mirror_zfs/cmd/ztest.c

9117 lines
234 KiB
C
Raw Normal View History

2008-11-20 23:01:55 +03:00
/*
* CDDL HEADER START
*
* The contents of this file are subject to the terms of the
* Common Development and Distribution License (the "License").
* You may not use this file except in compliance with the License.
*
* You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
* or https://opensource.org/licenses/CDDL-1.0.
2008-11-20 23:01:55 +03:00
* See the License for the specific language governing permissions
* and limitations under the License.
*
* When distributing Covered Code, include this CDDL HEADER in each
* file and include the License file at usr/src/OPENSOLARIS.LICENSE.
* If applicable, add the following below this CDDL HEADER, with the
* fields enclosed by brackets "[]" replaced with your own identifying
* information: Portions Copyright [yyyy] [name of copyright owner]
*
* CDDL HEADER END
*/
/*
* Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
* Copyright (c) 2011, 2024 by Delphix. All rights reserved.
* Copyright 2011 Nexenta Systems, Inc. All rights reserved.
* Copyright (c) 2013 Steven Hartland. All rights reserved.
* Copyright (c) 2014 Integros [integros.com]
* Copyright 2017 Joyent, Inc.
* Copyright (c) 2017, Intel Corporation.
* Copyright (c) 2023, Klara, Inc.
2008-11-20 23:01:55 +03:00
*/
/*
* The objective of this program is to provide a DMU/ZAP/SPA stress test
* that runs entirely in userland, is easy to use, and easy to extend.
*
* The overall design of the ztest program is as follows:
*
* (1) For each major functional area (e.g. adding vdevs to a pool,
* creating and destroying datasets, reading and writing objects, etc)
* we have a simple routine to test that functionality. These
* individual routines do not have to do anything "stressful".
*
* (2) We turn these simple functionality tests into a stress test by
* running them all in parallel, with as many threads as desired,
* and spread across as many datasets, objects, and vdevs as desired.
*
* (3) While all this is happening, we inject faults into the pool to
* verify that self-healing data really works.
*
* (4) Every time we open a dataset, we change its checksum and compression
* functions. Thus even individual objects vary from block to block
* in which checksum they use and whether they're compressed.
*
* (5) To verify that we never lose on-disk consistency after a crash,
* we run the entire test in a child of the main process.
* At random times, the child self-immolates with a SIGKILL.
* This is the software equivalent of pulling the power cord.
* The parent then runs the test again, using the existing
* storage pool, as many times as desired. If backwards compatibility
* testing is enabled ztest will sometimes run the "older" version
* of ztest after a SIGKILL.
2008-11-20 23:01:55 +03:00
*
* (6) To verify that we don't have future leaks or temporal incursions,
* many of the functional tests record the transaction group number
* as part of their data. When reading old data, they verify that
* the transaction group number is less than the current, open txg.
* If you add a new test, please do this if applicable.
*
* (7) Threads are created with a reduced stack size, for sanity checking.
* Therefore, it's important not to allocate huge buffers on the stack.
*
2008-11-20 23:01:55 +03:00
* When run with no arguments, ztest runs for about five minutes and
* produces no output if successful. To get a little bit of information,
* specify -V. To get more information, specify -VV, and so on.
*
* To turn this into an overnight stress test, use -T to specify run time.
*
* You can ask more vdevs [-v], datasets [-d], or threads [-t]
2008-11-20 23:01:55 +03:00
* to increase the pool capacity, fanout, and overall stress level.
*
* Use the -k option to set the desired frequency of kills.
*
* When ztest invokes itself it passes all relevant information through a
* temporary file which is mmap-ed in the child process. This allows shared
* memory to survive the exec syscall. The ztest_shared_hdr_t struct is always
* stored at offset 0 of this file and contains information on the size and
* number of shared structures in the file. The information stored in this file
* must remain backwards compatible with older versions of ztest so that
* ztest can invoke them during backwards compatibility testing (-B).
2008-11-20 23:01:55 +03:00
*/
#include <sys/zfs_context.h>
#include <sys/spa.h>
#include <sys/dmu.h>
#include <sys/txg.h>
2009-07-03 02:44:48 +04:00
#include <sys/dbuf.h>
2008-11-20 23:01:55 +03:00
#include <sys/zap.h>
#include <sys/dmu_objset.h>
#include <sys/poll.h>
#include <sys/stat.h>
#include <sys/time.h>
#include <sys/wait.h>
#include <sys/mman.h>
#include <sys/resource.h>
#include <sys/zio.h>
#include <sys/zil.h>
#include <sys/zil_impl.h>
Distributed Spare (dRAID) Feature This patch adds a new top-level vdev type called dRAID, which stands for Distributed parity RAID. This pool configuration allows all dRAID vdevs to participate when rebuilding to a distributed hot spare device. This can substantially reduce the total time required to restore full parity to pool with a failed device. A dRAID pool can be created using the new top-level `draid` type. Like `raidz`, the desired redundancy is specified after the type: `draid[1,2,3]`. No additional information is required to create the pool and reasonable default values will be chosen based on the number of child vdevs in the dRAID vdev. zpool create <pool> draid[1,2,3] <vdevs...> Unlike raidz, additional optional dRAID configuration values can be provided as part of the draid type as colon separated values. This allows administrators to fully specify a layout for either performance or capacity reasons. The supported options include: zpool create <pool> \ draid[<parity>][:<data>d][:<children>c][:<spares>s] \ <vdevs...> - draid[parity] - Parity level (default 1) - draid[:<data>d] - Data devices per group (default 8) - draid[:<children>c] - Expected number of child vdevs - draid[:<spares>s] - Distributed hot spares (default 0) Abbreviated example `zpool status` output for a 68 disk dRAID pool with two distributed spares using special allocation classes. ``` pool: tank state: ONLINE config: NAME STATE READ WRITE CKSUM slag7 ONLINE 0 0 0 draid2:8d:68c:2s-0 ONLINE 0 0 0 L0 ONLINE 0 0 0 L1 ONLINE 0 0 0 ... U25 ONLINE 0 0 0 U26 ONLINE 0 0 0 spare-53 ONLINE 0 0 0 U27 ONLINE 0 0 0 draid2-0-0 ONLINE 0 0 0 U28 ONLINE 0 0 0 U29 ONLINE 0 0 0 ... U42 ONLINE 0 0 0 U43 ONLINE 0 0 0 special mirror-1 ONLINE 0 0 0 L5 ONLINE 0 0 0 U5 ONLINE 0 0 0 mirror-2 ONLINE 0 0 0 L6 ONLINE 0 0 0 U6 ONLINE 0 0 0 spares draid2-0-0 INUSE currently in use draid2-0-1 AVAIL ``` When adding test coverage for the new dRAID vdev type the following options were added to the ztest command. These options are leverages by zloop.sh to test a wide range of dRAID configurations. -K draid|raidz|random - kind of RAID to test -D <value> - dRAID data drives per group -S <value> - dRAID distributed hot spares -R <value> - RAID parity (raidz or dRAID) The zpool_create, zpool_import, redundancy, replacement and fault test groups have all been updated provide test coverage for the dRAID feature. Co-authored-by: Isaac Huang <he.huang@intel.com> Co-authored-by: Mark Maybee <mmaybee@cray.com> Co-authored-by: Don Brady <don.brady@delphix.com> Co-authored-by: Matthew Ahrens <mahrens@delphix.com> Co-authored-by: Brian Behlendorf <behlendorf1@llnl.gov> Reviewed-by: Mark Maybee <mmaybee@cray.com> Reviewed-by: Matt Ahrens <matt@delphix.com> Reviewed-by: Tony Hutter <hutter2@llnl.gov> Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov> Closes #10102
2020-11-14 00:51:51 +03:00
#include <sys/vdev_draid.h>
2008-11-20 23:01:55 +03:00
#include <sys/vdev_impl.h>
#include <sys/vdev_file.h>
OpenZFS 9102 - zfs should be able to initialize storage devices PROBLEM ======== The first access to a block incurs a performance penalty on some platforms (e.g. AWS's EBS, VMware VMDKs). Therefore we recommend that volumes are "thick provisioned", where supported by the platform (VMware). This can create a large delay in getting a new virtual machines up and running (or adding storage to an existing Engine). If the thick provision step is omitted, write performance will be suboptimal until all blocks on the LUN have been written. SOLUTION ========= This feature introduces a way to 'initialize' the disks at install or in the background to make sure we don't incur this first read penalty. When an entire LUN is added to ZFS, we make all space available immediately, and allow ZFS to find unallocated space and zero it out. This works with concurrent writes to arbitrary offsets, ensuring that we don't zero out something that has been (or is in the middle of being) written. This scheme can also be applied to existing pools (affecting only free regions on the vdev). Detailed design: - new subcommand:zpool initialize [-cs] <pool> [<vdev> ...] - start, suspend, or cancel initialization - Creates new open-context thread for each vdev - Thread iterates through all metaslabs in this vdev - Each metaslab: - select a metaslab - load the metaslab - mark the metaslab as being zeroed - walk all free ranges within that metaslab and translate them to ranges on the leaf vdev - issue a "zeroing" I/O on the leaf vdev that corresponds to a free range on the metaslab we're working on - continue until all free ranges for this metaslab have been "zeroed" - reset/unmark the metaslab being zeroed - if more metaslabs exist, then repeat above tasks. - if no more metaslabs, then we're done. - progress for the initialization is stored on-disk in the vdev’s leaf zap object. The following information is stored: - the last offset that has been initialized - the state of the initialization process (i.e. active, suspended, or canceled) - the start time for the initialization - progress is reported via the zpool status command and shows information for each of the vdevs that are initializing Porting notes: - Added zfs_initialize_value module parameter to set the pattern written by "zpool initialize". - Added zfs_vdev_{initializing,removal}_{min,max}_active module options. Authored by: George Wilson <george.wilson@delphix.com> Reviewed by: John Wren Kennedy <john.kennedy@delphix.com> Reviewed by: Matthew Ahrens <mahrens@delphix.com> Reviewed by: Pavel Zakharov <pavel.zakharov@delphix.com> Reviewed by: Prakash Surya <prakash.surya@delphix.com> Reviewed by: loli10K <ezomori.nozomu@gmail.com> Reviewed by: Brian Behlendorf <behlendorf1@llnl.gov> Approved by: Richard Lowe <richlowe@richlowe.net> Signed-off-by: Tim Chase <tim@chase2k.com> Ported-by: Tim Chase <tim@chase2k.com> OpenZFS-issue: https://www.illumos.org/issues/9102 OpenZFS-commit: https://github.com/openzfs/openzfs/commit/c3963210eb Closes #8230
2018-12-19 17:54:59 +03:00
#include <sys/vdev_initialize.h>
Linux 5.0 compat: SIMD compatibility Restore the SIMD optimization for 4.19.38 LTS, 4.14.120 LTS, and 5.0 and newer kernels. This is accomplished by leveraging the fact that by definition dedicated kernel threads never need to concern themselves with saving and restoring the user FPU state. Therefore, they may use the FPU as long as we can guarantee user tasks always restore their FPU state before context switching back to user space. For the 5.0 and 5.1 kernels disabling preemption and local interrupts is sufficient to allow the FPU to be used. All non-kernel threads will restore the preserved user FPU state. For 5.2 and latter kernels the user FPU state restoration will be skipped if the kernel determines the registers have not changed. Therefore, for these kernels we need to perform the additional step of saving and restoring the FPU registers. Invalidating the per-cpu global tracking the FPU state would force a restore but that functionality is private to the core x86 FPU implementation and unavailable. In practice, restricting SIMD to kernel threads is not a major restriction for ZFS. The vast majority of SIMD operations are already performed by the IO pipeline. The remaining cases are relatively infrequent and can be handled by the generic code without significant impact. The two most noteworthy cases are: 1) Decrypting the wrapping key for an encrypted dataset, i.e. `zfs load-key`. All other encryption and decryption operations will use the SIMD optimized implementations. 2) Generating the payload checksums for a `zfs send` stream. In order to avoid making any changes to the higher layers of ZFS all of the `*_get_ops()` functions were updated to take in to consideration the calling context. This allows for the fastest implementation to be used as appropriate (see kfpu_allowed()). The only other notable instance of SIMD operations being used outside a kernel thread was at module load time. This code was moved in to a taskq in order to accommodate the new kernel thread restriction. Finally, a few other modifications were made in order to further harden this code and facilitate testing. They include updating each implementations operations structure to be declared as a constant. And allowing "cycle" to be set when selecting the preferred ops in the kernel as well as user space. Reviewed-by: Tony Hutter <hutter2@llnl.gov> Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov> Closes #8754 Closes #8793 Closes #8965
2019-07-12 19:31:20 +03:00
#include <sys/vdev_raidz.h>
Add TRIM support UNMAP/TRIM support is a frequently-requested feature to help prevent performance from degrading on SSDs and on various other SAN-like storage back-ends. By issuing UNMAP/TRIM commands for sectors which are no longer allocated the underlying device can often more efficiently manage itself. This TRIM implementation is modeled on the `zpool initialize` feature which writes a pattern to all unallocated space in the pool. The new `zpool trim` command uses the same vdev_xlate() code to calculate what sectors are unallocated, the same per- vdev TRIM thread model and locking, and the same basic CLI for a consistent user experience. The core difference is that instead of writing a pattern it will issue UNMAP/TRIM commands for those extents. The zio pipeline was updated to accommodate this by adding a new ZIO_TYPE_TRIM type and associated spa taskq. This new type makes is straight forward to add the platform specific TRIM/UNMAP calls to vdev_disk.c and vdev_file.c. These new ZIO_TYPE_TRIM zios are handled largely the same way as ZIO_TYPE_READs or ZIO_TYPE_WRITEs. This makes it possible to largely avoid changing the pipieline, one exception is that TRIM zio's may exceed the 16M block size limit since they contain no data. In addition to the manual `zpool trim` command, a background automatic TRIM was added and is controlled by the 'autotrim' property. It relies on the exact same infrastructure as the manual TRIM. However, instead of relying on the extents in a metaslab's ms_allocatable range tree, a ms_trim tree is kept per metaslab. When 'autotrim=on', ranges added back to the ms_allocatable tree are also added to the ms_free tree. The ms_free tree is then periodically consumed by an autotrim thread which systematically walks a top level vdev's metaslabs. Since the automatic TRIM will skip ranges it considers too small there is value in occasionally running a full `zpool trim`. This may occur when the freed blocks are small and not enough time was allowed to aggregate them. An automatic TRIM and a manual `zpool trim` may be run concurrently, in which case the automatic TRIM will yield to the manual TRIM. Reviewed-by: Jorgen Lundman <lundman@lundman.net> Reviewed-by: Tim Chase <tim@chase2k.com> Reviewed-by: Matt Ahrens <mahrens@delphix.com> Reviewed-by: George Wilson <george.wilson@delphix.com> Reviewed-by: Serapheim Dimitropoulos <serapheim@delphix.com> Contributions-by: Saso Kiselkov <saso.kiselkov@nexenta.com> Contributions-by: Tim Chase <tim@chase2k.com> Contributions-by: Chunwei Chen <tuxoko@gmail.com> Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov> Closes #8419 Closes #598
2019-03-29 19:13:20 +03:00
#include <sys/vdev_trim.h>
2008-11-20 23:01:55 +03:00
#include <sys/spa_impl.h>
#include <sys/metaslab_impl.h>
2008-11-20 23:01:55 +03:00
#include <sys/dsl_prop.h>
2009-07-03 02:44:48 +04:00
#include <sys/dsl_dataset.h>
#include <sys/dsl_destroy.h>
#include <sys/dsl_scan.h>
#include <sys/zio_checksum.h>
#include <sys/zfs_refcount.h>
#include <sys/zfeature.h>
#include <sys/dsl_userhold.h>
#include <sys/abd.h>
Introduce BLAKE3 checksums as an OpenZFS feature This commit adds BLAKE3 checksums to OpenZFS, it has similar performance to Edon-R, but without the caveats around the latter. Homepage of BLAKE3: https://github.com/BLAKE3-team/BLAKE3 Wikipedia: https://en.wikipedia.org/wiki/BLAKE_(hash_function)#BLAKE3 Short description of Wikipedia: BLAKE3 is a cryptographic hash function based on Bao and BLAKE2, created by Jack O'Connor, Jean-Philippe Aumasson, Samuel Neves, and Zooko Wilcox-O'Hearn. It was announced on January 9, 2020, at Real World Crypto. BLAKE3 is a single algorithm with many desirable features (parallelism, XOF, KDF, PRF and MAC), in contrast to BLAKE and BLAKE2, which are algorithm families with multiple variants. BLAKE3 has a binary tree structure, so it supports a practically unlimited degree of parallelism (both SIMD and multithreading) given enough input. The official Rust and C implementations are dual-licensed as public domain (CC0) and the Apache License. Along with adding the BLAKE3 hash into the OpenZFS infrastructure a new benchmarking file called chksum_bench was introduced. When read it reports the speed of the available checksum functions. On Linux: cat /proc/spl/kstat/zfs/chksum_bench On FreeBSD: sysctl kstat.zfs.misc.chksum_bench This is an example output of an i3-1005G1 test system with Debian 11: implementation 1k 4k 16k 64k 256k 1m 4m edonr-generic 1196 1602 1761 1749 1762 1759 1751 skein-generic 546 591 608 615 619 612 616 sha256-generic 240 300 316 314 304 285 276 sha512-generic 353 441 467 476 472 467 426 blake3-generic 308 313 313 313 312 313 312 blake3-sse2 402 1289 1423 1446 1432 1458 1413 blake3-sse41 427 1470 1625 1704 1679 1607 1629 blake3-avx2 428 1920 3095 3343 3356 3318 3204 blake3-avx512 473 2687 4905 5836 5844 5643 5374 Output on Debian 5.10.0-10-amd64 system: (Ryzen 7 5800X) implementation 1k 4k 16k 64k 256k 1m 4m edonr-generic 1840 2458 2665 2719 2711 2723 2693 skein-generic 870 966 996 992 1003 1005 1009 sha256-generic 415 442 453 455 457 457 457 sha512-generic 608 690 711 718 719 720 721 blake3-generic 301 313 311 309 309 310 310 blake3-sse2 343 1865 2124 2188 2180 2181 2186 blake3-sse41 364 2091 2396 2509 2463 2482 2488 blake3-avx2 365 2590 4399 4971 4915 4802 4764 Output on Debian 5.10.0-9-powerpc64le system: (POWER 9) implementation 1k 4k 16k 64k 256k 1m 4m edonr-generic 1213 1703 1889 1918 1957 1902 1907 skein-generic 434 492 520 522 511 525 525 sha256-generic 167 183 187 188 188 187 188 sha512-generic 186 216 222 221 225 224 224 blake3-generic 153 152 154 153 151 153 153 blake3-sse2 391 1170 1366 1406 1428 1426 1414 blake3-sse41 352 1049 1212 1174 1262 1258 1259 Output on Debian 5.10.0-11-arm64 system: (Pi400) implementation 1k 4k 16k 64k 256k 1m 4m edonr-generic 487 603 629 639 643 641 641 skein-generic 271 299 303 308 309 309 307 sha256-generic 117 127 128 130 130 129 130 sha512-generic 145 165 170 172 173 174 175 blake3-generic 81 29 71 89 89 89 89 blake3-sse2 112 323 368 379 380 371 374 blake3-sse41 101 315 357 368 369 364 360 Structurally, the new code is mainly split into these parts: - 1x cross platform generic c variant: blake3_generic.c - 4x assembly for X86-64 (SSE2, SSE4.1, AVX2, AVX512) - 2x assembly for ARMv8 (NEON converted from SSE2) - 2x assembly for PPC64-LE (POWER8 converted from SSE2) - one file for switching between the implementations Note the PPC64 assembly requires the VSX instruction set and the kfpu_begin() / kfpu_end() calls on PowerPC were updated accordingly. Reviewed-by: Felix Dörre <felix@dogcraft.de> Reviewed-by: Ahelenia Ziemiańska <nabijaczleweli@nabijaczleweli.xyz> Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov> Signed-off-by: Tino Reichardt <milky-zfs@mcmilk.de> Co-authored-by: Rich Ercolani <rincebrain@gmail.com> Closes #10058 Closes #12918
2022-06-09 01:55:57 +03:00
#include <sys/blake3.h>
2008-11-20 23:01:55 +03:00
#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>
#include <getopt.h>
2008-11-20 23:01:55 +03:00
#include <signal.h>
#include <umem.h>
#include <ctype.h>
#include <math.h>
#include <sys/fs/zfs.h>
#include <zfs_fletcher.h>
#include <libnvpair.h>
#include <libzutil.h>
#include <sys/crypto/icp.h>
#include <sys/zfs_impl.h>
#include <sys/backtrace.h>
2008-11-20 23:01:55 +03:00
static int ztest_fd_data = -1;
static int ztest_fd_rand = -1;
typedef struct ztest_shared_hdr {
uint64_t zh_hdr_size;
uint64_t zh_opts_size;
uint64_t zh_size;
uint64_t zh_stats_size;
uint64_t zh_stats_count;
uint64_t zh_ds_size;
uint64_t zh_ds_count;
