mirror_zfs/module/zfs/dsl_scan.c

4427 lines
135 KiB
C
Raw Normal View History

/*
* CDDL HEADER START
*
* The contents of this file are subject to the terms of the
* Common Development and Distribution License (the "License").
* You may not use this file except in compliance with the License.
*
* You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
* or http://www.opensolaris.org/os/licensing.
* See the License for the specific language governing permissions
* and limitations under the License.
*
* When distributing Covered Code, include this CDDL HEADER in each
* file and include the License file at usr/src/OPENSOLARIS.LICENSE.
* If applicable, add the following below this CDDL HEADER, with the
* fields enclosed by brackets "[]" replaced with your own identifying
* information: Portions Copyright [yyyy] [name of copyright owner]
*
* CDDL HEADER END
*/
/*
* Copyright (c) 2008, 2010, Oracle and/or its affiliates. All rights reserved.
* Copyright (c) 2011, 2021 by Delphix. All rights reserved.
* Copyright 2016 Gary Mills
* Copyright (c) 2017, 2019, Datto Inc. All rights reserved.
* Copyright (c) 2015, Nexenta Systems, Inc. All rights reserved.
* Copyright 2019 Joyent, Inc.
*/
#include <sys/dsl_scan.h>
#include <sys/dsl_pool.h>
#include <sys/dsl_dataset.h>
#include <sys/dsl_prop.h>
#include <sys/dsl_dir.h>
#include <sys/dsl_synctask.h>
#include <sys/dnode.h>
#include <sys/dmu_tx.h>
#include <sys/dmu_objset.h>
#include <sys/arc.h>
#include <sys/zap.h>
#include <sys/zio.h>
#include <sys/zfs_context.h>
#include <sys/fs/zfs.h>
#include <sys/zfs_znode.h>
#include <sys/spa_impl.h>
#include <sys/vdev_impl.h>
#include <sys/zil_impl.h>
#include <sys/zio_checksum.h>
#include <sys/ddt.h>
#include <sys/sa.h>
#include <sys/sa_impl.h>
#include <sys/zfeature.h>
#include <sys/abd.h>
#include <sys/range_tree.h>
#ifdef _KERNEL
#include <sys/zfs_vfsops.h>
#endif
/*
* Grand theory statement on scan queue sorting
*
* Scanning is implemented by recursively traversing all indirection levels
* in an object and reading all blocks referenced from said objects. This
* results in us approximately traversing the object from lowest logical
* offset to the highest. For best performance, we would want the logical
* blocks to be physically contiguous. However, this is frequently not the
* case with pools given the allocation patterns of copy-on-write filesystems.
* So instead, we put the I/Os into a reordering queue and issue them in a
* way that will most benefit physical disks (LBA-order).
*
* Queue management:
*
* Ideally, we would want to scan all metadata and queue up all block I/O
* prior to starting to issue it, because that allows us to do an optimal
* sorting job. This can however consume large amounts of memory. Therefore
* we continuously monitor the size of the queues and constrain them to 5%
* (zfs_scan_mem_lim_fact) of physmem. If the queues grow larger than this
* limit, we clear out a few of the largest extents at the head of the queues
* to make room for more scanning. Hopefully, these extents will be fairly
* large and contiguous, allowing us to approach sequential I/O throughput
* even without a fully sorted tree.
*
* Metadata scanning takes place in dsl_scan_visit(), which is called from
* dsl_scan_sync() every spa_sync(). If we have either fully scanned all
* metadata on the pool, or we need to make room in memory because our
* queues are too large, dsl_scan_visit() is postponed and
* scan_io_queues_run() is called from dsl_scan_sync() instead. This implies
* that metadata scanning and queued I/O issuing are mutually exclusive. This
* allows us to provide maximum sequential I/O throughput for the majority of
* I/O's issued since sequential I/O performance is significantly negatively
* impacted if it is interleaved with random I/O.
*
* Implementation Notes
*
* One side effect of the queued scanning algorithm is that the scanning code
* needs to be notified whenever a block is freed. This is needed to allow
* the scanning code to remove these I/Os from the issuing queue. Additionally,
* we do not attempt to queue gang blocks to be issued sequentially since this
* is very hard to do and would have an extremely limited performance benefit.
* Instead, we simply issue gang I/Os as soon as we find them using the legacy
* algorithm.
*
* Backwards compatibility
*
* This new algorithm is backwards compatible with the legacy on-disk data
* structures (and therefore does not require a new feature flag).
* Periodically during scanning (see zfs_scan_checkpoint_intval), the scan
* will stop scanning metadata (in logical order) and wait for all outstanding
* sorted I/O to complete. Once this is done, we write out a checkpoint
* bookmark, indicating that we have scanned everything logically before it.
* If the pool is imported on a machine without the new sorting algorithm,
* the scan simply resumes from the last checkpoint using the legacy algorithm.
*/
typedef int (scan_cb_t)(dsl_pool_t *, const blkptr_t *,
const zbookmark_phys_t *);
static scan_cb_t dsl_scan_scrub_cb;
static int scan_ds_queue_compare(const void *a, const void *b);
static int scan_prefetch_queue_compare(const void *a, const void *b);
static void scan_ds_queue_clear(dsl_scan_t *scn);
static void scan_ds_prefetch_queue_clear(dsl_scan_t *scn);
static boolean_t scan_ds_queue_contains(dsl_scan_t *scn, uint64_t dsobj,
uint64_t *txg);
static void scan_ds_queue_insert(dsl_scan_t *scn, uint64_t dsobj, uint64_t txg);
static void scan_ds_queue_remove(dsl_scan_t *scn, uint64_t dsobj);
static void scan_ds_queue_sync(dsl_scan_t *scn, dmu_tx_t *tx);
static uint64_t dsl_scan_count_leaves(vdev_t *vd);
extern int zfs_vdev_async_write_active_min_dirty_percent;
/*
* By default zfs will check to ensure it is not over the hard memory
* limit before each txg. If finer-grained control of this is needed
* this value can be set to 1 to enable checking before scanning each
* block.
*/
int zfs_scan_strict_mem_lim = B_FALSE;
/*
* Maximum number of parallelly executed bytes per leaf vdev. We attempt
* to strike a balance here between keeping the vdev queues full of I/Os
* at all times and not overflowing the queues to cause long latency,
* which would cause long txg sync times. No matter what, we will not
* overload the drives with I/O, since that is protected by
* zfs_vdev_scrub_max_active.
*/
unsigned long zfs_scan_vdev_limit = 4 << 20;
int zfs_scan_issue_strategy = 0;
int zfs_scan_legacy = B_FALSE; /* don't queue & sort zios, go direct */
unsigned long zfs_scan_max_ext_gap = 2 << 20; /* in bytes */
/*
* fill_weight is non-tunable at runtime, so we copy it at module init from
* zfs_scan_fill_weight. Runtime adjustments to zfs_scan_fill_weight would
* break queue sorting.
*/
int zfs_scan_fill_weight = 3;
static uint64_t fill_weight;
/* See dsl_scan_should_clear() for details on the memory limit tunables */
uint64_t zfs_scan_mem_lim_min = 16 << 20; /* bytes */
uint64_t zfs_scan_mem_lim_soft_max = 128 << 20; /* bytes */
int zfs_scan_mem_lim_fact = 20; /* fraction of physmem */
int zfs_scan_mem_lim_soft_fact = 20; /* fraction of mem lim above */
int zfs_scrub_min_time_ms = 1000; /* min millisecs to scrub per txg */
OpenZFS 7614, 9064 - zfs device evacuation/removal OpenZFS 7614 - zfs device evacuation/removal OpenZFS 9064 - remove_mirror should wait for device removal to complete This project allows top-level vdevs to be removed from the storage pool with "zpool remove", reducing the total amount of storage in the pool. This operation copies all allocated regions of the device to be removed onto other devices, recording the mapping from old to new location. After the removal is complete, read and free operations to the removed (now "indirect") vdev must be remapped and performed at the new location on disk. The indirect mapping table is kept in memory whenever the pool is loaded, so there is minimal performance overhead when doing operations on the indirect vdev. The size of the in-memory mapping table will be reduced when its entries become "obsolete" because they are no longer used by any block pointers in the pool. An entry becomes obsolete when all the blocks that use it are freed. An entry can also become obsolete when all the snapshots that reference it are deleted, and the block pointers that reference it have been "remapped" in all filesystems/zvols (and clones). Whenever an indirect block is written, all the block pointers in it will be "remapped" to their new (concrete) locations if possible. This process can be accelerated by using the "zfs remap" command to proactively rewrite all indirect blocks that reference indirect (removed) vdevs. Note that when a device is removed, we do not verify the checksum of the data that is copied. This makes the process much faster, but if it were used on redundant vdevs (i.e. mirror or raidz vdevs), it would be possible to copy the wrong data, when we have the correct data on e.g. the other side of the mirror. At the moment, only mirrors and simple top-level vdevs can be removed and no removal is allowed if any of the top-level vdevs are raidz. Porting Notes: * Avoid zero-sized kmem_alloc() in vdev_compact_children(). The device evacuation code adds a dependency that vdev_compact_children() be able to properly empty the vdev_child array by setting it to NULL and zeroing vdev_children. Under Linux, kmem_alloc() and related functions return a sentinel pointer rather than NULL for zero-sized allocations. * Remove comment regarding "mpt" driver where zfs_remove_max_segment is initialized to SPA_MAXBLOCKSIZE. Change zfs_condense_indirect_commit_entry_delay_ticks to zfs_condense_indirect_commit_entry_delay_ms for consistency with most other tunables in which delays are specified in ms. * ZTS changes: Use set_tunable rather than mdb Use zpool sync as appropriate Use sync_pool instead of sync Kill jobs during test_removal_with_operation to allow unmount/export Don't add non-disk names such as "mirror" or "raidz" to $DISKS Use $TEST_BASE_DIR instead of /tmp Increase HZ from 100 to 1000 which is more common on Linux removal_multiple_indirection.ksh Reduce iterations in order to not time out on the code coverage builders. removal_resume_export: Functionally, the test case is correct but there exists a race where the kernel thread hasn't been fully started yet and is not visible. Wait for up to 1 second for the removal thread to be started before giving up on it. Also, increase the amount of data copied in order that the removal not finish before the export has a chance to fail. * MMP compatibility, the concept of concrete versus non-concrete devices has slightly changed the semantics of vdev_writeable(). Update mmp_random_leaf_impl() accordingly. * Updated dbuf_remap() to handle the org.zfsonlinux:large_dnode pool feature which is not supported by OpenZFS. * Added support for new vdev removal tracepoints. * Test cases removal_with_zdb and removal_condense_export have been intentionally disabled. When run manually they pass as intended, but when running in the automated test environment they produce unreliable results on the latest Fedora release. They may work better once the upstream pool import refectoring is merged into ZoL at which point they will be re-enabled. Authored by: Matthew Ahrens <mahrens@delphix.com> Reviewed-by: Alex Reece <alex@delphix.com> Reviewed-by: George Wilson <george.wilson@delphix.com> Reviewed-by: John Kennedy <john.kennedy@delphix.com> Reviewed-by: Prakash Surya <prakash.surya@delphix.com> Reviewed by: Richard Laager <rlaager@wiktel.com> Reviewed by: Tim Chase <tim@chase2k.com> Reviewed by: Brian Behlendorf <behlendorf1@llnl.gov> Approved by: Garrett D'Amore <garrett@damore.org> Ported-by: Tim Chase <tim@chase2k.com> Signed-off-by: Tim Chase <tim@chase2k.com> OpenZFS-issue: https://www.illumos.org/issues/7614 OpenZFS-commit: https://github.com/openzfs/openzfs/commit/f539f1eb Closes #6900
2016-09-22 19:30:13 +03:00
int zfs_obsolete_min_time_ms = 500; /* min millisecs to obsolete per txg */
int zfs_free_min_time_ms = 1000; /* min millisecs to free per txg */
int zfs_resilver_min_time_ms = 3000; /* min millisecs to resilver per txg */
int zfs_scan_checkpoint_intval = 7200; /* in seconds */
int zfs_scan_suspend_progress = 0; /* set to prevent scans from progressing */
Add missing ZFS tunables This commit adds module options for all existing zfs tunables. Ideally the average user should never need to modify any of these values. However, in practice sometimes you do need to tweak these values for one reason or another. In those cases it's nice not to have to resort to rebuilding from source. All tunables are visable to modinfo and the list is as follows: $ modinfo module/zfs/zfs.ko filename: module/zfs/zfs.ko license: CDDL author: Sun Microsystems/Oracle, Lawrence Livermore National Laboratory description: ZFS srcversion: 8EAB1D71DACE05B5AA61567 depends: spl,znvpair,zcommon,zunicode,zavl vermagic: 2.6.32-131.0.5.el6.x86_64 SMP mod_unload modversions parm: zvol_major:Major number for zvol device (uint) parm: zvol_threads:Number of threads for zvol device (uint) parm: zio_injection_enabled:Enable fault injection (int) parm: zio_bulk_flags:Additional flags to pass to bulk buffers (int) parm: zio_delay_max:Max zio millisec delay before posting event (int) parm: zio_requeue_io_start_cut_in_line:Prioritize requeued I/O (bool) parm: zil_replay_disable:Disable intent logging replay (int) parm: zfs_nocacheflush:Disable cache flushes (bool) parm: zfs_read_chunk_size:Bytes to read per chunk (long) parm: zfs_vdev_max_pending:Max pending per-vdev I/Os (int) parm: zfs_vdev_min_pending:Min pending per-vdev I/Os (int) parm: zfs_vdev_aggregation_limit:Max vdev I/O aggregation size (int) parm: zfs_vdev_time_shift:Deadline time shift for vdev I/O (int) parm: zfs_vdev_ramp_rate:Exponential I/O issue ramp-up rate (int) parm: zfs_vdev_read_gap_limit:Aggregate read I/O over gap (int) parm: zfs_vdev_write_gap_limit:Aggregate write I/O over gap (int) parm: zfs_vdev_scheduler:I/O scheduler (charp) parm: zfs_vdev_cache_max:Inflate reads small than max (int) parm: zfs_vdev_cache_size:Total size of the per-disk cache (int) parm: zfs_vdev_cache_bshift:Shift size to inflate reads too (int) parm: zfs_scrub_limit:Max scrub/resilver I/O per leaf vdev (int) parm: zfs_recover:Set to attempt to recover from fatal errors (int) parm: spa_config_path:SPA config file (/etc/zfs/zpool.cache) (charp) parm: zfs_zevent_len_max:Max event queue length (int) parm: zfs_zevent_cols:Max event column width (int) parm: zfs_zevent_console:Log events to the console (int) parm: zfs_top_maxinflight:Max I/Os per top-level (int) parm: zfs_resilver_delay:Number of ticks to delay resilver (int) parm: zfs_scrub_delay:Number of ticks to delay scrub (int) parm: zfs_scan_idle:Idle window in clock ticks (int) parm: zfs_scan_min_time_ms:Min millisecs to scrub per txg (int) parm: zfs_free_min_time_ms:Min millisecs to free per txg (int) parm: zfs_resilver_min_time_ms:Min millisecs to resilver per txg (int) parm: zfs_no_scrub_io:Set to disable scrub I/O (bool) parm: zfs_no_scrub_prefetch:Set to disable scrub prefetching (bool) parm: zfs_txg_timeout:Max seconds worth of delta per txg (int) parm: zfs_no_write_throttle:Disable write throttling (int) parm: zfs_write_limit_shift:log2(fraction of memory) per txg (int) parm: zfs_txg_synctime_ms:Target milliseconds between tgx sync (int) parm: zfs_write_limit_min:Min tgx write limit (ulong) parm: zfs_write_limit_max:Max tgx write limit (ulong) parm: zfs_write_limit_inflated:Inflated tgx write limit (ulong) parm: zfs_write_limit_override:Override tgx write limit (ulong) parm: zfs_prefetch_disable:Disable all ZFS prefetching (int) parm: zfetch_max_streams:Max number of streams per zfetch (uint) parm: zfetch_min_sec_reap:Min time before stream reclaim (uint) parm: zfetch_block_cap:Max number of blocks to fetch at a time (uint) parm: zfetch_array_rd_sz:Number of bytes in a array_read (ulong) parm: zfs_pd_blks_max:Max number of blocks to prefetch (int) parm: zfs_dedup_prefetch:Enable prefetching dedup-ed blks (int) parm: zfs_arc_min:Min arc size (ulong) parm: zfs_arc_max:Max arc size (ulong) parm: zfs_arc_meta_limit:Meta limit for arc size (ulong) parm: zfs_arc_reduce_dnlc_percent:Meta reclaim percentage (int) parm: zfs_arc_grow_retry:Seconds before growing arc size (int) parm: zfs_arc_shrink_shift:log2(fraction of arc to reclaim) (int) parm: zfs_arc_p_min_shift:arc_c shift to calc min/max arc_p (int)
2011-05-04 02:09:28 +04:00
int zfs_no_scrub_io = B_FALSE; /* set to disable scrub i/o */
int zfs_no_scrub_prefetch = B_FALSE; /* set to disable scrub prefetch */
enum ddt_class zfs_scrub_ddt_class_max = DDT_CLASS_DUPLICATE;
/* max number of blocks to free in a single TXG */
unsigned long zfs_async_block_max_blocks = ULONG_MAX;
/* max number of dedup blocks to free in a single TXG */
unsigned long zfs_max_async_dedup_frees = 100000;
int zfs_resilver_disable_defer = 0; /* set to disable resilver deferring */
/*
* We wait a few txgs after importing a pool to begin scanning so that
* the import / mounting code isn't held up by scrub / resilver IO.
* Unfortunately, it is a bit difficult to determine exactly how long
* this will take since userspace will trigger fs mounts asynchronously
* and the kernel will create zvol minors asynchronously. As a result,
* the value provided here is a bit arbitrary, but represents a
* reasonable estimate of how many txgs it will take to finish fully
* importing a pool
*/
#define SCAN_IMPORT_WAIT_TXGS 5
#define DSL_SCAN_IS_SCRUB_RESILVER(scn) \
((scn)->scn_phys.scn_func == POOL_SCAN_SCRUB || \
(scn)->scn_phys.scn_func == POOL_SCAN_RESILVER)
/*
* Enable/disable the processing of the free_bpobj object.
*/
int zfs_free_bpobj_enabled = 1;
/* the order has to match pool_scan_type */
static scan_cb_t *scan_funcs[POOL_SCAN_FUNCS] = {
NULL,
dsl_scan_scrub_cb, /* POOL_SCAN_SCRUB */
dsl_scan_scrub_cb, /* POOL_SCAN_RESILVER */
};
/* In core node for the scn->scn_queue. Represents a dataset to be scanned */
typedef struct {
uint64_t sds_dsobj;
uint64_t sds_txg;
avl_node_t sds_node;
} scan_ds_t;
/*
* This controls what conditions are placed on dsl_scan_sync_state():
* SYNC_OPTIONAL) write out scn_phys iff scn_bytes_pending == 0
* SYNC_MANDATORY) write out scn_phys always. scn_bytes_pending must be 0.
* SYNC_CACHED) if scn_bytes_pending == 0, write out scn_phys. Otherwise
* write out the scn_phys_cached version.
* See dsl_scan_sync_state for details.
*/
typedef enum {
SYNC_OPTIONAL,
SYNC_MANDATORY,
SYNC_CACHED
} state_sync_type_t;
/*
* This struct represents the minimum information needed to reconstruct a
* zio for sequential scanning. This is useful because many of these will
* accumulate in the sequential IO queues before being issued, so saving
* memory matters here.
*/
typedef struct scan_io {
/* fields from blkptr_t */
uint64_t sio_blk_prop;
uint64_t sio_phys_birth;
uint64_t sio_birth;
zio_cksum_t sio_cksum;
uint32_t sio_nr_dvas;
/* fields from zio_t */
uint32_t sio_flags;
zbookmark_phys_t sio_zb;
/* members for queue sorting */
union {
avl_node_t sio_addr_node; /* link into issuing queue */
list_node_t sio_list_node; /* link for issuing to disk */
} sio_nodes;
/*
* There may be up to SPA_DVAS_PER_BP DVAs here from the bp,
* depending on how many were in the original bp. Only the
* first DVA is really used for sorting and issuing purposes.
* The other DVAs (if provided) simply exist so that the zio
* layer can find additional copies to repair from in the
* event of an error. This array must go at the end of the
* struct to allow this for the variable number of elements.
*/
dva_t sio_dva[0];
} scan_io_t;
#define SIO_SET_OFFSET(sio, x) DVA_SET_OFFSET(&(sio)->sio_dva[0], x)
#define SIO_SET_ASIZE(sio, x) DVA_SET_ASIZE(&(sio)->sio_dva[0], x)
#define SIO_GET_OFFSET(sio) DVA_GET_OFFSET(&(sio)->sio_dva[0])
#define SIO_GET_ASIZE(sio) DVA_GET_ASIZE(&(sio)->sio_dva[0])
#define SIO_GET_END_OFFSET(sio) \
(SIO_GET_OFFSET(sio) + SIO_GET_ASIZE(sio))
#define SIO_GET_MUSED(sio) \
(sizeof (scan_io_t) + ((sio)->sio_nr_dvas * sizeof (dva_t)))
struct dsl_scan_io_queue {
dsl_scan_t *q_scn; /* associated dsl_scan_t */
vdev_t *q_vd; /* top-level vdev that this queue represents */
/* trees used for sorting I/Os and extents of I/Os */
range_tree_t *q_exts_by_addr;
Reduce loaded range tree memory usage This patch implements a new tree structure for ZFS, and uses it to store range trees more efficiently. The new structure is approximately a B-tree, though there are some small differences from the usual characterizations. The tree has core nodes and leaf nodes; each contain data elements, which the elements in the core nodes acting as separators between its children. The difference between core and leaf nodes is that the core nodes have an array of children, while leaf nodes don't. Every node in the tree may be only partially full; in most cases, they are all at least 50% full (in terms of element count) except for the root node, which can be less full. Underfull nodes will steal from their neighbors or merge to remain full enough, while overfull nodes will split in two. The data elements are contained in tree-controlled buffers; they are copied into these on insertion, and overwritten on deletion. This means that the elements are not independently allocated, which reduces overhead, but also means they can't be shared between trees (and also that pointers to them are only valid until a side-effectful tree operation occurs). The overhead varies based on how dense the tree is, but is usually on the order of about 50% of the element size; the per-node overheads are very small, and so don't make a significant difference. The trees can accept arbitrary records; they accept a size and a comparator to allow them to be used for a variety of purposes. The new trees replace the AVL trees used in the range trees today. Currently, the range_seg_t structure contains three 8 byte integers of payload and two 24 byte avl_tree_node_ts to handle its storage in both an offset-sorted tree and a size-sorted tree (total size: 64 bytes). In the new model, the range seg structures are usually two 4 byte integers, but a separate one needs to exist for the size-sorted and offset-sorted tree. Between the raw size, the 50% overhead, and the double storage, the new btrees are expected to use 8*1.5*2 = 24 bytes per record, or 33.3% as much memory as the AVL trees (this is for the purposes of storing metaslab range trees; for other purposes, like scrubs, they use ~50% as much memory). We reduced the size of the payload in the range segments by teaching range trees about starting offsets and shifts; since metaslabs have a fixed starting offset, and they all operate in terms of disk sectors, we can store the ranges using 4-byte integers as long as the size of the metaslab divided by the sector size is less than 2^32. For 512-byte sectors, this is a 2^41 (or 2TB) metaslab, which with the default settings corresponds to a 256PB disk. 4k sector disks can handle metaslabs up to 2^46 bytes, or 2^63 byte disks. Since we do not anticipate disks of this size in the near future, there should be almost no cases where metaslabs need 64-byte integers to store their ranges. We do still have the capability to store 64-byte integer ranges to account for cases where we are storing per-vdev (or per-dnode) trees, which could reasonably go above the limits discussed. We also do not store fill information in the compact version of the node, since it is only used for sorted scrub. We also optimized the metaslab loading process in various other ways to offset some inefficiencies in the btree model. While individual operations (find, insert, remove_from) are faster for the btree than they are for the avl tree, remove usually requires a find operation, while in the AVL tree model the element itself suffices. Some clever changes actually caused an overall speedup in metaslab loading; we use approximately 40% less cpu to load metaslabs in our tests on Illumos. Another memory and performance optimization was achieved by changing what is stored in the size-sorted trees. When a disk is heavily fragmented, the df algorithm used by default in ZFS will almost always find a number of small regions in its initial cursor-based search; it will usually only fall back to the size-sorted tree to find larger regions. If we increase the size of the cursor-based search slightly, and don't store segments that are smaller than a tunable size floor in the size-sorted tree, we can further cut memory usage down to below 20% of what the AVL trees store. This also results in further reductions in CPU time spent loading metaslabs. The 16KiB size floor was chosen because it results in substantial memory usage reduction while not usually resulting in situations where we can't find an appropriate chunk with the cursor and are forced to use an oversized chunk from the size-sorted tree. In addition, even if we do have to use an oversized chunk from the size-sorted tree, the chunk would be too small to use for ZIL allocations, so it isn't as big of a loss as it might otherwise be. And often, more small allocations will follow the initial one, and the cursor search will now find the remainder of the chunk we didn't use all of and use it for subsequent allocations. Practical testing has shown little or no change in fragmentation as a result of this change. If the size-sorted tree becomes empty while the offset sorted one still has entries, it will load all the entries from the offset sorted tree and disregard the size floor until it is unloaded again. This operation occurs rarely with the default setting, only on incredibly thoroughly fragmented pools. There are some other small changes to zdb to teach it to handle btrees, but nothing major. Reviewed-by: George Wilson <gwilson@delphix.com> Reviewed-by: Matt Ahrens <matt@delphix.com> Reviewed by: Sebastien Roy seb@delphix.com Reviewed-by: Igor Kozhukhov <igor@dilos.org> Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov> Signed-off-by: Paul Dagnelie <pcd@delphix.com> Closes #9181
2019-10-09 20:36:03 +03:00
zfs_btree_t q_exts_by_size;
avl_tree_t q_sios_by_addr;
uint64_t q_sio_memused;
/* members for zio rate limiting */
uint64_t q_maxinflight_bytes;
uint64_t q_inflight_bytes;
kcondvar_t q_zio_cv; /* used under vd->vdev_scan_io_queue_lock */
/* per txg statistics */
uint64_t q_total_seg_size_this_txg;
uint64_t q_segs_this_txg;
uint64_t q_total_zio_size_this_txg;
uint64_t q_zios_this_txg;
};
/* private data for dsl_scan_prefetch_cb() */
typedef struct scan_prefetch_ctx {
zfs_refcount_t spc_refcnt; /* refcount for memory management */
dsl_scan_t *spc_scn; /* dsl_scan_t for the pool */
boolean_t spc_root; /* is this prefetch for an objset? */
uint8_t spc_indblkshift; /* dn_indblkshift of current dnode */
uint16_t spc_datablkszsec; /* dn_idatablkszsec of current dnode */
} scan_prefetch_ctx_t;
/* private data for dsl_scan_prefetch() */
typedef struct scan_prefetch_issue_ctx {
avl_node_t spic_avl_node; /* link into scn->scn_prefetch_queue */
scan_prefetch_ctx_t *spic_spc; /* spc for the callback */
blkptr_t spic_bp; /* bp to prefetch */
zbookmark_phys_t spic_zb; /* bookmark to prefetch */
} scan_prefetch_issue_ctx_t;
static void scan_exec_io(dsl_pool_t *dp, const blkptr_t *bp, int zio_flags,
const zbookmark_phys_t *zb, dsl_scan_io_queue_t *queue);
static void scan_io_queue_insert_impl(dsl_scan_io_queue_t *queue,
scan_io_t *sio);
static dsl_scan_io_queue_t *scan_io_queue_create(vdev_t *vd);
static void scan_io_queues_destroy(dsl_scan_t *scn);
static kmem_cache_t *sio_cache[SPA_DVAS_PER_BP];
/* sio->sio_nr_dvas must be set so we know which cache to free from */
static void
sio_free(scan_io_t *sio)
{
ASSERT3U(sio->sio_nr_dvas, >, 0);
ASSERT3U(sio->sio_nr_dvas, <=, SPA_DVAS_PER_BP);
kmem_cache_free(sio_cache[sio->sio_nr_dvas - 1], sio);
}
/* It is up to the caller to set sio->sio_nr_dvas for freeing */
static scan_io_t *
sio_alloc(unsigned short nr_dvas)
{
ASSERT3U(nr_dvas, >, 0);
ASSERT3U(nr_dvas, <=, SPA_DVAS_PER_BP);
return (kmem_cache_alloc(sio_cache[nr_dvas - 1], KM_SLEEP));
}
void
scan_init(void)
{
/*
* This is used in ext_size_compare() to weight segments
* based on how sparse they are. This cannot be changed
* mid-scan and the tree comparison functions don't currently
* have a mechanism for passing additional context to the
* compare functions. Thus we store this value globally and
* we only allow it to be set at module initialization time
*/
fill_weight = zfs_scan_fill_weight;
for (int i = 0; i < SPA_DVAS_PER_BP; i++) {
char name[36];
(void) snprintf(name, sizeof (name), "sio_cache_%d", i);
sio_cache[i] = kmem_cache_create(name,
(sizeof (scan_io_t) + ((i + 1) * sizeof (dva_t))),
0, NULL, NULL, NULL, NULL, NULL, 0);
}
}
void
scan_fini(void)
{
for (int i = 0; i < SPA_DVAS_PER_BP; i++) {
kmem_cache_destroy(sio_cache[i]);
}
}
static inline boolean_t
dsl_scan_is_running(const dsl_scan_t *scn)
{
return (scn->scn_phys.scn_state == DSS_SCANNING);
}
boolean_t
dsl_scan_resilvering(dsl_pool_t *dp)
{
return (dsl_scan_is_running(dp->dp_scan) &&
dp->dp_scan->scn_phys.scn_func == POOL_SCAN_RESILVER);
}
static inline void
sio2bp(const scan_io_t *sio, blkptr_t *bp)
{
bzero(bp, sizeof (*bp));
bp->blk_prop = sio->sio_blk_prop;
bp->blk_phys_birth = sio->sio_phys_birth;
bp->blk_birth = sio->sio_birth;
bp->blk_fill = 1; /* we always only work with data pointers */
bp->blk_cksum = sio->sio_cksum;
ASSERT3U(sio->sio_nr_dvas, >, 0);
ASSERT3U(sio->sio_nr_dvas, <=, SPA_DVAS_PER_BP);
bcopy(sio->sio_dva, bp->blk_dva, sio->sio_nr_dvas * sizeof (dva_t));
}
static inline void
bp2sio(const blkptr_t *bp, scan_io_t *sio, int dva_i)
{
sio->sio_blk_prop = bp->blk_prop;
sio->sio_phys_birth = bp->blk_phys_birth;
sio->sio_birth = bp->blk_birth;
sio->sio_cksum = bp->blk_cksum;
sio->sio_nr_dvas = BP_GET_NDVAS(bp);
/*
* Copy the DVAs to the sio. We need all copies of the block so
* that the self healing code can use the alternate copies if the
* first is corrupted. We want the DVA at index dva_i to be first
* in the sio since this is the primary one that we want to issue.
*/
for (int i = 0, j = dva_i; i < sio->sio_nr_dvas; i++, j++) {
sio->sio_dva[i] = bp->blk_dva[j % sio->sio_nr_dvas];
}
}
int
dsl_scan_init(dsl_pool_t *dp, uint64_t txg)
{
int err;
dsl_scan_t *scn;
spa_t *spa = dp->dp_spa;
uint64_t f;
scn = dp->dp_scan = kmem_zalloc(sizeof (dsl_scan_t), KM_SLEEP);
scn->scn_dp = dp;
/*
* It's possible that we're resuming a scan after a reboot so
* make sure that the scan_async_destroying flag is initialized
* appropriately.
*/
ASSERT(!scn->scn_async_destroying);
scn->scn_async_destroying = spa_feature_is_active(dp->dp_spa,
SPA_FEATURE_ASYNC_DESTROY);
/*
* Calculate the max number of in-flight bytes for pool-wide
* scanning operations (minimum 1MB). Limits for the issuing
* phase are done per top-level vdev and are handled separately.
*/
scn->scn_maxinflight_bytes = MAX(zfs_scan_vdev_limit *
dsl_scan_count_leaves(spa->spa_root_vdev), 1ULL << 20);
avl_create(&scn->scn_queue, scan_ds_queue_compare, sizeof (scan_ds_t),
offsetof(scan_ds_t, sds_node));
avl_create(&scn->scn_prefetch_queue, scan_prefetch_queue_compare,
sizeof (scan_prefetch_issue_ctx_t),
offsetof(scan_prefetch_issue_ctx_t, spic_avl_node));
err = zap_lookup(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
"scrub_func", sizeof (uint64_t), 1, &f);
if (err == 0) {
/*
* There was an old-style scrub in progress. Restart a
* new-style scrub from the beginning.
*/
scn->scn_restart_txg = txg;
zfs_dbgmsg("old-style scrub was in progress; "
"restarting new-style scrub in txg %llu",
(longlong_t)scn->scn_restart_txg);
/*
* Load the queue obj from the old location so that it
* can be freed by dsl_scan_done().
*/
(void) zap_lookup(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
"scrub_queue", sizeof (uint64_t), 1,
&scn->scn_phys.scn_queue_obj);
} else {
err = zap_lookup(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
DMU_POOL_SCAN, sizeof (uint64_t), SCAN_PHYS_NUMINTS,
&scn->scn_phys);
Add erratum for issue #2094 ZoL commit 1421c89 unintentionally changed the disk format in a forward- compatible, but not backward compatible way. This was accomplished by adding an entry to zbookmark_t, which is included in a couple of on-disk structures. That lead to the creation of pools with incorrect dsl_scan_phys_t objects that could only be imported by versions of ZoL containing that commit. Such pools cannot be imported by other versions of ZFS or past versions of ZoL. The additional field has been removed by the previous commit. However, affected pools must be imported and scrubbed using a version of ZoL with this commit applied. This will return the pools to a state in which they may be imported by other implementations. The 'zpool import' or 'zpool status' command can be used to determine if a pool is impacted. A message similar to one of the following means your pool must be scrubbed to restore compatibility. $ zpool import pool: zol-0.6.2-173 id: 1165955789558693437 state: ONLINE status: Errata #1 detected. action: The pool can be imported using its name or numeric identifier, however there is a compatibility issue which should be corrected by running 'zpool scrub' see: http://zfsonlinux.org/msg/ZFS-8000-ER config: ... $ zpool status pool: zol-0.6.2-173 state: ONLINE scan: pool compatibility issue detected. see: https://github.com/zfsonlinux/zfs/issues/2094 action: To correct the issue run 'zpool scrub'. config: ... If there was an async destroy in progress 'zpool import' will prevent the pool from being imported. Further advice on how to proceed will be provided by the error message as follows. $ zpool import pool: zol-0.6.2-173 id: 1165955789558693437 state: ONLINE status: Errata #2 detected. action: The pool can not be imported with this version of ZFS due to an active asynchronous destroy. Revert to an earlier version and allow the destroy to complete before updating. see: http://zfsonlinux.org/msg/ZFS-8000-ER config: ... Pools affected by the damaged dsl_scan_phys_t can be detected prior to an upgrade by running the following command as root: zdb -dddd poolname 1 | grep -P '^\t\tscan = ' | sed -e 's;scan = ;;' | wc -w Note that `poolname` must be replaced with the name of the pool you wish to check. A value of 25 indicates the dsl_scan_phys_t has been damaged. A value of 24 indicates that the dsl_scan_phys_t is normal. A value of 0 indicates that there has never been a scrub run on the pool. The regression caused by the change to zbookmark_t never made it into a tagged release, Gentoo backports, Ubuntu, Debian, Fedora, or EPEL stable respositorys. Only those using the HEAD version directly from Github after the 0.6.2 but before the 0.6.3 tag are affected. This patch does have one limitation that should be mentioned. It will not detect errata #2 on a pool unless errata #1 is also present. It expected this will not be a significant problem because pools impacted by errata #2 have a high probably of being impacted by errata #1. End users can ensure they do no hit this unlikely case by waiting for all asynchronous destroy operations to complete before updating ZoL. The presence of any background destroys on any imported pools can be checked by running `zpool get freeing` as root. This will display a non-zero value for any pool with an active asynchronous destroy. Lastly, it is expected that no user data has been lost as a result of this erratum. Original-patch-by: Tim Chase <tim@chase2k.com> Reworked-by: Brian Behlendorf <behlendorf1@llnl.gov> Signed-off-by: Tim Chase <tim@chase2k.com> Signed-off-by: Richard Yao <ryao@gentoo.org> Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov> Issue #2094
2014-02-21 08:28:33 +04:00
/*
* Detect if the pool contains the signature of #2094. If it
* does properly update the scn->scn_phys structure and notify
* the administrator by setting an errata for the pool.
*/
if (err == EOVERFLOW) {
uint64_t zaptmp[SCAN_PHYS_NUMINTS + 1];
VERIFY3S(SCAN_PHYS_NUMINTS, ==, 24);
VERIFY3S(offsetof(dsl_scan_phys_t, scn_flags), ==,
(23 * sizeof (uint64_t)));
err = zap_lookup(dp->dp_meta_objset,
DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_SCAN,
sizeof (uint64_t), SCAN_PHYS_NUMINTS + 1, &zaptmp);
if (err == 0) {
uint64_t overflow = zaptmp[SCAN_PHYS_NUMINTS];
if (overflow & ~DSL_SCAN_FLAGS_MASK ||
scn->scn_async_destroying) {
spa->spa_errata =
ZPOOL_ERRATA_ZOL_2094_ASYNC_DESTROY;
return (EOVERFLOW);
Add erratum for issue #2094 ZoL commit 1421c89 unintentionally changed the disk format in a forward- compatible, but not backward compatible way. This was accomplished by adding an entry to zbookmark_t, which is included in a couple of on-disk structures. That lead to the creation of pools with incorrect dsl_scan_phys_t objects that could only be imported by versions of ZoL containing that commit. Such pools cannot be imported by other versions of ZFS or past versions of ZoL. The additional field has been removed by the previous commit. However, affected pools must be imported and scrubbed using a version of ZoL with this commit applied. This will return the pools to a state in which they may be imported by other implementations. The 'zpool import' or 'zpool status' command can be used to determine if a pool is impacted. A message similar to one of the following means your pool must be scrubbed to restore compatibility. $ zpool import pool: zol-0.6.2-173 id: 1165955789558693437 state: ONLINE status: Errata #1 detected. action: The pool can be imported using its name or numeric identifier, however there is a compatibility issue which should be corrected by running 'zpool scrub' see: http://zfsonlinux.org/msg/ZFS-8000-ER config: ... $ zpool status pool: zol-0.6.2-173 state: ONLINE scan: pool compatibility issue detected. see: https://github.com/zfsonlinux/zfs/issues/2094 action: To correct the issue run 'zpool scrub'. config: ... If there was an async destroy in progress 'zpool import' will prevent the pool from being imported. Further advice on how to proceed will be provided by the error message as follows. $ zpool import pool: zol-0.6.2-173 id: 1165955789558693437 state: ONLINE status: Errata #2 detected. action: The pool can not be imported with this version of ZFS due to an active asynchronous destroy. Revert to an earlier version and allow the destroy to complete before updating. see: http://zfsonlinux.org/msg/ZFS-8000-ER config: ... Pools affected by the damaged dsl_scan_phys_t can be detected prior to an upgrade by running the following command as root: zdb -dddd poolname 1 | grep -P '^\t\tscan = ' | sed -e 's;scan = ;;' | wc -w Note that `poolname` must be replaced with the name of the pool you wish to check. A value of 25 indicates the dsl_scan_phys_t has been damaged. A value of 24 indicates that the dsl_scan_phys_t is normal. A value of 0 indicates that there has never been a scrub run on the pool. The regression caused by the change to zbookmark_t never made it into a tagged release, Gentoo backports, Ubuntu, Debian, Fedora, or EPEL stable respositorys. Only those using the HEAD version directly from Github after the 0.6.2 but before the 0.6.3 tag are affected. This patch does have one limitation that should be mentioned. It will not detect errata #2 on a pool unless errata #1 is also present. It expected this will not be a significant problem because pools impacted by errata #2 have a high probably of being impacted by errata #1. End users can ensure they do no hit this unlikely case by waiting for all asynchronous destroy operations to complete before updating ZoL. The presence of any background destroys on any imported pools can be checked by running `zpool get freeing` as root. This will display a non-zero value for any pool with an active asynchronous destroy. Lastly, it is expected that no user data has been lost as a result of this erratum. Original-patch-by: Tim Chase <tim@chase2k.com> Reworked-by: Brian Behlendorf <behlendorf1@llnl.gov> Signed-off-by: Tim Chase <tim@chase2k.com> Signed-off-by: Richard Yao <ryao@gentoo.org> Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov> Issue #2094
2014-02-21 08:28:33 +04:00
}
bcopy(zaptmp, &scn->scn_phys,
SCAN_PHYS_NUMINTS * sizeof (uint64_t));
scn->scn_phys.scn_flags = overflow;
/* Required scrub already in progress. */
if (scn->scn_phys.scn_state == DSS_FINISHED ||
scn->scn_phys.scn_state == DSS_CANCELED)
spa->spa_errata =
ZPOOL_ERRATA_ZOL_2094_SCRUB;
}
}
if (err == ENOENT)
return (0);
else if (err)
return (err);
/*
* We might be restarting after a reboot, so jump the issued
* counter to how far we've scanned. We know we're consistent
* up to here.
*/
scn->scn_issued_before_pass = scn->scn_phys.scn_examined;
if (dsl_scan_is_running(scn) &&
spa_prev_software_version(dp->dp_spa) < SPA_VERSION_SCAN) {
/*
* A new-type scrub was in progress on an old
* pool, and the pool was accessed by old
* software. Restart from the beginning, since
* the old software may have changed the pool in
* the meantime.
*/
scn->scn_restart_txg = txg;
zfs_dbgmsg("new-style scrub was modified "
"by old software; restarting in txg %llu",
(longlong_t)scn->scn_restart_txg);
} else if (dsl_scan_resilvering(dp)) {
/*
* If a resilver is in progress and there are already
* errors, restart it instead of finishing this scan and
* then restarting it. If there haven't been any errors
* then remember that the incore DTL is valid.
*/
if (scn->scn_phys.scn_errors > 0) {
scn->scn_restart_txg = txg;
zfs_dbgmsg("resilver can't excise DTL_MISSING "
"when finished; restarting in txg %llu",
(u_longlong_t)scn->scn_restart_txg);
} else {
/* it's safe to excise DTL when finished */
spa->spa_scrub_started = B_TRUE;
}
}
}
bcopy(&scn->scn_phys, &scn->scn_phys_cached, sizeof (scn->scn_phys));
/* reload the queue into the in-core state */
if (scn->scn_phys.scn_queue_obj != 0) {
zap_cursor_t zc;
zap_attribute_t za;
for (zap_cursor_init(&zc, dp->dp_meta_objset,
scn->scn_phys.scn_queue_obj);
zap_cursor_retrieve(&zc, &za) == 0;
(void) zap_cursor_advance(&zc)) {
scan_ds_queue_insert(scn,
zfs_strtonum(za.za_name, NULL),
za.za_first_integer);
}
zap_cursor_fini(&zc);
}
spa_scan_stat_init(spa);
return (0);
}
void
dsl_scan_fini(dsl_pool_t *dp)
{
if (dp->dp_scan != NULL) {
dsl_scan_t *scn = dp->dp_scan;
if (scn->scn_taskq != NULL)
taskq_destroy(scn->scn_taskq);
scan_ds_queue_clear(scn);
avl_destroy(&scn->scn_queue);
scan_ds_prefetch_queue_clear(scn);
avl_destroy(&scn->scn_prefetch_queue);
kmem_free(dp->dp_scan, sizeof (dsl_scan_t));
dp->dp_scan = NULL;
}
}
static boolean_t
dsl_scan_restarting(dsl_scan_t *scn, dmu_tx_t *tx)
{
return (scn->scn_restart_txg != 0 &&
scn->scn_restart_txg <= tx->tx_txg);
}
boolean_t
dsl_scan_resilver_scheduled(dsl_pool_t *dp)
{
return ((dp->dp_scan && dp->dp_scan->scn_restart_txg != 0) ||
(spa_async_tasks(dp->dp_spa) & SPA_ASYNC_RESILVER));
}
boolean_t
dsl_scan_scrubbing(const dsl_pool_t *dp)
{
dsl_scan_phys_t *scn_phys = &dp->dp_scan->scn_phys;
return (scn_phys->scn_state == DSS_SCANNING &&
scn_phys->scn_func == POOL_SCAN_SCRUB);
}
boolean_t
dsl_scan_is_paused_scrub(const dsl_scan_t *scn)
{
return (dsl_scan_scrubbing(scn->scn_dp) &&
scn->scn_phys.scn_flags & DSF_SCRUB_PAUSED);
}
/*
* Writes out a persistent dsl_scan_phys_t record to the pool directory.
* Because we can be running in the block sorting algorithm, we do not always
* want to write out the record, only when it is "safe" to do so. This safety
* condition is achieved by making sure that the sorting queues are empty
* (scn_bytes_pending == 0). When this condition is not true, the sync'd state
* is inconsistent with how much actual scanning progress has been made. The
* kind of sync to be performed is specified by the sync_type argument. If the
* sync is optional, we only sync if the queues are empty. If the sync is
* mandatory, we do a hard ASSERT to make sure that the queues are empty. The
* third possible state is a "cached" sync. This is done in response to:
* 1) The dataset that was in the last sync'd dsl_scan_phys_t having been
* destroyed, so we wouldn't be able to restart scanning from it.
* 2) The snapshot that was in the last sync'd dsl_scan_phys_t having been
* superseded by a newer snapshot.
* 3) The dataset that was in the last sync'd dsl_scan_phys_t having been
* swapped with its clone.
* In all cases, a cached sync simply rewrites the last record we've written,
* just slightly modified. For the modifications that are performed to the
* last written dsl_scan_phys_t, see dsl_scan_ds_destroyed,
* dsl_scan_ds_snapshotted and dsl_scan_ds_clone_swapped.
*/
static void
dsl_scan_sync_state(dsl_scan_t *scn, dmu_tx_t *tx, state_sync_type_t sync_type)
{
int i;
spa_t *spa = scn->scn_dp->dp_spa;
ASSERT(sync_type != SYNC_MANDATORY || scn->scn_bytes_pending == 0);
if (scn->scn_bytes_pending == 0) {
for (i = 0; i < spa->spa_root_vdev->vdev_children; i++) {
vdev_t *vd = spa->spa_root_vdev->vdev_child[i];
dsl_scan_io_queue_t *q = vd->vdev_scan_io_queue;
if (q == NULL)
continue;
mutex_enter(&vd->vdev_scan_io_queue_lock);
ASSERT3P(avl_first(&q->q_sios_by_addr), ==, NULL);
Reduce loaded range tree memory usage This patch implements a new tree structure for ZFS, and uses it to store range trees more efficiently. The new structure is approximately a B-tree, though there are some small differences from the usual characterizations. The tree has core nodes and leaf nodes; each contain data elements, which the elements in the core nodes acting as separators between its children. The difference between core and leaf nodes is that the core nodes have an array of children, while leaf nodes don't. Every node in the tree may be only partially full; in most cases, they are all at least 50% full (in terms of element count) except for the root node, which can be less full. Underfull nodes will steal from their neighbors or merge to remain full enough, while overfull nodes will split in two. The data elements are contained in tree-controlled buffers; they are copied into these on insertion, and overwritten on deletion. This means that the elements are not independently allocated, which reduces overhead, but also means they can't be shared between trees (and also that pointers to them are only valid until a side-effectful tree operation occurs). The overhead varies based on how dense the tree is, but is usually on the order of about 50% of the element size; the per-node overheads are very small, and so don't make a significant difference. The trees can accept arbitrary records; they accept a size and a comparator to allow them to be used for a variety of purposes. The new trees replace the AVL trees used in the range trees today. Currently, the range_seg_t structure contains three 8 byte integers of payload and two 24 byte avl_tree_node_ts to handle its storage in both an offset-sorted tree and a size-sorted tree (total size: 64 bytes). In the new model, the range seg structures are usually two 4 byte integers, but a separate one needs to exist for the size-sorted and offset-sorted tree. Between the raw size, the 50% overhead, and the double storage, the new btrees are expected to use 8*1.5*2 = 24 bytes per record, or 33.3% as much memory as the AVL trees (this is for the purposes of storing metaslab range trees; for other purposes, like scrubs, they use ~50% as much memory). We reduced the size of the payload in the range segments by teaching range trees about starting offsets and shifts; since metaslabs have a fixed starting offset, and they all operate in terms of disk sectors, we can store the ranges using 4-byte integers as long as the size of the metaslab divided by the sector size is less than 2^32. For 512-byte sectors, this is a 2^41 (or 2TB) metaslab, which with the default settings corresponds to a 256PB disk. 4k sector disks can handle metaslabs up to 2^46 bytes, or 2^63 byte disks. Since we do not anticipate disks of this size in the near future, there should be almost no cases where metaslabs need 64-byte integers to store their ranges. We do still have the capability to store 64-byte integer ranges to account for cases where we are storing per-vdev (or per-dnode) trees, which could reasonably go above the limits discussed. We also do not store fill information in the compact version of the node, since it is only used for sorted scrub. We also optimized the metaslab loading process in various other ways to offset some inefficiencies in the btree model. While individual operations (find, insert, remove_from) are faster for the btree than they are for the avl tree, remove usually requires a find operation, while in the AVL tree model the element itself suffices. Some clever changes actually caused an overall speedup in metaslab loading; we use approximately 40% less cpu to load metaslabs in our tests on Illumos. Another memory and performance optimization was achieved by changing what is stored in the size-sorted trees. When a disk is heavily fragmented, the df algorithm used by default in ZFS will almost always find a number of small regions in its initial cursor-based search; it will usually only fall back to the size-sorted tree to find larger regions. If we increase the size of the cursor-based search slightly, and don't store segments that are smaller than a tunable size floor in the size-sorted tree, we can further cut memory usage down to below 20% of what the AVL trees store. This also results in further reductions in CPU time spent loading metaslabs. The 16KiB size floor was chosen because it results in substantial memory usage reduction while not usually resulting in situations where we can't find an appropriate chunk with the cursor and are forced to use an oversized chunk from the size-sorted tree. In addition, even if we do have to use an oversized chunk from the size-sorted tree, the chunk would be too small to use for ZIL allocations, so it isn't as big of a loss as it might otherwise be. And often, more small allocations will follow the initial one, and the cursor search will now find the remainder of the chunk we didn't use all of and use it for subsequent allocations. Practical testing has shown little or no change in fragmentation as a result of this change. If the size-sorted tree becomes empty while the offset sorted one still has entries, it will load all the entries from the offset sorted tree and disregard the size floor until it is unloaded again. This operation occurs rarely with the default setting, only on incredibly thoroughly fragmented pools. There are some other small changes to zdb to teach it to handle btrees, but nothing major. Reviewed-by: George Wilson <gwilson@delphix.com> Reviewed-by: Matt Ahrens <matt@delphix.com> Reviewed by: Sebastien Roy seb@delphix.com Reviewed-by: Igor Kozhukhov <igor@dilos.org> Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov> Signed-off-by: Paul Dagnelie <pcd@delphix.com> Closes #9181
2019-10-09 20:36:03 +03:00
ASSERT3P(zfs_btree_first(&q->q_exts_by_size, NULL), ==,
NULL);
ASSERT3P(range_tree_first(q->q_exts_by_addr), ==, NULL);
mutex_exit(&vd->vdev_scan_io_queue_lock);
}
if (scn->scn_phys.scn_queue_obj != 0)
scan_ds_queue_sync(scn, tx);
VERIFY0(zap_update(scn->scn_dp->dp_meta_objset,
DMU_POOL_DIRECTORY_OBJECT,
DMU_POOL_SCAN, sizeof (uint64_t), SCAN_PHYS_NUMINTS,
&scn->scn_phys, tx));
bcopy(&scn->scn_phys, &scn->scn_phys_cached,
sizeof (scn->scn_phys));
if (scn->scn_checkpointing)
zfs_dbgmsg("finish scan checkpoint");
scn->scn_checkpointing = B_FALSE;
scn->scn_last_checkpoint = ddi_get_lbolt();
} else if (sync_type == SYNC_CACHED) {
VERIFY0(zap_update(scn->scn_dp->dp_meta_objset,
DMU_POOL_DIRECTORY_OBJECT,
DMU_POOL_SCAN, sizeof (uint64_t), SCAN_PHYS_NUMINTS,
&scn->scn_phys_cached, tx));
}
}
/* ARGSUSED */
static int
dsl_scan_setup_check(void *arg, dmu_tx_t *tx)
{
dsl_scan_t *scn = dmu_tx_pool(tx)->dp_scan;
Add device rebuild feature The device_rebuild feature enables sequential reconstruction when resilvering. Mirror vdevs can be rebuilt in LBA order which may more quickly restore redundancy depending on the pools average block size, overall fragmentation and the performance characteristics of the devices. However, block checksums cannot be verified as part of the rebuild thus a scrub is automatically started after the sequential resilver completes. The new '-s' option has been added to the `zpool attach` and `zpool replace` command to request sequential reconstruction instead of healing reconstruction when resilvering. zpool attach -s <pool> <existing vdev> <new vdev> zpool replace -s <pool> <old vdev> <new vdev> The `zpool status` output has been updated to report the progress of sequential resilvering in the same way as healing resilvering. The one notable difference is that multiple sequential resilvers may be in progress as long as they're operating on different top-level vdevs. The `zpool wait -t resilver` command was extended to wait on sequential resilvers. From this perspective they are no different than healing resilvers. Sequential resilvers cannot be supported for RAIDZ, but are compatible with the dRAID feature being developed. As part of this change the resilver_restart_* tests were moved in to the functional/replacement directory. Additionally, the replacement tests were renamed and extended to verify both resilvering and rebuilding. Original-patch-by: Isaac Huang <he.huang@intel.com> Reviewed-by: Tony Hutter <hutter2@llnl.gov> Reviewed-by: John Poduska <jpoduska@datto.com> Co-authored-by: Mark Maybee <mmaybee@cray.com> Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov> Closes #10349
2020-07-03 21:05:50 +03:00
vdev_t *rvd = scn->scn_dp->dp_spa->spa_root_vdev;
Add device rebuild feature The device_rebuild feature enables sequential reconstruction when resilvering. Mirror vdevs can be rebuilt in LBA order which may more quickly restore redundancy depending on the pools average block size, overall fragmentation and the performance characteristics of the devices. However, block checksums cannot be verified as part of the rebuild thus a scrub is automatically started after the sequential resilver completes. The new '-s' option has been added to the `zpool attach` and `zpool replace` command to request sequential reconstruction instead of healing reconstruction when resilvering. zpool attach -s <pool> <existing vdev> <new vdev> zpool replace -s <pool> <old vdev> <new vdev> The `zpool status` output has been updated to report the progress of sequential resilvering in the same way as healing resilvering. The one notable difference is that multiple sequential resilvers may be in progress as long as they're operating on different top-level vdevs. The `zpool wait -t resilver` command was extended to wait on sequential resilvers. From this perspective they are no different than healing resilvers. Sequential resilvers cannot be supported for RAIDZ, but are compatible with the dRAID feature being developed. As part of this change the resilver_restart_* tests were moved in to the functional/replacement directory. Additionally, the replacement tests were renamed and extended to verify both resilvering and rebuilding. Original-patch-by: Isaac Huang <he.huang@intel.com> Reviewed-by: Tony Hutter <hutter2@llnl.gov> Reviewed-by: John Poduska <jpoduska@datto.com> Co-authored-by: Mark Maybee <mmaybee@cray.com> Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov> Closes #10349
2020-07-03 21:05:50 +03:00
if (dsl_scan_is_running(scn) || vdev_rebuild_active(rvd))
return (SET_ERROR(EBUSY));
return (0);
}
Distributed Spare (dRAID) Feature This patch adds a new top-level vdev type called dRAID, which stands for Distributed parity RAID. This pool configuration allows all dRAID vdevs to participate when rebuilding to a distributed hot spare device. This can substantially reduce the total time required to restore full parity to pool with a failed device. A dRAID pool can be created using the new top-level `draid` type. Like `raidz`, the desired redundancy is specified after the type: `draid[1,2,3]`. No additional information is required to create the pool and reasonable default values will be chosen based on the number of child vdevs in the dRAID vdev. zpool create <pool> draid[1,2,3] <vdevs...> Unlike raidz, additional optional dRAID configuration values can be provided as part of the draid type as colon separated values. This allows administrators to fully specify a layout for either performance or capacity reasons. The supported options include: zpool create <pool> \ draid[<parity>][:<data>d][:<children>c][:<spares>s] \ <vdevs...> - draid[parity] - Parity level (default 1) - draid[:<data>d] - Data devices per group (default 8) - draid[:<children>c] - Expected number of child vdevs - draid[:<spares>s] - Distributed hot spares (default 0) Abbreviated example `zpool status` output for a 68 disk dRAID pool with two distributed spares using special allocation classes. ``` pool: tank state: ONLINE config: NAME STATE READ WRITE CKSUM slag7 ONLINE 0 0 0 draid2:8d:68c:2s-0 ONLINE 0 0 0 L0 ONLINE 0 0 0 L1 ONLINE 0 0 0 ... U25 ONLINE 0 0 0 U26 ONLINE 0 0 0 spare-53 ONLINE 0 0 0 U27 ONLINE 0 0 0 draid2-0-0 ONLINE 0 0 0 U28 ONLINE 0 0 0 U29 ONLINE 0 0 0 ... U42 ONLINE 0 0 0 U43 ONLINE 0 0 0 special mirror-1 ONLINE 0 0 0 L5 ONLINE 0 0 0 U5 ONLINE 0 0 0 mirror-2 ONLINE 0 0 0 L6 ONLINE 0 0 0 U6 ONLINE 0 0 0 spares draid2-0-0 INUSE currently in use draid2-0-1 AVAIL ``` When adding test coverage for the new dRAID vdev type the following options were added to the ztest command. These options are leverages by zloop.sh to test a wide range of dRAID configurations. -K draid|raidz|random - kind of RAID to test -D <value> - dRAID data drives per group -S <value> - dRAID distributed hot spares -R <value> - RAID parity (raidz or dRAID) The zpool_create, zpool_import, redundancy, replacement and fault test groups have all been updated provide test coverage for the dRAID feature. Co-authored-by: Isaac Huang <he.huang@intel.com> Co-authored-by: Mark Maybee <mmaybee@cray.com> Co-authored-by: Don Brady <don.brady@delphix.com> Co-authored-by: Matthew Ahrens <mahrens@delphix.com> Co-authored-by: Brian Behlendorf <behlendorf1@llnl.gov> Reviewed-by: Mark Maybee <mmaybee@cray.com> Reviewed-by: Matt Ahrens <matt@delphix.com> Reviewed-by: Tony Hutter <hutter2@llnl.gov> Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov> Closes #10102
2020-11-14 00:51:51 +03:00
void
dsl_scan_setup_sync(void *arg, dmu_tx_t *tx)
{
dsl_scan_t *scn = dmu_tx_pool(tx)->dp_scan;
pool_scan_func_t *funcp = arg;
dmu_object_type_t ot = 0;
dsl_pool_t *dp = scn->scn_dp;
spa_t *spa = dp->dp_spa;
ASSERT(!dsl_scan_is_running(scn));
ASSERT(*funcp > POOL_SCAN_NONE && *funcp < POOL_SCAN_FUNCS);
bzero(&scn->scn_phys, sizeof (scn->scn_phys));
scn->scn_phys.scn_func = *funcp;
scn->scn_phys.scn_state = DSS_SCANNING;
scn->scn_phys.scn_min_txg = 0;
scn->scn_phys.scn_max_txg = tx->tx_txg;
scn->scn_phys.scn_ddt_class_max = DDT_CLASSES - 1; /* the entire DDT */
scn->scn_phys.scn_start_time = gethrestime_sec();
scn->scn_phys.scn_errors = 0;
scn->scn_phys.scn_to_examine = spa->spa_root_vdev->vdev_stat.vs_alloc;
scn->scn_issued_before_pass = 0;
scn->scn_restart_txg = 0;
Illumos #3956, #3957, #3958, #3959, #3960, #3961, #3962 3956 ::vdev -r should work with pipelines 3957 ztest should update the cachefile before killing itself 3958 multiple scans can lead to partial resilvering 3959 ddt entries are not always resilvered 3960 dsl_scan can skip over dedup-ed blocks if physical birth != logical birth 3961 freed gang blocks are not resilvered and can cause pool to suspend 3962 ztest should print out zfs debug buffer before exiting Reviewed by: Matthew Ahrens <mahrens@delphix.com> Reviewed by: Adam Leventhal <ahl@delphix.com> Approved by: Richard Lowe <richlowe@richlowe.net> References: https://www.illumos.org/issues/3956 https://www.illumos.org/issues/3957 https://www.illumos.org/issues/3958 https://www.illumos.org/issues/3959 https://www.illumos.org/issues/3960 https://www.illumos.org/issues/3961 https://www.illumos.org/issues/3962 illumos/illumos-gate@b4952e17e8858d3225793b28788278de9fe6038d Ported-by: Richard Yao <ryao@gentoo.org> Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov> Porting notes: 1. zfs_dbgmsg_print() is only used in userland. Since we do not have mdb on Linux, it does not make sense to make it available in the kernel. This means that a build failure will occur if any future kernel patch depends on it. However, that is unlikely given that this functionality was added to support zdb. 2. zfs_dbgmsg_print() is only invoked for -VVV or greater log levels. This preserves the existing behavior of minimal noise when running with -V, and -VV. 3. In vdev_config_generate() the call to nvlist_alloc() was not changed to fnvlist_alloc() because we must pass KM_PUSHPAGE in the txg_sync context.
2013-08-08 00:16:22 +04:00
scn->scn_done_txg = 0;
scn->scn_last_checkpoint = 0;
scn->scn_checkpointing = B_FALSE;
spa_scan_stat_init(spa);
if (DSL_SCAN_IS_SCRUB_RESILVER(scn)) {
scn->scn_phys.scn_ddt_class_max = zfs_scrub_ddt_class_max;
/* rewrite all disk labels */
vdev_config_dirty(spa->spa_root_vdev);
if (vdev_resilver_needed(spa->spa_root_vdev,
&scn->scn_phys.scn_min_txg, &scn->scn_phys.scn_max_txg)) {
Add device rebuild feature The device_rebuild feature enables sequential reconstruction when resilvering. Mirror vdevs can be rebuilt in LBA order which may more quickly restore redundancy depending on the pools average block size, overall fragmentation and the performance characteristics of the devices. However, block checksums cannot be verified as part of the rebuild thus a scrub is automatically started after the sequential resilver completes. The new '-s' option has been added to the `zpool attach` and `zpool replace` command to request sequential reconstruction instead of healing reconstruction when resilvering. zpool attach -s <pool> <existing vdev> <new vdev> zpool replace -s <pool> <old vdev> <new vdev> The `zpool status` output has been updated to report the progress of sequential resilvering in the same way as healing resilvering. The one notable difference is that multiple sequential resilvers may be in progress as long as they're operating on different top-level vdevs. The `zpool wait -t resilver` command was extended to wait on sequential resilvers. From this perspective they are no different than healing resilvers. Sequential resilvers cannot be supported for RAIDZ, but are compatible with the dRAID feature being developed. As part of this change the resilver_restart_* tests were moved in to the functional/replacement directory. Additionally, the replacement tests were renamed and extended to verify both resilvering and rebuilding. Original-patch-by: Isaac Huang <he.huang@intel.com> Reviewed-by: Tony Hutter <hutter2@llnl.gov> Reviewed-by: John Poduska <jpoduska@datto.com> Co-authored-by: Mark Maybee <mmaybee@cray.com> Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov> Closes #10349
2020-07-03 21:05:50 +03:00
nvlist_t *aux = fnvlist_alloc();
fnvlist_add_string(aux, ZFS_EV_RESILVER_TYPE,
"healing");
spa_event_notify(spa, NULL, aux,
ESC_ZFS_RESILVER_START);
Add device rebuild feature The device_rebuild feature enables sequential reconstruction when resilvering. Mirror vdevs can be rebuilt in LBA order which may more quickly restore redundancy depending on the pools average block size, overall fragmentation and the performance characteristics of the devices. However, block checksums cannot be verified as part of the rebuild thus a scrub is automatically started after the sequential resilver completes. The new '-s' option has been added to the `zpool attach` and `zpool replace` command to request sequential reconstruction instead of healing reconstruction when resilvering. zpool attach -s <pool> <existing vdev> <new vdev> zpool replace -s <pool> <old vdev> <new vdev> The `zpool status` output has been updated to report the progress of sequential resilvering in the same way as healing resilvering. The one notable difference is that multiple sequential resilvers may be in progress as long as they're operating on different top-level vdevs. The `zpool wait -t resilver` command was extended to wait on sequential resilvers. From this perspective they are no different than healing resilvers. Sequential resilvers cannot be supported for RAIDZ, but are compatible with the dRAID feature being developed. As part of this change the resilver_restart_* tests were moved in to the functional/replacement directory. Additionally, the replacement tests were renamed and extended to verify both resilvering and rebuilding. Original-patch-by: Isaac Huang <he.huang@intel.com> Reviewed-by: Tony Hutter <hutter2@llnl.gov> Reviewed-by: John Poduska <jpoduska@datto.com> Co-authored-by: Mark Maybee <mmaybee@cray.com> Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov> Closes #10349
2020-07-03 21:05:50 +03:00
nvlist_free(aux);
} else {
spa_event_notify(spa, NULL, NULL, ESC_ZFS_SCRUB_START);
}
spa->spa_scrub_started = B_TRUE;
/*
* If this is an incremental scrub, limit the DDT scrub phase
* to just the auto-ditto class (for correctness); the rest
* of the scrub should go faster using top-down pruning.
