1
0
mirror of https://git.proxmox.com/git/mirror_zfs.git synced 2025-01-26 09:54:22 +03:00
mirror_zfs/module/icp/asm-x86_64/aes/aes_amd64.S

907 lines
27 KiB
ArmAsm
Raw Normal View History

/*
* ---------------------------------------------------------------------------
* Copyright (c) 1998-2007, Brian Gladman, Worcester, UK. All rights reserved.
*
* LICENSE TERMS
*
* The free distribution and use of this software is allowed (with or without
* changes) provided that:
*
* 1. source code distributions include the above copyright notice, this
* list of conditions and the following disclaimer;
*
* 2. binary distributions include the above copyright notice, this list
* of conditions and the following disclaimer in their documentation;
*
* 3. the name of the copyright holder is not used to endorse products
* built using this software without specific written permission.
*
* DISCLAIMER
*
* This software is provided 'as is' with no explicit or implied warranties
* in respect of its properties, including, but not limited to, correctness
* and/or fitness for purpose.
* ---------------------------------------------------------------------------
* Issue 20/12/2007
*
* I am grateful to Dag Arne Osvik for many discussions of the techniques that
* can be used to optimise AES assembler code on AMD64/EM64T architectures.
* Some of the techniques used in this implementation are the result of
* suggestions made by him for which I am most grateful.
*
* An AES implementation for AMD64 processors using the YASM assembler. This
* implementation provides only encryption, decryption and hence requires key
* scheduling support in C. It uses 8k bytes of tables but its encryption and
* decryption performance is very close to that obtained using large tables.
* It can use either MS Windows or Gnu/Linux/OpenSolaris OS calling conventions,
* which are as follows:
* ms windows gnu/linux/opensolaris os
*
* in_blk rcx rdi
* out_blk rdx rsi
* context (cx) r8 rdx
*
* preserved rsi - + rbx, rbp, rsp, r12, r13, r14 & r15
* registers rdi - on both
*
* destroyed - rsi + rax, rcx, rdx, r8, r9, r10 & r11
* registers - rdi on both
*
* The convention used here is that for gnu/linux/opensolaris os.
*
* This code provides the standard AES block size (128 bits, 16 bytes) and the
* three standard AES key sizes (128, 192 and 256 bits). It has the same call
* interface as my C implementation. It uses the Microsoft C AMD64 calling
* conventions in which the three parameters are placed in rcx, rdx and r8
* respectively. The rbx, rsi, rdi, rbp and r12..r15 registers are preserved.
*
* OpenSolaris Note:
* Modified to use GNU/Linux/Solaris calling conventions.
* That is parameters are placed in rdi, rsi, rdx, and rcx, respectively.
*
* AES_RETURN aes_encrypt(const unsigned char in_blk[],
* unsigned char out_blk[], const aes_encrypt_ctx cx[1])/
*
* AES_RETURN aes_decrypt(const unsigned char in_blk[],
* unsigned char out_blk[], const aes_decrypt_ctx cx[1])/
*
* AES_RETURN aes_encrypt_key<NNN>(const unsigned char key[],
* const aes_encrypt_ctx cx[1])/
*
* AES_RETURN aes_decrypt_key<NNN>(const unsigned char key[],
* const aes_decrypt_ctx cx[1])/
*
* AES_RETURN aes_encrypt_key(const unsigned char key[],
* unsigned int len, const aes_decrypt_ctx cx[1])/
*
* AES_RETURN aes_decrypt_key(const unsigned char key[],
* unsigned int len, const aes_decrypt_ctx cx[1])/
*
* where <NNN> is 128, 102 or 256. In the last two calls the length can be in
* either bits or bytes.
*
* Comment in/out the following lines to obtain the desired subroutines. These
* selections MUST match those in the C header file aesopt.h
*/
#define AES_REV_DKS /* define if key decryption schedule is reversed */
#define LAST_ROUND_TABLES /* define for the faster version using extra tables */
/*
* The encryption key schedule has the following in memory layout where N is the
* number of rounds (10, 12 or 14):
*
* lo: | input key (round 0) | / each round is four 32-bit words
* | encryption round 1 |
* | encryption round 2 |
* ....
* | encryption round N-1 |
* hi: | encryption round N |
*
* The decryption key schedule is normally set up so that it has the same
* layout as above by actually reversing the order of the encryption key
* schedule in memory (this happens when AES_REV_DKS is set):
*
* lo: | decryption round 0 | = | encryption round N |
* | decryption round 1 | = INV_MIX_COL[ | encryption round N-1 | ]
* | decryption round 2 | = INV_MIX_COL[ | encryption round N-2 | ]
* .... ....
* | decryption round N-1 | = INV_MIX_COL[ | encryption round 1 | ]
* hi: | decryption round N | = | input key (round 0) |
*
* with rounds except the first and last modified using inv_mix_column()
* But if AES_REV_DKS is NOT set the order of keys is left as it is for
* encryption so that it has to be accessed in reverse when used for
* decryption (although the inverse mix column modifications are done)
*
* lo: | decryption round 0 | = | input key (round 0) |
* | decryption round 1 | = INV_MIX_COL[ | encryption round 1 | ]
* | decryption round 2 | = INV_MIX_COL[ | encryption round 2 | ]
* .... ....