RAID-Z expansion feature This feature allows disks to be added one at a time to a RAID-Z group, expanding its capacity incrementally. This feature is especially useful for small pools (typically with only one RAID-Z group), where there isn't sufficient hardware to add capacity by adding a whole new RAID-Z group (typically doubling the number of disks). == Initiating expansion == A new device (disk) can be attached to an existing RAIDZ vdev, by running `zpool attach POOL raidzP-N NEW_DEVICE`, e.g. `zpool attach tank raidz2-0 sda`. The new device will become part of the RAIDZ group. A "raidz expansion" will be initiated, and the new device will contribute additional space to the RAIDZ group once the expansion completes. The `feature@raidz_expansion` on-disk feature flag must be `enabled` to initiate an expansion, and it remains `active` for the life of the pool. In other words, pools with expanded RAIDZ vdevs can not be imported by older releases of the ZFS software. == During expansion == The expansion entails reading all allocated space from existing disks in the RAIDZ group, and rewriting it to the new disks in the RAIDZ group (including the newly added device). The expansion progress can be monitored with `zpool status`. Data redundancy is maintained during (and after) the expansion. If a disk fails while the expansion is in progress, the expansion pauses until the health of the RAIDZ vdev is restored (e.g. by replacing the failed disk and waiting for reconstruction to complete). The pool remains accessible during expansion. Following a reboot or export/import, the expansion resumes where it left off. == After expansion == When the expansion completes, the additional space is available for use, and is reflected in the `available` zfs property (as seen in `zfs list`, `df`, etc). Expansion does not change the number of failures that can be tolerated without data loss (e.g. a RAIDZ2 is still a RAIDZ2 even after expansion). A RAIDZ vdev can be expanded multiple times. After the expansion completes, old blocks remain with their old data-to-parity ratio (e.g. 5-wide RAIDZ2, has 3 data to 2 parity), but distributed among the larger set of disks. New blocks will be written with the new data-to-parity ratio (e.g. a 5-wide RAIDZ2 which has been expanded once to 6-wide, has 4 data to 2 parity). However, the RAIDZ vdev's "assumed parity ratio" does not change, so slightly less space than is expected may be reported for newly-written blocks, according to `zfs list`, `df`, `ls -s`, and similar tools. Sponsored-by: The FreeBSD Foundation Sponsored-by: iXsystems, Inc. Sponsored-by: vStack Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov> Reviewed-by: Mark Maybee <mark.maybee@delphix.com> Authored-by: Matthew Ahrens <mahrens@delphix.com> Contributions-by: Fedor Uporov <fuporov.vstack@gmail.com> Contributions-by: Stuart Maybee <stuart.maybee@comcast.net> Contributions-by: Thorsten Behrens <tbehrens@outlook.com> Contributions-by: Fmstrat <nospam@nowsci.com> Contributions-by: Don Brady <dev.fs.zfs@gmail.com> Signed-off-by: Don Brady <dev.fs.zfs@gmail.com> Closes #15022
2023-11-08 21:19:41 +03:00
uint64_t zh_scratch_state_size;
} ztest_shared_hdr_t;
static ztest_shared_hdr_t *ztest_shared_hdr;
enum ztest_class_state {
ZTEST_VDEV_CLASS_OFF,
ZTEST_VDEV_CLASS_ON,
ZTEST_VDEV_CLASS_RND
};
RAID-Z expansion feature This feature allows disks to be added one at a time to a RAID-Z group, expanding its capacity incrementally. This feature is especially useful for small pools (typically with only one RAID-Z group), where there isn't sufficient hardware to add capacity by adding a whole new RAID-Z group (typically doubling the number of disks). == Initiating expansion == A new device (disk) can be attached to an existing RAIDZ vdev, by running `zpool attach POOL raidzP-N NEW_DEVICE`, e.g. `zpool attach tank raidz2-0 sda`. The new device will become part of the RAIDZ group. A "raidz expansion" will be initiated, and the new device will contribute additional space to the RAIDZ group once the expansion completes. The `feature@raidz_expansion` on-disk feature flag must be `enabled` to initiate an expansion, and it remains `active` for the life of the pool. In other words, pools with expanded RAIDZ vdevs can not be imported by older releases of the ZFS software. == During expansion == The expansion entails reading all allocated space from existing disks in the RAIDZ group, and rewriting it to the new disks in the RAIDZ group (including the newly added device). The expansion progress can be monitored with `zpool status`. Data redundancy is maintained during (and after) the expansion. If a disk fails while the expansion is in progress, the expansion pauses until the health of the RAIDZ vdev is restored (e.g. by replacing the failed disk and waiting for reconstruction to complete). The pool remains accessible during expansion. Following a reboot or export/import, the expansion resumes where it left off. == After expansion == When the expansion completes, the additional space is available for use, and is reflected in the `available` zfs property (as seen in `zfs list`, `df`, etc). Expansion does not change the number of failures that can be tolerated without data loss (e.g. a RAIDZ2 is still a RAIDZ2 even after expansion). A RAIDZ vdev can be expanded multiple times. After the expansion completes, old blocks remain with their old data-to-parity ratio (e.g. 5-wide RAIDZ2, has 3 data to 2 parity), but distributed among the larger set of disks. New blocks will be written with the new data-to-parity ratio (e.g. a 5-wide RAIDZ2 which has been expanded once to 6-wide, has 4 data to 2 parity). However, the RAIDZ vdev's "assumed parity ratio" does not change, so slightly less space than is expected may be reported for newly-written blocks, according to `zfs list`, `df`, `ls -s`, and similar tools. Sponsored-by: The FreeBSD Foundation Sponsored-by: iXsystems, Inc. Sponsored-by: vStack Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov> Reviewed-by: Mark Maybee <mark.maybee@delphix.com> Authored-by: Matthew Ahrens <mahrens@delphix.com> Contributions-by: Fedor Uporov <fuporov.vstack@gmail.com> Contributions-by: Stuart Maybee <stuart.maybee@comcast.net> Contributions-by: Thorsten Behrens <tbehrens@outlook.com> Contributions-by: Fmstrat <nospam@nowsci.com> Contributions-by: Don Brady <dev.fs.zfs@gmail.com> Signed-off-by: Don Brady <dev.fs.zfs@gmail.com> Closes #15022
2023-11-08 21:19:41 +03:00
/* Dedicated RAIDZ Expansion test states */
typedef enum {
RAIDZ_EXPAND_NONE, /* Default is none, must opt-in */
RAIDZ_EXPAND_REQUESTED, /* The '-X' option was used */
RAIDZ_EXPAND_STARTED, /* Testing has commenced */
RAIDZ_EXPAND_KILLED, /* Reached the proccess kill */
RAIDZ_EXPAND_CHECKED, /* Pool scrub verification done */
} raidz_expand_test_state_t;
#define ZO_GVARS_MAX_ARGLEN ((size_t)64)
#define ZO_GVARS_MAX_COUNT ((size_t)10)
typedef struct ztest_shared_opts {
char zo_pool[ZFS_MAX_DATASET_NAME_LEN];
char zo_dir[ZFS_MAX_DATASET_NAME_LEN];
char zo_alt_ztest[MAXNAMELEN];
char zo_alt_libpath[MAXNAMELEN];
uint64_t zo_vdevs;
uint64_t zo_vdevtime;
size_t zo_vdev_size;
int zo_ashift;
int zo_mirrors;
RAID-Z expansion feature This feature allows disks to be added one at a time to a RAID-Z group, expanding its capacity incrementally. This feature is especially useful for small pools (typically with only one RAID-Z group), where there isn't sufficient hardware to add capacity by adding a whole new RAID-Z group (typically doubling the number of disks). == Initiating expansion == A new device (disk) can be attached to an existing RAIDZ vdev, by running `zpool attach POOL raidzP-N NEW_DEVICE`, e.g. `zpool attach tank raidz2-0 sda`. The new device will become part of the RAIDZ group. A "raidz expansion" will be initiated, and the new device will contribute additional space to the RAIDZ group once the expansion completes. The `feature@raidz_expansion` on-disk feature flag must be `enabled` to initiate an expansion, and it remains `active` for the life of the pool. In other words, pools with expanded RAIDZ vdevs can not be imported by older releases of the ZFS software. == During expansion == The expansion entails reading all allocated space from existing disks in the RAIDZ group, and rewriting it to the new disks in the RAIDZ group (including the newly added device). The expansion progress can be monitored with `zpool status`. Data redundancy is maintained during (and after) the expansion. If a disk fails while the expansion is in progress, the expansion pauses until the health of the RAIDZ vdev is restored (e.g. by replacing the failed disk and waiting for reconstruction to complete). The pool remains accessible during expansion. Following a reboot or export/import, the expansion resumes where it left off. == After expansion == When the expansion completes, the additional space is available for use, and is reflected in the `available` zfs property (as seen in `zfs list`, `df`, etc). Expansion does not change the number of failures that can be tolerated without data loss (e.g. a RAIDZ2 is still a RAIDZ2 even after expansion). A RAIDZ vdev can be expanded multiple times. After the expansion completes, old blocks remain with their old data-to-parity ratio (e.g. 5-wide RAIDZ2, has 3 data to 2 parity), but distributed among the larger set of disks. New blocks will be written with the new data-to-parity ratio (e.g. a 5-wide RAIDZ2 which has been expanded once to 6-wide, has 4 data to 2 parity). However, the RAIDZ vdev's "assumed parity ratio" does not change, so slightly less space than is expected may be reported for newly-written blocks, according to `zfs list`, `df`, `ls -s`, and similar tools. Sponsored-by: The FreeBSD Foundation Sponsored-by: iXsystems, Inc. Sponsored-by: vStack Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov> Reviewed-by: Mark Maybee <mark.maybee@delphix.com> Authored-by: Matthew Ahrens <mahrens@delphix.com> Contributions-by: Fedor Uporov <fuporov.vstack@gmail.com> Contributions-by: Stuart Maybee <stuart.maybee@comcast.net> Contributions-by: Thorsten Behrens <tbehrens@outlook.com> Contributions-by: Fmstrat <nospam@nowsci.com> Contributions-by: Don Brady <dev.fs.zfs@gmail.com> Signed-off-by: Don Brady <dev.fs.zfs@gmail.com> Closes #15022
2023-11-08 21:19:41 +03:00
int zo_raid_do_expand;
Distributed Spare (dRAID) Feature This patch adds a new top-level vdev type called dRAID, which stands for Distributed parity RAID. This pool configuration allows all dRAID vdevs to participate when rebuilding to a distributed hot spare device. This can substantially reduce the total time required to restore full parity to pool with a failed device. A dRAID pool can be created using the new top-level `draid` type. Like `raidz`, the desired redundancy is specified after the type: `draid[1,2,3]`. No additional information is required to create the pool and reasonable default values will be chosen based on the number of child vdevs in the dRAID vdev. zpool create <pool> draid[1,2,3] <vdevs...> Unlike raidz, additional optional dRAID configuration values can be provided as part of the draid type as colon separated values. This allows administrators to fully specify a layout for either performance or capacity reasons. The supported options include: zpool create <pool> \ draid[<parity>][:<data>d][:<children>c][:<spares>s] \ <vdevs...> - draid[parity] - Parity level (default 1) - draid[:<data>d] - Data devices per group (default 8) - draid[:<children>c] - Expected number of child vdevs - draid[:<spares>s] - Distributed hot spares (default 0) Abbreviated example `zpool status` output for a 68 disk dRAID pool with two distributed spares using special allocation classes. ``` pool: tank state: ONLINE config: NAME STATE READ WRITE CKSUM slag7 ONLINE 0 0 0 draid2:8d:68c:2s-0 ONLINE 0 0 0 L0 ONLINE 0 0 0 L1 ONLINE 0 0 0 ... U25 ONLINE 0 0 0 U26 ONLINE 0 0 0 spare-53 ONLINE 0 0 0 U27 ONLINE 0 0 0 draid2-0-0 ONLINE 0 0 0 U28 ONLINE 0 0 0 U29 ONLINE 0 0 0 ... U42 ONLINE 0 0 0 U43 ONLINE 0 0 0 special mirror-1 ONLINE 0 0 0 L5 ONLINE 0 0 0 U5 ONLINE 0 0 0 mirror-2 ONLINE 0 0 0 L6 ONLINE 0 0 0 U6 ONLINE 0 0 0 spares draid2-0-0 INUSE currently in use draid2-0-1 AVAIL ``` When adding test coverage for the new dRAID vdev type the following options were added to the ztest command. These options are leverages by zloop.sh to test a wide range of dRAID configurations. -K draid|raidz|random - kind of RAID to test -D <value> - dRAID data drives per group -S <value> - dRAID distributed hot spares -R <value> - RAID parity (raidz or dRAID) The zpool_create, zpool_import, redundancy, replacement and fault test groups have all been updated provide test coverage for the dRAID feature. Co-authored-by: Isaac Huang <he.huang@intel.com> Co-authored-by: Mark Maybee <mmaybee@cray.com> Co-authored-by: Don Brady <don.brady@delphix.com> Co-authored-by: Matthew Ahrens <mahrens@delphix.com> Co-authored-by: Brian Behlendorf <behlendorf1@llnl.gov> Reviewed-by: Mark Maybee <mmaybee@cray.com> Reviewed-by: Matt Ahrens <matt@delphix.com> Reviewed-by: Tony Hutter <hutter2@llnl.gov> Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov> Closes #10102
2020-11-14 00:51:51 +03:00
int zo_raid_children;
int zo_raid_parity;
char zo_raid_type[8];
int zo_draid_data;
int zo_draid_spares;
int zo_datasets;
int zo_threads;
uint64_t zo_passtime;
uint64_t zo_killrate;
int zo_verbose;
int zo_init;
uint64_t zo_time;
uint64_t zo_maxloops;
uint64_t zo_metaslab_force_ganging;
RAID-Z expansion feature This feature allows disks to be added one at a time to a RAID-Z group, expanding its capacity incrementally. This feature is especially useful for small pools (typically with only one RAID-Z group), where there isn't sufficient hardware to add capacity by adding a whole new RAID-Z group (typically doubling the number of disks). == Initiating expansion == A new device (disk) can be attached to an existing RAIDZ vdev, by running `zpool attach POOL raidzP-N NEW_DEVICE`, e.g. `zpool attach tank raidz2-0 sda`. The new device will become part of the RAIDZ group. A "raidz expansion" will be initiated, and the new device will contribute additional space to the RAIDZ group once the expansion completes. The `feature@raidz_expansion` on-disk feature flag must be `enabled` to initiate an expansion, and it remains `active` for the life of the pool. In other words, pools with expanded RAIDZ vdevs can not be imported by older releases of the ZFS software. == During expansion == The expansion entails reading all allocated space from existing disks in the RAIDZ group, and rewriting it to the new disks in the RAIDZ group (including the newly added device). The expansion progress can be monitored with `zpool status`. Data redundancy is maintained during (and after) the expansion. If a disk fails while the expansion is in progress, the expansion pauses until the health of the RAIDZ vdev is restored (e.g. by replacing the failed disk and waiting for reconstruction to complete). The pool remains accessible during expansion. Following a reboot or export/import, the expansion resumes where it left off. == After expansion == When the expansion completes, the additional space is available for use, and is reflected in the `available` zfs property (as seen in `zfs list`, `df`, etc). Expansion does not change the number of failures that can be tolerated without data loss (e.g. a RAIDZ2 is still a RAIDZ2 even after expansion). A RAIDZ vdev can be expanded multiple times. After the expansion completes, old blocks remain with their old data-to-parity ratio (e.g. 5-wide RAIDZ2, has 3 data to 2 parity), but distributed among the larger set of disks. New blocks will be written with the new data-to-parity ratio (e.g. a 5-wide RAIDZ2 which has been expanded once to 6-wide, has 4 data to 2 parity). However, the RAIDZ vdev's "assumed parity ratio" does not change, so slightly less space than is expected may be reported for newly-written blocks, according to `zfs list`, `df`, `ls -s`, and similar tools. Sponsored-by: The FreeBSD Foundation Sponsored-by: iXsystems, Inc. Sponsored-by: vStack Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov> Reviewed-by: Mark Maybee <mark.maybee@delphix.com> Authored-by: Matthew Ahrens <mahrens@delphix.com> Contributions-by: Fedor Uporov <fuporov.vstack@gmail.com> Contributions-by: Stuart Maybee <stuart.maybee@comcast.net> Contributions-by: Thorsten Behrens <tbehrens@outlook.com> Contributions-by: Fmstrat <nospam@nowsci.com> Contributions-by: Don Brady <dev.fs.zfs@gmail.com> Signed-off-by: Don Brady <dev.fs.zfs@gmail.com> Closes #15022
2023-11-08 21:19:41 +03:00
raidz_expand_test_state_t zo_raidz_expand_test;
Multi-modifier protection (MMP) Add multihost=on|off pool property to control MMP. When enabled a new thread writes uberblocks to the last slot in each label, at a set frequency, to indicate to other hosts the pool is actively imported. These uberblocks are the last synced uberblock with an updated timestamp. Property defaults to off. During tryimport, find the "best" uberblock (newest txg and timestamp) repeatedly, checking for change in the found uberblock. Include the results of the activity test in the config returned by tryimport. These results are reported to user in "zpool import". Allow the user to control the period between MMP writes, and the duration of the activity test on import, via a new module parameter zfs_multihost_interval. The period is specified in milliseconds. The activity test duration is calculated from this value, and from the mmp_delay in the "best" uberblock found initially. Add a kstat interface to export statistics about Multiple Modifier Protection (MMP) updates. Include the last synced txg number, the timestamp, the delay since the last MMP update, the VDEV GUID, the VDEV label that received the last MMP update, and the VDEV path. Abbreviated output below. $ cat /proc/spl/kstat/zfs/mypool/multihost 31 0 0x01 10 880 105092382393521 105144180101111 txg timestamp mmp_delay vdev_guid vdev_label vdev_path 20468 261337 250274925 68396651780 3 /dev/sda 20468 261339 252023374 6267402363293 1 /dev/sdc 20468 261340 252000858 6698080955233 1 /dev/sdx 20468 261341 251980635 783892869810 2 /dev/sdy 20468 261342 253385953 8923255792467 3 /dev/sdd 20468 261344 253336622 042125143176 0 /dev/sdab 20468 261345 253310522 1200778101278 2 /dev/sde 20468 261346 253286429 0950576198362 2 /dev/sdt 20468 261347 253261545 96209817917 3 /dev/sds 20468 261349 253238188 8555725937673 3 /dev/sdb Add a new tunable zfs_multihost_history to specify the number of MMP updates to store history for. By default it is set to zero meaning that no MMP statistics are stored. When using ztest to generate activity, for automated tests of the MMP function, some test functions interfere with the test. For example, the pool is exported to run zdb and then imported again. Add a new ztest function, "-M", to alter ztest behavior to prevent this. Add new tests to verify the new functionality. Tests provided by Giuseppe Di Natale. Reviewed by: Matthew Ahrens <mahrens@delphix.com> Reviewed-by: Giuseppe Di Natale <dinatale2@llnl.gov> Reviewed-by: Ned Bass <bass6@llnl.gov> Reviewed-by: Andreas Dilger <andreas.dilger@intel.com> Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov> Signed-off-by: Olaf Faaland <faaland1@llnl.gov> Closes #745 Closes #6279
2017-07-08 06:20:35 +03:00
int zo_mmp_test;
int zo_special_vdevs;
int zo_dump_dbgmsg;
int zo_gvars_count;
char zo_gvars[ZO_GVARS_MAX_COUNT][ZO_GVARS_MAX_ARGLEN];
} ztest_shared_opts_t;
/* Default values for command line options. */
#define DEFAULT_POOL "ztest"
#define DEFAULT_VDEV_DIR "/tmp"
#define DEFAULT_VDEV_COUNT 5
#define DEFAULT_VDEV_SIZE (SPA_MINDEVSIZE * 4) /* 256m default size */
#define DEFAULT_VDEV_SIZE_STR "256M"
#define DEFAULT_ASHIFT SPA_MINBLOCKSHIFT
#define DEFAULT_MIRRORS 2
#define DEFAULT_RAID_CHILDREN 4
#define DEFAULT_RAID_PARITY 1
#define DEFAULT_DRAID_DATA 4
#define DEFAULT_DRAID_SPARES 1
#define DEFAULT_DATASETS_COUNT 7
#define DEFAULT_THREADS 23
#define DEFAULT_RUN_TIME 300 /* 300 seconds */
#define DEFAULT_RUN_TIME_STR "300 sec"
#define DEFAULT_PASS_TIME 60 /* 60 seconds */
#define DEFAULT_PASS_TIME_STR "60 sec"
#define DEFAULT_KILL_RATE 70 /* 70% kill rate */
#define DEFAULT_KILLRATE_STR "70%"
#define DEFAULT_INITS 1
#define DEFAULT_MAX_LOOPS 50 /* 5 minutes */
#define DEFAULT_FORCE_GANGING (64 << 10)
#define DEFAULT_FORCE_GANGING_STR "64K"
/* Simplifying assumption: -1 is not a valid default. */
#define NO_DEFAULT -1
static const ztest_shared_opts_t ztest_opts_defaults = {
.zo_pool = DEFAULT_POOL,
.zo_dir = DEFAULT_VDEV_DIR,
.zo_alt_ztest = { '\0' },
.zo_alt_libpath = { '\0' },
.zo_vdevs = DEFAULT_VDEV_COUNT,
.zo_ashift = DEFAULT_ASHIFT,
.zo_mirrors = DEFAULT_MIRRORS,
.zo_raid_children = DEFAULT_RAID_CHILDREN,
.zo_raid_parity = DEFAULT_RAID_PARITY,
Distributed Spare (dRAID) Feature This patch adds a new top-level vdev type called dRAID, which stands for Distributed parity RAID. This pool configuration allows all dRAID vdevs to participate when rebuilding to a distributed hot spare device. This can substantially reduce the total time required to restore full parity to pool with a failed device. A dRAID pool can be created using the new top-level `draid` type. Like `raidz`, the desired redundancy is specified after the type: `draid[1,2,3]`. No additional information is required to create the pool and reasonable default values will be chosen based on the number of child vdevs in the dRAID vdev. zpool create <pool> draid[1,2,3] <vdevs...> Unlike raidz, additional optional dRAID configuration values can be provided as part of the draid type as colon separated values. This allows administrators to fully specify a layout for either performance or capacity reasons. The supported options include: zpool create <pool> \ draid[<parity>][:<data>d][:<children>c][:<spares>s] \ <vdevs...> - draid[parity] - Parity level (default 1) - draid[:<data>d] - Data devices per group (default 8) - draid[:<children>c] - Expected number of child vdevs - draid[:<spares>s] - Distributed hot spares (default 0) Abbreviated example `zpool status` output for a 68 disk dRAID pool with two distributed spares using special allocation classes. ``` pool: tank state: ONLINE config: NAME STATE READ WRITE CKSUM slag7 ONLINE 0 0 0 draid2:8d:68c:2s-0 ONLINE 0 0 0 L0 ONLINE 0 0 0 L1 ONLINE 0 0 0 ... U25 ONLINE 0 0 0 U26 ONLINE 0 0 0 spare-53 ONLINE 0 0 0 U27 ONLINE 0 0 0 draid2-0-0 ONLINE 0 0 0 U28 ONLINE 0 0 0 U29 ONLINE 0 0 0 ... U42 ONLINE 0 0 0 U43 ONLINE 0 0 0 special mirror-1 ONLINE 0 0 0 L5 ONLINE 0 0 0 U5 ONLINE 0 0 0 mirror-2 ONLINE 0 0 0 L6 ONLINE 0 0 0 U6 ONLINE 0 0 0 spares draid2-0-0 INUSE currently in use draid2-0-1 AVAIL ``` When adding test coverage for the new dRAID vdev type the following options were added to the ztest command. These options are leverages by zloop.sh to test a wide range of dRAID configurations. -K draid|raidz|random - kind of RAID to test -D <value> - dRAID data drives per group -S <value> - dRAID distributed hot spares -R <value> - RAID parity (raidz or dRAID) The zpool_create, zpool_import, redundancy, replacement and fault test groups have all been updated provide test coverage for the dRAID feature. Co-authored-by: Isaac Huang <he.huang@intel.com> Co-authored-by: Mark Maybee <mmaybee@cray.com> Co-authored-by: Don Brady <don.brady@delphix.com> Co-authored-by: Matthew Ahrens <mahrens@delphix.com> Co-authored-by: Brian Behlendorf <behlendorf1@llnl.gov> Reviewed-by: Mark Maybee <mmaybee@cray.com> Reviewed-by: Matt Ahrens <matt@delphix.com> Reviewed-by: Tony Hutter <hutter2@llnl.gov> Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov> Closes #10102