*/
if (scn->scn_phys.scn_min_txg > TXG_INITIAL)
scn->scn_phys.scn_ddt_class_max = DDT_CLASS_DITTO;
Add device rebuild feature The device_rebuild feature enables sequential reconstruction when resilvering. Mirror vdevs can be rebuilt in LBA order which may more quickly restore redundancy depending on the pools average block size, overall fragmentation and the performance characteristics of the devices. However, block checksums cannot be verified as part of the rebuild thus a scrub is automatically started after the sequential resilver completes. The new '-s' option has been added to the `zpool attach` and `zpool replace` command to request sequential reconstruction instead of healing reconstruction when resilvering. zpool attach -s <pool> <existing vdev> <new vdev> zpool replace -s <pool> <old vdev> <new vdev> The `zpool status` output has been updated to report the progress of sequential resilvering in the same way as healing resilvering. The one notable difference is that multiple sequential resilvers may be in progress as long as they're operating on different top-level vdevs. The `zpool wait -t resilver` command was extended to wait on sequential resilvers. From this perspective they are no different than healing resilvers. Sequential resilvers cannot be supported for RAIDZ, but are compatible with the dRAID feature being developed. As part of this change the resilver_restart_* tests were moved in to the functional/replacement directory. Additionally, the replacement tests were renamed and extended to verify both resilvering and rebuilding. Original-patch-by: Isaac Huang <he.huang@intel.com> Reviewed-by: Tony Hutter <hutter2@llnl.gov> Reviewed-by: John Poduska <jpoduska@datto.com> Co-authored-by: Mark Maybee <mmaybee@cray.com> Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov> Closes #10349
2020-07-03 21:05:50 +03:00
/*
* When starting a resilver clear any existing rebuild state.
* This is required to prevent stale rebuild status from
* being reported when a rebuild is run, then a resilver and
* finally a scrub. In which case only the scrub status
* should be reported by 'zpool status'.
*/
if (scn->scn_phys.scn_func == POOL_SCAN_RESILVER) {
vdev_t *rvd = spa->spa_root_vdev;
for (uint64_t i = 0; i < rvd->vdev_children; i++) {
vdev_t *vd = rvd->vdev_child[i];
vdev_rebuild_clear_sync(
(void *)(uintptr_t)vd->vdev_id, tx);
}
}
}
/* back to the generic stuff */
if (dp->dp_blkstats == NULL) {
dp->dp_blkstats =
vmem_alloc(sizeof (zfs_all_blkstats_t), KM_SLEEP);
mutex_init(&dp->dp_blkstats->zab_lock, NULL,
MUTEX_DEFAULT, NULL);
}
bzero(&dp->dp_blkstats->zab_type, sizeof (dp->dp_blkstats->zab_type));
if (spa_version(spa) < SPA_VERSION_DSL_SCRUB)
ot = DMU_OT_ZAP_OTHER;
scn->scn_phys.scn_queue_obj = zap_create(dp->dp_meta_objset,
ot ? ot : DMU_OT_SCAN_QUEUE, DMU_OT_NONE, 0, tx);
bcopy(&scn->scn_phys, &scn->scn_phys_cached, sizeof (scn->scn_phys));
dsl_scan_sync_state(scn, tx, SYNC_MANDATORY);
Illumos #2882, #2883, #2900 2882 implement libzfs_core 2883 changing "canmount" property to "on" should not always remount dataset 2900 "zfs snapshot" should be able to create multiple, arbitrary snapshots at once Reviewed by: George Wilson <george.wilson@delphix.com> Reviewed by: Chris Siden <christopher.siden@delphix.com> Reviewed by: Garrett D'Amore <garrett@damore.org> Reviewed by: Bill Pijewski <wdp@joyent.com> Reviewed by: Dan Kruchinin <dan.kruchinin@gmail.com> Approved by: Eric Schrock <Eric.Schrock@delphix.com> References: https://www.illumos.org/issues/2882 https://www.illumos.org/issues/2883 https://www.illumos.org/issues/2900 illumos/illumos-gate@4445fffbbb1ea25fd0e9ea68b9380dd7a6709025 Ported-by: Tim Chase <tim@chase2k.com> Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov> Closes #1293 Porting notes: WARNING: This patch changes the user/kernel ABI. That means that the zfs/zpool utilities built from master are NOT compatible with the 0.6.2 kernel modules. Ensure you load the matching kernel modules from master after updating the utilities. Otherwise the zfs/zpool commands will be unable to interact with your pool and you will see errors similar to the following: $ zpool list failed to read pool configuration: bad address no pools available $ zfs list no datasets available Add zvol minor device creation to the new zfs_snapshot_nvl function. Remove the logging of the "release" operation in dsl_dataset_user_release_sync(). The logging caused a null dereference because ds->ds_dir is zeroed in dsl_dataset_destroy_sync() and the logging functions try to get the ds name via the dsl_dataset_name() function. I've got no idea why this particular code would have worked in Illumos. This code has subsequently been completely reworked in Illumos commit 3b2aab1 (3464 zfs synctask code needs restructuring). Squash some "may be used uninitialized" warning/erorrs. Fix some printf format warnings for %lld and %llu. Apply a few spa_writeable() changes that were made to Illumos in illumos/illumos-gate.git@cd1c8b8 as part of the 3112, 3113, 3114 and 3115 fixes. Add a missing call to fnvlist_free(nvl) in log_internal() that was added in Illumos to fix issue 3085 but couldn't be ported to ZoL at the time (zfsonlinux/zfs@9e11c73) because it depended on future work.
2013-08-28 15:45:09 +04:00
spa_history_log_internal(spa, "scan setup", tx,
"func=%u mintxg=%llu maxtxg=%llu",
*funcp, (u_longlong_t)scn->scn_phys.scn_min_txg,
(u_longlong_t)scn->scn_phys.scn_max_txg);
}
/*
* Called by the ZFS_IOC_POOL_SCAN ioctl to start a scrub or resilver.
* Can also be called to resume a paused scrub.
*/
int
dsl_scan(dsl_pool_t *dp, pool_scan_func_t func)
{
spa_t *spa = dp->dp_spa;
dsl_scan_t *scn = dp->dp_scan;
/*
* Purge all vdev caches and probe all devices. We do this here
* rather than in sync context because this requires a writer lock
* on the spa_config lock, which we can't do from sync context. The
* spa_scrub_reopen flag indicates that vdev_open() should not
* attempt to start another scrub.
*/
spa_vdev_state_enter(spa, SCL_NONE);
spa->spa_scrub_reopen = B_TRUE;
vdev_reopen(spa->spa_root_vdev);
spa->spa_scrub_reopen = B_FALSE;
(void) spa_vdev_state_exit(spa, NULL, 0);
if (func == POOL_SCAN_RESILVER) {
dsl_scan_restart_resilver(spa->spa_dsl_pool, 0);
return (0);
}
if (func == POOL_SCAN_SCRUB && dsl_scan_is_paused_scrub(scn)) {
/* got scrub start cmd, resume paused scrub */
int err = dsl_scrub_set_pause_resume(scn->scn_dp,
POOL_SCRUB_NORMAL);
if (err == 0) {
spa_event_notify(spa, NULL, NULL, ESC_ZFS_SCRUB_RESUME);
return (SET_ERROR(ECANCELED));
}
return (SET_ERROR(err));
}
return (dsl_sync_task(spa_name(spa), dsl_scan_setup_check,
OpenZFS 9166 - zfs storage pool checkpoint Details about the motivation of this feature and its usage can be found in this blogpost: https://sdimitro.github.io/post/zpool-checkpoint/ A lightning talk of this feature can be found here: https://www.youtube.com/watch?v=fPQA8K40jAM Implementation details can be found in big block comment of spa_checkpoint.c Side-changes that are relevant to this commit but not explained elsewhere: * renames members of "struct metaslab trees to be shorter without losing meaning * space_map_{alloc,truncate}() accept a block size as a parameter. The reason is that in the current state all space maps that we allocate through the DMU use a global tunable (space_map_blksz) which defauls to 4KB. This is ok for metaslab space maps in terms of bandwirdth since they are scattered all over the disk. But for other space maps this default is probably not what we want. Examples are device removal's vdev_obsolete_sm or vdev_chedkpoint_sm from this review. Both of these have a 1:1 relationship with each vdev and could benefit from a bigger block size. Porting notes: * The part of dsl_scan_sync() which handles async destroys has been moved into the new dsl_process_async_destroys() function. * Remove "VERIFY(!(flags & FWRITE))" in "kernel.c" so zhack can write to block device backed pools. * ZTS: * Fix get_txg() in zpool_sync_001_pos due to "checkpoint_txg". * Don't use large dd block sizes on /dev/urandom under Linux in checkpoint_capacity. * Adopt Delphix-OS's setting of 4 (spa_asize_inflation = SPA_DVAS_PER_BP + 1) for the checkpoint_capacity test to speed its attempts to fill the pool * Create the base and nested pools with sync=disabled to speed up the "setup" phase. * Clear labels in test pool between checkpoint tests to avoid duplicate pool issues. * The import_rewind_device_replaced test has been marked as "known to fail" for the reasons listed in its DISCLAIMER. * New module parameters: zfs_spa_discard_memory_limit, zfs_remove_max_bytes_pause (not documented - debugging only) vdev_max_ms_count (formerly metaslabs_per_vdev) vdev_min_ms_count Authored by: Serapheim Dimitropoulos <serapheim.dimitro@delphix.com> Reviewed by: Matthew Ahrens <mahrens@delphix.com> Reviewed by: John Kennedy <john.kennedy@delphix.com> Reviewed by: Dan Kimmel <dan.kimmel@delphix.com> Reviewed by: Brian Behlendorf <behlendorf1@llnl.gov> Approved by: Richard Lowe <richlowe@richlowe.net> Ported-by: Tim Chase <tim@chase2k.com> Signed-off-by: Tim Chase <tim@chase2k.com> OpenZFS-issue: https://illumos.org/issues/9166 OpenZFS-commit: https://github.com/openzfs/openzfs/commit/7159fdb8 Closes #7570
2016-12-17 01:11:29 +03:00
dsl_scan_setup_sync, &func, 0, ZFS_SPACE_CHECK_EXTRA_RESERVED));
}
/* ARGSUSED */
static void
dsl_scan_done(dsl_scan_t *scn, boolean_t complete, dmu_tx_t *tx)
{
static const char *old_names[] = {
"scrub_bookmark",
"scrub_ddt_bookmark",
"scrub_ddt_class_max",
"scrub_queue",
"scrub_min_txg",
"scrub_max_txg",
"scrub_func",
"scrub_errors",
NULL
};
dsl_pool_t *dp = scn->scn_dp;
spa_t *spa = dp->dp_spa;
int i;
/* Remove any remnants of an old-style scrub. */
for (i = 0; old_names[i]; i++) {
(void) zap_remove(dp->dp_meta_objset,
DMU_POOL_DIRECTORY_OBJECT, old_names[i], tx);
}
if (scn->scn_phys.scn_queue_obj != 0) {
VERIFY0(dmu_object_free(dp->dp_meta_objset,
scn->scn_phys.scn_queue_obj, tx));
scn->scn_phys.scn_queue_obj = 0;
}
scan_ds_queue_clear(scn);
scan_ds_prefetch_queue_clear(scn);
scn->scn_phys.scn_flags &= ~DSF_SCRUB_PAUSED;
/*
* If we were "restarted" from a stopped state, don't bother
* with anything else.
*/
if (!dsl_scan_is_running(scn)) {
ASSERT(!scn->scn_is_sorted);
return;
}
if (scn->scn_is_sorted) {
scan_io_queues_destroy(scn);
scn->scn_is_sorted = B_FALSE;
if (scn->scn_taskq != NULL) {
taskq_destroy(scn->scn_taskq);
scn->scn_taskq = NULL;
}
}
scn->scn_phys.scn_state = complete ? DSS_FINISHED : DSS_CANCELED;
Add subcommand to wait for background zfs activity to complete Currently the best way to wait for the completion of a long-running operation in a pool, like a scrub or device removal, is to poll 'zpool status' and parse its output, which is neither efficient nor convenient. This change adds a 'wait' subcommand to the zpool command. When invoked, 'zpool wait' will block until a specified type of background activity completes. Currently, this subcommand can wait for any of the following: - Scrubs or resilvers to complete - Devices to initialized - Devices to be replaced - Devices to be removed - Checkpoints to be discarded - Background freeing to complete For example, a scrub that is in progress could be waited for by running zpool wait -t scrub <pool> This also adds a -w flag to the attach, checkpoint, initialize, replace, remove, and scrub subcommands. When used, this flag makes the operations kicked off by these subcommands synchronous instead of asynchronous. This functionality is implemented using a new ioctl. The type of activity to wait for is provided as input to the ioctl, and the ioctl blocks until all activity of that type has completed. An ioctl was used over other methods of kernel-userspace communiction primarily for the sake of portability. Porting Notes: This is ported from Delphix OS change DLPX-44432. The following changes were made while porting: - Added ZoL-style ioctl input declaration. - Reorganized error handling in zpool_initialize in libzfs to integrate better with changes made for TRIM support. - Fixed check for whether a checkpoint discard is in progress. Previously it also waited if the pool had a checkpoint, instead of just if a checkpoint was being discarded. - Exposed zfs_initialize_chunk_size as a ZoL-style tunable. - Updated more existing tests to make use of new 'zpool wait' functionality, tests that don't exist in Delphix OS. - Used existing ZoL tunable zfs_scan_suspend_progress, together with zinject, in place of a new tunable zfs_scan_max_blks_per_txg. - Added support for a non-integral interval argument to zpool wait. Future work: ZoL has support for trimming devices, which Delphix OS does not. In the future, 'zpool wait' could be extended to add the ability to wait for trim operations to complete. Reviewed-by: Matt Ahrens <matt@delphix.com> Reviewed-by: John Kennedy <john.kennedy@delphix.com> Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov> Signed-off-by: John Gallagher <john.gallagher@delphix.com> Closes #9162
2019-09-14 04:09:06 +03:00
spa_notify_waiters(spa);
if (dsl_scan_restarting(scn, tx))
spa_history_log_internal(spa, "scan aborted, restarting", tx,
"errors=%llu", (u_longlong_t)spa_get_errlog_size(spa));
else if (!complete)
spa_history_log_internal(spa, "scan cancelled", tx,
"errors=%llu", (u_longlong_t)spa_get_errlog_size(spa));
else
spa_history_log_internal(spa, "scan done", tx,
"errors=%llu", (u_longlong_t)spa_get_errlog_size(spa));
if (DSL_SCAN_IS_SCRUB_RESILVER(scn)) {
spa->spa_scrub_active = B_FALSE;
/*
* If the scrub/resilver completed, update all DTLs to
* reflect this. Whether it succeeded or not, vacate
* all temporary scrub DTLs.
OpenZFS 9166 - zfs storage pool checkpoint Details about the motivation of this feature and its usage can be found in this blogpost: https://sdimitro.github.io/post/zpool-checkpoint/ A lightning talk of this feature can be found here: https://www.youtube.com/watch?v=fPQA8K40jAM Implementation details can be found in big block comment of spa_checkpoint.c Side-changes that are relevant to this commit but not explained elsewhere: * renames members of "struct metaslab trees to be shorter without losing meaning * space_map_{alloc,truncate}() accept a block size as a parameter. The reason is that in the current state all space maps that we allocate through the DMU use a global tunable (space_map_blksz) which defauls to 4KB. This is ok for metaslab space maps in terms of bandwirdth since they are scattered all over the disk. But for other space maps this default is probably not what we want. Examples are device removal's vdev_obsolete_sm or vdev_chedkpoint_sm from this review. Both of these have a 1:1 relationship with each vdev and could benefit from a bigger block size. Porting notes: * The part of dsl_scan_sync() which handles async destroys has been moved into the new dsl_process_async_destroys() function. * Remove "VERIFY(!(flags & FWRITE))" in "kernel.c" so zhack can write to block device backed pools. * ZTS: * Fix get_txg() in zpool_sync_001_pos due to "checkpoint_txg". * Don't use large dd block sizes on /dev/urandom under Linux in checkpoint_capacity. * Adopt Delphix-OS's setting of 4 (spa_asize_inflation = SPA_DVAS_PER_BP + 1) for the checkpoint_capacity test to speed its attempts to fill the pool * Create the base and nested pools with sync=disabled to speed up the "setup" phase. * Clear labels in test pool between checkpoint tests to avoid duplicate pool issues. * The import_rewind_device_replaced test has been marked as "known to fail" for the reasons listed in its DISCLAIMER. * New module parameters: zfs_spa_discard_memory_limit, zfs_remove_max_bytes_pause (not documented - debugging only) vdev_max_ms_count (formerly metaslabs_per_vdev) vdev_min_ms_count Authored by: Serapheim Dimitropoulos <serapheim.dimitro@delphix.com> Reviewed by: Matthew Ahrens <mahrens@delphix.com> Reviewed by: John Kennedy <john.kennedy@delphix.com> Reviewed by: Dan Kimmel <dan.kimmel@delphix.com> Reviewed by: Brian Behlendorf <behlendorf1@llnl.gov> Approved by: Richard Lowe <richlowe@richlowe.net> Ported-by: Tim Chase <tim@chase2k.com> Signed-off-by: Tim Chase <tim@chase2k.com> OpenZFS-issue: https://illumos.org/issues/9166 OpenZFS-commit: https://github.com/openzfs/openzfs/commit/7159fdb8 Closes #7570
2016-12-17 01:11:29 +03:00
*
* As the scrub does not currently support traversing
* data that have been freed but are part of a checkpoint,
* we don't mark the scrub as done in the DTLs as faults
* may still exist in those vdevs.
*/
OpenZFS 9166 - zfs storage pool checkpoint Details about the motivation of this feature and its usage can be found in this blogpost: https://sdimitro.github.io/post/zpool-checkpoint/ A lightning talk of this feature can be found here: https://www.youtube.com/watch?v=fPQA8K40jAM Implementation details can be found in big block comment of spa_checkpoint.c Side-changes that are relevant to this commit but not explained elsewhere: * renames members of "struct metaslab trees to be shorter without losing meaning * space_map_{alloc,truncate}() accept a block size as a parameter. The reason is that in the current state all space maps that we allocate through the DMU use a global tunable (space_map_blksz) which defauls to 4KB. This is ok for metaslab space maps in terms of bandwirdth since they are scattered all over the disk. But for other space maps this default is probably not what we want. Examples are device removal's vdev_obsolete_sm or vdev_chedkpoint_sm from this review. Both of these have a 1:1 relationship with each vdev and could benefit from a bigger block size. Porting notes: * The part of dsl_scan_sync() which handles async destroys has been moved into the new dsl_process_async_destroys() function. * Remove "VERIFY(!(flags & FWRITE))" in "kernel.c" so zhack can write to block device backed pools. * ZTS: * Fix get_txg() in zpool_sync_001_pos due to "checkpoint_txg". * Don't use large dd block sizes on /dev/urandom under Linux in checkpoint_capacity. * Adopt Delphix-OS's setting of 4 (spa_asize_inflation = SPA_DVAS_PER_BP + 1) for the checkpoint_capacity test to speed its attempts to fill the pool * Create the base and nested pools with sync=disabled to speed up the "setup" phase. * Clear labels in test pool between checkpoint tests to avoid duplicate pool issues. * The import_rewind_device_replaced test has been marked as "known to fail" for the reasons listed in its DISCLAIMER. * New module parameters: zfs_spa_discard_memory_limit, zfs_remove_max_bytes_pause (not documented - debugging only) vdev_max_ms_count (formerly metaslabs_per_vdev) vdev_min_ms_count Authored by: Serapheim Dimitropoulos <serapheim.dimitro@delphix.com> Reviewed by: Matthew Ahrens <mahrens@delphix.com> Reviewed by: John Kennedy <john.kennedy@delphix.com> Reviewed by: Dan Kimmel <dan.kimmel@delphix.com> Reviewed by: Brian Behlendorf <behlendorf1@llnl.gov> Approved by: Richard Lowe <richlowe@richlowe.net> Ported-by: Tim Chase <tim@chase2k.com> Signed-off-by: Tim Chase <tim@chase2k.com> OpenZFS-issue: https://illumos.org/issues/9166 OpenZFS-commit: https://github.com/openzfs/openzfs/commit/7159fdb8 Closes #7570
2016-12-17 01:11:29 +03:00
if (complete &&
!spa_feature_is_active(spa, SPA_FEATURE_POOL_CHECKPOINT)) {
vdev_dtl_reassess(spa->spa_root_vdev, tx->tx_txg,
Add device rebuild feature The device_rebuild feature enables sequential reconstruction when resilvering. Mirror vdevs can be rebuilt in LBA order which may more quickly restore redundancy depending on the pools average block size, overall fragmentation and the performance characteristics of the devices. However, block checksums cannot be verified as part of the rebuild thus a scrub is automatically started after the sequential resilver completes. The new '-s' option has been added to the `zpool attach` and `zpool replace` command to request sequential reconstruction instead of healing reconstruction when resilvering. zpool attach -s <pool> <existing vdev> <new vdev> zpool replace -s <pool> <old vdev> <new vdev> The `zpool status` output has been updated to report the progress of sequential resilvering in the same way as healing resilvering. The one notable difference is that multiple sequential resilvers may be in progress as long as they're operating on different top-level vdevs. The `zpool wait -t resilver` command was extended to wait on sequential resilvers. From this perspective they are no different than healing resilvers. Sequential resilvers cannot be supported for RAIDZ, but are compatible with the dRAID feature being developed. As part of this change the resilver_restart_* tests were moved in to the functional/replacement directory. Additionally, the replacement tests were renamed and extended to verify both resilvering and rebuilding. Original-patch-by: Isaac Huang <he.huang@intel.com> Reviewed-by: Tony Hutter <hutter2@llnl.gov> Reviewed-by: John Poduska <jpoduska@datto.com> Co-authored-by: Mark Maybee <mmaybee@cray.com> Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov> Closes #10349
2020-07-03 21:05:50 +03:00
scn->scn_phys.scn_max_txg, B_TRUE, B_FALSE);
if (scn->scn_phys.scn_min_txg) {
nvlist_t *aux = fnvlist_alloc();
fnvlist_add_string(aux, ZFS_EV_RESILVER_TYPE,
"healing");
spa_event_notify(spa, NULL, aux,
ESC_ZFS_RESILVER_FINISH);
nvlist_free(aux);
} else {
spa_event_notify(spa, NULL, NULL,
ESC_ZFS_SCRUB_FINISH);
}
OpenZFS 9166 - zfs storage pool checkpoint Details about the motivation of this feature and its usage can be found in this blogpost: https://sdimitro.github.io/post/zpool-checkpoint/ A lightning talk of this feature can be found here: https://www.youtube.com/watch?v=fPQA8K40jAM Implementation details can be found in big block comment of spa_checkpoint.c Side-changes that are relevant to this commit but not explained elsewhere: * renames members of "struct metaslab trees to be shorter without losing meaning * space_map_{alloc,truncate}() accept a block size as a parameter. The reason is that in the current state all space maps that we allocate through the DMU use a global tunable (space_map_blksz) which defauls to 4KB. This is ok for metaslab space maps in terms of bandwirdth since they are scattered all over the disk. But for other space maps this default is probably not what we want. Examples are device removal's vdev_obsolete_sm or vdev_chedkpoint_sm from this review. Both of these have a 1:1 relationship with each vdev and could benefit from a bigger block size. Porting notes: * The part of dsl_scan_sync() which handles async destroys has been moved into the new dsl_process_async_destroys() function. * Remove "VERIFY(!(flags & FWRITE))" in "kernel.c" so zhack can write to block device backed pools. * ZTS: * Fix get_txg() in zpool_sync_001_pos due to "checkpoint_txg". * Don't use large dd block sizes on /dev/urandom under Linux in checkpoint_capacity. * Adopt Delphix-OS's setting of 4 (spa_asize_inflation = SPA_DVAS_PER_BP + 1) for the checkpoint_capacity test to speed its attempts to fill the pool * Create the base and nested pools with sync=disabled to speed up the "setup" phase. * Clear labels in test pool between checkpoint tests to avoid duplicate pool issues. * The import_rewind_device_replaced test has been marked as "known to fail" for the reasons listed in its DISCLAIMER. * New module parameters: zfs_spa_discard_memory_limit, zfs_remove_max_bytes_pause (not documented - debugging only) vdev_max_ms_count (formerly metaslabs_per_vdev) vdev_min_ms_count Authored by: Serapheim Dimitropoulos <serapheim.dimitro@delphix.com> Reviewed by: Matthew Ahrens <mahrens@delphix.com> Reviewed by: John Kennedy <john.kennedy@delphix.com> Reviewed by: Dan Kimmel <dan.kimmel@delphix.com> Reviewed by: Brian Behlendorf <behlendorf1@llnl.gov> Approved by: Richard Lowe <richlowe@richlowe.net> Ported-by: Tim Chase <tim@chase2k.com> Signed-off-by: Tim Chase <tim@chase2k.com> OpenZFS-issue: https://illumos.org/issues/9166 OpenZFS-commit: https://github.com/openzfs/openzfs/commit/7159fdb8 Closes #7570
2016-12-17 01:11:29 +03:00
} else {
vdev_dtl_reassess(spa->spa_root_vdev, tx->tx_txg,
Add device rebuild feature The device_rebuild feature enables sequential reconstruction when resilvering. Mirror vdevs can be rebuilt in LBA order which may more quickly restore redundancy depending on the pools average block size, overall fragmentation and the performance characteristics of the devices. However, block checksums cannot be verified as part of the rebuild thus a scrub is automatically started after the sequential resilver completes. The new '-s' option has been added to the `zpool attach` and `zpool replace` command to request sequential reconstruction instead of healing reconstruction when resilvering. zpool attach -s <pool> <existing vdev> <new vdev> zpool replace -s <pool> <old vdev> <new vdev> The `zpool status` output has been updated to report the progress of sequential resilvering in the same way as healing resilvering. The one notable difference is that multiple sequential resilvers may be in progress as long as they're operating on different top-level vdevs. The `zpool wait -t resilver` command was extended to wait on sequential resilvers. From this perspective they are no different than healing resilvers. Sequential resilvers cannot be supported for RAIDZ, but are compatible with the dRAID feature being developed. As part of this change the resilver_restart_* tests were moved in to the functional/replacement directory. Additionally, the replacement tests were renamed and extended to verify both resilvering and rebuilding. Original-patch-by: Isaac Huang <he.huang@intel.com> Reviewed-by: Tony Hutter <hutter2@llnl.gov> Reviewed-by: John Poduska <jpoduska@datto.com> Co-authored-by: Mark Maybee <mmaybee@cray.com> Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov> Closes #10349
2020-07-03 21:05:50 +03:00
0, B_TRUE, B_FALSE);
}
spa_errlog_rotate(spa);
/*
* Don't clear flag until after vdev_dtl_reassess to ensure that
* DTL_MISSING will get updated when possible.
*/
spa->spa_scrub_started = B_FALSE;
/*
* We may have finished replacing a device.
* Let the async thread assess this and handle the detach.
*/
spa_async_request(spa, SPA_ASYNC_RESILVER_DONE);
/*
* Clear any resilver_deferred flags in the config.
* If there are drives that need resilvering, kick
* off an asynchronous request to start resilver.
* vdev_clear_resilver_deferred() may update the config
* before the resilver can restart. In the event of
* a crash during this period, the spa loading code
* will find the drives that need to be resilvered
* and start the resilver then.
*/
if (spa_feature_is_enabled(spa, SPA_FEATURE_RESILVER_DEFER) &&
vdev_clear_resilver_deferred(spa->spa_root_vdev, tx)) {
spa_history_log_internal(spa,
"starting deferred resilver", tx, "errors=%llu",
(u_longlong_t)spa_get_errlog_size(spa));
spa_async_request(spa, SPA_ASYNC_RESILVER);
}
/* Clear recent error events (i.e. duplicate events tracking) */
if (complete)
zfs_ereport_clear(spa, NULL);
}
scn->scn_phys.scn_end_time = gethrestime_sec();
Add erratum for issue #2094 ZoL commit 1421c89 unintentionally changed the disk format in a forward- compatible, but not backward compatible way. This was accomplished by adding an entry to zbookmark_t, which is included in a couple of on-disk structures. That lead to the creation of pools with incorrect dsl_scan_phys_t objects that could only be imported by versions of ZoL containing that commit. Such pools cannot be imported by other versions of ZFS or past versions of ZoL. The additional field has been removed by the previous commit. However, affected pools must be imported and scrubbed using a version of ZoL with this commit applied. This will return the pools to a state in which they may be imported by other implementations. The 'zpool import' or 'zpool status' command can be used to determine if a pool is impacted. A message similar to one of the following means your pool must be scrubbed to restore compatibility. $ zpool import pool: zol-0.6.2-173 id: 1165955789558693437 state: ONLINE status: Errata #1 detected. action: The pool can be imported using its name or numeric identifier, however there is a compatibility issue which should be corrected by running 'zpool scrub' see: http://zfsonlinux.org/msg/ZFS-8000-ER config: ... $ zpool status pool: zol-0.6.2-173 state: ONLINE scan: pool compatibility issue detected. see: https://github.com/zfsonlinux/zfs/issues/2094 action: To correct the issue run 'zpool scrub'. config: ... If there was an async destroy in progress 'zpool import' will prevent the pool from being imported. Further advice on how to proceed will be provided by the error message as follows. $ zpool import pool: zol-0.6.2-173 id: 1165955789558693437 state: ONLINE status: Errata #2 detected. action: The pool can not be imported with this version of ZFS due to an active asynchronous destroy. Revert to an earlier version and allow the destroy to complete before updating. see: http://zfsonlinux.org/msg/ZFS-8000-ER config: ... Pools affected by the damaged dsl_scan_phys_t can be detected prior to an upgrade by running the following command as root: zdb -dddd poolname 1 | grep -P '^\t\tscan = ' | sed -e 's;scan = ;;' | wc -w Note that `poolname` must be replaced with the name of the pool you wish to check. A value of 25 indicates the dsl_scan_phys_t has been damaged. A value of 24 indicates that the dsl_scan_phys_t is normal. A value of 0 indicates that there has never been a scrub run on the pool. The regression caused by the change to zbookmark_t never made it into a tagged release, Gentoo backports, Ubuntu, Debian, Fedora, or EPEL stable respositorys. Only those using the HEAD version directly from Github after the 0.6.2 but before the 0.6.3 tag are affected. This patch does have one limitation that should be mentioned. It will not detect errata #2 on a pool unless errata #1 is also present. It expected this will not be a significant problem because pools impacted by errata #2 have a high probably of being impacted by errata #1. End users can ensure they do no hit this unlikely case by waiting for all asynchronous destroy operations to complete before updating ZoL. The presence of any background destroys on any imported pools can be checked by running `zpool get freeing` as root. This will display a non-zero value for any pool with an active asynchronous destroy. Lastly, it is expected that no user data has been lost as a result of this erratum. Original-patch-by: Tim Chase <tim@chase2k.com> Reworked-by: Brian Behlendorf <behlendorf1@llnl.gov> Signed-off-by: Tim Chase <tim@chase2k.com> Signed-off-by: Richard Yao <ryao@gentoo.org> Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov> Issue #2094
2014-02-21 08:28:33 +04:00
if (spa->spa_errata == ZPOOL_ERRATA_ZOL_2094_SCRUB)
spa->spa_errata = 0;
ASSERT(!dsl_scan_is_running(scn));
}
/* ARGSUSED */
static int
dsl_scan_cancel_check(void *arg, dmu_tx_t *tx)
{
dsl_scan_t *scn = dmu_tx_pool(tx)->dp_scan;
if (!dsl_scan_is_running(scn))
return (SET_ERROR(ENOENT));
return (0);
}
/* ARGSUSED */
static void
dsl_scan_cancel_sync(void *arg, dmu_tx_t *tx)
{
dsl_scan_t *scn = dmu_tx_pool(tx)->dp_scan;
dsl_scan_done(scn, B_FALSE, tx);
dsl_scan_sync_state(scn, tx, SYNC_MANDATORY);
spa_event_notify(scn->scn_dp->dp_spa, NULL, NULL, ESC_ZFS_SCRUB_ABORT);
}
int
dsl_scan_cancel(dsl_pool_t *dp)
{
return (dsl_sync_task(spa_name(dp->dp_spa), dsl_scan_cancel_check,
dsl_scan_cancel_sync, NULL, 3, ZFS_SPACE_CHECK_RESERVED));
}
static int
dsl_scrub_pause_resume_check(void *arg, dmu_tx_t *tx)
{
pool_scrub_cmd_t *cmd = arg;
dsl_pool_t *dp = dmu_tx_pool(tx);
dsl_scan_t *scn = dp->dp_scan;
if (*cmd == POOL_SCRUB_PAUSE) {
/* can't pause a scrub when there is no in-progress scrub */
if (!dsl_scan_scrubbing(dp))
return (SET_ERROR(ENOENT));
/* can't pause a paused scrub */
if (dsl_scan_is_paused_scrub(scn))
return (SET_ERROR(EBUSY));
} else if (*cmd != POOL_SCRUB_NORMAL) {
return (SET_ERROR(ENOTSUP));
}
return (0);
}
static void
dsl_scrub_pause_resume_sync(void *arg, dmu_tx_t *tx)
{
pool_scrub_cmd_t *cmd = arg;
dsl_pool_t *dp = dmu_tx_pool(tx);
spa_t *spa = dp->dp_spa;
dsl_scan_t *scn = dp->dp_scan;
if (*cmd == POOL_SCRUB_PAUSE) {
/* can't pause a scrub when there is no in-progress scrub */
spa->spa_scan_pass_scrub_pause = gethrestime_sec();
scn->scn_phys.scn_flags |= DSF_SCRUB_PAUSED;
scn->scn_phys_cached.scn_flags |= DSF_SCRUB_PAUSED;
dsl_scan_sync_state(scn, tx, SYNC_CACHED);
spa_event_notify(spa, NULL, NULL, ESC_ZFS_SCRUB_PAUSED);
Add subcommand to wait for background zfs activity to complete Currently the best way to wait for the completion of a long-running operation in a pool, like a scrub or device removal, is to poll 'zpool status' and parse its output, which is neither efficient nor convenient. This change adds a 'wait' subcommand to the zpool command. When invoked, 'zpool wait' will block until a specified type of background activity completes. Currently, this subcommand can wait for any of the following: - Scrubs or resilvers to complete - Devices to initialized - Devices to be replaced - Devices to be removed - Checkpoints to be discarded - Background freeing to complete For example, a scrub that is in progress could be waited for by running zpool wait -t scrub <pool> This also adds a -w flag to the attach, checkpoint, initialize, replace, remove, and scrub subcommands. When used, this flag makes the operations kicked off by these subcommands synchronous instead of asynchronous. This functionality is implemented using a new ioctl. The type of activity to wait for is provided as input to the ioctl, and the ioctl blocks until all activity of that type has completed. An ioctl was used over other methods of kernel-userspace communiction primarily for the sake of portability. Porting Notes: This is ported from Delphix OS change DLPX-44432. The following changes were made while porting: - Added ZoL-style ioctl input declaration. - Reorganized error handling in zpool_initialize in libzfs to integrate better with changes made for TRIM support. - Fixed check for whether a checkpoint discard is in progress. Previously it also waited if the pool had a checkpoint, instead of just if a checkpoint was being discarded. - Exposed zfs_initialize_chunk_size as a ZoL-style tunable. - Updated more existing tests to make use of new 'zpool wait' functionality, tests that don't exist in Delphix OS. - Used existing ZoL tunable zfs_scan_suspend_progress, together with zinject, in place of a new tunable zfs_scan_max_blks_per_txg. - Added support for a non-integral interval argument to zpool wait. Future work: ZoL has support for trimming devices, which Delphix OS does not. In the future, 'zpool wait' could be extended to add the ability to wait for trim operations to complete. Reviewed-by: Matt Ahrens <matt@delphix.com> Reviewed-by: John Kennedy <john.kennedy@delphix.com> Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov> Signed-off-by: John Gallagher <john.gallagher@delphix.com> Closes #9162
2019-09-14 04:09:06 +03:00
spa_notify_waiters(spa);
} else {
ASSERT3U(*cmd, ==, POOL_SCRUB_NORMAL);
if (dsl_scan_is_paused_scrub(scn)) {
/*
* We need to keep track of how much time we spend
* paused per pass so that we can adjust the scrub rate
* shown in the output of 'zpool status'
*/
spa->spa_scan_pass_scrub_spent_paused +=
gethrestime_sec() - spa->spa_scan_pass_scrub_pause;
spa->spa_scan_pass_scrub_pause = 0;
scn->scn_phys.scn_flags &= ~DSF_SCRUB_PAUSED;
scn->scn_phys_cached.scn_flags &= ~DSF_SCRUB_PAUSED;
dsl_scan_sync_state(scn, tx, SYNC_CACHED);
}
}
}
/*
* Set scrub pause/resume state if it makes sense to do so
*/
int
dsl_scrub_set_pause_resume(const dsl_pool_t *dp, pool_scrub_cmd_t cmd)
{
return (dsl_sync_task(spa_name(dp->dp_spa),
dsl_scrub_pause_resume_check, dsl_scrub_pause_resume_sync, &cmd, 3,
ZFS_SPACE_CHECK_RESERVED));
}
/* start a new scan, or restart an existing one. */
void
dsl_scan_restart_resilver(dsl_pool_t *dp, uint64_t txg)
{
if (txg == 0) {
dmu_tx_t *tx;
tx = dmu_tx_create_dd(dp->dp_mos_dir);
VERIFY(0 == dmu_tx_assign(tx, TXG_WAIT));
txg = dmu_tx_get_txg(tx);
dp->dp_scan->scn_restart_txg = txg;
dmu_tx_commit(tx);
} else {
dp->dp_scan->scn_restart_txg = txg;
}
zfs_dbgmsg("restarting resilver txg=%llu", (longlong_t)txg);
}
void
dsl_free(dsl_pool_t *dp, uint64_t txg, const blkptr_t *bp)
{
zio_free(dp->dp_spa, txg, bp);
}
void
dsl_free_sync(zio_t *pio, dsl_pool_t *dp, uint64_t txg, const blkptr_t *bpp)
{
ASSERT(dsl_pool_sync_context(dp));
zio_nowait(zio_free_sync(pio, dp->dp_spa, txg, bpp, pio->io_flags));
}
static int
scan_ds_queue_compare(const void *a, const void *b)
{
const scan_ds_t *sds_a = a, *sds_b = b;
if (sds_a->sds_dsobj < sds_b->sds_dsobj)
return (-1);
if (sds_a->sds_dsobj == sds_b->sds_dsobj)
return (0);
return (1);
}
static void
scan_ds_queue_clear(dsl_scan_t *scn)
{
void *cookie = NULL;
scan_ds_t *sds;
while ((sds = avl_destroy_nodes(&scn->scn_queue, &cookie)) != NULL) {
kmem_free(sds, sizeof (*sds));
}
}
static boolean_t
scan_ds_queue_contains(dsl_scan_t *scn, uint64_t dsobj, uint64_t *txg)
{
scan_ds_t srch, *sds;
srch.sds_dsobj = dsobj;
sds = avl_find(&scn->scn_queue, &srch, NULL);
if (sds != NULL && txg != NULL)
*txg = sds->sds_txg;
return (sds != NULL);
}
static void
scan_ds_queue_insert(dsl_scan_t *scn, uint64_t dsobj, uint64_t txg)
{
scan_ds_t *sds;
avl_index_t where;
sds = kmem_zalloc(sizeof (*sds), KM_SLEEP);
sds->sds_dsobj = dsobj;
sds->sds_txg = txg;
VERIFY3P(avl_find(&scn->scn_queue, sds, &where), ==, NULL);
avl_insert(&scn->scn_queue, sds, where);
}
static void
scan_ds_queue_remove(dsl_scan_t *scn, uint64_t dsobj)
{
scan_ds_t srch, *sds;
srch.sds_dsobj = dsobj;
sds = avl_find(&scn->scn_queue, &srch, NULL);
VERIFY(sds != NULL);
avl_remove(&scn->scn_queue, sds);
kmem_free(sds, sizeof (*sds));
}
static void
scan_ds_queue_sync(dsl_scan_t *scn, dmu_tx_t *tx)
{
dsl_pool_t *dp = scn->scn_dp;
spa_t *spa = dp->dp_spa;
dmu_object_type_t ot = (spa_version(spa) >= SPA_VERSION_DSL_SCRUB) ?
DMU_OT_SCAN_QUEUE : DMU_OT_ZAP_OTHER;
ASSERT0(scn->scn_bytes_pending);
ASSERT(scn->scn_phys.scn_queue_obj != 0);
VERIFY0(dmu_object_free(dp->dp_meta_objset,
scn->scn_phys.scn_queue_obj, tx));
scn->scn_phys.scn_queue_obj = zap_create(dp->dp_meta_objset, ot,
DMU_OT_NONE, 0, tx);
for (scan_ds_t *sds = avl_first(&scn->scn_queue);
sds != NULL; sds = AVL_NEXT(&scn->scn_queue, sds)) {
VERIFY0(zap_add_int_key(dp->dp_meta_objset,
scn->scn_phys.scn_queue_obj, sds->sds_dsobj,
sds->sds_txg, tx));
}
}
/*
* Computes the memory limit state that we're currently in. A sorted scan
* needs quite a bit of memory to hold the sorting queue, so we need to
* reasonably constrain the size so it doesn't impact overall system
* performance. We compute two limits:
* 1) Hard memory limit: if the amount of memory used by the sorting
* queues on a pool gets above this value, we stop the metadata
* scanning portion and start issuing the queued up and sorted
* I/Os to reduce memory usage.
* This limit is calculated as a fraction of physmem (by default 5%).
* We constrain the lower bound of the hard limit to an absolute
* minimum of zfs_scan_mem_lim_min (default: 16 MiB). We also constrain
* the upper bound to 5% of the total pool size - no chance we'll
* ever need that much memory, but just to keep the value in check.
* 2) Soft memory limit: once we hit the hard memory limit, we start
* issuing I/O to reduce queue memory usage, but we don't want to
* completely empty out the queues, since we might be able to find I/Os
* that will fill in the gaps of our non-sequential IOs at some point
* in the future. So we stop the issuing of I/Os once the amount of
* memory used drops below the soft limit (at which point we stop issuing
* I/O and start scanning metadata again).
*
* This limit is calculated by subtracting a fraction of the hard
* limit from the hard limit. By default this fraction is 5%, so
* the soft limit is 95% of the hard limit. We cap the size of the
* difference between the hard and soft limits at an absolute
* maximum of zfs_scan_mem_lim_soft_max (default: 128 MiB) - this is
* sufficient to not cause too frequent switching between the
* metadata scan and I/O issue (even at 2k recordsize, 128 MiB's
* worth of queues is about 1.2 GiB of on-pool data, so scanning
* that should take at least a decent fraction of a second).
*/
static boolean_t
dsl_scan_should_clear(dsl_scan_t *scn)
{
spa_t *spa = scn->scn_dp->dp_spa;
vdev_t *rvd = scn->scn_dp->dp_spa->spa_root_vdev;
uint64_t alloc, mlim_hard, mlim_soft, mused;
alloc = metaslab_class_get_alloc(spa_normal_class(spa));
alloc += metaslab_class_get_alloc(spa_special_class(spa));
alloc += metaslab_class_get_alloc(spa_dedup_class(spa));
mlim_hard = MAX((physmem / zfs_scan_mem_lim_fact) * PAGESIZE,
zfs_scan_mem_lim_min);
mlim_hard = MIN(mlim_hard, alloc / 20);
mlim_soft = mlim_hard - MIN(mlim_hard / zfs_scan_mem_lim_soft_fact,
zfs_scan_mem_lim_soft_max);
mused = 0;
for (uint64_t i = 0; i < rvd->vdev_children; i++) {
vdev_t *tvd = rvd->vdev_child[i];
dsl_scan_io_queue_t *queue;
mutex_enter(&tvd->vdev_scan_io_queue_lock);
queue = tvd->vdev_scan_io_queue;
if (queue != NULL) {
/* # extents in exts_by_size = # in exts_by_addr */
Reduce loaded range tree memory usage This patch implements a new tree structure for ZFS, and uses it to store range trees more efficiently. The new structure is approximately a B-tree, though there are some small differences from the usual characterizations. The tree has core nodes and leaf nodes; each contain data elements, which the elements in the core nodes acting as separators between its children. The difference between core and leaf nodes is that the core nodes have an array of children, while leaf nodes don't. Every node in the tree may be only partially full; in most cases, they are all at least 50% full (in terms of element count) except for the root node, which can be less full. Underfull nodes will steal from their neighbors or merge to remain full enough, while overfull nodes will split in two. The data elements are contained in tree-controlled buffers; they are copied into these on insertion, and overwritten on deletion. This means that the elements are not independently allocated, which reduces overhead, but also means they can't be shared between trees (and also that pointers to them are only valid until a side-effectful tree operation occurs). The overhead varies based on how dense the tree is, but is usually on the order of about 50% of the element size; the per-node overheads are very small, and so don't make a significant difference. The trees can accept arbitrary records; they accept a size and a comparator to allow them to be used for a variety of purposes. The new trees replace the AVL trees used in the range trees today. Currently, the range_seg_t structure contains three 8 byte integers of payload and two 24 byte avl_tree_node_ts to handle its storage in both an offset-sorted tree and a size-sorted tree (total size: 64 bytes). In the new model, the range seg structures are usually two 4 byte integers, but a separate one needs to exist for the size-sorted and offset-sorted tree. Between the raw size, the 50% overhead, and the double storage, the new btrees are expected to use 8*1.5*2 = 24 bytes per record, or 33.3% as much memory as the AVL trees (this is for the purposes of storing metaslab range trees; for other purposes, like scrubs, they use ~50% as much memory). We reduced the size of the payload in the range segments by teaching range trees about starting offsets and shifts; since metaslabs have a fixed starting offset, and they all operate in terms of disk sectors, we can store the ranges using 4-byte integers as long as the size of the metaslab divided by the sector size is less than 2^32. For 512-byte sectors, this is a 2^41 (or 2TB) metaslab, which with the default settings corresponds to a 256PB disk. 4k sector disks can handle metaslabs up to 2^46 bytes, or 2^63 byte disks. Since we do not anticipate disks of this size in the near future, there should be almost no cases where metaslabs need 64-byte integers to store their ranges. We do still have the capability to store 64-byte integer ranges to account for cases where we are storing per-vdev (or per-dnode) trees, which could reasonably go above the limits discussed. We also do not store fill information in the compact version of the node, since it is only used for sorted scrub. We also optimized the metaslab loading process in various other ways to offset some inefficiencies in the btree model. While individual operations (find, insert, remove_from) are faster for the btree than they are for the avl tree, remove usually requires a find operation, while in the AVL tree model the element itself suffices. Some clever changes actually caused an overall speedup in metaslab loading; we use approximately 40% less cpu to load metaslabs in our tests on Illumos. Another memory and performance optimization was achieved by changing what is stored in the size-sorted trees. When a disk is heavily fragmented, the df algorithm used by default in ZFS will almost always find a number of small regions in its initial cursor-based search; it will usually only fall back to the size-sorted tree to find larger regions. If we increase the size of the cursor-based search slightly, and don't store segments that are smaller than a tunable size floor in the size-sorted tree, we can further cut memory usage down to below 20% of what the AVL trees store. This also results in further reductions in CPU time spent loading metaslabs. The 16KiB size floor was chosen because it results in substantial memory usage reduction while not usually resulting in situations where we can't find an appropriate chunk with the cursor and are forced to use an oversized chunk from the size-sorted tree. In addition, even if we do have to use an oversized chunk from the size-sorted tree, the chunk would be too small to use for ZIL allocations, so it isn't as big of a loss as it might otherwise be. And often, more small allocations will follow the initial one, and the cursor search will now find the remainder of the chunk we didn't use all of and use it for subsequent allocations. Practical testing has shown little or no change in fragmentation as a result of this change. If the size-sorted tree becomes empty while the offset sorted one still has entries, it will load all the entries from the offset sorted tree and disregard the size floor until it is unloaded again. This operation occurs rarely with the default setting, only on incredibly thoroughly fragmented pools. There are some other small changes to zdb to teach it to handle btrees, but nothing major. Reviewed-by: George Wilson <gwilson@delphix.com> Reviewed-by: Matt Ahrens <matt@delphix.com> Reviewed by: Sebastien Roy seb@delphix.com Reviewed-by: Igor Kozhukhov <igor@dilos.org> Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov> Signed-off-by: Paul Dagnelie <pcd@delphix.com> Closes #9181
2019-10-09 20:36:03 +03:00
mused += zfs_btree_numnodes(&queue->q_exts_by_size) *
sizeof (range_seg_gap_t) + queue->q_sio_memused;
}
mutex_exit(&tvd->vdev_scan_io_queue_lock);
}
dprintf("current scan memory usage: %llu bytes\n", (longlong_t)mused);
if (mused == 0)
ASSERT0(scn->scn_bytes_pending);
/*
* If we are above our hard limit, we need to clear out memory.
* If we are below our soft limit, we need to accumulate sequential IOs.
* Otherwise, we should keep doing whatever we are currently doing.
*/
if (mused >= mlim_hard)
return (B_TRUE);
else if (mused < mlim_soft)
return (B_FALSE);
else
return (scn->scn_clearing);
}
static boolean_t
dsl_scan_check_suspend(dsl_scan_t *scn, const zbookmark_phys_t *zb)
{
/* we never skip user/group accounting objects */
if (zb && (int64_t)zb->zb_object < 0)
return (B_FALSE);
if (scn->scn_suspending)
return (B_TRUE); /* we're already suspending */
if (!ZB_IS_ZERO(&scn->scn_phys.scn_bookmark))
return (B_FALSE); /* we're resuming */
/* We only know how to resume from level-0 and objset blocks. */
if (zb && (zb->zb_level != 0 && zb->zb_level != ZB_ROOT_LEVEL))
return (B_FALSE);
/*
* We suspend if:
* - we have scanned for at least the minimum time (default 1 sec
* for scrub, 3 sec for resilver), and either we have sufficient
* dirty data that we are starting to write more quickly
* (default 30%), someone is explicitly waiting for this txg
* to complete, or we have used up all of the time in the txg
* timeout (default 5 sec).
* or
* - the spa is shutting down because this pool is being exported
* or the machine is rebooting.
* or
* - the scan queue has reached its memory use limit
*/
uint64_t curr_time_ns = gethrtime();
uint64_t scan_time_ns = curr_time_ns - scn->scn_sync_start_time;
uint64_t sync_time_ns = curr_time_ns -
scn->scn_dp->dp_spa->spa_sync_starttime;
int dirty_pct = scn->scn_dp->dp_dirty_total * 100 / zfs_dirty_data_max;
int mintime = (scn->scn_phys.scn_func == POOL_SCAN_RESILVER) ?
zfs_resilver_min_time_ms : zfs_scrub_min_time_ms;
if ((NSEC2MSEC(scan_time_ns) > mintime &&
(dirty_pct >= zfs_vdev_async_write_active_min_dirty_percent ||
txg_sync_waiting(scn->scn_dp) ||
NSEC2SEC(sync_time_ns) >= zfs_txg_timeout)) ||
spa_shutting_down(scn->scn_dp->dp_spa) ||
(zfs_scan_strict_mem_lim && dsl_scan_should_clear(scn))) {
if (zb && zb->zb_level == ZB_ROOT_LEVEL) {
dprintf("suspending at first available bookmark "
"%llx/%llx/%llx/%llx\n",
(longlong_t)zb->zb_objset,
(longlong_t)zb->zb_object,
(longlong_t)zb->zb_level,
(longlong_t)zb->zb_blkid);
SET_BOOKMARK(&scn->scn_phys.scn_bookmark,
zb->zb_objset, 0, 0, 0);
} else if (zb != NULL) {
dprintf("suspending at bookmark %llx/%llx/%llx/%llx\n",
(longlong_t)zb->zb_objset,
(longlong_t)zb->zb_object,
(longlong_t)zb->zb_level,
(longlong_t)zb->zb_blkid);
scn->scn_phys.scn_bookmark = *zb;
} else {
#ifdef ZFS_DEBUG
dsl_scan_phys_t *scnp = &scn->scn_phys;
dprintf("suspending at at DDT bookmark "
"%llx/%llx/%llx/%llx\n",
(longlong_t)scnp->scn_ddt_bookmark.ddb_class,
(longlong_t)scnp->scn_ddt_bookmark.ddb_type,
(longlong_t)scnp->scn_ddt_bookmark.ddb_checksum,
(longlong_t)scnp->scn_ddt_bookmark.ddb_cursor);
#endif
}
scn->scn_suspending = B_TRUE;
return (B_TRUE);
}
return (B_FALSE);
}
typedef struct zil_scan_arg {
dsl_pool_t *zsa_dp;
zil_header_t *zsa_zh;
} zil_scan_arg_t;
/* ARGSUSED */
static int
dsl_scan_zil_block(zilog_t *zilog, const blkptr_t *bp, void *arg,
uint64_t claim_txg)
{
zil_scan_arg_t *zsa = arg;
dsl_pool_t *dp = zsa->zsa_dp;
dsl_scan_t *scn = dp->dp_scan;
zil_header_t *zh = zsa->zsa_zh;
zbookmark_phys_t zb;
Implement Redacted Send/Receive Redacted send/receive allows users to send subsets of their data to a target system. One possible use case for this feature is to not transmit sensitive information to a data warehousing, test/dev, or analytics environment. Another is to save space by not replicating unimportant data within a given dataset, for example in backup tools like zrepl. Redacted send/receive is a three-stage process. First, a clone (or clones) is made of the snapshot to be sent to the target. In this clone (or clones), all unnecessary or unwanted data is removed or modified. This clone is then snapshotted to create the "redaction snapshot" (or snapshots). Second, the new zfs redact command is used to create a redaction bookmark. The redaction bookmark stores the list of blocks in a snapshot that were modified by the redaction snapshot(s). Finally, the redaction bookmark is passed as a parameter to zfs send. When sending to the snapshot that was redacted, the redaction bookmark is used to filter out blocks that contain sensitive or unwanted information, and those blocks are not included in the send stream. When sending from the redaction bookmark, the blocks it contains are considered as candidate blocks in addition to those blocks in the destination snapshot that were modified since the creation_txg of the redaction bookmark. This step is necessary to allow the target to rehydrate data in the case where some blocks are accidentally or unnecessarily modified in the redaction snapshot. The changes to bookmarks to enable fast space estimation involve adding deadlists to bookmarks. There is also logic to manage the life cycles of these deadlists. The new size estimation process operates in cases where previously an accurate estimate could not be provided. In those cases, a send is performed where no data blocks are read, reducing the runtime significantly and providing a byte-accurate size estimate. Reviewed-by: Dan Kimmel <dan.kimmel@delphix.com> Reviewed-by: Matt Ahrens <mahrens@delphix.com> Reviewed-by: Prashanth Sreenivasa <pks@delphix.com> Reviewed-by: John Kennedy <john.kennedy@delphix.com> Reviewed-by: George Wilson <george.wilson@delphix.com> Reviewed-by: Chris Williamson <chris.williamson@delphix.com> Reviewed-by: Pavel Zhakarov <pavel.zakharov@delphix.com> Reviewed-by: Sebastien Roy <sebastien.roy@delphix.com> Reviewed-by: Prakash Surya <prakash.surya@delphix.com> Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov> Signed-off-by: Paul Dagnelie <pcd@delphix.com> Closes #7958
2019-06-19 19:48:13 +03:00
ASSERT(!BP_IS_REDACTED(bp));
if (BP_IS_HOLE(bp) || bp->blk_birth <= scn->scn_phys.scn_cur_min_txg)
return (0);
/*
* One block ("stubby") can be allocated a long time ago; we
* want to visit that one because it has been allocated
* (on-disk) even if it hasn't been claimed (even though for
* scrub there's nothing to do to it).
*/
OpenZFS 9166 - zfs storage pool checkpoint Details about the motivation of this feature and its usage can be found in this blogpost: https://sdimitro.github.io/post/zpool-checkpoint/ A lightning talk of this feature can be found here: https://www.youtube.com/watch?v=fPQA8K40jAM Implementation details can be found in big block comment of spa_checkpoint.c Side-changes that are relevant to this commit but not explained elsewhere: * renames members of "struct metaslab trees to be shorter without losing meaning * space_map_{alloc,truncate}() accept a block size as a parameter. The reason is that in the current state all space maps that we allocate through the DMU use a global tunable (space_map_blksz) which defauls to 4KB. This is ok for metaslab space maps in terms of bandwirdth since they are scattered all over the disk. But for other space maps this default is probably not what we want. Examples are device removal's vdev_obsolete_sm or vdev_chedkpoint_sm from this review. Both of these have a 1:1 relationship with each vdev and could benefit from a bigger block size. Porting notes: * The part of dsl_scan_sync() which handles async destroys has been moved into the new dsl_process_async_destroys() function. * Remove "VERIFY(!(flags & FWRITE))" in "kernel.c" so zhack can write to block device backed pools. * ZTS: * Fix get_txg() in zpool_sync_001_pos due to "checkpoint_txg". * Don't use large dd block sizes on /dev/urandom under Linux in checkpoint_capacity. * Adopt Delphix-OS's setting of 4 (spa_asize_inflation = SPA_DVAS_PER_BP + 1) for the checkpoint_capacity test to speed its attempts to fill the pool * Create the base and nested pools with sync=disabled to speed up the "setup" phase. * Clear labels in test pool between checkpoint tests to avoid duplicate pool issues. * The import_rewind_device_replaced test has been marked as "known to fail" for the reasons listed in its DISCLAIMER. * New module parameters: zfs_spa_discard_memory_limit, zfs_remove_max_bytes_pause (not documented - debugging only) vdev_max_ms_count (formerly metaslabs_per_vdev) vdev_min_ms_count Authored by: Serapheim Dimitropoulos <serapheim.dimitro@delphix.com> Reviewed by: Matthew Ahrens <mahrens@delphix.com> Reviewed by: John Kennedy <john.kennedy@delphix.com> Reviewed by: Dan Kimmel <dan.kimmel@delphix.com> Reviewed by: Brian Behlendorf <behlendorf1@llnl.gov> Approved by: Richard Lowe <richlowe@richlowe.net> Ported-by: Tim Chase <tim@chase2k.com> Signed-off-by: Tim Chase <tim@chase2k.com> OpenZFS-issue: https://illumos.org/issues/9166 OpenZFS-commit: https://github.com/openzfs/openzfs/commit/7159fdb8 Closes #7570
2016-12-17 01:11:29 +03:00
if (claim_txg == 0 && bp->blk_birth >= spa_min_claim_txg(dp->dp_spa))
return (0);
SET_BOOKMARK(&zb, zh->zh_log.blk_cksum.zc_word[ZIL_ZC_OBJSET],
ZB_ZIL_OBJECT, ZB_ZIL_LEVEL, bp->blk_cksum.zc_word[ZIL_ZC_SEQ]);
VERIFY(0 == scan_funcs[scn->scn_phys.scn_func](dp, bp, &zb));
return (0);
}
/* ARGSUSED */
static int
dsl_scan_zil_record(zilog_t *zilog, const lr_t *lrc, void *arg,
uint64_t claim_txg)
{
if (lrc->lrc_txtype == TX_WRITE) {
zil_scan_arg_t *zsa = arg;
dsl_pool_t *dp = zsa->zsa_dp;
dsl_scan_t *scn = dp->dp_scan;
zil_header_t *zh = zsa->zsa_zh;
const lr_write_t *lr = (const lr_write_t *)lrc;
const blkptr_t *bp = &lr->lr_blkptr;
zbookmark_phys_t zb;
Implement Redacted Send/Receive Redacted send/receive allows users to send subsets of their data to a target system. One possible use case for this feature is to not transmit sensitive information to a data warehousing, test/dev, or analytics environment. Another is to save space by not replicating unimportant data within a given dataset, for example in backup tools like zrepl. Redacted send/receive is a three-stage process. First, a clone (or clones) is made of the snapshot to be sent to the target. In this clone (or clones), all unnecessary or unwanted data is removed or modified. This clone is then snapshotted to create the "redaction snapshot" (or snapshots). Second, the new zfs redact command is used to create a redaction bookmark. The redaction bookmark stores the list of blocks in a snapshot that were modified by the redaction snapshot(s). Finally, the redaction bookmark is passed as a parameter to zfs send. When sending to the snapshot that was redacted, the redaction bookmark is used to filter out blocks that contain sensitive or unwanted information, and those blocks are not included in the send stream. When sending from the redaction bookmark, the blocks it contains are considered as candidate blocks in addition to those blocks in the destination snapshot that were modified since the creation_txg of the redaction bookmark. This step is necessary to allow the target to rehydrate data in the case where some blocks are accidentally or unnecessarily modified in the redaction snapshot. The changes to bookmarks to enable fast space estimation involve adding deadlists to bookmarks. There is also logic to manage the life cycles of these deadlists. The new size estimation process operates in cases where previously an accurate estimate could not be provided. In those cases, a send is performed where no data blocks are read, reducing the runtime significantly and providing a byte-accurate size estimate. Reviewed-by: Dan Kimmel <dan.kimmel@delphix.com> Reviewed-by: Matt Ahrens <mahrens@delphix.com> Reviewed-by: Prashanth Sreenivasa <pks@delphix.com> Reviewed-by: John Kennedy <john.kennedy@delphix.com> Reviewed-by: George Wilson <george.wilson@delphix.com> Reviewed-by: Chris Williamson <chris.williamson@delphix.com> Reviewed-by: Pavel Zhakarov <pavel.zakharov@delphix.com> Reviewed-by: Sebastien Roy <sebastien.roy@delphix.com> Reviewed-by: Prakash Surya <prakash.surya@delphix.com> Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov> Signed-off-by: Paul Dagnelie <pcd@delphix.com> Closes #7958
2019-06-19 19:48:13 +03:00
ASSERT(!BP_IS_REDACTED(bp));
if (BP_IS_HOLE(bp) ||
bp->blk_birth <= scn->scn_phys.scn_cur_min_txg)
return (0);
/*
* birth can be < claim_txg if this record's txg is
* already txg sync'ed (but this log block contains
* other records that are not synced)
*/
if (claim_txg == 0 || bp->blk_birth < claim_txg)
return (0);
SET_BOOKMARK(&zb, zh->zh_log.blk_cksum.zc_word[ZIL_ZC_OBJSET],
lr->lr_foid, ZB_ZIL_LEVEL,
lr->lr_offset / BP_GET_LSIZE(bp));
VERIFY(0 == scan_funcs[scn->scn_phys.scn_func](dp, bp, &zb));
}
return (0);
}
static void
dsl_scan_zil(dsl_pool_t *dp, zil_header_t *zh)
{
uint64_t claim_txg = zh->zh_claim_txg;
zil_scan_arg_t zsa = { dp, zh };
zilog_t *zilog;
OpenZFS 9166 - zfs storage pool checkpoint Details about the motivation of this feature and its usage can be found in this blogpost: https://sdimitro.github.io/post/zpool-checkpoint/ A lightning talk of this feature can be found here: https://www.youtube.com/watch?v=fPQA8K40jAM Implementation details can be found in big block comment of spa_checkpoint.c Side-changes that are relevant to this commit but not explained elsewhere: * renames members of "struct metaslab trees to be shorter without losing meaning * space_map_{alloc,truncate}() accept a block size as a parameter. The reason is that in the current state all space maps that we allocate through the DMU use a global tunable (space_map_blksz) which defauls to 4KB. This is ok for metaslab space maps in terms of bandwirdth since they are scattered all over the disk. But for other space maps this default is probably not what we want. Examples are device removal's vdev_obsolete_sm or vdev_chedkpoint_sm from this review. Both of these have a 1:1 relationship with each vdev and could benefit from a bigger block size. Porting notes: * The part of dsl_scan_sync() which handles async destroys has been moved into the new dsl_process_async_destroys() function. * Remove "VERIFY(!(flags & FWRITE))" in "kernel.c" so zhack can write to block device backed pools. * ZTS: * Fix get_txg() in zpool_sync_001_pos due to "checkpoint_txg". * Don't use large dd block sizes on /dev/urandom under Linux in checkpoint_capacity. * Adopt Delphix-OS's setting of 4 (spa_asize_inflation = SPA_DVAS_PER_BP + 1) for the checkpoint_capacity test to speed its attempts to fill the pool * Create the base and nested pools with sync=disabled to speed up the "setup" phase. * Clear labels in test pool between checkpoint tests to avoid duplicate pool issues. * The import_rewind_device_replaced test has been marked as "known to fail" for the reasons listed in its DISCLAIMER. * New module parameters: zfs_spa_discard_memory_limit, zfs_remove_max_bytes_pause (not documented - debugging only) vdev_max_ms_count (formerly metaslabs_per_vdev) vdev_min_ms_count Authored by: Serapheim Dimitropoulos <serapheim.dimitro@delphix.com> Reviewed by: Matthew Ahrens <mahrens@delphix.com> Reviewed by: John Kennedy <john.kennedy@delphix.com> Reviewed by: Dan Kimmel <dan.kimmel@delphix.com> Reviewed by: Brian Behlendorf <behlendorf1@llnl.gov> Approved by: Richard Lowe <richlowe@richlowe.net> Ported-by: Tim Chase <tim@chase2k.com> Signed-off-by: Tim Chase <tim@chase2k.com> OpenZFS-issue: https://illumos.org/issues/9166 OpenZFS-commit: https://github.com/openzfs/openzfs/commit/7159fdb8 Closes #7570
2016-12-17 01:11:29 +03:00
ASSERT(spa_writeable(dp->dp_spa));
/*
* We only want to visit blocks that have been claimed but not yet
* replayed (or, in read-only mode, blocks that *would* be claimed).