* | decryption round N-1 | = INV_MIX_COL[ | encryption round N-1 | ]
* hi: | decryption round N | = | encryption round N |
*
* This layout is faster when the assembler key scheduling provided here
* is used.
*
* End of user defines
*/
/*
* ---------------------------------------------------------------------------
* OpenSolaris OS modifications
*
* This source originates from Brian Gladman file aes_amd64.asm
* in http://fp.gladman.plus.com/AES/aes-src-04-03-08.zip
* with these changes:
*
* 1. Removed MS Windows-specific code within DLL_EXPORT, _SEH_, and
* !__GNUC__ ifdefs. Also removed ENCRYPTION, DECRYPTION,
* AES_128, AES_192, AES_256, AES_VAR ifdefs.
*
* 2. Translate yasm/nasm %define and .macro definitions to cpp(1) #define
*
* 3. Translate yasm/nasm %ifdef/%ifndef to cpp(1) #ifdef
*
* 4. Translate Intel/yasm/nasm syntax to ATT/OpenSolaris as(1) syntax
* (operands reversed, literals prefixed with "$", registers prefixed with "%",
* and "[register+offset]", addressing changed to "offset(register)",
* parenthesis in constant expressions "()" changed to square brackets "[]",
* "." removed from local (numeric) labels, and other changes.
* Examples:
* Intel/yasm/nasm Syntax ATT/OpenSolaris Syntax
* mov rax,(4*20h) mov $[4*0x20],%rax
* mov rax,[ebx+20h] mov 0x20(%ebx),%rax
* lea rax,[ebx+ecx] lea (%ebx,%ecx),%rax
* sub rax,[ebx+ecx*4-20h] sub -0x20(%ebx,%ecx,4),%rax
*
* 5. Added OpenSolaris ENTRY_NP/SET_SIZE macros from
* /usr/include/sys/asm_linkage.h, lint(1B) guards, and dummy C function
* definitions for lint.
*
* 6. Renamed functions and reordered parameters to match OpenSolaris:
* Original Gladman interface:
* int aes_encrypt(const unsigned char *in,
* unsigned char *out, const aes_encrypt_ctx cx[1])/
* int aes_decrypt(const unsigned char *in,
* unsigned char *out, const aes_encrypt_ctx cx[1])/
* Note: aes_encrypt_ctx contains ks, a 60 element array of uint32_t,
* and a union type, inf., containing inf.l, a uint32_t and
* inf.b, a 4-element array of uint32_t. Only b[0] in the array (aka "l") is
* used and contains the key schedule length * 16 where key schedule length is
* 10, 12, or 14 bytes.
*
* OpenSolaris OS interface:
* void aes_encrypt_amd64(const aes_ks_t *ks, int Nr,
* const uint32_t pt[4], uint32_t ct[4])/
* void aes_decrypt_amd64(const aes_ks_t *ks, int Nr,
* const uint32_t pt[4], uint32_t ct[4])/
* typedef union {uint64_t ks64[(MAX_AES_NR + 1) * 4]/
* uint32_t ks32[(MAX_AES_NR + 1) * 4]/ } aes_ks_t/
* Note: ks is the AES key schedule, Nr is number of rounds, pt is plain text,
* ct is crypto text, and MAX_AES_NR is 14.
* For the x86 64-bit architecture, OpenSolaris OS uses ks32 instead of ks64.
*/
#if defined(lint) || defined(__lint)
#include <sys/types.h>
/* ARGSUSED */
void
aes_encrypt_amd64(const uint32_t rk[], int Nr, const uint32_t pt[4],
uint32_t ct[4]) {
}
/* ARGSUSED */
void
aes_decrypt_amd64(const uint32_t rk[], int Nr, const uint32_t ct[4],
uint32_t pt[4]) {
}
#else
#define _ASM
#include <sys/asm_linkage.h>
#define KS_LENGTH 60