2020-11-14 00:51:51 +03:00
.zo_raid_type = VDEV_TYPE_RAIDZ,
.zo_vdev_size = DEFAULT_VDEV_SIZE,
.zo_draid_data = DEFAULT_DRAID_DATA, /* data drives */
.zo_draid_spares = DEFAULT_DRAID_SPARES, /* distributed spares */
.zo_datasets = DEFAULT_DATASETS_COUNT,
.zo_threads = DEFAULT_THREADS,
.zo_passtime = DEFAULT_PASS_TIME,
.zo_killrate = DEFAULT_KILL_RATE,
.zo_verbose = 0,
Multi-modifier protection (MMP) Add multihost=on|off pool property to control MMP. When enabled a new thread writes uberblocks to the last slot in each label, at a set frequency, to indicate to other hosts the pool is actively imported. These uberblocks are the last synced uberblock with an updated timestamp. Property defaults to off. During tryimport, find the "best" uberblock (newest txg and timestamp) repeatedly, checking for change in the found uberblock. Include the results of the activity test in the config returned by tryimport. These results are reported to user in "zpool import". Allow the user to control the period between MMP writes, and the duration of the activity test on import, via a new module parameter zfs_multihost_interval. The period is specified in milliseconds. The activity test duration is calculated from this value, and from the mmp_delay in the "best" uberblock found initially. Add a kstat interface to export statistics about Multiple Modifier Protection (MMP) updates. Include the last synced txg number, the timestamp, the delay since the last MMP update, the VDEV GUID, the VDEV label that received the last MMP update, and the VDEV path. Abbreviated output below. $ cat /proc/spl/kstat/zfs/mypool/multihost 31 0 0x01 10 880 105092382393521 105144180101111 txg timestamp mmp_delay vdev_guid vdev_label vdev_path 20468 261337 250274925 68396651780 3 /dev/sda 20468 261339 252023374 6267402363293 1 /dev/sdc 20468 261340 252000858 6698080955233 1 /dev/sdx 20468 261341 251980635 783892869810 2 /dev/sdy 20468 261342 253385953 8923255792467 3 /dev/sdd 20468 261344 253336622 042125143176 0 /dev/sdab 20468 261345 253310522 1200778101278 2 /dev/sde 20468 261346 253286429 0950576198362 2 /dev/sdt 20468 261347 253261545 96209817917 3 /dev/sds 20468 261349 253238188 8555725937673 3 /dev/sdb Add a new tunable zfs_multihost_history to specify the number of MMP updates to store history for. By default it is set to zero meaning that no MMP statistics are stored. When using ztest to generate activity, for automated tests of the MMP function, some test functions interfere with the test. For example, the pool is exported to run zdb and then imported again. Add a new ztest function, "-M", to alter ztest behavior to prevent this. Add new tests to verify the new functionality. Tests provided by Giuseppe Di Natale. Reviewed by: Matthew Ahrens <mahrens@delphix.com> Reviewed-by: Giuseppe Di Natale <dinatale2@llnl.gov> Reviewed-by: Ned Bass <bass6@llnl.gov> Reviewed-by: Andreas Dilger <andreas.dilger@intel.com> Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov> Signed-off-by: Olaf Faaland <faaland1@llnl.gov> Closes #745 Closes #6279
2017-07-08 06:20:35 +03:00
.zo_mmp_test = 0,
.zo_init = DEFAULT_INITS,
.zo_time = DEFAULT_RUN_TIME,
.zo_maxloops = DEFAULT_MAX_LOOPS, /* max loops during spa_freeze() */
.zo_metaslab_force_ganging = DEFAULT_FORCE_GANGING,
.zo_special_vdevs = ZTEST_VDEV_CLASS_RND,
.zo_gvars_count = 0,
RAID-Z expansion feature This feature allows disks to be added one at a time to a RAID-Z group, expanding its capacity incrementally. This feature is especially useful for small pools (typically with only one RAID-Z group), where there isn't sufficient hardware to add capacity by adding a whole new RAID-Z group (typically doubling the number of disks). == Initiating expansion == A new device (disk) can be attached to an existing RAIDZ vdev, by running `zpool attach POOL raidzP-N NEW_DEVICE`, e.g. `zpool attach tank raidz2-0 sda`. The new device will become part of the RAIDZ group. A "raidz expansion" will be initiated, and the new device will contribute additional space to the RAIDZ group once the expansion completes. The `feature@raidz_expansion` on-disk feature flag must be `enabled` to initiate an expansion, and it remains `active` for the life of the pool. In other words, pools with expanded RAIDZ vdevs can not be imported by older releases of the ZFS software. == During expansion == The expansion entails reading all allocated space from existing disks in the RAIDZ group, and rewriting it to the new disks in the RAIDZ group (including the newly added device). The expansion progress can be monitored with `zpool status`. Data redundancy is maintained during (and after) the expansion. If a disk fails while the expansion is in progress, the expansion pauses until the health of the RAIDZ vdev is restored (e.g. by replacing the failed disk and waiting for reconstruction to complete). The pool remains accessible during expansion. Following a reboot or export/import, the expansion resumes where it left off. == After expansion == When the expansion completes, the additional space is available for use, and is reflected in the `available` zfs property (as seen in `zfs list`, `df`, etc). Expansion does not change the number of failures that can be tolerated without data loss (e.g. a RAIDZ2 is still a RAIDZ2 even after expansion). A RAIDZ vdev can be expanded multiple times. After the expansion completes, old blocks remain with their old data-to-parity ratio (e.g. 5-wide RAIDZ2, has 3 data to 2 parity), but distributed among the larger set of disks. New blocks will be written with the new data-to-parity ratio (e.g. a 5-wide RAIDZ2 which has been expanded once to 6-wide, has 4 data to 2 parity). However, the RAIDZ vdev's "assumed parity ratio" does not change, so slightly less space than is expected may be reported for newly-written blocks, according to `zfs list`, `df`, `ls -s`, and similar tools. Sponsored-by: The FreeBSD Foundation Sponsored-by: iXsystems, Inc. Sponsored-by: vStack Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov> Reviewed-by: Mark Maybee <mark.maybee@delphix.com> Authored-by: Matthew Ahrens <mahrens@delphix.com> Contributions-by: Fedor Uporov <fuporov.vstack@gmail.com> Contributions-by: Stuart Maybee <stuart.maybee@comcast.net> Contributions-by: Thorsten Behrens <tbehrens@outlook.com> Contributions-by: Fmstrat <nospam@nowsci.com> Contributions-by: Don Brady <dev.fs.zfs@gmail.com> Signed-off-by: Don Brady <dev.fs.zfs@gmail.com> Closes #15022
2023-11-08 21:19:41 +03:00
.zo_raidz_expand_test = RAIDZ_EXPAND_NONE,
};
extern uint64_t metaslab_force_ganging;
extern uint64_t metaslab_df_alloc_threshold;
Cleanup: 64-bit kernel module parameters should use fixed width types Various module parameters such as `zfs_arc_max` were originally `uint64_t` on OpenSolaris/Illumos, but were changed to `unsigned long` for Linux compatibility because Linux's kernel default module parameter implementation did not support 64-bit types on 32-bit platforms. This caused problems when porting OpenZFS to Windows because its LLP64 memory model made `unsigned long` a 32-bit type on 64-bit, which created the undesireable situation that parameters that should accept 64-bit values could not on 64-bit Windows. Upon inspection, it turns out that the Linux kernel module parameter interface is extensible, such that we are allowed to define our own types. Rather than maintaining the original type change via hacks to to continue shrinking module parameters on 32-bit Linux, we implement support for 64-bit module parameters on Linux. After doing a review of all 64-bit kernel parameters (found via the man page and also proposed changes by Andrew Innes), the kernel module parameters fell into a few groups: Parameters that were originally 64-bit on Illumos: * dbuf_cache_max_bytes * dbuf_metadata_cache_max_bytes * l2arc_feed_min_ms * l2arc_feed_secs * l2arc_headroom * l2arc_headroom_boost * l2arc_write_boost * l2arc_write_max * metaslab_aliquot * metaslab_force_ganging * zfetch_array_rd_sz * zfs_arc_max * zfs_arc_meta_limit * zfs_arc_meta_min * zfs_arc_min * zfs_async_block_max_blocks * zfs_condense_max_obsolete_bytes * zfs_condense_min_mapping_bytes * zfs_deadman_checktime_ms * zfs_deadman_synctime_ms * zfs_initialize_chunk_size * zfs_initialize_value * zfs_lua_max_instrlimit * zfs_lua_max_memlimit * zil_slog_bulk Parameters that were originally 32-bit on Illumos: * zfs_per_txg_dirty_frees_percent Parameters that were originally `ssize_t` on Illumos: * zfs_immediate_write_sz Note that `ssize_t` is `int32_t` on 32-bit and `int64_t` on 64-bit. It has been upgraded to 64-bit. Parameters that were `long`/`unsigned long` because of Linux/FreeBSD influence: * l2arc_rebuild_blocks_min_l2size * zfs_key_max_salt_uses * zfs_max_log_walking * zfs_max_logsm_summary_length * zfs_metaslab_max_size_cache_sec * zfs_min_metaslabs_to_flush * zfs_multihost_interval * zfs_unflushed_log_block_max * zfs_unflushed_log_block_min * zfs_unflushed_log_block_pct * zfs_unflushed_max_mem_amt * zfs_unflushed_max_mem_ppm New parameters that do not exist in Illumos: * l2arc_trim_ahead * vdev_file_logical_ashift * vdev_file_physical_ashift * zfs_arc_dnode_limit * zfs_arc_dnode_limit_percent * zfs_arc_dnode_reduce_percent * zfs_arc_meta_limit_percent * zfs_arc_sys_free * zfs_deadman_ziotime_ms * zfs_delete_blocks * zfs_history_output_max * zfs_livelist_max_entries * zfs_max_async_dedup_frees * zfs_max_nvlist_src_size * zfs_rebuild_max_segment * zfs_rebuild_vdev_limit * zfs_unflushed_log_txg_max * zfs_vdev_max_auto_ashift * zfs_vdev_min_auto_ashift * zfs_vnops_read_chunk_size * zvol_max_discard_blocks Rather than clutter the lists with commentary, the module parameters that need comments are repeated below. A few parameters were defined in Linux/FreeBSD specific code, where the use of ulong/long is not an issue for portability, so we leave them alone: * zfs_delete_blocks * zfs_key_max_salt_uses * zvol_max_discard_blocks The documentation for a few parameters was found to be incorrect: * zfs_deadman_checktime_ms - incorrectly documented as int * zfs_delete_blocks - not documented as Linux only * zfs_history_output_max - incorrectly documented as int * zfs_vnops_read_chunk_size - incorrectly documented as long * zvol_max_discard_blocks - incorrectly documented as ulong The documentation for these has been fixed, alongside the changes to document the switch to fixed width types. In addition, several kernel module parameters were percentages or held ashift values, so being 64-bit never made sense for them. They have been downgraded to 32-bit: * vdev_file_logical_ashift * vdev_file_physical_ashift * zfs_arc_dnode_limit_percent * zfs_arc_dnode_reduce_percent * zfs_arc_meta_limit_percent * zfs_per_txg_dirty_frees_percent * zfs_unflushed_log_block_pct * zfs_vdev_max_auto_ashift * zfs_vdev_min_auto_ashift Of special note are `zfs_vdev_max_auto_ashift` and `zfs_vdev_min_auto_ashift`, which were already defined as `uint64_t`, and passed to the kernel as `ulong`. This is inherently buggy on big endian 32-bit Linux, since the values would not be written to the correct locations. 32-bit FreeBSD was unaffected because its sysctl code correctly treated this as a `uint64_t`. Lastly, a code comment suggests that `zfs_arc_sys_free` is Linux-specific, but there is nothing to indicate to me that it is Linux-specific. Nothing was done about that. Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov> Reviewed-by: Jorgen Lundman <lundman@lundman.net> Reviewed-by: Ryan Moeller <ryan@iXsystems.com> Reviewed-by: Alexander Motin <mav@FreeBSD.org> Original-patch-by: Andrew Innes <andrew.c12@gmail.com> Original-patch-by: Jorgen Lundman <lundman@lundman.net> Signed-off-by: Richard Yao <richard.yao@alumni.stonybrook.edu> Closes #13984 Closes #14004
2022-10-03 22:06:54 +03:00
extern uint64_t zfs_deadman_synctime_ms;
Cleanup: Specify unsignedness on things that should not be signed In #13871, zfs_vdev_aggregation_limit_non_rotating and zfs_vdev_aggregation_limit being signed was pointed out as a possible reason not to eliminate an unnecessary MAX(unsigned, 0) since the unsigned value was assigned from them. There is no reason for these module parameters to be signed and upon inspection, it was found that there are a number of other module parameters that are signed, but should not be, so we make them unsigned. Making them unsigned made it clear that some other variables in the code should also be unsigned, so we also make those unsigned. This prevents users from setting negative values that could potentially cause bad behaviors. It also makes the code slightly easier to understand. Mostly module parameters that deal with timeouts, limits, bitshifts and percentages are made unsigned by this. Any that are boolean are left signed, since whether booleans should be considered signed or unsigned does not matter. Making zfs_arc_lotsfree_percent unsigned caused a `zfs_arc_lotsfree_percent >= 0` check to become redundant, so it was removed. Removing the check was also necessary to prevent a compiler error from -Werror=type-limits. Several end of line comments had to be moved to their own lines because replacing int with uint_t caused us to exceed the 80 character limit enforced by cstyle.pl. The following were kept signed because they are passed to taskq_create(), which expects signed values and modifying the OpenSolaris/Illumos DDI is out of scope of this patch: * metaslab_load_pct * zfs_sync_taskq_batch_pct * zfs_zil_clean_taskq_nthr_pct * zfs_zil_clean_taskq_minalloc * zfs_zil_clean_taskq_maxalloc * zfs_arc_prune_task_threads Also, negative values in those parameters was found to be harmless. The following were left signed because either negative values make sense, or more analysis was needed to determine whether negative values should be disallowed: * zfs_metaslab_switch_threshold * zfs_pd_bytes_max * zfs_livelist_min_percent_shared zfs_multihost_history was made static to be consistent with other parameters. A number of module parameters were marked as signed, but in reality referenced unsigned variables. upgrade_errlog_limit is one of the numerous examples. In the case of zfs_vdev_async_read_max_active, it was already uint32_t, but zdb had an extern int declaration for it. Interestingly, the documentation in zfs.4 was right for upgrade_errlog_limit despite the module parameter being wrongly marked, while the documentation for zfs_vdev_async_read_max_active (and friends) was wrong. It was also wrong for zstd_abort_size, which was unsigned, but was documented as signed. Also, the documentation in zfs.4 incorrectly described the following parameters as ulong when they were int: * zfs_arc_meta_adjust_restarts * zfs_override_estimate_recordsize They are now uint_t as of this patch and thus the man page has been updated to describe them as uint. dbuf_state_index was left alone since it does nothing and perhaps should be removed in another patch. If any module parameters were missed, they were not found by `grep -r 'ZFS_MODULE_PARAM' | grep ', INT'`. I did find a few that grep missed, but only because they were in files that had hits. This patch intentionally did not attempt to address whether some of these module parameters should be elevated to 64-bit parameters, because the length of a long on 32-bit is 32-bit. Lastly, it was pointed out during review that uint_t is a better match for these variables than uint32_t because FreeBSD kernel parameter definitions are designed for uint_t, whose bit width can change in future memory models. As a result, we change the existing parameters that are uint32_t to use uint_t. Reviewed-by: Alexander Motin <mav@FreeBSD.org> Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov> Reviewed-by: Neal Gompa <ngompa@datto.com> Signed-off-by: Richard Yao <richard.yao@alumni.stonybrook.edu> Closes #13875
2022-09-28 02:42:41 +03:00
extern uint_t metaslab_preload_limit;
extern int zfs_compressed_arc_enabled;
extern int zfs_abd_scatter_enabled;
Cleanup: Specify unsignedness on things that should not be signed In #13871, zfs_vdev_aggregation_limit_non_rotating and zfs_vdev_aggregation_limit being signed was pointed out as a possible reason not to eliminate an unnecessary MAX(unsigned, 0) since the unsigned value was assigned from them. There is no reason for these module parameters to be signed and upon inspection, it was found that there are a number of other module parameters that are signed, but should not be, so we make them unsigned. Making them unsigned made it clear that some other variables in the code should also be unsigned, so we also make those unsigned. This prevents users from setting negative values that could potentially cause bad behaviors. It also makes the code slightly easier to understand. Mostly module parameters that deal with timeouts, limits, bitshifts and percentages are made unsigned by this. Any that are boolean are left signed, since whether booleans should be considered signed or unsigned does not matter. Making zfs_arc_lotsfree_percent unsigned caused a `zfs_arc_lotsfree_percent >= 0` check to become redundant, so it was removed. Removing the check was also necessary to prevent a compiler error from -Werror=type-limits. Several end of line comments had to be moved to their own lines because replacing int with uint_t caused us to exceed the 80 character limit enforced by cstyle.pl. The following were kept signed because they are passed to taskq_create(), which expects signed values and modifying the OpenSolaris/Illumos DDI is out of scope of this patch: * metaslab_load_pct * zfs_sync_taskq_batch_pct * zfs_zil_clean_taskq_nthr_pct * zfs_zil_clean_taskq_minalloc * zfs_zil_clean_taskq_maxalloc * zfs_arc_prune_task_threads Also, negative values in those parameters was found to be harmless. The following were left signed because either negative values make sense, or more analysis was needed to determine whether negative values should be disallowed: * zfs_metaslab_switch_threshold * zfs_pd_bytes_max * zfs_livelist_min_percent_shared zfs_multihost_history was made static to be consistent with other parameters. A number of module parameters were marked as signed, but in reality referenced unsigned variables. upgrade_errlog_limit is one of the numerous examples. In the case of zfs_vdev_async_read_max_active, it was already uint32_t, but zdb had an extern int declaration for it. Interestingly, the documentation in zfs.4 was right for upgrade_errlog_limit despite the module parameter being wrongly marked, while the documentation for zfs_vdev_async_read_max_active (and friends) was wrong. It was also wrong for zstd_abort_size, which was unsigned, but was documented as signed. Also, the documentation in zfs.4 incorrectly described the following parameters as ulong when they were int: * zfs_arc_meta_adjust_restarts * zfs_override_estimate_recordsize They are now uint_t as of this patch and thus the man page has been updated to describe them as uint. dbuf_state_index was left alone since it does nothing and perhaps should be removed in another patch. If any module parameters were missed, they were not found by `grep -r 'ZFS_MODULE_PARAM' | grep ', INT'`. I did find a few that grep missed, but only because they were in files that had hits. This patch intentionally did not attempt to address whether some of these module parameters should be elevated to 64-bit parameters, because the length of a long on 32-bit is 32-bit. Lastly, it was pointed out during review that uint_t is a better match for these variables than uint32_t because FreeBSD kernel parameter definitions are designed for uint_t, whose bit width can change in future memory models. As a result, we change the existing parameters that are uint32_t to use uint_t. Reviewed-by: Alexander Motin <mav@FreeBSD.org> Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov> Reviewed-by: Neal Gompa <ngompa@datto.com> Signed-off-by: Richard Yao <richard.yao@alumni.stonybrook.edu> Closes #13875
2022-09-28 02:42:41 +03:00
extern uint_t dmu_object_alloc_chunk_shift;