*/
OpenZFS 9166 - zfs storage pool checkpoint Details about the motivation of this feature and its usage can be found in this blogpost: https://sdimitro.github.io/post/zpool-checkpoint/ A lightning talk of this feature can be found here: https://www.youtube.com/watch?v=fPQA8K40jAM Implementation details can be found in big block comment of spa_checkpoint.c Side-changes that are relevant to this commit but not explained elsewhere: * renames members of "struct metaslab trees to be shorter without losing meaning * space_map_{alloc,truncate}() accept a block size as a parameter. The reason is that in the current state all space maps that we allocate through the DMU use a global tunable (space_map_blksz) which defauls to 4KB. This is ok for metaslab space maps in terms of bandwirdth since they are scattered all over the disk. But for other space maps this default is probably not what we want. Examples are device removal's vdev_obsolete_sm or vdev_chedkpoint_sm from this review. Both of these have a 1:1 relationship with each vdev and could benefit from a bigger block size. Porting notes: * The part of dsl_scan_sync() which handles async destroys has been moved into the new dsl_process_async_destroys() function. * Remove "VERIFY(!(flags & FWRITE))" in "kernel.c" so zhack can write to block device backed pools. * ZTS: * Fix get_txg() in zpool_sync_001_pos due to "checkpoint_txg". * Don't use large dd block sizes on /dev/urandom under Linux in checkpoint_capacity. * Adopt Delphix-OS's setting of 4 (spa_asize_inflation = SPA_DVAS_PER_BP + 1) for the checkpoint_capacity test to speed its attempts to fill the pool * Create the base and nested pools with sync=disabled to speed up the "setup" phase. * Clear labels in test pool between checkpoint tests to avoid duplicate pool issues. * The import_rewind_device_replaced test has been marked as "known to fail" for the reasons listed in its DISCLAIMER. * New module parameters: zfs_spa_discard_memory_limit, zfs_remove_max_bytes_pause (not documented - debugging only) vdev_max_ms_count (formerly metaslabs_per_vdev) vdev_min_ms_count Authored by: Serapheim Dimitropoulos <serapheim.dimitro@delphix.com> Reviewed by: Matthew Ahrens <mahrens@delphix.com> Reviewed by: John Kennedy <john.kennedy@delphix.com> Reviewed by: Dan Kimmel <dan.kimmel@delphix.com> Reviewed by: Brian Behlendorf <behlendorf1@llnl.gov> Approved by: Richard Lowe <richlowe@richlowe.net> Ported-by: Tim Chase <tim@chase2k.com> Signed-off-by: Tim Chase <tim@chase2k.com> OpenZFS-issue: https://illumos.org/issues/9166 OpenZFS-commit: https://github.com/openzfs/openzfs/commit/7159fdb8 Closes #7570
2016-12-17 01:11:29 +03:00
if (claim_txg == 0)
return;
zilog = zil_alloc(dp->dp_meta_objset, zh);
(void) zil_parse(zilog, dsl_scan_zil_block, dsl_scan_zil_record, &zsa,
Native Encryption for ZFS on Linux This change incorporates three major pieces: The first change is a keystore that manages wrapping and encryption keys for encrypted datasets. These commands mostly involve manipulating the new DSL Crypto Key ZAP Objects that live in the MOS. Each encrypted dataset has its own DSL Crypto Key that is protected with a user's key. This level of indirection allows users to change their keys without re-encrypting their entire datasets. The change implements the new subcommands "zfs load-key", "zfs unload-key" and "zfs change-key" which allow the user to manage their encryption keys and settings. In addition, several new flags and properties have been added to allow dataset creation and to make mounting and unmounting more convenient. The second piece of this patch provides the ability to encrypt, decyrpt, and authenticate protected datasets. Each object set maintains a Merkel tree of Message Authentication Codes that protect the lower layers, similarly to how checksums are maintained. This part impacts the zio layer, which handles the actual encryption and generation of MACs, as well as the ARC and DMU, which need to be able to handle encrypted buffers and protected data. The last addition is the ability to do raw, encrypted sends and receives. The idea here is to send raw encrypted and compressed data and receive it exactly as is on a backup system. This means that the dataset on the receiving system is protected using the same user key that is in use on the sending side. By doing so, datasets can be efficiently backed up to an untrusted system without fear of data being compromised. Reviewed by: Matthew Ahrens <mahrens@delphix.com> Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov> Reviewed-by: Jorgen Lundman <lundman@lundman.net> Signed-off-by: Tom Caputi <tcaputi@datto.com> Closes #494 Closes #5769
2017-08-14 20:36:48 +03:00
claim_txg, B_FALSE);
zil_free(zilog);
}
/*
* We compare scan_prefetch_issue_ctx_t's based on their bookmarks. The idea
* here is to sort the AVL tree by the order each block will be needed.
*/
static int
scan_prefetch_queue_compare(const void *a, const void *b)
{
const scan_prefetch_issue_ctx_t *spic_a = a, *spic_b = b;
const scan_prefetch_ctx_t *spc_a = spic_a->spic_spc;
const scan_prefetch_ctx_t *spc_b = spic_b->spic_spc;
return (zbookmark_compare(spc_a->spc_datablkszsec,
spc_a->spc_indblkshift, spc_b->spc_datablkszsec,
spc_b->spc_indblkshift, &spic_a->spic_zb, &spic_b->spic_zb));
}
static void
scan_prefetch_ctx_rele(scan_prefetch_ctx_t *spc, void *tag)
{
if (zfs_refcount_remove(&spc->spc_refcnt, tag) == 0) {
zfs_refcount_destroy(&spc->spc_refcnt);
kmem_free(spc, sizeof (scan_prefetch_ctx_t));
}
}
static scan_prefetch_ctx_t *
scan_prefetch_ctx_create(dsl_scan_t *scn, dnode_phys_t *dnp, void *tag)
{
scan_prefetch_ctx_t *spc;
spc = kmem_alloc(sizeof (scan_prefetch_ctx_t), KM_SLEEP);
zfs_refcount_create(&spc->spc_refcnt);
zfs_refcount_add(&spc->spc_refcnt, tag);
spc->spc_scn = scn;
if (dnp != NULL) {
spc->spc_datablkszsec = dnp->dn_datablkszsec;
spc->spc_indblkshift = dnp->dn_indblkshift;
spc->spc_root = B_FALSE;
} else {
spc->spc_datablkszsec = 0;
spc->spc_indblkshift = 0;
spc->spc_root = B_TRUE;
}
return (spc);
}
static void
scan_prefetch_ctx_add_ref(scan_prefetch_ctx_t *spc, void *tag)
{
zfs_refcount_add(&spc->spc_refcnt, tag);
}
static void
scan_ds_prefetch_queue_clear(dsl_scan_t *scn)
{
spa_t *spa = scn->scn_dp->dp_spa;
void *cookie = NULL;
scan_prefetch_issue_ctx_t *spic = NULL;
mutex_enter(&spa->spa_scrub_lock);
while ((spic = avl_destroy_nodes(&scn->scn_prefetch_queue,
&cookie)) != NULL) {
scan_prefetch_ctx_rele(spic->spic_spc, scn);
kmem_free(spic, sizeof (scan_prefetch_issue_ctx_t));
}
mutex_exit(&spa->spa_scrub_lock);
}
static boolean_t
dsl_scan_check_prefetch_resume(scan_prefetch_ctx_t *spc,
const zbookmark_phys_t *zb)
{
zbookmark_phys_t *last_zb = &spc->spc_scn->scn_prefetch_bookmark;
dnode_phys_t tmp_dnp;
dnode_phys_t *dnp = (spc->spc_root) ? NULL : &tmp_dnp;
if (zb->zb_objset != last_zb->zb_objset)
return (B_TRUE);
if ((int64_t)zb->zb_object < 0)
return (B_FALSE);
tmp_dnp.dn_datablkszsec = spc->spc_datablkszsec;
tmp_dnp.dn_indblkshift = spc->spc_indblkshift;
if (zbookmark_subtree_completed(dnp, zb, last_zb))
return (B_TRUE);
return (B_FALSE);
}
static void
dsl_scan_prefetch(scan_prefetch_ctx_t *spc, blkptr_t *bp, zbookmark_phys_t *zb)
{
avl_index_t idx;
dsl_scan_t *scn = spc->spc_scn;
spa_t *spa = scn->scn_dp->dp_spa;
scan_prefetch_issue_ctx_t *spic;
Implement Redacted Send/Receive Redacted send/receive allows users to send subsets of their data to a target system. One possible use case for this feature is to not transmit sensitive information to a data warehousing, test/dev, or analytics environment. Another is to save space by not replicating unimportant data within a given dataset, for example in backup tools like zrepl. Redacted send/receive is a three-stage process. First, a clone (or clones) is made of the snapshot to be sent to the target. In this clone (or clones), all unnecessary or unwanted data is removed or modified. This clone is then snapshotted to create the "redaction snapshot" (or snapshots). Second, the new zfs redact command is used to create a redaction bookmark. The redaction bookmark stores the list of blocks in a snapshot that were modified by the redaction snapshot(s). Finally, the redaction bookmark is passed as a parameter to zfs send. When sending to the snapshot that was redacted, the redaction bookmark is used to filter out blocks that contain sensitive or unwanted information, and those blocks are not included in the send stream. When sending from the redaction bookmark, the blocks it contains are considered as candidate blocks in addition to those blocks in the destination snapshot that were modified since the creation_txg of the redaction bookmark. This step is necessary to allow the target to rehydrate data in the case where some blocks are accidentally or unnecessarily modified in the redaction snapshot. The changes to bookmarks to enable fast space estimation involve adding deadlists to bookmarks. There is also logic to manage the life cycles of these deadlists. The new size estimation process operates in cases where previously an accurate estimate could not be provided. In those cases, a send is performed where no data blocks are read, reducing the runtime significantly and providing a byte-accurate size estimate. Reviewed-by: Dan Kimmel <dan.kimmel@delphix.com> Reviewed-by: Matt Ahrens <mahrens@delphix.com> Reviewed-by: Prashanth Sreenivasa <pks@delphix.com> Reviewed-by: John Kennedy <john.kennedy@delphix.com> Reviewed-by: George Wilson <george.wilson@delphix.com> Reviewed-by: Chris Williamson <chris.williamson@delphix.com> Reviewed-by: Pavel Zhakarov <pavel.zakharov@delphix.com> Reviewed-by: Sebastien Roy <sebastien.roy@delphix.com> Reviewed-by: Prakash Surya <prakash.surya@delphix.com> Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov> Signed-off-by: Paul Dagnelie <pcd@delphix.com> Closes #7958
2019-06-19 19:48:13 +03:00
if (zfs_no_scrub_prefetch || BP_IS_REDACTED(bp))
return;
if (BP_IS_HOLE(bp) || bp->blk_birth <= scn->scn_phys.scn_cur_min_txg ||
(BP_GET_LEVEL(bp) == 0 && BP_GET_TYPE(bp) != DMU_OT_DNODE &&
BP_GET_TYPE(bp) != DMU_OT_OBJSET))
return;
if (dsl_scan_check_prefetch_resume(spc, zb))
return;
scan_prefetch_ctx_add_ref(spc, scn);
spic = kmem_alloc(sizeof (scan_prefetch_issue_ctx_t), KM_SLEEP);
spic->spic_spc = spc;
spic->spic_bp = *bp;
spic->spic_zb = *zb;
/*
* Add the IO to the queue of blocks to prefetch. This allows us to
* prioritize blocks that we will need first for the main traversal
* thread.
*/
mutex_enter(&spa->spa_scrub_lock);
if (avl_find(&scn->scn_prefetch_queue, spic, &idx) != NULL) {
/* this block is already queued for prefetch */
kmem_free(spic, sizeof (scan_prefetch_issue_ctx_t));
scan_prefetch_ctx_rele(spc, scn);
mutex_exit(&spa->spa_scrub_lock);
return;
}
avl_insert(&scn->scn_prefetch_queue, spic, idx);
cv_broadcast(&spa->spa_scrub_io_cv);
mutex_exit(&spa->spa_scrub_lock);
}
static void
dsl_scan_prefetch_dnode(dsl_scan_t *scn, dnode_phys_t *dnp,
uint64_t objset, uint64_t object)
{
int i;
zbookmark_phys_t zb;
scan_prefetch_ctx_t *spc;
if (dnp->dn_nblkptr == 0 && !(dnp->dn_flags & DNODE_FLAG_SPILL_BLKPTR))
return;
SET_BOOKMARK(&zb, objset, object, 0, 0);
spc = scan_prefetch_ctx_create(scn, dnp, FTAG);
for (i = 0; i < dnp->dn_nblkptr; i++) {
zb.zb_level = BP_GET_LEVEL(&dnp->dn_blkptr[i]);
zb.zb_blkid = i;
dsl_scan_prefetch(spc, &dnp->dn_blkptr[i], &zb);
}
if (dnp->dn_flags & DNODE_FLAG_SPILL_BLKPTR) {
zb.zb_level = 0;
zb.zb_blkid = DMU_SPILL_BLKID;
dsl_scan_prefetch(spc, DN_SPILL_BLKPTR(dnp), &zb);
}
scan_prefetch_ctx_rele(spc, FTAG);
}
static void
dsl_scan_prefetch_cb(zio_t *zio, const zbookmark_phys_t *zb, const blkptr_t *bp,
arc_buf_t *buf, void *private)
{
scan_prefetch_ctx_t *spc = private;
dsl_scan_t *scn = spc->spc_scn;
spa_t *spa = scn->scn_dp->dp_spa;
/* broadcast that the IO has completed for rate limiting purposes */
mutex_enter(&spa->spa_scrub_lock);
ASSERT3U(spa->spa_scrub_inflight, >=, BP_GET_PSIZE(bp));
spa->spa_scrub_inflight -= BP_GET_PSIZE(bp);
cv_broadcast(&spa->spa_scrub_io_cv);
mutex_exit(&spa->spa_scrub_lock);
/* if there was an error or we are done prefetching, just cleanup */
if (buf == NULL || scn->scn_prefetch_stop)
goto out;
if (BP_GET_LEVEL(bp) > 0) {
int i;
blkptr_t *cbp;
int epb = BP_GET_LSIZE(bp) >> SPA_BLKPTRSHIFT;
zbookmark_phys_t czb;
for (i = 0, cbp = buf->b_data; i < epb; i++, cbp++) {
SET_BOOKMARK(&czb, zb->zb_objset, zb->zb_object,
zb->zb_level - 1, zb->zb_blkid * epb + i);
dsl_scan_prefetch(spc, cbp, &czb);
}
} else if (BP_GET_TYPE(bp) == DMU_OT_DNODE) {
dnode_phys_t *cdnp;
int i;
int epb = BP_GET_LSIZE(bp) >> DNODE_SHIFT;
for (i = 0, cdnp = buf->b_data; i < epb;
i += cdnp->dn_extra_slots + 1,
cdnp += cdnp->dn_extra_slots + 1) {
dsl_scan_prefetch_dnode(scn, cdnp,
zb->zb_objset, zb->zb_blkid * epb + i);
}
} else if (BP_GET_TYPE(bp) == DMU_OT_OBJSET) {
objset_phys_t *osp = buf->b_data;
dsl_scan_prefetch_dnode(scn, &osp->os_meta_dnode,
zb->zb_objset, DMU_META_DNODE_OBJECT);
if (OBJSET_BUF_HAS_USERUSED(buf)) {
dsl_scan_prefetch_dnode(scn,
&osp->os_groupused_dnode, zb->zb_objset,
DMU_GROUPUSED_OBJECT);
dsl_scan_prefetch_dnode(scn,
&osp->os_userused_dnode, zb->zb_objset,
DMU_USERUSED_OBJECT);
}
}
out:
if (buf != NULL)
arc_buf_destroy(buf, private);
scan_prefetch_ctx_rele(spc, scn);
}
/* ARGSUSED */
static void
dsl_scan_prefetch_thread(void *arg)
{
dsl_scan_t *scn = arg;
spa_t *spa = scn->scn_dp->dp_spa;
scan_prefetch_issue_ctx_t *spic;
/* loop until we are told to stop */
while (!scn->scn_prefetch_stop) {
arc_flags_t flags = ARC_FLAG_NOWAIT |
ARC_FLAG_PRESCIENT_PREFETCH | ARC_FLAG_PREFETCH;
int zio_flags = ZIO_FLAG_CANFAIL | ZIO_FLAG_SCAN_THREAD;
mutex_enter(&spa->spa_scrub_lock);
/*
* Wait until we have an IO to issue and are not above our
* maximum in flight limit.
*/
while (!scn->scn_prefetch_stop &&
(avl_numnodes(&scn->scn_prefetch_queue) == 0 ||
spa->spa_scrub_inflight >= scn->scn_maxinflight_bytes)) {
cv_wait(&spa->spa_scrub_io_cv, &spa->spa_scrub_lock);
}
/* recheck if we should stop since we waited for the cv */
if (scn->scn_prefetch_stop) {
mutex_exit(&spa->spa_scrub_lock);
break;
}
/* remove the prefetch IO from the tree */
spic = avl_first(&scn->scn_prefetch_queue);
spa->spa_scrub_inflight += BP_GET_PSIZE(&spic->spic_bp);
avl_remove(&scn->scn_prefetch_queue, spic);
mutex_exit(&spa->spa_scrub_lock);
if (BP_IS_PROTECTED(&spic->spic_bp)) {
ASSERT(BP_GET_TYPE(&spic->spic_bp) == DMU_OT_DNODE ||
BP_GET_TYPE(&spic->spic_bp) == DMU_OT_OBJSET);
ASSERT3U(BP_GET_LEVEL(&spic->spic_bp), ==, 0);
zio_flags |= ZIO_FLAG_RAW;
}
/* issue the prefetch asynchronously */
(void) arc_read(scn->scn_zio_root, scn->scn_dp->dp_spa,
&spic->spic_bp, dsl_scan_prefetch_cb, spic->spic_spc,
ZIO_PRIORITY_SCRUB, zio_flags, &flags, &spic->spic_zb);
kmem_free(spic, sizeof (scan_prefetch_issue_ctx_t));
Native Encryption for ZFS on Linux This change incorporates three major pieces: The first change is a keystore that manages wrapping and encryption keys for encrypted datasets. These commands mostly involve manipulating the new DSL Crypto Key ZAP Objects that live in the MOS. Each encrypted dataset has its own DSL Crypto Key that is protected with a user's key. This level of indirection allows users to change their keys without re-encrypting their entire datasets. The change implements the new subcommands "zfs load-key", "zfs unload-key" and "zfs change-key" which allow the user to manage their encryption keys and settings. In addition, several new flags and properties have been added to allow dataset creation and to make mounting and unmounting more convenient. The second piece of this patch provides the ability to encrypt, decyrpt, and authenticate protected datasets. Each object set maintains a Merkel tree of Message Authentication Codes that protect the lower layers, similarly to how checksums are maintained. This part impacts the zio layer, which handles the actual encryption and generation of MACs, as well as the ARC and DMU, which need to be able to handle encrypted buffers and protected data. The last addition is the ability to do raw, encrypted sends and receives. The idea here is to send raw encrypted and compressed data and receive it exactly as is on a backup system. This means that the dataset on the receiving system is protected using the same user key that is in use on the sending side. By doing so, datasets can be efficiently backed up to an untrusted system without fear of data being compromised. Reviewed by: Matthew Ahrens <mahrens@delphix.com> Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov> Reviewed-by: Jorgen Lundman <lundman@lundman.net> Signed-off-by: Tom Caputi <tcaputi@datto.com> Closes #494 Closes #5769
2017-08-14 20:36:48 +03:00
}
ASSERT(scn->scn_prefetch_stop);
/* free any prefetches we didn't get to complete */
mutex_enter(&spa->spa_scrub_lock);
while ((spic = avl_first(&scn->scn_prefetch_queue)) != NULL) {
avl_remove(&scn->scn_prefetch_queue, spic);
scan_prefetch_ctx_rele(spic->spic_spc, scn);
kmem_free(spic, sizeof (scan_prefetch_issue_ctx_t));
}
ASSERT0(avl_numnodes(&scn->scn_prefetch_queue));
mutex_exit(&spa->spa_scrub_lock);
}
static boolean_t
dsl_scan_check_resume(dsl_scan_t *scn, const dnode_phys_t *dnp,
const zbookmark_phys_t *zb)
{
/*
* We never skip over user/group accounting objects (obj<0)
*/
if (!ZB_IS_ZERO(&scn->scn_phys.scn_bookmark) &&
(int64_t)zb->zb_object >= 0) {
/*
* If we already visited this bp & everything below (in
* a prior txg sync), don't bother doing it again.
*/
if (zbookmark_subtree_completed(dnp, zb,
&scn->scn_phys.scn_bookmark))
return (B_TRUE);
/*
* If we found the block we're trying to resume from, or
* we went past it to a different object, zero it out to
* indicate that it's OK to start checking for suspending
* again.
*/
if (bcmp(zb, &scn->scn_phys.scn_bookmark, sizeof (*zb)) == 0 ||
zb->zb_object > scn->scn_phys.scn_bookmark.zb_object) {
dprintf("resuming at %llx/%llx/%llx/%llx\n",
(longlong_t)zb->zb_objset,
(longlong_t)zb->zb_object,
(longlong_t)zb->zb_level,
(longlong_t)zb->zb_blkid);
bzero(&scn->scn_phys.scn_bookmark, sizeof (*zb));
}
}
return (B_FALSE);
}
static void dsl_scan_visitbp(blkptr_t *bp, const zbookmark_phys_t *zb,
dnode_phys_t *dnp, dsl_dataset_t *ds, dsl_scan_t *scn,
dmu_objset_type_t ostype, dmu_tx_t *tx);
inline __attribute__((always_inline)) static void dsl_scan_visitdnode(
dsl_scan_t *, dsl_dataset_t *ds, dmu_objset_type_t ostype,
dnode_phys_t *dnp, uint64_t object, dmu_tx_t *tx);
/*
* Return nonzero on i/o error.
* Return new buf to write out in *bufp.
*/
inline __attribute__((always_inline)) static int
dsl_scan_recurse(dsl_scan_t *scn, dsl_dataset_t *ds, dmu_objset_type_t ostype,
dnode_phys_t *dnp, const blkptr_t *bp,
const zbookmark_phys_t *zb, dmu_tx_t *tx)
{
dsl_pool_t *dp = scn->scn_dp;
int zio_flags = ZIO_FLAG_CANFAIL | ZIO_FLAG_SCAN_THREAD;
int err;
Implement Redacted Send/Receive Redacted send/receive allows users to send subsets of their data to a target system. One possible use case for this feature is to not transmit sensitive information to a data warehousing, test/dev, or analytics environment. Another is to save space by not replicating unimportant data within a given dataset, for example in backup tools like zrepl. Redacted send/receive is a three-stage process. First, a clone (or clones) is made of the snapshot to be sent to the target. In this clone (or clones), all unnecessary or unwanted data is removed or modified. This clone is then snapshotted to create the "redaction snapshot" (or snapshots). Second, the new zfs redact command is used to create a redaction bookmark. The redaction bookmark stores the list of blocks in a snapshot that were modified by the redaction snapshot(s). Finally, the redaction bookmark is passed as a parameter to zfs send. When sending to the snapshot that was redacted, the redaction bookmark is used to filter out blocks that contain sensitive or unwanted information, and those blocks are not included in the send stream. When sending from the redaction bookmark, the blocks it contains are considered as candidate blocks in addition to those blocks in the destination snapshot that were modified since the creation_txg of the redaction bookmark. This step is necessary to allow the target to rehydrate data in the case where some blocks are accidentally or unnecessarily modified in the redaction snapshot. The changes to bookmarks to enable fast space estimation involve adding deadlists to bookmarks. There is also logic to manage the life cycles of these deadlists. The new size estimation process operates in cases where previously an accurate estimate could not be provided. In those cases, a send is performed where no data blocks are read, reducing the runtime significantly and providing a byte-accurate size estimate. Reviewed-by: Dan Kimmel <dan.kimmel@delphix.com> Reviewed-by: Matt Ahrens <mahrens@delphix.com> Reviewed-by: Prashanth Sreenivasa <pks@delphix.com> Reviewed-by: John Kennedy <john.kennedy@delphix.com> Reviewed-by: George Wilson <george.wilson@delphix.com> Reviewed-by: Chris Williamson <chris.williamson@delphix.com> Reviewed-by: Pavel Zhakarov <pavel.zakharov@delphix.com> Reviewed-by: Sebastien Roy <sebastien.roy@delphix.com> Reviewed-by: Prakash Surya <prakash.surya@delphix.com> Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov> Signed-off-by: Paul Dagnelie <pcd@delphix.com> Closes #7958
2019-06-19 19:48:13 +03:00
ASSERT(!BP_IS_REDACTED(bp));
if (BP_GET_LEVEL(bp) > 0) {
arc_flags_t flags = ARC_FLAG_WAIT;
int i;
blkptr_t *cbp;
int epb = BP_GET_LSIZE(bp) >> SPA_BLKPTRSHIFT;
arc_buf_t *buf;
err = arc_read(NULL, dp->dp_spa, bp, arc_getbuf_func, &buf,
ZIO_PRIORITY_SCRUB, zio_flags, &flags, zb);
if (err) {
scn->scn_phys.scn_errors++;
return (err);
}
for (i = 0, cbp = buf->b_data; i < epb; i++, cbp++) {
zbookmark_phys_t czb;
SET_BOOKMARK(&czb, zb->zb_objset, zb->zb_object,
zb->zb_level - 1,
zb->zb_blkid * epb + i);
dsl_scan_visitbp(cbp, &czb, dnp,
ds, scn, ostype, tx);
}
OpenZFS 6950 - ARC should cache compressed data Authored by: George Wilson <george.wilson@delphix.com> Reviewed by: Prakash Surya <prakash.surya@delphix.com> Reviewed by: Dan Kimmel <dan.kimmel@delphix.com> Reviewed by: Matt Ahrens <mahrens@delphix.com> Reviewed by: Paul Dagnelie <pcd@delphix.com> Reviewed by: Tom Caputi <tcaputi@datto.com> Reviewed by: Brian Behlendorf <behlendorf1@llnl.gov> Ported by: David Quigley <david.quigley@intel.com> This review covers the reading and writing of compressed arc headers, sharing data between the arc_hdr_t and the arc_buf_t, and the implementation of a new dbuf cache to keep frequently access data uncompressed. I've added a new member to l1 arc hdr called b_pdata. The b_pdata always hangs off the arc_buf_hdr_t (if an L1 hdr is in use) and points to the physical block for that DVA. The physical block may or may not be compressed. If compressed arc is enabled and the block on-disk is compressed, then the b_pdata will match the block on-disk and remain compressed in memory. If the block on disk is not compressed, then neither will the b_pdata. Lastly, if compressed arc is disabled, then b_pdata will always be an uncompressed version of the on-disk block. Typically the arc will cache only the arc_buf_hdr_t and will aggressively evict any arc_buf_t's that are no longer referenced. This means that the arc will primarily have compressed blocks as the arc_buf_t's are considered overhead and are always uncompressed. When a consumer reads a block we first look to see if the arc_buf_hdr_t is cached. If the hdr is cached then we allocate a new arc_buf_t and decompress the b_pdata contents into the arc_buf_t's b_data. If the hdr already has a arc_buf_t, then we will allocate an additional arc_buf_t and bcopy the uncompressed contents from the first arc_buf_t to the new one. Writing to the compressed arc requires that we first discard the b_pdata since the physical block is about to be rewritten. The new data contents will be passed in via an arc_buf_t (uncompressed) and during the I/O pipeline stages we will copy the physical block contents to a newly allocated b_pdata. When an l2arc is inuse it will also take advantage of the b_pdata. Now the l2arc will always write the contents of b_pdata to the l2arc. This means that when compressed arc is enabled that the l2arc blocks are identical to those stored in the main data pool. This provides a significant advantage since we can leverage the bp's checksum when reading from the l2arc to determine if the contents are valid. If the compressed arc is disabled, then we must first transform the read block to look like the physical block in the main data pool before comparing the checksum and determining it's valid. OpenZFS-issue: https://www.illumos.org/issues/6950 OpenZFS-commit: https://github.com/openzfs/openzfs/commit/7fc10f0 Issue #5078
2016-06-02 07:04:53 +03:00
arc_buf_destroy(buf, &buf);
} else if (BP_GET_TYPE(bp) == DMU_OT_DNODE) {
arc_flags_t flags = ARC_FLAG_WAIT;
dnode_phys_t *cdnp;
int i;
int epb = BP_GET_LSIZE(bp) >> DNODE_SHIFT;
arc_buf_t *buf;
Native Encryption for ZFS on Linux This change incorporates three major pieces: The first change is a keystore that manages wrapping and encryption keys for encrypted datasets. These commands mostly involve manipulating the new DSL Crypto Key ZAP Objects that live in the MOS. Each encrypted dataset has its own DSL Crypto Key that is protected with a user's key. This level of indirection allows users to change their keys without re-encrypting their entire datasets. The change implements the new subcommands "zfs load-key", "zfs unload-key" and "zfs change-key" which allow the user to manage their encryption keys and settings. In addition, several new flags and properties have been added to allow dataset creation and to make mounting and unmounting more convenient. The second piece of this patch provides the ability to encrypt, decyrpt, and authenticate protected datasets. Each object set maintains a Merkel tree of Message Authentication Codes that protect the lower layers, similarly to how checksums are maintained. This part impacts the zio layer, which handles the actual encryption and generation of MACs, as well as the ARC and DMU, which need to be able to handle encrypted buffers and protected data. The last addition is the ability to do raw, encrypted sends and receives. The idea here is to send raw encrypted and compressed data and receive it exactly as is on a backup system. This means that the dataset on the receiving system is protected using the same user key that is in use on the sending side. By doing so, datasets can be efficiently backed up to an untrusted system without fear of data being compromised. Reviewed by: Matthew Ahrens <mahrens@delphix.com> Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov> Reviewed-by: Jorgen Lundman <lundman@lundman.net> Signed-off-by: Tom Caputi <tcaputi@datto.com> Closes #494 Closes #5769
2017-08-14 20:36:48 +03:00
if (BP_IS_PROTECTED(bp)) {
ASSERT3U(BP_GET_COMPRESS(bp), ==, ZIO_COMPRESS_OFF);
zio_flags |= ZIO_FLAG_RAW;
}
err = arc_read(NULL, dp->dp_spa, bp, arc_getbuf_func, &buf,
ZIO_PRIORITY_SCRUB, zio_flags, &flags, zb);
if (err) {
scn->scn_phys.scn_errors++;
return (err);
}
Implement large_dnode pool feature Justification ------------- This feature adds support for variable length dnodes. Our motivation is to eliminate the overhead associated with using spill blocks. Spill blocks are used to store system attribute data (i.e. file metadata) that does not fit in the dnode's bonus buffer. By allowing a larger bonus buffer area the use of a spill block can be avoided. Spill blocks potentially incur an additional read I/O for every dnode in a dnode block. As a worst case example, reading 32 dnodes from a 16k dnode block and all of the spill blocks could issue 33 separate reads. Now suppose those dnodes have size 1024 and therefore don't need spill blocks. Then the worst case number of blocks read is reduced to from 33 to two--one per dnode block. In practice spill blocks may tend to be co-located on disk with the dnode blocks so the reduction in I/O would not be this drastic. In a badly fragmented pool, however, the improvement could be significant. ZFS-on-Linux systems that make heavy use of extended attributes would benefit from this feature. In particular, ZFS-on-Linux supports the xattr=sa dataset property which allows file extended attribute data to be stored in the dnode bonus buffer as an alternative to the traditional directory-based format. Workloads such as SELinux and the Lustre distributed filesystem often store enough xattr data to force spill bocks when xattr=sa is in effect. Large dnodes may therefore provide a performance benefit to such systems. Other use cases that may benefit from this feature include files with large ACLs and symbolic links with long target names. Furthermore, this feature may be desirable on other platforms in case future applications or features are developed that could make use of a larger bonus buffer area. Implementation -------------- The size of a dnode may be a multiple of 512 bytes up to the size of a dnode block (currently 16384 bytes). A dn_extra_slots field was added to the current on-disk dnode_phys_t structure to describe the size of the physical dnode on disk. The 8 bits for this field were taken from the zero filled dn_pad2 field. The field represents how many "extra" dnode_phys_t slots a dnode consumes in its dnode block. This convention results in a value of 0 for 512 byte dnodes which preserves on-disk format compatibility with older software. Similarly, the in-memory dnode_t structure has a new dn_num_slots field to represent the total number of dnode_phys_t slots consumed on disk. Thus dn->dn_num_slots is 1 greater than the corresponding dnp->dn_extra_slots. This difference in convention was adopted because, unlike on-disk structures, backward compatibility is not a concern for in-memory objects, so we used a more natural way to represent size for a dnode_t. The default size for newly created dnodes is determined by the value of a new "dnodesize" dataset property. By default the property is set to "legacy" which is compatible with older software. Setting the property to "auto" will allow the filesystem to choose the most suitable dnode size. Currently this just sets the default dnode size to 1k, but future code improvements could dynamically choose a size based on observed workload patterns. Dnodes of varying sizes can coexist within the same dataset and even within the same dnode block. For example, to enable automatically-sized dnodes, run # zfs set dnodesize=auto tank/fish The user can also specify literal values for the dnodesize property. These are currently limited to powers of two from 1k to 16k. The power-of-2 limitation is only for simplicity of the user interface. Internally the implementation can handle any multiple of 512 up to 16k, and consumers of the DMU API can specify any legal dnode value. The size of a new dnode is determined at object allocation time and stored as a new field in the znode in-memory structure. New DMU interfaces are added to allow the consumer to specify the dnode size that a newly allocated object should use. Existing interfaces are unchanged to avoid having to update every call site and to preserve compatibility with external consumers such as Lustre. The new interfaces names are given below. The versions of these functions that don't take a dnodesize parameter now just call the _dnsize() versions with a dnodesize of 0, which means use the legacy dnode size. New DMU interfaces: dmu_object_alloc_dnsize() dmu_object_claim_dnsize() dmu_object_reclaim_dnsize() New ZAP interfaces: zap_create_dnsize() zap_create_norm_dnsize() zap_create_flags_dnsize() zap_create_claim_norm_dnsize() zap_create_link_dnsize() The constant DN_MAX_BONUSLEN is renamed to DN_OLD_MAX_BONUSLEN. The spa_maxdnodesize() function should be used to determine the maximum bonus length for a pool. These are a few noteworthy changes to key functions: * The prototype for dnode_hold_impl() now takes a "slots" parameter. When the DNODE_MUST_BE_FREE flag is set, this parameter is used to ensure the hole at the specified object offset is large enough to hold the dnode being created. The slots parameter is also used to ensure a dnode does not span multiple dnode blocks. In both of these cases, if a failure occurs, ENOSPC is returned. Keep in mind, these failure cases are only possible when using DNODE_MUST_BE_FREE. If the DNODE_MUST_BE_ALLOCATED flag is set, "slots" must be 0. dnode_hold_impl() will check if the requested dnode is already consumed as an extra dnode slot by an large dnode, in which case it returns ENOENT. * The function dmu_object_alloc() advances to the next dnode block if dnode_hold_impl() returns an error for a requested object. This is because the beginning of the next dnode block is the only location it can safely assume to either be a hole or a valid starting point for a dnode. * dnode_next_offset_level() and other functions that iterate through dnode blocks may no longer use a simple array indexing scheme. These now use the current dnode's dn_num_slots field to advance to the next dnode in the block. This is to ensure we properly skip the current dnode's bonus area and don't interpret it as a valid dnode. zdb --- The zdb command was updated to display a dnode's size under the "dnsize" column when the object is dumped. For ZIL create log records, zdb will now display the slot count for the object. ztest ----- Ztest chooses a random dnodesize for every newly created object. The random distribution is more heavily weighted toward small dnodes to better simulate real-world datasets. Unused bonus buffer space is filled with non-zero values computed from the object number, dataset id, offset, and generation number. This helps ensure that the dnode traversal code properly skips the interior regions of large dnodes, and that these interior regions are not overwritten by data belonging to other dnodes. A new test visits each object in a dataset. It verifies that the actual dnode size matches what was stored in the ztest block tag when it was created. It also verifies that the unused bonus buffer space is filled with the expected data patterns. ZFS Test Suite -------------- Added six new large dnode-specific tests, and integrated the dnodesize property into existing tests for zfs allow and send/recv. Send/Receive ------------ ZFS send streams for datasets containing large dnodes cannot be received on pools that don't support the large_dnode feature. A send stream with large dnodes sets a DMU_BACKUP_FEATURE_LARGE_DNODE flag which will be unrecognized by an incompatible receiving pool so that the zfs receive will fail gracefully. While not implemented here, it may be possible to generate a backward-compatible send stream from a dataset containing large dnodes. The implementation may be tricky, however, because the send object record for a large dnode would need to be resized to a 512 byte dnode, possibly kicking in a spill block in the process. This means we would need to construct a new SA layout and possibly register it in the SA layout object. The SA layout is normally just sent as an ordinary object record. But if we are constructing new layouts while generating the send stream we'd have to build the SA layout object dynamically and send it at the end of the stream. For sending and receiving between pools that do support large dnodes, the drr_object send record type is extended with a new field to store the dnode slot count. This field was repurposed from unused padding in the structure. ZIL Replay ---------- The dnode slot count is stored in the uppermost 8 bits of the lr_foid field. The bits were unused as the object id is currently capped at 48 bits. Resizing Dnodes --------------- It should be possible to resize a dnode when it is dirtied if the current dnodesize dataset property differs from the dnode's size, but this functionality is not currently implemented. Clearly a dnode can only grow if there are sufficient contiguous unused slots in the dnode block, but it should always be possible to shrink a dnode. Growing dnodes may be useful to reduce fragmentation in a pool with many spill blocks in use. Shrinking dnodes may be useful to allow sending a dataset to a pool that doesn't support the large_dnode feature. Feature Reference Counting -------------------------- The reference count for the large_dnode pool feature tracks the number of datasets that have ever contained a dnode of size larger than 512 bytes. The first time a large dnode is created in a dataset the dataset is converted to an extensible dataset. This is a one-way operation and the only way to decrement the feature count is to destroy the dataset, even if the dataset no longer contains any large dnodes. The complexity of reference counting on a per-dnode basis was too high, so we chose to track it on a per-dataset basis similarly to the large_block feature. Signed-off-by: Ned Bass <bass6@llnl.gov> Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov> Closes #3542
2016-03-17 04:25:34 +03:00
for (i = 0, cdnp = buf->b_data; i < epb;
i += cdnp->dn_extra_slots + 1,
cdnp += cdnp->dn_extra_slots + 1) {
dsl_scan_visitdnode(scn, ds, ostype,
cdnp, zb->zb_blkid * epb + i, tx);
}
OpenZFS 6950 - ARC should cache compressed data Authored by: George Wilson <george.wilson@delphix.com> Reviewed by: Prakash Surya <prakash.surya@delphix.com> Reviewed by: Dan Kimmel <dan.kimmel@delphix.com> Reviewed by: Matt Ahrens <mahrens@delphix.com> Reviewed by: Paul Dagnelie <pcd@delphix.com> Reviewed by: Tom Caputi <tcaputi@datto.com> Reviewed by: Brian Behlendorf <behlendorf1@llnl.gov> Ported by: David Quigley <david.quigley@intel.com> This review covers the reading and writing of compressed arc headers, sharing data between the arc_hdr_t and the arc_buf_t, and the implementation of a new dbuf cache to keep frequently access data uncompressed. I've added a new member to l1 arc hdr called b_pdata. The b_pdata always hangs off the arc_buf_hdr_t (if an L1 hdr is in use) and points to the physical block for that DVA. The physical block may or may not be compressed. If compressed arc is enabled and the block on-disk is compressed, then the b_pdata will match the block on-disk and remain compressed in memory. If the block on disk is not compressed, then neither will the b_pdata. Lastly, if compressed arc is disabled, then b_pdata will always be an uncompressed version of the on-disk block. Typically the arc will cache only the arc_buf_hdr_t and will aggressively evict any arc_buf_t's that are no longer referenced. This means that the arc will primarily have compressed blocks as the arc_buf_t's are considered overhead and are always uncompressed. When a consumer reads a block we first look to see if the arc_buf_hdr_t is cached. If the hdr is cached then we allocate a new arc_buf_t and decompress the b_pdata contents into the arc_buf_t's b_data. If the hdr already has a arc_buf_t, then we will allocate an additional arc_buf_t and bcopy the uncompressed contents from the first arc_buf_t to the new one. Writing to the compressed arc requires that we first discard the b_pdata since the physical block is about to be rewritten. The new data contents will be passed in via an arc_buf_t (uncompressed) and during the I/O pipeline stages we will copy the physical block contents to a newly allocated b_pdata. When an l2arc is inuse it will also take advantage of the b_pdata. Now the l2arc will always write the contents of b_pdata to the l2arc. This means that when compressed arc is enabled that the l2arc blocks are identical to those stored in the main data pool. This provides a significant advantage since we can leverage the bp's checksum when reading from the l2arc to determine if the contents are valid. If the compressed arc is disabled, then we must first transform the read block to look like the physical block in the main data pool before comparing the checksum and determining it's valid. OpenZFS-issue: https://www.illumos.org/issues/6950 OpenZFS-commit: https://github.com/openzfs/openzfs/commit/7fc10f0 Issue #5078
2016-06-02 07:04:53 +03:00
arc_buf_destroy(buf, &buf);
} else if (BP_GET_TYPE(bp) == DMU_OT_OBJSET) {
arc_flags_t flags = ARC_FLAG_WAIT;
objset_phys_t *osp;
arc_buf_t *buf;
err = arc_read(NULL, dp->dp_spa, bp, arc_getbuf_func, &buf,
ZIO_PRIORITY_SCRUB, zio_flags, &flags, zb);
if (err) {
scn->scn_phys.scn_errors++;
return (err);
}
osp = buf->b_data;
dsl_scan_visitdnode(scn, ds, osp->os_type,
&osp->os_meta_dnode, DMU_META_DNODE_OBJECT, tx);
if (OBJSET_BUF_HAS_USERUSED(buf)) {
/*
Project Quota on ZFS Project quota is a new ZFS system space/object usage accounting and enforcement mechanism. Similar as user/group quota, project quota is another dimension of system quota. It bases on the new object attribute - project ID. Project ID is a numerical value to indicate to which project an object belongs. An object only can belong to one project though you (the object owner or privileged user) can change the object project ID via 'chattr -p' or 'zfs project [-s] -p' explicitly. The object also can inherit the project ID from its parent when created if the parent has the project inherit flag (that can be set via 'chattr +P' or 'zfs project -s [-p]'). By accounting the spaces/objects belong to the same project, we can know how many spaces/objects used by the project. And if we set the upper limit then we can control the spaces/objects that are consumed by such project. It is useful when multiple groups and users cooperate for the same project, or a user/group needs to participate in multiple projects. Support the following commands and functionalities: zfs set projectquota@project zfs set projectobjquota@project zfs get projectquota@project zfs get projectobjquota@project zfs get projectused@project zfs get projectobjused@project zfs projectspace zfs allow projectquota zfs allow projectobjquota zfs allow projectused zfs allow projectobjused zfs unallow projectquota zfs unallow projectobjquota zfs unallow projectused zfs unallow projectobjused chattr +/-P chattr -p project_id lsattr -p This patch also supports tree quota based on the project quota via "zfs project" commands set as following: zfs project [-d|-r] <file|directory ...> zfs project -C [-k] [-r] <file|directory ...> zfs project -c [-0] [-d|-r] [-p id] <file|directory ...> zfs project [-p id] [-r] [-s] <file|directory ...> For "df [-i] $DIR" command, if we set INHERIT (project ID) flag on the $DIR, then the proejct [obj]quota and [obj]used values for the $DIR's project ID will be shown as the total/free (avail) resource. Keep the same behavior as EXT4/XFS does. Reviewed-by: Andreas Dilger <andreas.dilger@intel.com> Reviewed-by Ned Bass <bass6@llnl.gov> Reviewed-by: Matthew Ahrens <mahrens@delphix.com> Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov> Signed-off-by: Fan Yong <fan.yong@intel.com> TEST_ZIMPORT_POOLS="zol-0.6.1 zol-0.6.2 master" Change-Id: Ib4f0544602e03fb61fd46a849d7ba51a6005693c Closes #6290
2018-02-14 01:54:54 +03:00
* We also always visit user/group/project accounting
* objects, and never skip them, even if we are
* suspending. This is necessary so that the
* space deltas from this txg get integrated.
*/
Project Quota on ZFS Project quota is a new ZFS system space/object usage accounting and enforcement mechanism. Similar as user/group quota, project quota is another dimension of system quota. It bases on the new object attribute - project ID. Project ID is a numerical value to indicate to which project an object belongs. An object only can belong to one project though you (the object owner or privileged user) can change the object project ID via 'chattr -p' or 'zfs project [-s] -p' explicitly. The object also can inherit the project ID from its parent when created if the parent has the project inherit flag (that can be set via 'chattr +P' or 'zfs project -s [-p]'). By accounting the spaces/objects belong to the same project, we can know how many spaces/objects used by the project. And if we set the upper limit then we can control the spaces/objects that are consumed by such project. It is useful when multiple groups and users cooperate for the same project, or a user/group needs to participate in multiple projects. Support the following commands and functionalities: zfs set projectquota@project zfs set projectobjquota@project zfs get projectquota@project zfs get projectobjquota@project zfs get projectused@project zfs get projectobjused@project zfs projectspace zfs allow projectquota zfs allow projectobjquota zfs allow projectused zfs allow projectobjused zfs unallow projectquota zfs unallow projectobjquota zfs unallow projectused zfs unallow projectobjused chattr +/-P chattr -p project_id lsattr -p This patch also supports tree quota based on the project quota via "zfs project" commands set as following: zfs project [-d|-r] <file|directory ...> zfs project -C [-k] [-r] <file|directory ...> zfs project -c [-0] [-d|-r] [-p id] <file|directory ...> zfs project [-p id] [-r] [-s] <file|directory ...> For "df [-i] $DIR" command, if we set INHERIT (project ID) flag on the $DIR, then the proejct [obj]quota and [obj]used values for the $DIR's project ID will be shown as the total/free (avail) resource. Keep the same behavior as EXT4/XFS does. Reviewed-by: Andreas Dilger <andreas.dilger@intel.com> Reviewed-by Ned Bass <bass6@llnl.gov> Reviewed-by: Matthew Ahrens <mahrens@delphix.com> Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov> Signed-off-by: Fan Yong <fan.yong@intel.com> TEST_ZIMPORT_POOLS="zol-0.6.1 zol-0.6.2 master" Change-Id: Ib4f0544602e03fb61fd46a849d7ba51a6005693c Closes #6290
2018-02-14 01:54:54 +03:00
if (OBJSET_BUF_HAS_PROJECTUSED(buf))
dsl_scan_visitdnode(scn, ds, osp->os_type,
&osp->os_projectused_dnode,
DMU_PROJECTUSED_OBJECT, tx);
dsl_scan_visitdnode(scn, ds, osp->os_type,
&osp->os_groupused_dnode,
DMU_GROUPUSED_OBJECT, tx);
dsl_scan_visitdnode(scn, ds, osp->os_type,
&osp->os_userused_dnode,
DMU_USERUSED_OBJECT, tx);
}
OpenZFS 6950 - ARC should cache compressed data Authored by: George Wilson <george.wilson@delphix.com> Reviewed by: Prakash Surya <prakash.surya@delphix.com> Reviewed by: Dan Kimmel <dan.kimmel@delphix.com> Reviewed by: Matt Ahrens <mahrens@delphix.com> Reviewed by: Paul Dagnelie <pcd@delphix.com> Reviewed by: Tom Caputi <tcaputi@datto.com> Reviewed by: Brian Behlendorf <behlendorf1@llnl.gov> Ported by: David Quigley <david.quigley@intel.com> This review covers the reading and writing of compressed arc headers, sharing data between the arc_hdr_t and the arc_buf_t, and the implementation of a new dbuf cache to keep frequently access data uncompressed. I've added a new member to l1 arc hdr called b_pdata. The b_pdata always hangs off the arc_buf_hdr_t (if an L1 hdr is in use) and points to the physical block for that DVA. The physical block may or may not be compressed. If compressed arc is enabled and the block on-disk is compressed, then the b_pdata will match the block on-disk and remain compressed in memory. If the block on disk is not compressed, then neither will the b_pdata. Lastly, if compressed arc is disabled, then b_pdata will always be an uncompressed version of the on-disk block. Typically the arc will cache only the arc_buf_hdr_t and will aggressively evict any arc_buf_t's that are no longer referenced. This means that the arc will primarily have compressed blocks as the arc_buf_t's are considered overhead and are always uncompressed. When a consumer reads a block we first look to see if the arc_buf_hdr_t is cached. If the hdr is cached then we allocate a new arc_buf_t and decompress the b_pdata contents into the arc_buf_t's b_data. If the hdr already has a arc_buf_t, then we will allocate an additional arc_buf_t and bcopy the uncompressed contents from the first arc_buf_t to the new one. Writing to the compressed arc requires that we first discard the b_pdata since the physical block is about to be rewritten. The new data contents will be passed in via an arc_buf_t (uncompressed) and during the I/O pipeline stages we will copy the physical block contents to a newly allocated b_pdata. When an l2arc is inuse it will also take advantage of the b_pdata. Now the l2arc will always write the contents of b_pdata to the l2arc. This means that when compressed arc is enabled that the l2arc blocks are identical to those stored in the main data pool. This provides a significant advantage since we can leverage the bp's checksum when reading from the l2arc to determine if the contents are valid. If the compressed arc is disabled, then we must first transform the read block to look like the physical block in the main data pool before comparing the checksum and determining it's valid. OpenZFS-issue: https://www.illumos.org/issues/6950 OpenZFS-commit: https://github.com/openzfs/openzfs/commit/7fc10f0 Issue #5078
2016-06-02 07:04:53 +03:00
arc_buf_destroy(buf, &buf);
}
return (0);
}
inline __attribute__((always_inline)) static void
dsl_scan_visitdnode(dsl_scan_t *scn, dsl_dataset_t *ds,
dmu_objset_type_t ostype, dnode_phys_t *dnp,
uint64_t object, dmu_tx_t *tx)
{
int j;
for (j = 0; j < dnp->dn_nblkptr; j++) {
zbookmark_phys_t czb;
SET_BOOKMARK(&czb, ds ? ds->ds_object : 0, object,
dnp->dn_nlevels - 1, j);
dsl_scan_visitbp(&dnp->dn_blkptr[j],
&czb, dnp, ds, scn, ostype, tx);
}
if (dnp->dn_flags & DNODE_FLAG_SPILL_BLKPTR) {
zbookmark_phys_t czb;
SET_BOOKMARK(&czb, ds ? ds->ds_object : 0, object,
0, DMU_SPILL_BLKID);
Implement large_dnode pool feature Justification ------------- This feature adds support for variable length dnodes. Our motivation is to eliminate the overhead associated with using spill blocks. Spill blocks are used to store system attribute data (i.e. file metadata) that does not fit in the dnode's bonus buffer. By allowing a larger bonus buffer area the use of a spill block can be avoided. Spill blocks potentially incur an additional read I/O for every dnode in a dnode block. As a worst case example, reading 32 dnodes from a 16k dnode block and all of the spill blocks could issue 33 separate reads. Now suppose those dnodes have size 1024 and therefore don't need spill blocks. Then the worst case number of blocks read is reduced to from 33 to two--one per dnode block. In practice spill blocks may tend to be co-located on disk with the dnode blocks so the reduction in I/O would not be this drastic. In a badly fragmented pool, however, the improvement could be significant. ZFS-on-Linux systems that make heavy use of extended attributes would benefit from this feature. In particular, ZFS-on-Linux supports the xattr=sa dataset property which allows file extended attribute data to be stored in the dnode bonus buffer as an alternative to the traditional directory-based format. Workloads such as SELinux and the Lustre distributed filesystem often store enough xattr data to force spill bocks when xattr=sa is in effect. Large dnodes may therefore provide a performance benefit to such systems. Other use cases that may benefit from this feature include files with large ACLs and symbolic links with long target names. Furthermore, this feature may be desirable on other platforms in case future applications or features are developed that could make use of a larger bonus buffer area. Implementation -------------- The size of a dnode may be a multiple of 512 bytes up to the size of a dnode block (currently 16384 bytes). A dn_extra_slots field was added to the current on-disk dnode_phys_t structure to describe the size of the physical dnode on disk. The 8 bits for this field were taken from the zero filled dn_pad2 field. The field represents how many "extra" dnode_phys_t slots a dnode consumes in its dnode block. This convention results in a value of 0 for 512 byte dnodes which preserves on-disk format compatibility with older software. Similarly, the in-memory dnode_t structure has a new dn_num_slots field to represent the total number of dnode_phys_t slots consumed on disk. Thus dn->dn_num_slots is 1 greater than the corresponding dnp->dn_extra_slots. This difference in convention was adopted because, unlike on-disk structures, backward compatibility is not a concern for in-memory objects, so we used a more natural way to represent size for a dnode_t. The default size for newly created dnodes is determined by the value of a new "dnodesize" dataset property. By default the property is set to "legacy" which is compatible with older software. Setting the property to "auto" will allow the filesystem to choose the most suitable dnode size. Currently this just sets the default dnode size to 1k, but future code improvements could dynamically choose a size based on observed workload patterns. Dnodes of varying sizes can coexist within the same dataset and even within the same dnode block. For example, to enable automatically-sized dnodes, run # zfs set dnodesize=auto tank/fish The user can also specify literal values for the dnodesize property. These are currently limited to powers of two from 1k to 16k. The power-of-2 limitation is only for simplicity of the user interface. Internally the implementation can handle any multiple of 512 up to 16k, and consumers of the DMU API can specify any legal dnode value. The size of a new dnode is determined at object allocation time and stored as a new field in the znode in-memory structure. New DMU interfaces are added to allow the consumer to specify the dnode size that a newly allocated object should use. Existing interfaces are unchanged to avoid having to update every call site and to preserve compatibility with external consumers such as Lustre. The new interfaces names are given below. The versions of these functions that don't take a dnodesize parameter now just call the _dnsize() versions with a dnodesize of 0, which means use the legacy dnode size. New DMU interfaces: dmu_object_alloc_dnsize() dmu_object_claim_dnsize() dmu_object_reclaim_dnsize() New ZAP interfaces: zap_create_dnsize() zap_create_norm_dnsize() zap_create_flags_dnsize() zap_create_claim_norm_dnsize() zap_create_link_dnsize() The constant DN_MAX_BONUSLEN is renamed to DN_OLD_MAX_BONUSLEN. The spa_maxdnodesize() function should be used to determine the maximum bonus length for a pool. These are a few noteworthy changes to key functions: * The prototype for dnode_hold_impl() now takes a "slots" parameter. When the DNODE_MUST_BE_FREE flag is set, this parameter is used to ensure the hole at the specified object offset is large enough to hold the dnode being created. The slots parameter is also used to ensure a dnode does not span multiple dnode blocks. In both of these cases, if a failure occurs, ENOSPC is returned. Keep in mind, these failure cases are only possible when using DNODE_MUST_BE_FREE. If the DNODE_MUST_BE_ALLOCATED flag is set, "slots" must be 0. dnode_hold_impl() will check if the requested dnode is already consumed as an extra dnode slot by an large dnode, in which case it returns ENOENT. * The function dmu_object_alloc() advances to the next dnode block if dnode_hold_impl() returns an error for a requested object. This is because the beginning of the next dnode block is the only location it can safely assume to either be a hole or a valid starting point for a dnode. * dnode_next_offset_level() and other functions that iterate through dnode blocks may no longer use a simple array indexing scheme. These now use the current dnode's dn_num_slots field to advance to the next dnode in the block. This is to ensure we properly skip the current dnode's bonus area and don't interpret it as a valid dnode. zdb --- The zdb command was updated to display a dnode's size under the "dnsize" column when the object is dumped. For ZIL create log records, zdb will now display the slot count for the object. ztest ----- Ztest chooses a random dnodesize for every newly created object. The random distribution is more heavily weighted toward small dnodes to better simulate real-world datasets. Unused bonus buffer space is filled with non-zero values computed from the object number, dataset id, offset, and generation number. This helps ensure that the dnode traversal code properly skips the interior regions of large dnodes, and that these interior regions are not overwritten by data belonging to other dnodes. A new test visits each object in a dataset. It verifies that the actual dnode size matches what was stored in the ztest block tag when it was created. It also verifies that the unused bonus buffer space is filled with the expected data patterns. ZFS Test Suite -------------- Added six new large dnode-specific tests, and integrated the dnodesize property into existing tests for zfs allow and send/recv. Send/Receive ------------ ZFS send streams for datasets containing large dnodes cannot be received on pools that don't support the large_dnode feature. A send stream with large dnodes sets a DMU_BACKUP_FEATURE_LARGE_DNODE flag which will be unrecognized by an incompatible receiving pool so that the zfs receive will fail gracefully. While not implemented here, it may be possible to generate a backward-compatible send stream from a dataset containing large dnodes. The implementation may be tricky, however, because the send object record for a large dnode would need to be resized to a 512 byte dnode, possibly kicking in a spill block in the process. This means we would need to construct a new SA layout and possibly register it in the SA layout object. The SA layout is normally just sent as an ordinary object record. But if we are constructing new layouts while generating the send stream we'd have to build the SA layout object dynamically and send it at the end of the stream. For sending and receiving between pools that do support large dnodes, the drr_object send record type is extended with a new field to store the dnode slot count. This field was repurposed from unused padding in the structure. ZIL Replay ---------- The dnode slot count is stored in the uppermost 8 bits of the lr_foid field. The bits were unused as the object id is currently capped at 48 bits. Resizing Dnodes --------------- It should be possible to resize a dnode when it is dirtied if the current dnodesize dataset property differs from the dnode's size, but this functionality is not currently implemented. Clearly a dnode can only grow if there are sufficient contiguous unused slots in the dnode block, but it should always be possible to shrink a dnode. Growing dnodes may be useful to reduce fragmentation in a pool with many spill blocks in use. Shrinking dnodes may be useful to allow sending a dataset to a pool that doesn't support the large_dnode feature. Feature Reference Counting -------------------------- The reference count for the large_dnode pool feature tracks the number of datasets that have ever contained a dnode of size larger than 512 bytes. The first time a large dnode is created in a dataset the dataset is converted to an extensible dataset. This is a one-way operation and the only way to decrement the feature count is to destroy the dataset, even if the dataset no longer contains any large dnodes. The complexity of reference counting on a per-dnode basis was too high, so we chose to track it on a per-dataset basis similarly to the large_block feature. Signed-off-by: Ned Bass <bass6@llnl.gov> Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov> Closes #3542
2016-03-17 04:25:34 +03:00
dsl_scan_visitbp(DN_SPILL_BLKPTR(dnp),
&czb, dnp, ds, scn, ostype, tx);
}
}
/*
* The arguments are in this order because mdb can only print the
* first 5; we want them to be useful.
*/
static void
dsl_scan_visitbp(blkptr_t *bp, const zbookmark_phys_t *zb,
dnode_phys_t *dnp, dsl_dataset_t *ds, dsl_scan_t *scn,
dmu_objset_type_t ostype, dmu_tx_t *tx)
{
dsl_pool_t *dp = scn->scn_dp;
blkptr_t *bp_toread = NULL;
if (dsl_scan_check_suspend(scn, zb))
return;
if (dsl_scan_check_resume(scn, dnp, zb))
return;
scn->scn_visited_this_txg++;
/*
* This debugging is commented out to conserve stack space. This
* function is called recursively and the debugging adds several
* bytes to the stack for each call. It can be commented back in
* if required to debug an issue in dsl_scan_visitbp().
*
* dprintf_bp(bp,
* "visiting ds=%p/%llu zb=%llx/%llx/%llx/%llx bp=%p",
* ds, ds ? ds->ds_object : 0,
* zb->zb_objset, zb->zb_object, zb->zb_level, zb->zb_blkid,
* bp);
*/
if (BP_IS_HOLE(bp)) {
scn->scn_holes_this_txg++;
return;
}
Implement Redacted Send/Receive Redacted send/receive allows users to send subsets of their data to a target system. One possible use case for this feature is to not transmit sensitive information to a data warehousing, test/dev, or analytics environment. Another is to save space by not replicating unimportant data within a given dataset, for example in backup tools like zrepl. Redacted send/receive is a three-stage process. First, a clone (or clones) is made of the snapshot to be sent to the target. In this clone (or clones), all unnecessary or unwanted data is removed or modified. This clone is then snapshotted to create the "redaction snapshot" (or snapshots). Second, the new zfs redact command is used to create a redaction bookmark. The redaction bookmark stores the list of blocks in a snapshot that were modified by the redaction snapshot(s). Finally, the redaction bookmark is passed as a parameter to zfs send. When sending to the snapshot that was redacted, the redaction bookmark is used to filter out blocks that contain sensitive or unwanted information, and those blocks are not included in the send stream. When sending from the redaction bookmark, the blocks it contains are considered as candidate blocks in addition to those blocks in the destination snapshot that were modified since the creation_txg of the redaction bookmark. This step is necessary to allow the target to rehydrate data in the case where some blocks are accidentally or unnecessarily modified in the redaction snapshot. The changes to bookmarks to enable fast space estimation involve adding deadlists to bookmarks. There is also logic to manage the life cycles of these deadlists. The new size estimation process operates in cases where previously an accurate estimate could not be provided. In those cases, a send is performed where no data blocks are read, reducing the runtime significantly and providing a byte-accurate size estimate. Reviewed-by: Dan Kimmel <dan.kimmel@delphix.com> Reviewed-by: Matt Ahrens <mahrens@delphix.com> Reviewed-by: Prashanth Sreenivasa <pks@delphix.com> Reviewed-by: John Kennedy <john.kennedy@delphix.com> Reviewed-by: George Wilson <george.wilson@delphix.com> Reviewed-by: Chris Williamson <chris.williamson@delphix.com> Reviewed-by: Pavel Zhakarov <pavel.zakharov@delphix.com> Reviewed-by: Sebastien Roy <sebastien.roy@delphix.com> Reviewed-by: Prakash Surya <prakash.surya@delphix.com> Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov> Signed-off-by: Paul Dagnelie <pcd@delphix.com> Closes #7958
2019-06-19 19:48:13 +03:00
if (BP_IS_REDACTED(bp)) {
ASSERT(dsl_dataset_feature_is_active(ds,
SPA_FEATURE_REDACTED_DATASETS));
return;
}
if (bp->blk_birth <= scn->scn_phys.scn_cur_min_txg) {
scn->scn_lt_min_this_txg++;
return;
}
bp_toread = kmem_alloc(sizeof (blkptr_t), KM_SLEEP);
*bp_toread = *bp;
if (dsl_scan_recurse(scn, ds, ostype, dnp, bp_toread, zb, tx) != 0)
goto out;
/*
* If dsl_scan_ddt() has already visited this block, it will have
* already done any translations or scrubbing, so don't call the
* callback again.
*/
if (ddt_class_contains(dp->dp_spa,
scn->scn_phys.scn_ddt_class_max, bp)) {
scn->scn_ddt_contained_this_txg++;
goto out;
}
/*
* If this block is from the future (after cur_max_txg), then we
* are doing this on behalf of a deleted snapshot, and we will
* revisit the future block on the next pass of this dataset.
* Don't scan it now unless we need to because something
* under it was modified.
*/
if (BP_PHYSICAL_BIRTH(bp) > scn->scn_phys.scn_cur_max_txg) {
scn->scn_gt_max_this_txg++;
goto out;
}
scan_funcs[scn->scn_phys.scn_func](dp, bp, zb);
out:
kmem_free(bp_toread, sizeof (blkptr_t));
}
static void
dsl_scan_visit_rootbp(dsl_scan_t *scn, dsl_dataset_t *ds, blkptr_t *bp,
dmu_tx_t *tx)
{
zbookmark_phys_t zb;
scan_prefetch_ctx_t *spc;
SET_BOOKMARK(&zb, ds ? ds->ds_object : DMU_META_OBJSET,
ZB_ROOT_OBJECT, ZB_ROOT_LEVEL, ZB_ROOT_BLKID);
if (ZB_IS_ZERO(&scn->scn_phys.scn_bookmark)) {
SET_BOOKMARK(&scn->scn_prefetch_bookmark,
zb.zb_objset, 0, 0, 0);
} else {
scn->scn_prefetch_bookmark = scn->scn_phys.scn_bookmark;
}
scn->scn_objsets_visited_this_txg++;
spc = scan_prefetch_ctx_create(scn, NULL, FTAG);
dsl_scan_prefetch(spc, bp, &zb);
scan_prefetch_ctx_rele(spc, FTAG);
dsl_scan_visitbp(bp, &zb, NULL, ds, scn, DMU_OST_NONE, tx);
dprintf_ds(ds, "finished scan%s", "");
}
static void
ds_destroyed_scn_phys(dsl_dataset_t *ds, dsl_scan_phys_t *scn_phys)
{
if (scn_phys->scn_bookmark.zb_objset == ds->ds_object) {
if (ds->ds_is_snapshot) {
/*
* Note:
* - scn_cur_{min,max}_txg stays the same.