#define raxd eax
#define rdxd edx
#define rcxd ecx
#define rbxd ebx
#define rsid esi
#define rdid edi
#define raxb al
#define rdxb dl
#define rcxb cl
#define rbxb bl
#define rsib sil
#define rdib dil
// finite field multiplies by {02}, {04} and {08}
#define f2(x) [[x<<1]^[[[x>>7]&1]*0x11b]]
#define f4(x) [[x<<2]^[[[x>>6]&1]*0x11b]^[[[x>>6]&2]*0x11b]]
#define f8(x) [[x<<3]^[[[x>>5]&1]*0x11b]^[[[x>>5]&2]*0x11b]^[[[x>>5]&4]*0x11b]]
// finite field multiplies required in table generation
#define f3(x) [[f2(x)] ^ [x]]
#define f9(x) [[f8(x)] ^ [x]]
#define fb(x) [[f8(x)] ^ [f2(x)] ^ [x]]
#define fd(x) [[f8(x)] ^ [f4(x)] ^ [x]]
#define fe(x) [[f8(x)] ^ [f4(x)] ^ [f2(x)]]
// macros for expanding S-box data
#define u8(x) [f2(x)], [x], [x], [f3(x)], [f2(x)], [x], [x], [f3(x)]
#define v8(x) [fe(x)], [f9(x)], [fd(x)], [fb(x)], [fe(x)], [f9(x)], [fd(x)], [x]
#define w8(x) [x], 0, 0, 0, [x], 0, 0, 0
#define enc_vals(x) \
.byte x(0x63),x(0x7c),x(0x77),x(0x7b),x(0xf2),x(0x6b),x(0x6f),x(0xc5); \
.byte x(0x30),x(0x01),x(0x67),x(0x2b),x(0xfe),x(0xd7),x(0xab),x(0x76); \
.byte x(0xca),x(0x82),x(0xc9),x(0x7d),x(0xfa),x(0x59),x(0x47),x(0xf0); \
.byte x(0xad),x(0xd4),x(0xa2),x(0xaf),x(0x9c),x(0xa4),x(0x72),x(0xc0); \
.byte x(0xb7),x(0xfd),x(0x93),x(0x26),x(0x36),x(0x3f),x(0xf7),x(0xcc); \
.byte x(0x34),x(0xa5),x(0xe5),x(0xf1),x(0x71),x(0xd8),x(0x31),x(0x15); \
.byte x(0x04),x(0xc7),x(0x23),x(0xc3),x(0x18),x(0x96),x(0x05),x(0x9a); \
.byte x(0x07),x(0x12),x(0x80),x(0xe2),x(0xeb),x(0x27),x(0xb2),x(0x75); \
.byte x(0x09),x(0x83),x(0x2c),x(0x1a),x(0x1b),x(0x6e),x(0x5a),x(0xa0); \
.byte x(0x52),x(0x3b),x(0xd6),x(0xb3),x(0x29),x(0xe3),x(0x2f),x(0x84); \
.byte x(0x53),x(0xd1),x(0x00),x(0xed),x(0x20),x(0xfc),x(0xb1),x(0x5b); \
.byte x(0x6a),x(0xcb),x(0xbe),x(0x39),x(0x4a),x(0x4c),x(0x58),x(0xcf); \
.byte x(0xd0),x(0xef),x(0xaa),x(0xfb),x(0x43),x(0x4d),x(0x33),x(0x85); \
.byte x(0x45),x(0xf9),x(0x02),x(0x7f),x(0x50),x(0x3c),x(0x9f),x(0xa8); \
.byte x(0x51),x(0xa3),x(0x40),x(0x8f),x(0x92),x(0x9d),x(0x38),x(0xf5); \
.byte x(0xbc),x(0xb6),x(0xda),x(0x21),x(0x10),x(0xff),x(0xf3),x(0xd2); \
.byte x(0xcd),x(0x0c),x(0x13),x(0xec),x(0x5f),x(0x97),x(0x44),x(0x17); \
.byte x(0xc4),x(0xa7),x(0x7e),x(0x3d),x(0x64),x(0x5d),x(0x19),x(0x73); \
.byte x(0x60),x(0x81),x(0x4f),x(0xdc),x(0x22),x(0x2a),x(0x90),x(0x88); \
.byte x(0x46),x(0xee),x(0xb8),x(0x14),x(0xde),x(0x5e),x(0x0b),x(0xdb); \
.byte x(0xe0),x(0x32),x(0x3a),x(0x0a),x(0x49),x(0x06),x(0x24),x(0x5c); \
.byte x(0xc2),x(0xd3),x(0xac),x(0x62),x(0x91),x(0x95),x(0xe4),x(0x79); \
.byte x(0xe7),x(0xc8),x(0x37),x(0x6d),x(0x8d),x(0xd5),x(0x4e),x(0xa9); \
.byte x(0x6c),x(0x56),x(0xf4),x(0xea),x(0x65),x(0x7a),x(0xae),x(0x08); \
.byte x(0xba),x(0x78),x(0x25),x(0x2e),x(0x1c),x(0xa6),x(0xb4),x(0xc6); \
.byte x(0xe8),x(0xdd),x(0x74),x(0x1f),x(0x4b),x(0xbd),x(0x8b),x(0x8a); \
.byte x(0x70),x(0x3e),x(0xb5),x(0x66),x(0x48),x(0x03),x(0xf6),x(0x0e); \
.byte x(0x61),x(0x35),x(0x57),x(0xb9),x(0x86),x(0xc1),x(0x1d),x(0x9e); \
.byte x(0xe1),x(0xf8),x(0x98),x(0x11),x(0x69),x(0xd9),x(0x8e),x(0x94); \