OpenZFS 9238 - ZFS Spacemap Encoding V2 Motivation ========== The current space map encoding has the following disadvantages: [1] Assuming 512 sector size each entry can represent at most 16MB for a segment. This makes the encoding very inefficient for large regions of space. [2] As vdev-wide space maps have started to be used by new features (i.e. device removal, zpool checkpoint) we've started imposing limits in the vdevs that can be used with them based on the maximum addressable offset (currently 64PB for a top-level vdev). New encoding ============ The layout can be found at space_map.h and it remains backwards compatible with the old one. The introduced two-word entry format, besides extending the limits imposed by the single-entry layout, also includes a vdev field and some extra padding after its prefix. The extra padding after the prefix should is reserved for future usage (e.g. new prefixes for future encodings or new fields for flags). The new vdev field not only makes the space maps more self-descriptive, but also opens the doors for pool-wide space maps (expected to be used in the log spacemap project). One final important note is that the number of bits used for vdevs is reduced to 24 bits for blkptrs. That was decided as we don't know of any setups that use more than 16M vdevs for the time being and we wanted to fit the vdev field in the space map. In addition that gives us some extra bits in dva_t. Other references: ================= The new encoding is also discussed towards the end of the Log Space Map presentation from 2017's OpenZFS summit. Link: https://www.youtube.com/watch?v=jj2IxRkl5bQ Authored by: Serapheim Dimitropoulos <serapheim@delphix.com> Reviewed by: Matt Ahrens <mahrens@delphix.com> Reviewed by: George Wilson <gwilson@zfsmail.com> Reviewed by: Brian Behlendorf <behlendorf1@llnl.gov> Approved by: Gordon Ross <gwr@nexenta.com> Ported-by: Tim Chase <tim@chase2k.com> Signed-off-by: Tim Chase <tim@chase2k.com> OpenZFS-commit: https://github.com/openzfs/openzfs/commit/90a56e6d OpenZFS-issue: https://www.illumos.org/issues/9238 Closes #7665
2017-08-04 19:30:49 +03:00
extern boolean_t zfs_force_some_double_word_sm_entries;
extern unsigned long zio_decompress_fail_fraction;
extern unsigned long zfs_reconstruct_indirect_damage_fraction;
RAID-Z expansion feature This feature allows disks to be added one at a time to a RAID-Z group, expanding its capacity incrementally. This feature is especially useful for small pools (typically with only one RAID-Z group), where there isn't sufficient hardware to add capacity by adding a whole new RAID-Z group (typically doubling the number of disks). == Initiating expansion == A new device (disk) can be attached to an existing RAIDZ vdev, by running `zpool attach POOL raidzP-N NEW_DEVICE`, e.g. `zpool attach tank raidz2-0 sda`. The new device will become part of the RAIDZ group. A "raidz expansion" will be initiated, and the new device will contribute additional space to the RAIDZ group once the expansion completes. The `feature@raidz_expansion` on-disk feature flag must be `enabled` to initiate an expansion, and it remains `active` for the life of the pool. In other words, pools with expanded RAIDZ vdevs can not be imported by older releases of the ZFS software. == During expansion == The expansion entails reading all allocated space from existing disks in the RAIDZ group, and rewriting it to the new disks in the RAIDZ group (including the newly added device). The expansion progress can be monitored with `zpool status`. Data redundancy is maintained during (and after) the expansion. If a disk fails while the expansion is in progress, the expansion pauses until the health of the RAIDZ vdev is restored (e.g. by replacing the failed disk and waiting for reconstruction to complete). The pool remains accessible during expansion. Following a reboot or export/import, the expansion resumes where it left off. == After expansion == When the expansion completes, the additional space is available for use, and is reflected in the `available` zfs property (as seen in `zfs list`, `df`, etc). Expansion does not change the number of failures that can be tolerated without data loss (e.g. a RAIDZ2 is still a RAIDZ2 even after expansion). A RAIDZ vdev can be expanded multiple times. After the expansion completes, old blocks remain with their old data-to-parity ratio (e.g. 5-wide RAIDZ2, has 3 data to 2 parity), but distributed among the larger set of disks. New blocks will be written with the new data-to-parity ratio (e.g. a 5-wide RAIDZ2 which has been expanded once to 6-wide, has 4 data to 2 parity). However, the RAIDZ vdev's "assumed parity ratio" does not change, so slightly less space than is expected may be reported for newly-written blocks, according to `zfs list`, `df`, `ls -s`, and similar tools. Sponsored-by: The FreeBSD Foundation Sponsored-by: iXsystems, Inc. Sponsored-by: vStack Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov> Reviewed-by: Mark Maybee <mark.maybee@delphix.com> Authored-by: Matthew Ahrens <mahrens@delphix.com> Contributions-by: Fedor Uporov <fuporov.vstack@gmail.com> Contributions-by: Stuart Maybee <stuart.maybee@comcast.net> Contributions-by: Thorsten Behrens <tbehrens@outlook.com> Contributions-by: Fmstrat <nospam@nowsci.com> Contributions-by: Don Brady <dev.fs.zfs@gmail.com> Signed-off-by: Don Brady <dev.fs.zfs@gmail.com> Closes #15022
2023-11-08 21:19:41 +03:00
extern uint64_t raidz_expand_max_reflow_bytes;
extern uint_t raidz_expand_pause_point;
extern boolean_t ddt_prune_artificial_age;
extern boolean_t ddt_dump_prune_histogram;
static ztest_shared_opts_t *ztest_shared_opts;
static ztest_shared_opts_t ztest_opts;
static const char *const ztest_wkeydata = "abcdefghijklmnopqrstuvwxyz012345";
typedef struct ztest_shared_ds {
uint64_t zd_seq;
} ztest_shared_ds_t;
static ztest_shared_ds_t *ztest_shared_ds;
#define ZTEST_GET_SHARED_DS(d) (&ztest_shared_ds[d])
RAID-Z expansion feature This feature allows disks to be added one at a time to a RAID-Z group, expanding its capacity incrementally. This feature is especially useful for small pools (typically with only one RAID-Z group), where there isn't sufficient hardware to add capacity by adding a whole new RAID-Z group (typically doubling the number of disks). == Initiating expansion == A new device (disk) can be attached to an existing RAIDZ vdev, by running `zpool attach POOL raidzP-N NEW_DEVICE`, e.g. `zpool attach tank raidz2-0 sda`. The new device will become part of the RAIDZ group. A "raidz expansion" will be initiated, and the new device will contribute additional space to the RAIDZ group once the expansion completes. The `feature@raidz_expansion` on-disk feature flag must be `enabled` to initiate an expansion, and it remains `active` for the life of the pool. In other words, pools with expanded RAIDZ vdevs can not be imported by older releases of the ZFS software. == During expansion == The expansion entails reading all allocated space from existing disks in the RAIDZ group, and rewriting it to the new disks in the RAIDZ group (including the newly added device). The expansion progress can be monitored with `zpool status`. Data redundancy is maintained during (and after) the expansion. If a disk fails while the expansion is in progress, the expansion pauses until the health of the RAIDZ vdev is restored (e.g. by replacing the failed disk and waiting for reconstruction to complete). The pool remains accessible during expansion. Following a reboot or export/import, the expansion resumes where it left off. == After expansion == When the expansion completes, the additional space is available for use, and is reflected in the `available` zfs property (as seen in `zfs list`, `df`, etc). Expansion does not change the number of failures that can be tolerated without data loss (e.g. a RAIDZ2 is still a RAIDZ2 even after expansion). A RAIDZ vdev can be expanded multiple times. After the expansion completes, old blocks remain with their old data-to-parity ratio (e.g. 5-wide RAIDZ2, has 3 data to 2 parity), but distributed among the larger set of disks. New blocks will be written with the new data-to-parity ratio (e.g. a 5-wide RAIDZ2 which has been expanded once to 6-wide, has 4 data to 2 parity). However, the RAIDZ vdev's "assumed parity ratio" does not change, so slightly less space than is expected may be reported for newly-written blocks, according to `zfs list`, `df`, `ls -s`, and similar tools. Sponsored-by: The FreeBSD Foundation Sponsored-by: iXsystems, Inc. Sponsored-by: vStack Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov> Reviewed-by: Mark Maybee <mark.maybee@delphix.com> Authored-by: Matthew Ahrens <mahrens@delphix.com> Contributions-by: Fedor Uporov <fuporov.vstack@gmail.com> Contributions-by: Stuart Maybee <stuart.maybee@comcast.net> Contributions-by: Thorsten Behrens <tbehrens@outlook.com> Contributions-by: Fmstrat <nospam@nowsci.com> Contributions-by: Don Brady <dev.fs.zfs@gmail.com> Signed-off-by: Don Brady <dev.fs.zfs@gmail.com> Closes #15022
2023-11-08 21:19:41 +03:00
typedef struct ztest_scratch_state {
uint64_t zs_raidz_scratch_verify_pause;
} ztest_shared_scratch_state_t;
static ztest_shared_scratch_state_t *ztest_scratch_state;
#define BT_MAGIC 0x123456789abcdefULL
#define MAXFAULTS(zs) \
Distributed Spare (dRAID) Feature This patch adds a new top-level vdev type called dRAID, which stands for Distributed parity RAID. This pool configuration allows all dRAID vdevs to participate when rebuilding to a distributed hot spare device. This can substantially reduce the total time required to restore full parity to pool with a failed device. A dRAID pool can be created using the new top-level `draid` type. Like `raidz`, the desired redundancy is specified after the type: `draid[1,2,3]`. No additional information is required to create the pool and reasonable default values will be chosen based on the number of child vdevs in the dRAID vdev. zpool create <pool> draid[1,2,3] <vdevs...> Unlike raidz, additional optional dRAID configuration values can be provided as part of the draid type as colon separated values. This allows administrators to fully specify a layout for either performance or capacity reasons. The supported options include: zpool create <pool> \ draid[<parity>][:<data>d][:<children>c][:<spares>s] \ <vdevs...> - draid[parity] - Parity level (default 1) - draid[:<data>d] - Data devices per group (default 8) - draid[:<children>c] - Expected number of child vdevs - draid[:<spares>s] - Distributed hot spares (default 0) Abbreviated example `zpool status` output for a 68 disk dRAID pool with two distributed spares using special allocation classes. ``` pool: tank state: ONLINE config: NAME STATE READ WRITE CKSUM slag7 ONLINE 0 0 0 draid2:8d:68c:2s-0 ONLINE 0 0 0 L0 ONLINE 0 0 0 L1 ONLINE 0 0 0 ... U25 ONLINE 0 0 0 U26 ONLINE 0 0 0 spare-53 ONLINE 0 0 0 U27 ONLINE 0 0 0 draid2-0-0 ONLINE 0 0 0 U28 ONLINE 0 0 0 U29 ONLINE 0 0 0 ... U42 ONLINE 0 0 0 U43 ONLINE 0 0 0 special mirror-1 ONLINE 0 0 0 L5 ONLINE 0 0 0 U5 ONLINE 0 0 0 mirror-2 ONLINE 0 0 0 L6 ONLINE 0 0 0 U6 ONLINE 0 0 0 spares draid2-0-0 INUSE currently in use draid2-0-1 AVAIL ``` When adding test coverage for the new dRAID vdev type the following options were added to the ztest command. These options are leverages by zloop.sh to test a wide range of dRAID configurations. -K draid|raidz|random - kind of RAID to test -D <value> - dRAID data drives per group -S <value> - dRAID distributed hot spares -R <value> - RAID parity (raidz or dRAID) The zpool_create, zpool_import, redundancy, replacement and fault test groups have all been updated provide test coverage for the dRAID feature. Co-authored-by: Isaac Huang <he.huang@intel.com> Co-authored-by: Mark Maybee <mmaybee@cray.com> Co-authored-by: Don Brady <don.brady@delphix.com> Co-authored-by: Matthew Ahrens <mahrens@delphix.com> Co-authored-by: Brian Behlendorf <behlendorf1@llnl.gov> Reviewed-by: Mark Maybee <mmaybee@cray.com> Reviewed-by: Matt Ahrens <matt@delphix.com> Reviewed-by: Tony Hutter <hutter2@llnl.gov> Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov> Closes #10102
2020-11-14 00:51:51 +03:00
(MAX((zs)->zs_mirrors, 1) * (ztest_opts.zo_raid_parity + 1) - 1)
enum ztest_io_type {
ZTEST_IO_WRITE_TAG,
ZTEST_IO_WRITE_PATTERN,
ZTEST_IO_WRITE_ZEROES,
ZTEST_IO_TRUNCATE,
ZTEST_IO_SETATTR,
ZTEST_IO_REWRITE,
ZTEST_IO_TYPES
};
2008-11-20 23:01:55 +03:00
typedef struct ztest_block_tag {
uint64_t bt_magic;
2008-11-20 23:01:55 +03:00
uint64_t bt_objset;
uint64_t bt_object;
Implement large_dnode pool feature Justification ------------- This feature adds support for variable length dnodes. Our motivation is to eliminate the overhead associated with using spill blocks. Spill blocks are used to store system attribute data (i.e. file metadata) that does not fit in the dnode's bonus buffer. By allowing a larger bonus buffer area the use of a spill block can be avoided. Spill blocks potentially incur an additional read I/O for every dnode in a dnode block. As a worst case example, reading 32 dnodes from a 16k dnode block and all of the spill blocks could issue 33 separate reads. Now suppose those dnodes have size 1024 and therefore don't need spill blocks. Then the worst case number of blocks read is reduced to from 33 to two--one per dnode block. In practice spill blocks may tend to be co-located on disk with the dnode blocks so the reduction in I/O would not be this drastic. In a badly fragmented pool, however, the improvement could be significant. ZFS-on-Linux systems that make heavy use of extended attributes would benefit from this feature. In particular, ZFS-on-Linux supports the xattr=sa dataset property which allows file extended attribute data to be stored in the dnode bonus buffer as an alternative to the traditional directory-based format. Workloads such as SELinux and the Lustre distributed filesystem often store enough xattr data to force spill bocks when xattr=sa is in effect. Large dnodes may therefore provide a performance benefit to such systems. Other use cases that may benefit from this feature include files with large ACLs and symbolic links with long target names. Furthermore, this feature may be desirable on other platforms in case future applications or features are developed that could make use of a larger bonus buffer area. Implementation -------------- The size of a dnode may be a multiple of 512 bytes up to the size of a dnode block (currently 16384 bytes). A dn_extra_slots field was added to the current on-disk dnode_phys_t structure to describe the size of the physical dnode on disk. The 8 bits for this field were taken from the zero filled dn_pad2 field. The field represents how many "extra" dnode_phys_t slots a dnode consumes in its dnode block. This convention results in a value of 0 for 512 byte dnodes which preserves on-disk format compatibility with older software. Similarly, the in-memory dnode_t structure has a new dn_num_slots field to represent the total number of dnode_phys_t slots consumed on disk. Thus dn->dn_num_slots is 1 greater than the corresponding dnp->dn_extra_slots. This difference in convention was adopted because, unlike on-disk structures, backward compatibility is not a concern for in-memory objects, so we used a more natural way to represent size for a dnode_t. The default size for newly created dnodes is determined by the value of a new "dnodesize" dataset property. By default the property is set to "legacy" which is compatible with older software. Setting the property to "auto" will allow the filesystem to choose the most suitable dnode size. Currently this just sets the default dnode size to 1k, but future code improvements could dynamically choose a size based on observed workload patterns. Dnodes of varying sizes can coexist within the same dataset and even within the same dnode block. For example, to enable automatically-sized dnodes, run # zfs set dnodesize=auto tank/fish The user can also specify literal values for the dnodesize property. These are currently limited to powers of two from 1k to 16k. The power-of-2 limitation is only for simplicity of the user interface. Internally the implementation can handle any multiple of 512 up to 16k, and consumers of the DMU API can specify any legal dnode value. The size of a new dnode is determined at object allocation time and stored as a new field in the znode in-memory structure. New DMU interfaces are added to allow the consumer to specify the dnode size that a newly allocated object should use. Existing interfaces are unchanged to avoid having to update every call site and to preserve compatibility with external consumers such as Lustre. The new interfaces names are given below. The versions of these functions that don't take a dnodesize parameter now just call the _dnsize() versions with a dnodesize of 0, which means use the legacy dnode size. New DMU interfaces: dmu_object_alloc_dnsize() dmu_object_claim_dnsize() dmu_object_reclaim_dnsize() New ZAP interfaces: zap_create_dnsize() zap_create_norm_dnsize() zap_create_flags_dnsize() zap_create_claim_norm_dnsize() zap_create_link_dnsize() The constant DN_MAX_BONUSLEN is renamed to DN_OLD_MAX_BONUSLEN. The spa_maxdnodesize() function should be used to determine the maximum bonus length for a pool. These are a few noteworthy changes to key functions: * The prototype for dnode_hold_impl() now takes a "slots" parameter. When the DNODE_MUST_BE_FREE flag is set, this parameter is used to ensure the hole at the specified object offset is large enough to hold the dnode being created. The slots parameter is also used to ensure a dnode does not span multiple dnode blocks. In both of these cases, if a failure occurs, ENOSPC is returned. Keep in mind, these failure cases are only possible when using DNODE_MUST_BE_FREE. If the DNODE_MUST_BE_ALLOCATED flag is set, "slots" must be 0. dnode_hold_impl() will check if the requested dnode is already consumed as an extra dnode slot by an large dnode, in which case it returns ENOENT. * The function dmu_object_alloc() advances to the next dnode block if dnode_hold_impl() returns an error for a requested object. This is because the beginning of the next dnode block is the only location it can safely assume to either be a hole or a valid starting point for a dnode. * dnode_next_offset_level() and other functions that iterate through dnode blocks may no longer use a simple array indexing scheme. These now use the current dnode's dn_num_slots field to advance to the next dnode in the block. This is to ensure we properly skip the current dnode's bonus area and don't interpret it as a valid dnode. zdb --- The zdb command was updated to display a dnode's size under the "dnsize" column when the object is dumped. For ZIL create log records, zdb will now display the slot count for the object. ztest ----- Ztest chooses a random dnodesize for every newly created object. The random distribution is more heavily weighted toward small dnodes to better simulate real-world datasets. Unused bonus buffer space is filled with non-zero values computed from the object number, dataset id, offset, and generation number. This helps ensure that the dnode traversal code properly skips the interior regions of large dnodes, and that these interior regions are not overwritten by data belonging to other dnodes. A new test visits each object in a dataset. It verifies that the actual dnode size matches what was stored in the ztest block tag when it was created. It also verifies that the unused bonus buffer space is filled with the expected data patterns. ZFS Test Suite -------------- Added six new large dnode-specific tests, and integrated the dnodesize property into existing tests for zfs allow and send/recv. Send/Receive ------------ ZFS send streams for datasets containing large dnodes cannot be received on pools that don't support the large_dnode feature. A send stream with large dnodes sets a DMU_BACKUP_FEATURE_LARGE_DNODE flag which will be unrecognized by an incompatible receiving pool so that the zfs receive will fail gracefully. While not implemented here, it may be possible to generate a backward-compatible send stream from a dataset containing large dnodes. The implementation may be tricky, however, because the send object record for a large dnode would need to be resized to a 512 byte dnode, possibly kicking in a spill block in the process. This means we would need to construct a new SA layout and possibly register it in the SA layout object. The SA layout is normally just sent as an ordinary object record. But if we are constructing new layouts while generating the send stream we'd have to build the SA layout object dynamically and send it at the end of the stream. For sending and receiving between pools that do support large dnodes, the drr_object send record type is extended with a new field to store the dnode slot count. This field was repurposed from unused padding in the structure. ZIL Replay ---------- The dnode slot count is stored in the uppermost 8 bits of the lr_foid field. The bits were unused as the object id is currently capped at 48 bits. Resizing Dnodes --------------- It should be possible to resize a dnode when it is dirtied if the current dnodesize dataset property differs from the dnode's size, but this functionality is not currently implemented. Clearly a dnode can only grow if there are sufficient contiguous unused slots in the dnode block, but it should always be possible to shrink a dnode. Growing dnodes may be useful to reduce fragmentation in a pool with many spill blocks in use. Shrinking dnodes may be useful to allow sending a dataset to a pool that doesn't support the large_dnode feature. Feature Reference Counting -------------------------- The reference count for the large_dnode pool feature tracks the number of datasets that have ever contained a dnode of size larger than 512 bytes. The first time a large dnode is created in a dataset the dataset is converted to an extensible dataset. This is a one-way operation and the only way to decrement the feature count is to destroy the dataset, even if the dataset no longer contains any large dnodes. The complexity of reference counting on a per-dnode basis was too high, so we chose to track it on a per-dataset basis similarly to the large_block feature. Signed-off-by: Ned Bass <bass6@llnl.gov> Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov> Closes #3542