* - Setting the flag is not really necessary if
* scn_cur_max_txg == scn_max_txg, because there
* is nothing after this snapshot that we care
* about. However, we set it anyway and then
* ignore it when we retraverse it in
* dsl_scan_visitds().
*/
scn_phys->scn_bookmark.zb_objset =
dsl_dataset_phys(ds)->ds_next_snap_obj;
zfs_dbgmsg("destroying ds %llu; currently traversing; "
"reset zb_objset to %llu",
(u_longlong_t)ds->ds_object,
(u_longlong_t)dsl_dataset_phys(ds)->
ds_next_snap_obj);
scn_phys->scn_flags |= DSF_VISIT_DS_AGAIN;
} else {
SET_BOOKMARK(&scn_phys->scn_bookmark,
ZB_DESTROYED_OBJSET, 0, 0, 0);
zfs_dbgmsg("destroying ds %llu; currently traversing; "
"reset bookmark to -1,0,0,0",
(u_longlong_t)ds->ds_object);
}
}
}
/*
* Invoked when a dataset is destroyed. We need to make sure that:
*
* 1) If it is the dataset that was currently being scanned, we write
* a new dsl_scan_phys_t and marking the objset reference in it
* as destroyed.
* 2) Remove it from the work queue, if it was present.
*
* If the dataset was actually a snapshot, instead of marking the dataset
* as destroyed, we instead substitute the next snapshot in line.
*/
void
dsl_scan_ds_destroyed(dsl_dataset_t *ds, dmu_tx_t *tx)
{
dsl_pool_t *dp = ds->ds_dir->dd_pool;
dsl_scan_t *scn = dp->dp_scan;
uint64_t mintxg;
if (!dsl_scan_is_running(scn))
return;
ds_destroyed_scn_phys(ds, &scn->scn_phys);
ds_destroyed_scn_phys(ds, &scn->scn_phys_cached);
if (scan_ds_queue_contains(scn, ds->ds_object, &mintxg)) {
scan_ds_queue_remove(scn, ds->ds_object);
if (ds->ds_is_snapshot)
scan_ds_queue_insert(scn,
dsl_dataset_phys(ds)->ds_next_snap_obj, mintxg);
}
if (zap_lookup_int_key(dp->dp_meta_objset, scn->scn_phys.scn_queue_obj,
ds->ds_object, &mintxg) == 0) {
ASSERT3U(dsl_dataset_phys(ds)->ds_num_children, <=, 1);
VERIFY3U(0, ==, zap_remove_int(dp->dp_meta_objset,
scn->scn_phys.scn_queue_obj, ds->ds_object, tx));
if (ds->ds_is_snapshot) {
/*
* We keep the same mintxg; it could be >
* ds_creation_txg if the previous snapshot was
* deleted too.
*/
VERIFY(zap_add_int_key(dp->dp_meta_objset,
scn->scn_phys.scn_queue_obj,
dsl_dataset_phys(ds)->ds_next_snap_obj,
mintxg, tx) == 0);
zfs_dbgmsg("destroying ds %llu; in queue; "
"replacing with %llu",
(u_longlong_t)ds->ds_object,
(u_longlong_t)dsl_dataset_phys(ds)->
ds_next_snap_obj);
} else {
zfs_dbgmsg("destroying ds %llu; in queue; removing",
(u_longlong_t)ds->ds_object);
}
}
/*
* dsl_scan_sync() should be called after this, and should sync
* out our changed state, but just to be safe, do it here.
*/
dsl_scan_sync_state(scn, tx, SYNC_CACHED);
}
static void
ds_snapshotted_bookmark(dsl_dataset_t *ds, zbookmark_phys_t *scn_bookmark)
{
if (scn_bookmark->zb_objset == ds->ds_object) {
scn_bookmark->zb_objset =
dsl_dataset_phys(ds)->ds_prev_snap_obj;
zfs_dbgmsg("snapshotting ds %llu; currently traversing; "
"reset zb_objset to %llu",
(u_longlong_t)ds->ds_object,
(u_longlong_t)dsl_dataset_phys(ds)->ds_prev_snap_obj);
}
}
/*
* Called when a dataset is snapshotted. If we were currently traversing
* this snapshot, we reset our bookmark to point at the newly created
* snapshot. We also modify our work queue to remove the old snapshot and
* replace with the new one.
*/
void
dsl_scan_ds_snapshotted(dsl_dataset_t *ds, dmu_tx_t *tx)
{
dsl_pool_t *dp = ds->ds_dir->dd_pool;
dsl_scan_t *scn = dp->dp_scan;
uint64_t mintxg;
if (!dsl_scan_is_running(scn))
return;
ASSERT(dsl_dataset_phys(ds)->ds_prev_snap_obj != 0);
ds_snapshotted_bookmark(ds, &scn->scn_phys.scn_bookmark);
ds_snapshotted_bookmark(ds, &scn->scn_phys_cached.scn_bookmark);
if (scan_ds_queue_contains(scn, ds->ds_object, &mintxg)) {
scan_ds_queue_remove(scn, ds->ds_object);
scan_ds_queue_insert(scn,
dsl_dataset_phys(ds)->ds_prev_snap_obj, mintxg);
}
if (zap_lookup_int_key(dp->dp_meta_objset, scn->scn_phys.scn_queue_obj,
ds->ds_object, &mintxg) == 0) {
VERIFY3U(0, ==, zap_remove_int(dp->dp_meta_objset,
scn->scn_phys.scn_queue_obj, ds->ds_object, tx));
VERIFY(zap_add_int_key(dp->dp_meta_objset,
scn->scn_phys.scn_queue_obj,
dsl_dataset_phys(ds)->ds_prev_snap_obj, mintxg, tx) == 0);
zfs_dbgmsg("snapshotting ds %llu; in queue; "
"replacing with %llu",
(u_longlong_t)ds->ds_object,
(u_longlong_t)dsl_dataset_phys(ds)->ds_prev_snap_obj);
}
dsl_scan_sync_state(scn, tx, SYNC_CACHED);
}
static void
ds_clone_swapped_bookmark(dsl_dataset_t *ds1, dsl_dataset_t *ds2,
zbookmark_phys_t *scn_bookmark)
{
if (scn_bookmark->zb_objset == ds1->ds_object) {
scn_bookmark->zb_objset = ds2->ds_object;
zfs_dbgmsg("clone_swap ds %llu; currently traversing; "
"reset zb_objset to %llu",
(u_longlong_t)ds1->ds_object,
(u_longlong_t)ds2->ds_object);
} else if (scn_bookmark->zb_objset == ds2->ds_object) {
scn_bookmark->zb_objset = ds1->ds_object;
zfs_dbgmsg("clone_swap ds %llu; currently traversing; "
"reset zb_objset to %llu",
(u_longlong_t)ds2->ds_object,
(u_longlong_t)ds1->ds_object);
}
}
/*
* Called when an origin dataset and its clone are swapped. If we were
* currently traversing the dataset, we need to switch to traversing the
* newly promoted clone.
*/
void
dsl_scan_ds_clone_swapped(dsl_dataset_t *ds1, dsl_dataset_t *ds2, dmu_tx_t *tx)
{
dsl_pool_t *dp = ds1->ds_dir->dd_pool;
dsl_scan_t *scn = dp->dp_scan;
uint64_t mintxg1, mintxg2;
boolean_t ds1_queued, ds2_queued;
if (!dsl_scan_is_running(scn))
return;
ds_clone_swapped_bookmark(ds1, ds2, &scn->scn_phys.scn_bookmark);
ds_clone_swapped_bookmark(ds1, ds2, &scn->scn_phys_cached.scn_bookmark);
/*
* Handle the in-memory scan queue.
*/
ds1_queued = scan_ds_queue_contains(scn, ds1->ds_object, &mintxg1);
ds2_queued = scan_ds_queue_contains(scn, ds2->ds_object, &mintxg2);
/* Sanity checking. */
if (ds1_queued) {
ASSERT3U(mintxg1, ==, dsl_dataset_phys(ds1)->ds_prev_snap_txg);
ASSERT3U(mintxg1, ==, dsl_dataset_phys(ds2)->ds_prev_snap_txg);
}
if (ds2_queued) {
ASSERT3U(mintxg2, ==, dsl_dataset_phys(ds1)->ds_prev_snap_txg);
ASSERT3U(mintxg2, ==, dsl_dataset_phys(ds2)->ds_prev_snap_txg);
}
if (ds1_queued && ds2_queued) {
/*
* If both are queued, we don't need to do anything.
* The swapping code below would not handle this case correctly,
* since we can't insert ds2 if it is already there. That's
* because scan_ds_queue_insert() prohibits a duplicate insert
* and panics.
*/
} else if (ds1_queued) {
scan_ds_queue_remove(scn, ds1->ds_object);
scan_ds_queue_insert(scn, ds2->ds_object, mintxg1);
} else if (ds2_queued) {
scan_ds_queue_remove(scn, ds2->ds_object);
scan_ds_queue_insert(scn, ds1->ds_object, mintxg2);
}
/*
* Handle the on-disk scan queue.
* The on-disk state is an out-of-date version of the in-memory state,
* so the in-memory and on-disk values for ds1_queued and ds2_queued may
* be different. Therefore we need to apply the swap logic to the
* on-disk state independently of the in-memory state.
*/
ds1_queued = zap_lookup_int_key(dp->dp_meta_objset,
scn->scn_phys.scn_queue_obj, ds1->ds_object, &mintxg1) == 0;
ds2_queued = zap_lookup_int_key(dp->dp_meta_objset,
scn->scn_phys.scn_queue_obj, ds2->ds_object, &mintxg2) == 0;
/* Sanity checking. */
if (ds1_queued) {
ASSERT3U(mintxg1, ==, dsl_dataset_phys(ds1)->ds_prev_snap_txg);
ASSERT3U(mintxg1, ==, dsl_dataset_phys(ds2)->ds_prev_snap_txg);
}
if (ds2_queued) {
ASSERT3U(mintxg2, ==, dsl_dataset_phys(ds1)->ds_prev_snap_txg);
ASSERT3U(mintxg2, ==, dsl_dataset_phys(ds2)->ds_prev_snap_txg);
}
if (ds1_queued && ds2_queued) {
/*
* If both are queued, we don't need to do anything.
* Alternatively, we could check for EEXIST from
* zap_add_int_key() and back out to the original state, but
* that would be more work than checking for this case upfront.
*/
} else if (ds1_queued) {
VERIFY3S(0, ==, zap_remove_int(dp->dp_meta_objset,
scn->scn_phys.scn_queue_obj, ds1->ds_object, tx));
VERIFY3S(0, ==, zap_add_int_key(dp->dp_meta_objset,
scn->scn_phys.scn_queue_obj, ds2->ds_object, mintxg1, tx));
zfs_dbgmsg("clone_swap ds %llu; in queue; "
"replacing with %llu",
(u_longlong_t)ds1->ds_object,
(u_longlong_t)ds2->ds_object);
} else if (ds2_queued) {
VERIFY3S(0, ==, zap_remove_int(dp->dp_meta_objset,
scn->scn_phys.scn_queue_obj, ds2->ds_object, tx));
VERIFY3S(0, ==, zap_add_int_key(dp->dp_meta_objset,
scn->scn_phys.scn_queue_obj, ds1->ds_object, mintxg2, tx));
zfs_dbgmsg("clone_swap ds %llu; in queue; "
"replacing with %llu",
(u_longlong_t)ds2->ds_object,
(u_longlong_t)ds1->ds_object);
}
dsl_scan_sync_state(scn, tx, SYNC_CACHED);
}
/* ARGSUSED */
static int
enqueue_clones_cb(dsl_pool_t *dp, dsl_dataset_t *hds, void *arg)
{
uint64_t originobj = *(uint64_t *)arg;
dsl_dataset_t *ds;
int err;
dsl_scan_t *scn = dp->dp_scan;
if (dsl_dir_phys(hds->ds_dir)->dd_origin_obj != originobj)
return (0);
err = dsl_dataset_hold_obj(dp, hds->ds_object, FTAG, &ds);
if (err)
return (err);
while (dsl_dataset_phys(ds)->ds_prev_snap_obj != originobj) {
dsl_dataset_t *prev;
err = dsl_dataset_hold_obj(dp,
dsl_dataset_phys(ds)->ds_prev_snap_obj, FTAG, &prev);
dsl_dataset_rele(ds, FTAG);
if (err)
return (err);
ds = prev;
}
scan_ds_queue_insert(scn, ds->ds_object,
dsl_dataset_phys(ds)->ds_prev_snap_txg);
dsl_dataset_rele(ds, FTAG);
return (0);
}
static void
dsl_scan_visitds(dsl_scan_t *scn, uint64_t dsobj, dmu_tx_t *tx)
{
dsl_pool_t *dp = scn->scn_dp;
dsl_dataset_t *ds;
VERIFY3U(0, ==, dsl_dataset_hold_obj(dp, dsobj, FTAG, &ds));
if (scn->scn_phys.scn_cur_min_txg >=
scn->scn_phys.scn_max_txg) {
/*
* This can happen if this snapshot was created after the
* scan started, and we already completed a previous snapshot
* that was created after the scan started. This snapshot
* only references blocks with:
*
* birth < our ds_creation_txg
* cur_min_txg is no less than ds_creation_txg.
* We have already visited these blocks.
* or
* birth > scn_max_txg
* The scan requested not to visit these blocks.
*
* Subsequent snapshots (and clones) can reference our
* blocks, or blocks with even higher birth times.
* Therefore we do not need to visit them either,
* so we do not add them to the work queue.
*
* Note that checking for cur_min_txg >= cur_max_txg
* is not sufficient, because in that case we may need to
* visit subsequent snapshots. This happens when min_txg > 0,
* which raises cur_min_txg. In this case we will visit
* this dataset but skip all of its blocks, because the
* rootbp's birth time is < cur_min_txg. Then we will
* add the next snapshots/clones to the work queue.
*/
char *dsname = kmem_alloc(ZFS_MAX_DATASET_NAME_LEN, KM_SLEEP);
dsl_dataset_name(ds, dsname);
zfs_dbgmsg("scanning dataset %llu (%s) is unnecessary because "
"cur_min_txg (%llu) >= max_txg (%llu)",
(longlong_t)dsobj, dsname,
(longlong_t)scn->scn_phys.scn_cur_min_txg,
(longlong_t)scn->scn_phys.scn_max_txg);
kmem_free(dsname, MAXNAMELEN);
goto out;
}
/*
OpenZFS 7614, 9064 - zfs device evacuation/removal OpenZFS 7614 - zfs device evacuation/removal OpenZFS 9064 - remove_mirror should wait for device removal to complete This project allows top-level vdevs to be removed from the storage pool with "zpool remove", reducing the total amount of storage in the pool. This operation copies all allocated regions of the device to be removed onto other devices, recording the mapping from old to new location. After the removal is complete, read and free operations to the removed (now "indirect") vdev must be remapped and performed at the new location on disk. The indirect mapping table is kept in memory whenever the pool is loaded, so there is minimal performance overhead when doing operations on the indirect vdev. The size of the in-memory mapping table will be reduced when its entries become "obsolete" because they are no longer used by any block pointers in the pool. An entry becomes obsolete when all the blocks that use it are freed. An entry can also become obsolete when all the snapshots that reference it are deleted, and the block pointers that reference it have been "remapped" in all filesystems/zvols (and clones). Whenever an indirect block is written, all the block pointers in it will be "remapped" to their new (concrete) locations if possible. This process can be accelerated by using the "zfs remap" command to proactively rewrite all indirect blocks that reference indirect (removed) vdevs. Note that when a device is removed, we do not verify the checksum of the data that is copied. This makes the process much faster, but if it were used on redundant vdevs (i.e. mirror or raidz vdevs), it would be possible to copy the wrong data, when we have the correct data on e.g. the other side of the mirror. At the moment, only mirrors and simple top-level vdevs can be removed and no removal is allowed if any of the top-level vdevs are raidz. Porting Notes: * Avoid zero-sized kmem_alloc() in vdev_compact_children(). The device evacuation code adds a dependency that vdev_compact_children() be able to properly empty the vdev_child array by setting it to NULL and zeroing vdev_children. Under Linux, kmem_alloc() and related functions return a sentinel pointer rather than NULL for zero-sized allocations. * Remove comment regarding "mpt" driver where zfs_remove_max_segment is initialized to SPA_MAXBLOCKSIZE. Change zfs_condense_indirect_commit_entry_delay_ticks to zfs_condense_indirect_commit_entry_delay_ms for consistency with most other tunables in which delays are specified in ms. * ZTS changes: Use set_tunable rather than mdb Use zpool sync as appropriate Use sync_pool instead of sync Kill jobs during test_removal_with_operation to allow unmount/export Don't add non-disk names such as "mirror" or "raidz" to $DISKS Use $TEST_BASE_DIR instead of /tmp Increase HZ from 100 to 1000 which is more common on Linux removal_multiple_indirection.ksh Reduce iterations in order to not time out on the code coverage builders. removal_resume_export: Functionally, the test case is correct but there exists a race where the kernel thread hasn't been fully started yet and is not visible. Wait for up to 1 second for the removal thread to be started before giving up on it. Also, increase the amount of data copied in order that the removal not finish before the export has a chance to fail. * MMP compatibility, the concept of concrete versus non-concrete devices has slightly changed the semantics of vdev_writeable(). Update mmp_random_leaf_impl() accordingly. * Updated dbuf_remap() to handle the org.zfsonlinux:large_dnode pool feature which is not supported by OpenZFS. * Added support for new vdev removal tracepoints. * Test cases removal_with_zdb and removal_condense_export have been intentionally disabled. When run manually they pass as intended, but when running in the automated test environment they produce unreliable results on the latest Fedora release. They may work better once the upstream pool import refectoring is merged into ZoL at which point they will be re-enabled. Authored by: Matthew Ahrens <mahrens@delphix.com> Reviewed-by: Alex Reece <alex@delphix.com> Reviewed-by: George Wilson <george.wilson@delphix.com> Reviewed-by: John Kennedy <john.kennedy@delphix.com> Reviewed-by: Prakash Surya <prakash.surya@delphix.com> Reviewed by: Richard Laager <rlaager@wiktel.com> Reviewed by: Tim Chase <tim@chase2k.com> Reviewed by: Brian Behlendorf <behlendorf1@llnl.gov> Approved by: Garrett D'Amore <garrett@damore.org> Ported-by: Tim Chase <tim@chase2k.com> Signed-off-by: Tim Chase <tim@chase2k.com> OpenZFS-issue: https://www.illumos.org/issues/7614 OpenZFS-commit: https://github.com/openzfs/openzfs/commit/f539f1eb Closes #6900
2016-09-22 19:30:13 +03:00
* Only the ZIL in the head (non-snapshot) is valid. Even though
* snapshots can have ZIL block pointers (which may be the same
OpenZFS 7614, 9064 - zfs device evacuation/removal OpenZFS 7614 - zfs device evacuation/removal OpenZFS 9064 - remove_mirror should wait for device removal to complete This project allows top-level vdevs to be removed from the storage pool with "zpool remove", reducing the total amount of storage in the pool. This operation copies all allocated regions of the device to be removed onto other devices, recording the mapping from old to new location. After the removal is complete, read and free operations to the removed (now "indirect") vdev must be remapped and performed at the new location on disk. The indirect mapping table is kept in memory whenever the pool is loaded, so there is minimal performance overhead when doing operations on the indirect vdev. The size of the in-memory mapping table will be reduced when its entries become "obsolete" because they are no longer used by any block pointers in the pool. An entry becomes obsolete when all the blocks that use it are freed. An entry can also become obsolete when all the snapshots that reference it are deleted, and the block pointers that reference it have been "remapped" in all filesystems/zvols (and clones). Whenever an indirect block is written, all the block pointers in it will be "remapped" to their new (concrete) locations if possible. This process can be accelerated by using the "zfs remap" command to proactively rewrite all indirect blocks that reference indirect (removed) vdevs. Note that when a device is removed, we do not verify the checksum of the data that is copied. This makes the process much faster, but if it were used on redundant vdevs (i.e. mirror or raidz vdevs), it would be possible to copy the wrong data, when we have the correct data on e.g. the other side of the mirror. At the moment, only mirrors and simple top-level vdevs can be removed and no removal is allowed if any of the top-level vdevs are raidz. Porting Notes: * Avoid zero-sized kmem_alloc() in vdev_compact_children(). The device evacuation code adds a dependency that vdev_compact_children() be able to properly empty the vdev_child array by setting it to NULL and zeroing vdev_children. Under Linux, kmem_alloc() and related functions return a sentinel pointer rather than NULL for zero-sized allocations. * Remove comment regarding "mpt" driver where zfs_remove_max_segment is initialized to SPA_MAXBLOCKSIZE. Change zfs_condense_indirect_commit_entry_delay_ticks to zfs_condense_indirect_commit_entry_delay_ms for consistency with most other tunables in which delays are specified in ms. * ZTS changes: Use set_tunable rather than mdb Use zpool sync as appropriate Use sync_pool instead of sync Kill jobs during test_removal_with_operation to allow unmount/export Don't add non-disk names such as "mirror" or "raidz" to $DISKS Use $TEST_BASE_DIR instead of /tmp Increase HZ from 100 to 1000 which is more common on Linux removal_multiple_indirection.ksh Reduce iterations in order to not time out on the code coverage builders. removal_resume_export: Functionally, the test case is correct but there exists a race where the kernel thread hasn't been fully started yet and is not visible. Wait for up to 1 second for the removal thread to be started before giving up on it. Also, increase the amount of data copied in order that the removal not finish before the export has a chance to fail. * MMP compatibility, the concept of concrete versus non-concrete devices has slightly changed the semantics of vdev_writeable(). Update mmp_random_leaf_impl() accordingly. * Updated dbuf_remap() to handle the org.zfsonlinux:large_dnode pool feature which is not supported by OpenZFS. * Added support for new vdev removal tracepoints. * Test cases removal_with_zdb and removal_condense_export have been intentionally disabled. When run manually they pass as intended, but when running in the automated test environment they produce unreliable results on the latest Fedora release. They may work better once the upstream pool import refectoring is merged into ZoL at which point they will be re-enabled. Authored by: Matthew Ahrens <mahrens@delphix.com> Reviewed-by: Alex Reece <alex@delphix.com> Reviewed-by: George Wilson <george.wilson@delphix.com> Reviewed-by: John Kennedy <john.kennedy@delphix.com> Reviewed-by: Prakash Surya <prakash.surya@delphix.com> Reviewed by: Richard Laager <rlaager@wiktel.com> Reviewed by: Tim Chase <tim@chase2k.com> Reviewed by: Brian Behlendorf <behlendorf1@llnl.gov> Approved by: Garrett D'Amore <garrett@damore.org> Ported-by: Tim Chase <tim@chase2k.com> Signed-off-by: Tim Chase <tim@chase2k.com> OpenZFS-issue: https://www.illumos.org/issues/7614 OpenZFS-commit: https://github.com/openzfs/openzfs/commit/f539f1eb Closes #6900
2016-09-22 19:30:13 +03:00
* BP as in the head), they must be ignored. In addition, $ORIGIN
* doesn't have a objset (i.e. its ds_bp is a hole) so we don't
* need to look for a ZIL in it either. So we traverse the ZIL here,
* rather than in scan_recurse(), because the regular snapshot
* block-sharing rules don't apply to it.
*/
OpenZFS 7614, 9064 - zfs device evacuation/removal OpenZFS 7614 - zfs device evacuation/removal OpenZFS 9064 - remove_mirror should wait for device removal to complete This project allows top-level vdevs to be removed from the storage pool with "zpool remove", reducing the total amount of storage in the pool. This operation copies all allocated regions of the device to be removed onto other devices, recording the mapping from old to new location. After the removal is complete, read and free operations to the removed (now "indirect") vdev must be remapped and performed at the new location on disk. The indirect mapping table is kept in memory whenever the pool is loaded, so there is minimal performance overhead when doing operations on the indirect vdev. The size of the in-memory mapping table will be reduced when its entries become "obsolete" because they are no longer used by any block pointers in the pool. An entry becomes obsolete when all the blocks that use it are freed. An entry can also become obsolete when all the snapshots that reference it are deleted, and the block pointers that reference it have been "remapped" in all filesystems/zvols (and clones). Whenever an indirect block is written, all the block pointers in it will be "remapped" to their new (concrete) locations if possible. This process can be accelerated by using the "zfs remap" command to proactively rewrite all indirect blocks that reference indirect (removed) vdevs. Note that when a device is removed, we do not verify the checksum of the data that is copied. This makes the process much faster, but if it were used on redundant vdevs (i.e. mirror or raidz vdevs), it would be possible to copy the wrong data, when we have the correct data on e.g. the other side of the mirror. At the moment, only mirrors and simple top-level vdevs can be removed and no removal is allowed if any of the top-level vdevs are raidz. Porting Notes: * Avoid zero-sized kmem_alloc() in vdev_compact_children(). The device evacuation code adds a dependency that vdev_compact_children() be able to properly empty the vdev_child array by setting it to NULL and zeroing vdev_children. Under Linux, kmem_alloc() and related functions return a sentinel pointer rather than NULL for zero-sized allocations. * Remove comment regarding "mpt" driver where zfs_remove_max_segment is initialized to SPA_MAXBLOCKSIZE. Change zfs_condense_indirect_commit_entry_delay_ticks to zfs_condense_indirect_commit_entry_delay_ms for consistency with most other tunables in which delays are specified in ms. * ZTS changes: Use set_tunable rather than mdb Use zpool sync as appropriate Use sync_pool instead of sync Kill jobs during test_removal_with_operation to allow unmount/export Don't add non-disk names such as "mirror" or "raidz" to $DISKS Use $TEST_BASE_DIR instead of /tmp Increase HZ from 100 to 1000 which is more common on Linux removal_multiple_indirection.ksh Reduce iterations in order to not time out on the code coverage builders. removal_resume_export: Functionally, the test case is correct but there exists a race where the kernel thread hasn't been fully started yet and is not visible. Wait for up to 1 second for the removal thread to be started before giving up on it. Also, increase the amount of data copied in order that the removal not finish before the export has a chance to fail. * MMP compatibility, the concept of concrete versus non-concrete devices has slightly changed the semantics of vdev_writeable(). Update mmp_random_leaf_impl() accordingly. * Updated dbuf_remap() to handle the org.zfsonlinux:large_dnode pool feature which is not supported by OpenZFS. * Added support for new vdev removal tracepoints. * Test cases removal_with_zdb and removal_condense_export have been intentionally disabled. When run manually they pass as intended, but when running in the automated test environment they produce unreliable results on the latest Fedora release. They may work better once the upstream pool import refectoring is merged into ZoL at which point they will be re-enabled. Authored by: Matthew Ahrens <mahrens@delphix.com> Reviewed-by: Alex Reece <alex@delphix.com> Reviewed-by: George Wilson <george.wilson@delphix.com> Reviewed-by: John Kennedy <john.kennedy@delphix.com> Reviewed-by: Prakash Surya <prakash.surya@delphix.com> Reviewed by: Richard Laager <rlaager@wiktel.com> Reviewed by: Tim Chase <tim@chase2k.com> Reviewed by: Brian Behlendorf <behlendorf1@llnl.gov> Approved by: Garrett D'Amore <garrett@damore.org> Ported-by: Tim Chase <tim@chase2k.com> Signed-off-by: Tim Chase <tim@chase2k.com> OpenZFS-issue: https://www.illumos.org/issues/7614 OpenZFS-commit: https://github.com/openzfs/openzfs/commit/f539f1eb Closes #6900
2016-09-22 19:30:13 +03:00
if (!dsl_dataset_is_snapshot(ds) &&
OpenZFS 9443 - panic when scrub a v10 pool While expanding stored pools, we ran into a panic using an old pool. Steps to reproduce: $ sudo zpool create -o version=2 test c2t1d0 $ sudo cp /etc/passwd /test/foo $ sudo zpool attach test c2t1d0 c2t2d0 We'll get this panic: ffffff000fc0e5e0 unix:real_mode_stop_cpu_stage2_end+b27c () ffffff000fc0e6f0 unix:trap+dc8 () ffffff000fc0e700 unix:cmntrap+e6 () ffffff000fc0e860 zfs:dsl_scan_visitds+1ff () ffffff000fc0ea20 zfs:dsl_scan_visit+fe () ffffff000fc0ea80 zfs:dsl_scan_sync+1b3 () ffffff000fc0eb60 zfs:spa_sync+435 () ffffff000fc0ec20 zfs:txg_sync_thread+23f () ffffff000fc0ec30 unix:thread_start+8 () The problem is a bad trap accessing a NULL pointer. We're looking for the dp_origin_snap of a dsl_pool_t, but version 2 didn't have that. The system will go into a reboot loop at this point, and the dump won't be accessible except by removing the cache file from within the recovery environment. This impacts any sort of scrub or resilver on version <11 pools, e.g.: $ zpool create -o version=10 test c2t1d0 $ zpool scrub test Authored by: Matthew Ahrens <mahrens@delphix.com> Reviewed by: Serapheim Dimitropoulos <serapheim.dimitro@delphix.com> Reviewed by: George Wilson <george.wilson@delphix.com> Reviewed by: Andriy Gapon <avg@FreeBSD.org> Reviewed by: Igor Kozhukhov <igor@dilos.org> Approved by: Dan McDonald <danmcd@joyent.com> Ported-by: Brian Behlendorf <behlendorf1@llnl.gov> OpenZFS-issue: https://www.illumos.org/issues/9443 OpenZFS-commit: https://github.com/openzfs/openzfs/commit/010eed29 Closes #7501
2018-02-05 21:06:18 +03:00
(dp->dp_origin_snap == NULL ||
ds->ds_dir != dp->dp_origin_snap->ds_dir)) {
OpenZFS 7614, 9064 - zfs device evacuation/removal OpenZFS 7614 - zfs device evacuation/removal OpenZFS 9064 - remove_mirror should wait for device removal to complete This project allows top-level vdevs to be removed from the storage pool with "zpool remove", reducing the total amount of storage in the pool. This operation copies all allocated regions of the device to be removed onto other devices, recording the mapping from old to new location. After the removal is complete, read and free operations to the removed (now "indirect") vdev must be remapped and performed at the new location on disk. The indirect mapping table is kept in memory whenever the pool is loaded, so there is minimal performance overhead when doing operations on the indirect vdev. The size of the in-memory mapping table will be reduced when its entries become "obsolete" because they are no longer used by any block pointers in the pool. An entry becomes obsolete when all the blocks that use it are freed. An entry can also become obsolete when all the snapshots that reference it are deleted, and the block pointers that reference it have been "remapped" in all filesystems/zvols (and clones). Whenever an indirect block is written, all the block pointers in it will be "remapped" to their new (concrete) locations if possible. This process can be accelerated by using the "zfs remap" command to proactively rewrite all indirect blocks that reference indirect (removed) vdevs. Note that when a device is removed, we do not verify the checksum of the data that is copied. This makes the process much faster, but if it were used on redundant vdevs (i.e. mirror or raidz vdevs), it would be possible to copy the wrong data, when we have the correct data on e.g. the other side of the mirror. At the moment, only mirrors and simple top-level vdevs can be removed and no removal is allowed if any of the top-level vdevs are raidz. Porting Notes: * Avoid zero-sized kmem_alloc() in vdev_compact_children(). The device evacuation code adds a dependency that vdev_compact_children() be able to properly empty the vdev_child array by setting it to NULL and zeroing vdev_children. Under Linux, kmem_alloc() and related functions return a sentinel pointer rather than NULL for zero-sized allocations. * Remove comment regarding "mpt" driver where zfs_remove_max_segment is initialized to SPA_MAXBLOCKSIZE. Change zfs_condense_indirect_commit_entry_delay_ticks to zfs_condense_indirect_commit_entry_delay_ms for consistency with most other tunables in which delays are specified in ms. * ZTS changes: Use set_tunable rather than mdb Use zpool sync as appropriate Use sync_pool instead of sync Kill jobs during test_removal_with_operation to allow unmount/export Don't add non-disk names such as "mirror" or "raidz" to $DISKS Use $TEST_BASE_DIR instead of /tmp Increase HZ from 100 to 1000 which is more common on Linux removal_multiple_indirection.ksh Reduce iterations in order to not time out on the code coverage builders. removal_resume_export: Functionally, the test case is correct but there exists a race where the kernel thread hasn't been fully started yet and is not visible. Wait for up to 1 second for the removal thread to be started before giving up on it. Also, increase the amount of data copied in order that the removal not finish before the export has a chance to fail. * MMP compatibility, the concept of concrete versus non-concrete devices has slightly changed the semantics of vdev_writeable(). Update mmp_random_leaf_impl() accordingly. * Updated dbuf_remap() to handle the org.zfsonlinux:large_dnode pool feature which is not supported by OpenZFS. * Added support for new vdev removal tracepoints. * Test cases removal_with_zdb and removal_condense_export have been intentionally disabled. When run manually they pass as intended, but when running in the automated test environment they produce unreliable results on the latest Fedora release. They may work better once the upstream pool import refectoring is merged into ZoL at which point they will be re-enabled. Authored by: Matthew Ahrens <mahrens@delphix.com> Reviewed-by: Alex Reece <alex@delphix.com> Reviewed-by: George Wilson <george.wilson@delphix.com> Reviewed-by: John Kennedy <john.kennedy@delphix.com> Reviewed-by: Prakash Surya <prakash.surya@delphix.com> Reviewed by: Richard Laager <rlaager@wiktel.com> Reviewed by: Tim Chase <tim@chase2k.com> Reviewed by: Brian Behlendorf <behlendorf1@llnl.gov> Approved by: Garrett D'Amore <garrett@damore.org> Ported-by: Tim Chase <tim@chase2k.com> Signed-off-by: Tim Chase <tim@chase2k.com> OpenZFS-issue: https://www.illumos.org/issues/7614 OpenZFS-commit: https://github.com/openzfs/openzfs/commit/f539f1eb Closes #6900
2016-09-22 19:30:13 +03:00
objset_t *os;
if (dmu_objset_from_ds(ds, &os) != 0) {
goto out;
}
dsl_scan_zil(dp, &os->os_zil_header);
OpenZFS 7614, 9064 - zfs device evacuation/removal OpenZFS 7614 - zfs device evacuation/removal OpenZFS 9064 - remove_mirror should wait for device removal to complete This project allows top-level vdevs to be removed from the storage pool with "zpool remove", reducing the total amount of storage in the pool. This operation copies all allocated regions of the device to be removed onto other devices, recording the mapping from old to new location. After the removal is complete, read and free operations to the removed (now "indirect") vdev must be remapped and performed at the new location on disk. The indirect mapping table is kept in memory whenever the pool is loaded, so there is minimal performance overhead when doing operations on the indirect vdev. The size of the in-memory mapping table will be reduced when its entries become "obsolete" because they are no longer used by any block pointers in the pool. An entry becomes obsolete when all the blocks that use it are freed. An entry can also become obsolete when all the snapshots that reference it are deleted, and the block pointers that reference it have been "remapped" in all filesystems/zvols (and clones). Whenever an indirect block is written, all the block pointers in it will be "remapped" to their new (concrete) locations if possible. This process can be accelerated by using the "zfs remap" command to proactively rewrite all indirect blocks that reference indirect (removed) vdevs. Note that when a device is removed, we do not verify the checksum of the data that is copied. This makes the process much faster, but if it were used on redundant vdevs (i.e. mirror or raidz vdevs), it would be possible to copy the wrong data, when we have the correct data on e.g. the other side of the mirror. At the moment, only mirrors and simple top-level vdevs can be removed and no removal is allowed if any of the top-level vdevs are raidz. Porting Notes: * Avoid zero-sized kmem_alloc() in vdev_compact_children(). The device evacuation code adds a dependency that vdev_compact_children() be able to properly empty the vdev_child array by setting it to NULL and zeroing vdev_children. Under Linux, kmem_alloc() and related functions return a sentinel pointer rather than NULL for zero-sized allocations. * Remove comment regarding "mpt" driver where zfs_remove_max_segment is initialized to SPA_MAXBLOCKSIZE. Change zfs_condense_indirect_commit_entry_delay_ticks to zfs_condense_indirect_commit_entry_delay_ms for consistency with most other tunables in which delays are specified in ms. * ZTS changes: Use set_tunable rather than mdb Use zpool sync as appropriate Use sync_pool instead of sync Kill jobs during test_removal_with_operation to allow unmount/export Don't add non-disk names such as "mirror" or "raidz" to $DISKS Use $TEST_BASE_DIR instead of /tmp Increase HZ from 100 to 1000 which is more common on Linux removal_multiple_indirection.ksh Reduce iterations in order to not time out on the code coverage builders. removal_resume_export: Functionally, the test case is correct but there exists a race where the kernel thread hasn't been fully started yet and is not visible. Wait for up to 1 second for the removal thread to be started before giving up on it. Also, increase the amount of data copied in order that the removal not finish before the export has a chance to fail. * MMP compatibility, the concept of concrete versus non-concrete devices has slightly changed the semantics of vdev_writeable(). Update mmp_random_leaf_impl() accordingly. * Updated dbuf_remap() to handle the org.zfsonlinux:large_dnode pool feature which is not supported by OpenZFS. * Added support for new vdev removal tracepoints. * Test cases removal_with_zdb and removal_condense_export have been intentionally disabled. When run manually they pass as intended, but when running in the automated test environment they produce unreliable results on the latest Fedora release. They may work better once the upstream pool import refectoring is merged into ZoL at which point they will be re-enabled. Authored by: Matthew Ahrens <mahrens@delphix.com> Reviewed-by: Alex Reece <alex@delphix.com> Reviewed-by: George Wilson <george.wilson@delphix.com> Reviewed-by: John Kennedy <john.kennedy@delphix.com> Reviewed-by: Prakash Surya <prakash.surya@delphix.com> Reviewed by: Richard Laager <rlaager@wiktel.com> Reviewed by: Tim Chase <tim@chase2k.com> Reviewed by: Brian Behlendorf <behlendorf1@llnl.gov> Approved by: Garrett D'Amore <garrett@damore.org> Ported-by: Tim Chase <tim@chase2k.com> Signed-off-by: Tim Chase <tim@chase2k.com> OpenZFS-issue: https://www.illumos.org/issues/7614 OpenZFS-commit: https://github.com/openzfs/openzfs/commit/f539f1eb Closes #6900
2016-09-22 19:30:13 +03:00
}
/*
* Iterate over the bps in this ds.
*/
dmu_buf_will_dirty(ds->ds_dbuf, tx);
rrw_enter(&ds->ds_bp_rwlock, RW_READER, FTAG);
dsl_scan_visit_rootbp(scn, ds, &dsl_dataset_phys(ds)->ds_bp, tx);
rrw_exit(&ds->ds_bp_rwlock, FTAG);
char *dsname = kmem_alloc(ZFS_MAX_DATASET_NAME_LEN, KM_SLEEP);
dsl_dataset_name(ds, dsname);
zfs_dbgmsg("scanned dataset %llu (%s) with min=%llu max=%llu; "
"suspending=%u",
(longlong_t)dsobj, dsname,
(longlong_t)scn->scn_phys.scn_cur_min_txg,
(longlong_t)scn->scn_phys.scn_cur_max_txg,
(int)scn->scn_suspending);
kmem_free(dsname, ZFS_MAX_DATASET_NAME_LEN);
if (scn->scn_suspending)
goto out;
/*
* We've finished this pass over this dataset.
*/
/*
* If we did not completely visit this dataset, do another pass.
*/
if (scn->scn_phys.scn_flags & DSF_VISIT_DS_AGAIN) {
zfs_dbgmsg("incomplete pass; visiting again");
scn->scn_phys.scn_flags &= ~DSF_VISIT_DS_AGAIN;
scan_ds_queue_insert(scn, ds->ds_object,
scn->scn_phys.scn_cur_max_txg);
goto out;
}
/*
* Add descendant datasets to work queue.
*/
if (dsl_dataset_phys(ds)->ds_next_snap_obj != 0) {
scan_ds_queue_insert(scn,
dsl_dataset_phys(ds)->ds_next_snap_obj,
dsl_dataset_phys(ds)->ds_creation_txg);
}
if (dsl_dataset_phys(ds)->ds_num_children > 1) {
boolean_t usenext = B_FALSE;
if (dsl_dataset_phys(ds)->ds_next_clones_obj != 0) {
uint64_t count;
/*
* A bug in a previous version of the code could
* cause upgrade_clones_cb() to not set
* ds_next_snap_obj when it should, leading to a
* missing entry. Therefore we can only use the
* next_clones_obj when its count is correct.
*/
int err = zap_count(dp->dp_meta_objset,
dsl_dataset_phys(ds)->ds_next_clones_obj, &count);
if (err == 0 &&
count == dsl_dataset_phys(ds)->ds_num_children - 1)
usenext = B_TRUE;
}
if (usenext) {
zap_cursor_t zc;
zap_attribute_t za;
for (zap_cursor_init(&zc, dp->dp_meta_objset,
dsl_dataset_phys(ds)->ds_next_clones_obj);
zap_cursor_retrieve(&zc, &za) == 0;
(void) zap_cursor_advance(&zc)) {
scan_ds_queue_insert(scn,
zfs_strtonum(za.za_name, NULL),
dsl_dataset_phys(ds)->ds_creation_txg);
}
zap_cursor_fini(&zc);
} else {
VERIFY0(dmu_objset_find_dp(dp, dp->dp_root_dir_obj,
enqueue_clones_cb, &ds->ds_object,
DS_FIND_CHILDREN));
}
}
out:
dsl_dataset_rele(ds, FTAG);
}
/* ARGSUSED */
static int
enqueue_cb(dsl_pool_t *dp, dsl_dataset_t *hds, void *arg)
{
dsl_dataset_t *ds;
int err;
dsl_scan_t *scn = dp->dp_scan;
err = dsl_dataset_hold_obj(dp, hds->ds_object, FTAG, &ds);
if (err)
return (err);
while (dsl_dataset_phys(ds)->ds_prev_snap_obj != 0) {
dsl_dataset_t *prev;
err = dsl_dataset_hold_obj(dp,
dsl_dataset_phys(ds)->ds_prev_snap_obj, FTAG, &prev);
if (err) {
dsl_dataset_rele(ds, FTAG);
return (err);
}
/*
* If this is a clone, we don't need to worry about it for now.
*/
if (dsl_dataset_phys(prev)->ds_next_snap_obj != ds->ds_object) {
dsl_dataset_rele(ds, FTAG);
dsl_dataset_rele(prev, FTAG);
return (0);
}
dsl_dataset_rele(ds, FTAG);
ds = prev;
}
scan_ds_queue_insert(scn, ds->ds_object,
dsl_dataset_phys(ds)->ds_prev_snap_txg);
dsl_dataset_rele(ds, FTAG);
return (0);
}
/* ARGSUSED */
void
dsl_scan_ddt_entry(dsl_scan_t *scn, enum zio_checksum checksum,
ddt_entry_t *dde, dmu_tx_t *tx)
{
const ddt_key_t *ddk = &dde->dde_key;
ddt_phys_t *ddp = dde->dde_phys;
blkptr_t bp;
zbookmark_phys_t zb = { 0 };
int p;
if (!dsl_scan_is_running(scn))
return;
/*
* This function is special because it is the only thing
* that can add scan_io_t's to the vdev scan queues from
* outside dsl_scan_sync(). For the most part this is ok
* as long as it is called from within syncing context.
* However, dsl_scan_sync() expects that no new sio's will
* be added between when all the work for a scan is done
* and the next txg when the scan is actually marked as
* completed. This check ensures we do not issue new sio's
* during this period.
*/
if (scn->scn_done_txg != 0)
return;
for (p = 0; p < DDT_PHYS_TYPES; p++, ddp++) {
if (ddp->ddp_phys_birth == 0 ||
ddp->ddp_phys_birth > scn->scn_phys.scn_max_txg)
continue;
ddt_bp_create(checksum, ddk, ddp, &bp);
scn->scn_visited_this_txg++;
scan_funcs[scn->scn_phys.scn_func](scn->scn_dp, &bp, &zb);
}
}
/*
* Scrub/dedup interaction.
*
* If there are N references to a deduped block, we don't want to scrub it
* N times -- ideally, we should scrub it exactly once.
*
* We leverage the fact that the dde's replication class (enum ddt_class)
* is ordered from highest replication class (DDT_CLASS_DITTO) to lowest
* (DDT_CLASS_UNIQUE) so that we may walk the DDT in that order.
*
* To prevent excess scrubbing, the scrub begins by walking the DDT
* to find all blocks with refcnt > 1, and scrubs each of these once.
* Since there are two replication classes which contain blocks with
* refcnt > 1, we scrub the highest replication class (DDT_CLASS_DITTO) first.
* Finally the top-down scrub begins, only visiting blocks with refcnt == 1.
*
* There would be nothing more to say if a block's refcnt couldn't change
* during a scrub, but of course it can so we must account for changes
* in a block's replication class.
*
* Here's an example of what can occur:
*
* If a block has refcnt > 1 during the DDT scrub phase, but has refcnt == 1
* when visited during the top-down scrub phase, it will be scrubbed twice.
* This negates our scrub optimization, but is otherwise harmless.
*
* If a block has refcnt == 1 during the DDT scrub phase, but has refcnt > 1
* on each visit during the top-down scrub phase, it will never be scrubbed.
* To catch this, ddt_sync_entry() notifies the scrub code whenever a block's
* reference class transitions to a higher level (i.e DDT_CLASS_UNIQUE to
* DDT_CLASS_DUPLICATE); if it transitions from refcnt == 1 to refcnt > 1
* while a scrub is in progress, it scrubs the block right then.
*/
static void
dsl_scan_ddt(dsl_scan_t *scn, dmu_tx_t *tx)
{
ddt_bookmark_t *ddb = &scn->scn_phys.scn_ddt_bookmark;
ddt_entry_t dde;
int error;
uint64_t n = 0;
bzero(&dde, sizeof (ddt_entry_t));
while ((error = ddt_walk(scn->scn_dp->dp_spa, ddb, &dde)) == 0) {
ddt_t *ddt;
if (ddb->ddb_class > scn->scn_phys.scn_ddt_class_max)
break;
dprintf("visiting ddb=%llu/%llu/%llu/%llx\n",
(longlong_t)ddb->ddb_class,
(longlong_t)ddb->ddb_type,
(longlong_t)ddb->ddb_checksum,
(longlong_t)ddb->ddb_cursor);
/* There should be no pending changes to the dedup table */
ddt = scn->scn_dp->dp_spa->spa_ddt[ddb->ddb_checksum];
ASSERT(avl_first(&ddt->ddt_tree) == NULL);
dsl_scan_ddt_entry(scn, ddb->ddb_checksum, &dde, tx);
n++;
if (dsl_scan_check_suspend(scn, NULL))
break;
}
zfs_dbgmsg("scanned %llu ddt entries with class_max = %u; "
"suspending=%u", (longlong_t)n,
(int)scn->scn_phys.scn_ddt_class_max, (int)scn->scn_suspending);
ASSERT(error == 0 || error == ENOENT);
ASSERT(error != ENOENT ||
ddb->ddb_class > scn->scn_phys.scn_ddt_class_max);
}
static uint64_t
dsl_scan_ds_maxtxg(dsl_dataset_t *ds)
{
uint64_t smt = ds->ds_dir->dd_pool->dp_scan->scn_phys.scn_max_txg;
if (ds->ds_is_snapshot)
return (MIN(smt, dsl_dataset_phys(ds)->ds_creation_txg));
return (smt);
}
static void
dsl_scan_visit(dsl_scan_t *scn, dmu_tx_t *tx)
{
scan_ds_t *sds;
dsl_pool_t *dp = scn->scn_dp;
if (scn->scn_phys.scn_ddt_bookmark.ddb_class <=
scn->scn_phys.scn_ddt_class_max) {
scn->scn_phys.scn_cur_min_txg = scn->scn_phys.scn_min_txg;
scn->scn_phys.scn_cur_max_txg = scn->scn_phys.scn_max_txg;
dsl_scan_ddt(scn, tx);
if (scn->scn_suspending)
return;
}
if (scn->scn_phys.scn_bookmark.zb_objset == DMU_META_OBJSET) {
/* First do the MOS & ORIGIN */
scn->scn_phys.scn_cur_min_txg = scn->scn_phys.scn_min_txg;
scn->scn_phys.scn_cur_max_txg = scn->scn_phys.scn_max_txg;
dsl_scan_visit_rootbp(scn, NULL,
&dp->dp_meta_rootbp, tx);
spa_set_rootblkptr(dp->dp_spa, &dp->dp_meta_rootbp);
if (scn->scn_suspending)
return;
if (spa_version(dp->dp_spa) < SPA_VERSION_DSL_SCRUB) {
VERIFY0(dmu_objset_find_dp(dp, dp->dp_root_dir_obj,
enqueue_cb, NULL, DS_FIND_CHILDREN));
} else {
dsl_scan_visitds(scn,
dp->dp_origin_snap->ds_object, tx);
}
ASSERT(!scn->scn_suspending);
} else if (scn->scn_phys.scn_bookmark.zb_objset !=
ZB_DESTROYED_OBJSET) {
uint64_t dsobj = scn->scn_phys.scn_bookmark.zb_objset;
/*
* If we were suspended, continue from here. Note if the
* ds we were suspended on was deleted, the zb_objset may
* be -1, so we will skip this and find a new objset
* below.
*/
dsl_scan_visitds(scn, dsobj, tx);
if (scn->scn_suspending)
return;
}
/*
* In case we suspended right at the end of the ds, zero the
* bookmark so we don't think that we're still trying to resume.
*/
bzero(&scn->scn_phys.scn_bookmark, sizeof (zbookmark_phys_t));
/*
* Keep pulling things out of the dataset avl queue. Updates to the
* persistent zap-object-as-queue happen only at checkpoints.
*/
while ((sds = avl_first(&scn->scn_queue)) != NULL) {
dsl_dataset_t *ds;
uint64_t dsobj = sds->sds_dsobj;
uint64_t txg = sds->sds_txg;
/* dequeue and free the ds from the queue */
scan_ds_queue_remove(scn, dsobj);
sds = NULL;
/* set up min / max txg */
VERIFY3U(0, ==, dsl_dataset_hold_obj(dp, dsobj, FTAG, &ds));
if (txg != 0) {
scn->scn_phys.scn_cur_min_txg =
MAX(scn->scn_phys.scn_min_txg, txg);
} else {
scn->scn_phys.scn_cur_min_txg =
MAX(scn->scn_phys.scn_min_txg,
dsl_dataset_phys(ds)->ds_prev_snap_txg);
}
scn->scn_phys.scn_cur_max_txg = dsl_scan_ds_maxtxg(ds);
dsl_dataset_rele(ds, FTAG);
dsl_scan_visitds(scn, dsobj, tx);
if (scn->scn_suspending)
return;
}
/* No more objsets to fetch, we're done */
scn->scn_phys.scn_bookmark.zb_objset = ZB_DESTROYED_OBJSET;
ASSERT0(scn->scn_suspending);
}
static uint64_t
dsl_scan_count_leaves(vdev_t *vd)
{
uint64_t i, leaves = 0;
/* we only count leaves that belong to the main pool and are readable */
if (vd->vdev_islog || vd->vdev_isspare ||
vd->vdev_isl2cache || !vdev_readable(vd))
return (0);
if (vd->vdev_ops->vdev_op_leaf)
return (1);
for (i = 0; i < vd->vdev_children; i++) {
leaves += dsl_scan_count_leaves(vd->vdev_child[i]);
}
return (leaves);
}
static void
scan_io_queues_update_zio_stats(dsl_scan_io_queue_t *q, const blkptr_t *bp)
{
int i;
uint64_t cur_size = 0;
for (i = 0; i < BP_GET_NDVAS(bp); i++) {
cur_size += DVA_GET_ASIZE(&bp->blk_dva[i]);
}
q->q_total_zio_size_this_txg += cur_size;
q->q_zios_this_txg++;
}
static void
scan_io_queues_update_seg_stats(dsl_scan_io_queue_t *q, uint64_t start,
uint64_t end)
{
q->q_total_seg_size_this_txg += end - start;
q->q_segs_this_txg++;
}
static boolean_t
scan_io_queue_check_suspend(dsl_scan_t *scn)
{
/* See comment in dsl_scan_check_suspend() */
uint64_t curr_time_ns = gethrtime();
uint64_t scan_time_ns = curr_time_ns - scn->scn_sync_start_time;
uint64_t sync_time_ns = curr_time_ns -
scn->scn_dp->dp_spa->spa_sync_starttime;
int dirty_pct = scn->scn_dp->dp_dirty_total * 100 / zfs_dirty_data_max;
int mintime = (scn->scn_phys.scn_func == POOL_SCAN_RESILVER) ?
zfs_resilver_min_time_ms : zfs_scrub_min_time_ms;
return ((NSEC2MSEC(scan_time_ns) > mintime &&
(dirty_pct >= zfs_vdev_async_write_active_min_dirty_percent ||
txg_sync_waiting(scn->scn_dp) ||
NSEC2SEC(sync_time_ns) >= zfs_txg_timeout)) ||
spa_shutting_down(scn->scn_dp->dp_spa));
}
/*
* Given a list of scan_io_t's in io_list, this issues the I/Os out to
* disk. This consumes the io_list and frees the scan_io_t's. This is
* called when emptying queues, either when we're up against the memory
* limit or when we have finished scanning. Returns B_TRUE if we stopped
* processing the list before we finished. Any sios that were not issued
* will remain in the io_list.
*/
static boolean_t
scan_io_queue_issue(dsl_scan_io_queue_t *queue, list_t *io_list)
{
dsl_scan_t *scn = queue->q_scn;
scan_io_t *sio;
int64_t bytes_issued = 0;
boolean_t suspended = B_FALSE;
while ((sio = list_head(io_list)) != NULL) {
blkptr_t bp;
if (scan_io_queue_check_suspend(scn)) {
suspended = B_TRUE;
break;
}
sio2bp(sio, &bp);
bytes_issued += SIO_GET_ASIZE(sio);
scan_exec_io(scn->scn_dp, &bp, sio->sio_flags,
&sio->sio_zb, queue);
(void) list_remove_head(io_list);
scan_io_queues_update_zio_stats(queue, &bp);
sio_free(sio);
}
atomic_add_64(&scn->scn_bytes_pending, -bytes_issued);
return (suspended);
}
/*
* This function removes sios from an IO queue which reside within a given
* range_seg_t and inserts them (in offset order) into a list. Note that
* we only ever return a maximum of 32 sios at once. If there are more sios
* to process within this segment that did not make it onto the list we
* return B_TRUE and otherwise B_FALSE.
*/
static boolean_t
scan_io_queue_gather(dsl_scan_io_queue_t *queue, range_seg_t *rs, list_t *list)
{
scan_io_t *srch_sio, *sio, *next_sio;
avl_index_t idx;
uint_t num_sios = 0;
int64_t bytes_issued = 0;
ASSERT(rs != NULL);
ASSERT(MUTEX_HELD(&queue->q_vd->vdev_scan_io_queue_lock));
srch_sio = sio_alloc(1);
srch_sio->sio_nr_dvas = 1;
Reduce loaded range tree memory usage This patch implements a new tree structure for ZFS, and uses it to store range trees more efficiently. The new structure is approximately a B-tree, though there are some small differences from the usual characterizations. The tree has core nodes and leaf nodes; each contain data elements, which the elements in the core nodes acting as separators between its children. The difference between core and leaf nodes is that the core nodes have an array of children, while leaf nodes don't. Every node in the tree may be only partially full; in most cases, they are all at least 50% full (in terms of element count) except for the root node, which can be less full. Underfull nodes will steal from their neighbors or merge to remain full enough, while overfull nodes will split in two. The data elements are contained in tree-controlled buffers; they are copied into these on insertion, and overwritten on deletion. This means that the elements are not independently allocated, which reduces overhead, but also means they can't be shared between trees (and also that pointers to them are only valid until a side-effectful tree operation occurs). The overhead varies based on how dense the tree is, but is usually on the order of about 50% of the element size; the per-node overheads are very small, and so don't make a significant difference. The trees can accept arbitrary records; they accept a size and a comparator to allow them to be used for a variety of purposes. The new trees replace the AVL trees used in the range trees today. Currently, the range_seg_t structure contains three 8 byte integers of payload and two 24 byte avl_tree_node_ts to handle its storage in both an offset-sorted tree and a size-sorted tree (total size: 64 bytes). In the new model, the range seg structures are usually two 4 byte integers, but a separate one needs to exist for the size-sorted and offset-sorted tree. Between the raw size, the 50% overhead, and the double storage, the new btrees are expected to use 8*1.5*2 = 24 bytes per record, or 33.3% as much memory as the AVL trees (this is for the purposes of storing metaslab range trees; for other purposes, like scrubs, they use ~50% as much memory). We reduced the size of the payload in the range segments by teaching range trees about starting offsets and shifts; since metaslabs have a fixed starting offset, and they all operate in terms of disk sectors, we can store the ranges using 4-byte integers as long as the size of the metaslab divided by the sector size is less than 2^32. For 512-byte sectors, this is a 2^41 (or 2TB) metaslab, which with the default settings corresponds to a 256PB disk. 4k sector disks can handle metaslabs up to 2^46 bytes, or 2^63 byte disks. Since we do not anticipate disks of this size in the near future, there should be almost no cases where metaslabs need 64-byte integers to store their ranges. We do still have the capability to store 64-byte integer ranges to account for cases where we are storing per-vdev (or per-dnode) trees, which could reasonably go above the limits discussed. We also do not store fill information in the compact version of the node, since it is only used for sorted scrub. We also optimized the metaslab loading process in various other ways to offset some inefficiencies in the btree model. While individual operations (find, insert, remove_from) are faster for the btree than they are for the avl tree, remove usually requires a find operation, while in the AVL tree model the element itself suffices. Some clever changes actually caused an overall speedup in metaslab loading; we use approximately 40% less cpu to load metaslabs in our tests on Illumos. Another memory and performance optimization was achieved by changing what is stored in the size-sorted trees. When a disk is heavily fragmented, the df algorithm used by default in ZFS will almost always find a number of small regions in its initial cursor-based search; it will usually only fall back to the size-sorted tree to find larger regions. If we increase the size of the cursor-based search slightly, and don't store segments that are smaller than a tunable size floor in the size-sorted tree, we can further cut memory usage down to below 20% of what the AVL trees store. This also results in further reductions in CPU time spent loading metaslabs. The 16KiB size floor was chosen because it results in substantial memory usage reduction while not usually resulting in situations where we can't find an appropriate chunk with the cursor and are forced to use an oversized chunk from the size-sorted tree. In addition, even if we do have to use an oversized chunk from the size-sorted tree, the chunk would be too small to use for ZIL allocations, so it isn't as big of a loss as it might otherwise be. And often, more small allocations will follow the initial one, and the cursor search will now find the remainder of the chunk we didn't use all of and use it for subsequent allocations. Practical testing has shown little or no change in fragmentation as a result of this change. If the size-sorted tree becomes empty while the offset sorted one still has entries, it will load all the entries from the offset sorted tree and disregard the size floor until it is unloaded again. This operation occurs rarely with the default setting, only on incredibly thoroughly fragmented pools. There are some other small changes to zdb to teach it to handle btrees, but nothing major. Reviewed-by: George Wilson <gwilson@delphix.com> Reviewed-by: Matt Ahrens <matt@delphix.com> Reviewed by: Sebastien Roy seb@delphix.com Reviewed-by: Igor Kozhukhov <igor@dilos.org> Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov> Signed-off-by: Paul Dagnelie <pcd@delphix.com> Closes #9181
2019-10-09 20:36:03 +03:00
SIO_SET_OFFSET(srch_sio, rs_get_start(rs, queue->q_exts_by_addr));
/*
* The exact start of the extent might not contain any matching zios,
* so if that's the case, examine the next one in the tree.
*/
sio = avl_find(&queue->q_sios_by_addr, srch_sio, &idx);
sio_free(srch_sio);
if (sio == NULL)
sio = avl_nearest(&queue->q_sios_by_addr, idx, AVL_AFTER);
Reduce loaded range tree memory usage This patch implements a new tree structure for ZFS, and uses it to store range trees more efficiently. The new structure is approximately a B-tree, though there are some small differences from the usual characterizations. The tree has core nodes and leaf nodes; each contain data elements, which the elements in the core nodes acting as separators between its children. The difference between core and leaf nodes is that the core nodes have an array of children, while leaf nodes don't. Every node in the tree may be only partially full; in most cases, they are all at least 50% full (in terms of element count) except for the root node, which can be less full. Underfull nodes will steal from their neighbors or merge to remain full enough, while overfull nodes will split in two. The data elements are contained in tree-controlled buffers; they are copied into these on insertion, and overwritten on deletion. This means that the elements are not independently allocated, which reduces overhead, but also means they can't be shared between trees (and also that pointers to them are only valid until a side-effectful tree operation occurs). The overhead varies based on how dense the tree is, but is usually on the order of about 50% of the element size; the per-node overheads are very small, and so don't make a significant difference. The trees can accept arbitrary records; they accept a size and a comparator to allow them to be used for a variety of purposes. The new trees replace the AVL trees used in the range trees today. Currently, the range_seg_t structure contains three 8 byte integers of payload and two 24 byte avl_tree_node_ts to handle its storage in both an offset-sorted tree and a size-sorted tree (total size: 64 bytes). In the new model, the range seg structures are usually two 4 byte integers, but a separate one needs to exist for the size-sorted and offset-sorted tree. Between the raw size, the 50% overhead, and the double storage, the new btrees are expected to use 8*1.5*2 = 24 bytes per record, or 33.3% as much memory as the AVL trees (this is for the purposes of storing metaslab range trees; for other purposes, like scrubs, they use ~50% as much memory). We reduced the size of the payload in the range segments by teaching range trees about starting offsets and shifts; since metaslabs have a fixed starting offset, and they all operate in terms of disk sectors, we can store the ranges using 4-byte integers as long as the size of the metaslab divided by the sector size is less than 2^32. For 512-byte sectors, this is a 2^41 (or 2TB) metaslab, which with the default settings corresponds to a 256PB disk. 4k sector disks can handle metaslabs up to 2^46 bytes, or 2^63 byte disks. Since we do not anticipate disks of this size in the near future, there should be almost no cases where metaslabs need 64-byte integers to store their ranges. We do still have the capability to store 64-byte integer ranges to account for cases where we are storing per-vdev (or per-dnode) trees, which could reasonably go above the limits discussed. We also do not store fill information in the compact version of the node, since it is only used for sorted scrub. We also optimized the metaslab loading process in various other ways to offset some inefficiencies in the btree model. While individual operations (find, insert, remove_from) are faster for the btree than they are for the avl tree, remove usually requires a find operation, while in the AVL tree model the element itself suffices. Some clever changes actually caused an overall speedup in metaslab loading; we use approximately 40% less cpu to load metaslabs in our tests on Illumos. Another memory and performance optimization was achieved by changing what is stored in the size-sorted trees. When a disk is heavily fragmented, the df algorithm used by default in ZFS will almost always find a number of small regions in its initial cursor-based search; it will usually only fall back to the size-sorted tree to find larger regions. If we increase the size of the cursor-based search slightly, and don't store segments that are smaller than a tunable size floor in the size-sorted tree, we can further cut memory usage down to below 20% of what the AVL trees store. This also results in further reductions in CPU time spent loading metaslabs. The 16KiB size floor was chosen because it results in substantial memory usage reduction while not usually resulting in situations where we can't find an appropriate chunk with the cursor and are forced to use an oversized chunk from the size-sorted tree. In addition, even if we do have to use an oversized chunk from the size-sorted tree, the chunk would be too small to use for ZIL allocations, so it isn't as big of a loss as it might otherwise be. And often, more small allocations will follow the initial one, and the cursor search will now find the remainder of the chunk we didn't use all of and use it for subsequent allocations. Practical testing has shown little or no change in fragmentation as a result of this change. If the size-sorted tree becomes empty while the offset sorted one still has entries, it will load all the entries from the offset sorted tree and disregard the size floor until it is unloaded again. This operation occurs rarely with the default setting, only on incredibly thoroughly fragmented pools. There are some other small changes to zdb to teach it to handle btrees, but nothing major. Reviewed-by: George Wilson <gwilson@delphix.com> Reviewed-by: Matt Ahrens <matt@delphix.com> Reviewed by: Sebastien Roy seb@delphix.com Reviewed-by: Igor Kozhukhov <igor@dilos.org> Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov> Signed-off-by: Paul Dagnelie <pcd@delphix.com> Closes #9181
2019-10-09 20:36:03 +03:00
while (sio != NULL && SIO_GET_OFFSET(sio) < rs_get_end(rs,
queue->q_exts_by_addr) && num_sios <= 32) {
ASSERT3U(SIO_GET_OFFSET(sio), >=, rs_get_start(rs,
queue->q_exts_by_addr));
ASSERT3U(SIO_GET_END_OFFSET(sio), <=, rs_get_end(rs,
queue->q_exts_by_addr));
next_sio = AVL_NEXT(&queue->q_sios_by_addr, sio);
avl_remove(&queue->q_sios_by_addr, sio);
queue->q_sio_memused -= SIO_GET_MUSED(sio);
bytes_issued += SIO_GET_ASIZE(sio);
num_sios++;
list_insert_tail(list, sio);
sio = next_sio;
}
/*
* We limit the number of sios we process at once to 32 to avoid
* biting off more than we can chew. If we didn't take everything
* in the segment we update it to reflect the work we were able to
* complete. Otherwise, we remove it from the range tree entirely.