.byte x(0x9b),x(0x1e),x(0x87),x(0xe9),x(0xce),x(0x55),x(0x28),x(0xdf); \
.byte x(0x8c),x(0xa1),x(0x89),x(0x0d),x(0xbf),x(0xe6),x(0x42),x(0x68); \
.byte x(0x41),x(0x99),x(0x2d),x(0x0f),x(0xb0),x(0x54),x(0xbb),x(0x16)
#define dec_vals(x) \
.byte x(0x52),x(0x09),x(0x6a),x(0xd5),x(0x30),x(0x36),x(0xa5),x(0x38); \
.byte x(0xbf),x(0x40),x(0xa3),x(0x9e),x(0x81),x(0xf3),x(0xd7),x(0xfb); \
.byte x(0x7c),x(0xe3),x(0x39),x(0x82),x(0x9b),x(0x2f),x(0xff),x(0x87); \
.byte x(0x34),x(0x8e),x(0x43),x(0x44),x(0xc4),x(0xde),x(0xe9),x(0xcb); \
.byte x(0x54),x(0x7b),x(0x94),x(0x32),x(0xa6),x(0xc2),x(0x23),x(0x3d); \
.byte x(0xee),x(0x4c),x(0x95),x(0x0b),x(0x42),x(0xfa),x(0xc3),x(0x4e); \
.byte x(0x08),x(0x2e),x(0xa1),x(0x66),x(0x28),x(0xd9),x(0x24),x(0xb2); \
.byte x(0x76),x(0x5b),x(0xa2),x(0x49),x(0x6d),x(0x8b),x(0xd1),x(0x25); \
.byte x(0x72),x(0xf8),x(0xf6),x(0x64),x(0x86),x(0x68),x(0x98),x(0x16); \
.byte x(0xd4),x(0xa4),x(0x5c),x(0xcc),x(0x5d),x(0x65),x(0xb6),x(0x92); \
.byte x(0x6c),x(0x70),x(0x48),x(0x50),x(0xfd),x(0xed),x(0xb9),x(0xda); \
.byte x(0x5e),x(0x15),x(0x46),x(0x57),x(0xa7),x(0x8d),x(0x9d),x(0x84); \
.byte x(0x90),x(0xd8),x(0xab),x(0x00),x(0x8c),x(0xbc),x(0xd3),x(0x0a); \
.byte x(0xf7),x(0xe4),x(0x58),x(0x05),x(0xb8),x(0xb3),x(0x45),x(0x06); \
.byte x(0xd0),x(0x2c),x(0x1e),x(0x8f),x(0xca),x(0x3f),x(0x0f),x(0x02); \
.byte x(0xc1),x(0xaf),x(0xbd),x(0x03),x(0x01),x(0x13),x(0x8a),x(0x6b); \
.byte x(0x3a),x(0x91),x(0x11),x(0x41),x(0x4f),x(0x67),x(0xdc),x(0xea); \
.byte x(0x97),x(0xf2),x(0xcf),x(0xce),x(0xf0),x(0xb4),x(0xe6),x(0x73); \
.byte x(0x96),x(0xac),x(0x74),x(0x22),x(0xe7),x(0xad),x(0x35),x(0x85); \
.byte x(0xe2),x(0xf9),x(0x37),x(0xe8),x(0x1c),x(0x75),x(0xdf),x(0x6e); \
.byte x(0x47),x(0xf1),x(0x1a),x(0x71),x(0x1d),x(0x29),x(0xc5),x(0x89); \
.byte x(0x6f),x(0xb7),x(0x62),x(0x0e),x(0xaa),x(0x18),x(0xbe),x(0x1b); \
.byte x(0xfc),x(0x56),x(0x3e),x(0x4b),x(0xc6),x(0xd2),x(0x79),x(0x20); \
.byte x(0x9a),x(0xdb),x(0xc0),x(0xfe),x(0x78),x(0xcd),x(0x5a),x(0xf4); \
.byte x(0x1f),x(0xdd),x(0xa8),x(0x33),x(0x88),x(0x07),x(0xc7),x(0x31); \
.byte x(0xb1),x(0x12),x(0x10),x(0x59),x(0x27),x(0x80),x(0xec),x(0x5f); \
.byte x(0x60),x(0x51),x(0x7f),x(0xa9),x(0x19),x(0xb5),x(0x4a),x(0x0d); \
.byte x(0x2d),x(0xe5),x(0x7a),x(0x9f),x(0x93),x(0xc9),x(0x9c),x(0xef); \
.byte x(0xa0),x(0xe0),x(0x3b),x(0x4d),x(0xae),x(0x2a),x(0xf5),x(0xb0); \
.byte x(0xc8),x(0xeb),x(0xbb),x(0x3c),x(0x83),x(0x53),x(0x99),x(0x61); \
.byte x(0x17),x(0x2b),x(0x04),x(0x7e),x(0xba),x(0x77),x(0xd6),x(0x26); \
.byte x(0xe1),x(0x69),x(0x14),x(0x63),x(0x55),x(0x21),x(0x0c),x(0x7d)
#define tptr %rbp /* table pointer */
#define kptr %r8 /* key schedule pointer */
#define fofs 128 /* adjust offset in key schedule to keep |disp| < 128 */
#define fk_ref(x, y) -16*x+fofs+4*y(kptr)
#ifdef AES_REV_DKS
#define rofs 128
#define ik_ref(x, y) -16*x+rofs+4*y(kptr)
#else
#define rofs -128
#define ik_ref(x, y) 16*x+rofs+4*y(kptr)
#endif /* AES_REV_DKS */
#define tab_0(x) (tptr,x,8)
#define tab_1(x) 3(tptr,x,8)