2016-03-17 04:25:34 +03:00
uint64_t bt_dnodesize;
2008-11-20 23:01:55 +03:00
uint64_t bt_offset;
uint64_t bt_gen;
2008-11-20 23:01:55 +03:00
uint64_t bt_txg;
uint64_t bt_crtxg;
2008-11-20 23:01:55 +03:00
} ztest_block_tag_t;
typedef struct bufwad {
uint64_t bw_index;
uint64_t bw_txg;
uint64_t bw_data;
} bufwad_t;
OpenZFS 9689 - zfs range lock code should not be zpl-specific The ZFS range locking code in zfs_rlock.c/h depends on ZPL-specific data structures, specifically znode_t. However, it's also used by the ZVOL code, which uses a "dummy" znode_t to pass to the range locking code. We should clean this up so that the range locking code is generic and can be used equally by ZPL and ZVOL, and also can be used by future consumers that may need to run in userland (libzpool) as well as the kernel. Porting notes: * Added missing sys/avl.h include to sys/zfs_rlock.h. * Removed 'dbuf is within the locked range' ASSERTs from dmu_sync(). This was needed because ztest does not yet use a locked_range_t. * Removed "Approved by:" tag requirement from OpenZFS commit check to prevent needless warnings when integrating changes which has not been merged to illumos. * Reverted free_list range lock changes which were originally needed to defer the cv_destroy() which was called immediately after cv_broadcast(). With d2733258 this should be safe but if not we may need to reintroduce this logic. * Reverts: The following two commits were reverted and squashed in to this change in order to make it easier to apply OpenZFS 9689. - d88895a0, which removed the dummy znode from zvol_state - e3a07cd0, which updated ztest to use range locks * Preserved optimized rangelock comparison function. Preserved the rangelock free list. The cv_destroy() function will block waiting for all processes in cv_wait() to be scheduled and drop their reference. This is done to ensure it's safe to free the condition variable. However, blocking while holding the rl->rl_lock mutex can result in a deadlock on Linux. A free list is introduced to defer the cv_destroy() and kmem_free() until after the mutex is released. Authored by: Matthew Ahrens <mahrens@delphix.com> Reviewed by: Brian Behlendorf <behlendorf1@llnl.gov> Reviewed by: Serapheim Dimitropoulos <serapheim.dimitro@delphix.com> Reviewed by: George Wilson <george.wilson@delphix.com> Reviewed by: Brad Lewis <brad.lewis@delphix.com> Ported-by: Brian Behlendorf <behlendorf1@llnl.gov> OpenZFS-issue: https://illumos.org/issues/9689 OpenZFS-commit: https://github.com/openzfs/openzfs/pull/680 External-issue: DLPX-58662 Closes #7980
2018-10-02 01:13:12 +03:00
/*
* It would be better to use a rangelock_t per object. Unfortunately
* the rangelock_t is not a drop-in replacement for rl_t, because we
* still need to map from object ID to rangelock_t.
*/
typedef enum {
RAID-Z expansion feature This feature allows disks to be added one at a time to a RAID-Z group, expanding its capacity incrementally. This feature is especially useful for small pools (typically with only one RAID-Z group), where there isn't sufficient hardware to add capacity by adding a whole new RAID-Z group (typically doubling the number of disks). == Initiating expansion == A new device (disk) can be attached to an existing RAIDZ vdev, by running `zpool attach POOL raidzP-N NEW_DEVICE`, e.g. `zpool attach tank raidz2-0 sda`. The new device will become part of the RAIDZ group. A "raidz expansion" will be initiated, and the new device will contribute additional space to the RAIDZ group once the expansion completes. The `feature@raidz_expansion` on-disk feature flag must be `enabled` to initiate an expansion, and it remains `active` for the life of the pool. In other words, pools with expanded RAIDZ vdevs can not be imported by older releases of the ZFS software. == During expansion == The expansion entails reading all allocated space from existing disks in the RAIDZ group, and rewriting it to the new disks in the RAIDZ group (including the newly added device). The expansion progress can be monitored with `zpool status`. Data redundancy is maintained during (and after) the expansion. If a disk fails while the expansion is in progress, the expansion pauses until the health of the RAIDZ vdev is restored (e.g. by replacing the failed disk and waiting for reconstruction to complete). The pool remains accessible during expansion. Following a reboot or export/import, the expansion resumes where it left off. == After expansion == When the expansion completes, the additional space is available for use, and is reflected in the `available` zfs property (as seen in `zfs list`, `df`, etc). Expansion does not change the number of failures that can be tolerated without data loss (e.g. a RAIDZ2 is still a RAIDZ2 even after expansion). A RAIDZ vdev can be expanded multiple times. After the expansion completes, old blocks remain with their old data-to-parity ratio (e.g. 5-wide RAIDZ2, has 3 data to 2 parity), but distributed among the larger set of disks. New blocks will be written with the new data-to-parity ratio (e.g. a 5-wide RAIDZ2 which has been expanded once to 6-wide, has 4 data to 2 parity). However, the RAIDZ vdev's "assumed parity ratio" does not change, so slightly less space than is expected may be reported for newly-written blocks, according to `zfs list`, `df`, `ls -s`, and similar tools. Sponsored-by: The FreeBSD Foundation Sponsored-by: iXsystems, Inc. Sponsored-by: vStack Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov> Reviewed-by: Mark Maybee <mark.maybee@delphix.com> Authored-by: Matthew Ahrens <mahrens@delphix.com> Contributions-by: Fedor Uporov <fuporov.vstack@gmail.com> Contributions-by: Stuart Maybee <stuart.maybee@comcast.net> Contributions-by: Thorsten Behrens <tbehrens@outlook.com> Contributions-by: Fmstrat <nospam@nowsci.com> Contributions-by: Don Brady <dev.fs.zfs@gmail.com> Signed-off-by: Don Brady <dev.fs.zfs@gmail.com> Closes #15022
2023-11-08 21:19:41 +03:00
ZTRL_READER,
ZTRL_WRITER,
ZTRL_APPEND
OpenZFS 9689 - zfs range lock code should not be zpl-specific The ZFS range locking code in zfs_rlock.c/h depends on ZPL-specific data structures, specifically znode_t. However, it's also used by the ZVOL code, which uses a "dummy" znode_t to pass to the range locking code. We should clean this up so that the range locking code is generic and can be used equally by ZPL and ZVOL, and also can be used by future consumers that may need to run in userland (libzpool) as well as the kernel. Porting notes: * Added missing sys/avl.h include to sys/zfs_rlock.h. * Removed 'dbuf is within the locked range' ASSERTs from dmu_sync(). This was needed because ztest does not yet use a locked_range_t. * Removed "Approved by:" tag requirement from OpenZFS commit check to prevent needless warnings when integrating changes which has not been merged to illumos. * Reverted free_list range lock changes which were originally needed to defer the cv_destroy() which was called immediately after cv_broadcast(). With d2733258 this should be safe but if not we may need to reintroduce this logic. * Reverts: The following two commits were reverted and squashed in to this change in order to make it easier to apply OpenZFS 9689. - d88895a0, which removed the dummy znode from zvol_state - e3a07cd0, which updated ztest to use range locks * Preserved optimized rangelock comparison function. Preserved the rangelock free list. The cv_destroy() function will block waiting for all processes in cv_wait() to be scheduled and drop their reference. This is done to ensure it's safe to free the condition variable. However, blocking while holding the rl->rl_lock mutex can result in a deadlock on Linux. A free list is introduced to defer the cv_destroy() and kmem_free() until after the mutex is released. Authored by: Matthew Ahrens <mahrens@delphix.com> Reviewed by: Brian Behlendorf <behlendorf1@llnl.gov> Reviewed by: Serapheim Dimitropoulos <serapheim.dimitro@delphix.com> Reviewed by: George Wilson <george.wilson@delphix.com> Reviewed by: Brad Lewis <brad.lewis@delphix.com> Ported-by: Brian Behlendorf <behlendorf1@llnl.gov> OpenZFS-issue: https://illumos.org/issues/9689 OpenZFS-commit: https://github.com/openzfs/openzfs/pull/680 External-issue: DLPX-58662 Closes #7980
2018-10-02 01:13:12 +03:00
} rl_type_t;
typedef struct rll {
void *rll_writer;
int rll_readers;
kmutex_t rll_lock;
kcondvar_t rll_cv;
} rll_t;
OpenZFS 9689 - zfs range lock code should not be zpl-specific The ZFS range locking code in zfs_rlock.c/h depends on ZPL-specific data structures, specifically znode_t. However, it's also used by the ZVOL code, which uses a "dummy" znode_t to pass to the range locking code. We should clean this up so that the range locking code is generic and can be used equally by ZPL and ZVOL, and also can be used by future consumers that may need to run in userland (libzpool) as well as the kernel. Porting notes: * Added missing sys/avl.h include to sys/zfs_rlock.h. * Removed 'dbuf is within the locked range' ASSERTs from dmu_sync(). This was needed because ztest does not yet use a locked_range_t. * Removed "Approved by:" tag requirement from OpenZFS commit check to prevent needless warnings when integrating changes which has not been merged to illumos. * Reverted free_list range lock changes which were originally needed to defer the cv_destroy() which was called immediately after cv_broadcast(). With d2733258 this should be safe but if not we may need to reintroduce this logic. * Reverts: The following two commits were reverted and squashed in to this change in order to make it easier to apply OpenZFS 9689. - d88895a0, which removed the dummy znode from zvol_state - e3a07cd0, which updated ztest to use range locks * Preserved optimized rangelock comparison function. Preserved the rangelock free list. The cv_destroy() function will block waiting for all processes in cv_wait() to be scheduled and drop their reference. This is done to ensure it's safe to free the condition variable. However, blocking while holding the rl->rl_lock mutex can result in a deadlock on Linux. A free list is introduced to defer the cv_destroy() and kmem_free() until after the mutex is released. Authored by: Matthew Ahrens <mahrens@delphix.com> Reviewed by: Brian Behlendorf <behlendorf1@llnl.gov> Reviewed by: Serapheim Dimitropoulos <serapheim.dimitro@delphix.com> Reviewed by: George Wilson <george.wilson@delphix.com> Reviewed by: Brad Lewis <brad.lewis@delphix.com> Ported-by: Brian Behlendorf <behlendorf1@llnl.gov> OpenZFS-issue: https://illumos.org/issues/9689 OpenZFS-commit: https://github.com/openzfs/openzfs/pull/680 External-issue: DLPX-58662 Closes #7980
2018-10-02 01:13:12 +03:00
typedef struct rl {
uint64_t rl_object;
uint64_t rl_offset;
uint64_t rl_size;
rll_t *rl_lock;
} rl_t;
#define ZTEST_RANGE_LOCKS 64
#define ZTEST_OBJECT_LOCKS 64
/*
* Object descriptor. Used as a template for object lookup/create/remove.
*/
typedef struct ztest_od {
uint64_t od_dir;
uint64_t od_object;
dmu_object_type_t od_type;
dmu_object_type_t od_crtype;
uint64_t od_blocksize;
uint64_t od_crblocksize;
Implement large_dnode pool feature Justification ------------- This feature adds support for variable length dnodes. Our motivation is to eliminate the overhead associated with using spill blocks. Spill blocks are used to store system attribute data (i.e. file metadata) that does not fit in the dnode's bonus buffer. By allowing a larger bonus buffer area the use of a spill block can be avoided. Spill blocks potentially incur an additional read I/O for every dnode in a dnode block. As a worst case example, reading 32 dnodes from a 16k dnode block and all of the spill blocks could issue 33 separate reads. Now suppose those dnodes have size 1024 and therefore don't need spill blocks. Then the worst case number of blocks read is reduced to from 33 to two--one per dnode block. In practice spill blocks may tend to be co-located on disk with the dnode blocks so the reduction in I/O would not be this drastic. In a badly fragmented pool, however, the improvement could be significant. ZFS-on-Linux systems that make heavy use of extended attributes would benefit from this feature. In particular, ZFS-on-Linux supports the xattr=sa dataset property which allows file extended attribute data to be stored in the dnode bonus buffer as an alternative to the traditional directory-based format. Workloads such as SELinux and the Lustre distributed filesystem often store enough xattr data to force spill bocks when xattr=sa is in effect. Large dnodes may therefore provide a performance benefit to such systems. Other use cases that may benefit from this feature include files with large ACLs and symbolic links with long target names. Furthermore, this feature may be desirable on other platforms in case future applications or features are developed that could make use of a larger bonus buffer area. Implementation -------------- The size of a dnode may be a multiple of 512 bytes up to the size of a dnode block (currently 16384 bytes). A dn_extra_slots field was added to the current on-disk dnode_phys_t structure to describe the size of the physical dnode on disk. The 8 bits for this field were taken from the zero filled dn_pad2 field. The field represents how many "extra" dnode_phys_t slots a dnode consumes in its dnode block. This convention results in a value of 0 for 512 byte dnodes which preserves on-disk format compatibility with older software. Similarly, the in-memory dnode_t structure has a new dn_num_slots field to represent the total number of dnode_phys_t slots consumed on disk. Thus dn->dn_num_slots is 1 greater than the corresponding dnp->dn_extra_slots. This difference in convention was adopted because, unlike on-disk structures, backward compatibility is not a concern for in-memory objects, so we used a more natural way to represent size for a dnode_t. The default size for newly created dnodes is determined by the value of a new "dnodesize" dataset property. By default the property is set to "legacy" which is compatible with older software. Setting the property to "auto" will allow the filesystem to choose the most suitable dnode size. Currently this just sets the default dnode size to 1k, but future code improvements could dynamically choose a size based on observed workload patterns. Dnodes of varying sizes can coexist within the same dataset and even within the same dnode block. For example, to enable automatically-sized dnodes, run # zfs set dnodesize=auto tank/fish The user can also specify literal values for the dnodesize property. These are currently limited to powers of two from 1k to 16k. The power-of-2 limitation is only for simplicity of the user interface. Internally the implementation can handle any multiple of 512 up to 16k, and consumers of the DMU API can specify any legal dnode value. The size of a new dnode is determined at object allocation time and stored as a new field in the znode in-memory structure. New DMU interfaces are added to allow the consumer to specify the dnode size that a newly allocated object should use. Existing interfaces are unchanged to avoid having to update every call site and to preserve compatibility with external consumers such as Lustre. The new interfaces names are given below. The versions of these functions that don't take a dnodesize parameter now just call the _dnsize() versions with a dnodesize of 0, which means use the legacy dnode size. New DMU interfaces: dmu_object_alloc_dnsize() dmu_object_claim_dnsize() dmu_object_reclaim_dnsize() New ZAP interfaces: zap_create_dnsize() zap_create_norm_dnsize() zap_create_flags_dnsize() zap_create_claim_norm_dnsize() zap_create_link_dnsize() The constant DN_MAX_BONUSLEN is renamed to DN_OLD_MAX_BONUSLEN. The spa_maxdnodesize() function should be used to determine the maximum bonus length for a pool. These are a few noteworthy changes to key functions: * The prototype for dnode_hold_impl() now takes a "slots" parameter. When the DNODE_MUST_BE_FREE flag is set, this parameter is used to ensure the hole at the specified object offset is large enough to hold the dnode being created. The slots parameter is also used to ensure a dnode does not span multiple dnode blocks. In both of these cases, if a failure occurs, ENOSPC is returned. Keep in mind, these failure cases are only possible when using DNODE_MUST_BE_FREE. If the DNODE_MUST_BE_ALLOCATED flag is set, "slots" must be 0. dnode_hold_impl() will check if the requested dnode is already consumed as an extra dnode slot by an large dnode, in which case it returns ENOENT. * The function dmu_object_alloc() advances to the next dnode block if dnode_hold_impl() returns an error for a requested object. This is because the beginning of the next dnode block is the only location it can safely assume to either be a hole or a valid starting point for a dnode. * dnode_next_offset_level() and other functions that iterate through dnode blocks may no longer use a simple array indexing scheme. These now use the current dnode's dn_num_slots field to advance to the next dnode in the block. This is to ensure we properly skip the current dnode's bonus area and don't interpret it as a valid dnode. zdb --- The zdb command was updated to display a dnode's size under the "dnsize" column when the object is dumped. For ZIL create log records, zdb will now display the slot count for the object. ztest ----- Ztest chooses a random dnodesize for every newly created object. The random distribution is more heavily weighted toward small dnodes to better simulate real-world datasets. Unused bonus buffer space is filled with non-zero values computed from the object number, dataset id, offset, and generation number. This helps ensure that the dnode traversal code properly skips the interior regions of large dnodes, and that these interior regions are not overwritten by data belonging to other dnodes. A new test visits each object in a dataset. It verifies that the actual dnode size matches what was stored in the ztest block tag when it was created. It also verifies that the unused bonus buffer space is filled with the expected data patterns. ZFS Test Suite -------------- Added six new large dnode-specific tests, and integrated the dnodesize property into existing tests for zfs allow and send/recv. Send/Receive ------------ ZFS send streams for datasets containing large dnodes cannot be received on pools that don't support the large_dnode feature. A send stream with large dnodes sets a DMU_BACKUP_FEATURE_LARGE_DNODE flag which will be unrecognized by an incompatible receiving pool so that the zfs receive will fail gracefully. While not implemented here, it may be possible to generate a backward-compatible send stream from a dataset containing large dnodes. The implementation may be tricky, however, because the send object record for a large dnode would need to be resized to a 512 byte dnode, possibly kicking in a spill block in the process. This means we would need to construct a new SA layout and possibly register it in the SA layout object. The SA layout is normally just sent as an ordinary object record. But if we are constructing new layouts while generating the send stream we'd have to build the SA layout object dynamically and send it at the end of the stream. For sending and receiving between pools that do support large dnodes, the drr_object send record type is extended with a new field to store the dnode slot count. This field was repurposed from unused padding in the structure. ZIL Replay ---------- The dnode slot count is stored in the uppermost 8 bits of the lr_foid field. The bits were unused as the object id is currently capped at 48 bits. Resizing Dnodes --------------- It should be possible to resize a dnode when it is dirtied if the current dnodesize dataset property differs from the dnode's size, but this functionality is not currently implemented. Clearly a dnode can only grow if there are sufficient contiguous unused slots in the dnode block, but it should always be possible to shrink a dnode. Growing dnodes may be useful to reduce fragmentation in a pool with many spill blocks in use. Shrinking dnodes may be useful to allow sending a dataset to a pool that doesn't support the large_dnode feature. Feature Reference Counting -------------------------- The reference count for the large_dnode pool feature tracks the number of datasets that have ever contained a dnode of size larger than 512 bytes. The first time a large dnode is created in a dataset the dataset is converted to an extensible dataset. This is a one-way operation and the only way to decrement the feature count is to destroy the dataset, even if the dataset no longer contains any large dnodes. The complexity of reference counting on a per-dnode basis was too high, so we chose to track it on a per-dataset basis similarly to the large_block feature. Signed-off-by: Ned Bass <bass6@llnl.gov> Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov> Closes #3542
2016-03-17 04:25:34 +03:00
uint64_t od_crdnodesize;
uint64_t od_gen;
uint64_t od_crgen;
char od_name[ZFS_MAX_DATASET_NAME_LEN];
} ztest_od_t;
2008-11-20 23:01:55 +03:00
/*
* Per-dataset state.