*/
Reduce loaded range tree memory usage This patch implements a new tree structure for ZFS, and uses it to store range trees more efficiently. The new structure is approximately a B-tree, though there are some small differences from the usual characterizations. The tree has core nodes and leaf nodes; each contain data elements, which the elements in the core nodes acting as separators between its children. The difference between core and leaf nodes is that the core nodes have an array of children, while leaf nodes don't. Every node in the tree may be only partially full; in most cases, they are all at least 50% full (in terms of element count) except for the root node, which can be less full. Underfull nodes will steal from their neighbors or merge to remain full enough, while overfull nodes will split in two. The data elements are contained in tree-controlled buffers; they are copied into these on insertion, and overwritten on deletion. This means that the elements are not independently allocated, which reduces overhead, but also means they can't be shared between trees (and also that pointers to them are only valid until a side-effectful tree operation occurs). The overhead varies based on how dense the tree is, but is usually on the order of about 50% of the element size; the per-node overheads are very small, and so don't make a significant difference. The trees can accept arbitrary records; they accept a size and a comparator to allow them to be used for a variety of purposes. The new trees replace the AVL trees used in the range trees today. Currently, the range_seg_t structure contains three 8 byte integers of payload and two 24 byte avl_tree_node_ts to handle its storage in both an offset-sorted tree and a size-sorted tree (total size: 64 bytes). In the new model, the range seg structures are usually two 4 byte integers, but a separate one needs to exist for the size-sorted and offset-sorted tree. Between the raw size, the 50% overhead, and the double storage, the new btrees are expected to use 8*1.5*2 = 24 bytes per record, or 33.3% as much memory as the AVL trees (this is for the purposes of storing metaslab range trees; for other purposes, like scrubs, they use ~50% as much memory). We reduced the size of the payload in the range segments by teaching range trees about starting offsets and shifts; since metaslabs have a fixed starting offset, and they all operate in terms of disk sectors, we can store the ranges using 4-byte integers as long as the size of the metaslab divided by the sector size is less than 2^32. For 512-byte sectors, this is a 2^41 (or 2TB) metaslab, which with the default settings corresponds to a 256PB disk. 4k sector disks can handle metaslabs up to 2^46 bytes, or 2^63 byte disks. Since we do not anticipate disks of this size in the near future, there should be almost no cases where metaslabs need 64-byte integers to store their ranges. We do still have the capability to store 64-byte integer ranges to account for cases where we are storing per-vdev (or per-dnode) trees, which could reasonably go above the limits discussed. We also do not store fill information in the compact version of the node, since it is only used for sorted scrub. We also optimized the metaslab loading process in various other ways to offset some inefficiencies in the btree model. While individual operations (find, insert, remove_from) are faster for the btree than they are for the avl tree, remove usually requires a find operation, while in the AVL tree model the element itself suffices. Some clever changes actually caused an overall speedup in metaslab loading; we use approximately 40% less cpu to load metaslabs in our tests on Illumos. Another memory and performance optimization was achieved by changing what is stored in the size-sorted trees. When a disk is heavily fragmented, the df algorithm used by default in ZFS will almost always find a number of small regions in its initial cursor-based search; it will usually only fall back to the size-sorted tree to find larger regions. If we increase the size of the cursor-based search slightly, and don't store segments that are smaller than a tunable size floor in the size-sorted tree, we can further cut memory usage down to below 20% of what the AVL trees store. This also results in further reductions in CPU time spent loading metaslabs. The 16KiB size floor was chosen because it results in substantial memory usage reduction while not usually resulting in situations where we can't find an appropriate chunk with the cursor and are forced to use an oversized chunk from the size-sorted tree. In addition, even if we do have to use an oversized chunk from the size-sorted tree, the chunk would be too small to use for ZIL allocations, so it isn't as big of a loss as it might otherwise be. And often, more small allocations will follow the initial one, and the cursor search will now find the remainder of the chunk we didn't use all of and use it for subsequent allocations. Practical testing has shown little or no change in fragmentation as a result of this change. If the size-sorted tree becomes empty while the offset sorted one still has entries, it will load all the entries from the offset sorted tree and disregard the size floor until it is unloaded again. This operation occurs rarely with the default setting, only on incredibly thoroughly fragmented pools. There are some other small changes to zdb to teach it to handle btrees, but nothing major. Reviewed-by: George Wilson <gwilson@delphix.com> Reviewed-by: Matt Ahrens <matt@delphix.com> Reviewed by: Sebastien Roy seb@delphix.com Reviewed-by: Igor Kozhukhov <igor@dilos.org> Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov> Signed-off-by: Paul Dagnelie <pcd@delphix.com> Closes #9181
2019-10-09 20:36:03 +03:00
if (sio != NULL && SIO_GET_OFFSET(sio) < rs_get_end(rs,
queue->q_exts_by_addr)) {
range_tree_adjust_fill(queue->q_exts_by_addr, rs,
-bytes_issued);
range_tree_resize_segment(queue->q_exts_by_addr, rs,
Reduce loaded range tree memory usage This patch implements a new tree structure for ZFS, and uses it to store range trees more efficiently. The new structure is approximately a B-tree, though there are some small differences from the usual characterizations. The tree has core nodes and leaf nodes; each contain data elements, which the elements in the core nodes acting as separators between its children. The difference between core and leaf nodes is that the core nodes have an array of children, while leaf nodes don't. Every node in the tree may be only partially full; in most cases, they are all at least 50% full (in terms of element count) except for the root node, which can be less full. Underfull nodes will steal from their neighbors or merge to remain full enough, while overfull nodes will split in two. The data elements are contained in tree-controlled buffers; they are copied into these on insertion, and overwritten on deletion. This means that the elements are not independently allocated, which reduces overhead, but also means they can't be shared between trees (and also that pointers to them are only valid until a side-effectful tree operation occurs). The overhead varies based on how dense the tree is, but is usually on the order of about 50% of the element size; the per-node overheads are very small, and so don't make a significant difference. The trees can accept arbitrary records; they accept a size and a comparator to allow them to be used for a variety of purposes. The new trees replace the AVL trees used in the range trees today. Currently, the range_seg_t structure contains three 8 byte integers of payload and two 24 byte avl_tree_node_ts to handle its storage in both an offset-sorted tree and a size-sorted tree (total size: 64 bytes). In the new model, the range seg structures are usually two 4 byte integers, but a separate one needs to exist for the size-sorted and offset-sorted tree. Between the raw size, the 50% overhead, and the double storage, the new btrees are expected to use 8*1.5*2 = 24 bytes per record, or 33.3% as much memory as the AVL trees (this is for the purposes of storing metaslab range trees; for other purposes, like scrubs, they use ~50% as much memory). We reduced the size of the payload in the range segments by teaching range trees about starting offsets and shifts; since metaslabs have a fixed starting offset, and they all operate in terms of disk sectors, we can store the ranges using 4-byte integers as long as the size of the metaslab divided by the sector size is less than 2^32. For 512-byte sectors, this is a 2^41 (or 2TB) metaslab, which with the default settings corresponds to a 256PB disk. 4k sector disks can handle metaslabs up to 2^46 bytes, or 2^63 byte disks. Since we do not anticipate disks of this size in the near future, there should be almost no cases where metaslabs need 64-byte integers to store their ranges. We do still have the capability to store 64-byte integer ranges to account for cases where we are storing per-vdev (or per-dnode) trees, which could reasonably go above the limits discussed. We also do not store fill information in the compact version of the node, since it is only used for sorted scrub. We also optimized the metaslab loading process in various other ways to offset some inefficiencies in the btree model. While individual operations (find, insert, remove_from) are faster for the btree than they are for the avl tree, remove usually requires a find operation, while in the AVL tree model the element itself suffices. Some clever changes actually caused an overall speedup in metaslab loading; we use approximately 40% less cpu to load metaslabs in our tests on Illumos. Another memory and performance optimization was achieved by changing what is stored in the size-sorted trees. When a disk is heavily fragmented, the df algorithm used by default in ZFS will almost always find a number of small regions in its initial cursor-based search; it will usually only fall back to the size-sorted tree to find larger regions. If we increase the size of the cursor-based search slightly, and don't store segments that are smaller than a tunable size floor in the size-sorted tree, we can further cut memory usage down to below 20% of what the AVL trees store. This also results in further reductions in CPU time spent loading metaslabs. The 16KiB size floor was chosen because it results in substantial memory usage reduction while not usually resulting in situations where we can't find an appropriate chunk with the cursor and are forced to use an oversized chunk from the size-sorted tree. In addition, even if we do have to use an oversized chunk from the size-sorted tree, the chunk would be too small to use for ZIL allocations, so it isn't as big of a loss as it might otherwise be. And often, more small allocations will follow the initial one, and the cursor search will now find the remainder of the chunk we didn't use all of and use it for subsequent allocations. Practical testing has shown little or no change in fragmentation as a result of this change. If the size-sorted tree becomes empty while the offset sorted one still has entries, it will load all the entries from the offset sorted tree and disregard the size floor until it is unloaded again. This operation occurs rarely with the default setting, only on incredibly thoroughly fragmented pools. There are some other small changes to zdb to teach it to handle btrees, but nothing major. Reviewed-by: George Wilson <gwilson@delphix.com> Reviewed-by: Matt Ahrens <matt@delphix.com> Reviewed by: Sebastien Roy seb@delphix.com Reviewed-by: Igor Kozhukhov <igor@dilos.org> Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov> Signed-off-by: Paul Dagnelie <pcd@delphix.com> Closes #9181
2019-10-09 20:36:03 +03:00
SIO_GET_OFFSET(sio), rs_get_end(rs,
queue->q_exts_by_addr) - SIO_GET_OFFSET(sio));
return (B_TRUE);
} else {
Reduce loaded range tree memory usage This patch implements a new tree structure for ZFS, and uses it to store range trees more efficiently. The new structure is approximately a B-tree, though there are some small differences from the usual characterizations. The tree has core nodes and leaf nodes; each contain data elements, which the elements in the core nodes acting as separators between its children. The difference between core and leaf nodes is that the core nodes have an array of children, while leaf nodes don't. Every node in the tree may be only partially full; in most cases, they are all at least 50% full (in terms of element count) except for the root node, which can be less full. Underfull nodes will steal from their neighbors or merge to remain full enough, while overfull nodes will split in two. The data elements are contained in tree-controlled buffers; they are copied into these on insertion, and overwritten on deletion. This means that the elements are not independently allocated, which reduces overhead, but also means they can't be shared between trees (and also that pointers to them are only valid until a side-effectful tree operation occurs). The overhead varies based on how dense the tree is, but is usually on the order of about 50% of the element size; the per-node overheads are very small, and so don't make a significant difference. The trees can accept arbitrary records; they accept a size and a comparator to allow them to be used for a variety of purposes. The new trees replace the AVL trees used in the range trees today. Currently, the range_seg_t structure contains three 8 byte integers of payload and two 24 byte avl_tree_node_ts to handle its storage in both an offset-sorted tree and a size-sorted tree (total size: 64 bytes). In the new model, the range seg structures are usually two 4 byte integers, but a separate one needs to exist for the size-sorted and offset-sorted tree. Between the raw size, the 50% overhead, and the double storage, the new btrees are expected to use 8*1.5*2 = 24 bytes per record, or 33.3% as much memory as the AVL trees (this is for the purposes of storing metaslab range trees; for other purposes, like scrubs, they use ~50% as much memory). We reduced the size of the payload in the range segments by teaching range trees about starting offsets and shifts; since metaslabs have a fixed starting offset, and they all operate in terms of disk sectors, we can store the ranges using 4-byte integers as long as the size of the metaslab divided by the sector size is less than 2^32. For 512-byte sectors, this is a 2^41 (or 2TB) metaslab, which with the default settings corresponds to a 256PB disk. 4k sector disks can handle metaslabs up to 2^46 bytes, or 2^63 byte disks. Since we do not anticipate disks of this size in the near future, there should be almost no cases where metaslabs need 64-byte integers to store their ranges. We do still have the capability to store 64-byte integer ranges to account for cases where we are storing per-vdev (or per-dnode) trees, which could reasonably go above the limits discussed. We also do not store fill information in the compact version of the node, since it is only used for sorted scrub. We also optimized the metaslab loading process in various other ways to offset some inefficiencies in the btree model. While individual operations (find, insert, remove_from) are faster for the btree than they are for the avl tree, remove usually requires a find operation, while in the AVL tree model the element itself suffices. Some clever changes actually caused an overall speedup in metaslab loading; we use approximately 40% less cpu to load metaslabs in our tests on Illumos. Another memory and performance optimization was achieved by changing what is stored in the size-sorted trees. When a disk is heavily fragmented, the df algorithm used by default in ZFS will almost always find a number of small regions in its initial cursor-based search; it will usually only fall back to the size-sorted tree to find larger regions. If we increase the size of the cursor-based search slightly, and don't store segments that are smaller than a tunable size floor in the size-sorted tree, we can further cut memory usage down to below 20% of what the AVL trees store. This also results in further reductions in CPU time spent loading metaslabs. The 16KiB size floor was chosen because it results in substantial memory usage reduction while not usually resulting in situations where we can't find an appropriate chunk with the cursor and are forced to use an oversized chunk from the size-sorted tree. In addition, even if we do have to use an oversized chunk from the size-sorted tree, the chunk would be too small to use for ZIL allocations, so it isn't as big of a loss as it might otherwise be. And often, more small allocations will follow the initial one, and the cursor search will now find the remainder of the chunk we didn't use all of and use it for subsequent allocations. Practical testing has shown little or no change in fragmentation as a result of this change. If the size-sorted tree becomes empty while the offset sorted one still has entries, it will load all the entries from the offset sorted tree and disregard the size floor until it is unloaded again. This operation occurs rarely with the default setting, only on incredibly thoroughly fragmented pools. There are some other small changes to zdb to teach it to handle btrees, but nothing major. Reviewed-by: George Wilson <gwilson@delphix.com> Reviewed-by: Matt Ahrens <matt@delphix.com> Reviewed by: Sebastien Roy seb@delphix.com Reviewed-by: Igor Kozhukhov <igor@dilos.org> Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov> Signed-off-by: Paul Dagnelie <pcd@delphix.com> Closes #9181
2019-10-09 20:36:03 +03:00
uint64_t rstart = rs_get_start(rs, queue->q_exts_by_addr);
uint64_t rend = rs_get_end(rs, queue->q_exts_by_addr);
range_tree_remove(queue->q_exts_by_addr, rstart, rend - rstart);
return (B_FALSE);
}
}
/*
* This is called from the queue emptying thread and selects the next
* extent from which we are to issue I/Os. The behavior of this function
* depends on the state of the scan, the current memory consumption and
* whether or not we are performing a scan shutdown.
* 1) We select extents in an elevator algorithm (LBA-order) if the scan
* needs to perform a checkpoint
* 2) We select the largest available extent if we are up against the
* memory limit.
* 3) Otherwise we don't select any extents.
*/
static range_seg_t *
scan_io_queue_fetch_ext(dsl_scan_io_queue_t *queue)
{
dsl_scan_t *scn = queue->q_scn;
Reduce loaded range tree memory usage This patch implements a new tree structure for ZFS, and uses it to store range trees more efficiently. The new structure is approximately a B-tree, though there are some small differences from the usual characterizations. The tree has core nodes and leaf nodes; each contain data elements, which the elements in the core nodes acting as separators between its children. The difference between core and leaf nodes is that the core nodes have an array of children, while leaf nodes don't. Every node in the tree may be only partially full; in most cases, they are all at least 50% full (in terms of element count) except for the root node, which can be less full. Underfull nodes will steal from their neighbors or merge to remain full enough, while overfull nodes will split in two. The data elements are contained in tree-controlled buffers; they are copied into these on insertion, and overwritten on deletion. This means that the elements are not independently allocated, which reduces overhead, but also means they can't be shared between trees (and also that pointers to them are only valid until a side-effectful tree operation occurs). The overhead varies based on how dense the tree is, but is usually on the order of about 50% of the element size; the per-node overheads are very small, and so don't make a significant difference. The trees can accept arbitrary records; they accept a size and a comparator to allow them to be used for a variety of purposes. The new trees replace the AVL trees used in the range trees today. Currently, the range_seg_t structure contains three 8 byte integers of payload and two 24 byte avl_tree_node_ts to handle its storage in both an offset-sorted tree and a size-sorted tree (total size: 64 bytes). In the new model, the range seg structures are usually two 4 byte integers, but a separate one needs to exist for the size-sorted and offset-sorted tree. Between the raw size, the 50% overhead, and the double storage, the new btrees are expected to use 8*1.5*2 = 24 bytes per record, or 33.3% as much memory as the AVL trees (this is for the purposes of storing metaslab range trees; for other purposes, like scrubs, they use ~50% as much memory). We reduced the size of the payload in the range segments by teaching range trees about starting offsets and shifts; since metaslabs have a fixed starting offset, and they all operate in terms of disk sectors, we can store the ranges using 4-byte integers as long as the size of the metaslab divided by the sector size is less than 2^32. For 512-byte sectors, this is a 2^41 (or 2TB) metaslab, which with the default settings corresponds to a 256PB disk. 4k sector disks can handle metaslabs up to 2^46 bytes, or 2^63 byte disks. Since we do not anticipate disks of this size in the near future, there should be almost no cases where metaslabs need 64-byte integers to store their ranges. We do still have the capability to store 64-byte integer ranges to account for cases where we are storing per-vdev (or per-dnode) trees, which could reasonably go above the limits discussed. We also do not store fill information in the compact version of the node, since it is only used for sorted scrub. We also optimized the metaslab loading process in various other ways to offset some inefficiencies in the btree model. While individual operations (find, insert, remove_from) are faster for the btree than they are for the avl tree, remove usually requires a find operation, while in the AVL tree model the element itself suffices. Some clever changes actually caused an overall speedup in metaslab loading; we use approximately 40% less cpu to load metaslabs in our tests on Illumos. Another memory and performance optimization was achieved by changing what is stored in the size-sorted trees. When a disk is heavily fragmented, the df algorithm used by default in ZFS will almost always find a number of small regions in its initial cursor-based search; it will usually only fall back to the size-sorted tree to find larger regions. If we increase the size of the cursor-based search slightly, and don't store segments that are smaller than a tunable size floor in the size-sorted tree, we can further cut memory usage down to below 20% of what the AVL trees store. This also results in further reductions in CPU time spent loading metaslabs. The 16KiB size floor was chosen because it results in substantial memory usage reduction while not usually resulting in situations where we can't find an appropriate chunk with the cursor and are forced to use an oversized chunk from the size-sorted tree. In addition, even if we do have to use an oversized chunk from the size-sorted tree, the chunk would be too small to use for ZIL allocations, so it isn't as big of a loss as it might otherwise be. And often, more small allocations will follow the initial one, and the cursor search will now find the remainder of the chunk we didn't use all of and use it for subsequent allocations. Practical testing has shown little or no change in fragmentation as a result of this change. If the size-sorted tree becomes empty while the offset sorted one still has entries, it will load all the entries from the offset sorted tree and disregard the size floor until it is unloaded again. This operation occurs rarely with the default setting, only on incredibly thoroughly fragmented pools. There are some other small changes to zdb to teach it to handle btrees, but nothing major. Reviewed-by: George Wilson <gwilson@delphix.com> Reviewed-by: Matt Ahrens <matt@delphix.com> Reviewed by: Sebastien Roy seb@delphix.com Reviewed-by: Igor Kozhukhov <igor@dilos.org> Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov> Signed-off-by: Paul Dagnelie <pcd@delphix.com> Closes #9181
2019-10-09 20:36:03 +03:00
range_tree_t *rt = queue->q_exts_by_addr;
ASSERT(MUTEX_HELD(&queue->q_vd->vdev_scan_io_queue_lock));
ASSERT(scn->scn_is_sorted);
/* handle tunable overrides */
if (scn->scn_checkpointing || scn->scn_clearing) {
if (zfs_scan_issue_strategy == 1) {
Reduce loaded range tree memory usage This patch implements a new tree structure for ZFS, and uses it to store range trees more efficiently. The new structure is approximately a B-tree, though there are some small differences from the usual characterizations. The tree has core nodes and leaf nodes; each contain data elements, which the elements in the core nodes acting as separators between its children. The difference between core and leaf nodes is that the core nodes have an array of children, while leaf nodes don't. Every node in the tree may be only partially full; in most cases, they are all at least 50% full (in terms of element count) except for the root node, which can be less full. Underfull nodes will steal from their neighbors or merge to remain full enough, while overfull nodes will split in two. The data elements are contained in tree-controlled buffers; they are copied into these on insertion, and overwritten on deletion. This means that the elements are not independently allocated, which reduces overhead, but also means they can't be shared between trees (and also that pointers to them are only valid until a side-effectful tree operation occurs). The overhead varies based on how dense the tree is, but is usually on the order of about 50% of the element size; the per-node overheads are very small, and so don't make a significant difference. The trees can accept arbitrary records; they accept a size and a comparator to allow them to be used for a variety of purposes. The new trees replace the AVL trees used in the range trees today. Currently, the range_seg_t structure contains three 8 byte integers of payload and two 24 byte avl_tree_node_ts to handle its storage in both an offset-sorted tree and a size-sorted tree (total size: 64 bytes). In the new model, the range seg structures are usually two 4 byte integers, but a separate one needs to exist for the size-sorted and offset-sorted tree. Between the raw size, the 50% overhead, and the double storage, the new btrees are expected to use 8*1.5*2 = 24 bytes per record, or 33.3% as much memory as the AVL trees (this is for the purposes of storing metaslab range trees; for other purposes, like scrubs, they use ~50% as much memory). We reduced the size of the payload in the range segments by teaching range trees about starting offsets and shifts; since metaslabs have a fixed starting offset, and they all operate in terms of disk sectors, we can store the ranges using 4-byte integers as long as the size of the metaslab divided by the sector size is less than 2^32. For 512-byte sectors, this is a 2^41 (or 2TB) metaslab, which with the default settings corresponds to a 256PB disk. 4k sector disks can handle metaslabs up to 2^46 bytes, or 2^63 byte disks. Since we do not anticipate disks of this size in the near future, there should be almost no cases where metaslabs need 64-byte integers to store their ranges. We do still have the capability to store 64-byte integer ranges to account for cases where we are storing per-vdev (or per-dnode) trees, which could reasonably go above the limits discussed. We also do not store fill information in the compact version of the node, since it is only used for sorted scrub. We also optimized the metaslab loading process in various other ways to offset some inefficiencies in the btree model. While individual operations (find, insert, remove_from) are faster for the btree than they are for the avl tree, remove usually requires a find operation, while in the AVL tree model the element itself suffices. Some clever changes actually caused an overall speedup in metaslab loading; we use approximately 40% less cpu to load metaslabs in our tests on Illumos. Another memory and performance optimization was achieved by changing what is stored in the size-sorted trees. When a disk is heavily fragmented, the df algorithm used by default in ZFS will almost always find a number of small regions in its initial cursor-based search; it will usually only fall back to the size-sorted tree to find larger regions. If we increase the size of the cursor-based search slightly, and don't store segments that are smaller than a tunable size floor in the size-sorted tree, we can further cut memory usage down to below 20% of what the AVL trees store. This also results in further reductions in CPU time spent loading metaslabs. The 16KiB size floor was chosen because it results in substantial memory usage reduction while not usually resulting in situations where we can't find an appropriate chunk with the cursor and are forced to use an oversized chunk from the size-sorted tree. In addition, even if we do have to use an oversized chunk from the size-sorted tree, the chunk would be too small to use for ZIL allocations, so it isn't as big of a loss as it might otherwise be. And often, more small allocations will follow the initial one, and the cursor search will now find the remainder of the chunk we didn't use all of and use it for subsequent allocations. Practical testing has shown little or no change in fragmentation as a result of this change. If the size-sorted tree becomes empty while the offset sorted one still has entries, it will load all the entries from the offset sorted tree and disregard the size floor until it is unloaded again. This operation occurs rarely with the default setting, only on incredibly thoroughly fragmented pools. There are some other small changes to zdb to teach it to handle btrees, but nothing major. Reviewed-by: George Wilson <gwilson@delphix.com> Reviewed-by: Matt Ahrens <matt@delphix.com> Reviewed by: Sebastien Roy seb@delphix.com Reviewed-by: Igor Kozhukhov <igor@dilos.org> Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov> Signed-off-by: Paul Dagnelie <pcd@delphix.com> Closes #9181
2019-10-09 20:36:03 +03:00
return (range_tree_first(rt));
} else if (zfs_scan_issue_strategy == 2) {
/*
* We need to get the original entry in the by_addr
* tree so we can modify it.
*/
Reduce loaded range tree memory usage This patch implements a new tree structure for ZFS, and uses it to store range trees more efficiently. The new structure is approximately a B-tree, though there are some small differences from the usual characterizations. The tree has core nodes and leaf nodes; each contain data elements, which the elements in the core nodes acting as separators between its children. The difference between core and leaf nodes is that the core nodes have an array of children, while leaf nodes don't. Every node in the tree may be only partially full; in most cases, they are all at least 50% full (in terms of element count) except for the root node, which can be less full. Underfull nodes will steal from their neighbors or merge to remain full enough, while overfull nodes will split in two. The data elements are contained in tree-controlled buffers; they are copied into these on insertion, and overwritten on deletion. This means that the elements are not independently allocated, which reduces overhead, but also means they can't be shared between trees (and also that pointers to them are only valid until a side-effectful tree operation occurs). The overhead varies based on how dense the tree is, but is usually on the order of about 50% of the element size; the per-node overheads are very small, and so don't make a significant difference. The trees can accept arbitrary records; they accept a size and a comparator to allow them to be used for a variety of purposes. The new trees replace the AVL trees used in the range trees today. Currently, the range_seg_t structure contains three 8 byte integers of payload and two 24 byte avl_tree_node_ts to handle its storage in both an offset-sorted tree and a size-sorted tree (total size: 64 bytes). In the new model, the range seg structures are usually two 4 byte integers, but a separate one needs to exist for the size-sorted and offset-sorted tree. Between the raw size, the 50% overhead, and the double storage, the new btrees are expected to use 8*1.5*2 = 24 bytes per record, or 33.3% as much memory as the AVL trees (this is for the purposes of storing metaslab range trees; for other purposes, like scrubs, they use ~50% as much memory). We reduced the size of the payload in the range segments by teaching range trees about starting offsets and shifts; since metaslabs have a fixed starting offset, and they all operate in terms of disk sectors, we can store the ranges using 4-byte integers as long as the size of the metaslab divided by the sector size is less than 2^32. For 512-byte sectors, this is a 2^41 (or 2TB) metaslab, which with the default settings corresponds to a 256PB disk. 4k sector disks can handle metaslabs up to 2^46 bytes, or 2^63 byte disks. Since we do not anticipate disks of this size in the near future, there should be almost no cases where metaslabs need 64-byte integers to store their ranges. We do still have the capability to store 64-byte integer ranges to account for cases where we are storing per-vdev (or per-dnode) trees, which could reasonably go above the limits discussed. We also do not store fill information in the compact version of the node, since it is only used for sorted scrub. We also optimized the metaslab loading process in various other ways to offset some inefficiencies in the btree model. While individual operations (find, insert, remove_from) are faster for the btree than they are for the avl tree, remove usually requires a find operation, while in the AVL tree model the element itself suffices. Some clever changes actually caused an overall speedup in metaslab loading; we use approximately 40% less cpu to load metaslabs in our tests on Illumos. Another memory and performance optimization was achieved by changing what is stored in the size-sorted trees. When a disk is heavily fragmented, the df algorithm used by default in ZFS will almost always find a number of small regions in its initial cursor-based search; it will usually only fall back to the size-sorted tree to find larger regions. If we increase the size of the cursor-based search slightly, and don't store segments that are smaller than a tunable size floor in the size-sorted tree, we can further cut memory usage down to below 20% of what the AVL trees store. This also results in further reductions in CPU time spent loading metaslabs. The 16KiB size floor was chosen because it results in substantial memory usage reduction while not usually resulting in situations where we can't find an appropriate chunk with the cursor and are forced to use an oversized chunk from the size-sorted tree. In addition, even if we do have to use an oversized chunk from the size-sorted tree, the chunk would be too small to use for ZIL allocations, so it isn't as big of a loss as it might otherwise be. And often, more small allocations will follow the initial one, and the cursor search will now find the remainder of the chunk we didn't use all of and use it for subsequent allocations. Practical testing has shown little or no change in fragmentation as a result of this change. If the size-sorted tree becomes empty while the offset sorted one still has entries, it will load all the entries from the offset sorted tree and disregard the size floor until it is unloaded again. This operation occurs rarely with the default setting, only on incredibly thoroughly fragmented pools. There are some other small changes to zdb to teach it to handle btrees, but nothing major. Reviewed-by: George Wilson <gwilson@delphix.com> Reviewed-by: Matt Ahrens <matt@delphix.com> Reviewed by: Sebastien Roy seb@delphix.com Reviewed-by: Igor Kozhukhov <igor@dilos.org> Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov> Signed-off-by: Paul Dagnelie <pcd@delphix.com> Closes #9181
2019-10-09 20:36:03 +03:00
range_seg_t *size_rs =
zfs_btree_first(&queue->q_exts_by_size, NULL);
if (size_rs == NULL)
return (NULL);
Reduce loaded range tree memory usage This patch implements a new tree structure for ZFS, and uses it to store range trees more efficiently. The new structure is approximately a B-tree, though there are some small differences from the usual characterizations. The tree has core nodes and leaf nodes; each contain data elements, which the elements in the core nodes acting as separators between its children. The difference between core and leaf nodes is that the core nodes have an array of children, while leaf nodes don't. Every node in the tree may be only partially full; in most cases, they are all at least 50% full (in terms of element count) except for the root node, which can be less full. Underfull nodes will steal from their neighbors or merge to remain full enough, while overfull nodes will split in two. The data elements are contained in tree-controlled buffers; they are copied into these on insertion, and overwritten on deletion. This means that the elements are not independently allocated, which reduces overhead, but also means they can't be shared between trees (and also that pointers to them are only valid until a side-effectful tree operation occurs). The overhead varies based on how dense the tree is, but is usually on the order of about 50% of the element size; the per-node overheads are very small, and so don't make a significant difference. The trees can accept arbitrary records; they accept a size and a comparator to allow them to be used for a variety of purposes. The new trees replace the AVL trees used in the range trees today. Currently, the range_seg_t structure contains three 8 byte integers of payload and two 24 byte avl_tree_node_ts to handle its storage in both an offset-sorted tree and a size-sorted tree (total size: 64 bytes). In the new model, the range seg structures are usually two 4 byte integers, but a separate one needs to exist for the size-sorted and offset-sorted tree. Between the raw size, the 50% overhead, and the double storage, the new btrees are expected to use 8*1.5*2 = 24 bytes per record, or 33.3% as much memory as the AVL trees (this is for the purposes of storing metaslab range trees; for other purposes, like scrubs, they use ~50% as much memory). We reduced the size of the payload in the range segments by teaching range trees about starting offsets and shifts; since metaslabs have a fixed starting offset, and they all operate in terms of disk sectors, we can store the ranges using 4-byte integers as long as the size of the metaslab divided by the sector size is less than 2^32. For 512-byte sectors, this is a 2^41 (or 2TB) metaslab, which with the default settings corresponds to a 256PB disk. 4k sector disks can handle metaslabs up to 2^46 bytes, or 2^63 byte disks. Since we do not anticipate disks of this size in the near future, there should be almost no cases where metaslabs need 64-byte integers to store their ranges. We do still have the capability to store 64-byte integer ranges to account for cases where we are storing per-vdev (or per-dnode) trees, which could reasonably go above the limits discussed. We also do not store fill information in the compact version of the node, since it is only used for sorted scrub. We also optimized the metaslab loading process in various other ways to offset some inefficiencies in the btree model. While individual operations (find, insert, remove_from) are faster for the btree than they are for the avl tree, remove usually requires a find operation, while in the AVL tree model the element itself suffices. Some clever changes actually caused an overall speedup in metaslab loading; we use approximately 40% less cpu to load metaslabs in our tests on Illumos. Another memory and performance optimization was achieved by changing what is stored in the size-sorted trees. When a disk is heavily fragmented, the df algorithm used by default in ZFS will almost always find a number of small regions in its initial cursor-based search; it will usually only fall back to the size-sorted tree to find larger regions. If we increase the size of the cursor-based search slightly, and don't store segments that are smaller than a tunable size floor in the size-sorted tree, we can further cut memory usage down to below 20% of what the AVL trees store. This also results in further reductions in CPU time spent loading metaslabs. The 16KiB size floor was chosen because it results in substantial memory usage reduction while not usually resulting in situations where we can't find an appropriate chunk with the cursor and are forced to use an oversized chunk from the size-sorted tree. In addition, even if we do have to use an oversized chunk from the size-sorted tree, the chunk would be too small to use for ZIL allocations, so it isn't as big of a loss as it might otherwise be. And often, more small allocations will follow the initial one, and the cursor search will now find the remainder of the chunk we didn't use all of and use it for subsequent allocations. Practical testing has shown little or no change in fragmentation as a result of this change. If the size-sorted tree becomes empty while the offset sorted one still has entries, it will load all the entries from the offset sorted tree and disregard the size floor until it is unloaded again. This operation occurs rarely with the default setting, only on incredibly thoroughly fragmented pools. There are some other small changes to zdb to teach it to handle btrees, but nothing major. Reviewed-by: George Wilson <gwilson@delphix.com> Reviewed-by: Matt Ahrens <matt@delphix.com> Reviewed by: Sebastien Roy seb@delphix.com Reviewed-by: Igor Kozhukhov <igor@dilos.org> Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov> Signed-off-by: Paul Dagnelie <pcd@delphix.com> Closes #9181
2019-10-09 20:36:03 +03:00
uint64_t start = rs_get_start(size_rs, rt);
uint64_t size = rs_get_end(size_rs, rt) - start;
range_seg_t *addr_rs = range_tree_find(rt, start,
size);
ASSERT3P(addr_rs, !=, NULL);
ASSERT3U(rs_get_start(size_rs, rt), ==,
rs_get_start(addr_rs, rt));
ASSERT3U(rs_get_end(size_rs, rt), ==,
rs_get_end(addr_rs, rt));
Reduce loaded range tree memory usage This patch implements a new tree structure for ZFS, and uses it to store range trees more efficiently. The new structure is approximately a B-tree, though there are some small differences from the usual characterizations. The tree has core nodes and leaf nodes; each contain data elements, which the elements in the core nodes acting as separators between its children. The difference between core and leaf nodes is that the core nodes have an array of children, while leaf nodes don't. Every node in the tree may be only partially full; in most cases, they are all at least 50% full (in terms of element count) except for the root node, which can be less full. Underfull nodes will steal from their neighbors or merge to remain full enough, while overfull nodes will split in two. The data elements are contained in tree-controlled buffers; they are copied into these on insertion, and overwritten on deletion. This means that the elements are not independently allocated, which reduces overhead, but also means they can't be shared between trees (and also that pointers to them are only valid until a side-effectful tree operation occurs). The overhead varies based on how dense the tree is, but is usually on the order of about 50% of the element size; the per-node overheads are very small, and so don't make a significant difference. The trees can accept arbitrary records; they accept a size and a comparator to allow them to be used for a variety of purposes. The new trees replace the AVL trees used in the range trees today. Currently, the range_seg_t structure contains three 8 byte integers of payload and two 24 byte avl_tree_node_ts to handle its storage in both an offset-sorted tree and a size-sorted tree (total size: 64 bytes). In the new model, the range seg structures are usually two 4 byte integers, but a separate one needs to exist for the size-sorted and offset-sorted tree. Between the raw size, the 50% overhead, and the double storage, the new btrees are expected to use 8*1.5*2 = 24 bytes per record, or 33.3% as much memory as the AVL trees (this is for the purposes of storing metaslab range trees; for other purposes, like scrubs, they use ~50% as much memory). We reduced the size of the payload in the range segments by teaching range trees about starting offsets and shifts; since metaslabs have a fixed starting offset, and they all operate in terms of disk sectors, we can store the ranges using 4-byte integers as long as the size of the metaslab divided by the sector size is less than 2^32. For 512-byte sectors, this is a 2^41 (or 2TB) metaslab, which with the default settings corresponds to a 256PB disk. 4k sector disks can handle metaslabs up to 2^46 bytes, or 2^63 byte disks. Since we do not anticipate disks of this size in the near future, there should be almost no cases where metaslabs need 64-byte integers to store their ranges. We do still have the capability to store 64-byte integer ranges to account for cases where we are storing per-vdev (or per-dnode) trees, which could reasonably go above the limits discussed. We also do not store fill information in the compact version of the node, since it is only used for sorted scrub. We also optimized the metaslab loading process in various other ways to offset some inefficiencies in the btree model. While individual operations (find, insert, remove_from) are faster for the btree than they are for the avl tree, remove usually requires a find operation, while in the AVL tree model the element itself suffices. Some clever changes actually caused an overall speedup in metaslab loading; we use approximately 40% less cpu to load metaslabs in our tests on Illumos. Another memory and performance optimization was achieved by changing what is stored in the size-sorted trees. When a disk is heavily fragmented, the df algorithm used by default in ZFS will almost always find a number of small regions in its initial cursor-based search; it will usually only fall back to the size-sorted tree to find larger regions. If we increase the size of the cursor-based search slightly, and don't store segments that are smaller than a tunable size floor in the size-sorted tree, we can further cut memory usage down to below 20% of what the AVL trees store. This also results in further reductions in CPU time spent loading metaslabs. The 16KiB size floor was chosen because it results in substantial memory usage reduction while not usually resulting in situations where we can't find an appropriate chunk with the cursor and are forced to use an oversized chunk from the size-sorted tree. In addition, even if we do have to use an oversized chunk from the size-sorted tree, the chunk would be too small to use for ZIL allocations, so it isn't as big of a loss as it might otherwise be. And often, more small allocations will follow the initial one, and the cursor search will now find the remainder of the chunk we didn't use all of and use it for subsequent allocations. Practical testing has shown little or no change in fragmentation as a result of this change. If the size-sorted tree becomes empty while the offset sorted one still has entries, it will load all the entries from the offset sorted tree and disregard the size floor until it is unloaded again. This operation occurs rarely with the default setting, only on incredibly thoroughly fragmented pools. There are some other small changes to zdb to teach it to handle btrees, but nothing major. Reviewed-by: George Wilson <gwilson@delphix.com> Reviewed-by: Matt Ahrens <matt@delphix.com> Reviewed by: Sebastien Roy seb@delphix.com Reviewed-by: Igor Kozhukhov <igor@dilos.org> Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov> Signed-off-by: Paul Dagnelie <pcd@delphix.com> Closes #9181
2019-10-09 20:36:03 +03:00
return (addr_rs);
}
}
/*
* During normal clearing, we want to issue our largest segments
* first, keeping IO as sequential as possible, and leaving the
* smaller extents for later with the hope that they might eventually
* grow to larger sequential segments. However, when the scan is
* checkpointing, no new extents will be added to the sorting queue,
* so the way we are sorted now is as good as it will ever get.
* In this case, we instead switch to issuing extents in LBA order.
*/
if (scn->scn_checkpointing) {
Reduce loaded range tree memory usage This patch implements a new tree structure for ZFS, and uses it to store range trees more efficiently. The new structure is approximately a B-tree, though there are some small differences from the usual characterizations. The tree has core nodes and leaf nodes; each contain data elements, which the elements in the core nodes acting as separators between its children. The difference between core and leaf nodes is that the core nodes have an array of children, while leaf nodes don't. Every node in the tree may be only partially full; in most cases, they are all at least 50% full (in terms of element count) except for the root node, which can be less full. Underfull nodes will steal from their neighbors or merge to remain full enough, while overfull nodes will split in two. The data elements are contained in tree-controlled buffers; they are copied into these on insertion, and overwritten on deletion. This means that the elements are not independently allocated, which reduces overhead, but also means they can't be shared between trees (and also that pointers to them are only valid until a side-effectful tree operation occurs). The overhead varies based on how dense the tree is, but is usually on the order of about 50% of the element size; the per-node overheads are very small, and so don't make a significant difference. The trees can accept arbitrary records; they accept a size and a comparator to allow them to be used for a variety of purposes. The new trees replace the AVL trees used in the range trees today. Currently, the range_seg_t structure contains three 8 byte integers of payload and two 24 byte avl_tree_node_ts to handle its storage in both an offset-sorted tree and a size-sorted tree (total size: 64 bytes). In the new model, the range seg structures are usually two 4 byte integers, but a separate one needs to exist for the size-sorted and offset-sorted tree. Between the raw size, the 50% overhead, and the double storage, the new btrees are expected to use 8*1.5*2 = 24 bytes per record, or 33.3% as much memory as the AVL trees (this is for the purposes of storing metaslab range trees; for other purposes, like scrubs, they use ~50% as much memory). We reduced the size of the payload in the range segments by teaching range trees about starting offsets and shifts; since metaslabs have a fixed starting offset, and they all operate in terms of disk sectors, we can store the ranges using 4-byte integers as long as the size of the metaslab divided by the sector size is less than 2^32. For 512-byte sectors, this is a 2^41 (or 2TB) metaslab, which with the default settings corresponds to a 256PB disk. 4k sector disks can handle metaslabs up to 2^46 bytes, or 2^63 byte disks. Since we do not anticipate disks of this size in the near future, there should be almost no cases where metaslabs need 64-byte integers to store their ranges. We do still have the capability to store 64-byte integer ranges to account for cases where we are storing per-vdev (or per-dnode) trees, which could reasonably go above the limits discussed. We also do not store fill information in the compact version of the node, since it is only used for sorted scrub. We also optimized the metaslab loading process in various other ways to offset some inefficiencies in the btree model. While individual operations (find, insert, remove_from) are faster for the btree than they are for the avl tree, remove usually requires a find operation, while in the AVL tree model the element itself suffices. Some clever changes actually caused an overall speedup in metaslab loading; we use approximately 40% less cpu to load metaslabs in our tests on Illumos. Another memory and performance optimization was achieved by changing what is stored in the size-sorted trees. When a disk is heavily fragmented, the df algorithm used by default in ZFS will almost always find a number of small regions in its initial cursor-based search; it will usually only fall back to the size-sorted tree to find larger regions. If we increase the size of the cursor-based search slightly, and don't store segments that are smaller than a tunable size floor in the size-sorted tree, we can further cut memory usage down to below 20% of what the AVL trees store. This also results in further reductions in CPU time spent loading metaslabs. The 16KiB size floor was chosen because it results in substantial memory usage reduction while not usually resulting in situations where we can't find an appropriate chunk with the cursor and are forced to use an oversized chunk from the size-sorted tree. In addition, even if we do have to use an oversized chunk from the size-sorted tree, the chunk would be too small to use for ZIL allocations, so it isn't as big of a loss as it might otherwise be. And often, more small allocations will follow the initial one, and the cursor search will now find the remainder of the chunk we didn't use all of and use it for subsequent allocations. Practical testing has shown little or no change in fragmentation as a result of this change. If the size-sorted tree becomes empty while the offset sorted one still has entries, it will load all the entries from the offset sorted tree and disregard the size floor until it is unloaded again. This operation occurs rarely with the default setting, only on incredibly thoroughly fragmented pools. There are some other small changes to zdb to teach it to handle btrees, but nothing major. Reviewed-by: George Wilson <gwilson@delphix.com> Reviewed-by: Matt Ahrens <matt@delphix.com> Reviewed by: Sebastien Roy seb@delphix.com Reviewed-by: Igor Kozhukhov <igor@dilos.org> Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov> Signed-off-by: Paul Dagnelie <pcd@delphix.com> Closes #9181
2019-10-09 20:36:03 +03:00
return (range_tree_first(rt));
} else if (scn->scn_clearing) {
/*
* We need to get the original entry in the by_addr
* tree so we can modify it.
*/
Reduce loaded range tree memory usage This patch implements a new tree structure for ZFS, and uses it to store range trees more efficiently. The new structure is approximately a B-tree, though there are some small differences from the usual characterizations. The tree has core nodes and leaf nodes; each contain data elements, which the elements in the core nodes acting as separators between its children. The difference between core and leaf nodes is that the core nodes have an array of children, while leaf nodes don't. Every node in the tree may be only partially full; in most cases, they are all at least 50% full (in terms of element count) except for the root node, which can be less full. Underfull nodes will steal from their neighbors or merge to remain full enough, while overfull nodes will split in two. The data elements are contained in tree-controlled buffers; they are copied into these on insertion, and overwritten on deletion. This means that the elements are not independently allocated, which reduces overhead, but also means they can't be shared between trees (and also that pointers to them are only valid until a side-effectful tree operation occurs). The overhead varies based on how dense the tree is, but is usually on the order of about 50% of the element size; the per-node overheads are very small, and so don't make a significant difference. The trees can accept arbitrary records; they accept a size and a comparator to allow them to be used for a variety of purposes. The new trees replace the AVL trees used in the range trees today. Currently, the range_seg_t structure contains three 8 byte integers of payload and two 24 byte avl_tree_node_ts to handle its storage in both an offset-sorted tree and a size-sorted tree (total size: 64 bytes). In the new model, the range seg structures are usually two 4 byte integers, but a separate one needs to exist for the size-sorted and offset-sorted tree. Between the raw size, the 50% overhead, and the double storage, the new btrees are expected to use 8*1.5*2 = 24 bytes per record, or 33.3% as much memory as the AVL trees (this is for the purposes of storing metaslab range trees; for other purposes, like scrubs, they use ~50% as much memory). We reduced the size of the payload in the range segments by teaching range trees about starting offsets and shifts; since metaslabs have a fixed starting offset, and they all operate in terms of disk sectors, we can store the ranges using 4-byte integers as long as the size of the metaslab divided by the sector size is less than 2^32. For 512-byte sectors, this is a 2^41 (or 2TB) metaslab, which with the default settings corresponds to a 256PB disk. 4k sector disks can handle metaslabs up to 2^46 bytes, or 2^63 byte disks. Since we do not anticipate disks of this size in the near future, there should be almost no cases where metaslabs need 64-byte integers to store their ranges. We do still have the capability to store 64-byte integer ranges to account for cases where we are storing per-vdev (or per-dnode) trees, which could reasonably go above the limits discussed. We also do not store fill information in the compact version of the node, since it is only used for sorted scrub. We also optimized the metaslab loading process in various other ways to offset some inefficiencies in the btree model. While individual operations (find, insert, remove_from) are faster for the btree than they are for the avl tree, remove usually requires a find operation, while in the AVL tree model the element itself suffices. Some clever changes actually caused an overall speedup in metaslab loading; we use approximately 40% less cpu to load metaslabs in our tests on Illumos. Another memory and performance optimization was achieved by changing what is stored in the size-sorted trees. When a disk is heavily fragmented, the df algorithm used by default in ZFS will almost always find a number of small regions in its initial cursor-based search; it will usually only fall back to the size-sorted tree to find larger regions. If we increase the size of the cursor-based search slightly, and don't store segments that are smaller than a tunable size floor in the size-sorted tree, we can further cut memory usage down to below 20% of what the AVL trees store. This also results in further reductions in CPU time spent loading metaslabs. The 16KiB size floor was chosen because it results in substantial memory usage reduction while not usually resulting in situations where we can't find an appropriate chunk with the cursor and are forced to use an oversized chunk from the size-sorted tree. In addition, even if we do have to use an oversized chunk from the size-sorted tree, the chunk would be too small to use for ZIL allocations, so it isn't as big of a loss as it might otherwise be. And often, more small allocations will follow the initial one, and the cursor search will now find the remainder of the chunk we didn't use all of and use it for subsequent allocations. Practical testing has shown little or no change in fragmentation as a result of this change. If the size-sorted tree becomes empty while the offset sorted one still has entries, it will load all the entries from the offset sorted tree and disregard the size floor until it is unloaded again. This operation occurs rarely with the default setting, only on incredibly thoroughly fragmented pools. There are some other small changes to zdb to teach it to handle btrees, but nothing major. Reviewed-by: George Wilson <gwilson@delphix.com> Reviewed-by: Matt Ahrens <matt@delphix.com> Reviewed by: Sebastien Roy seb@delphix.com Reviewed-by: Igor Kozhukhov <igor@dilos.org> Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov> Signed-off-by: Paul Dagnelie <pcd@delphix.com> Closes #9181
2019-10-09 20:36:03 +03:00
range_seg_t *size_rs = zfs_btree_first(&queue->q_exts_by_size,
NULL);
if (size_rs == NULL)
return (NULL);
Reduce loaded range tree memory usage This patch implements a new tree structure for ZFS, and uses it to store range trees more efficiently. The new structure is approximately a B-tree, though there are some small differences from the usual characterizations. The tree has core nodes and leaf nodes; each contain data elements, which the elements in the core nodes acting as separators between its children. The difference between core and leaf nodes is that the core nodes have an array of children, while leaf nodes don't. Every node in the tree may be only partially full; in most cases, they are all at least 50% full (in terms of element count) except for the root node, which can be less full. Underfull nodes will steal from their neighbors or merge to remain full enough, while overfull nodes will split in two. The data elements are contained in tree-controlled buffers; they are copied into these on insertion, and overwritten on deletion. This means that the elements are not independently allocated, which reduces overhead, but also means they can't be shared between trees (and also that pointers to them are only valid until a side-effectful tree operation occurs). The overhead varies based on how dense the tree is, but is usually on the order of about 50% of the element size; the per-node overheads are very small, and so don't make a significant difference. The trees can accept arbitrary records; they accept a size and a comparator to allow them to be used for a variety of purposes. The new trees replace the AVL trees used in the range trees today. Currently, the range_seg_t structure contains three 8 byte integers of payload and two 24 byte avl_tree_node_ts to handle its storage in both an offset-sorted tree and a size-sorted tree (total size: 64 bytes). In the new model, the range seg structures are usually two 4 byte integers, but a separate one needs to exist for the size-sorted and offset-sorted tree. Between the raw size, the 50% overhead, and the double storage, the new btrees are expected to use 8*1.5*2 = 24 bytes per record, or 33.3% as much memory as the AVL trees (this is for the purposes of storing metaslab range trees; for other purposes, like scrubs, they use ~50% as much memory). We reduced the size of the payload in the range segments by teaching range trees about starting offsets and shifts; since metaslabs have a fixed starting offset, and they all operate in terms of disk sectors, we can store the ranges using 4-byte integers as long as the size of the metaslab divided by the sector size is less than 2^32. For 512-byte sectors, this is a 2^41 (or 2TB) metaslab, which with the default settings corresponds to a 256PB disk. 4k sector disks can handle metaslabs up to 2^46 bytes, or 2^63 byte disks. Since we do not anticipate disks of this size in the near future, there should be almost no cases where metaslabs need 64-byte integers to store their ranges. We do still have the capability to store 64-byte integer ranges to account for cases where we are storing per-vdev (or per-dnode) trees, which could reasonably go above the limits discussed. We also do not store fill information in the compact version of the node, since it is only used for sorted scrub. We also optimized the metaslab loading process in various other ways to offset some inefficiencies in the btree model. While individual operations (find, insert, remove_from) are faster for the btree than they are for the avl tree, remove usually requires a find operation, while in the AVL tree model the element itself suffices. Some clever changes actually caused an overall speedup in metaslab loading; we use approximately 40% less cpu to load metaslabs in our tests on Illumos. Another memory and performance optimization was achieved by changing what is stored in the size-sorted trees. When a disk is heavily fragmented, the df algorithm used by default in ZFS will almost always find a number of small regions in its initial cursor-based search; it will usually only fall back to the size-sorted tree to find larger regions. If we increase the size of the cursor-based search slightly, and don't store segments that are smaller than a tunable size floor in the size-sorted tree, we can further cut memory usage down to below 20% of what the AVL trees store. This also results in further reductions in CPU time spent loading metaslabs. The 16KiB size floor was chosen because it results in substantial memory usage reduction while not usually resulting in situations where we can't find an appropriate chunk with the cursor and are forced to use an oversized chunk from the size-sorted tree. In addition, even if we do have to use an oversized chunk from the size-sorted tree, the chunk would be too small to use for ZIL allocations, so it isn't as big of a loss as it might otherwise be. And often, more small allocations will follow the initial one, and the cursor search will now find the remainder of the chunk we didn't use all of and use it for subsequent allocations. Practical testing has shown little or no change in fragmentation as a result of this change. If the size-sorted tree becomes empty while the offset sorted one still has entries, it will load all the entries from the offset sorted tree and disregard the size floor until it is unloaded again. This operation occurs rarely with the default setting, only on incredibly thoroughly fragmented pools. There are some other small changes to zdb to teach it to handle btrees, but nothing major. Reviewed-by: George Wilson <gwilson@delphix.com> Reviewed-by: Matt Ahrens <matt@delphix.com> Reviewed by: Sebastien Roy seb@delphix.com Reviewed-by: Igor Kozhukhov <igor@dilos.org> Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov> Signed-off-by: Paul Dagnelie <pcd@delphix.com> Closes #9181
2019-10-09 20:36:03 +03:00
uint64_t start = rs_get_start(size_rs, rt);
uint64_t size = rs_get_end(size_rs, rt) - start;
range_seg_t *addr_rs = range_tree_find(rt, start, size);
ASSERT3P(addr_rs, !=, NULL);
ASSERT3U(rs_get_start(size_rs, rt), ==, rs_get_start(addr_rs,
rt));
ASSERT3U(rs_get_end(size_rs, rt), ==, rs_get_end(addr_rs, rt));
Reduce loaded range tree memory usage This patch implements a new tree structure for ZFS, and uses it to store range trees more efficiently. The new structure is approximately a B-tree, though there are some small differences from the usual characterizations. The tree has core nodes and leaf nodes; each contain data elements, which the elements in the core nodes acting as separators between its children. The difference between core and leaf nodes is that the core nodes have an array of children, while leaf nodes don't. Every node in the tree may be only partially full; in most cases, they are all at least 50% full (in terms of element count) except for the root node, which can be less full. Underfull nodes will steal from their neighbors or merge to remain full enough, while overfull nodes will split in two. The data elements are contained in tree-controlled buffers; they are copied into these on insertion, and overwritten on deletion. This means that the elements are not independently allocated, which reduces overhead, but also means they can't be shared between trees (and also that pointers to them are only valid until a side-effectful tree operation occurs). The overhead varies based on how dense the tree is, but is usually on the order of about 50% of the element size; the per-node overheads are very small, and so don't make a significant difference. The trees can accept arbitrary records; they accept a size and a comparator to allow them to be used for a variety of purposes. The new trees replace the AVL trees used in the range trees today. Currently, the range_seg_t structure contains three 8 byte integers of payload and two 24 byte avl_tree_node_ts to handle its storage in both an offset-sorted tree and a size-sorted tree (total size: 64 bytes). In the new model, the range seg structures are usually two 4 byte integers, but a separate one needs to exist for the size-sorted and offset-sorted tree. Between the raw size, the 50% overhead, and the double storage, the new btrees are expected to use 8*1.5*2 = 24 bytes per record, or 33.3% as much memory as the AVL trees (this is for the purposes of storing metaslab range trees; for other purposes, like scrubs, they use ~50% as much memory). We reduced the size of the payload in the range segments by teaching range trees about starting offsets and shifts; since metaslabs have a fixed starting offset, and they all operate in terms of disk sectors, we can store the ranges using 4-byte integers as long as the size of the metaslab divided by the sector size is less than 2^32. For 512-byte sectors, this is a 2^41 (or 2TB) metaslab, which with the default settings corresponds to a 256PB disk. 4k sector disks can handle metaslabs up to 2^46 bytes, or 2^63 byte disks. Since we do not anticipate disks of this size in the near future, there should be almost no cases where metaslabs need 64-byte integers to store their ranges. We do still have the capability to store 64-byte integer ranges to account for cases where we are storing per-vdev (or per-dnode) trees, which could reasonably go above the limits discussed. We also do not store fill information in the compact version of the node, since it is only used for sorted scrub. We also optimized the metaslab loading process in various other ways to offset some inefficiencies in the btree model. While individual operations (find, insert, remove_from) are faster for the btree than they are for the avl tree, remove usually requires a find operation, while in the AVL tree model the element itself suffices. Some clever changes actually caused an overall speedup in metaslab loading; we use approximately 40% less cpu to load metaslabs in our tests on Illumos. Another memory and performance optimization was achieved by changing what is stored in the size-sorted trees. When a disk is heavily fragmented, the df algorithm used by default in ZFS will almost always find a number of small regions in its initial cursor-based search; it will usually only fall back to the size-sorted tree to find larger regions. If we increase the size of the cursor-based search slightly, and don't store segments that are smaller than a tunable size floor in the size-sorted tree, we can further cut memory usage down to below 20% of what the AVL trees store. This also results in further reductions in CPU time spent loading metaslabs. The 16KiB size floor was chosen because it results in substantial memory usage reduction while not usually resulting in situations where we can't find an appropriate chunk with the cursor and are forced to use an oversized chunk from the size-sorted tree. In addition, even if we do have to use an oversized chunk from the size-sorted tree, the chunk would be too small to use for ZIL allocations, so it isn't as big of a loss as it might otherwise be. And often, more small allocations will follow the initial one, and the cursor search will now find the remainder of the chunk we didn't use all of and use it for subsequent allocations. Practical testing has shown little or no change in fragmentation as a result of this change. If the size-sorted tree becomes empty while the offset sorted one still has entries, it will load all the entries from the offset sorted tree and disregard the size floor until it is unloaded again. This operation occurs rarely with the default setting, only on incredibly thoroughly fragmented pools. There are some other small changes to zdb to teach it to handle btrees, but nothing major. Reviewed-by: George Wilson <gwilson@delphix.com> Reviewed-by: Matt Ahrens <matt@delphix.com> Reviewed by: Sebastien Roy seb@delphix.com Reviewed-by: Igor Kozhukhov <igor@dilos.org> Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov> Signed-off-by: Paul Dagnelie <pcd@delphix.com> Closes #9181
2019-10-09 20:36:03 +03:00
return (addr_rs);
} else {
return (NULL);
}
}
static void
scan_io_queues_run_one(void *arg)
{
dsl_scan_io_queue_t *queue = arg;
kmutex_t *q_lock = &queue->q_vd->vdev_scan_io_queue_lock;
boolean_t suspended = B_FALSE;
range_seg_t *rs = NULL;
scan_io_t *sio = NULL;
list_t sio_list;
uint64_t bytes_per_leaf = zfs_scan_vdev_limit;
uint64_t nr_leaves = dsl_scan_count_leaves(queue->q_vd);
ASSERT(queue->q_scn->scn_is_sorted);
list_create(&sio_list, sizeof (scan_io_t),
offsetof(scan_io_t, sio_nodes.sio_list_node));
mutex_enter(q_lock);
/* calculate maximum in-flight bytes for this txg (min 1MB) */
queue->q_maxinflight_bytes =
MAX(nr_leaves * bytes_per_leaf, 1ULL << 20);
/* reset per-queue scan statistics for this txg */
queue->q_total_seg_size_this_txg = 0;
queue->q_segs_this_txg = 0;
queue->q_total_zio_size_this_txg = 0;
queue->q_zios_this_txg = 0;
/* loop until we run out of time or sios */
while ((rs = scan_io_queue_fetch_ext(queue)) != NULL) {
uint64_t seg_start = 0, seg_end = 0;
boolean_t more_left = B_TRUE;
ASSERT(list_is_empty(&sio_list));
/* loop while we still have sios left to process in this rs */
while (more_left) {
scan_io_t *first_sio, *last_sio;
/*
* We have selected which extent needs to be
* processed next. Gather up the corresponding sios.
*/
more_left = scan_io_queue_gather(queue, rs, &sio_list);
ASSERT(!list_is_empty(&sio_list));
first_sio = list_head(&sio_list);
last_sio = list_tail(&sio_list);
seg_end = SIO_GET_END_OFFSET(last_sio);
if (seg_start == 0)
seg_start = SIO_GET_OFFSET(first_sio);
/*
* Issuing sios can take a long time so drop the
* queue lock. The sio queue won't be updated by
* other threads since we're in syncing context so
* we can be sure that our trees will remain exactly
* as we left them.
*/
mutex_exit(q_lock);
suspended = scan_io_queue_issue(queue, &sio_list);
mutex_enter(q_lock);
if (suspended)
break;
}
/* update statistics for debugging purposes */
scan_io_queues_update_seg_stats(queue, seg_start, seg_end);
if (suspended)
break;
}
/*
* If we were suspended in the middle of processing,
* requeue any unfinished sios and exit.
*/
while ((sio = list_head(&sio_list)) != NULL) {
list_remove(&sio_list, sio);
scan_io_queue_insert_impl(queue, sio);
}
mutex_exit(q_lock);
list_destroy(&sio_list);
}
/*
* Performs an emptying run on all scan queues in the pool. This just
* punches out one thread per top-level vdev, each of which processes
* only that vdev's scan queue. We can parallelize the I/O here because
* we know that each queue's I/Os only affect its own top-level vdev.
*
* This function waits for the queue runs to complete, and must be
* called from dsl_scan_sync (or in general, syncing context).
*/
static void
scan_io_queues_run(dsl_scan_t *scn)
{
spa_t *spa = scn->scn_dp->dp_spa;
ASSERT(scn->scn_is_sorted);
ASSERT(spa_config_held(spa, SCL_CONFIG, RW_READER));
if (scn->scn_bytes_pending == 0)
return;
if (scn->scn_taskq == NULL) {
int nthreads = spa->spa_root_vdev->vdev_children;
/*
* We need to make this taskq *always* execute as many
* threads in parallel as we have top-level vdevs and no
* less, otherwise strange serialization of the calls to
* scan_io_queues_run_one can occur during spa_sync runs
* and that significantly impacts performance.
*/
scn->scn_taskq = taskq_create("dsl_scan_iss", nthreads,
minclsyspri, nthreads, nthreads, TASKQ_PREPOPULATE);
}
for (uint64_t i = 0; i < spa->spa_root_vdev->vdev_children; i++) {
vdev_t *vd = spa->spa_root_vdev->vdev_child[i];
mutex_enter(&vd->vdev_scan_io_queue_lock);
if (vd->vdev_scan_io_queue != NULL) {
VERIFY(taskq_dispatch(scn->scn_taskq,
scan_io_queues_run_one, vd->vdev_scan_io_queue,
TQ_SLEEP) != TASKQID_INVALID);
}
mutex_exit(&vd->vdev_scan_io_queue_lock);
}
/*
* Wait for the queues to finish issuing their IOs for this run
* before we return. There may still be IOs in flight at this
* point.