#define tab_2(x) 2(tptr,x,8)
#define tab_3(x) 1(tptr,x,8)
#define tab_f(x) 1(tptr,x,8)
#define tab_i(x) 7(tptr,x,8)
#define ff_rnd(p1, p2, p3, p4, round) /* normal forward round */ \
mov fk_ref(round,0), p1; \
mov fk_ref(round,1), p2; \
mov fk_ref(round,2), p3; \
mov fk_ref(round,3), p4; \
\
movzx %al, %esi; \
movzx %ah, %edi; \
shr $16, %eax; \
xor tab_0(%rsi), p1; \
xor tab_1(%rdi), p4; \
movzx %al, %esi; \
movzx %ah, %edi; \
xor tab_2(%rsi), p3; \
xor tab_3(%rdi), p2; \
\
movzx %bl, %esi; \
movzx %bh, %edi; \
shr $16, %ebx; \
xor tab_0(%rsi), p2; \
xor tab_1(%rdi), p1; \
movzx %bl, %esi; \
movzx %bh, %edi; \
xor tab_2(%rsi), p4; \
xor tab_3(%rdi), p3; \
\
movzx %cl, %esi; \
movzx %ch, %edi; \
shr $16, %ecx; \
xor tab_0(%rsi), p3; \
xor tab_1(%rdi), p2; \
movzx %cl, %esi; \
movzx %ch, %edi; \
xor tab_2(%rsi), p1; \
xor tab_3(%rdi), p4; \
\
movzx %dl, %esi; \
movzx %dh, %edi; \
shr $16, %edx; \
xor tab_0(%rsi), p4; \
xor tab_1(%rdi), p3; \
movzx %dl, %esi; \
movzx %dh, %edi; \
xor tab_2(%rsi), p2; \
xor tab_3(%rdi), p1; \
\
mov p1, %eax; \
mov p2, %ebx; \
mov p3, %ecx; \
mov p4, %edx
#ifdef LAST_ROUND_TABLES
#define fl_rnd(p1, p2, p3, p4, round) /* last forward round */ \
add $2048, tptr; \
mov fk_ref(round,0), p1; \
mov fk_ref(round,1), p2; \
mov fk_ref(round,2), p3; \
mov fk_ref(round,3), p4; \
\
movzx %al, %esi; \
movzx %ah, %edi; \
shr $16, %eax; \
xor tab_0(%rsi), p1; \
xor tab_1(%rdi), p4; \
movzx %al, %esi; \
movzx %ah, %edi; \
xor tab_2(%rsi), p3; \
xor tab_3(%rdi), p2; \
\
movzx %bl, %esi; \
movzx %bh, %edi; \
shr $16, %ebx; \
xor tab_0(%rsi), p2; \
xor tab_1(%rdi), p1; \
movzx %bl, %esi; \
movzx %bh, %edi; \
xor tab_2(%rsi), p4; \
xor tab_3(%rdi), p3; \
\
movzx %cl, %esi; \
movzx %ch, %edi; \
shr $16, %ecx; \
xor tab_0(%rsi), p3; \
xor tab_1(%rdi), p2; \
movzx %cl, %esi; \
movzx %ch, %edi; \
xor tab_2(%rsi), p1; \
xor tab_3(%rdi), p4; \
\
movzx %dl, %esi; \
movzx %dh, %edi; \
shr $16, %edx; \
xor tab_0(%rsi), p4; \
xor tab_1(%rdi), p3; \
movzx %dl, %esi; \
movzx %dh, %edi; \
xor tab_2(%rsi), p2; \
xor tab_3(%rdi), p1
#else
#define fl_rnd(p1, p2, p3, p4, round) /* last forward round */ \
mov fk_ref(round,0), p1; \
mov fk_ref(round,1), p2; \
mov fk_ref(round,2), p3; \
mov fk_ref(round,3), p4; \
\
movzx %al, %esi; \
movzx %ah, %edi; \
shr $16, %eax; \
movzx tab_f(%rsi), %esi; \
movzx tab_f(%rdi), %edi; \
xor %esi, p1; \
rol $8, %edi; \
xor %edi, p4; \
movzx %al, %esi; \
movzx %ah, %edi; \
movzx tab_f(%rsi), %esi; \
movzx tab_f(%rdi), %edi; \
rol $16, %esi; \
rol $24, %edi; \
xor %esi, p3; \
xor %edi, p2; \
\
movzx %bl, %esi; \
movzx %bh, %edi; \
shr $16, %ebx; \
movzx tab_f(%rsi), %esi; \
movzx tab_f(%rdi), %edi; \
xor %esi, p2; \
rol $8, %edi; \
xor %edi, p1; \
movzx %bl, %esi; \
movzx %bh, %edi; \
movzx tab_f(%rsi), %esi; \
movzx tab_f(%rdi), %edi; \
rol $16, %esi; \
rol $24, %edi; \
xor %esi, p4; \
xor %edi, p3; \
\
movzx %cl, %esi; \
movzx %ch, %edi; \
movzx tab_f(%rsi), %esi; \
movzx tab_f(%rdi), %edi; \
shr $16, %ecx; \
xor %esi, p3; \