*/
typedef struct ztest_ds {
ztest_shared_ds_t *zd_shared;
objset_t *zd_os;
pthread_rwlock_t zd_zilog_lock;
zilog_t *zd_zilog;
ztest_od_t *zd_od; /* debugging aid */
char zd_name[ZFS_MAX_DATASET_NAME_LEN];
kmutex_t zd_dirobj_lock;
rll_t zd_object_lock[ZTEST_OBJECT_LOCKS];
OpenZFS 9689 - zfs range lock code should not be zpl-specific The ZFS range locking code in zfs_rlock.c/h depends on ZPL-specific data structures, specifically znode_t. However, it's also used by the ZVOL code, which uses a "dummy" znode_t to pass to the range locking code. We should clean this up so that the range locking code is generic and can be used equally by ZPL and ZVOL, and also can be used by future consumers that may need to run in userland (libzpool) as well as the kernel. Porting notes: * Added missing sys/avl.h include to sys/zfs_rlock.h. * Removed 'dbuf is within the locked range' ASSERTs from dmu_sync(). This was needed because ztest does not yet use a locked_range_t. * Removed "Approved by:" tag requirement from OpenZFS commit check to prevent needless warnings when integrating changes which has not been merged to illumos. * Reverted free_list range lock changes which were originally needed to defer the cv_destroy() which was called immediately after cv_broadcast(). With d2733258 this should be safe but if not we may need to reintroduce this logic. * Reverts: The following two commits were reverted and squashed in to this change in order to make it easier to apply OpenZFS 9689. - d88895a0, which removed the dummy znode from zvol_state - e3a07cd0, which updated ztest to use range locks * Preserved optimized rangelock comparison function. Preserved the rangelock free list. The cv_destroy() function will block waiting for all processes in cv_wait() to be scheduled and drop their reference. This is done to ensure it's safe to free the condition variable. However, blocking while holding the rl->rl_lock mutex can result in a deadlock on Linux. A free list is introduced to defer the cv_destroy() and kmem_free() until after the mutex is released. Authored by: Matthew Ahrens <mahrens@delphix.com> Reviewed by: Brian Behlendorf <behlendorf1@llnl.gov> Reviewed by: Serapheim Dimitropoulos <serapheim.dimitro@delphix.com> Reviewed by: George Wilson <george.wilson@delphix.com> Reviewed by: Brad Lewis <brad.lewis@delphix.com> Ported-by: Brian Behlendorf <behlendorf1@llnl.gov> OpenZFS-issue: https://illumos.org/issues/9689 OpenZFS-commit: https://github.com/openzfs/openzfs/pull/680 External-issue: DLPX-58662 Closes #7980
2018-10-02 01:13:12 +03:00
rll_t zd_range_lock[ZTEST_RANGE_LOCKS];
} ztest_ds_t;
/*
* Per-iteration state.
*/
typedef void ztest_func_t(ztest_ds_t *zd, uint64_t id);
typedef struct ztest_info {
ztest_func_t *zi_func; /* test function */
uint64_t zi_iters; /* iterations per execution */
uint64_t *zi_interval; /* execute every <interval> seconds */
const char *zi_funcname; /* name of test function */
} ztest_info_t;
2008-11-20 23:01:55 +03:00
typedef struct ztest_shared_callstate {
uint64_t zc_count; /* per-pass count */
uint64_t zc_time; /* per-pass time */
uint64_t zc_next; /* next time to call this function */
} ztest_shared_callstate_t;
static ztest_shared_callstate_t *ztest_shared_callstate;
#define ZTEST_GET_SHARED_CALLSTATE(c) (&ztest_shared_callstate[c])
2008-11-20 23:01:55 +03:00
ztest_func_t ztest_dmu_read_write;
ztest_func_t ztest_dmu_write_parallel;
ztest_func_t ztest_dmu_object_alloc_free;
ztest_func_t ztest_dmu_object_next_chunk;
ztest_func_t ztest_dmu_commit_callbacks;
2008-11-20 23:01:55 +03:00
ztest_func_t ztest_zap;
ztest_func_t ztest_zap_parallel;
ztest_func_t ztest_zil_commit;
ztest_func_t ztest_zil_remount;
ztest_func_t ztest_dmu_read_write_zcopy;
2008-11-20 23:01:55 +03:00
ztest_func_t ztest_dmu_objset_create_destroy;
ztest_func_t ztest_dmu_prealloc;
ztest_func_t ztest_fzap;
2008-11-20 23:01:55 +03:00
ztest_func_t ztest_dmu_snapshot_create_destroy;
ztest_func_t ztest_dsl_prop_get_set;
ztest_func_t ztest_spa_prop_get_set;
2008-11-20 23:01:55 +03:00
ztest_func_t ztest_spa_create_destroy;
ztest_func_t ztest_fault_inject;
ztest_func_t ztest_dmu_snapshot_hold;
ztest_func_t ztest_mmp_enable_disable;
ztest_func_t ztest_scrub;
ztest_func_t ztest_dsl_dataset_promote_busy;
2008-11-20 23:01:55 +03:00
ztest_func_t ztest_vdev_attach_detach;
RAID-Z expansion feature This feature allows disks to be added one at a time to a RAID-Z group, expanding its capacity incrementally. This feature is especially useful for small pools (typically with only one RAID-Z group), where there isn't sufficient hardware to add capacity by adding a whole new RAID-Z group (typically doubling the number of disks). == Initiating expansion == A new device (disk) can be attached to an existing RAIDZ vdev, by running `zpool attach POOL raidzP-N NEW_DEVICE`, e.g. `zpool attach tank raidz2-0 sda`. The new device will become part of the RAIDZ group. A "raidz expansion" will be initiated, and the new device will contribute additional space to the RAIDZ group once the expansion completes. The `feature@raidz_expansion` on-disk feature flag must be `enabled` to initiate an expansion, and it remains `active` for the life of the pool. In other words, pools with expanded RAIDZ vdevs can not be imported by older releases of the ZFS software. == During expansion == The expansion entails reading all allocated space from existing disks in the RAIDZ group, and rewriting it to the new disks in the RAIDZ group (including the newly added device). The expansion progress can be monitored with `zpool status`. Data redundancy is maintained during (and after) the expansion. If a disk fails while the expansion is in progress, the expansion pauses until the health of the RAIDZ vdev is restored (e.g. by replacing the failed disk and waiting for reconstruction to complete). The pool remains accessible during expansion. Following a reboot or export/import, the expansion resumes where it left off. == After expansion == When the expansion completes, the additional space is available for use, and is reflected in the `available` zfs property (as seen in `zfs list`, `df`, etc). Expansion does not change the number of failures that can be tolerated without data loss (e.g. a RAIDZ2 is still a RAIDZ2 even after expansion). A RAIDZ vdev can be expanded multiple times. After the expansion completes, old blocks remain with their old data-to-parity ratio (e.g. 5-wide RAIDZ2, has 3 data to 2 parity), but distributed among the larger set of disks. New blocks will be written with the new data-to-parity ratio (e.g. a 5-wide RAIDZ2 which has been expanded once to 6-wide, has 4 data to 2 parity). However, the RAIDZ vdev's "assumed parity ratio" does not change, so slightly less space than is expected may be reported for newly-written blocks, according to `zfs list`, `df`, `ls -s`, and similar tools. Sponsored-by: The FreeBSD Foundation Sponsored-by: iXsystems, Inc. Sponsored-by: vStack Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov> Reviewed-by: Mark Maybee <mark.maybee@delphix.com> Authored-by: Matthew Ahrens <mahrens@delphix.com> Contributions-by: Fedor Uporov <fuporov.vstack@gmail.com> Contributions-by: Stuart Maybee <stuart.maybee@comcast.net> Contributions-by: Thorsten Behrens <tbehrens@outlook.com> Contributions-by: Fmstrat <nospam@nowsci.com> Contributions-by: Don Brady <dev.fs.zfs@gmail.com> Signed-off-by: Don Brady <dev.fs.zfs@gmail.com> Closes #15022
2023-11-08 21:19:41 +03:00
ztest_func_t ztest_vdev_raidz_attach;
2008-11-20 23:01:55 +03:00
ztest_func_t ztest_vdev_LUN_growth;
ztest_func_t ztest_vdev_add_remove;
ztest_func_t ztest_vdev_class_add;
ztest_func_t ztest_vdev_aux_add_remove;
ztest_func_t ztest_split_pool;
ztest_func_t ztest_reguid;
ztest_func_t ztest_spa_upgrade;
OpenZFS 7614, 9064 - zfs device evacuation/removal OpenZFS 7614 - zfs device evacuation/removal OpenZFS 9064 - remove_mirror should wait for device removal to complete This project allows top-level vdevs to be removed from the storage pool with "zpool remove", reducing the total amount of storage in the pool. This operation copies all allocated regions of the device to be removed onto other devices, recording the mapping from old to new location. After the removal is complete, read and free operations to the removed (now "indirect") vdev must be remapped and performed at the new location on disk. The indirect mapping table is kept in memory whenever the pool is loaded, so there is minimal performance overhead when doing operations on the indirect vdev. The size of the in-memory mapping table will be reduced when its entries become "obsolete" because they are no longer used by any block pointers in the pool. An entry becomes obsolete when all the blocks that use it are freed. An entry can also become obsolete when all the snapshots that reference it are deleted, and the block pointers that reference it have been "remapped" in all filesystems/zvols (and clones). Whenever an indirect block is written, all the block pointers in it will be "remapped" to their new (concrete) locations if possible. This process can be accelerated by using the "zfs remap" command to proactively rewrite all indirect blocks that reference indirect (removed) vdevs. Note that when a device is removed, we do not verify the checksum of the data that is copied. This makes the process much faster, but if it were used on redundant vdevs (i.e. mirror or raidz vdevs), it would be possible to copy the wrong data, when we have the correct data on e.g. the other side of the mirror. At the moment, only mirrors and simple top-level vdevs can be removed and no removal is allowed if any of the top-level vdevs are raidz. Porting Notes: * Avoid zero-sized kmem_alloc() in vdev_compact_children(). The device evacuation code adds a dependency that vdev_compact_children() be able to properly empty the vdev_child array by setting it to NULL and zeroing vdev_children. Under Linux, kmem_alloc() and related functions return a sentinel pointer rather than NULL for zero-sized allocations. * Remove comment regarding "mpt" driver where zfs_remove_max_segment is initialized to SPA_MAXBLOCKSIZE. Change zfs_condense_indirect_commit_entry_delay_ticks to zfs_condense_indirect_commit_entry_delay_ms for consistency with most other tunables in which delays are specified in ms. * ZTS changes: Use set_tunable rather than mdb Use zpool sync as appropriate Use sync_pool instead of sync Kill jobs during test_removal_with_operation to allow unmount/export Don't add non-disk names such as "mirror" or "raidz" to $DISKS Use $TEST_BASE_DIR instead of /tmp Increase HZ from 100 to 1000 which is more common on Linux removal_multiple_indirection.ksh Reduce iterations in order to not time out on the code coverage builders. removal_resume_export: Functionally, the test case is correct but there exists a race where the kernel thread hasn't been fully started yet and is not visible. Wait for up to 1 second for the removal thread to be started before giving up on it. Also, increase the amount of data copied in order that the removal not finish before the export has a chance to fail. * MMP compatibility, the concept of concrete versus non-concrete devices has slightly changed the semantics of vdev_writeable(). Update mmp_random_leaf_impl() accordingly. * Updated dbuf_remap() to handle the org.zfsonlinux:large_dnode pool feature which is not supported by OpenZFS. * Added support for new vdev removal tracepoints. * Test cases removal_with_zdb and removal_condense_export have been intentionally disabled. When run manually they pass as intended, but when running in the automated test environment they produce unreliable results on the latest Fedora release. They may work better once the upstream pool import refectoring is merged into ZoL at which point they will be re-enabled. Authored by: Matthew Ahrens <mahrens@delphix.com> Reviewed-by: Alex Reece <alex@delphix.com> Reviewed-by: George Wilson <george.wilson@delphix.com> Reviewed-by: John Kennedy <john.kennedy@delphix.com> Reviewed-by: Prakash Surya <prakash.surya@delphix.com> Reviewed by: Richard Laager <rlaager@wiktel.com> Reviewed by: Tim Chase <tim@chase2k.com> Reviewed by: Brian Behlendorf <behlendorf1@llnl.gov> Approved by: Garrett D'Amore <garrett@damore.org> Ported-by: Tim Chase <tim@chase2k.com> Signed-off-by: Tim Chase <tim@chase2k.com> OpenZFS-issue: https://www.illumos.org/issues/7614 OpenZFS-commit: https://github.com/openzfs/openzfs/commit/f539f1eb Closes #6900
2016-09-22 19:30:13 +03:00
ztest_func_t ztest_device_removal;
OpenZFS 9166 - zfs storage pool checkpoint Details about the motivation of this feature and its usage can be found in this blogpost: https://sdimitro.github.io/post/zpool-checkpoint/ A lightning talk of this feature can be found here: https://www.youtube.com/watch?v=fPQA8K40jAM Implementation details can be found in big block comment of spa_checkpoint.c Side-changes that are relevant to this commit but not explained elsewhere: * renames members of "struct metaslab trees to be shorter without losing meaning * space_map_{alloc,truncate}() accept a block size as a parameter. The reason is that in the current state all space maps that we allocate through the DMU use a global tunable (space_map_blksz) which defauls to 4KB. This is ok for metaslab space maps in terms of bandwirdth since they are scattered all over the disk. But for other space maps this default is probably not what we want. Examples are device removal's vdev_obsolete_sm or vdev_chedkpoint_sm from this review. Both of these have a 1:1 relationship with each vdev and could benefit from a bigger block size. Porting notes: * The part of dsl_scan_sync() which handles async destroys has been moved into the new dsl_process_async_destroys() function. * Remove "VERIFY(!(flags & FWRITE))" in "kernel.c" so zhack can write to block device backed pools. * ZTS: * Fix get_txg() in zpool_sync_001_pos due to "checkpoint_txg". * Don't use large dd block sizes on /dev/urandom under Linux in checkpoint_capacity. * Adopt Delphix-OS's setting of 4 (spa_asize_inflation = SPA_DVAS_PER_BP + 1) for the checkpoint_capacity test to speed its attempts to fill the pool * Create the base and nested pools with sync=disabled to speed up the "setup" phase. * Clear labels in test pool between checkpoint tests to avoid duplicate pool issues. * The import_rewind_device_replaced test has been marked as "known to fail" for the reasons listed in its DISCLAIMER. * New module parameters: zfs_spa_discard_memory_limit, zfs_remove_max_bytes_pause (not documented - debugging only) vdev_max_ms_count (formerly metaslabs_per_vdev) vdev_min_ms_count Authored by: Serapheim Dimitropoulos <serapheim.dimitro@delphix.com> Reviewed by: Matthew Ahrens <mahrens@delphix.com> Reviewed by: John Kennedy <john.kennedy@delphix.com> Reviewed by: Dan Kimmel <dan.kimmel@delphix.com> Reviewed by: Brian Behlendorf <behlendorf1@llnl.gov> Approved by: Richard Lowe <richlowe@richlowe.net> Ported-by: Tim Chase <tim@chase2k.com> Signed-off-by: Tim Chase <tim@chase2k.com> OpenZFS-issue: https://illumos.org/issues/9166 OpenZFS-commit: https://github.com/openzfs/openzfs/commit/7159fdb8 Closes #7570
2016-12-17 01:11:29 +03:00
ztest_func_t ztest_spa_checkpoint_create_discard;
OpenZFS 9102 - zfs should be able to initialize storage devices PROBLEM ======== The first access to a block incurs a performance penalty on some platforms (e.g. AWS's EBS, VMware VMDKs). Therefore we recommend that volumes are "thick provisioned", where supported by the platform (VMware). This can create a large delay in getting a new virtual machines up and running (or adding storage to an existing Engine). If the thick provision step is omitted, write performance will be suboptimal until all blocks on the LUN have been written. SOLUTION ========= This feature introduces a way to 'initialize' the disks at install or in the background to make sure we don't incur this first read penalty. When an entire LUN is added to ZFS, we make all space available immediately, and allow ZFS to find unallocated space and zero it out. This works with concurrent writes to arbitrary offsets, ensuring that we don't zero out something that has been (or is in the middle of being) written. This scheme can also be applied to existing pools (affecting only free regions on the vdev). Detailed design: - new subcommand:zpool initialize [-cs] <pool> [<vdev> ...] - start, suspend, or cancel initialization - Creates new open-context thread for each vdev - Thread iterates through all metaslabs in this vdev - Each metaslab: - select a metaslab - load the metaslab - mark the metaslab as being zeroed - walk all free ranges within that metaslab and translate them to ranges on the leaf vdev - issue a "zeroing" I/O on the leaf vdev that corresponds to a free range on the metaslab we're working on - continue until all free ranges for this metaslab have been "zeroed" - reset/unmark the metaslab being zeroed - if more metaslabs exist, then repeat above tasks. - if no more metaslabs, then we're done. - progress for the initialization is stored on-disk in the vdev’s leaf zap object. The following information is stored: - the last offset that has been initialized - the state of the initialization process (i.e. active, suspended, or canceled) - the start time for the initialization - progress is reported via the zpool status command and shows information for each of the vdevs that are initializing Porting notes: - Added zfs_initialize_value module parameter to set the pattern written by "zpool initialize". - Added zfs_vdev_{initializing,removal}_{min,max}_active module options. Authored by: George Wilson <george.wilson@delphix.com> Reviewed by: John Wren Kennedy <john.kennedy@delphix.com> Reviewed by: Matthew Ahrens <mahrens@delphix.com> Reviewed by: Pavel Zakharov <pavel.zakharov@delphix.com> Reviewed by: Prakash Surya <prakash.surya@delphix.com> Reviewed by: loli10K <ezomori.nozomu@gmail.com> Reviewed by: Brian Behlendorf <behlendorf1@llnl.gov> Approved by: Richard Lowe <richlowe@richlowe.net> Signed-off-by: Tim Chase <tim@chase2k.com> Ported-by: Tim Chase <tim@chase2k.com> OpenZFS-issue: https://www.illumos.org/issues/9102 OpenZFS-commit: https://github.com/openzfs/openzfs/commit/c3963210eb Closes #8230
2018-12-19 17:54:59 +03:00
ztest_func_t ztest_initialize;