*/
taskq_wait(scn->scn_taskq);
}
static boolean_t
OpenZFS 7614, 9064 - zfs device evacuation/removal OpenZFS 7614 - zfs device evacuation/removal OpenZFS 9064 - remove_mirror should wait for device removal to complete This project allows top-level vdevs to be removed from the storage pool with "zpool remove", reducing the total amount of storage in the pool. This operation copies all allocated regions of the device to be removed onto other devices, recording the mapping from old to new location. After the removal is complete, read and free operations to the removed (now "indirect") vdev must be remapped and performed at the new location on disk. The indirect mapping table is kept in memory whenever the pool is loaded, so there is minimal performance overhead when doing operations on the indirect vdev. The size of the in-memory mapping table will be reduced when its entries become "obsolete" because they are no longer used by any block pointers in the pool. An entry becomes obsolete when all the blocks that use it are freed. An entry can also become obsolete when all the snapshots that reference it are deleted, and the block pointers that reference it have been "remapped" in all filesystems/zvols (and clones). Whenever an indirect block is written, all the block pointers in it will be "remapped" to their new (concrete) locations if possible. This process can be accelerated by using the "zfs remap" command to proactively rewrite all indirect blocks that reference indirect (removed) vdevs. Note that when a device is removed, we do not verify the checksum of the data that is copied. This makes the process much faster, but if it were used on redundant vdevs (i.e. mirror or raidz vdevs), it would be possible to copy the wrong data, when we have the correct data on e.g. the other side of the mirror. At the moment, only mirrors and simple top-level vdevs can be removed and no removal is allowed if any of the top-level vdevs are raidz. Porting Notes: * Avoid zero-sized kmem_alloc() in vdev_compact_children(). The device evacuation code adds a dependency that vdev_compact_children() be able to properly empty the vdev_child array by setting it to NULL and zeroing vdev_children. Under Linux, kmem_alloc() and related functions return a sentinel pointer rather than NULL for zero-sized allocations. * Remove comment regarding "mpt" driver where zfs_remove_max_segment is initialized to SPA_MAXBLOCKSIZE. Change zfs_condense_indirect_commit_entry_delay_ticks to zfs_condense_indirect_commit_entry_delay_ms for consistency with most other tunables in which delays are specified in ms. * ZTS changes: Use set_tunable rather than mdb Use zpool sync as appropriate Use sync_pool instead of sync Kill jobs during test_removal_with_operation to allow unmount/export Don't add non-disk names such as "mirror" or "raidz" to $DISKS Use $TEST_BASE_DIR instead of /tmp Increase HZ from 100 to 1000 which is more common on Linux removal_multiple_indirection.ksh Reduce iterations in order to not time out on the code coverage builders. removal_resume_export: Functionally, the test case is correct but there exists a race where the kernel thread hasn't been fully started yet and is not visible. Wait for up to 1 second for the removal thread to be started before giving up on it. Also, increase the amount of data copied in order that the removal not finish before the export has a chance to fail. * MMP compatibility, the concept of concrete versus non-concrete devices has slightly changed the semantics of vdev_writeable(). Update mmp_random_leaf_impl() accordingly. * Updated dbuf_remap() to handle the org.zfsonlinux:large_dnode pool feature which is not supported by OpenZFS. * Added support for new vdev removal tracepoints. * Test cases removal_with_zdb and removal_condense_export have been intentionally disabled. When run manually they pass as intended, but when running in the automated test environment they produce unreliable results on the latest Fedora release. They may work better once the upstream pool import refectoring is merged into ZoL at which point they will be re-enabled. Authored by: Matthew Ahrens <mahrens@delphix.com> Reviewed-by: Alex Reece <alex@delphix.com> Reviewed-by: George Wilson <george.wilson@delphix.com> Reviewed-by: John Kennedy <john.kennedy@delphix.com> Reviewed-by: Prakash Surya <prakash.surya@delphix.com> Reviewed by: Richard Laager <rlaager@wiktel.com> Reviewed by: Tim Chase <tim@chase2k.com> Reviewed by: Brian Behlendorf <behlendorf1@llnl.gov> Approved by: Garrett D'Amore <garrett@damore.org> Ported-by: Tim Chase <tim@chase2k.com> Signed-off-by: Tim Chase <tim@chase2k.com> OpenZFS-issue: https://www.illumos.org/issues/7614 OpenZFS-commit: https://github.com/openzfs/openzfs/commit/f539f1eb Closes #6900
2016-09-22 19:30:13 +03:00
dsl_scan_async_block_should_pause(dsl_scan_t *scn)
{
uint64_t elapsed_nanosecs;
if (zfs_recover)
return (B_FALSE);
if (zfs_async_block_max_blocks != 0 &&
scn->scn_visited_this_txg >= zfs_async_block_max_blocks) {
return (B_TRUE);
}
if (zfs_max_async_dedup_frees != 0 &&
scn->scn_dedup_frees_this_txg >= zfs_max_async_dedup_frees) {
return (B_TRUE);
}
elapsed_nanosecs = gethrtime() - scn->scn_sync_start_time;
return (elapsed_nanosecs / NANOSEC > zfs_txg_timeout ||
OpenZFS 7614, 9064 - zfs device evacuation/removal OpenZFS 7614 - zfs device evacuation/removal OpenZFS 9064 - remove_mirror should wait for device removal to complete This project allows top-level vdevs to be removed from the storage pool with "zpool remove", reducing the total amount of storage in the pool. This operation copies all allocated regions of the device to be removed onto other devices, recording the mapping from old to new location. After the removal is complete, read and free operations to the removed (now "indirect") vdev must be remapped and performed at the new location on disk. The indirect mapping table is kept in memory whenever the pool is loaded, so there is minimal performance overhead when doing operations on the indirect vdev. The size of the in-memory mapping table will be reduced when its entries become "obsolete" because they are no longer used by any block pointers in the pool. An entry becomes obsolete when all the blocks that use it are freed. An entry can also become obsolete when all the snapshots that reference it are deleted, and the block pointers that reference it have been "remapped" in all filesystems/zvols (and clones). Whenever an indirect block is written, all the block pointers in it will be "remapped" to their new (concrete) locations if possible. This process can be accelerated by using the "zfs remap" command to proactively rewrite all indirect blocks that reference indirect (removed) vdevs. Note that when a device is removed, we do not verify the checksum of the data that is copied. This makes the process much faster, but if it were used on redundant vdevs (i.e. mirror or raidz vdevs), it would be possible to copy the wrong data, when we have the correct data on e.g. the other side of the mirror. At the moment, only mirrors and simple top-level vdevs can be removed and no removal is allowed if any of the top-level vdevs are raidz. Porting Notes: * Avoid zero-sized kmem_alloc() in vdev_compact_children(). The device evacuation code adds a dependency that vdev_compact_children() be able to properly empty the vdev_child array by setting it to NULL and zeroing vdev_children. Under Linux, kmem_alloc() and related functions return a sentinel pointer rather than NULL for zero-sized allocations. * Remove comment regarding "mpt" driver where zfs_remove_max_segment is initialized to SPA_MAXBLOCKSIZE. Change zfs_condense_indirect_commit_entry_delay_ticks to zfs_condense_indirect_commit_entry_delay_ms for consistency with most other tunables in which delays are specified in ms. * ZTS changes: Use set_tunable rather than mdb Use zpool sync as appropriate Use sync_pool instead of sync Kill jobs during test_removal_with_operation to allow unmount/export Don't add non-disk names such as "mirror" or "raidz" to $DISKS Use $TEST_BASE_DIR instead of /tmp Increase HZ from 100 to 1000 which is more common on Linux removal_multiple_indirection.ksh Reduce iterations in order to not time out on the code coverage builders. removal_resume_export: Functionally, the test case is correct but there exists a race where the kernel thread hasn't been fully started yet and is not visible. Wait for up to 1 second for the removal thread to be started before giving up on it. Also, increase the amount of data copied in order that the removal not finish before the export has a chance to fail. * MMP compatibility, the concept of concrete versus non-concrete devices has slightly changed the semantics of vdev_writeable(). Update mmp_random_leaf_impl() accordingly. * Updated dbuf_remap() to handle the org.zfsonlinux:large_dnode pool feature which is not supported by OpenZFS. * Added support for new vdev removal tracepoints. * Test cases removal_with_zdb and removal_condense_export have been intentionally disabled. When run manually they pass as intended, but when running in the automated test environment they produce unreliable results on the latest Fedora release. They may work better once the upstream pool import refectoring is merged into ZoL at which point they will be re-enabled. Authored by: Matthew Ahrens <mahrens@delphix.com> Reviewed-by: Alex Reece <alex@delphix.com> Reviewed-by: George Wilson <george.wilson@delphix.com> Reviewed-by: John Kennedy <john.kennedy@delphix.com> Reviewed-by: Prakash Surya <prakash.surya@delphix.com> Reviewed by: Richard Laager <rlaager@wiktel.com> Reviewed by: Tim Chase <tim@chase2k.com> Reviewed by: Brian Behlendorf <behlendorf1@llnl.gov> Approved by: Garrett D'Amore <garrett@damore.org> Ported-by: Tim Chase <tim@chase2k.com> Signed-off-by: Tim Chase <tim@chase2k.com> OpenZFS-issue: https://www.illumos.org/issues/7614 OpenZFS-commit: https://github.com/openzfs/openzfs/commit/f539f1eb Closes #6900
2016-09-22 19:30:13 +03:00
(NSEC2MSEC(elapsed_nanosecs) > scn->scn_async_block_min_time_ms &&
txg_sync_waiting(scn->scn_dp)) ||
spa_shutting_down(scn->scn_dp->dp_spa));
}
static int
dsl_scan_free_block_cb(void *arg, const blkptr_t *bp, dmu_tx_t *tx)
{
dsl_scan_t *scn = arg;
if (!scn->scn_is_bptree ||
(BP_GET_LEVEL(bp) == 0 && BP_GET_TYPE(bp) != DMU_OT_OBJSET)) {
OpenZFS 7614, 9064 - zfs device evacuation/removal OpenZFS 7614 - zfs device evacuation/removal OpenZFS 9064 - remove_mirror should wait for device removal to complete This project allows top-level vdevs to be removed from the storage pool with "zpool remove", reducing the total amount of storage in the pool. This operation copies all allocated regions of the device to be removed onto other devices, recording the mapping from old to new location. After the removal is complete, read and free operations to the removed (now "indirect") vdev must be remapped and performed at the new location on disk. The indirect mapping table is kept in memory whenever the pool is loaded, so there is minimal performance overhead when doing operations on the indirect vdev. The size of the in-memory mapping table will be reduced when its entries become "obsolete" because they are no longer used by any block pointers in the pool. An entry becomes obsolete when all the blocks that use it are freed. An entry can also become obsolete when all the snapshots that reference it are deleted, and the block pointers that reference it have been "remapped" in all filesystems/zvols (and clones). Whenever an indirect block is written, all the block pointers in it will be "remapped" to their new (concrete) locations if possible. This process can be accelerated by using the "zfs remap" command to proactively rewrite all indirect blocks that reference indirect (removed) vdevs. Note that when a device is removed, we do not verify the checksum of the data that is copied. This makes the process much faster, but if it were used on redundant vdevs (i.e. mirror or raidz vdevs), it would be possible to copy the wrong data, when we have the correct data on e.g. the other side of the mirror. At the moment, only mirrors and simple top-level vdevs can be removed and no removal is allowed if any of the top-level vdevs are raidz. Porting Notes: * Avoid zero-sized kmem_alloc() in vdev_compact_children(). The device evacuation code adds a dependency that vdev_compact_children() be able to properly empty the vdev_child array by setting it to NULL and zeroing vdev_children. Under Linux, kmem_alloc() and related functions return a sentinel pointer rather than NULL for zero-sized allocations. * Remove comment regarding "mpt" driver where zfs_remove_max_segment is initialized to SPA_MAXBLOCKSIZE. Change zfs_condense_indirect_commit_entry_delay_ticks to zfs_condense_indirect_commit_entry_delay_ms for consistency with most other tunables in which delays are specified in ms. * ZTS changes: Use set_tunable rather than mdb Use zpool sync as appropriate Use sync_pool instead of sync Kill jobs during test_removal_with_operation to allow unmount/export Don't add non-disk names such as "mirror" or "raidz" to $DISKS Use $TEST_BASE_DIR instead of /tmp Increase HZ from 100 to 1000 which is more common on Linux removal_multiple_indirection.ksh Reduce iterations in order to not time out on the code coverage builders. removal_resume_export: Functionally, the test case is correct but there exists a race where the kernel thread hasn't been fully started yet and is not visible. Wait for up to 1 second for the removal thread to be started before giving up on it. Also, increase the amount of data copied in order that the removal not finish before the export has a chance to fail. * MMP compatibility, the concept of concrete versus non-concrete devices has slightly changed the semantics of vdev_writeable(). Update mmp_random_leaf_impl() accordingly. * Updated dbuf_remap() to handle the org.zfsonlinux:large_dnode pool feature which is not supported by OpenZFS. * Added support for new vdev removal tracepoints. * Test cases removal_with_zdb and removal_condense_export have been intentionally disabled. When run manually they pass as intended, but when running in the automated test environment they produce unreliable results on the latest Fedora release. They may work better once the upstream pool import refectoring is merged into ZoL at which point they will be re-enabled. Authored by: Matthew Ahrens <mahrens@delphix.com> Reviewed-by: Alex Reece <alex@delphix.com> Reviewed-by: George Wilson <george.wilson@delphix.com> Reviewed-by: John Kennedy <john.kennedy@delphix.com> Reviewed-by: Prakash Surya <prakash.surya@delphix.com> Reviewed by: Richard Laager <rlaager@wiktel.com> Reviewed by: Tim Chase <tim@chase2k.com> Reviewed by: Brian Behlendorf <behlendorf1@llnl.gov> Approved by: Garrett D'Amore <garrett@damore.org> Ported-by: Tim Chase <tim@chase2k.com> Signed-off-by: Tim Chase <tim@chase2k.com> OpenZFS-issue: https://www.illumos.org/issues/7614 OpenZFS-commit: https://github.com/openzfs/openzfs/commit/f539f1eb Closes #6900
2016-09-22 19:30:13 +03:00
if (dsl_scan_async_block_should_pause(scn))
return (SET_ERROR(ERESTART));
}
zio_nowait(zio_free_sync(scn->scn_zio_root, scn->scn_dp->dp_spa,
dmu_tx_get_txg(tx), bp, 0));
dsl_dir_diduse_space(tx->tx_pool->dp_free_dir, DD_USED_HEAD,
-bp_get_dsize_sync(scn->scn_dp->dp_spa, bp),
-BP_GET_PSIZE(bp), -BP_GET_UCSIZE(bp), tx);
scn->scn_visited_this_txg++;
if (BP_GET_DEDUP(bp))
scn->scn_dedup_frees_this_txg++;
return (0);
}
static void
dsl_scan_update_stats(dsl_scan_t *scn)
{
spa_t *spa = scn->scn_dp->dp_spa;
uint64_t i;
uint64_t seg_size_total = 0, zio_size_total = 0;
uint64_t seg_count_total = 0, zio_count_total = 0;
for (i = 0; i < spa->spa_root_vdev->vdev_children; i++) {
vdev_t *vd = spa->spa_root_vdev->vdev_child[i];
dsl_scan_io_queue_t *queue = vd->vdev_scan_io_queue;
if (queue == NULL)
continue;
seg_size_total += queue->q_total_seg_size_this_txg;
zio_size_total += queue->q_total_zio_size_this_txg;
seg_count_total += queue->q_segs_this_txg;
zio_count_total += queue->q_zios_this_txg;
}
if (seg_count_total == 0 || zio_count_total == 0) {
scn->scn_avg_seg_size_this_txg = 0;
scn->scn_avg_zio_size_this_txg = 0;
scn->scn_segs_this_txg = 0;
scn->scn_zios_this_txg = 0;
return;
}
scn->scn_avg_seg_size_this_txg = seg_size_total / seg_count_total;
scn->scn_avg_zio_size_this_txg = zio_size_total / zio_count_total;
scn->scn_segs_this_txg = seg_count_total;
scn->scn_zios_this_txg = zio_count_total;
}
OpenZFS 7614, 9064 - zfs device evacuation/removal OpenZFS 7614 - zfs device evacuation/removal OpenZFS 9064 - remove_mirror should wait for device removal to complete This project allows top-level vdevs to be removed from the storage pool with "zpool remove", reducing the total amount of storage in the pool. This operation copies all allocated regions of the device to be removed onto other devices, recording the mapping from old to new location. After the removal is complete, read and free operations to the removed (now "indirect") vdev must be remapped and performed at the new location on disk. The indirect mapping table is kept in memory whenever the pool is loaded, so there is minimal performance overhead when doing operations on the indirect vdev. The size of the in-memory mapping table will be reduced when its entries become "obsolete" because they are no longer used by any block pointers in the pool. An entry becomes obsolete when all the blocks that use it are freed. An entry can also become obsolete when all the snapshots that reference it are deleted, and the block pointers that reference it have been "remapped" in all filesystems/zvols (and clones). Whenever an indirect block is written, all the block pointers in it will be "remapped" to their new (concrete) locations if possible. This process can be accelerated by using the "zfs remap" command to proactively rewrite all indirect blocks that reference indirect (removed) vdevs. Note that when a device is removed, we do not verify the checksum of the data that is copied. This makes the process much faster, but if it were used on redundant vdevs (i.e. mirror or raidz vdevs), it would be possible to copy the wrong data, when we have the correct data on e.g. the other side of the mirror. At the moment, only mirrors and simple top-level vdevs can be removed and no removal is allowed if any of the top-level vdevs are raidz. Porting Notes: * Avoid zero-sized kmem_alloc() in vdev_compact_children(). The device evacuation code adds a dependency that vdev_compact_children() be able to properly empty the vdev_child array by setting it to NULL and zeroing vdev_children. Under Linux, kmem_alloc() and related functions return a sentinel pointer rather than NULL for zero-sized allocations. * Remove comment regarding "mpt" driver where zfs_remove_max_segment is initialized to SPA_MAXBLOCKSIZE. Change zfs_condense_indirect_commit_entry_delay_ticks to zfs_condense_indirect_commit_entry_delay_ms for consistency with most other tunables in which delays are specified in ms. * ZTS changes: Use set_tunable rather than mdb Use zpool sync as appropriate Use sync_pool instead of sync Kill jobs during test_removal_with_operation to allow unmount/export Don't add non-disk names such as "mirror" or "raidz" to $DISKS Use $TEST_BASE_DIR instead of /tmp Increase HZ from 100 to 1000 which is more common on Linux removal_multiple_indirection.ksh Reduce iterations in order to not time out on the code coverage builders. removal_resume_export: Functionally, the test case is correct but there exists a race where the kernel thread hasn't been fully started yet and is not visible. Wait for up to 1 second for the removal thread to be started before giving up on it. Also, increase the amount of data copied in order that the removal not finish before the export has a chance to fail. * MMP compatibility, the concept of concrete versus non-concrete devices has slightly changed the semantics of vdev_writeable(). Update mmp_random_leaf_impl() accordingly. * Updated dbuf_remap() to handle the org.zfsonlinux:large_dnode pool feature which is not supported by OpenZFS. * Added support for new vdev removal tracepoints. * Test cases removal_with_zdb and removal_condense_export have been intentionally disabled. When run manually they pass as intended, but when running in the automated test environment they produce unreliable results on the latest Fedora release. They may work better once the upstream pool import refectoring is merged into ZoL at which point they will be re-enabled. Authored by: Matthew Ahrens <mahrens@delphix.com> Reviewed-by: Alex Reece <alex@delphix.com> Reviewed-by: George Wilson <george.wilson@delphix.com> Reviewed-by: John Kennedy <john.kennedy@delphix.com> Reviewed-by: Prakash Surya <prakash.surya@delphix.com> Reviewed by: Richard Laager <rlaager@wiktel.com> Reviewed by: Tim Chase <tim@chase2k.com> Reviewed by: Brian Behlendorf <behlendorf1@llnl.gov> Approved by: Garrett D'Amore <garrett@damore.org> Ported-by: Tim Chase <tim@chase2k.com> Signed-off-by: Tim Chase <tim@chase2k.com> OpenZFS-issue: https://www.illumos.org/issues/7614 OpenZFS-commit: https://github.com/openzfs/openzfs/commit/f539f1eb Closes #6900
2016-09-22 19:30:13 +03:00
static int
bpobj_dsl_scan_free_block_cb(void *arg, const blkptr_t *bp, boolean_t bp_freed,
dmu_tx_t *tx)
OpenZFS 7614, 9064 - zfs device evacuation/removal OpenZFS 7614 - zfs device evacuation/removal OpenZFS 9064 - remove_mirror should wait for device removal to complete This project allows top-level vdevs to be removed from the storage pool with "zpool remove", reducing the total amount of storage in the pool. This operation copies all allocated regions of the device to be removed onto other devices, recording the mapping from old to new location. After the removal is complete, read and free operations to the removed (now "indirect") vdev must be remapped and performed at the new location on disk. The indirect mapping table is kept in memory whenever the pool is loaded, so there is minimal performance overhead when doing operations on the indirect vdev. The size of the in-memory mapping table will be reduced when its entries become "obsolete" because they are no longer used by any block pointers in the pool. An entry becomes obsolete when all the blocks that use it are freed. An entry can also become obsolete when all the snapshots that reference it are deleted, and the block pointers that reference it have been "remapped" in all filesystems/zvols (and clones). Whenever an indirect block is written, all the block pointers in it will be "remapped" to their new (concrete) locations if possible. This process can be accelerated by using the "zfs remap" command to proactively rewrite all indirect blocks that reference indirect (removed) vdevs. Note that when a device is removed, we do not verify the checksum of the data that is copied. This makes the process much faster, but if it were used on redundant vdevs (i.e. mirror or raidz vdevs), it would be possible to copy the wrong data, when we have the correct data on e.g. the other side of the mirror. At the moment, only mirrors and simple top-level vdevs can be removed and no removal is allowed if any of the top-level vdevs are raidz. Porting Notes: * Avoid zero-sized kmem_alloc() in vdev_compact_children(). The device evacuation code adds a dependency that vdev_compact_children() be able to properly empty the vdev_child array by setting it to NULL and zeroing vdev_children. Under Linux, kmem_alloc() and related functions return a sentinel pointer rather than NULL for zero-sized allocations. * Remove comment regarding "mpt" driver where zfs_remove_max_segment is initialized to SPA_MAXBLOCKSIZE. Change zfs_condense_indirect_commit_entry_delay_ticks to zfs_condense_indirect_commit_entry_delay_ms for consistency with most other tunables in which delays are specified in ms. * ZTS changes: Use set_tunable rather than mdb Use zpool sync as appropriate Use sync_pool instead of sync Kill jobs during test_removal_with_operation to allow unmount/export Don't add non-disk names such as "mirror" or "raidz" to $DISKS Use $TEST_BASE_DIR instead of /tmp Increase HZ from 100 to 1000 which is more common on Linux removal_multiple_indirection.ksh Reduce iterations in order to not time out on the code coverage builders. removal_resume_export: Functionally, the test case is correct but there exists a race where the kernel thread hasn't been fully started yet and is not visible. Wait for up to 1 second for the removal thread to be started before giving up on it. Also, increase the amount of data copied in order that the removal not finish before the export has a chance to fail. * MMP compatibility, the concept of concrete versus non-concrete devices has slightly changed the semantics of vdev_writeable(). Update mmp_random_leaf_impl() accordingly. * Updated dbuf_remap() to handle the org.zfsonlinux:large_dnode pool feature which is not supported by OpenZFS. * Added support for new vdev removal tracepoints. * Test cases removal_with_zdb and removal_condense_export have been intentionally disabled. When run manually they pass as intended, but when running in the automated test environment they produce unreliable results on the latest Fedora release. They may work better once the upstream pool import refectoring is merged into ZoL at which point they will be re-enabled. Authored by: Matthew Ahrens <mahrens@delphix.com> Reviewed-by: Alex Reece <alex@delphix.com> Reviewed-by: George Wilson <george.wilson@delphix.com> Reviewed-by: John Kennedy <john.kennedy@delphix.com> Reviewed-by: Prakash Surya <prakash.surya@delphix.com> Reviewed by: Richard Laager <rlaager@wiktel.com> Reviewed by: Tim Chase <tim@chase2k.com> Reviewed by: Brian Behlendorf <behlendorf1@llnl.gov> Approved by: Garrett D'Amore <garrett@damore.org> Ported-by: Tim Chase <tim@chase2k.com> Signed-off-by: Tim Chase <tim@chase2k.com> OpenZFS-issue: https://www.illumos.org/issues/7614 OpenZFS-commit: https://github.com/openzfs/openzfs/commit/f539f1eb Closes #6900
2016-09-22 19:30:13 +03:00
{
ASSERT(!bp_freed);
return (dsl_scan_free_block_cb(arg, bp, tx));
}
static int
dsl_scan_obsolete_block_cb(void *arg, const blkptr_t *bp, boolean_t bp_freed,
dmu_tx_t *tx)
{
ASSERT(!bp_freed);
OpenZFS 7614, 9064 - zfs device evacuation/removal OpenZFS 7614 - zfs device evacuation/removal OpenZFS 9064 - remove_mirror should wait for device removal to complete This project allows top-level vdevs to be removed from the storage pool with "zpool remove", reducing the total amount of storage in the pool. This operation copies all allocated regions of the device to be removed onto other devices, recording the mapping from old to new location. After the removal is complete, read and free operations to the removed (now "indirect") vdev must be remapped and performed at the new location on disk. The indirect mapping table is kept in memory whenever the pool is loaded, so there is minimal performance overhead when doing operations on the indirect vdev. The size of the in-memory mapping table will be reduced when its entries become "obsolete" because they are no longer used by any block pointers in the pool. An entry becomes obsolete when all the blocks that use it are freed. An entry can also become obsolete when all the snapshots that reference it are deleted, and the block pointers that reference it have been "remapped" in all filesystems/zvols (and clones). Whenever an indirect block is written, all the block pointers in it will be "remapped" to their new (concrete) locations if possible. This process can be accelerated by using the "zfs remap" command to proactively rewrite all indirect blocks that reference indirect (removed) vdevs. Note that when a device is removed, we do not verify the checksum of the data that is copied. This makes the process much faster, but if it were used on redundant vdevs (i.e. mirror or raidz vdevs), it would be possible to copy the wrong data, when we have the correct data on e.g. the other side of the mirror. At the moment, only mirrors and simple top-level vdevs can be removed and no removal is allowed if any of the top-level vdevs are raidz. Porting Notes: * Avoid zero-sized kmem_alloc() in vdev_compact_children(). The device evacuation code adds a dependency that vdev_compact_children() be able to properly empty the vdev_child array by setting it to NULL and zeroing vdev_children. Under Linux, kmem_alloc() and related functions return a sentinel pointer rather than NULL for zero-sized allocations. * Remove comment regarding "mpt" driver where zfs_remove_max_segment is initialized to SPA_MAXBLOCKSIZE. Change zfs_condense_indirect_commit_entry_delay_ticks to zfs_condense_indirect_commit_entry_delay_ms for consistency with most other tunables in which delays are specified in ms. * ZTS changes: Use set_tunable rather than mdb Use zpool sync as appropriate Use sync_pool instead of sync Kill jobs during test_removal_with_operation to allow unmount/export Don't add non-disk names such as "mirror" or "raidz" to $DISKS Use $TEST_BASE_DIR instead of /tmp Increase HZ from 100 to 1000 which is more common on Linux removal_multiple_indirection.ksh Reduce iterations in order to not time out on the code coverage builders. removal_resume_export: Functionally, the test case is correct but there exists a race where the kernel thread hasn't been fully started yet and is not visible. Wait for up to 1 second for the removal thread to be started before giving up on it. Also, increase the amount of data copied in order that the removal not finish before the export has a chance to fail. * MMP compatibility, the concept of concrete versus non-concrete devices has slightly changed the semantics of vdev_writeable(). Update mmp_random_leaf_impl() accordingly. * Updated dbuf_remap() to handle the org.zfsonlinux:large_dnode pool feature which is not supported by OpenZFS. * Added support for new vdev removal tracepoints. * Test cases removal_with_zdb and removal_condense_export have been intentionally disabled. When run manually they pass as intended, but when running in the automated test environment they produce unreliable results on the latest Fedora release. They may work better once the upstream pool import refectoring is merged into ZoL at which point they will be re-enabled. Authored by: Matthew Ahrens <mahrens@delphix.com> Reviewed-by: Alex Reece <alex@delphix.com> Reviewed-by: George Wilson <george.wilson@delphix.com> Reviewed-by: John Kennedy <john.kennedy@delphix.com> Reviewed-by: Prakash Surya <prakash.surya@delphix.com> Reviewed by: Richard Laager <rlaager@wiktel.com> Reviewed by: Tim Chase <tim@chase2k.com> Reviewed by: Brian Behlendorf <behlendorf1@llnl.gov> Approved by: Garrett D'Amore <garrett@damore.org> Ported-by: Tim Chase <tim@chase2k.com> Signed-off-by: Tim Chase <tim@chase2k.com> OpenZFS-issue: https://www.illumos.org/issues/7614 OpenZFS-commit: https://github.com/openzfs/openzfs/commit/f539f1eb Closes #6900
2016-09-22 19:30:13 +03:00
dsl_scan_t *scn = arg;
const dva_t *dva = &bp->blk_dva[0];
if (dsl_scan_async_block_should_pause(scn))
return (SET_ERROR(ERESTART));
spa_vdev_indirect_mark_obsolete(scn->scn_dp->dp_spa,
DVA_GET_VDEV(dva), DVA_GET_OFFSET(dva),
DVA_GET_ASIZE(dva), tx);
scn->scn_visited_this_txg++;
return (0);
}
boolean_t
dsl_scan_active(dsl_scan_t *scn)
{
spa_t *spa = scn->scn_dp->dp_spa;
uint64_t used = 0, comp, uncomp;
boolean_t clones_left;
if (spa->spa_load_state != SPA_LOAD_NONE)
return (B_FALSE);
if (spa_shutting_down(spa))
return (B_FALSE);
if ((dsl_scan_is_running(scn) && !dsl_scan_is_paused_scrub(scn)) ||
(scn->scn_async_destroying && !scn->scn_async_stalled))
return (B_TRUE);
if (spa_version(scn->scn_dp->dp_spa) >= SPA_VERSION_DEADLISTS) {
(void) bpobj_space(&scn->scn_dp->dp_free_bpobj,
&used, &comp, &uncomp);
}
clones_left = spa_livelist_delete_check(spa);
return ((used != 0) || (clones_left));
}
static boolean_t
dsl_scan_check_deferred(vdev_t *vd)
{
boolean_t need_resilver = B_FALSE;
for (int c = 0; c < vd->vdev_children; c++) {
need_resilver |=
dsl_scan_check_deferred(vd->vdev_child[c]);
}
if (!vdev_is_concrete(vd) || vd->vdev_aux ||
!vd->vdev_ops->vdev_op_leaf)
return (need_resilver);
if (!vd->vdev_resilver_deferred)
need_resilver = B_TRUE;
return (need_resilver);
}
static boolean_t
dsl_scan_need_resilver(spa_t *spa, const dva_t *dva, size_t psize,
uint64_t phys_birth)
{
vdev_t *vd;
OpenZFS 9290 - device removal reduces redundancy of mirrors Mirrors are supposed to provide redundancy in the face of whole-disk failure and silent damage (e.g. some data on disk is not right, but ZFS hasn't detected the whole device as being broken). However, the current device removal implementation bypasses some of the mirror's redundancy. Note that in no case is incorrect data returned, but we might get a checksum error when we should have been able to find the right data. There are two underlying problems: 1. When we remove a mirror device, we only read one side of the mirror. Since we can't verify the checksum, this side may be silently bad, but the good data is on the other side of the mirror (which we didn't read). This can cause the removal to "bake in" the busted data – all copies of the data in the new location are the same, busted version, while we left the good version behind. The fix for this is to read and copy both sides of the mirror. If the old and new vdevs are mirrors, we will read both sides of the old mirror, and write each copy to the corresponding side of the new mirror. (If the old and new vdevs have a different number of children, we will do this as best as possible.) Even though we aren't verifying checksums, this ensures that as long as there's a good copy of the data, we'll have a good copy after the removal, even if there's silent damage to one side of the mirror. If we're removing a mirror that has some silent damage, we'll have exactly the same damage in the new location (assuming that the new location is also a mirror). 2. When we read from an indirect vdev that points to a mirror vdev, we only consider one copy of the data. This can lead to reduced effective redundancy, because we might read a bad copy of the data from one side of the mirror, and not retry the other, good side of the mirror. Note that the problem is not with the removal process, but rather after the removal has completed (having copied correct data to both sides of the mirror), if one side of the new mirror is silently damaged, we encounter the problem when reading the relocated data via the indirect vdev. Also note that the problem doesn't occur when ZFS knows that one side of the mirror is bad, e.g. when a disk entirely fails or is offlined. The impact is that reads (from indirect vdevs that point to mirrors) may return a checksum error even though the good data exists on one side of the mirror, and scrub doesn't repair all data on the mirror (if some of it is pointed to via an indirect vdev). The fix for this is complicated by "split blocks" - one logical block may be split into two (or more) pieces with each piece moved to a different new location. In this case we need to read all versions of each split (one from each side of the mirror), and figure out which combination of versions results in the correct checksum, and then repair the incorrect versions. This ensures that we supply the same redundancy whether you use device removal or not. For example, if a mirror has small silent errors on all of its children, we can still reconstruct the correct data, as long as those errors are at sufficiently-separated offsets (specifically, separated by the largest block size - default of 128KB, but up to 16MB). Porting notes: * A new indirect vdev check was moved from dsl_scan_needs_resilver_cb() to dsl_scan_needs_resilver(), which was added to ZoL as part of the sequential scrub work. * Passed NULL for zfs_ereport_post_checksum()'s zbookmark_phys_t parameter. The extra parameter is unique to ZoL. * When posting indirect checksum errors the ABD can be passed directly, zfs_ereport_post_checksum() is not yet ABD-aware in OpenZFS. Authored by: Matthew Ahrens <mahrens@delphix.com> Reviewed by: Tim Chase <tim@chase2k.com> Reviewed by: Brian Behlendorf <behlendorf1@llnl.gov> Ported-by: Tim Chase <tim@chase2k.com> OpenZFS-issue: https://illumos.org/issues/9290 OpenZFS-commit: https://github.com/openzfs/openzfs/pull/591 Closes #6900
2018-02-13 22:37:56 +03:00
vd = vdev_lookup_top(spa, DVA_GET_VDEV(dva));
if (vd->vdev_ops == &vdev_indirect_ops) {
/*
* The indirect vdev can point to multiple
* vdevs. For simplicity, always create
* the resilver zio_t. zio_vdev_io_start()
* will bypass the child resilver i/o's if
* they are on vdevs that don't have DTL's.
*/
return (B_TRUE);
}
if (DVA_GET_GANG(dva)) {
/*
* Gang members may be spread across multiple
* vdevs, so the best estimate we have is the
* scrub range, which has already been checked.
* XXX -- it would be better to change our
* allocation policy to ensure that all
* gang members reside on the same vdev.
*/
return (B_TRUE);
}
/*
* Check if the top-level vdev must resilver this offset.
* When the offset does not intersect with a dirty leaf DTL
* then it may be possible to skip the resilver IO. The psize
* is provided instead of asize to simplify the check for RAIDZ.
*/
Distributed Spare (dRAID) Feature This patch adds a new top-level vdev type called dRAID, which stands for Distributed parity RAID. This pool configuration allows all dRAID vdevs to participate when rebuilding to a distributed hot spare device. This can substantially reduce the total time required to restore full parity to pool with a failed device. A dRAID pool can be created using the new top-level `draid` type. Like `raidz`, the desired redundancy is specified after the type: `draid[1,2,3]`. No additional information is required to create the pool and reasonable default values will be chosen based on the number of child vdevs in the dRAID vdev. zpool create <pool> draid[1,2,3] <vdevs...> Unlike raidz, additional optional dRAID configuration values can be provided as part of the draid type as colon separated values. This allows administrators to fully specify a layout for either performance or capacity reasons. The supported options include: zpool create <pool> \ draid[<parity>][:<data>d][:<children>c][:<spares>s] \ <vdevs...> - draid[parity] - Parity level (default 1) - draid[:<data>d] - Data devices per group (default 8) - draid[:<children>c] - Expected number of child vdevs - draid[:<spares>s] - Distributed hot spares (default 0) Abbreviated example `zpool status` output for a 68 disk dRAID pool with two distributed spares using special allocation classes. ``` pool: tank state: ONLINE config: NAME STATE READ WRITE CKSUM slag7 ONLINE 0 0 0 draid2:8d:68c:2s-0 ONLINE 0 0 0 L0 ONLINE 0 0 0 L1 ONLINE 0 0 0 ... U25 ONLINE 0 0 0 U26 ONLINE 0 0 0 spare-53 ONLINE 0 0 0 U27 ONLINE 0 0 0 draid2-0-0 ONLINE 0 0 0 U28 ONLINE 0 0 0 U29 ONLINE 0 0 0 ... U42 ONLINE 0 0 0 U43 ONLINE 0 0 0 special mirror-1 ONLINE 0 0 0 L5 ONLINE 0 0 0 U5 ONLINE 0 0 0 mirror-2 ONLINE 0 0 0 L6 ONLINE 0 0 0 U6 ONLINE 0 0 0 spares draid2-0-0 INUSE currently in use draid2-0-1 AVAIL ``` When adding test coverage for the new dRAID vdev type the following options were added to the ztest command. These options are leverages by zloop.sh to test a wide range of dRAID configurations. -K draid|raidz|random - kind of RAID to test -D <value> - dRAID data drives per group -S <value> - dRAID distributed hot spares -R <value> - RAID parity (raidz or dRAID) The zpool_create, zpool_import, redundancy, replacement and fault test groups have all been updated provide test coverage for the dRAID feature. Co-authored-by: Isaac Huang <he.huang@intel.com> Co-authored-by: Mark Maybee <mmaybee@cray.com> Co-authored-by: Don Brady <don.brady@delphix.com> Co-authored-by: Matthew Ahrens <mahrens@delphix.com> Co-authored-by: Brian Behlendorf <behlendorf1@llnl.gov> Reviewed-by: Mark Maybee <mmaybee@cray.com> Reviewed-by: Matt Ahrens <matt@delphix.com> Reviewed-by: Tony Hutter <hutter2@llnl.gov> Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov> Closes #10102
2020-11-14 00:51:51 +03:00
if (!vdev_dtl_need_resilver(vd, dva, psize, phys_birth))
return (B_FALSE);
/*
* Check that this top-level vdev has a device under it which
* is resilvering and is not deferred.
*/
if (!dsl_scan_check_deferred(vd))
return (B_FALSE);
return (B_TRUE);
}
OpenZFS 9166 - zfs storage pool checkpoint Details about the motivation of this feature and its usage can be found in this blogpost: https://sdimitro.github.io/post/zpool-checkpoint/ A lightning talk of this feature can be found here: https://www.youtube.com/watch?v=fPQA8K40jAM Implementation details can be found in big block comment of spa_checkpoint.c Side-changes that are relevant to this commit but not explained elsewhere: * renames members of "struct metaslab trees to be shorter without losing meaning * space_map_{alloc,truncate}() accept a block size as a parameter. The reason is that in the current state all space maps that we allocate through the DMU use a global tunable (space_map_blksz) which defauls to 4KB. This is ok for metaslab space maps in terms of bandwirdth since they are scattered all over the disk. But for other space maps this default is probably not what we want. Examples are device removal's vdev_obsolete_sm or vdev_chedkpoint_sm from this review. Both of these have a 1:1 relationship with each vdev and could benefit from a bigger block size. Porting notes: * The part of dsl_scan_sync() which handles async destroys has been moved into the new dsl_process_async_destroys() function. * Remove "VERIFY(!(flags & FWRITE))" in "kernel.c" so zhack can write to block device backed pools. * ZTS: * Fix get_txg() in zpool_sync_001_pos due to "checkpoint_txg". * Don't use large dd block sizes on /dev/urandom under Linux in checkpoint_capacity. * Adopt Delphix-OS's setting of 4 (spa_asize_inflation = SPA_DVAS_PER_BP + 1) for the checkpoint_capacity test to speed its attempts to fill the pool * Create the base and nested pools with sync=disabled to speed up the "setup" phase. * Clear labels in test pool between checkpoint tests to avoid duplicate pool issues. * The import_rewind_device_replaced test has been marked as "known to fail" for the reasons listed in its DISCLAIMER. * New module parameters: zfs_spa_discard_memory_limit, zfs_remove_max_bytes_pause (not documented - debugging only) vdev_max_ms_count (formerly metaslabs_per_vdev) vdev_min_ms_count Authored by: Serapheim Dimitropoulos <serapheim.dimitro@delphix.com> Reviewed by: Matthew Ahrens <mahrens@delphix.com> Reviewed by: John Kennedy <john.kennedy@delphix.com> Reviewed by: Dan Kimmel <dan.kimmel@delphix.com> Reviewed by: Brian Behlendorf <behlendorf1@llnl.gov> Approved by: Richard Lowe <richlowe@richlowe.net> Ported-by: Tim Chase <tim@chase2k.com> Signed-off-by: Tim Chase <tim@chase2k.com> OpenZFS-issue: https://illumos.org/issues/9166 OpenZFS-commit: https://github.com/openzfs/openzfs/commit/7159fdb8 Closes #7570
2016-12-17 01:11:29 +03:00
static int
dsl_process_async_destroys(dsl_pool_t *dp, dmu_tx_t *tx)
{
dsl_scan_t *scn = dp->dp_scan;
spa_t *spa = dp->dp_spa;
OpenZFS 9166 - zfs storage pool checkpoint Details about the motivation of this feature and its usage can be found in this blogpost: https://sdimitro.github.io/post/zpool-checkpoint/ A lightning talk of this feature can be found here: https://www.youtube.com/watch?v=fPQA8K40jAM Implementation details can be found in big block comment of spa_checkpoint.c Side-changes that are relevant to this commit but not explained elsewhere: * renames members of "struct metaslab trees to be shorter without losing meaning * space_map_{alloc,truncate}() accept a block size as a parameter. The reason is that in the current state all space maps that we allocate through the DMU use a global tunable (space_map_blksz) which defauls to 4KB. This is ok for metaslab space maps in terms of bandwirdth since they are scattered all over the disk. But for other space maps this default is probably not what we want. Examples are device removal's vdev_obsolete_sm or vdev_chedkpoint_sm from this review. Both of these have a 1:1 relationship with each vdev and could benefit from a bigger block size. Porting notes: * The part of dsl_scan_sync() which handles async destroys has been moved into the new dsl_process_async_destroys() function. * Remove "VERIFY(!(flags & FWRITE))" in "kernel.c" so zhack can write to block device backed pools. * ZTS: * Fix get_txg() in zpool_sync_001_pos due to "checkpoint_txg". * Don't use large dd block sizes on /dev/urandom under Linux in checkpoint_capacity. * Adopt Delphix-OS's setting of 4 (spa_asize_inflation = SPA_DVAS_PER_BP + 1) for the checkpoint_capacity test to speed its attempts to fill the pool * Create the base and nested pools with sync=disabled to speed up the "setup" phase. * Clear labels in test pool between checkpoint tests to avoid duplicate pool issues. * The import_rewind_device_replaced test has been marked as "known to fail" for the reasons listed in its DISCLAIMER. * New module parameters: zfs_spa_discard_memory_limit, zfs_remove_max_bytes_pause (not documented - debugging only) vdev_max_ms_count (formerly metaslabs_per_vdev) vdev_min_ms_count Authored by: Serapheim Dimitropoulos <serapheim.dimitro@delphix.com> Reviewed by: Matthew Ahrens <mahrens@delphix.com> Reviewed by: John Kennedy <john.kennedy@delphix.com> Reviewed by: Dan Kimmel <dan.kimmel@delphix.com> Reviewed by: Brian Behlendorf <behlendorf1@llnl.gov> Approved by: Richard Lowe <richlowe@richlowe.net> Ported-by: Tim Chase <tim@chase2k.com> Signed-off-by: Tim Chase <tim@chase2k.com> OpenZFS-issue: https://illumos.org/issues/9166 OpenZFS-commit: https://github.com/openzfs/openzfs/commit/7159fdb8 Closes #7570
2016-12-17 01:11:29 +03:00
int err = 0;
OpenZFS 9166 - zfs storage pool checkpoint Details about the motivation of this feature and its usage can be found in this blogpost: https://sdimitro.github.io/post/zpool-checkpoint/ A lightning talk of this feature can be found here: https://www.youtube.com/watch?v=fPQA8K40jAM Implementation details can be found in big block comment of spa_checkpoint.c Side-changes that are relevant to this commit but not explained elsewhere: * renames members of "struct metaslab trees to be shorter without losing meaning * space_map_{alloc,truncate}() accept a block size as a parameter. The reason is that in the current state all space maps that we allocate through the DMU use a global tunable (space_map_blksz) which defauls to 4KB. This is ok for metaslab space maps in terms of bandwirdth since they are scattered all over the disk. But for other space maps this default is probably not what we want. Examples are device removal's vdev_obsolete_sm or vdev_chedkpoint_sm from this review. Both of these have a 1:1 relationship with each vdev and could benefit from a bigger block size. Porting notes: * The part of dsl_scan_sync() which handles async destroys has been moved into the new dsl_process_async_destroys() function. * Remove "VERIFY(!(flags & FWRITE))" in "kernel.c" so zhack can write to block device backed pools. * ZTS: * Fix get_txg() in zpool_sync_001_pos due to "checkpoint_txg". * Don't use large dd block sizes on /dev/urandom under Linux in checkpoint_capacity. * Adopt Delphix-OS's setting of 4 (spa_asize_inflation = SPA_DVAS_PER_BP + 1) for the checkpoint_capacity test to speed its attempts to fill the pool * Create the base and nested pools with sync=disabled to speed up the "setup" phase. * Clear labels in test pool between checkpoint tests to avoid duplicate pool issues. * The import_rewind_device_replaced test has been marked as "known to fail" for the reasons listed in its DISCLAIMER. * New module parameters: zfs_spa_discard_memory_limit, zfs_remove_max_bytes_pause (not documented - debugging only) vdev_max_ms_count (formerly metaslabs_per_vdev) vdev_min_ms_count Authored by: Serapheim Dimitropoulos <serapheim.dimitro@delphix.com> Reviewed by: Matthew Ahrens <mahrens@delphix.com> Reviewed by: John Kennedy <john.kennedy@delphix.com> Reviewed by: Dan Kimmel <dan.kimmel@delphix.com> Reviewed by: Brian Behlendorf <behlendorf1@llnl.gov> Approved by: Richard Lowe <richlowe@richlowe.net> Ported-by: Tim Chase <tim@chase2k.com> Signed-off-by: Tim Chase <tim@chase2k.com> OpenZFS-issue: https://illumos.org/issues/9166 OpenZFS-commit: https://github.com/openzfs/openzfs/commit/7159fdb8 Closes #7570
2016-12-17 01:11:29 +03:00
if (spa_suspend_async_destroy(spa))
return (0);
if (zfs_free_bpobj_enabled &&
spa_version(spa) >= SPA_VERSION_DEADLISTS) {
scn->scn_is_bptree = B_FALSE;
OpenZFS 7614, 9064 - zfs device evacuation/removal OpenZFS 7614 - zfs device evacuation/removal OpenZFS 9064 - remove_mirror should wait for device removal to complete This project allows top-level vdevs to be removed from the storage pool with "zpool remove", reducing the total amount of storage in the pool. This operation copies all allocated regions of the device to be removed onto other devices, recording the mapping from old to new location. After the removal is complete, read and free operations to the removed (now "indirect") vdev must be remapped and performed at the new location on disk. The indirect mapping table is kept in memory whenever the pool is loaded, so there is minimal performance overhead when doing operations on the indirect vdev. The size of the in-memory mapping table will be reduced when its entries become "obsolete" because they are no longer used by any block pointers in the pool. An entry becomes obsolete when all the blocks that use it are freed. An entry can also become obsolete when all the snapshots that reference it are deleted, and the block pointers that reference it have been "remapped" in all filesystems/zvols (and clones). Whenever an indirect block is written, all the block pointers in it will be "remapped" to their new (concrete) locations if possible. This process can be accelerated by using the "zfs remap" command to proactively rewrite all indirect blocks that reference indirect (removed) vdevs. Note that when a device is removed, we do not verify the checksum of the data that is copied. This makes the process much faster, but if it were used on redundant vdevs (i.e. mirror or raidz vdevs), it would be possible to copy the wrong data, when we have the correct data on e.g. the other side of the mirror. At the moment, only mirrors and simple top-level vdevs can be removed and no removal is allowed if any of the top-level vdevs are raidz. Porting Notes: * Avoid zero-sized kmem_alloc() in vdev_compact_children(). The device evacuation code adds a dependency that vdev_compact_children() be able to properly empty the vdev_child array by setting it to NULL and zeroing vdev_children. Under Linux, kmem_alloc() and related functions return a sentinel pointer rather than NULL for zero-sized allocations. * Remove comment regarding "mpt" driver where zfs_remove_max_segment is initialized to SPA_MAXBLOCKSIZE. Change zfs_condense_indirect_commit_entry_delay_ticks to zfs_condense_indirect_commit_entry_delay_ms for consistency with most other tunables in which delays are specified in ms. * ZTS changes: Use set_tunable rather than mdb Use zpool sync as appropriate Use sync_pool instead of sync Kill jobs during test_removal_with_operation to allow unmount/export Don't add non-disk names such as "mirror" or "raidz" to $DISKS Use $TEST_BASE_DIR instead of /tmp Increase HZ from 100 to 1000 which is more common on Linux removal_multiple_indirection.ksh Reduce iterations in order to not time out on the code coverage builders. removal_resume_export: Functionally, the test case is correct but there exists a race where the kernel thread hasn't been fully started yet and is not visible. Wait for up to 1 second for the removal thread to be started before giving up on it. Also, increase the amount of data copied in order that the removal not finish before the export has a chance to fail. * MMP compatibility, the concept of concrete versus non-concrete devices has slightly changed the semantics of vdev_writeable(). Update mmp_random_leaf_impl() accordingly. * Updated dbuf_remap() to handle the org.zfsonlinux:large_dnode pool feature which is not supported by OpenZFS. * Added support for new vdev removal tracepoints. * Test cases removal_with_zdb and removal_condense_export have been intentionally disabled. When run manually they pass as intended, but when running in the automated test environment they produce unreliable results on the latest Fedora release. They may work better once the upstream pool import refectoring is merged into ZoL at which point they will be re-enabled. Authored by: Matthew Ahrens <mahrens@delphix.com> Reviewed-by: Alex Reece <alex@delphix.com> Reviewed-by: George Wilson <george.wilson@delphix.com> Reviewed-by: John Kennedy <john.kennedy@delphix.com> Reviewed-by: Prakash Surya <prakash.surya@delphix.com> Reviewed by: Richard Laager <rlaager@wiktel.com> Reviewed by: Tim Chase <tim@chase2k.com> Reviewed by: Brian Behlendorf <behlendorf1@llnl.gov> Approved by: Garrett D'Amore <garrett@damore.org> Ported-by: Tim Chase <tim@chase2k.com> Signed-off-by: Tim Chase <tim@chase2k.com> OpenZFS-issue: https://www.illumos.org/issues/7614 OpenZFS-commit: https://github.com/openzfs/openzfs/commit/f539f1eb Closes #6900
2016-09-22 19:30:13 +03:00
scn->scn_async_block_min_time_ms = zfs_free_min_time_ms;
scn->scn_zio_root = zio_root(spa, NULL,
NULL, ZIO_FLAG_MUSTSUCCEED);
err = bpobj_iterate(&dp->dp_free_bpobj,
bpobj_dsl_scan_free_block_cb, scn, tx);
VERIFY0(zio_wait(scn->scn_zio_root));
scn->scn_zio_root = NULL;
if (err != 0 && err != ERESTART)
zfs_panic_recover("error %u from bpobj_iterate()", err);
}
if (err == 0 && spa_feature_is_active(spa, SPA_FEATURE_ASYNC_DESTROY)) {
ASSERT(scn->scn_async_destroying);
scn->scn_is_bptree = B_TRUE;
scn->scn_zio_root = zio_root(spa, NULL,
NULL, ZIO_FLAG_MUSTSUCCEED);
err = bptree_iterate(dp->dp_meta_objset,
dp->dp_bptree_obj, B_TRUE, dsl_scan_free_block_cb, scn, tx);
VERIFY0(zio_wait(scn->scn_zio_root));
scn->scn_zio_root = NULL;
if (err == EIO || err == ECKSUM) {
err = 0;
} else if (err != 0 && err != ERESTART) {
zfs_panic_recover("error %u from "
"traverse_dataset_destroyed()", err);
}
if (bptree_is_empty(dp->dp_meta_objset, dp->dp_bptree_obj)) {
/* finished; deactivate async destroy feature */
spa_feature_decr(spa, SPA_FEATURE_ASYNC_DESTROY, tx);
ASSERT(!spa_feature_is_active(spa,
SPA_FEATURE_ASYNC_DESTROY));
VERIFY0(zap_remove(dp->dp_meta_objset,
DMU_POOL_DIRECTORY_OBJECT,
DMU_POOL_BPTREE_OBJ, tx));
VERIFY0(bptree_free(dp->dp_meta_objset,
dp->dp_bptree_obj, tx));
dp->dp_bptree_obj = 0;
scn->scn_async_destroying = B_FALSE;
scn->scn_async_stalled = B_FALSE;
} else {
/*
* If we didn't make progress, mark the async
* destroy as stalled, so that we will not initiate
* a spa_sync() on its behalf. Note that we only
* check this if we are not finished, because if the
* bptree had no blocks for us to visit, we can
* finish without "making progress".
*/
scn->scn_async_stalled =
(scn->scn_visited_this_txg == 0);
}
}
if (scn->scn_visited_this_txg) {
zfs_dbgmsg("freed %llu blocks in %llums from "
"free_bpobj/bptree txg %llu; err=%u",
(longlong_t)scn->scn_visited_this_txg,
(longlong_t)
NSEC2MSEC(gethrtime() - scn->scn_sync_start_time),
(longlong_t)tx->tx_txg, err);
scn->scn_visited_this_txg = 0;
scn->scn_dedup_frees_this_txg = 0;
/*
* Write out changes to the DDT that may be required as a
* result of the blocks freed. This ensures that the DDT
* is clean when a scrub/resilver runs.
*/
ddt_sync(spa, tx->tx_txg);
}
if (err != 0)
OpenZFS 9166 - zfs storage pool checkpoint Details about the motivation of this feature and its usage can be found in this blogpost: https://sdimitro.github.io/post/zpool-checkpoint/ A lightning talk of this feature can be found here: https://www.youtube.com/watch?v=fPQA8K40jAM Implementation details can be found in big block comment of spa_checkpoint.c Side-changes that are relevant to this commit but not explained elsewhere: * renames members of "struct metaslab trees to be shorter without losing meaning * space_map_{alloc,truncate}() accept a block size as a parameter. The reason is that in the current state all space maps that we allocate through the DMU use a global tunable (space_map_blksz) which defauls to 4KB. This is ok for metaslab space maps in terms of bandwirdth since they are scattered all over the disk. But for other space maps this default is probably not what we want. Examples are device removal's vdev_obsolete_sm or vdev_chedkpoint_sm from this review. Both of these have a 1:1 relationship with each vdev and could benefit from a bigger block size. Porting notes: * The part of dsl_scan_sync() which handles async destroys has been moved into the new dsl_process_async_destroys() function. * Remove "VERIFY(!(flags & FWRITE))" in "kernel.c" so zhack can write to block device backed pools. * ZTS: * Fix get_txg() in zpool_sync_001_pos due to "checkpoint_txg". * Don't use large dd block sizes on /dev/urandom under Linux in checkpoint_capacity. * Adopt Delphix-OS's setting of 4 (spa_asize_inflation = SPA_DVAS_PER_BP + 1) for the checkpoint_capacity test to speed its attempts to fill the pool * Create the base and nested pools with sync=disabled to speed up the "setup" phase. * Clear labels in test pool between checkpoint tests to avoid duplicate pool issues. * The import_rewind_device_replaced test has been marked as "known to fail" for the reasons listed in its DISCLAIMER. * New module parameters: zfs_spa_discard_memory_limit, zfs_remove_max_bytes_pause (not documented - debugging only) vdev_max_ms_count (formerly metaslabs_per_vdev) vdev_min_ms_count Authored by: Serapheim Dimitropoulos <serapheim.dimitro@delphix.com> Reviewed by: Matthew Ahrens <mahrens@delphix.com> Reviewed by: John Kennedy <john.kennedy@delphix.com> Reviewed by: Dan Kimmel <dan.kimmel@delphix.com> Reviewed by: Brian Behlendorf <behlendorf1@llnl.gov> Approved by: Richard Lowe <richlowe@richlowe.net> Ported-by: Tim Chase <tim@chase2k.com> Signed-off-by: Tim Chase <tim@chase2k.com> OpenZFS-issue: https://illumos.org/issues/9166 OpenZFS-commit: https://github.com/openzfs/openzfs/commit/7159fdb8 Closes #7570
2016-12-17 01:11:29 +03:00
return (err);
if (dp->dp_free_dir != NULL && !scn->scn_async_destroying &&
zfs_free_leak_on_eio &&
(dsl_dir_phys(dp->dp_free_dir)->dd_used_bytes != 0 ||
dsl_dir_phys(dp->dp_free_dir)->dd_compressed_bytes != 0 ||
dsl_dir_phys(dp->dp_free_dir)->dd_uncompressed_bytes != 0)) {
/*
* We have finished background destroying, but there is still
* some space left in the dp_free_dir. Transfer this leaked
* space to the dp_leak_dir.
*/
if (dp->dp_leak_dir == NULL) {
rrw_enter(&dp->dp_config_rwlock, RW_WRITER, FTAG);
(void) dsl_dir_create_sync(dp, dp->dp_root_dir,
LEAK_DIR_NAME, tx);
VERIFY0(dsl_pool_open_special_dir(dp,
LEAK_DIR_NAME, &dp->dp_leak_dir));
rrw_exit(&dp->dp_config_rwlock, FTAG);
}
dsl_dir_diduse_space(dp->dp_leak_dir, DD_USED_HEAD,
dsl_dir_phys(dp->dp_free_dir)->dd_used_bytes,
dsl_dir_phys(dp->dp_free_dir)->dd_compressed_bytes,
dsl_dir_phys(dp->dp_free_dir)->dd_uncompressed_bytes, tx);
dsl_dir_diduse_space(dp->dp_free_dir, DD_USED_HEAD,
-dsl_dir_phys(dp->dp_free_dir)->dd_used_bytes,
-dsl_dir_phys(dp->dp_free_dir)->dd_compressed_bytes,
-dsl_dir_phys(dp->dp_free_dir)->dd_uncompressed_bytes, tx);
}
OpenZFS 7614, 9064 - zfs device evacuation/removal OpenZFS 7614 - zfs device evacuation/removal OpenZFS 9064 - remove_mirror should wait for device removal to complete This project allows top-level vdevs to be removed from the storage pool with "zpool remove", reducing the total amount of storage in the pool. This operation copies all allocated regions of the device to be removed onto other devices, recording the mapping from old to new location. After the removal is complete, read and free operations to the removed (now "indirect") vdev must be remapped and performed at the new location on disk. The indirect mapping table is kept in memory whenever the pool is loaded, so there is minimal performance overhead when doing operations on the indirect vdev. The size of the in-memory mapping table will be reduced when its entries become "obsolete" because they are no longer used by any block pointers in the pool. An entry becomes obsolete when all the blocks that use it are freed. An entry can also become obsolete when all the snapshots that reference it are deleted, and the block pointers that reference it have been "remapped" in all filesystems/zvols (and clones). Whenever an indirect block is written, all the block pointers in it will be "remapped" to their new (concrete) locations if possible. This process can be accelerated by using the "zfs remap" command to proactively rewrite all indirect blocks that reference indirect (removed) vdevs. Note that when a device is removed, we do not verify the checksum of the data that is copied. This makes the process much faster, but if it were used on redundant vdevs (i.e. mirror or raidz vdevs), it would be possible to copy the wrong data, when we have the correct data on e.g. the other side of the mirror. At the moment, only mirrors and simple top-level vdevs can be removed and no removal is allowed if any of the top-level vdevs are raidz. Porting Notes: * Avoid zero-sized kmem_alloc() in vdev_compact_children(). The device evacuation code adds a dependency that vdev_compact_children() be able to properly empty the vdev_child array by setting it to NULL and zeroing vdev_children. Under Linux, kmem_alloc() and related functions return a sentinel pointer rather than NULL for zero-sized allocations. * Remove comment regarding "mpt" driver where zfs_remove_max_segment is initialized to SPA_MAXBLOCKSIZE. Change zfs_condense_indirect_commit_entry_delay_ticks to zfs_condense_indirect_commit_entry_delay_ms for consistency with most other tunables in which delays are specified in ms. * ZTS changes: Use set_tunable rather than mdb Use zpool sync as appropriate Use sync_pool instead of sync Kill jobs during test_removal_with_operation to allow unmount/export Don't add non-disk names such as "mirror" or "raidz" to $DISKS Use $TEST_BASE_DIR instead of /tmp Increase HZ from 100 to 1000 which is more common on Linux removal_multiple_indirection.ksh Reduce iterations in order to not time out on the code coverage builders. removal_resume_export: Functionally, the test case is correct but there exists a race where the kernel thread hasn't been fully started yet and is not visible. Wait for up to 1 second for the removal thread to be started before giving up on it. Also, increase the amount of data copied in order that the removal not finish before the export has a chance to fail. * MMP compatibility, the concept of concrete versus non-concrete devices has slightly changed the semantics of vdev_writeable(). Update mmp_random_leaf_impl() accordingly. * Updated dbuf_remap() to handle the org.zfsonlinux:large_dnode pool feature which is not supported by OpenZFS. * Added support for new vdev removal tracepoints. * Test cases removal_with_zdb and removal_condense_export have been intentionally disabled. When run manually they pass as intended, but when running in the automated test environment they produce unreliable results on the latest Fedora release. They may work better once the upstream pool import refectoring is merged into ZoL at which point they will be re-enabled. Authored by: Matthew Ahrens <mahrens@delphix.com> Reviewed-by: Alex Reece <alex@delphix.com> Reviewed-by: George Wilson <george.wilson@delphix.com> Reviewed-by: John Kennedy <john.kennedy@delphix.com> Reviewed-by: Prakash Surya <prakash.surya@delphix.com> Reviewed by: Richard Laager <rlaager@wiktel.com> Reviewed by: Tim Chase <tim@chase2k.com> Reviewed by: Brian Behlendorf <behlendorf1@llnl.gov> Approved by: Garrett D'Amore <garrett@damore.org> Ported-by: Tim Chase <tim@chase2k.com> Signed-off-by: Tim Chase <tim@chase2k.com> OpenZFS-issue: https://www.illumos.org/issues/7614 OpenZFS-commit: https://github.com/openzfs/openzfs/commit/f539f1eb Closes #6900
2016-09-22 19:30:13 +03:00
if (dp->dp_free_dir != NULL && !scn->scn_async_destroying &&
!spa_livelist_delete_check(spa)) {
/* finished; verify that space accounting went to zero */
ASSERT0(dsl_dir_phys(dp->dp_free_dir)->dd_used_bytes);
ASSERT0(dsl_dir_phys(dp->dp_free_dir)->dd_compressed_bytes);
ASSERT0(dsl_dir_phys(dp->dp_free_dir)->dd_uncompressed_bytes);
}
Add subcommand to wait for background zfs activity to complete Currently the best way to wait for the completion of a long-running operation in a pool, like a scrub or device removal, is to poll 'zpool status' and parse its output, which is neither efficient nor convenient. This change adds a 'wait' subcommand to the zpool command. When invoked, 'zpool wait' will block until a specified type of background activity completes. Currently, this subcommand can wait for any of the following: - Scrubs or resilvers to complete - Devices to initialized - Devices to be replaced - Devices to be removed - Checkpoints to be discarded - Background freeing to complete For example, a scrub that is in progress could be waited for by running zpool wait -t scrub <pool> This also adds a -w flag to the attach, checkpoint, initialize, replace, remove, and scrub subcommands. When used, this flag makes the operations kicked off by these subcommands synchronous instead of asynchronous. This functionality is implemented using a new ioctl. The type of activity to wait for is provided as input to the ioctl, and the ioctl blocks until all activity of that type has completed. An ioctl was used over other methods of kernel-userspace communiction primarily for the sake of portability. Porting Notes: This is ported from Delphix OS change DLPX-44432. The following changes were made while porting: - Added ZoL-style ioctl input declaration. - Reorganized error handling in zpool_initialize in libzfs to integrate better with changes made for TRIM support. - Fixed check for whether a checkpoint discard is in progress. Previously it also waited if the pool had a checkpoint, instead of just if a checkpoint was being discarded. - Exposed zfs_initialize_chunk_size as a ZoL-style tunable. - Updated more existing tests to make use of new 'zpool wait' functionality, tests that don't exist in Delphix OS. - Used existing ZoL tunable zfs_scan_suspend_progress, together with zinject, in place of a new tunable zfs_scan_max_blks_per_txg. - Added support for a non-integral interval argument to zpool wait. Future work: ZoL has support for trimming devices, which Delphix OS does not. In the future, 'zpool wait' could be extended to add the ability to wait for trim operations to complete. Reviewed-by: Matt Ahrens <matt@delphix.com> Reviewed-by: John Kennedy <john.kennedy@delphix.com> Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov> Signed-off-by: John Gallagher <john.gallagher@delphix.com> Closes #9162
2019-09-14 04:09:06 +03:00
spa_notify_waiters(spa);
OpenZFS 7614, 9064 - zfs device evacuation/removal OpenZFS 7614 - zfs device evacuation/removal OpenZFS 9064 - remove_mirror should wait for device removal to complete This project allows top-level vdevs to be removed from the storage pool with "zpool remove", reducing the total amount of storage in the pool. This operation copies all allocated regions of the device to be removed onto other devices, recording the mapping from old to new location. After the removal is complete, read and free operations to the removed (now "indirect") vdev must be remapped and performed at the new location on disk. The indirect mapping table is kept in memory whenever the pool is loaded, so there is minimal performance overhead when doing operations on the indirect vdev. The size of the in-memory mapping table will be reduced when its entries become "obsolete" because they are no longer used by any block pointers in the pool. An entry becomes obsolete when all the blocks that use it are freed. An entry can also become obsolete when all the snapshots that reference it are deleted, and the block pointers that reference it have been "remapped" in all filesystems/zvols (and clones). Whenever an indirect block is written, all the block pointers in it will be "remapped" to their new (concrete) locations if possible. This process can be accelerated by using the "zfs remap" command to proactively rewrite all indirect blocks that reference indirect (removed) vdevs. Note that when a device is removed, we do not verify the checksum of the data that is copied. This makes the process much faster, but if it were used on redundant vdevs (i.e. mirror or raidz vdevs), it would be possible to copy the wrong data, when we have the correct data on e.g. the other side of the mirror. At the moment, only mirrors and simple top-level vdevs can be removed and no removal is allowed if any of the top-level vdevs are raidz. Porting Notes: * Avoid zero-sized kmem_alloc() in vdev_compact_children(). The device evacuation code adds a dependency that vdev_compact_children() be able to properly empty the vdev_child array by setting it to NULL and zeroing vdev_children. Under Linux, kmem_alloc() and related functions return a sentinel pointer rather than NULL for zero-sized allocations. * Remove comment regarding "mpt" driver where zfs_remove_max_segment is initialized to SPA_MAXBLOCKSIZE. Change zfs_condense_indirect_commit_entry_delay_ticks to zfs_condense_indirect_commit_entry_delay_ms for consistency with most other tunables in which delays are specified in ms. * ZTS changes: Use set_tunable rather than mdb Use zpool sync as appropriate Use sync_pool instead of sync Kill jobs during test_removal_with_operation to allow unmount/export Don't add non-disk names such as "mirror" or "raidz" to $DISKS Use $TEST_BASE_DIR instead of /tmp Increase HZ from 100 to 1000 which is more common on Linux removal_multiple_indirection.ksh Reduce iterations in order to not time out on the code coverage builders. removal_resume_export: Functionally, the test case is correct but there exists a race where the kernel thread hasn't been fully started yet and is not visible. Wait for up to 1 second for the removal thread to be started before giving up on it. Also, increase the amount of data copied in order that the removal not finish before the export has a chance to fail. * MMP compatibility, the concept of concrete versus non-concrete devices has slightly changed the semantics of vdev_writeable(). Update mmp_random_leaf_impl() accordingly. * Updated dbuf_remap() to handle the org.zfsonlinux:large_dnode pool feature which is not supported by OpenZFS. * Added support for new vdev removal tracepoints. * Test cases removal_with_zdb and removal_condense_export have been intentionally disabled. When run manually they pass as intended, but when running in the automated test environment they produce unreliable results on the latest Fedora release. They may work better once the upstream pool import refectoring is merged into ZoL at which point they will be re-enabled. Authored by: Matthew Ahrens <mahrens@delphix.com> Reviewed-by: Alex Reece <alex@delphix.com> Reviewed-by: George Wilson <george.wilson@delphix.com> Reviewed-by: John Kennedy <john.kennedy@delphix.com> Reviewed-by: Prakash Surya <prakash.surya@delphix.com> Reviewed by: Richard Laager <rlaager@wiktel.com> Reviewed by: Tim Chase <tim@chase2k.com> Reviewed by: Brian Behlendorf <behlendorf1@llnl.gov> Approved by: Garrett D'Amore <garrett@damore.org> Ported-by: Tim Chase <tim@chase2k.com> Signed-off-by: Tim Chase <tim@chase2k.com> OpenZFS-issue: https://www.illumos.org/issues/7614 OpenZFS-commit: https://github.com/openzfs/openzfs/commit/f539f1eb Closes #6900
2016-09-22 19:30:13 +03:00
EQUIV(bpobj_is_open(&dp->dp_obsolete_bpobj),
0 == zap_contains(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
DMU_POOL_OBSOLETE_BPOBJ));
if (err == 0 && bpobj_is_open(&dp->dp_obsolete_bpobj)) {
ASSERT(spa_feature_is_active(dp->dp_spa,
SPA_FEATURE_OBSOLETE_COUNTS));
scn->scn_is_bptree = B_FALSE;
scn->scn_async_block_min_time_ms = zfs_obsolete_min_time_ms;
err = bpobj_iterate(&dp->dp_obsolete_bpobj,
dsl_scan_obsolete_block_cb, scn, tx);
if (err != 0 && err != ERESTART)
zfs_panic_recover("error %u from bpobj_iterate()", err);
if (bpobj_is_empty(&dp->dp_obsolete_bpobj))
dsl_pool_destroy_obsolete_bpobj(dp, tx);
}
OpenZFS 9166 - zfs storage pool checkpoint Details about the motivation of this feature and its usage can be found in this blogpost: https://sdimitro.github.io/post/zpool-checkpoint/ A lightning talk of this feature can be found here: https://www.youtube.com/watch?v=fPQA8K40jAM Implementation details can be found in big block comment of spa_checkpoint.c Side-changes that are relevant to this commit but not explained elsewhere: * renames members of "struct metaslab trees to be shorter without losing meaning * space_map_{alloc,truncate}() accept a block size as a parameter. The reason is that in the current state all space maps that we allocate through the DMU use a global tunable (space_map_blksz) which defauls to 4KB. This is ok for metaslab space maps in terms of bandwirdth since they are scattered all over the disk. But for other space maps this default is probably not what we want. Examples are device removal's vdev_obsolete_sm or vdev_chedkpoint_sm from this review. Both of these have a 1:1 relationship with each vdev and could benefit from a bigger block size. Porting notes: * The part of dsl_scan_sync() which handles async destroys has been moved into the new dsl_process_async_destroys() function. * Remove "VERIFY(!(flags & FWRITE))" in "kernel.c" so zhack can write to block device backed pools. * ZTS: * Fix get_txg() in zpool_sync_001_pos due to "checkpoint_txg". * Don't use large dd block sizes on /dev/urandom under Linux in checkpoint_capacity. * Adopt Delphix-OS's setting of 4 (spa_asize_inflation = SPA_DVAS_PER_BP + 1) for the checkpoint_capacity test to speed its attempts to fill the pool * Create the base and nested pools with sync=disabled to speed up the "setup" phase. * Clear labels in test pool between checkpoint tests to avoid duplicate pool issues. * The import_rewind_device_replaced test has been marked as "known to fail" for the reasons listed in its DISCLAIMER. * New module parameters: zfs_spa_discard_memory_limit, zfs_remove_max_bytes_pause (not documented - debugging only) vdev_max_ms_count (formerly metaslabs_per_vdev) vdev_min_ms_count Authored by: Serapheim Dimitropoulos <serapheim.dimitro@delphix.com> Reviewed by: Matthew Ahrens <mahrens@delphix.com> Reviewed by: John Kennedy <john.kennedy@delphix.com> Reviewed by: Dan Kimmel <dan.kimmel@delphix.com> Reviewed by: Brian Behlendorf <behlendorf1@llnl.gov> Approved by: Richard Lowe <richlowe@richlowe.net> Ported-by: Tim Chase <tim@chase2k.com> Signed-off-by: Tim Chase <tim@chase2k.com> OpenZFS-issue: https://illumos.org/issues/9166 OpenZFS-commit: https://github.com/openzfs/openzfs/commit/7159fdb8 Closes #7570
2016-12-17 01:11:29 +03:00
return (0);
}
/*
* This is the primary entry point for scans that is called from syncing
* context. Scans must happen entirely during syncing context so that we
* can guarantee that blocks we are currently scanning will not change out
OpenZFS 9166 - zfs storage pool checkpoint Details about the motivation of this feature and its usage can be found in this blogpost: https://sdimitro.github.io/post/zpool-checkpoint/ A lightning talk of this feature can be found here: https://www.youtube.com/watch?v=fPQA8K40jAM Implementation details can be found in big block comment of spa_checkpoint.c Side-changes that are relevant to this commit but not explained elsewhere: * renames members of "struct metaslab trees to be shorter without losing meaning * space_map_{alloc,truncate}() accept a block size as a parameter. The reason is that in the current state all space maps that we allocate through the DMU use a global tunable (space_map_blksz) which defauls to 4KB. This is ok for metaslab space maps in terms of bandwirdth since they are scattered all over the disk. But for other space maps this default is probably not what we want. Examples are device removal's vdev_obsolete_sm or vdev_chedkpoint_sm from this review. Both of these have a 1:1 relationship with each vdev and could benefit from a bigger block size. Porting notes: * The part of dsl_scan_sync() which handles async destroys has been moved into the new dsl_process_async_destroys() function. * Remove "VERIFY(!(flags & FWRITE))" in "kernel.c" so zhack can write to block device backed pools. * ZTS: * Fix get_txg() in zpool_sync_001_pos due to "checkpoint_txg". * Don't use large dd block sizes on /dev/urandom under Linux in checkpoint_capacity. * Adopt Delphix-OS's setting of 4 (spa_asize_inflation = SPA_DVAS_PER_BP + 1) for the checkpoint_capacity test to speed its attempts to fill the pool * Create the base and nested pools with sync=disabled to speed up the "setup" phase. * Clear labels in test pool between checkpoint tests to avoid duplicate pool issues. * The import_rewind_device_replaced test has been marked as "known to fail" for the reasons listed in its DISCLAIMER. * New module parameters: zfs_spa_discard_memory_limit, zfs_remove_max_bytes_pause (not documented - debugging only) vdev_max_ms_count (formerly metaslabs_per_vdev) vdev_min_ms_count Authored by: Serapheim Dimitropoulos <serapheim.dimitro@delphix.com> Reviewed by: Matthew Ahrens <mahrens@delphix.com> Reviewed by: John Kennedy <john.kennedy@delphix.com> Reviewed by: Dan Kimmel <dan.kimmel@delphix.com> Reviewed by: Brian Behlendorf <behlendorf1@llnl.gov> Approved by: Richard Lowe <richlowe@richlowe.net> Ported-by: Tim Chase <tim@chase2k.com> Signed-off-by: Tim Chase <tim@chase2k.com> OpenZFS-issue: https://illumos.org/issues/9166 OpenZFS-commit: https://github.com/openzfs/openzfs/commit/7159fdb8 Closes #7570
2016-12-17 01:11:29 +03:00
* from under us. While a scan is active, this function controls how quickly
* transaction groups proceed, instead of the normal handling provided by
* txg_sync_thread().