rol $8, %edi; \
xor %edi, p2; \
movzx %cl, %esi; \
movzx %ch, %edi; \
movzx tab_f(%rsi), %esi; \
movzx tab_f(%rdi), %edi; \
rol $16, %esi; \
rol $24, %edi; \
xor %esi, p1; \
xor %edi, p4; \
\
movzx %dl, %esi; \
movzx %dh, %edi; \
movzx tab_f(%rsi), %esi; \
movzx tab_f(%rdi), %edi; \
shr $16, %edx; \
xor %esi, p4; \
rol $8, %edi; \
xor %edi, p3; \
movzx %dl, %esi; \
movzx %dh, %edi; \
movzx tab_f(%rsi), %esi; \
movzx tab_f(%rdi), %edi; \
rol $16, %esi; \
rol $24, %edi; \
xor %esi, p2; \
xor %edi, p1
#endif /* LAST_ROUND_TABLES */
#define ii_rnd(p1, p2, p3, p4, round) /* normal inverse round */ \
mov ik_ref(round,0), p1; \
mov ik_ref(round,1), p2; \
mov ik_ref(round,2), p3; \
mov ik_ref(round,3), p4; \
\
movzx %al, %esi; \
movzx %ah, %edi; \
shr $16, %eax; \
xor tab_0(%rsi), p1; \
xor tab_1(%rdi), p2; \
movzx %al, %esi; \
movzx %ah, %edi; \
xor tab_2(%rsi), p3; \
xor tab_3(%rdi), p4; \
\
movzx %bl, %esi; \
movzx %bh, %edi; \
shr $16, %ebx; \
xor tab_0(%rsi), p2; \
xor tab_1(%rdi), p3; \
movzx %bl, %esi; \
movzx %bh, %edi; \
xor tab_2(%rsi), p4; \
xor tab_3(%rdi), p1; \
\
movzx %cl, %esi; \
movzx %ch, %edi; \
shr $16, %ecx; \
xor tab_0(%rsi), p3; \
xor tab_1(%rdi), p4; \
movzx %cl, %esi; \
movzx %ch, %edi; \
xor tab_2(%rsi), p1; \
xor tab_3(%rdi), p2; \
\
movzx %dl, %esi; \
movzx %dh, %edi; \
shr $16, %edx; \
xor tab_0(%rsi), p4; \
xor tab_1(%rdi), p1; \
movzx %dl, %esi; \
movzx %dh, %edi; \
xor tab_2(%rsi), p2; \
xor tab_3(%rdi), p3; \
\
mov p1, %eax; \
mov p2, %ebx; \
mov p3, %ecx; \
mov p4, %edx
#ifdef LAST_ROUND_TABLES
#define il_rnd(p1, p2, p3, p4, round) /* last inverse round */ \
add $2048, tptr; \
mov ik_ref(round,0), p1; \
mov ik_ref(round,1), p2; \
mov ik_ref(round,2), p3; \
mov ik_ref(round,3), p4; \
\
movzx %al, %esi; \
movzx %ah, %edi; \
shr $16, %eax; \
xor tab_0(%rsi), p1; \
xor tab_1(%rdi), p2; \
movzx %al, %esi; \
movzx %ah, %edi; \
xor tab_2(%rsi), p3; \
xor tab_3(%rdi), p4; \
\
movzx %bl, %esi; \
movzx %bh, %edi; \
shr $16, %ebx; \
xor tab_0(%rsi), p2; \
xor tab_1(%rdi), p3; \
movzx %bl, %esi; \
movzx %bh, %edi; \
xor tab_2(%rsi), p4; \
xor tab_3(%rdi), p1; \
\
movzx %cl, %esi; \
movzx %ch, %edi; \
shr $16, %ecx; \
xor tab_0(%rsi), p3; \
xor tab_1(%rdi), p4; \
movzx %cl, %esi; \
movzx %ch, %edi; \
xor tab_2(%rsi), p1; \
xor tab_3(%rdi), p2; \
\
movzx %dl, %esi; \
movzx %dh, %edi; \
shr $16, %edx; \
xor tab_0(%rsi), p4; \
xor tab_1(%rdi), p1; \
movzx %dl, %esi; \
movzx %dh, %edi; \
xor tab_2(%rsi), p2; \
xor tab_3(%rdi), p3
#else
#define il_rnd(p1, p2, p3, p4, round) /* last inverse round */ \
mov ik_ref(round,0), p1; \
mov ik_ref(round,1), p2; \
mov ik_ref(round,2), p3; \
mov ik_ref(round,3), p4; \
\
movzx %al, %esi; \
movzx %ah, %edi; \
movzx tab_i(%rsi), %esi; \
movzx tab_i(%rdi), %edi; \
shr $16, %eax; \
xor %esi, p1; \
rol $8, %edi; \
xor %edi, p2; \
movzx %al, %esi; \
movzx %ah, %edi; \
movzx tab_i(%rsi), %esi; \
movzx tab_i(%rdi), %edi; \
rol $16, %esi; \
rol $24, %edi; \
xor %esi, p3; \
xor %edi, p4; \
\
movzx %bl, %esi; \