Add TRIM support UNMAP/TRIM support is a frequently-requested feature to help prevent performance from degrading on SSDs and on various other SAN-like storage back-ends. By issuing UNMAP/TRIM commands for sectors which are no longer allocated the underlying device can often more efficiently manage itself. This TRIM implementation is modeled on the `zpool initialize` feature which writes a pattern to all unallocated space in the pool. The new `zpool trim` command uses the same vdev_xlate() code to calculate what sectors are unallocated, the same per- vdev TRIM thread model and locking, and the same basic CLI for a consistent user experience. The core difference is that instead of writing a pattern it will issue UNMAP/TRIM commands for those extents. The zio pipeline was updated to accommodate this by adding a new ZIO_TYPE_TRIM type and associated spa taskq. This new type makes is straight forward to add the platform specific TRIM/UNMAP calls to vdev_disk.c and vdev_file.c. These new ZIO_TYPE_TRIM zios are handled largely the same way as ZIO_TYPE_READs or ZIO_TYPE_WRITEs. This makes it possible to largely avoid changing the pipieline, one exception is that TRIM zio's may exceed the 16M block size limit since they contain no data. In addition to the manual `zpool trim` command, a background automatic TRIM was added and is controlled by the 'autotrim' property. It relies on the exact same infrastructure as the manual TRIM. However, instead of relying on the extents in a metaslab's ms_allocatable range tree, a ms_trim tree is kept per metaslab. When 'autotrim=on', ranges added back to the ms_allocatable tree are also added to the ms_free tree. The ms_free tree is then periodically consumed by an autotrim thread which systematically walks a top level vdev's metaslabs. Since the automatic TRIM will skip ranges it considers too small there is value in occasionally running a full `zpool trim`. This may occur when the freed blocks are small and not enough time was allowed to aggregate them. An automatic TRIM and a manual `zpool trim` may be run concurrently, in which case the automatic TRIM will yield to the manual TRIM. Reviewed-by: Jorgen Lundman <lundman@lundman.net> Reviewed-by: Tim Chase <tim@chase2k.com> Reviewed-by: Matt Ahrens <mahrens@delphix.com> Reviewed-by: George Wilson <george.wilson@delphix.com> Reviewed-by: Serapheim Dimitropoulos <serapheim@delphix.com> Contributions-by: Saso Kiselkov <saso.kiselkov@nexenta.com> Contributions-by: Tim Chase <tim@chase2k.com> Contributions-by: Chunwei Chen <tuxoko@gmail.com> Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov> Closes #8419 Closes #598
2019-03-29 19:13:20 +03:00
ztest_func_t ztest_trim;
Introduce BLAKE3 checksums as an OpenZFS feature This commit adds BLAKE3 checksums to OpenZFS, it has similar performance to Edon-R, but without the caveats around the latter. Homepage of BLAKE3: https://github.com/BLAKE3-team/BLAKE3 Wikipedia: https://en.wikipedia.org/wiki/BLAKE_(hash_function)#BLAKE3 Short description of Wikipedia: BLAKE3 is a cryptographic hash function based on Bao and BLAKE2, created by Jack O'Connor, Jean-Philippe Aumasson, Samuel Neves, and Zooko Wilcox-O'Hearn. It was announced on January 9, 2020, at Real World Crypto. BLAKE3 is a single algorithm with many desirable features (parallelism, XOF, KDF, PRF and MAC), in contrast to BLAKE and BLAKE2, which are algorithm families with multiple variants. BLAKE3 has a binary tree structure, so it supports a practically unlimited degree of parallelism (both SIMD and multithreading) given enough input. The official Rust and C implementations are dual-licensed as public domain (CC0) and the Apache License. Along with adding the BLAKE3 hash into the OpenZFS infrastructure a new benchmarking file called chksum_bench was introduced. When read it reports the speed of the available checksum functions. On Linux: cat /proc/spl/kstat/zfs/chksum_bench On FreeBSD: sysctl kstat.zfs.misc.chksum_bench This is an example output of an i3-1005G1 test system with Debian 11: implementation 1k 4k 16k 64k 256k 1m 4m edonr-generic 1196 1602 1761 1749 1762 1759 1751 skein-generic 546 591 608 615 619 612 616 sha256-generic 240 300 316 314 304 285 276 sha512-generic 353 441 467 476 472 467 426 blake3-generic 308 313 313 313 312 313 312 blake3-sse2 402 1289 1423 1446 1432 1458 1413 blake3-sse41 427 1470 1625 1704 1679 1607 1629 blake3-avx2 428 1920 3095 3343 3356 3318 3204 blake3-avx512 473 2687 4905 5836 5844 5643 5374 Output on Debian 5.10.0-10-amd64 system: (Ryzen 7 5800X) implementation 1k 4k 16k 64k 256k 1m 4m edonr-generic 1840 2458 2665 2719 2711 2723 2693 skein-generic 870 966 996 992 1003 1005 1009 sha256-generic 415 442 453 455 457 457 457 sha512-generic 608 690 711 718 719 720 721 blake3-generic 301 313 311 309 309 310 310 blake3-sse2 343 1865 2124 2188 2180 2181 2186 blake3-sse41 364 2091 2396 2509 2463 2482 2488 blake3-avx2 365 2590 4399 4971 4915 4802 4764 Output on Debian 5.10.0-9-powerpc64le system: (POWER 9) implementation 1k 4k 16k 64k 256k 1m 4m edonr-generic 1213 1703 1889 1918 1957 1902 1907 skein-generic 434 492 520 522 511 525 525 sha256-generic 167 183 187 188 188 187 188 sha512-generic 186 216 222 221 225 224 224 blake3-generic 153 152 154 153 151 153 153 blake3-sse2 391 1170 1366 1406 1428 1426 1414 blake3-sse41 352 1049 1212 1174 1262 1258 1259 Output on Debian 5.10.0-11-arm64 system: (Pi400) implementation 1k 4k 16k 64k 256k 1m 4m edonr-generic 487 603 629 639 643 641 641 skein-generic 271 299 303 308 309 309 307 sha256-generic 117 127 128 130 130 129 130 sha512-generic 145 165 170 172 173 174 175 blake3-generic 81 29 71 89 89 89 89 blake3-sse2 112 323 368 379 380 371 374 blake3-sse41 101 315 357 368 369 364 360 Structurally, the new code is mainly split into these parts: - 1x cross platform generic c variant: blake3_generic.c - 4x assembly for X86-64 (SSE2, SSE4.1, AVX2, AVX512) - 2x assembly for ARMv8 (NEON converted from SSE2) - 2x assembly for PPC64-LE (POWER8 converted from SSE2) - one file for switching between the implementations Note the PPC64 assembly requires the VSX instruction set and the kfpu_begin() / kfpu_end() calls on PowerPC were updated accordingly. Reviewed-by: Felix Dörre <felix@dogcraft.de> Reviewed-by: Ahelenia Ziemiańska <nabijaczleweli@nabijaczleweli.xyz> Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov> Signed-off-by: Tino Reichardt <milky-zfs@mcmilk.de> Co-authored-by: Rich Ercolani <rincebrain@gmail.com> Closes #10058 Closes #12918
2022-06-09 01:55:57 +03:00
ztest_func_t ztest_blake3;
ztest_func_t ztest_fletcher;
ztest_func_t ztest_fletcher_incr;
Implement large_dnode pool feature Justification ------------- This feature adds support for variable length dnodes. Our motivation is to eliminate the overhead associated with using spill blocks. Spill blocks are used to store system attribute data (i.e. file metadata) that does not fit in the dnode's bonus buffer. By allowing a larger bonus buffer area the use of a spill block can be avoided. Spill blocks potentially incur an additional read I/O for every dnode in a dnode block. As a worst case example, reading 32 dnodes from a 16k dnode block and all of the spill blocks could issue 33 separate reads. Now suppose those dnodes have size 1024 and therefore don't need spill blocks. Then the worst case number of blocks read is reduced to from 33 to two--one per dnode block. In practice spill blocks may tend to be co-located on disk with the dnode blocks so the reduction in I/O would not be this drastic. In a badly fragmented pool, however, the improvement could be significant. ZFS-on-Linux systems that make heavy use of extended attributes would benefit from this feature. In particular, ZFS-on-Linux supports the xattr=sa dataset property which allows file extended attribute data to be stored in the dnode bonus buffer as an alternative to the traditional directory-based format. Workloads such as SELinux and the Lustre distributed filesystem often store enough xattr data to force spill bocks when xattr=sa is in effect. Large dnodes may therefore provide a performance benefit to such systems. Other use cases that may benefit from this feature include files with large ACLs and symbolic links with long target names. Furthermore, this feature may be desirable on other platforms in case future applications or features are developed that could make use of a larger bonus buffer area. Implementation -------------- The size of a dnode may be a multiple of 512 bytes up to the size of a dnode block (currently 16384 bytes). A dn_extra_slots field was added to the current on-disk dnode_phys_t structure to describe the size of the physical dnode on disk. The 8 bits for this field were taken from the zero filled dn_pad2 field. The field represents how many "extra" dnode_phys_t slots a dnode consumes in its dnode block. This convention results in a value of 0 for 512 byte dnodes which preserves on-disk format compatibility with older software. Similarly, the in-memory dnode_t structure has a new dn_num_slots field to represent the total number of dnode_phys_t slots consumed on disk. Thus dn->dn_num_slots is 1 greater than the corresponding dnp->dn_extra_slots. This difference in convention was adopted because, unlike on-disk structures, backward compatibility is not a concern for in-memory objects, so we used a more natural way to represent size for a dnode_t. The default size for newly created dnodes is determined by the value of a new "dnodesize" dataset property. By default the property is set to "legacy" which is compatible with older software. Setting the property to "auto" will allow the filesystem to choose the most suitable dnode size. Currently this just sets the default dnode size to 1k, but future code improvements could dynamically choose a size based on observed workload patterns. Dnodes of varying sizes can coexist within the same dataset and even within the same dnode block. For example, to enable automatically-sized dnodes, run # zfs set dnodesize=auto tank/fish The user can also specify literal values for the dnodesize property. These are currently limited to powers of two from 1k to 16k. The power-of-2 limitation is only for simplicity of the user interface. Internally the implementation can handle any multiple of 512 up to 16k, and consumers of the DMU API can specify any legal dnode value. The size of a new dnode is determined at object allocation time and stored as a new field in the znode in-memory structure. New DMU interfaces are added to allow the consumer to specify the dnode size that a newly allocated object should use. Existing interfaces are unchanged to avoid having to update every call site and to preserve compatibility with external consumers such as Lustre. The new interfaces names are given below. The versions of these functions that don't take a dnodesize parameter now just call the _dnsize() versions with a dnodesize of 0, which means use the legacy dnode size. New DMU interfaces: dmu_object_alloc_dnsize() dmu_object_claim_dnsize() dmu_object_reclaim_dnsize() New ZAP interfaces: zap_create_dnsize() zap_create_norm_dnsize() zap_create_flags_dnsize() zap_create_claim_norm_dnsize() zap_create_link_dnsize() The constant DN_MAX_BONUSLEN is renamed to DN_OLD_MAX_BONUSLEN. The spa_maxdnodesize() function should be used to determine the maximum bonus length for a pool. These are a few noteworthy changes to key functions: * The prototype for dnode_hold_impl() now takes a "slots" parameter. When the DNODE_MUST_BE_FREE flag is set, this parameter is used to ensure the hole at the specified object offset is large enough to hold the dnode being created. The slots parameter is also used to ensure a dnode does not span multiple dnode blocks. In both of these cases, if a failure occurs, ENOSPC is returned. Keep in mind, these failure cases are only possible when using DNODE_MUST_BE_FREE. If the DNODE_MUST_BE_ALLOCATED flag is set, "slots" must be 0. dnode_hold_impl() will check if the requested dnode is already consumed as an extra dnode slot by an large dnode, in which case it returns ENOENT. * The function dmu_object_alloc() advances to the next dnode block if dnode_hold_impl() returns an error for a requested object. This is because the beginning of the next dnode block is the only location it can safely assume to either be a hole or a valid starting point for a dnode. * dnode_next_offset_level() and other functions that iterate through dnode blocks may no longer use a simple array indexing scheme. These now use the current dnode's dn_num_slots field to advance to the next dnode in the block. This is to ensure we properly skip the current dnode's bonus area and don't interpret it as a valid dnode. zdb --- The zdb command was updated to display a dnode's size under the "dnsize" column when the object is dumped. For ZIL create log records, zdb will now display the slot count for the object. ztest ----- Ztest chooses a random dnodesize for every newly created object. The random distribution is more heavily weighted toward small dnodes to better simulate real-world datasets. Unused bonus buffer space is filled with non-zero values computed from the object number, dataset id, offset, and generation number. This helps ensure that the dnode traversal code properly skips the interior regions of large dnodes, and that these interior regions are not overwritten by data belonging to other dnodes. A new test visits each object in a dataset. It verifies that the actual dnode size matches what was stored in the ztest block tag when it was created. It also verifies that the unused bonus buffer space is filled with the expected data patterns. ZFS Test Suite -------------- Added six new large dnode-specific tests, and integrated the dnodesize property into existing tests for zfs allow and send/recv. Send/Receive ------------ ZFS send streams for datasets containing large dnodes cannot be received on pools that don't support the large_dnode feature. A send stream with large dnodes sets a DMU_BACKUP_FEATURE_LARGE_DNODE flag which will be unrecognized by an incompatible receiving pool so that the zfs receive will fail gracefully. While not implemented here, it may be possible to generate a backward-compatible send stream from a dataset containing large dnodes. The implementation may be tricky, however, because the send object record for a large dnode would need to be resized to a 512 byte dnode, possibly kicking in a spill block in the process. This means we would need to construct a new SA layout and possibly register it in the SA layout object. The SA layout is normally just sent as an ordinary object record. But if we are constructing new layouts while generating the send stream we'd have to build the SA layout object dynamically and send it at the end of the stream. For sending and receiving between pools that do support large dnodes, the drr_object send record type is extended with a new field to store the dnode slot count. This field was repurposed from unused padding in the structure. ZIL Replay ---------- The dnode slot count is stored in the uppermost 8 bits of the lr_foid field. The bits were unused as the object id is currently capped at 48 bits. Resizing Dnodes --------------- It should be possible to resize a dnode when it is dirtied if the current dnodesize dataset property differs from the dnode's size, but this functionality is not currently implemented. Clearly a dnode can only grow if there are sufficient contiguous unused slots in the dnode block, but it should always be possible to shrink a dnode. Growing dnodes may be useful to reduce fragmentation in a pool with many spill blocks in use. Shrinking dnodes may be useful to allow sending a dataset to a pool that doesn't support the large_dnode feature. Feature Reference Counting -------------------------- The reference count for the large_dnode pool feature tracks the number of datasets that have ever contained a dnode of size larger than 512 bytes. The first time a large dnode is created in a dataset the dataset is converted to an extensible dataset. This is a one-way operation and the only way to decrement the feature count is to destroy the dataset, even if the dataset no longer contains any large dnodes. The complexity of reference counting on a per-dnode basis was too high, so we chose to track it on a per-dataset basis similarly to the large_block feature. Signed-off-by: Ned Bass <bass6@llnl.gov> Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov> Closes #3542
2016-03-17 04:25:34 +03:00
ztest_func_t ztest_verify_dnode_bt;
ztest_func_t ztest_pool_prefetch_ddt;
ztest_func_t ztest_ddt_prune;
2008-11-20 23:01:55 +03:00
static uint64_t zopt_always = 0ULL * NANOSEC; /* all the time */
static uint64_t zopt_incessant = 1ULL * NANOSEC / 10; /* every 1/10 second */
static uint64_t zopt_often = 1ULL * NANOSEC; /* every second */
static uint64_t zopt_sometimes = 10ULL * NANOSEC; /* every 10 seconds */
static uint64_t zopt_rarely = 60ULL * NANOSEC; /* every 60 seconds */
2008-11-20 23:01:55 +03:00
#define ZTI_INIT(func, iters, interval) \
{ .zi_func = (func), \
.zi_iters = (iters), \
.zi_interval = (interval), \
.zi_funcname = # func }
static ztest_info_t ztest_info[] = {
ZTI_INIT(ztest_dmu_read_write, 1, &zopt_always),
ZTI_INIT(ztest_dmu_write_parallel, 10, &zopt_always),
ZTI_INIT(ztest_dmu_object_alloc_free, 1, &zopt_always),
ZTI_INIT(ztest_dmu_object_next_chunk, 1, &zopt_sometimes),
ZTI_INIT(ztest_dmu_commit_callbacks, 1, &zopt_always),
ZTI_INIT(ztest_zap, 30, &zopt_always),
ZTI_INIT(ztest_zap_parallel, 100, &zopt_always),
ZTI_INIT(ztest_split_pool, 1, &zopt_sometimes),
ZTI_INIT(ztest_zil_commit, 1, &zopt_incessant),
ZTI_INIT(ztest_zil_remount, 1, &zopt_sometimes),
ZTI_INIT(ztest_dmu_read_write_zcopy, 1, &zopt_often),
ZTI_INIT(ztest_dmu_objset_create_destroy, 1, &zopt_often),
ZTI_INIT(ztest_dsl_prop_get_set, 1, &zopt_often),
ZTI_INIT(ztest_spa_prop_get_set, 1, &zopt_sometimes),
#if 0
ZTI_INIT(ztest_dmu_prealloc, 1, &zopt_sometimes),
#endif
ZTI_INIT(ztest_fzap, 1, &zopt_sometimes),
ZTI_INIT(ztest_dmu_snapshot_create_destroy, 1, &zopt_sometimes),
ZTI_INIT(ztest_spa_create_destroy, 1, &zopt_sometimes),
ZTI_INIT(ztest_fault_inject, 1, &zopt_sometimes),
ZTI_INIT(ztest_dmu_snapshot_hold, 1, &zopt_sometimes),
ZTI_INIT(ztest_mmp_enable_disable, 1, &zopt_sometimes),
ZTI_INIT(ztest_reguid, 1, &zopt_rarely),
ZTI_INIT(ztest_scrub, 1, &zopt_rarely),
ZTI_INIT(ztest_spa_upgrade, 1, &zopt_rarely),
ZTI_INIT(ztest_dsl_dataset_promote_busy, 1, &zopt_rarely),
ZTI_INIT(ztest_vdev_attach_detach, 1, &zopt_sometimes),
RAID-Z expansion feature This feature allows disks to be added one at a time to a RAID-Z group, expanding its capacity incrementally. This feature is especially useful for small pools (typically with only one RAID-Z group), where there isn't sufficient hardware to add capacity by adding a whole new RAID-Z group (typically doubling the number of disks). == Initiating expansion == A new device (disk) can be attached to an existing RAIDZ vdev, by running `zpool attach POOL raidzP-N NEW_DEVICE`, e.g. `zpool attach tank raidz2-0 sda`. The new device will become part of the RAIDZ group. A "raidz expansion" will be initiated, and the new device will contribute additional space to the RAIDZ group once the expansion completes. The `feature@raidz_expansion` on-disk feature flag must be `enabled` to initiate an expansion, and it remains `active` for the life of the pool. In other words, pools with expanded RAIDZ vdevs can not be imported by older releases of the ZFS software. == During expansion == The expansion entails reading all allocated space from existing disks in the RAIDZ group, and rewriting it to the new disks in the RAIDZ group (including the newly added device). The expansion progress can be monitored with `zpool status`. Data redundancy is maintained during (and after) the expansion. If a disk fails while the expansion is in progress, the expansion pauses until the health of the RAIDZ vdev is restored (e.g. by replacing the failed disk and waiting for reconstruction to complete). The pool remains accessible during expansion. Following a reboot or export/import, the expansion resumes where it left off. == After expansion == When the expansion completes, the additional space is available for use, and is reflected in the `available` zfs property (as seen in `zfs list`, `df`, etc). Expansion does not change the number of failures that can be tolerated without data loss (e.g. a RAIDZ2 is still a RAIDZ2 even after expansion). A RAIDZ vdev can be expanded multiple times. After the expansion completes, old blocks remain with their old data-to-parity ratio (e.g. 5-wide RAIDZ2, has 3 data to 2 parity), but distributed among the larger set of disks. New blocks will be written with the new data-to-parity ratio (e.g. a 5-wide RAIDZ2 which has been expanded once to 6-wide, has 4 data to 2 parity). However, the RAIDZ vdev's "assumed parity ratio" does not change, so slightly less space than is expected may be reported for newly-written blocks, according to `zfs list`, `df`, `ls -s`, and similar tools. Sponsored-by: The FreeBSD Foundation Sponsored-by: iXsystems, Inc. Sponsored-by: vStack Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov> Reviewed-by: Mark Maybee <mark.maybee@delphix.com> Authored-by: Matthew Ahrens <mahrens@delphix.com> Contributions-by: Fedor Uporov <fuporov.vstack@gmail.com> Contributions-by: Stuart Maybee <stuart.maybee@comcast.net> Contributions-by: Thorsten Behrens <tbehrens@outlook.com> Contributions-by: Fmstrat <nospam@nowsci.com> Contributions-by: Don Brady <dev.fs.zfs@gmail.com> Signed-off-by: Don Brady <dev.fs.zfs@gmail.com> Closes #15022