*/
void
dsl_scan_sync(dsl_pool_t *dp, dmu_tx_t *tx)
{
int err = 0;
dsl_scan_t *scn = dp->dp_scan;
spa_t *spa = dp->dp_spa;
state_sync_type_t sync_type = SYNC_OPTIONAL;
if (spa->spa_resilver_deferred &&
!spa_feature_is_active(dp->dp_spa, SPA_FEATURE_RESILVER_DEFER))
spa_feature_incr(spa, SPA_FEATURE_RESILVER_DEFER, tx);
OpenZFS 9166 - zfs storage pool checkpoint Details about the motivation of this feature and its usage can be found in this blogpost: https://sdimitro.github.io/post/zpool-checkpoint/ A lightning talk of this feature can be found here: https://www.youtube.com/watch?v=fPQA8K40jAM Implementation details can be found in big block comment of spa_checkpoint.c Side-changes that are relevant to this commit but not explained elsewhere: * renames members of "struct metaslab trees to be shorter without losing meaning * space_map_{alloc,truncate}() accept a block size as a parameter. The reason is that in the current state all space maps that we allocate through the DMU use a global tunable (space_map_blksz) which defauls to 4KB. This is ok for metaslab space maps in terms of bandwirdth since they are scattered all over the disk. But for other space maps this default is probably not what we want. Examples are device removal's vdev_obsolete_sm or vdev_chedkpoint_sm from this review. Both of these have a 1:1 relationship with each vdev and could benefit from a bigger block size. Porting notes: * The part of dsl_scan_sync() which handles async destroys has been moved into the new dsl_process_async_destroys() function. * Remove "VERIFY(!(flags & FWRITE))" in "kernel.c" so zhack can write to block device backed pools. * ZTS: * Fix get_txg() in zpool_sync_001_pos due to "checkpoint_txg". * Don't use large dd block sizes on /dev/urandom under Linux in checkpoint_capacity. * Adopt Delphix-OS's setting of 4 (spa_asize_inflation = SPA_DVAS_PER_BP + 1) for the checkpoint_capacity test to speed its attempts to fill the pool * Create the base and nested pools with sync=disabled to speed up the "setup" phase. * Clear labels in test pool between checkpoint tests to avoid duplicate pool issues. * The import_rewind_device_replaced test has been marked as "known to fail" for the reasons listed in its DISCLAIMER. * New module parameters: zfs_spa_discard_memory_limit, zfs_remove_max_bytes_pause (not documented - debugging only) vdev_max_ms_count (formerly metaslabs_per_vdev) vdev_min_ms_count Authored by: Serapheim Dimitropoulos <serapheim.dimitro@delphix.com> Reviewed by: Matthew Ahrens <mahrens@delphix.com> Reviewed by: John Kennedy <john.kennedy@delphix.com> Reviewed by: Dan Kimmel <dan.kimmel@delphix.com> Reviewed by: Brian Behlendorf <behlendorf1@llnl.gov> Approved by: Richard Lowe <richlowe@richlowe.net> Ported-by: Tim Chase <tim@chase2k.com> Signed-off-by: Tim Chase <tim@chase2k.com> OpenZFS-issue: https://illumos.org/issues/9166 OpenZFS-commit: https://github.com/openzfs/openzfs/commit/7159fdb8 Closes #7570
2016-12-17 01:11:29 +03:00
/*
* Check for scn_restart_txg before checking spa_load_state, so
* that we can restart an old-style scan while the pool is being
* imported (see dsl_scan_init). We also restart scans if there
* is a deferred resilver and the user has manually disabled
* deferred resilvers via the tunable.
OpenZFS 9166 - zfs storage pool checkpoint Details about the motivation of this feature and its usage can be found in this blogpost: https://sdimitro.github.io/post/zpool-checkpoint/ A lightning talk of this feature can be found here: https://www.youtube.com/watch?v=fPQA8K40jAM Implementation details can be found in big block comment of spa_checkpoint.c Side-changes that are relevant to this commit but not explained elsewhere: * renames members of "struct metaslab trees to be shorter without losing meaning * space_map_{alloc,truncate}() accept a block size as a parameter. The reason is that in the current state all space maps that we allocate through the DMU use a global tunable (space_map_blksz) which defauls to 4KB. This is ok for metaslab space maps in terms of bandwirdth since they are scattered all over the disk. But for other space maps this default is probably not what we want. Examples are device removal's vdev_obsolete_sm or vdev_chedkpoint_sm from this review. Both of these have a 1:1 relationship with each vdev and could benefit from a bigger block size. Porting notes: * The part of dsl_scan_sync() which handles async destroys has been moved into the new dsl_process_async_destroys() function. * Remove "VERIFY(!(flags & FWRITE))" in "kernel.c" so zhack can write to block device backed pools. * ZTS: * Fix get_txg() in zpool_sync_001_pos due to "checkpoint_txg". * Don't use large dd block sizes on /dev/urandom under Linux in checkpoint_capacity. * Adopt Delphix-OS's setting of 4 (spa_asize_inflation = SPA_DVAS_PER_BP + 1) for the checkpoint_capacity test to speed its attempts to fill the pool * Create the base and nested pools with sync=disabled to speed up the "setup" phase. * Clear labels in test pool between checkpoint tests to avoid duplicate pool issues. * The import_rewind_device_replaced test has been marked as "known to fail" for the reasons listed in its DISCLAIMER. * New module parameters: zfs_spa_discard_memory_limit, zfs_remove_max_bytes_pause (not documented - debugging only) vdev_max_ms_count (formerly metaslabs_per_vdev) vdev_min_ms_count Authored by: Serapheim Dimitropoulos <serapheim.dimitro@delphix.com> Reviewed by: Matthew Ahrens <mahrens@delphix.com> Reviewed by: John Kennedy <john.kennedy@delphix.com> Reviewed by: Dan Kimmel <dan.kimmel@delphix.com> Reviewed by: Brian Behlendorf <behlendorf1@llnl.gov> Approved by: Richard Lowe <richlowe@richlowe.net> Ported-by: Tim Chase <tim@chase2k.com> Signed-off-by: Tim Chase <tim@chase2k.com> OpenZFS-issue: https://illumos.org/issues/9166 OpenZFS-commit: https://github.com/openzfs/openzfs/commit/7159fdb8 Closes #7570
2016-12-17 01:11:29 +03:00
*/
if (dsl_scan_restarting(scn, tx) ||
(spa->spa_resilver_deferred && zfs_resilver_disable_defer)) {
OpenZFS 9166 - zfs storage pool checkpoint Details about the motivation of this feature and its usage can be found in this blogpost: https://sdimitro.github.io/post/zpool-checkpoint/ A lightning talk of this feature can be found here: https://www.youtube.com/watch?v=fPQA8K40jAM Implementation details can be found in big block comment of spa_checkpoint.c Side-changes that are relevant to this commit but not explained elsewhere: * renames members of "struct metaslab trees to be shorter without losing meaning * space_map_{alloc,truncate}() accept a block size as a parameter. The reason is that in the current state all space maps that we allocate through the DMU use a global tunable (space_map_blksz) which defauls to 4KB. This is ok for metaslab space maps in terms of bandwirdth since they are scattered all over the disk. But for other space maps this default is probably not what we want. Examples are device removal's vdev_obsolete_sm or vdev_chedkpoint_sm from this review. Both of these have a 1:1 relationship with each vdev and could benefit from a bigger block size. Porting notes: * The part of dsl_scan_sync() which handles async destroys has been moved into the new dsl_process_async_destroys() function. * Remove "VERIFY(!(flags & FWRITE))" in "kernel.c" so zhack can write to block device backed pools. * ZTS: * Fix get_txg() in zpool_sync_001_pos due to "checkpoint_txg". * Don't use large dd block sizes on /dev/urandom under Linux in checkpoint_capacity. * Adopt Delphix-OS's setting of 4 (spa_asize_inflation = SPA_DVAS_PER_BP + 1) for the checkpoint_capacity test to speed its attempts to fill the pool * Create the base and nested pools with sync=disabled to speed up the "setup" phase. * Clear labels in test pool between checkpoint tests to avoid duplicate pool issues. * The import_rewind_device_replaced test has been marked as "known to fail" for the reasons listed in its DISCLAIMER. * New module parameters: zfs_spa_discard_memory_limit, zfs_remove_max_bytes_pause (not documented - debugging only) vdev_max_ms_count (formerly metaslabs_per_vdev) vdev_min_ms_count Authored by: Serapheim Dimitropoulos <serapheim.dimitro@delphix.com> Reviewed by: Matthew Ahrens <mahrens@delphix.com> Reviewed by: John Kennedy <john.kennedy@delphix.com> Reviewed by: Dan Kimmel <dan.kimmel@delphix.com> Reviewed by: Brian Behlendorf <behlendorf1@llnl.gov> Approved by: Richard Lowe <richlowe@richlowe.net> Ported-by: Tim Chase <tim@chase2k.com> Signed-off-by: Tim Chase <tim@chase2k.com> OpenZFS-issue: https://illumos.org/issues/9166 OpenZFS-commit: https://github.com/openzfs/openzfs/commit/7159fdb8 Closes #7570
2016-12-17 01:11:29 +03:00
pool_scan_func_t func = POOL_SCAN_SCRUB;
dsl_scan_done(scn, B_FALSE, tx);
if (vdev_resilver_needed(spa->spa_root_vdev, NULL, NULL))
func = POOL_SCAN_RESILVER;
zfs_dbgmsg("restarting scan func=%u txg=%llu",
func, (longlong_t)tx->tx_txg);
dsl_scan_setup_sync(&func, tx);
}
/*
* Only process scans in sync pass 1.
*/
if (spa_sync_pass(spa) > 1)
return;
/*
* If the spa is shutting down, then stop scanning. This will
* ensure that the scan does not dirty any new data during the
* shutdown phase.
*/
if (spa_shutting_down(spa))
return;
/*
* If the scan is inactive due to a stalled async destroy, try again.
*/
if (!scn->scn_async_stalled && !dsl_scan_active(scn))
return;
/* reset scan statistics */
scn->scn_visited_this_txg = 0;
scn->scn_dedup_frees_this_txg = 0;
OpenZFS 9166 - zfs storage pool checkpoint Details about the motivation of this feature and its usage can be found in this blogpost: https://sdimitro.github.io/post/zpool-checkpoint/ A lightning talk of this feature can be found here: https://www.youtube.com/watch?v=fPQA8K40jAM Implementation details can be found in big block comment of spa_checkpoint.c Side-changes that are relevant to this commit but not explained elsewhere: * renames members of "struct metaslab trees to be shorter without losing meaning * space_map_{alloc,truncate}() accept a block size as a parameter. The reason is that in the current state all space maps that we allocate through the DMU use a global tunable (space_map_blksz) which defauls to 4KB. This is ok for metaslab space maps in terms of bandwirdth since they are scattered all over the disk. But for other space maps this default is probably not what we want. Examples are device removal's vdev_obsolete_sm or vdev_chedkpoint_sm from this review. Both of these have a 1:1 relationship with each vdev and could benefit from a bigger block size. Porting notes: * The part of dsl_scan_sync() which handles async destroys has been moved into the new dsl_process_async_destroys() function. * Remove "VERIFY(!(flags & FWRITE))" in "kernel.c" so zhack can write to block device backed pools. * ZTS: * Fix get_txg() in zpool_sync_001_pos due to "checkpoint_txg". * Don't use large dd block sizes on /dev/urandom under Linux in checkpoint_capacity. * Adopt Delphix-OS's setting of 4 (spa_asize_inflation = SPA_DVAS_PER_BP + 1) for the checkpoint_capacity test to speed its attempts to fill the pool * Create the base and nested pools with sync=disabled to speed up the "setup" phase. * Clear labels in test pool between checkpoint tests to avoid duplicate pool issues. * The import_rewind_device_replaced test has been marked as "known to fail" for the reasons listed in its DISCLAIMER. * New module parameters: zfs_spa_discard_memory_limit, zfs_remove_max_bytes_pause (not documented - debugging only) vdev_max_ms_count (formerly metaslabs_per_vdev) vdev_min_ms_count Authored by: Serapheim Dimitropoulos <serapheim.dimitro@delphix.com> Reviewed by: Matthew Ahrens <mahrens@delphix.com> Reviewed by: John Kennedy <john.kennedy@delphix.com> Reviewed by: Dan Kimmel <dan.kimmel@delphix.com> Reviewed by: Brian Behlendorf <behlendorf1@llnl.gov> Approved by: Richard Lowe <richlowe@richlowe.net> Ported-by: Tim Chase <tim@chase2k.com> Signed-off-by: Tim Chase <tim@chase2k.com> OpenZFS-issue: https://illumos.org/issues/9166 OpenZFS-commit: https://github.com/openzfs/openzfs/commit/7159fdb8 Closes #7570
2016-12-17 01:11:29 +03:00
scn->scn_holes_this_txg = 0;
scn->scn_lt_min_this_txg = 0;
scn->scn_gt_max_this_txg = 0;
scn->scn_ddt_contained_this_txg = 0;
scn->scn_objsets_visited_this_txg = 0;
scn->scn_avg_seg_size_this_txg = 0;
scn->scn_segs_this_txg = 0;
scn->scn_avg_zio_size_this_txg = 0;
scn->scn_zios_this_txg = 0;
scn->scn_suspending = B_FALSE;
scn->scn_sync_start_time = gethrtime();
spa->spa_scrub_active = B_TRUE;
/*
* First process the async destroys. If we suspend, don't do
* any scrubbing or resilvering. This ensures that there are no
* async destroys while we are scanning, so the scan code doesn't
* have to worry about traversing it. It is also faster to free the
* blocks than to scrub them.
*/
err = dsl_process_async_destroys(dp, tx);
if (err != 0)
return;
OpenZFS 7614, 9064 - zfs device evacuation/removal OpenZFS 7614 - zfs device evacuation/removal OpenZFS 9064 - remove_mirror should wait for device removal to complete This project allows top-level vdevs to be removed from the storage pool with "zpool remove", reducing the total amount of storage in the pool. This operation copies all allocated regions of the device to be removed onto other devices, recording the mapping from old to new location. After the removal is complete, read and free operations to the removed (now "indirect") vdev must be remapped and performed at the new location on disk. The indirect mapping table is kept in memory whenever the pool is loaded, so there is minimal performance overhead when doing operations on the indirect vdev. The size of the in-memory mapping table will be reduced when its entries become "obsolete" because they are no longer used by any block pointers in the pool. An entry becomes obsolete when all the blocks that use it are freed. An entry can also become obsolete when all the snapshots that reference it are deleted, and the block pointers that reference it have been "remapped" in all filesystems/zvols (and clones). Whenever an indirect block is written, all the block pointers in it will be "remapped" to their new (concrete) locations if possible. This process can be accelerated by using the "zfs remap" command to proactively rewrite all indirect blocks that reference indirect (removed) vdevs. Note that when a device is removed, we do not verify the checksum of the data that is copied. This makes the process much faster, but if it were used on redundant vdevs (i.e. mirror or raidz vdevs), it would be possible to copy the wrong data, when we have the correct data on e.g. the other side of the mirror. At the moment, only mirrors and simple top-level vdevs can be removed and no removal is allowed if any of the top-level vdevs are raidz. Porting Notes: * Avoid zero-sized kmem_alloc() in vdev_compact_children(). The device evacuation code adds a dependency that vdev_compact_children() be able to properly empty the vdev_child array by setting it to NULL and zeroing vdev_children. Under Linux, kmem_alloc() and related functions return a sentinel pointer rather than NULL for zero-sized allocations. * Remove comment regarding "mpt" driver where zfs_remove_max_segment is initialized to SPA_MAXBLOCKSIZE. Change zfs_condense_indirect_commit_entry_delay_ticks to zfs_condense_indirect_commit_entry_delay_ms for consistency with most other tunables in which delays are specified in ms. * ZTS changes: Use set_tunable rather than mdb Use zpool sync as appropriate Use sync_pool instead of sync Kill jobs during test_removal_with_operation to allow unmount/export Don't add non-disk names such as "mirror" or "raidz" to $DISKS Use $TEST_BASE_DIR instead of /tmp Increase HZ from 100 to 1000 which is more common on Linux removal_multiple_indirection.ksh Reduce iterations in order to not time out on the code coverage builders. removal_resume_export: Functionally, the test case is correct but there exists a race where the kernel thread hasn't been fully started yet and is not visible. Wait for up to 1 second for the removal thread to be started before giving up on it. Also, increase the amount of data copied in order that the removal not finish before the export has a chance to fail. * MMP compatibility, the concept of concrete versus non-concrete devices has slightly changed the semantics of vdev_writeable(). Update mmp_random_leaf_impl() accordingly. * Updated dbuf_remap() to handle the org.zfsonlinux:large_dnode pool feature which is not supported by OpenZFS. * Added support for new vdev removal tracepoints. * Test cases removal_with_zdb and removal_condense_export have been intentionally disabled. When run manually they pass as intended, but when running in the automated test environment they produce unreliable results on the latest Fedora release. They may work better once the upstream pool import refectoring is merged into ZoL at which point they will be re-enabled. Authored by: Matthew Ahrens <mahrens@delphix.com> Reviewed-by: Alex Reece <alex@delphix.com> Reviewed-by: George Wilson <george.wilson@delphix.com> Reviewed-by: John Kennedy <john.kennedy@delphix.com> Reviewed-by: Prakash Surya <prakash.surya@delphix.com> Reviewed by: Richard Laager <rlaager@wiktel.com> Reviewed by: Tim Chase <tim@chase2k.com> Reviewed by: Brian Behlendorf <behlendorf1@llnl.gov> Approved by: Garrett D'Amore <garrett@damore.org> Ported-by: Tim Chase <tim@chase2k.com> Signed-off-by: Tim Chase <tim@chase2k.com> OpenZFS-issue: https://www.illumos.org/issues/7614 OpenZFS-commit: https://github.com/openzfs/openzfs/commit/f539f1eb Closes #6900
2016-09-22 19:30:13 +03:00
if (!dsl_scan_is_running(scn) || dsl_scan_is_paused_scrub(scn))
return;
/*
* Wait a few txgs after importing to begin scanning so that
* we can get the pool imported quickly.
*/
if (spa->spa_syncing_txg < spa->spa_first_txg + SCAN_IMPORT_WAIT_TXGS)
Illumos #3956, #3957, #3958, #3959, #3960, #3961, #3962 3956 ::vdev -r should work with pipelines 3957 ztest should update the cachefile before killing itself 3958 multiple scans can lead to partial resilvering 3959 ddt entries are not always resilvered 3960 dsl_scan can skip over dedup-ed blocks if physical birth != logical birth 3961 freed gang blocks are not resilvered and can cause pool to suspend 3962 ztest should print out zfs debug buffer before exiting Reviewed by: Matthew Ahrens <mahrens@delphix.com> Reviewed by: Adam Leventhal <ahl@delphix.com> Approved by: Richard Lowe <richlowe@richlowe.net> References: https://www.illumos.org/issues/3956 https://www.illumos.org/issues/3957 https://www.illumos.org/issues/3958 https://www.illumos.org/issues/3959 https://www.illumos.org/issues/3960 https://www.illumos.org/issues/3961 https://www.illumos.org/issues/3962 illumos/illumos-gate@b4952e17e8858d3225793b28788278de9fe6038d Ported-by: Richard Yao <ryao@gentoo.org> Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov> Porting notes: 1. zfs_dbgmsg_print() is only used in userland. Since we do not have mdb on Linux, it does not make sense to make it available in the kernel. This means that a build failure will occur if any future kernel patch depends on it. However, that is unlikely given that this functionality was added to support zdb. 2. zfs_dbgmsg_print() is only invoked for -VVV or greater log levels. This preserves the existing behavior of minimal noise when running with -V, and -VV. 3. In vdev_config_generate() the call to nvlist_alloc() was not changed to fnvlist_alloc() because we must pass KM_PUSHPAGE in the txg_sync context.
2013-08-08 00:16:22 +04:00
return;
/*
* zfs_scan_suspend_progress can be set to disable scan progress.
* We don't want to spin the txg_sync thread, so we add a delay
* here to simulate the time spent doing a scan. This is mostly
* useful for testing and debugging.
*/
if (zfs_scan_suspend_progress) {
uint64_t scan_time_ns = gethrtime() - scn->scn_sync_start_time;
int mintime = (scn->scn_phys.scn_func == POOL_SCAN_RESILVER) ?
zfs_resilver_min_time_ms : zfs_scrub_min_time_ms;
while (zfs_scan_suspend_progress &&
!txg_sync_waiting(scn->scn_dp) &&
!spa_shutting_down(scn->scn_dp->dp_spa) &&
NSEC2MSEC(scan_time_ns) < mintime) {
delay(hz);
scan_time_ns = gethrtime() - scn->scn_sync_start_time;
}
return;
}
/*
* It is possible to switch from unsorted to sorted at any time,
* but afterwards the scan will remain sorted unless reloaded from
* a checkpoint after a reboot.
*/
if (!zfs_scan_legacy) {
scn->scn_is_sorted = B_TRUE;
if (scn->scn_last_checkpoint == 0)
scn->scn_last_checkpoint = ddi_get_lbolt();
}
/*
* For sorted scans, determine what kind of work we will be doing
* this txg based on our memory limitations and whether or not we
* need to perform a checkpoint.
*/
if (scn->scn_is_sorted) {
/*
* If we are over our checkpoint interval, set scn_clearing
* so that we can begin checkpointing immediately. The
* checkpoint allows us to save a consistent bookmark
* representing how much data we have scrubbed so far.
* Otherwise, use the memory limit to determine if we should
* scan for metadata or start issue scrub IOs. We accumulate
* metadata until we hit our hard memory limit at which point
* we issue scrub IOs until we are at our soft memory limit.
*/
if (scn->scn_checkpointing ||
ddi_get_lbolt() - scn->scn_last_checkpoint >
SEC_TO_TICK(zfs_scan_checkpoint_intval)) {
if (!scn->scn_checkpointing)
zfs_dbgmsg("begin scan checkpoint");
scn->scn_checkpointing = B_TRUE;
scn->scn_clearing = B_TRUE;
} else {
boolean_t should_clear = dsl_scan_should_clear(scn);
if (should_clear && !scn->scn_clearing) {
zfs_dbgmsg("begin scan clearing");
scn->scn_clearing = B_TRUE;
} else if (!should_clear && scn->scn_clearing) {
zfs_dbgmsg("finish scan clearing");
scn->scn_clearing = B_FALSE;
}
}
} else {
ASSERT0(scn->scn_checkpointing);
ASSERT0(scn->scn_clearing);
}
if (!scn->scn_clearing && scn->scn_done_txg == 0) {
/* Need to scan metadata for more blocks to scrub */
dsl_scan_phys_t *scnp = &scn->scn_phys;
taskqid_t prefetch_tqid;
uint64_t bytes_per_leaf = zfs_scan_vdev_limit;
uint64_t nr_leaves = dsl_scan_count_leaves(spa->spa_root_vdev);
/*
* Recalculate the max number of in-flight bytes for pool-wide
* scanning operations (minimum 1MB). Limits for the issuing
* phase are done per top-level vdev and are handled separately.
*/
scn->scn_maxinflight_bytes =
MAX(nr_leaves * bytes_per_leaf, 1ULL << 20);
if (scnp->scn_ddt_bookmark.ddb_class <=
scnp->scn_ddt_class_max) {
ASSERT(ZB_IS_ZERO(&scnp->scn_bookmark));
zfs_dbgmsg("doing scan sync txg %llu; "
"ddt bm=%llu/%llu/%llu/%llx",
(longlong_t)tx->tx_txg,
(longlong_t)scnp->scn_ddt_bookmark.ddb_class,
(longlong_t)scnp->scn_ddt_bookmark.ddb_type,
(longlong_t)scnp->scn_ddt_bookmark.ddb_checksum,
(longlong_t)scnp->scn_ddt_bookmark.ddb_cursor);
} else {
zfs_dbgmsg("doing scan sync txg %llu; "
"bm=%llu/%llu/%llu/%llu",
(longlong_t)tx->tx_txg,
(longlong_t)scnp->scn_bookmark.zb_objset,
(longlong_t)scnp->scn_bookmark.zb_object,
(longlong_t)scnp->scn_bookmark.zb_level,
(longlong_t)scnp->scn_bookmark.zb_blkid);
}
scn->scn_zio_root = zio_root(dp->dp_spa, NULL,
NULL, ZIO_FLAG_CANFAIL);
scn->scn_prefetch_stop = B_FALSE;
prefetch_tqid = taskq_dispatch(dp->dp_sync_taskq,
dsl_scan_prefetch_thread, scn, TQ_SLEEP);
ASSERT(prefetch_tqid != TASKQID_INVALID);
dsl_pool_config_enter(dp, FTAG);
dsl_scan_visit(scn, tx);
dsl_pool_config_exit(dp, FTAG);
mutex_enter(&dp->dp_spa->spa_scrub_lock);
scn->scn_prefetch_stop = B_TRUE;
cv_broadcast(&spa->spa_scrub_io_cv);
mutex_exit(&dp->dp_spa->spa_scrub_lock);
taskq_wait_id(dp->dp_sync_taskq, prefetch_tqid);
(void) zio_wait(scn->scn_zio_root);
scn->scn_zio_root = NULL;
zfs_dbgmsg("scan visited %llu blocks in %llums "
"(%llu os's, %llu holes, %llu < mintxg, "
"%llu in ddt, %llu > maxtxg)",
(longlong_t)scn->scn_visited_this_txg,
(longlong_t)NSEC2MSEC(gethrtime() -
scn->scn_sync_start_time),
(longlong_t)scn->scn_objsets_visited_this_txg,
(longlong_t)scn->scn_holes_this_txg,
(longlong_t)scn->scn_lt_min_this_txg,
(longlong_t)scn->scn_ddt_contained_this_txg,
(longlong_t)scn->scn_gt_max_this_txg);
if (!scn->scn_suspending) {
ASSERT0(avl_numnodes(&scn->scn_queue));
scn->scn_done_txg = tx->tx_txg + 1;
if (scn->scn_is_sorted) {
scn->scn_checkpointing = B_TRUE;
scn->scn_clearing = B_TRUE;
}
zfs_dbgmsg("scan complete txg %llu",
(longlong_t)tx->tx_txg);
}
} else if (scn->scn_is_sorted && scn->scn_bytes_pending != 0) {
ASSERT(scn->scn_clearing);
/* need to issue scrubbing IOs from per-vdev queues */
scn->scn_zio_root = zio_root(dp->dp_spa, NULL,
NULL, ZIO_FLAG_CANFAIL);
scan_io_queues_run(scn);
(void) zio_wait(scn->scn_zio_root);
scn->scn_zio_root = NULL;
/* calculate and dprintf the current memory usage */
(void) dsl_scan_should_clear(scn);
dsl_scan_update_stats(scn);
zfs_dbgmsg("scan issued %llu blocks (%llu segs) in %llums "
"(avg_block_size = %llu, avg_seg_size = %llu)",
(longlong_t)scn->scn_zios_this_txg,
(longlong_t)scn->scn_segs_this_txg,
(longlong_t)NSEC2MSEC(gethrtime() -
scn->scn_sync_start_time),
(longlong_t)scn->scn_avg_zio_size_this_txg,
(longlong_t)scn->scn_avg_seg_size_this_txg);
} else if (scn->scn_done_txg != 0 && scn->scn_done_txg <= tx->tx_txg) {
/* Finished with everything. Mark the scrub as complete */
zfs_dbgmsg("scan issuing complete txg %llu",
(longlong_t)tx->tx_txg);
ASSERT3U(scn->scn_done_txg, !=, 0);
ASSERT0(spa->spa_scrub_inflight);
ASSERT0(scn->scn_bytes_pending);
dsl_scan_done(scn, B_TRUE, tx);
sync_type = SYNC_MANDATORY;
}
dsl_scan_sync_state(scn, tx, sync_type);
}
static void
count_block(dsl_scan_t *scn, zfs_all_blkstats_t *zab, const blkptr_t *bp)
{
int i;
/*
* Don't count embedded bp's, since we already did the work of
* scanning these when we scanned the containing block.
*/
if (BP_IS_EMBEDDED(bp))
return;
/*
* Update the spa's stats on how many bytes we have issued.
* Sequential scrubs create a zio for each DVA of the bp. Each
* of these will include all DVAs for repair purposes, but the
* zio code will only try the first one unless there is an issue.
* Therefore, we should only count the first DVA for these IOs.
*/
if (scn->scn_is_sorted) {
atomic_add_64(&scn->scn_dp->dp_spa->spa_scan_pass_issued,
DVA_GET_ASIZE(&bp->blk_dva[0]));
} else {
spa_t *spa = scn->scn_dp->dp_spa;
for (i = 0; i < BP_GET_NDVAS(bp); i++) {
atomic_add_64(&spa->spa_scan_pass_issued,
DVA_GET_ASIZE(&bp->blk_dva[i]));
}
}
/*
* If we resume after a reboot, zab will be NULL; don't record
* incomplete stats in that case.
*/
if (zab == NULL)
return;
mutex_enter(&zab->zab_lock);
for (i = 0; i < 4; i++) {
int l = (i < 2) ? BP_GET_LEVEL(bp) : DN_MAX_LEVELS;
int t = (i & 1) ? BP_GET_TYPE(bp) : DMU_OT_TOTAL;
if (t & DMU_OT_NEWTYPE)
t = DMU_OT_OTHER;
zfs_blkstat_t *zb = &zab->zab_type[l][t];
int equal;
zb->zb_count++;
zb->zb_asize += BP_GET_ASIZE(bp);
zb->zb_lsize += BP_GET_LSIZE(bp);
zb->zb_psize += BP_GET_PSIZE(bp);
zb->zb_gangs += BP_COUNT_GANG(bp);
switch (BP_GET_NDVAS(bp)) {
case 2:
if (DVA_GET_VDEV(&bp->blk_dva[0]) ==
DVA_GET_VDEV(&bp->blk_dva[1]))
zb->zb_ditto_2_of_2_samevdev++;
break;
case 3:
equal = (DVA_GET_VDEV(&bp->blk_dva[0]) ==
DVA_GET_VDEV(&bp->blk_dva[1])) +
(DVA_GET_VDEV(&bp->blk_dva[0]) ==
DVA_GET_VDEV(&bp->blk_dva[2])) +
(DVA_GET_VDEV(&bp->blk_dva[1]) ==
DVA_GET_VDEV(&bp->blk_dva[2]));
if (equal == 1)
zb->zb_ditto_2_of_3_samevdev++;
else if (equal == 3)
zb->zb_ditto_3_of_3_samevdev++;
break;
}
}
mutex_exit(&zab->zab_lock);
}
static void
scan_io_queue_insert_impl(dsl_scan_io_queue_t *queue, scan_io_t *sio)
{
avl_index_t idx;
int64_t asize = SIO_GET_ASIZE(sio);
dsl_scan_t *scn = queue->q_scn;
ASSERT(MUTEX_HELD(&queue->q_vd->vdev_scan_io_queue_lock));
if (avl_find(&queue->q_sios_by_addr, sio, &idx) != NULL) {
/* block is already scheduled for reading */
atomic_add_64(&scn->scn_bytes_pending, -asize);
sio_free(sio);
return;
}
avl_insert(&queue->q_sios_by_addr, sio, idx);
queue->q_sio_memused += SIO_GET_MUSED(sio);
range_tree_add(queue->q_exts_by_addr, SIO_GET_OFFSET(sio), asize);
}
/*
* Given all the info we got from our metadata scanning process, we
* construct a scan_io_t and insert it into the scan sorting queue. The
* I/O must already be suitable for us to process. This is controlled
* by dsl_scan_enqueue().
*/
static void
scan_io_queue_insert(dsl_scan_io_queue_t *queue, const blkptr_t *bp, int dva_i,
int zio_flags, const zbookmark_phys_t *zb)
{
dsl_scan_t *scn = queue->q_scn;
scan_io_t *sio = sio_alloc(BP_GET_NDVAS(bp));
ASSERT0(BP_IS_GANG(bp));
ASSERT(MUTEX_HELD(&queue->q_vd->vdev_scan_io_queue_lock));
bp2sio(bp, sio, dva_i);
sio->sio_flags = zio_flags;
sio->sio_zb = *zb;
/*
* Increment the bytes pending counter now so that we can't
* get an integer underflow in case the worker processes the
* zio before we get to incrementing this counter.
*/
atomic_add_64(&scn->scn_bytes_pending, SIO_GET_ASIZE(sio));
scan_io_queue_insert_impl(queue, sio);
}
/*
* Given a set of I/O parameters as discovered by the metadata traversal
* process, attempts to place the I/O into the sorted queues (if allowed),
* or immediately executes the I/O.
*/
static void
dsl_scan_enqueue(dsl_pool_t *dp, const blkptr_t *bp, int zio_flags,
const zbookmark_phys_t *zb)
{
spa_t *spa = dp->dp_spa;
ASSERT(!BP_IS_EMBEDDED(bp));
/*
* Gang blocks are hard to issue sequentially, so we just issue them
* here immediately instead of queuing them.
*/
if (!dp->dp_scan->scn_is_sorted || BP_IS_GANG(bp)) {
scan_exec_io(dp, bp, zio_flags, zb, NULL);
return;
}
for (int i = 0; i < BP_GET_NDVAS(bp); i++) {
dva_t dva;
vdev_t *vdev;
dva = bp->blk_dva[i];
vdev = vdev_lookup_top(spa, DVA_GET_VDEV(&dva));
ASSERT(vdev != NULL);
mutex_enter(&vdev->vdev_scan_io_queue_lock);
if (vdev->vdev_scan_io_queue == NULL)
vdev->vdev_scan_io_queue = scan_io_queue_create(vdev);
ASSERT(dp->dp_scan != NULL);
scan_io_queue_insert(vdev->vdev_scan_io_queue, bp,
i, zio_flags, zb);
mutex_exit(&vdev->vdev_scan_io_queue_lock);
}
}
static int
dsl_scan_scrub_cb(dsl_pool_t *dp,
const blkptr_t *bp, const zbookmark_phys_t *zb)
{
dsl_scan_t *scn = dp->dp_scan;
spa_t *spa = dp->dp_spa;
uint64_t phys_birth = BP_PHYSICAL_BIRTH(bp);
size_t psize = BP_GET_PSIZE(bp);
boolean_t needs_io = B_FALSE;
int zio_flags = ZIO_FLAG_SCAN_THREAD | ZIO_FLAG_RAW | ZIO_FLAG_CANFAIL;
if (phys_birth <= scn->scn_phys.scn_min_txg ||
phys_birth >= scn->scn_phys.scn_max_txg) {
count_block(scn, dp->dp_blkstats, bp);
return (0);
}
/* Embedded BP's have phys_birth==0, so we reject them above. */
ASSERT(!BP_IS_EMBEDDED(bp));
ASSERT(DSL_SCAN_IS_SCRUB_RESILVER(scn));
if (scn->scn_phys.scn_func == POOL_SCAN_SCRUB) {
zio_flags |= ZIO_FLAG_SCRUB;
needs_io = B_TRUE;
} else {
ASSERT3U(scn->scn_phys.scn_func, ==, POOL_SCAN_RESILVER);
zio_flags |= ZIO_FLAG_RESILVER;
needs_io = B_FALSE;
}
/* If it's an intent log block, failure is expected. */
if (zb->zb_level == ZB_ZIL_LEVEL)
zio_flags |= ZIO_FLAG_SPECULATIVE;
for (int d = 0; d < BP_GET_NDVAS(bp); d++) {
const dva_t *dva = &bp->blk_dva[d];
/*
* Keep track of how much data we've examined so that
* zpool(8) status can make useful progress reports.
*/
scn->scn_phys.scn_examined += DVA_GET_ASIZE(dva);
spa->spa_scan_pass_exam += DVA_GET_ASIZE(dva);
/* if it's a resilver, this may not be in the target range */
if (!needs_io)
needs_io = dsl_scan_need_resilver(spa, dva, psize,
phys_birth);
}
if (needs_io && !zfs_no_scrub_io) {
dsl_scan_enqueue(dp, bp, zio_flags, zb);
} else {
count_block(scn, dp->dp_blkstats, bp);
}
/* do not relocate this block */
return (0);
}
static void
dsl_scan_scrub_done(zio_t *zio)
{
spa_t *spa = zio->io_spa;
blkptr_t *bp = zio->io_bp;
dsl_scan_io_queue_t *queue = zio->io_private;
abd_free(zio->io_abd);
if (queue == NULL) {
mutex_enter(&spa->spa_scrub_lock);
ASSERT3U(spa->spa_scrub_inflight, >=, BP_GET_PSIZE(bp));
spa->spa_scrub_inflight -= BP_GET_PSIZE(bp);
cv_broadcast(&spa->spa_scrub_io_cv);
mutex_exit(&spa->spa_scrub_lock);
} else {
mutex_enter(&queue->q_vd->vdev_scan_io_queue_lock);
ASSERT3U(queue->q_inflight_bytes, >=, BP_GET_PSIZE(bp));
queue->q_inflight_bytes -= BP_GET_PSIZE(bp);
cv_broadcast(&queue->q_zio_cv);
mutex_exit(&queue->q_vd->vdev_scan_io_queue_lock);
}
if (zio->io_error && (zio->io_error != ECKSUM ||
!(zio->io_flags & ZIO_FLAG_SPECULATIVE))) {
atomic_inc_64(&spa->spa_dsl_pool->dp_scan->scn_phys.scn_errors);
}
}
/*
* Given a scanning zio's information, executes the zio. The zio need
* not necessarily be only sortable, this function simply executes the
* zio, no matter what it is. The optional queue argument allows the
* caller to specify that they want per top level vdev IO rate limiting
* instead of the legacy global limiting.
*/
static void
scan_exec_io(dsl_pool_t *dp, const blkptr_t *bp, int zio_flags,
const zbookmark_phys_t *zb, dsl_scan_io_queue_t *queue)
{
spa_t *spa = dp->dp_spa;
dsl_scan_t *scn = dp->dp_scan;
size_t size = BP_GET_PSIZE(bp);
abd_t *data = abd_alloc_for_io(size, B_FALSE);
ASSERT3U(scn->scn_maxinflight_bytes, >, 0);
if (queue == NULL) {
mutex_enter(&spa->spa_scrub_lock);
while (spa->spa_scrub_inflight >= scn->scn_maxinflight_bytes)
cv_wait(&spa->spa_scrub_io_cv, &spa->spa_scrub_lock);
spa->spa_scrub_inflight += BP_GET_PSIZE(bp);
mutex_exit(&spa->spa_scrub_lock);
} else {
kmutex_t *q_lock = &queue->q_vd->vdev_scan_io_queue_lock;
mutex_enter(q_lock);
while (queue->q_inflight_bytes >= queue->q_maxinflight_bytes)
cv_wait(&queue->q_zio_cv, q_lock);
queue->q_inflight_bytes += BP_GET_PSIZE(bp);
mutex_exit(q_lock);
}
count_block(scn, dp->dp_blkstats, bp);
zio_nowait(zio_read(scn->scn_zio_root, spa, bp, data, size,
dsl_scan_scrub_done, queue, ZIO_PRIORITY_SCRUB, zio_flags, zb));
}
/*
* This is the primary extent sorting algorithm. We balance two parameters:
* 1) how many bytes of I/O are in an extent
* 2) how well the extent is filled with I/O (as a fraction of its total size)
* Since we allow extents to have gaps between their constituent I/Os, it's
* possible to have a fairly large extent that contains the same amount of
* I/O bytes than a much smaller extent, which just packs the I/O more tightly.
* The algorithm sorts based on a score calculated from the extent's size,
* the relative fill volume (in %) and a "fill weight" parameter that controls
* the split between whether we prefer larger extents or more well populated
* extents:
*
* SCORE = FILL_IN_BYTES + (FILL_IN_PERCENT * FILL_IN_BYTES * FILL_WEIGHT)
*
* Example:
* 1) assume extsz = 64 MiB
* 2) assume fill = 32 MiB (extent is half full)
* 3) assume fill_weight = 3
* 4) SCORE = 32M + (((32M * 100) / 64M) * 3 * 32M) / 100
* SCORE = 32M + (50 * 3 * 32M) / 100
* SCORE = 32M + (4800M / 100)
* SCORE = 32M + 48M
* ^ ^
* | +--- final total relative fill-based score
* +--------- final total fill-based score
* SCORE = 80M
*
* As can be seen, at fill_ratio=3, the algorithm is slightly biased towards
* extents that are more completely filled (in a 3:2 ratio) vs just larger.
* Note that as an optimization, we replace multiplication and division by
* 100 with bitshifting by 7 (which effectively multiplies and divides by 128).
*/
static int
ext_size_compare(const void *x, const void *y)
{
Reduce loaded range tree memory usage This patch implements a new tree structure for ZFS, and uses it to store range trees more efficiently. The new structure is approximately a B-tree, though there are some small differences from the usual characterizations. The tree has core nodes and leaf nodes; each contain data elements, which the elements in the core nodes acting as separators between its children. The difference between core and leaf nodes is that the core nodes have an array of children, while leaf nodes don't. Every node in the tree may be only partially full; in most cases, they are all at least 50% full (in terms of element count) except for the root node, which can be less full. Underfull nodes will steal from their neighbors or merge to remain full enough, while overfull nodes will split in two. The data elements are contained in tree-controlled buffers; they are copied into these on insertion, and overwritten on deletion. This means that the elements are not independently allocated, which reduces overhead, but also means they can't be shared between trees (and also that pointers to them are only valid until a side-effectful tree operation occurs). The overhead varies based on how dense the tree is, but is usually on the order of about 50% of the element size; the per-node overheads are very small, and so don't make a significant difference. The trees can accept arbitrary records; they accept a size and a comparator to allow them to be used for a variety of purposes. The new trees replace the AVL trees used in the range trees today. Currently, the range_seg_t structure contains three 8 byte integers of payload and two 24 byte avl_tree_node_ts to handle its storage in both an offset-sorted tree and a size-sorted tree (total size: 64 bytes). In the new model, the range seg structures are usually two 4 byte integers, but a separate one needs to exist for the size-sorted and offset-sorted tree. Between the raw size, the 50% overhead, and the double storage, the new btrees are expected to use 8*1.5*2 = 24 bytes per record, or 33.3% as much memory as the AVL trees (this is for the purposes of storing metaslab range trees; for other purposes, like scrubs, they use ~50% as much memory). We reduced the size of the payload in the range segments by teaching range trees about starting offsets and shifts; since metaslabs have a fixed starting offset, and they all operate in terms of disk sectors, we can store the ranges using 4-byte integers as long as the size of the metaslab divided by the sector size is less than 2^32. For 512-byte sectors, this is a 2^41 (or 2TB) metaslab, which with the default settings corresponds to a 256PB disk. 4k sector disks can handle metaslabs up to 2^46 bytes, or 2^63 byte disks. Since we do not anticipate disks of this size in the near future, there should be almost no cases where metaslabs need 64-byte integers to store their ranges. We do still have the capability to store 64-byte integer ranges to account for cases where we are storing per-vdev (or per-dnode) trees, which could reasonably go above the limits discussed. We also do not store fill information in the compact version of the node, since it is only used for sorted scrub. We also optimized the metaslab loading process in various other ways to offset some inefficiencies in the btree model. While individual operations (find, insert, remove_from) are faster for the btree than they are for the avl tree, remove usually requires a find operation, while in the AVL tree model the element itself suffices. Some clever changes actually caused an overall speedup in metaslab loading; we use approximately 40% less cpu to load metaslabs in our tests on Illumos. Another memory and performance optimization was achieved by changing what is stored in the size-sorted trees. When a disk is heavily fragmented, the df algorithm used by default in ZFS will almost always find a number of small regions in its initial cursor-based search; it will usually only fall back to the size-sorted tree to find larger regions. If we increase the size of the cursor-based search slightly, and don't store segments that are smaller than a tunable size floor in the size-sorted tree, we can further cut memory usage down to below 20% of what the AVL trees store. This also results in further reductions in CPU time spent loading metaslabs. The 16KiB size floor was chosen because it results in substantial memory usage reduction while not usually resulting in situations where we can't find an appropriate chunk with the cursor and are forced to use an oversized chunk from the size-sorted tree. In addition, even if we do have to use an oversized chunk from the size-sorted tree, the chunk would be too small to use for ZIL allocations, so it isn't as big of a loss as it might otherwise be. And often, more small allocations will follow the initial one, and the cursor search will now find the remainder of the chunk we didn't use all of and use it for subsequent allocations. Practical testing has shown little or no change in fragmentation as a result of this change. If the size-sorted tree becomes empty while the offset sorted one still has entries, it will load all the entries from the offset sorted tree and disregard the size floor until it is unloaded again. This operation occurs rarely with the default setting, only on incredibly thoroughly fragmented pools. There are some other small changes to zdb to teach it to handle btrees, but nothing major. Reviewed-by: George Wilson <gwilson@delphix.com> Reviewed-by: Matt Ahrens <matt@delphix.com> Reviewed by: Sebastien Roy seb@delphix.com Reviewed-by: Igor Kozhukhov <igor@dilos.org> Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov> Signed-off-by: Paul Dagnelie <pcd@delphix.com> Closes #9181
2019-10-09 20:36:03 +03:00
const range_seg_gap_t *rsa = x, *rsb = y;
uint64_t sa = rsa->rs_end - rsa->rs_start;
uint64_t sb = rsb->rs_end - rsb->rs_start;
uint64_t score_a, score_b;
score_a = rsa->rs_fill + ((((rsa->rs_fill << 7) / sa) *
fill_weight * rsa->rs_fill) >> 7);
score_b = rsb->rs_fill + ((((rsb->rs_fill << 7) / sb) *
fill_weight * rsb->rs_fill) >> 7);
if (score_a > score_b)
return (-1);
if (score_a == score_b) {
if (rsa->rs_start < rsb->rs_start)
return (-1);
if (rsa->rs_start == rsb->rs_start)
return (0);
return (1);
}
return (1);
}
/*
* Comparator for the q_sios_by_addr tree. Sorting is simply performed
* based on LBA-order (from lowest to highest).
*/
static int
sio_addr_compare(const void *x, const void *y)
{
const scan_io_t *a = x, *b = y;
Reduce loaded range tree memory usage This patch implements a new tree structure for ZFS, and uses it to store range trees more efficiently. The new structure is approximately a B-tree, though there are some small differences from the usual characterizations. The tree has core nodes and leaf nodes; each contain data elements, which the elements in the core nodes acting as separators between its children. The difference between core and leaf nodes is that the core nodes have an array of children, while leaf nodes don't. Every node in the tree may be only partially full; in most cases, they are all at least 50% full (in terms of element count) except for the root node, which can be less full. Underfull nodes will steal from their neighbors or merge to remain full enough, while overfull nodes will split in two. The data elements are contained in tree-controlled buffers; they are copied into these on insertion, and overwritten on deletion. This means that the elements are not independently allocated, which reduces overhead, but also means they can't be shared between trees (and also that pointers to them are only valid until a side-effectful tree operation occurs). The overhead varies based on how dense the tree is, but is usually on the order of about 50% of the element size; the per-node overheads are very small, and so don't make a significant difference. The trees can accept arbitrary records; they accept a size and a comparator to allow them to be used for a variety of purposes. The new trees replace the AVL trees used in the range trees today. Currently, the range_seg_t structure contains three 8 byte integers of payload and two 24 byte avl_tree_node_ts to handle its storage in both an offset-sorted tree and a size-sorted tree (total size: 64 bytes). In the new model, the range seg structures are usually two 4 byte integers, but a separate one needs to exist for the size-sorted and offset-sorted tree. Between the raw size, the 50% overhead, and the double storage, the new btrees are expected to use 8*1.5*2 = 24 bytes per record, or 33.3% as much memory as the AVL trees (this is for the purposes of storing metaslab range trees; for other purposes, like scrubs, they use ~50% as much memory). We reduced the size of the payload in the range segments by teaching range trees about starting offsets and shifts; since metaslabs have a fixed starting offset, and they all operate in terms of disk sectors, we can store the ranges using 4-byte integers as long as the size of the metaslab divided by the sector size is less than 2^32. For 512-byte sectors, this is a 2^41 (or 2TB) metaslab, which with the default settings corresponds to a 256PB disk. 4k sector disks can handle metaslabs up to 2^46 bytes, or 2^63 byte disks. Since we do not anticipate disks of this size in the near future, there should be almost no cases where metaslabs need 64-byte integers to store their ranges. We do still have the capability to store 64-byte integer ranges to account for cases where we are storing per-vdev (or per-dnode) trees, which could reasonably go above the limits discussed. We also do not store fill information in the compact version of the node, since it is only used for sorted scrub. We also optimized the metaslab loading process in various other ways to offset some inefficiencies in the btree model. While individual operations (find, insert, remove_from) are faster for the btree than they are for the avl tree, remove usually requires a find operation, while in the AVL tree model the element itself suffices. Some clever changes actually caused an overall speedup in metaslab loading; we use approximately 40% less cpu to load metaslabs in our tests on Illumos. Another memory and performance optimization was achieved by changing what is stored in the size-sorted trees. When a disk is heavily fragmented, the df algorithm used by default in ZFS will almost always find a number of small regions in its initial cursor-based search; it will usually only fall back to the size-sorted tree to find larger regions. If we increase the size of the cursor-based search slightly, and don't store segments that are smaller than a tunable size floor in the size-sorted tree, we can further cut memory usage down to below 20% of what the AVL trees store. This also results in further reductions in CPU time spent loading metaslabs. The 16KiB size floor was chosen because it results in substantial memory usage reduction while not usually resulting in situations where we can't find an appropriate chunk with the cursor and are forced to use an oversized chunk from the size-sorted tree. In addition, even if we do have to use an oversized chunk from the size-sorted tree, the chunk would be too small to use for ZIL allocations, so it isn't as big of a loss as it might otherwise be. And often, more small allocations will follow the initial one, and the cursor search will now find the remainder of the chunk we didn't use all of and use it for subsequent allocations. Practical testing has shown little or no change in fragmentation as a result of this change. If the size-sorted tree becomes empty while the offset sorted one still has entries, it will load all the entries from the offset sorted tree and disregard the size floor until it is unloaded again. This operation occurs rarely with the default setting, only on incredibly thoroughly fragmented pools. There are some other small changes to zdb to teach it to handle btrees, but nothing major. Reviewed-by: George Wilson <gwilson@delphix.com> Reviewed-by: Matt Ahrens <matt@delphix.com> Reviewed by: Sebastien Roy seb@delphix.com Reviewed-by: Igor Kozhukhov <igor@dilos.org> Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov> Signed-off-by: Paul Dagnelie <pcd@delphix.com> Closes #9181
2019-10-09 20:36:03 +03:00
return (TREE_CMP(SIO_GET_OFFSET(a), SIO_GET_OFFSET(b)));
}
/* IO queues are created on demand when they are needed. */
static dsl_scan_io_queue_t *
scan_io_queue_create(vdev_t *vd)
{
dsl_scan_t *scn = vd->vdev_spa->spa_dsl_pool->dp_scan;
dsl_scan_io_queue_t *q = kmem_zalloc(sizeof (*q), KM_SLEEP);
q->q_scn = scn;
q->q_vd = vd;
q->q_sio_memused = 0;
cv_init(&q->q_zio_cv, NULL, CV_DEFAULT, NULL);
Reduce loaded range tree memory usage This patch implements a new tree structure for ZFS, and uses it to store range trees more efficiently. The new structure is approximately a B-tree, though there are some small differences from the usual characterizations. The tree has core nodes and leaf nodes; each contain data elements, which the elements in the core nodes acting as separators between its children. The difference between core and leaf nodes is that the core nodes have an array of children, while leaf nodes don't. Every node in the tree may be only partially full; in most cases, they are all at least 50% full (in terms of element count) except for the root node, which can be less full. Underfull nodes will steal from their neighbors or merge to remain full enough, while overfull nodes will split in two. The data elements are contained in tree-controlled buffers; they are copied into these on insertion, and overwritten on deletion. This means that the elements are not independently allocated, which reduces overhead, but also means they can't be shared between trees (and also that pointers to them are only valid until a side-effectful tree operation occurs). The overhead varies based on how dense the tree is, but is usually on the order of about 50% of the element size; the per-node overheads are very small, and so don't make a significant difference. The trees can accept arbitrary records; they accept a size and a comparator to allow them to be used for a variety of purposes. The new trees replace the AVL trees used in the range trees today. Currently, the range_seg_t structure contains three 8 byte integers of payload and two 24 byte avl_tree_node_ts to handle its storage in both an offset-sorted tree and a size-sorted tree (total size: 64 bytes). In the new model, the range seg structures are usually two 4 byte integers, but a separate one needs to exist for the size-sorted and offset-sorted tree. Between the raw size, the 50% overhead, and the double storage, the new btrees are expected to use 8*1.5*2 = 24 bytes per record, or 33.3% as much memory as the AVL trees (this is for the purposes of storing metaslab range trees; for other purposes, like scrubs, they use ~50% as much memory). We reduced the size of the payload in the range segments by teaching range trees about starting offsets and shifts; since metaslabs have a fixed starting offset, and they all operate in terms of disk sectors, we can store the ranges using 4-byte integers as long as the size of the metaslab divided by the sector size is less than 2^32. For 512-byte sectors, this is a 2^41 (or 2TB) metaslab, which with the default settings corresponds to a 256PB disk. 4k sector disks can handle metaslabs up to 2^46 bytes, or 2^63 byte disks. Since we do not anticipate disks of this size in the near future, there should be almost no cases where metaslabs need 64-byte integers to store their ranges. We do still have the capability to store 64-byte integer ranges to account for cases where we are storing per-vdev (or per-dnode) trees, which could reasonably go above the limits discussed. We also do not store fill information in the compact version of the node, since it is only used for sorted scrub. We also optimized the metaslab loading process in various other ways to offset some inefficiencies in the btree model. While individual operations (find, insert, remove_from) are faster for the btree than they are for the avl tree, remove usually requires a find operation, while in the AVL tree model the element itself suffices. Some clever changes actually caused an overall speedup in metaslab loading; we use approximately 40% less cpu to load metaslabs in our tests on Illumos. Another memory and performance optimization was achieved by changing what is stored in the size-sorted trees. When a disk is heavily fragmented, the df algorithm used by default in ZFS will almost always find a number of small regions in its initial cursor-based search; it will usually only fall back to the size-sorted tree to find larger regions. If we increase the size of the cursor-based search slightly, and don't store segments that are smaller than a tunable size floor in the size-sorted tree, we can further cut memory usage down to below 20% of what the AVL trees store. This also results in further reductions in CPU time spent loading metaslabs. The 16KiB size floor was chosen because it results in substantial memory usage reduction while not usually resulting in situations where we can't find an appropriate chunk with the cursor and are forced to use an oversized chunk from the size-sorted tree. In addition, even if we do have to use an oversized chunk from the size-sorted tree, the chunk would be too small to use for ZIL allocations, so it isn't as big of a loss as it might otherwise be. And often, more small allocations will follow the initial one, and the cursor search will now find the remainder of the chunk we didn't use all of and use it for subsequent allocations. Practical testing has shown little or no change in fragmentation as a result of this change. If the size-sorted tree becomes empty while the offset sorted one still has entries, it will load all the entries from the offset sorted tree and disregard the size floor until it is unloaded again. This operation occurs rarely with the default setting, only on incredibly thoroughly fragmented pools. There are some other small changes to zdb to teach it to handle btrees, but nothing major. Reviewed-by: George Wilson <gwilson@delphix.com> Reviewed-by: Matt Ahrens <matt@delphix.com> Reviewed by: Sebastien Roy seb@delphix.com Reviewed-by: Igor Kozhukhov <igor@dilos.org> Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov> Signed-off-by: Paul Dagnelie <pcd@delphix.com> Closes #9181
2019-10-09 20:36:03 +03:00
q->q_exts_by_addr = range_tree_create_impl(&rt_btree_ops, RANGE_SEG_GAP,
&q->q_exts_by_size, 0, 0, ext_size_compare, zfs_scan_max_ext_gap);
avl_create(&q->q_sios_by_addr, sio_addr_compare,
sizeof (scan_io_t), offsetof(scan_io_t, sio_nodes.sio_addr_node));
return (q);
}
/*
* Destroys a scan queue and all segments and scan_io_t's contained in it.
* No further execution of I/O occurs, anything pending in the queue is
* simply freed without being executed.
*/
void
dsl_scan_io_queue_destroy(dsl_scan_io_queue_t *queue)
{
dsl_scan_t *scn = queue->q_scn;
scan_io_t *sio;
void *cookie = NULL;
int64_t bytes_dequeued = 0;
ASSERT(MUTEX_HELD(&queue->q_vd->vdev_scan_io_queue_lock));
while ((sio = avl_destroy_nodes(&queue->q_sios_by_addr, &cookie)) !=
NULL) {
ASSERT(range_tree_contains(queue->q_exts_by_addr,
SIO_GET_OFFSET(sio), SIO_GET_ASIZE(sio)));
bytes_dequeued += SIO_GET_ASIZE(sio);
queue->q_sio_memused -= SIO_GET_MUSED(sio);
sio_free(sio);
}
ASSERT0(queue->q_sio_memused);
atomic_add_64(&scn->scn_bytes_pending, -bytes_dequeued);
range_tree_vacate(queue->q_exts_by_addr, NULL, queue);
range_tree_destroy(queue->q_exts_by_addr);
avl_destroy(&queue->q_sios_by_addr);
cv_destroy(&queue->q_zio_cv);
kmem_free(queue, sizeof (*queue));
}
/*
* Properly transfers a dsl_scan_queue_t from `svd' to `tvd'. This is
* called on behalf of vdev_top_transfer when creating or destroying
* a mirror vdev due to zpool attach/detach.