movzx %bh, %edi; \
movzx tab_i(%rsi), %esi; \
movzx tab_i(%rdi), %edi; \
shr $16, %ebx; \
xor %esi, p2; \
rol $8, %edi; \
xor %edi, p3; \
movzx %bl, %esi; \
movzx %bh, %edi; \
movzx tab_i(%rsi), %esi; \
movzx tab_i(%rdi), %edi; \
rol $16, %esi; \
rol $24, %edi; \
xor %esi, p4; \
xor %edi, p1; \
\
movzx %cl, %esi; \
movzx %ch, %edi; \
movzx tab_i(%rsi), %esi; \
movzx tab_i(%rdi), %edi; \
shr $16, %ecx; \
xor %esi, p3; \
rol $8, %edi; \
xor %edi, p4; \
movzx %cl, %esi; \
movzx %ch, %edi; \
movzx tab_i(%rsi), %esi; \
movzx tab_i(%rdi), %edi; \
rol $16, %esi; \
rol $24, %edi; \
xor %esi, p1; \
xor %edi, p2; \
\
movzx %dl, %esi; \
movzx %dh, %edi; \
movzx tab_i(%rsi), %esi; \
movzx tab_i(%rdi), %edi; \
shr $16, %edx; \
xor %esi, p4; \
rol $8, %edi; \
xor %edi, p1; \
movzx %dl, %esi; \
movzx %dh, %edi; \
movzx tab_i(%rsi), %esi; \
movzx tab_i(%rdi), %edi; \
rol $16, %esi; \
rol $24, %edi; \
xor %esi, p2; \
xor %edi, p3
#endif /* LAST_ROUND_TABLES */
/*
* OpenSolaris OS:
* void aes_encrypt_amd64(const aes_ks_t *ks, int Nr,
* const uint32_t pt[4], uint32_t ct[4])/
*
* Original interface:
* int aes_encrypt(const unsigned char *in,
* unsigned char *out, const aes_encrypt_ctx cx[1])/
*/
.data
.align 64
enc_tab:
enc_vals(u8)
#ifdef LAST_ROUND_TABLES
// Last Round Tables:
enc_vals(w8)
#endif
ENTRY_NP(aes_encrypt_amd64)
#ifdef GLADMAN_INTERFACE
// Original interface
sub $[4*8], %rsp // gnu/linux/opensolaris binary interface
mov %rsi, (%rsp) // output pointer (P2)
mov %rdx, %r8 // context (P3)
mov %rbx, 1*8(%rsp) // P1: input pointer in rdi
mov %rbp, 2*8(%rsp) // P2: output pointer in (rsp)
mov %r12, 3*8(%rsp) // P3: context in r8
movzx 4*KS_LENGTH(kptr), %esi // Get byte key length * 16
#else
// OpenSolaris OS interface
sub $[4*8], %rsp // Make room on stack to save registers
mov %rcx, (%rsp) // Save output pointer (P4) on stack
mov %rdi, %r8 // context (P1)
mov %rdx, %rdi // P3: save input pointer
shl $4, %esi // P2: esi byte key length * 16
mov %rbx, 1*8(%rsp) // Save registers
mov %rbp, 2*8(%rsp)
mov %r12, 3*8(%rsp)
// P1: context in r8
// P2: byte key length * 16 in esi
// P3: input pointer in rdi
// P4: output pointer in (rsp)
#endif /* GLADMAN_INTERFACE */
lea enc_tab(%rip), tptr
sub $fofs, kptr
// Load input block into registers
mov (%rdi), %eax
mov 1*4(%rdi), %ebx
mov 2*4(%rdi), %ecx
mov 3*4(%rdi), %edx
xor fofs(kptr), %eax
xor fofs+4(kptr), %ebx
xor fofs+8(kptr), %ecx
xor fofs+12(kptr), %edx
lea (kptr,%rsi), kptr
// Jump based on byte key length * 16:
cmp $[10*16], %esi
je 3f
cmp $[12*16], %esi
je 2f
cmp $[14*16], %esi
je 1f
mov $-1, %rax // error
jmp 4f
// Perform normal forward rounds
1: ff_rnd(%r9d, %r10d, %r11d, %r12d, 13)
ff_rnd(%r9d, %r10d, %r11d, %r12d, 12)
2: ff_rnd(%r9d, %r10d, %r11d, %r12d, 11)
ff_rnd(%r9d, %r10d, %r11d, %r12d, 10)
3: ff_rnd(%r9d, %r10d, %r11d, %r12d, 9)
ff_rnd(%r9d, %r10d, %r11d, %r12d, 8)
ff_rnd(%r9d, %r10d, %r11d, %r12d, 7)
ff_rnd(%r9d, %r10d, %r11d, %r12d, 6)
ff_rnd(%r9d, %r10d, %r11d, %r12d, 5)
ff_rnd(%r9d, %r10d, %r11d, %r12d, 4)
