
|
extern void zfs_dbgmsg_fini(void);
|
|
|
|
|
|
|
|
#ifndef _KERNEL
|
|
|
|
extern int dprintf_find_string(const char *string);
|
2017-01-28 23:16:43 +03:00
|
|
|
extern void zfs_dbgmsg_print(const char *tag);
|
2013-10-09 06:37:38 +04:00
|
|
|
#endif
|
|
|
|
|
|
|
|
#ifdef __cplusplus
|
|
|
|
}
|
|
|
|
#endif
|
2008-11-20 23:01:55 +03:00
|
|
|
|
|
|
|
#endif /* _SYS_ZFS_DEBUG_H */
|