*/
void
dsl_scan_io_queue_vdev_xfer(vdev_t *svd, vdev_t *tvd)
{
mutex_enter(&svd->vdev_scan_io_queue_lock);
mutex_enter(&tvd->vdev_scan_io_queue_lock);
VERIFY3P(tvd->vdev_scan_io_queue, ==, NULL);
tvd->vdev_scan_io_queue = svd->vdev_scan_io_queue;
svd->vdev_scan_io_queue = NULL;
OpenZFS 7614, 9064 - zfs device evacuation/removal OpenZFS 7614 - zfs device evacuation/removal OpenZFS 9064 - remove_mirror should wait for device removal to complete This project allows top-level vdevs to be removed from the storage pool with "zpool remove", reducing the total amount of storage in the pool. This operation copies all allocated regions of the device to be removed onto other devices, recording the mapping from old to new location. After the removal is complete, read and free operations to the removed (now "indirect") vdev must be remapped and performed at the new location on disk. The indirect mapping table is kept in memory whenever the pool is loaded, so there is minimal performance overhead when doing operations on the indirect vdev. The size of the in-memory mapping table will be reduced when its entries become "obsolete" because they are no longer used by any block pointers in the pool. An entry becomes obsolete when all the blocks that use it are freed. An entry can also become obsolete when all the snapshots that reference it are deleted, and the block pointers that reference it have been "remapped" in all filesystems/zvols (and clones). Whenever an indirect block is written, all the block pointers in it will be "remapped" to their new (concrete) locations if possible. This process can be accelerated by using the "zfs remap" command to proactively rewrite all indirect blocks that reference indirect (removed) vdevs. Note that when a device is removed, we do not verify the checksum of the data that is copied. This makes the process much faster, but if it were used on redundant vdevs (i.e. mirror or raidz vdevs), it would be possible to copy the wrong data, when we have the correct data on e.g. the other side of the mirror. At the moment, only mirrors and simple top-level vdevs can be removed and no removal is allowed if any of the top-level vdevs are raidz. Porting Notes: * Avoid zero-sized kmem_alloc() in vdev_compact_children(). The device evacuation code adds a dependency that vdev_compact_children() be able to properly empty the vdev_child array by setting it to NULL and zeroing vdev_children. Under Linux, kmem_alloc() and related functions return a sentinel pointer rather than NULL for zero-sized allocations. * Remove comment regarding "mpt" driver where zfs_remove_max_segment is initialized to SPA_MAXBLOCKSIZE. Change zfs_condense_indirect_commit_entry_delay_ticks to zfs_condense_indirect_commit_entry_delay_ms for consistency with most other tunables in which delays are specified in ms. * ZTS changes: Use set_tunable rather than mdb Use zpool sync as appropriate Use sync_pool instead of sync Kill jobs during test_removal_with_operation to allow unmount/export Don't add non-disk names such as "mirror" or "raidz" to $DISKS Use $TEST_BASE_DIR instead of /tmp Increase HZ from 100 to 1000 which is more common on Linux removal_multiple_indirection.ksh Reduce iterations in order to not time out on the code coverage builders. removal_resume_export: Functionally, the test case is correct but there exists a race where the kernel thread hasn't been fully started yet and is not visible. Wait for up to 1 second for the removal thread to be started before giving up on it. Also, increase the amount of data copied in order that the removal not finish before the export has a chance to fail. * MMP compatibility, the concept of concrete versus non-concrete devices has slightly changed the semantics of vdev_writeable(). Update mmp_random_leaf_impl() accordingly. * Updated dbuf_remap() to handle the org.zfsonlinux:large_dnode pool feature which is not supported by OpenZFS. * Added support for new vdev removal tracepoints. * Test cases removal_with_zdb and removal_condense_export have been intentionally disabled. When run manually they pass as intended, but when running in the automated test environment they produce unreliable results on the latest Fedora release. They may work better once the upstream pool import refectoring is merged into ZoL at which point they will be re-enabled. Authored by: Matthew Ahrens <mahrens@delphix.com> Reviewed-by: Alex Reece <alex@delphix.com> Reviewed-by: George Wilson <george.wilson@delphix.com> Reviewed-by: John Kennedy <john.kennedy@delphix.com> Reviewed-by: Prakash Surya <prakash.surya@delphix.com> Reviewed by: Richard Laager <rlaager@wiktel.com> Reviewed by: Tim Chase <tim@chase2k.com> Reviewed by: Brian Behlendorf <behlendorf1@llnl.gov> Approved by: Garrett D'Amore <garrett@damore.org> Ported-by: Tim Chase <tim@chase2k.com> Signed-off-by: Tim Chase <tim@chase2k.com> OpenZFS-issue: https://www.illumos.org/issues/7614 OpenZFS-commit: https://github.com/openzfs/openzfs/commit/f539f1eb Closes #6900
2016-09-22 19:30:13 +03:00
if (tvd->vdev_scan_io_queue != NULL)
tvd->vdev_scan_io_queue->q_vd = tvd;
mutex_exit(&tvd->vdev_scan_io_queue_lock);
mutex_exit(&svd->vdev_scan_io_queue_lock);
}
Add missing ZFS tunables This commit adds module options for all existing zfs tunables. Ideally the average user should never need to modify any of these values. However, in practice sometimes you do need to tweak these values for one reason or another. In those cases it's nice not to have to resort to rebuilding from source. All tunables are visable to modinfo and the list is as follows: $ modinfo module/zfs/zfs.ko filename: module/zfs/zfs.ko license: CDDL author: Sun Microsystems/Oracle, Lawrence Livermore National Laboratory description: ZFS srcversion: 8EAB1D71DACE05B5AA61567 depends: spl,znvpair,zcommon,zunicode,zavl vermagic: 2.6.32-131.0.5.el6.x86_64 SMP mod_unload modversions parm: zvol_major:Major number for zvol device (uint) parm: zvol_threads:Number of threads for zvol device (uint) parm: zio_injection_enabled:Enable fault injection (int) parm: zio_bulk_flags:Additional flags to pass to bulk buffers (int) parm: zio_delay_max:Max zio millisec delay before posting event (int) parm: zio_requeue_io_start_cut_in_line:Prioritize requeued I/O (bool) parm: zil_replay_disable:Disable intent logging replay (int) parm: zfs_nocacheflush:Disable cache flushes (bool) parm: zfs_read_chunk_size:Bytes to read per chunk (long) parm: zfs_vdev_max_pending:Max pending per-vdev I/Os (int) parm: zfs_vdev_min_pending:Min pending per-vdev I/Os (int) parm: zfs_vdev_aggregation_limit:Max vdev I/O aggregation size (int) parm: zfs_vdev_time_shift:Deadline time shift for vdev I/O (int) parm: zfs_vdev_ramp_rate:Exponential I/O issue ramp-up rate (int) parm: zfs_vdev_read_gap_limit:Aggregate read I/O over gap (int) parm: zfs_vdev_write_gap_limit:Aggregate write I/O over gap (int) parm: zfs_vdev_scheduler:I/O scheduler (charp) parm: zfs_vdev_cache_max:Inflate reads small than max (int) parm: zfs_vdev_cache_size:Total size of the per-disk cache (int) parm: zfs_vdev_cache_bshift:Shift size to inflate reads too (int) parm: zfs_scrub_limit:Max scrub/resilver I/O per leaf vdev (int) parm: zfs_recover:Set to attempt to recover from fatal errors (int) parm: spa_config_path:SPA config file (/etc/zfs/zpool.cache) (charp) parm: zfs_zevent_len_max:Max event queue length (int) parm: zfs_zevent_cols:Max event column width (int) parm: zfs_zevent_console:Log events to the console (int) parm: zfs_top_maxinflight:Max I/Os per top-level (int) parm: zfs_resilver_delay:Number of ticks to delay resilver (int) parm: zfs_scrub_delay:Number of ticks to delay scrub (int) parm: zfs_scan_idle:Idle window in clock ticks (int) parm: zfs_scan_min_time_ms:Min millisecs to scrub per txg (int) parm: zfs_free_min_time_ms:Min millisecs to free per txg (int) parm: zfs_resilver_min_time_ms:Min millisecs to resilver per txg (int) parm: zfs_no_scrub_io:Set to disable scrub I/O (bool) parm: zfs_no_scrub_prefetch:Set to disable scrub prefetching (bool) parm: zfs_txg_timeout:Max seconds worth of delta per txg (int) parm: zfs_no_write_throttle:Disable write throttling (int) parm: zfs_write_limit_shift:log2(fraction of memory) per txg (int) parm: zfs_txg_synctime_ms:Target milliseconds between tgx sync (int) parm: zfs_write_limit_min:Min tgx write limit (ulong) parm: zfs_write_limit_max:Max tgx write limit (ulong) parm: zfs_write_limit_inflated:Inflated tgx write limit (ulong) parm: zfs_write_limit_override:Override tgx write limit (ulong) parm: zfs_prefetch_disable:Disable all ZFS prefetching (int) parm: zfetch_max_streams:Max number of streams per zfetch (uint) parm: zfetch_min_sec_reap:Min time before stream reclaim (uint) parm: zfetch_block_cap:Max number of blocks to fetch at a time (uint) parm: zfetch_array_rd_sz:Number of bytes in a array_read (ulong) parm: zfs_pd_blks_max:Max number of blocks to prefetch (int) parm: zfs_dedup_prefetch:Enable prefetching dedup-ed blks (int) parm: zfs_arc_min:Min arc size (ulong) parm: zfs_arc_max:Max arc size (ulong) parm: zfs_arc_meta_limit:Meta limit for arc size (ulong) parm: zfs_arc_reduce_dnlc_percent:Meta reclaim percentage (int) parm: zfs_arc_grow_retry:Seconds before growing arc size (int) parm: zfs_arc_shrink_shift:log2(fraction of arc to reclaim) (int) parm: zfs_arc_p_min_shift:arc_c shift to calc min/max arc_p (int)
2011-05-04 02:09:28 +04:00
static void
scan_io_queues_destroy(dsl_scan_t *scn)
{
vdev_t *rvd = scn->scn_dp->dp_spa->spa_root_vdev;
for (uint64_t i = 0; i < rvd->vdev_children; i++) {
vdev_t *tvd = rvd->vdev_child[i];
mutex_enter(&tvd->vdev_scan_io_queue_lock);
if (tvd->vdev_scan_io_queue != NULL)
dsl_scan_io_queue_destroy(tvd->vdev_scan_io_queue);
tvd->vdev_scan_io_queue = NULL;
mutex_exit(&tvd->vdev_scan_io_queue_lock);
}
}
static void
dsl_scan_freed_dva(spa_t *spa, const blkptr_t *bp, int dva_i)
{
dsl_pool_t *dp = spa->spa_dsl_pool;
dsl_scan_t *scn = dp->dp_scan;
vdev_t *vdev;
kmutex_t *q_lock;
dsl_scan_io_queue_t *queue;
scan_io_t *srch_sio, *sio;
avl_index_t idx;
uint64_t start, size;
vdev = vdev_lookup_top(spa, DVA_GET_VDEV(&bp->blk_dva[dva_i]));
ASSERT(vdev != NULL);
q_lock = &vdev->vdev_scan_io_queue_lock;
queue = vdev->vdev_scan_io_queue;
mutex_enter(q_lock);
if (queue == NULL) {
mutex_exit(q_lock);
return;
}
srch_sio = sio_alloc(BP_GET_NDVAS(bp));
bp2sio(bp, srch_sio, dva_i);
start = SIO_GET_OFFSET(srch_sio);
size = SIO_GET_ASIZE(srch_sio);
/*
* We can find the zio in two states:
* 1) Cold, just sitting in the queue of zio's to be issued at
* some point in the future. In this case, all we do is
* remove the zio from the q_sios_by_addr tree, decrement
* its data volume from the containing range_seg_t and
* resort the q_exts_by_size tree to reflect that the
* range_seg_t has lost some of its 'fill'. We don't shorten
* the range_seg_t - this is usually rare enough not to be
* worth the extra hassle of trying keep track of precise
* extent boundaries.
* 2) Hot, where the zio is currently in-flight in
* dsl_scan_issue_ios. In this case, we can't simply
* reach in and stop the in-flight zio's, so we instead
* block the caller. Eventually, dsl_scan_issue_ios will
* be done with issuing the zio's it gathered and will
* signal us.
*/
sio = avl_find(&queue->q_sios_by_addr, srch_sio, &idx);
sio_free(srch_sio);
if (sio != NULL) {
int64_t asize = SIO_GET_ASIZE(sio);
blkptr_t tmpbp;
/* Got it while it was cold in the queue */
ASSERT3U(start, ==, SIO_GET_OFFSET(sio));
ASSERT3U(size, ==, asize);
avl_remove(&queue->q_sios_by_addr, sio);
queue->q_sio_memused -= SIO_GET_MUSED(sio);
Add missing ZFS tunables This commit adds module options for all existing zfs tunables. Ideally the average user should never need to modify any of these values. However, in practice sometimes you do need to tweak these values for one reason or another. In those cases it's nice not to have to resort to rebuilding from source. All tunables are visable to modinfo and the list is as follows: $ modinfo module/zfs/zfs.ko filename: module/zfs/zfs.ko license: CDDL author: Sun Microsystems/Oracle, Lawrence Livermore National Laboratory description: ZFS srcversion: 8EAB1D71DACE05B5AA61567 depends: spl,znvpair,zcommon,zunicode,zavl vermagic: 2.6.32-131.0.5.el6.x86_64 SMP mod_unload modversions parm: zvol_major:Major number for zvol device (uint) parm: zvol_threads:Number of threads for zvol device (uint) parm: zio_injection_enabled:Enable fault injection (int) parm: zio_bulk_flags:Additional flags to pass to bulk buffers (int) parm: zio_delay_max:Max zio millisec delay before posting event (int) parm: zio_requeue_io_start_cut_in_line:Prioritize requeued I/O (bool) parm: zil_replay_disable:Disable intent logging replay (int) parm: zfs_nocacheflush:Disable cache flushes (bool) parm: zfs_read_chunk_size:Bytes to read per chunk (long) parm: zfs_vdev_max_pending:Max pending per-vdev I/Os (int) parm: zfs_vdev_min_pending:Min pending per-vdev I/Os (int) parm: zfs_vdev_aggregation_limit:Max vdev I/O aggregation size (int) parm: zfs_vdev_time_shift:Deadline time shift for vdev I/O (int) parm: zfs_vdev_ramp_rate:Exponential I/O issue ramp-up rate (int) parm: zfs_vdev_read_gap_limit:Aggregate read I/O over gap (int) parm: zfs_vdev_write_gap_limit:Aggregate write I/O over gap (int) parm: zfs_vdev_scheduler:I/O scheduler (charp) parm: zfs_vdev_cache_max:Inflate reads small than max (int) parm: zfs_vdev_cache_size:Total size of the per-disk cache (int) parm: zfs_vdev_cache_bshift:Shift size to inflate reads too (int) parm: zfs_scrub_limit:Max scrub/resilver I/O per leaf vdev (int) parm: zfs_recover:Set to attempt to recover from fatal errors (int) parm: spa_config_path:SPA config file (/etc/zfs/zpool.cache) (charp) parm: zfs_zevent_len_max:Max event queue length (int) parm: zfs_zevent_cols:Max event column width (int) parm: zfs_zevent_console:Log events to the console (int) parm: zfs_top_maxinflight:Max I/Os per top-level (int) parm: zfs_resilver_delay:Number of ticks to delay resilver (int) parm: zfs_scrub_delay:Number of ticks to delay scrub (int) parm: zfs_scan_idle:Idle window in clock ticks (int) parm: zfs_scan_min_time_ms:Min millisecs to scrub per txg (int) parm: zfs_free_min_time_ms:Min millisecs to free per txg (int) parm: zfs_resilver_min_time_ms:Min millisecs to resilver per txg (int) parm: zfs_no_scrub_io:Set to disable scrub I/O (bool) parm: zfs_no_scrub_prefetch:Set to disable scrub prefetching (bool) parm: zfs_txg_timeout:Max seconds worth of delta per txg (int) parm: zfs_no_write_throttle:Disable write throttling (int) parm: zfs_write_limit_shift:log2(fraction of memory) per txg (int) parm: zfs_txg_synctime_ms:Target milliseconds between tgx sync (int) parm: zfs_write_limit_min:Min tgx write limit (ulong) parm: zfs_write_limit_max:Max tgx write limit (ulong) parm: zfs_write_limit_inflated:Inflated tgx write limit (ulong) parm: zfs_write_limit_override:Override tgx write limit (ulong) parm: zfs_prefetch_disable:Disable all ZFS prefetching (int) parm: zfetch_max_streams:Max number of streams per zfetch (uint) parm: zfetch_min_sec_reap:Min time before stream reclaim (uint) parm: zfetch_block_cap:Max number of blocks to fetch at a time (uint) parm: zfetch_array_rd_sz:Number of bytes in a array_read (ulong) parm: zfs_pd_blks_max:Max number of blocks to prefetch (int) parm: zfs_dedup_prefetch:Enable prefetching dedup-ed blks (int) parm: zfs_arc_min:Min arc size (ulong) parm: zfs_arc_max:Max arc size (ulong) parm: zfs_arc_meta_limit:Meta limit for arc size (ulong) parm: zfs_arc_reduce_dnlc_percent:Meta reclaim percentage (int) parm: zfs_arc_grow_retry:Seconds before growing arc size (int) parm: zfs_arc_shrink_shift:log2(fraction of arc to reclaim) (int) parm: zfs_arc_p_min_shift:arc_c shift to calc min/max arc_p (int)
2011-05-04 02:09:28 +04:00
ASSERT(range_tree_contains(queue->q_exts_by_addr, start, size));
range_tree_remove_fill(queue->q_exts_by_addr, start, size);
/*
* We only update scn_bytes_pending in the cold path,
* otherwise it will already have been accounted for as
* part of the zio's execution.
*/
atomic_add_64(&scn->scn_bytes_pending, -asize);
Add missing ZFS tunables This commit adds module options for all existing zfs tunables. Ideally the average user should never need to modify any of these values. However, in practice sometimes you do need to tweak these values for one reason or another. In those cases it's nice not to have to resort to rebuilding from source. All tunables are visable to modinfo and the list is as follows: $ modinfo module/zfs/zfs.ko filename: module/zfs/zfs.ko license: CDDL author: Sun Microsystems/Oracle, Lawrence Livermore National Laboratory description: ZFS srcversion: 8EAB1D71DACE05B5AA61567 depends: spl,znvpair,zcommon,zunicode,zavl vermagic: 2.6.32-131.0.5.el6.x86_64 SMP mod_unload modversions parm: zvol_major:Major number for zvol device (uint) parm: zvol_threads:Number of threads for zvol device (uint) parm: zio_injection_enabled:Enable fault injection (int) parm: zio_bulk_flags:Additional flags to pass to bulk buffers (int) parm: zio_delay_max:Max zio millisec delay before posting event (int) parm: zio_requeue_io_start_cut_in_line:Prioritize requeued I/O (bool) parm: zil_replay_disable:Disable intent logging replay (int) parm: zfs_nocacheflush:Disable cache flushes (bool) parm: zfs_read_chunk_size:Bytes to read per chunk (long) parm: zfs_vdev_max_pending:Max pending per-vdev I/Os (int) parm: zfs_vdev_min_pending:Min pending per-vdev I/Os (int) parm: zfs_vdev_aggregation_limit:Max vdev I/O aggregation size (int) parm: zfs_vdev_time_shift:Deadline time shift for vdev I/O (int) parm: zfs_vdev_ramp_rate:Exponential I/O issue ramp-up rate (int) parm: zfs_vdev_read_gap_limit:Aggregate read I/O over gap (int) parm: zfs_vdev_write_gap_limit:Aggregate write I/O over gap (int) parm: zfs_vdev_scheduler:I/O scheduler (charp) parm: zfs_vdev_cache_max:Inflate reads small than max (int) parm: zfs_vdev_cache_size:Total size of the per-disk cache (int) parm: zfs_vdev_cache_bshift:Shift size to inflate reads too (int) parm: zfs_scrub_limit:Max scrub/resilver I/O per leaf vdev (int) parm: zfs_recover:Set to attempt to recover from fatal errors (int) parm: spa_config_path:SPA config file (/etc/zfs/zpool.cache) (charp) parm: zfs_zevent_len_max:Max event queue length (int) parm: zfs_zevent_cols:Max event column width (int) parm: zfs_zevent_console:Log events to the console (int) parm: zfs_top_maxinflight:Max I/Os per top-level (int) parm: zfs_resilver_delay:Number of ticks to delay resilver (int) parm: zfs_scrub_delay:Number of ticks to delay scrub (int) parm: zfs_scan_idle:Idle window in clock ticks (int) parm: zfs_scan_min_time_ms:Min millisecs to scrub per txg (int) parm: zfs_free_min_time_ms:Min millisecs to free per txg (int) parm: zfs_resilver_min_time_ms:Min millisecs to resilver per txg (int) parm: zfs_no_scrub_io:Set to disable scrub I/O (bool) parm: zfs_no_scrub_prefetch:Set to disable scrub prefetching (bool) parm: zfs_txg_timeout:Max seconds worth of delta per txg (int) parm: zfs_no_write_throttle:Disable write throttling (int) parm: zfs_write_limit_shift:log2(fraction of memory) per txg (int) parm: zfs_txg_synctime_ms:Target milliseconds between tgx sync (int) parm: zfs_write_limit_min:Min tgx write limit (ulong) parm: zfs_write_limit_max:Max tgx write limit (ulong) parm: zfs_write_limit_inflated:Inflated tgx write limit (ulong) parm: zfs_write_limit_override:Override tgx write limit (ulong) parm: zfs_prefetch_disable:Disable all ZFS prefetching (int) parm: zfetch_max_streams:Max number of streams per zfetch (uint) parm: zfetch_min_sec_reap:Min time before stream reclaim (uint) parm: zfetch_block_cap:Max number of blocks to fetch at a time (uint) parm: zfetch_array_rd_sz:Number of bytes in a array_read (ulong) parm: zfs_pd_blks_max:Max number of blocks to prefetch (int) parm: zfs_dedup_prefetch:Enable prefetching dedup-ed blks (int) parm: zfs_arc_min:Min arc size (ulong) parm: zfs_arc_max:Max arc size (ulong) parm: zfs_arc_meta_limit:Meta limit for arc size (ulong) parm: zfs_arc_reduce_dnlc_percent:Meta reclaim percentage (int) parm: zfs_arc_grow_retry:Seconds before growing arc size (int) parm: zfs_arc_shrink_shift:log2(fraction of arc to reclaim) (int) parm: zfs_arc_p_min_shift:arc_c shift to calc min/max arc_p (int)
2011-05-04 02:09:28 +04:00
/* count the block as though we issued it */
sio2bp(sio, &tmpbp);
count_block(scn, dp->dp_blkstats, &tmpbp);
Add missing ZFS tunables This commit adds module options for all existing zfs tunables. Ideally the average user should never need to modify any of these values. However, in practice sometimes you do need to tweak these values for one reason or another. In those cases it's nice not to have to resort to rebuilding from source. All tunables are visable to modinfo and the list is as follows: $ modinfo module/zfs/zfs.ko filename: module/zfs/zfs.ko license: CDDL author: Sun Microsystems/Oracle, Lawrence Livermore National Laboratory description: ZFS srcversion: 8EAB1D71DACE05B5AA61567 depends: spl,znvpair,zcommon,zunicode,zavl vermagic: 2.6.32-131.0.5.el6.x86_64 SMP mod_unload modversions parm: zvol_major:Major number for zvol device (uint) parm: zvol_threads:Number of threads for zvol device (uint) parm: zio_injection_enabled:Enable fault injection (int) parm: zio_bulk_flags:Additional flags to pass to bulk buffers (int) parm: zio_delay_max:Max zio millisec delay before posting event (int) parm: zio_requeue_io_start_cut_in_line:Prioritize requeued I/O (bool) parm: zil_replay_disable:Disable intent logging replay (int) parm: zfs_nocacheflush:Disable cache flushes (bool) parm: zfs_read_chunk_size:Bytes to read per chunk (long) parm: zfs_vdev_max_pending:Max pending per-vdev I/Os (int) parm: zfs_vdev_min_pending:Min pending per-vdev I/Os (int) parm: zfs_vdev_aggregation_limit:Max vdev I/O aggregation size (int) parm: zfs_vdev_time_shift:Deadline time shift for vdev I/O (int) parm: zfs_vdev_ramp_rate:Exponential I/O issue ramp-up rate (int) parm: zfs_vdev_read_gap_limit:Aggregate read I/O over gap (int) parm: zfs_vdev_write_gap_limit:Aggregate write I/O over gap (int) parm: zfs_vdev_scheduler:I/O scheduler (charp) parm: zfs_vdev_cache_max:Inflate reads small than max (int) parm: zfs_vdev_cache_size:Total size of the per-disk cache (int) parm: zfs_vdev_cache_bshift:Shift size to inflate reads too (int) parm: zfs_scrub_limit:Max scrub/resilver I/O per leaf vdev (int) parm: zfs_recover:Set to attempt to recover from fatal errors (int) parm: spa_config_path:SPA config file (/etc/zfs/zpool.cache) (charp) parm: zfs_zevent_len_max:Max event queue length (int) parm: zfs_zevent_cols:Max event column width (int) parm: zfs_zevent_console:Log events to the console (int) parm: zfs_top_maxinflight:Max I/Os per top-level (int) parm: zfs_resilver_delay:Number of ticks to delay resilver (int) parm: zfs_scrub_delay:Number of ticks to delay scrub (int) parm: zfs_scan_idle:Idle window in clock ticks (int) parm: zfs_scan_min_time_ms:Min millisecs to scrub per txg (int) parm: zfs_free_min_time_ms:Min millisecs to free per txg (int) parm: zfs_resilver_min_time_ms:Min millisecs to resilver per txg (int) parm: zfs_no_scrub_io:Set to disable scrub I/O (bool) parm: zfs_no_scrub_prefetch:Set to disable scrub prefetching (bool) parm: zfs_txg_timeout:Max seconds worth of delta per txg (int) parm: zfs_no_write_throttle:Disable write throttling (int) parm: zfs_write_limit_shift:log2(fraction of memory) per txg (int) parm: zfs_txg_synctime_ms:Target milliseconds between tgx sync (int) parm: zfs_write_limit_min:Min tgx write limit (ulong) parm: zfs_write_limit_max:Max tgx write limit (ulong) parm: zfs_write_limit_inflated:Inflated tgx write limit (ulong) parm: zfs_write_limit_override:Override tgx write limit (ulong) parm: zfs_prefetch_disable:Disable all ZFS prefetching (int) parm: zfetch_max_streams:Max number of streams per zfetch (uint) parm: zfetch_min_sec_reap:Min time before stream reclaim (uint) parm: zfetch_block_cap:Max number of blocks to fetch at a time (uint) parm: zfetch_array_rd_sz:Number of bytes in a array_read (ulong) parm: zfs_pd_blks_max:Max number of blocks to prefetch (int) parm: zfs_dedup_prefetch:Enable prefetching dedup-ed blks (int) parm: zfs_arc_min:Min arc size (ulong) parm: zfs_arc_max:Max arc size (ulong) parm: zfs_arc_meta_limit:Meta limit for arc size (ulong) parm: zfs_arc_reduce_dnlc_percent:Meta reclaim percentage (int) parm: zfs_arc_grow_retry:Seconds before growing arc size (int) parm: zfs_arc_shrink_shift:log2(fraction of arc to reclaim) (int) parm: zfs_arc_p_min_shift:arc_c shift to calc min/max arc_p (int)
2011-05-04 02:09:28 +04:00
sio_free(sio);
}
mutex_exit(q_lock);
}
Add missing ZFS tunables This commit adds module options for all existing zfs tunables. Ideally the average user should never need to modify any of these values. However, in practice sometimes you do need to tweak these values for one reason or another. In those cases it's nice not to have to resort to rebuilding from source. All tunables are visable to modinfo and the list is as follows: $ modinfo module/zfs/zfs.ko filename: module/zfs/zfs.ko license: CDDL author: Sun Microsystems/Oracle, Lawrence Livermore National Laboratory description: ZFS srcversion: 8EAB1D71DACE05B5AA61567 depends: spl,znvpair,zcommon,zunicode,zavl vermagic: 2.6.32-131.0.5.el6.x86_64 SMP mod_unload modversions parm: zvol_major:Major number for zvol device (uint) parm: zvol_threads:Number of threads for zvol device (uint) parm: zio_injection_enabled:Enable fault injection (int) parm: zio_bulk_flags:Additional flags to pass to bulk buffers (int) parm: zio_delay_max:Max zio millisec delay before posting event (int) parm: zio_requeue_io_start_cut_in_line:Prioritize requeued I/O (bool) parm: zil_replay_disable:Disable intent logging replay (int) parm: zfs_nocacheflush:Disable cache flushes (bool) parm: zfs_read_chunk_size:Bytes to read per chunk (long) parm: zfs_vdev_max_pending:Max pending per-vdev I/Os (int) parm: zfs_vdev_min_pending:Min pending per-vdev I/Os (int) parm: zfs_vdev_aggregation_limit:Max vdev I/O aggregation size (int) parm: zfs_vdev_time_shift:Deadline time shift for vdev I/O (int) parm: zfs_vdev_ramp_rate:Exponential I/O issue ramp-up rate (int) parm: zfs_vdev_read_gap_limit:Aggregate read I/O over gap (int) parm: zfs_vdev_write_gap_limit:Aggregate write I/O over gap (int) parm: zfs_vdev_scheduler:I/O scheduler (charp) parm: zfs_vdev_cache_max:Inflate reads small than max (int) parm: zfs_vdev_cache_size:Total size of the per-disk cache (int) parm: zfs_vdev_cache_bshift:Shift size to inflate reads too (int) parm: zfs_scrub_limit:Max scrub/resilver I/O per leaf vdev (int) parm: zfs_recover:Set to attempt to recover from fatal errors (int) parm: spa_config_path:SPA config file (/etc/zfs/zpool.cache) (charp) parm: zfs_zevent_len_max:Max event queue length (int) parm: zfs_zevent_cols:Max event column width (int) parm: zfs_zevent_console:Log events to the console (int) parm: zfs_top_maxinflight:Max I/Os per top-level (int) parm: zfs_resilver_delay:Number of ticks to delay resilver (int) parm: zfs_scrub_delay:Number of ticks to delay scrub (int) parm: zfs_scan_idle:Idle window in clock ticks (int) parm: zfs_scan_min_time_ms:Min millisecs to scrub per txg (int) parm: zfs_free_min_time_ms:Min millisecs to free per txg (int) parm: zfs_resilver_min_time_ms:Min millisecs to resilver per txg (int) parm: zfs_no_scrub_io:Set to disable scrub I/O (bool) parm: zfs_no_scrub_prefetch:Set to disable scrub prefetching (bool) parm: zfs_txg_timeout:Max seconds worth of delta per txg (int) parm: zfs_no_write_throttle:Disable write throttling (int) parm: zfs_write_limit_shift:log2(fraction of memory) per txg (int) parm: zfs_txg_synctime_ms:Target milliseconds between tgx sync (int) parm: zfs_write_limit_min:Min tgx write limit (ulong) parm: zfs_write_limit_max:Max tgx write limit (ulong) parm: zfs_write_limit_inflated:Inflated tgx write limit (ulong) parm: zfs_write_limit_override:Override tgx write limit (ulong) parm: zfs_prefetch_disable:Disable all ZFS prefetching (int) parm: zfetch_max_streams:Max number of streams per zfetch (uint) parm: zfetch_min_sec_reap:Min time before stream reclaim (uint) parm: zfetch_block_cap:Max number of blocks to fetch at a time (uint) parm: zfetch_array_rd_sz:Number of bytes in a array_read (ulong) parm: zfs_pd_blks_max:Max number of blocks to prefetch (int) parm: zfs_dedup_prefetch:Enable prefetching dedup-ed blks (int) parm: zfs_arc_min:Min arc size (ulong) parm: zfs_arc_max:Max arc size (ulong) parm: zfs_arc_meta_limit:Meta limit for arc size (ulong) parm: zfs_arc_reduce_dnlc_percent:Meta reclaim percentage (int) parm: zfs_arc_grow_retry:Seconds before growing arc size (int) parm: zfs_arc_shrink_shift:log2(fraction of arc to reclaim) (int) parm: zfs_arc_p_min_shift:arc_c shift to calc min/max arc_p (int)
2011-05-04 02:09:28 +04:00
/*
* Callback invoked when a zio_free() zio is executing. This needs to be
* intercepted to prevent the zio from deallocating a particular portion
* of disk space and it then getting reallocated and written to, while we
* still have it queued up for processing.
*/
void
dsl_scan_freed(spa_t *spa, const blkptr_t *bp)
{
dsl_pool_t *dp = spa->spa_dsl_pool;
dsl_scan_t *scn = dp->dp_scan;
ASSERT(!BP_IS_EMBEDDED(bp));
ASSERT(scn != NULL);
if (!dsl_scan_is_running(scn))
return;
for (int i = 0; i < BP_GET_NDVAS(bp); i++)
dsl_scan_freed_dva(spa, bp, i);
}
/*
* Check if a vdev needs resilvering (non-empty DTL), if so, and resilver has
* not started, start it. Otherwise, only restart if max txg in DTL range is
* greater than the max txg in the current scan. If the DTL max is less than
* the scan max, then the vdev has not missed any new data since the resilver
* started, so a restart is not needed.
*/
void
dsl_scan_assess_vdev(dsl_pool_t *dp, vdev_t *vd)
{
uint64_t min, max;
if (!vdev_resilver_needed(vd, &min, &max))
return;
if (!dsl_scan_resilvering(dp)) {
spa_async_request(dp->dp_spa, SPA_ASYNC_RESILVER);
return;
}
if (max <= dp->dp_scan->scn_phys.scn_max_txg)
return;
/* restart is needed, check if it can be deferred */
if (spa_feature_is_enabled(dp->dp_spa, SPA_FEATURE_RESILVER_DEFER))
vdev_defer_resilver(vd);
else
spa_async_request(dp->dp_spa, SPA_ASYNC_RESILVER);
}
/* BEGIN CSTYLED */
ZFS_MODULE_PARAM(zfs, zfs_, scan_vdev_limit, ULONG, ZMOD_RW,
"Max bytes in flight per leaf vdev for scrubs and resilvers");
ZFS_MODULE_PARAM(zfs, zfs_, scrub_min_time_ms, INT, ZMOD_RW,
"Min millisecs to scrub per txg");
Add missing ZFS tunables This commit adds module options for all existing zfs tunables. Ideally the average user should never need to modify any of these values. However, in practice sometimes you do need to tweak these values for one reason or another. In those cases it's nice not to have to resort to rebuilding from source. All tunables are visable to modinfo and the list is as follows: $ modinfo module/zfs/zfs.ko filename: module/zfs/zfs.ko license: CDDL author: Sun Microsystems/Oracle, Lawrence Livermore National Laboratory description: ZFS srcversion: 8EAB1D71DACE05B5AA61567 depends: spl,znvpair,zcommon,zunicode,zavl vermagic: 2.6.32-131.0.5.el6.x86_64 SMP mod_unload modversions parm: zvol_major:Major number for zvol device (uint) parm: zvol_threads:Number of threads for zvol device (uint) parm: zio_injection_enabled:Enable fault injection (int) parm: zio_bulk_flags:Additional flags to pass to bulk buffers (int) parm: zio_delay_max:Max zio millisec delay before posting event (int) parm: zio_requeue_io_start_cut_in_line:Prioritize requeued I/O (bool) parm: zil_replay_disable:Disable intent logging replay (int) parm: zfs_nocacheflush:Disable cache flushes (bool) parm: zfs_read_chunk_size:Bytes to read per chunk (long) parm: zfs_vdev_max_pending:Max pending per-vdev I/Os (int) parm: zfs_vdev_min_pending:Min pending per-vdev I/Os (int) parm: zfs_vdev_aggregation_limit:Max vdev I/O aggregation size (int) parm: zfs_vdev_time_shift:Deadline time shift for vdev I/O (int) parm: zfs_vdev_ramp_rate:Exponential I/O issue ramp-up rate (int) parm: zfs_vdev_read_gap_limit:Aggregate read I/O over gap (int) parm: zfs_vdev_write_gap_limit:Aggregate write I/O over gap (int) parm: zfs_vdev_scheduler:I/O scheduler (charp) parm: zfs_vdev_cache_max:Inflate reads small than max (int) parm: zfs_vdev_cache_size:Total size of the per-disk cache (int) parm: zfs_vdev_cache_bshift:Shift size to inflate reads too (int) parm: zfs_scrub_limit:Max scrub/resilver I/O per leaf vdev (int) parm: zfs_recover:Set to attempt to recover from fatal errors (int) parm: spa_config_path:SPA config file (/etc/zfs/zpool.cache) (charp) parm: zfs_zevent_len_max:Max event queue length (int) parm: zfs_zevent_cols:Max event column width (int) parm: zfs_zevent_console:Log events to the console (int) parm: zfs_top_maxinflight:Max I/Os per top-level (int) parm: zfs_resilver_delay:Number of ticks to delay resilver (int) parm: zfs_scrub_delay:Number of ticks to delay scrub (int) parm: zfs_scan_idle:Idle window in clock ticks (int) parm: zfs_scan_min_time_ms:Min millisecs to scrub per txg (int) parm: zfs_free_min_time_ms:Min millisecs to free per txg (int) parm: zfs_resilver_min_time_ms:Min millisecs to resilver per txg (int) parm: zfs_no_scrub_io:Set to disable scrub I/O (bool) parm: zfs_no_scrub_prefetch:Set to disable scrub prefetching (bool) parm: zfs_txg_timeout:Max seconds worth of delta per txg (int) parm: zfs_no_write_throttle:Disable write throttling (int) parm: zfs_write_limit_shift:log2(fraction of memory) per txg (int) parm: zfs_txg_synctime_ms:Target milliseconds between tgx sync (int) parm: zfs_write_limit_min:Min tgx write limit (ulong) parm: zfs_write_limit_max:Max tgx write limit (ulong) parm: zfs_write_limit_inflated:Inflated tgx write limit (ulong) parm: zfs_write_limit_override:Override tgx write limit (ulong) parm: zfs_prefetch_disable:Disable all ZFS prefetching (int) parm: zfetch_max_streams:Max number of streams per zfetch (uint) parm: zfetch_min_sec_reap:Min time before stream reclaim (uint) parm: zfetch_block_cap:Max number of blocks to fetch at a time (uint) parm: zfetch_array_rd_sz:Number of bytes in a array_read (ulong) parm: zfs_pd_blks_max:Max number of blocks to prefetch (int) parm: zfs_dedup_prefetch:Enable prefetching dedup-ed blks (int) parm: zfs_arc_min:Min arc size (ulong) parm: zfs_arc_max:Max arc size (ulong) parm: zfs_arc_meta_limit:Meta limit for arc size (ulong) parm: zfs_arc_reduce_dnlc_percent:Meta reclaim percentage (int) parm: zfs_arc_grow_retry:Seconds before growing arc size (int) parm: zfs_arc_shrink_shift:log2(fraction of arc to reclaim) (int) parm: zfs_arc_p_min_shift:arc_c shift to calc min/max arc_p (int)
2011-05-04 02:09:28 +04:00
ZFS_MODULE_PARAM(zfs, zfs_, obsolete_min_time_ms, INT, ZMOD_RW,
"Min millisecs to obsolete per txg");
OpenZFS 7614, 9064 - zfs device evacuation/removal OpenZFS 7614 - zfs device evacuation/removal OpenZFS 9064 - remove_mirror should wait for device removal to complete This project allows top-level vdevs to be removed from the storage pool with "zpool remove", reducing the total amount of storage in the pool. This operation copies all allocated regions of the device to be removed onto other devices, recording the mapping from old to new location. After the removal is complete, read and free operations to the removed (now "indirect") vdev must be remapped and performed at the new location on disk. The indirect mapping table is kept in memory whenever the pool is loaded, so there is minimal performance overhead when doing operations on the indirect vdev. The size of the in-memory mapping table will be reduced when its entries become "obsolete" because they are no longer used by any block pointers in the pool. An entry becomes obsolete when all the blocks that use it are freed. An entry can also become obsolete when all the snapshots that reference it are deleted, and the block pointers that reference it have been "remapped" in all filesystems/zvols (and clones). Whenever an indirect block is written, all the block pointers in it will be "remapped" to their new (concrete) locations if possible. This process can be accelerated by using the "zfs remap" command to proactively rewrite all indirect blocks that reference indirect (removed) vdevs. Note that when a device is removed, we do not verify the checksum of the data that is copied. This makes the process much faster, but if it were used on redundant vdevs (i.e. mirror or raidz vdevs), it would be possible to copy the wrong data, when we have the correct data on e.g. the other side of the mirror. At the moment, only mirrors and simple top-level vdevs can be removed and no removal is allowed if any of the top-level vdevs are raidz. Porting Notes: * Avoid zero-sized kmem_alloc() in vdev_compact_children(). The device evacuation code adds a dependency that vdev_compact_children() be able to properly empty the vdev_child array by setting it to NULL and zeroing vdev_children. Under Linux, kmem_alloc() and related functions return a sentinel pointer rather than NULL for zero-sized allocations. * Remove comment regarding "mpt" driver where zfs_remove_max_segment is initialized to SPA_MAXBLOCKSIZE. Change zfs_condense_indirect_commit_entry_delay_ticks to zfs_condense_indirect_commit_entry_delay_ms for consistency with most other tunables in which delays are specified in ms. * ZTS changes: Use set_tunable rather than mdb Use zpool sync as appropriate Use sync_pool instead of sync Kill jobs during test_removal_with_operation to allow unmount/export Don't add non-disk names such as "mirror" or "raidz" to $DISKS Use $TEST_BASE_DIR instead of /tmp Increase HZ from 100 to 1000 which is more common on Linux removal_multiple_indirection.ksh Reduce iterations in order to not time out on the code coverage builders. removal_resume_export: Functionally, the test case is correct but there exists a race where the kernel thread hasn't been fully started yet and is not visible. Wait for up to 1 second for the removal thread to be started before giving up on it. Also, increase the amount of data copied in order that the removal not finish before the export has a chance to fail. * MMP compatibility, the concept of concrete versus non-concrete devices has slightly changed the semantics of vdev_writeable(). Update mmp_random_leaf_impl() accordingly. * Updated dbuf_remap() to handle the org.zfsonlinux:large_dnode pool feature which is not supported by OpenZFS. * Added support for new vdev removal tracepoints. * Test cases removal_with_zdb and removal_condense_export have been intentionally disabled. When run manually they pass as intended, but when running in the automated test environment they produce unreliable results on the latest Fedora release. They may work better once the upstream pool import refectoring is merged into ZoL at which point they will be re-enabled. Authored by: Matthew Ahrens <mahrens@delphix.com> Reviewed-by: Alex Reece <alex@delphix.com> Reviewed-by: George Wilson <george.wilson@delphix.com> Reviewed-by: John Kennedy <john.kennedy@delphix.com> Reviewed-by: Prakash Surya <prakash.surya@delphix.com> Reviewed by: Richard Laager <rlaager@wiktel.com> Reviewed by: Tim Chase <tim@chase2k.com> Reviewed by: Brian Behlendorf <behlendorf1@llnl.gov> Approved by: Garrett D'Amore <garrett@damore.org> Ported-by: Tim Chase <tim@chase2k.com> Signed-off-by: Tim Chase <tim@chase2k.com> OpenZFS-issue: https://www.illumos.org/issues/7614 OpenZFS-commit: https://github.com/openzfs/openzfs/commit/f539f1eb Closes #6900
2016-09-22 19:30:13 +03:00
ZFS_MODULE_PARAM(zfs, zfs_, free_min_time_ms, INT, ZMOD_RW,
"Min millisecs to free per txg");
Add missing ZFS tunables This commit adds module options for all existing zfs tunables. Ideally the average user should never need to modify any of these values. However, in practice sometimes you do need to tweak these values for one reason or another. In those cases it's nice not to have to resort to rebuilding from source. All tunables are visable to modinfo and the list is as follows: $ modinfo module/zfs/zfs.ko filename: module/zfs/zfs.ko license: CDDL author: Sun Microsystems/Oracle, Lawrence Livermore National Laboratory description: ZFS srcversion: 8EAB1D71DACE05B5AA61567 depends: spl,znvpair,zcommon,zunicode,zavl vermagic: 2.6.32-131.0.5.el6.x86_64 SMP mod_unload modversions parm: zvol_major:Major number for zvol device (uint) parm: zvol_threads:Number of threads for zvol device (uint) parm: zio_injection_enabled:Enable fault injection (int) parm: zio_bulk_flags:Additional flags to pass to bulk buffers (int) parm: zio_delay_max:Max zio millisec delay before posting event (int) parm: zio_requeue_io_start_cut_in_line:Prioritize requeued I/O (bool) parm: zil_replay_disable:Disable intent logging replay (int) parm: zfs_nocacheflush:Disable cache flushes (bool) parm: zfs_read_chunk_size:Bytes to read per chunk (long) parm: zfs_vdev_max_pending:Max pending per-vdev I/Os (int) parm: zfs_vdev_min_pending:Min pending per-vdev I/Os (int) parm: zfs_vdev_aggregation_limit:Max vdev I/O aggregation size (int) parm: zfs_vdev_time_shift:Deadline time shift for vdev I/O (int) parm: zfs_vdev_ramp_rate:Exponential I/O issue ramp-up rate (int) parm: zfs_vdev_read_gap_limit:Aggregate read I/O over gap (int) parm: zfs_vdev_write_gap_limit:Aggregate write I/O over gap (int) parm: zfs_vdev_scheduler:I/O scheduler (charp) parm: zfs_vdev_cache_max:Inflate reads small than max (int) parm: zfs_vdev_cache_size:Total size of the per-disk cache (int) parm: zfs_vdev_cache_bshift:Shift size to inflate reads too (int) parm: zfs_scrub_limit:Max scrub/resilver I/O per leaf vdev (int) parm: zfs_recover:Set to attempt to recover from fatal errors (int) parm: spa_config_path:SPA config file (/etc/zfs/zpool.cache) (charp) parm: zfs_zevent_len_max:Max event queue length (int) parm: zfs_zevent_cols:Max event column width (int) parm: zfs_zevent_console:Log events to the console (int) parm: zfs_top_maxinflight:Max I/Os per top-level (int) parm: zfs_resilver_delay:Number of ticks to delay resilver (int) parm: zfs_scrub_delay:Number of ticks to delay scrub (int) parm: zfs_scan_idle:Idle window in clock ticks (int) parm: zfs_scan_min_time_ms:Min millisecs to scrub per txg (int) parm: zfs_free_min_time_ms:Min millisecs to free per txg (int) parm: zfs_resilver_min_time_ms:Min millisecs to resilver per txg (int) parm: zfs_no_scrub_io:Set to disable scrub I/O (bool) parm: zfs_no_scrub_prefetch:Set to disable scrub prefetching (bool) parm: zfs_txg_timeout:Max seconds worth of delta per txg (int) parm: zfs_no_write_throttle:Disable write throttling (int) parm: zfs_write_limit_shift:log2(fraction of memory) per txg (int) parm: zfs_txg_synctime_ms:Target milliseconds between tgx sync (int) parm: zfs_write_limit_min:Min tgx write limit (ulong) parm: zfs_write_limit_max:Max tgx write limit (ulong) parm: zfs_write_limit_inflated:Inflated tgx write limit (ulong) parm: zfs_write_limit_override:Override tgx write limit (ulong) parm: zfs_prefetch_disable:Disable all ZFS prefetching (int) parm: zfetch_max_streams:Max number of streams per zfetch (uint) parm: zfetch_min_sec_reap:Min time before stream reclaim (uint) parm: zfetch_block_cap:Max number of blocks to fetch at a time (uint) parm: zfetch_array_rd_sz:Number of bytes in a array_read (ulong) parm: zfs_pd_blks_max:Max number of blocks to prefetch (int) parm: zfs_dedup_prefetch:Enable prefetching dedup-ed blks (int) parm: zfs_arc_min:Min arc size (ulong) parm: zfs_arc_max:Max arc size (ulong) parm: zfs_arc_meta_limit:Meta limit for arc size (ulong) parm: zfs_arc_reduce_dnlc_percent:Meta reclaim percentage (int) parm: zfs_arc_grow_retry:Seconds before growing arc size (int) parm: zfs_arc_shrink_shift:log2(fraction of arc to reclaim) (int) parm: zfs_arc_p_min_shift:arc_c shift to calc min/max arc_p (int)
2011-05-04 02:09:28 +04:00
ZFS_MODULE_PARAM(zfs, zfs_, resilver_min_time_ms, INT, ZMOD_RW,
"Min millisecs to resilver per txg");
Add missing ZFS tunables This commit adds module options for all existing zfs tunables. Ideally the average user should never need to modify any of these values. However, in practice sometimes you do need to tweak these values for one reason or another. In those cases it's nice not to have to resort to rebuilding from source. All tunables are visable to modinfo and the list is as follows: $ modinfo module/zfs/zfs.ko filename: module/zfs/zfs.ko license: CDDL author: Sun Microsystems/Oracle, Lawrence Livermore National Laboratory description: ZFS srcversion: 8EAB1D71DACE05B5AA61567 depends: spl,znvpair,zcommon,zunicode,zavl vermagic: 2.6.32-131.0.5.el6.x86_64 SMP mod_unload modversions parm: zvol_major:Major number for zvol device (uint) parm: zvol_threads:Number of threads for zvol device (uint) parm: zio_injection_enabled:Enable fault injection (int) parm: zio_bulk_flags:Additional flags to pass to bulk buffers (int) parm: zio_delay_max:Max zio millisec delay before posting event (int) parm: zio_requeue_io_start_cut_in_line:Prioritize requeued I/O (bool) parm: zil_replay_disable:Disable intent logging replay (int) parm: zfs_nocacheflush:Disable cache flushes (bool) parm: zfs_read_chunk_size:Bytes to read per chunk (long) parm: zfs_vdev_max_pending:Max pending per-vdev I/Os (int) parm: zfs_vdev_min_pending:Min pending per-vdev I/Os (int) parm: zfs_vdev_aggregation_limit:Max vdev I/O aggregation size (int) parm: zfs_vdev_time_shift:Deadline time shift for vdev I/O (int) parm: zfs_vdev_ramp_rate:Exponential I/O issue ramp-up rate (int) parm: zfs_vdev_read_gap_limit:Aggregate read I/O over gap (int) parm: zfs_vdev_write_gap_limit:Aggregate write I/O over gap (int) parm: zfs_vdev_scheduler:I/O scheduler (charp) parm: zfs_vdev_cache_max:Inflate reads small than max (int) parm: zfs_vdev_cache_size:Total size of the per-disk cache (int) parm: zfs_vdev_cache_bshift:Shift size to inflate reads too (int) parm: zfs_scrub_limit:Max scrub/resilver I/O per leaf vdev (int) parm: zfs_recover:Set to attempt to recover from fatal errors (int) parm: spa_config_path:SPA config file (/etc/zfs/zpool.cache) (charp) parm: zfs_zevent_len_max:Max event queue length (int) parm: zfs_zevent_cols:Max event column width (int) parm: zfs_zevent_console:Log events to the console (int) parm: zfs_top_maxinflight:Max I/Os per top-level (int) parm: zfs_resilver_delay:Number of ticks to delay resilver (int) parm: zfs_scrub_delay:Number of ticks to delay scrub (int) parm: zfs_scan_idle:Idle window in clock ticks (int) parm: zfs_scan_min_time_ms:Min millisecs to scrub per txg (int) parm: zfs_free_min_time_ms:Min millisecs to free per txg (int) parm: zfs_resilver_min_time_ms:Min millisecs to resilver per txg (int) parm: zfs_no_scrub_io:Set to disable scrub I/O (bool) parm: zfs_no_scrub_prefetch:Set to disable scrub prefetching (bool) parm: zfs_txg_timeout:Max seconds worth of delta per txg (int) parm: zfs_no_write_throttle:Disable write throttling (int) parm: zfs_write_limit_shift:log2(fraction of memory) per txg (int) parm: zfs_txg_synctime_ms:Target milliseconds between tgx sync (int) parm: zfs_write_limit_min:Min tgx write limit (ulong) parm: zfs_write_limit_max:Max tgx write limit (ulong) parm: zfs_write_limit_inflated:Inflated tgx write limit (ulong) parm: zfs_write_limit_override:Override tgx write limit (ulong) parm: zfs_prefetch_disable:Disable all ZFS prefetching (int) parm: zfetch_max_streams:Max number of streams per zfetch (uint) parm: zfetch_min_sec_reap:Min time before stream reclaim (uint) parm: zfetch_block_cap:Max number of blocks to fetch at a time (uint) parm: zfetch_array_rd_sz:Number of bytes in a array_read (ulong) parm: zfs_pd_blks_max:Max number of blocks to prefetch (int) parm: zfs_dedup_prefetch:Enable prefetching dedup-ed blks (int) parm: zfs_arc_min:Min arc size (ulong) parm: zfs_arc_max:Max arc size (ulong) parm: zfs_arc_meta_limit:Meta limit for arc size (ulong) parm: zfs_arc_reduce_dnlc_percent:Meta reclaim percentage (int) parm: zfs_arc_grow_retry:Seconds before growing arc size (int) parm: zfs_arc_shrink_shift:log2(fraction of arc to reclaim) (int) parm: zfs_arc_p_min_shift:arc_c shift to calc min/max arc_p (int)
2011-05-04 02:09:28 +04:00
ZFS_MODULE_PARAM(zfs, zfs_, scan_suspend_progress, INT, ZMOD_RW,
"Set to prevent scans from progressing");
ZFS_MODULE_PARAM(zfs, zfs_, no_scrub_io, INT, ZMOD_RW,
"Set to disable scrub I/O");
Add missing ZFS tunables This commit adds module options for all existing zfs tunables. Ideally the average user should never need to modify any of these values. However, in practice sometimes you do need to tweak these values for one reason or another. In those cases it's nice not to have to resort to rebuilding from source. All tunables are visable to modinfo and the list is as follows: $ modinfo module/zfs/zfs.ko filename: module/zfs/zfs.ko license: CDDL author: Sun Microsystems/Oracle, Lawrence Livermore National Laboratory description: ZFS srcversion: 8EAB1D71DACE05B5AA61567 depends: spl,znvpair,zcommon,zunicode,zavl vermagic: 2.6.32-131.0.5.el6.x86_64 SMP mod_unload modversions parm: zvol_major:Major number for zvol device (uint) parm: zvol_threads:Number of threads for zvol device (uint) parm: zio_injection_enabled:Enable fault injection (int) parm: zio_bulk_flags:Additional flags to pass to bulk buffers (int) parm: zio_delay_max:Max zio millisec delay before posting event (int) parm: zio_requeue_io_start_cut_in_line:Prioritize requeued I/O (bool) parm: zil_replay_disable:Disable intent logging replay (int) parm: zfs_nocacheflush:Disable cache flushes (bool) parm: zfs_read_chunk_size:Bytes to read per chunk (long) parm: zfs_vdev_max_pending:Max pending per-vdev I/Os (int) parm: zfs_vdev_min_pending:Min pending per-vdev I/Os (int) parm: zfs_vdev_aggregation_limit:Max vdev I/O aggregation size (int) parm: zfs_vdev_time_shift:Deadline time shift for vdev I/O (int) parm: zfs_vdev_ramp_rate:Exponential I/O issue ramp-up rate (int) parm: zfs_vdev_read_gap_limit:Aggregate read I/O over gap (int) parm: zfs_vdev_write_gap_limit:Aggregate write I/O over gap (int) parm: zfs_vdev_scheduler:I/O scheduler (charp) parm: zfs_vdev_cache_max:Inflate reads small than max (int) parm: zfs_vdev_cache_size:Total size of the per-disk cache (int) parm: zfs_vdev_cache_bshift:Shift size to inflate reads too (int) parm: zfs_scrub_limit:Max scrub/resilver I/O per leaf vdev (int) parm: zfs_recover:Set to attempt to recover from fatal errors (int) parm: spa_config_path:SPA config file (/etc/zfs/zpool.cache) (charp) parm: zfs_zevent_len_max:Max event queue length (int) parm: zfs_zevent_cols:Max event column width (int) parm: zfs_zevent_console:Log events to the console (int) parm: zfs_top_maxinflight:Max I/Os per top-level (int) parm: zfs_resilver_delay:Number of ticks to delay resilver (int) parm: zfs_scrub_delay:Number of ticks to delay scrub (int) parm: zfs_scan_idle:Idle window in clock ticks (int) parm: zfs_scan_min_time_ms:Min millisecs to scrub per txg (int) parm: zfs_free_min_time_ms:Min millisecs to free per txg (int) parm: zfs_resilver_min_time_ms:Min millisecs to resilver per txg (int) parm: zfs_no_scrub_io:Set to disable scrub I/O (bool) parm: zfs_no_scrub_prefetch:Set to disable scrub prefetching (bool) parm: zfs_txg_timeout:Max seconds worth of delta per txg (int) parm: zfs_no_write_throttle:Disable write throttling (int) parm: zfs_write_limit_shift:log2(fraction of memory) per txg (int) parm: zfs_txg_synctime_ms:Target milliseconds between tgx sync (int) parm: zfs_write_limit_min:Min tgx write limit (ulong) parm: zfs_write_limit_max:Max tgx write limit (ulong) parm: zfs_write_limit_inflated:Inflated tgx write limit (ulong) parm: zfs_write_limit_override:Override tgx write limit (ulong) parm: zfs_prefetch_disable:Disable all ZFS prefetching (int) parm: zfetch_max_streams:Max number of streams per zfetch (uint) parm: zfetch_min_sec_reap:Min time before stream reclaim (uint) parm: zfetch_block_cap:Max number of blocks to fetch at a time (uint) parm: zfetch_array_rd_sz:Number of bytes in a array_read (ulong) parm: zfs_pd_blks_max:Max number of blocks to prefetch (int) parm: zfs_dedup_prefetch:Enable prefetching dedup-ed blks (int) parm: zfs_arc_min:Min arc size (ulong) parm: zfs_arc_max:Max arc size (ulong) parm: zfs_arc_meta_limit:Meta limit for arc size (ulong) parm: zfs_arc_reduce_dnlc_percent:Meta reclaim percentage (int) parm: zfs_arc_grow_retry:Seconds before growing arc size (int) parm: zfs_arc_shrink_shift:log2(fraction of arc to reclaim) (int) parm: zfs_arc_p_min_shift:arc_c shift to calc min/max arc_p (int)
2011-05-04 02:09:28 +04:00
ZFS_MODULE_PARAM(zfs, zfs_, no_scrub_prefetch, INT, ZMOD_RW,
"Set to disable scrub prefetching");
ZFS_MODULE_PARAM(zfs, zfs_, async_block_max_blocks, ULONG, ZMOD_RW,
OpenZFS 7614, 9064 - zfs device evacuation/removal OpenZFS 7614 - zfs device evacuation/removal OpenZFS 9064 - remove_mirror should wait for device removal to complete This project allows top-level vdevs to be removed from the storage pool with "zpool remove", reducing the total amount of storage in the pool. This operation copies all allocated regions of the device to be removed onto other devices, recording the mapping from old to new location. After the removal is complete, read and free operations to the removed (now "indirect") vdev must be remapped and performed at the new location on disk. The indirect mapping table is kept in memory whenever the pool is loaded, so there is minimal performance overhead when doing operations on the indirect vdev. The size of the in-memory mapping table will be reduced when its entries become "obsolete" because they are no longer used by any block pointers in the pool. An entry becomes obsolete when all the blocks that use it are freed. An entry can also become obsolete when all the snapshots that reference it are deleted, and the block pointers that reference it have been "remapped" in all filesystems/zvols (and clones). Whenever an indirect block is written, all the block pointers in it will be "remapped" to their new (concrete) locations if possible. This process can be accelerated by using the "zfs remap" command to proactively rewrite all indirect blocks that reference indirect (removed) vdevs. Note that when a device is removed, we do not verify the checksum of the data that is copied. This makes the process much faster, but if it were used on redundant vdevs (i.e. mirror or raidz vdevs), it would be possible to copy the wrong data, when we have the correct data on e.g. the other side of the mirror. At the moment, only mirrors and simple top-level vdevs can be removed and no removal is allowed if any of the top-level vdevs are raidz. Porting Notes: * Avoid zero-sized kmem_alloc() in vdev_compact_children(). The device evacuation code adds a dependency that vdev_compact_children() be able to properly empty the vdev_child array by setting it to NULL and zeroing vdev_children. Under Linux, kmem_alloc() and related functions return a sentinel pointer rather than NULL for zero-sized allocations. * Remove comment regarding "mpt" driver where zfs_remove_max_segment is initialized to SPA_MAXBLOCKSIZE. Change zfs_condense_indirect_commit_entry_delay_ticks to zfs_condense_indirect_commit_entry_delay_ms for consistency with most other tunables in which delays are specified in ms. * ZTS changes: Use set_tunable rather than mdb Use zpool sync as appropriate Use sync_pool instead of sync Kill jobs during test_removal_with_operation to allow unmount/export Don't add non-disk names such as "mirror" or "raidz" to $DISKS Use $TEST_BASE_DIR instead of /tmp Increase HZ from 100 to 1000 which is more common on Linux removal_multiple_indirection.ksh Reduce iterations in order to not time out on the code coverage builders. removal_resume_export: Functionally, the test case is correct but there exists a race where the kernel thread hasn't been fully started yet and is not visible. Wait for up to 1 second for the removal thread to be started before giving up on it. Also, increase the amount of data copied in order that the removal not finish before the export has a chance to fail. * MMP compatibility, the concept of concrete versus non-concrete devices has slightly changed the semantics of vdev_writeable(). Update mmp_random_leaf_impl() accordingly. * Updated dbuf_remap() to handle the org.zfsonlinux:large_dnode pool feature which is not supported by OpenZFS. * Added support for new vdev removal tracepoints. * Test cases removal_with_zdb and removal_condense_export have been intentionally disabled. When run manually they pass as intended, but when running in the automated test environment they produce unreliable results on the latest Fedora release. They may work better once the upstream pool import refectoring is merged into ZoL at which point they will be re-enabled. Authored by: Matthew Ahrens <mahrens@delphix.com> Reviewed-by: Alex Reece <alex@delphix.com> Reviewed-by: George Wilson <george.wilson@delphix.com> Reviewed-by: John Kennedy <john.kennedy@delphix.com> Reviewed-by: Prakash Surya <prakash.surya@delphix.com> Reviewed by: Richard Laager <rlaager@wiktel.com> Reviewed by: Tim Chase <tim@chase2k.com> Reviewed by: Brian Behlendorf <behlendorf1@llnl.gov> Approved by: Garrett D'Amore <garrett@damore.org> Ported-by: Tim Chase <tim@chase2k.com> Signed-off-by: Tim Chase <tim@chase2k.com> OpenZFS-issue: https://www.illumos.org/issues/7614 OpenZFS-commit: https://github.com/openzfs/openzfs/commit/f539f1eb Closes #6900
2016-09-22 19:30:13 +03:00
"Max number of blocks freed in one txg");
ZFS_MODULE_PARAM(zfs, zfs_, max_async_dedup_frees, ULONG, ZMOD_RW,
"Max number of dedup blocks freed in one txg");
ZFS_MODULE_PARAM(zfs, zfs_, free_bpobj_enabled, INT, ZMOD_RW,
"Enable processing of the free_bpobj");
ZFS_MODULE_PARAM(zfs, zfs_, scan_mem_lim_fact, INT, ZMOD_RW,
"Fraction of RAM for scan hard limit");
ZFS_MODULE_PARAM(zfs, zfs_, scan_issue_strategy, INT, ZMOD_RW,
"IO issuing strategy during scrubbing. "
"0 = default, 1 = LBA, 2 = size");
ZFS_MODULE_PARAM(zfs, zfs_, scan_legacy, INT, ZMOD_RW,
"Scrub using legacy non-sequential method");
ZFS_MODULE_PARAM(zfs, zfs_, scan_checkpoint_intval, INT, ZMOD_RW,
"Scan progress on-disk checkpointing interval");
ZFS_MODULE_PARAM(zfs, zfs_, scan_max_ext_gap, ULONG, ZMOD_RW,
"Max gap in bytes between sequential scrub / resilver I/Os");
ZFS_MODULE_PARAM(zfs, zfs_, scan_mem_lim_soft_fact, INT, ZMOD_RW,
"Fraction of hard limit used as soft limit");
ZFS_MODULE_PARAM(zfs, zfs_, scan_strict_mem_lim, INT, ZMOD_RW,
"Tunable to attempt to reduce lock contention");
ZFS_MODULE_PARAM(zfs, zfs_, scan_fill_weight, INT, ZMOD_RW,
"Tunable to adjust bias towards more filled segments during scans");
ZFS_MODULE_PARAM(zfs, zfs_, resilver_disable_defer, INT, ZMOD_RW,
"Process all resilvers immediately");
/* END CSTYLED */