ff_rnd(%r9d, %r10d, %r11d, %r12d, 3)
ff_rnd(%r9d, %r10d, %r11d, %r12d, 2)
ff_rnd(%r9d, %r10d, %r11d, %r12d, 1)
fl_rnd(%r9d, %r10d, %r11d, %r12d, 0)
// Copy results
mov (%rsp), %rbx
mov %r9d, (%rbx)
mov %r10d, 4(%rbx)
mov %r11d, 8(%rbx)
mov %r12d, 12(%rbx)
xor %rax, %rax
4: // Restore registers
mov 1*8(%rsp), %rbx
mov 2*8(%rsp), %rbp
mov 3*8(%rsp), %r12
add $[4*8], %rsp
ret
SET_SIZE(aes_encrypt_amd64)
/*
* OpenSolaris OS:
* void aes_decrypt_amd64(const aes_ks_t *ks, int Nr,
* const uint32_t pt[4], uint32_t ct[4])/
*
* Original interface:
* int aes_decrypt(const unsigned char *in,
* unsigned char *out, const aes_encrypt_ctx cx[1])/
*/
.data
.align 64
dec_tab:
dec_vals(v8)
#ifdef LAST_ROUND_TABLES
// Last Round Tables:
dec_vals(w8)
#endif
ENTRY_NP(aes_decrypt_amd64)
#ifdef GLADMAN_INTERFACE
// Original interface
sub $[4*8], %rsp // gnu/linux/opensolaris binary interface
mov %rsi, (%rsp) // output pointer (P2)
mov %rdx, %r8 // context (P3)
mov %rbx, 1*8(%rsp) // P1: input pointer in rdi
mov %rbp, 2*8(%rsp) // P2: output pointer in (rsp)
mov %r12, 3*8(%rsp) // P3: context in r8
movzx 4*KS_LENGTH(kptr), %esi // Get byte key length * 16
#else
// OpenSolaris OS interface
sub $[4*8], %rsp // Make room on stack to save registers
mov %rcx, (%rsp) // Save output pointer (P4) on stack
mov %rdi, %r8 // context (P1)
mov %rdx, %rdi // P3: save input pointer
shl $4, %esi // P2: esi byte key length * 16
mov %rbx, 1*8(%rsp) // Save registers
mov %rbp, 2*8(%rsp)
mov %r12, 3*8(%rsp)
// P1: context in r8
// P2: byte key length * 16 in esi
// P3: input pointer in rdi
// P4: output pointer in (rsp)
#endif /* GLADMAN_INTERFACE */
lea dec_tab(%rip), tptr
sub $rofs, kptr
// Load input block into registers
mov (%rdi), %eax
mov 1*4(%rdi), %ebx
mov 2*4(%rdi), %ecx
mov 3*4(%rdi), %edx
#ifdef AES_REV_DKS
mov kptr, %rdi
lea (kptr,%rsi), kptr
#else
lea (kptr,%rsi), %rdi
#endif
xor rofs(%rdi), %eax
xor rofs+4(%rdi), %ebx
xor rofs+8(%rdi), %ecx
xor rofs+12(%rdi), %edx
// Jump based on byte key length * 16:
cmp $[10*16], %esi
je 3f
cmp $[12*16], %esi
je 2f
cmp $[14*16], %esi
je 1f
mov $-1, %rax // error
jmp 4f
// Perform normal inverse rounds
1: ii_rnd(%r9d, %r10d, %r11d, %r12d, 13)
ii_rnd(%r9d, %r10d, %r11d, %r12d, 12)
2: ii_rnd(%r9d, %r10d, %r11d, %r12d, 11)
ii_rnd(%r9d, %r10d, %r11d, %r12d, 10)
3: ii_rnd(%r9d, %r10d, %r11d, %r12d, 9)
ii_rnd(%r9d, %r10d, %r11d, %r12d, 8)
ii_rnd(%r9d, %r10d, %r11d, %r12d, 7)
ii_rnd(%r9d, %r10d, %r11d, %r12d, 6)
ii_rnd(%r9d, %r10d, %r11d, %r12d, 5)
ii_rnd(%r9d, %r10d, %r11d, %r12d, 4)
ii_rnd(%r9d, %r10d, %r11d, %r12d, 3)
ii_rnd(%r9d, %r10d, %r11d, %r12d, 2)
ii_rnd(%r9d, %r10d, %r11d, %r12d, 1)
il_rnd(%r9d, %r10d, %r11d, %r12d, 0)
// Copy results
mov (%rsp), %rbx
mov %r9d, (%rbx)
mov %r10d, 4(%rbx)
mov %r11d, 8(%rbx)
mov %r12d, 12(%rbx)
xor %rax, %rax
4: // Restore registers
mov 1*8(%rsp), %rbx
mov 2*8(%rsp), %rbp
mov 3*8(%rsp), %r12
add $[4*8], %rsp
ret
SET_SIZE(aes_decrypt_amd64)
#endif /* lint || __lint */
#ifdef __ELF__
.section .note.GNU-stack,"",%progbits
#endif