2023-11-08 21:19:41 +03:00
ZTI_INIT(ztest_vdev_raidz_attach, 1, &zopt_sometimes),
ZTI_INIT(ztest_vdev_LUN_growth, 1, &zopt_rarely),
ZTI_INIT(ztest_vdev_add_remove, 1, &ztest_opts.zo_vdevtime),
ZTI_INIT(ztest_vdev_class_add, 1, &ztest_opts.zo_vdevtime),
ZTI_INIT(ztest_vdev_aux_add_remove, 1, &ztest_opts.zo_vdevtime),
OpenZFS 7614, 9064 - zfs device evacuation/removal OpenZFS 7614 - zfs device evacuation/removal OpenZFS 9064 - remove_mirror should wait for device removal to complete This project allows top-level vdevs to be removed from the storage pool with "zpool remove", reducing the total amount of storage in the pool. This operation copies all allocated regions of the device to be removed onto other devices, recording the mapping from old to new location. After the removal is complete, read and free operations to the removed (now "indirect") vdev must be remapped and performed at the new location on disk. The indirect mapping table is kept in memory whenever the pool is loaded, so there is minimal performance overhead when doing operations on the indirect vdev. The size of the in-memory mapping table will be reduced when its entries become "obsolete" because they are no longer used by any block pointers in the pool. An entry becomes obsolete when all the blocks that use it are freed. An entry can also become obsolete when all the snapshots that reference it are deleted, and the block pointers that reference it have been "remapped" in all filesystems/zvols (and clones). Whenever an indirect block is written, all the block pointers in it will be "remapped" to their new (concrete) locations if possible. This process can be accelerated by using the "zfs remap" command to proactively rewrite all indirect blocks that reference indirect (removed) vdevs. Note that when a device is removed, we do not verify the checksum of the data that is copied. This makes the process much faster, but if it were used on redundant vdevs (i.e. mirror or raidz vdevs), it would be possible to copy the wrong data, when we have the correct data on e.g. the other side of the mirror. At the moment, only mirrors and simple top-level vdevs can be removed and no removal is allowed if any of the top-level vdevs are raidz. Porting Notes: * Avoid zero-sized kmem_alloc() in vdev_compact_children(). The device evacuation code adds a dependency that vdev_compact_children() be able to properly empty the vdev_child array by setting it to NULL and zeroing vdev_children. Under Linux, kmem_alloc() and related functions return a sentinel pointer rather than NULL for zero-sized allocations. * Remove comment regarding "mpt" driver where zfs_remove_max_segment is initialized to SPA_MAXBLOCKSIZE. Change zfs_condense_indirect_commit_entry_delay_ticks to zfs_condense_indirect_commit_entry_delay_ms for consistency with most other tunables in which delays are specified in ms. * ZTS changes: Use set_tunable rather than mdb Use zpool sync as appropriate Use sync_pool instead of sync Kill jobs during test_removal_with_operation to allow unmount/export Don't add non-disk names such as "mirror" or "raidz" to $DISKS Use $TEST_BASE_DIR instead of /tmp Increase HZ from 100 to 1000 which is more common on Linux removal_multiple_indirection.ksh Reduce iterations in order to not time out on the code coverage builders. removal_resume_export: Functionally, the test case is correct but there exists a race where the kernel thread hasn't been fully started yet and is not visible. Wait for up to 1 second for the removal thread to be started before giving up on it. Also, increase the amount of data copied in order that the removal not finish before the export has a chance to fail. * MMP compatibility, the concept of concrete versus non-concrete devices has slightly changed the semantics of vdev_writeable(). Update mmp_random_leaf_impl() accordingly. * Updated dbuf_remap() to handle the org.zfsonlinux:large_dnode pool feature which is not supported by OpenZFS. * Added support for new vdev removal tracepoints. * Test cases removal_with_zdb and removal_condense_export have been intentionally disabled. When run manually they pass as intended, but when running in the automated test environment they produce unreliable results on the latest Fedora release. They may work better once the upstream pool import refectoring is merged into ZoL at which point they will be re-enabled. Authored by: Matthew Ahrens <mahrens@delphix.com> Reviewed-by: Alex Reece <alex@delphix.com> Reviewed-by: George Wilson <george.wilson@delphix.com> Reviewed-by: John Kennedy <john.kennedy@delphix.com> Reviewed-by: Prakash Surya <prakash.surya@delphix.com> Reviewed by: Richard Laager <rlaager@wiktel.com> Reviewed by: Tim Chase <tim@chase2k.com> Reviewed by: Brian Behlendorf <behlendorf1@llnl.gov> Approved by: Garrett D'Amore <garrett@damore.org> Ported-by: Tim Chase <tim@chase2k.com> Signed-off-by: Tim Chase <tim@chase2k.com> OpenZFS-issue: https://www.illumos.org/issues/7614 OpenZFS-commit: https://github.com/openzfs/openzfs/commit/f539f1eb Closes #6900
2016-09-22 19:30:13 +03:00
ZTI_INIT(ztest_device_removal, 1, &zopt_sometimes),
OpenZFS 9166 - zfs storage pool checkpoint Details about the motivation of this feature and its usage can be found in this blogpost: https://sdimitro.github.io/post/zpool-checkpoint/ A lightning talk of this feature can be found here: https://www.youtube.com/watch?v=fPQA8K40jAM Implementation details can be found in big block comment of spa_checkpoint.c Side-changes that are relevant to this commit but not explained elsewhere: * renames members of "struct metaslab trees to be shorter without losing meaning * space_map_{alloc,truncate}() accept a block size as a parameter. The reason is that in the current state all space maps that we allocate through the DMU use a global tunable (space_map_blksz) which defauls to 4KB. This is ok for metaslab space maps in terms of bandwirdth since they are scattered all over the disk. But for other space maps this default is probably not what we want. Examples are device removal's vdev_obsolete_sm or vdev_chedkpoint_sm from this review. Both of these have a 1:1 relationship with each vdev and could benefit from a bigger block size. Porting notes: * The part of dsl_scan_sync() which handles async destroys has been moved into the new dsl_process_async_destroys() function. * Remove "VERIFY(!(flags & FWRITE))" in "kernel.c" so zhack can write to block device backed pools. * ZTS: * Fix get_txg() in zpool_sync_001_pos due to "checkpoint_txg". * Don't use large dd block sizes on /dev/urandom under Linux in checkpoint_capacity. * Adopt Delphix-OS's setting of 4 (spa_asize_inflation = SPA_DVAS_PER_BP + 1) for the checkpoint_capacity test to speed its attempts to fill the pool * Create the base and nested pools with sync=disabled to speed up the "setup" phase. * Clear labels in test pool between checkpoint tests to avoid duplicate pool issues. * The import_rewind_device_replaced test has been marked as "known to fail" for the reasons listed in its DISCLAIMER. * New module parameters: zfs_spa_discard_memory_limit, zfs_remove_max_bytes_pause (not documented - debugging only) vdev_max_ms_count (formerly metaslabs_per_vdev) vdev_min_ms_count Authored by: Serapheim Dimitropoulos <serapheim.dimitro@delphix.com> Reviewed by: Matthew Ahrens <mahrens@delphix.com> Reviewed by: John Kennedy <john.kennedy@delphix.com> Reviewed by: Dan Kimmel <dan.kimmel@delphix.com> Reviewed by: Brian Behlendorf <behlendorf1@llnl.gov> Approved by: Richard Lowe <richlowe@richlowe.net> Ported-by: Tim Chase <tim@chase2k.com> Signed-off-by: Tim Chase <tim@chase2k.com> OpenZFS-issue: https://illumos.org/issues/9166 OpenZFS-commit: https://github.com/openzfs/openzfs/commit/7159fdb8 Closes #7570
2016-12-17 01:11:29 +03:00
ZTI_INIT(ztest_spa_checkpoint_create_discard, 1, &zopt_rarely),
OpenZFS 9102 - zfs should be able to initialize storage devices PROBLEM ======== The first access to a block incurs a performance penalty on some platforms (e.g. AWS's EBS, VMware VMDKs). Therefore we recommend that volumes are "thick provisioned", where supported by the platform (VMware). This can create a large delay in getting a new virtual machines up and running (or adding storage to an existing Engine). If the thick provision step is omitted, write performance will be suboptimal until all blocks on the LUN have been written. SOLUTION ========= This feature introduces a way to 'initialize' the disks at install or in the background to make sure we don't incur this first read penalty. When an entire LUN is added to ZFS, we make all space available immediately, and allow ZFS to find unallocated space and zero it out. This works with concurrent writes to arbitrary offsets, ensuring that we don't zero out something that has been (or is in the middle of being) written. This scheme can also be applied to existing pools (affecting only free regions on the vdev). Detailed design: - new subcommand:zpool initialize [-cs] <pool> [<vdev> ...] - start, suspend, or cancel initialization - Creates new open-context thread for each vdev - Thread iterates through all metaslabs in this vdev - Each metaslab: - select a metaslab - load the metaslab - mark the metaslab as being zeroed - walk all free ranges within that metaslab and translate them to ranges on the leaf vdev - issue a "zeroing" I/O on the leaf vdev that corresponds to a free range on the metaslab we're working on - continue until all free ranges for this metaslab have been "zeroed" - reset/unmark the metaslab being zeroed - if more metaslabs exist, then repeat above tasks. - if no more metaslabs, then we're done. - progress for the initialization is stored on-disk in the vdev’s leaf zap object. The following information is stored: - the last offset that has been initialized - the state of the initialization process (i.e. active, suspended, or canceled) - the start time for the initialization - progress is reported via the zpool status command and shows information for each of the vdevs that are initializing Porting notes: - Added zfs_initialize_value module parameter to set the pattern written by "zpool initialize". - Added zfs_vdev_{initializing,removal}_{min,max}_active module options. Authored by: George Wilson <george.wilson@delphix.com> Reviewed by: John Wren Kennedy <john.kennedy@delphix.com> Reviewed by: Matthew Ahrens <mahrens@delphix.com> Reviewed by: Pavel Zakharov <pavel.zakharov@delphix.com> Reviewed by: Prakash Surya <prakash.surya@delphix.com> Reviewed by: loli10K <ezomori.nozomu@gmail.com> Reviewed by: Brian Behlendorf <behlendorf1@llnl.gov> Approved by: Richard Lowe <richlowe@richlowe.net> Signed-off-by: Tim Chase <tim@chase2k.com> Ported-by: Tim Chase <tim@chase2k.com> OpenZFS-issue: https://www.illumos.org/issues/9102 OpenZFS-commit: https://github.com/openzfs/openzfs/commit/c3963210eb Closes #8230
2018-12-19 17:54:59 +03:00
ZTI_INIT(ztest_initialize, 1, &zopt_sometimes),
Add TRIM support UNMAP/TRIM support is a frequently-requested feature to help prevent performance from degrading on SSDs and on various other SAN-like storage back-ends. By issuing UNMAP/TRIM commands for sectors which are no longer allocated the underlying device can often more efficiently manage itself. This TRIM implementation is modeled on the `zpool initialize` feature which writes a pattern to all unallocated space in the pool. The new `zpool trim` command uses the same vdev_xlate() code to calculate what sectors are unallocated, the same per- vdev TRIM thread model and locking, and the same basic CLI for a consistent user experience. The core difference is that instead of writing a pattern it will issue UNMAP/TRIM commands for those extents. The zio pipeline was updated to accommodate this by adding a new ZIO_TYPE_TRIM type and associated spa taskq. This new type makes is straight forward to add the platform specific TRIM/UNMAP calls to vdev_disk.c and vdev_file.c. These new ZIO_TYPE_TRIM zios are handled largely the same way as ZIO_TYPE_READs or ZIO_TYPE_WRITEs. This makes it possible to largely avoid changing the pipieline, one exception is that TRIM zio's may exceed the 16M block size limit since they contain no data. In addition to the manual `zpool trim` command, a background automatic TRIM was added and is controlled by the 'autotrim' property. It relies on the exact same infrastructure as the manual TRIM. However, instead of relying on the extents in a metaslab's ms_allocatable range tree, a ms_trim tree is kept per metaslab. When 'autotrim=on', ranges added back to the ms_allocatable tree are also added to the ms_free tree. The ms_free tree is then periodically consumed by an autotrim thread which systematically walks a top level vdev's metaslabs. Since the automatic TRIM will skip ranges it considers too small there is value in occasionally running a full `zpool trim`. This may occur when the freed blocks are small and not enough time was allowed to aggregate them. An automatic TRIM and a manual `zpool trim` may be run concurrently, in which case the automatic TRIM will yield to the manual TRIM. Reviewed-by: Jorgen Lundman <lundman@lundman.net> Reviewed-by: Tim Chase <tim@chase2k.com> Reviewed-by: Matt Ahrens <mahrens@delphix.com> Reviewed-by: George Wilson <george.wilson@delphix.com> Reviewed-by: Serapheim Dimitropoulos <serapheim@delphix.com> Contributions-by: Saso Kiselkov <saso.kiselkov@nexenta.com> Contributions-by: Tim Chase <tim@chase2k.com> Contributions-by: Chunwei Chen <tuxoko@gmail.com> Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov> Closes #8419 Closes #598
2019-03-29 19:13:20 +03:00
ZTI_INIT(ztest_trim, 1, &zopt_sometimes),
Introduce BLAKE3 checksums as an OpenZFS feature This commit adds BLAKE3 checksums to OpenZFS, it has similar performance to Edon-R, but without the caveats around the latter. Homepage of BLAKE3: https://github.com/BLAKE3-team/BLAKE3 Wikipedia: https://en.wikipedia.org/wiki/BLAKE_(hash_function)#BLAKE3 Short description of Wikipedia: BLAKE3 is a cryptographic hash function based on Bao and BLAKE2, created by Jack O'Connor, Jean-Philippe Aumasson, Samuel Neves, and Zooko Wilcox-O'Hearn. It was announced on January 9, 2020, at Real World Crypto. BLAKE3 is a single algorithm with many desirable features (parallelism, XOF, KDF, PRF and MAC), in contrast to BLAKE and BLAKE2, which are algorithm families with multiple variants. BLAKE3 has a binary tree structure, so it supports a practically unlimited degree of parallelism (both SIMD and multithreading) given enough input. The official Rust and C implementations are dual-licensed as public domain (CC0) and the Apache License. Along with adding the BLAKE3 hash into the OpenZFS infrastructure a new benchmarking file called chksum_bench was introduced. When read it reports the speed of the available checksum functions. On Linux: cat /proc/spl/kstat/zfs/chksum_bench On FreeBSD: sysctl kstat.zfs.misc.chksum_bench This is an example output of an i3-1005G1 test system with Debian 11: implementation 1k 4k 16k 64k 256k 1m 4m edonr-generic 1196 1602 1761 1749 1762 1759 1751 skein-generic 546 591 608 615 619 612 616 sha256-generic 240 300 316 314 304 285 276 sha512-generic 353 441 467 476 472 467 426 blake3-generic 308 313 313 313 312 313 312 blake3-sse2 402 1289 1423 1446 1432 1458 1413 blake3-sse41 427 1470 1625 1704 1679 1607 1629 blake3-avx2 428 1920 3095 3343 3356 3318 3204 blake3-avx512 473 2687 4905 5836 5844 5643 5374 Output on Debian 5.10.0-10-amd64 system: (Ryzen 7 5800X) implementation 1k 4k 16k 64k 256k 1m 4m edonr-generic 1840 2458 2665 2719 2711 2723 2693 skein-generic 870 966 996 992 1003 1005 1009 sha256-generic 415 442 453 455 457 457 457 sha512-generic 608 690 711 718 719 720 721 blake3-generic 301 313 311 309 309 310 310 blake3-sse2 343 1865 2124 2188 2180 2181 2186 blake3-sse41 364 2091 2396 2509 2463 2482 2488 blake3-avx2 365 2590 4399 4971 4915 4802 4764 Output on Debian 5.10.0-9-powerpc64le system: (POWER 9) implementation 1k 4k 16k 64k 256k 1m 4m edonr-generic 1213 1703 1889 1918 1957 1902 1907 skein-generic 434 492 520 522 511 525 525 sha256-generic 167 183 187 188 188 187 188 sha512-generic 186 216 222 221 225 224 224 blake3-generic 153 152 154 153 151 153 153 blake3-sse2 391 1170 1366 1406 1428 1426 1414 blake3-sse41 352 1049 1212 1174 1262 1258 1259 Output on Debian 5.10.0-11-arm64 system: (Pi400) implementation 1k 4k 16k 64k 256k 1m 4m edonr-generic 487 603 629 639 643 641 641 skein-generic 271 299 303 308 309 309 307 sha256-generic 117 127 128 130 130 129 130 sha512-generic 145 165 170 172 173 174 175 blake3-generic 81 29 71 89 89 89 89 blake3-sse2 112 323 368 379 380 371 374 blake3-sse41 101 315 357 368 369 364 360 Structurally, the new code is mainly split into these parts: - 1x cross platform generic c variant: blake3_generic.c - 4x assembly for X86-64 (SSE2, SSE4.1, AVX2, AVX512) - 2x assembly for ARMv8 (NEON converted from SSE2) - 2x assembly for PPC64-LE (POWER8 converted from SSE2) - one file for switching between the implementations Note the PPC64 assembly requires the VSX instruction set and the kfpu_begin() / kfpu_end() calls on PowerPC were updated accordingly. Reviewed-by: Felix Dörre <felix@dogcraft.de> Reviewed-by: Ahelenia Ziemiańska <nabijaczleweli@nabijaczleweli.xyz> Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov> Signed-off-by: Tino Reichardt <milky-zfs@mcmilk.de> Co-authored-by: Rich Ercolani <rincebrain@gmail.com> Closes #10058 Closes #12918
2022-06-09 01:55:57 +03:00
ZTI_INIT(ztest_blake3, 1, &zopt_rarely),
ZTI_INIT(ztest_fletcher, 1, &zopt_rarely),
ZTI_INIT(ztest_fletcher_incr, 1, &zopt_rarely),
Implement large_dnode pool feature Justification ------------- This feature adds support for variable length dnodes. Our motivation is to eliminate the overhead associated with using spill blocks. Spill blocks are used to store system attribute data (i.e. file metadata) that does not fit in the dnode's bonus buffer. By allowing a larger bonus buffer area the use of a spill block can be avoided. Spill blocks potentially incur an additional read I/O for every dnode in a dnode block. As a worst case example, reading 32 dnodes from a 16k dnode block and all of the spill blocks could issue 33 separate reads. Now suppose those dnodes have size 1024 and therefore don't need spill blocks. Then the worst case number of blocks read is reduced to from 33 to two--one per dnode block. In practice spill blocks may tend to be co-located on disk with the dnode blocks so the reduction in I/O would not be this drastic. In a badly fragmented pool, however, the improvement could be significant. ZFS-on-Linux systems that make heavy use of extended attributes would benefit from this feature. In particular, ZFS-on-Linux supports the xattr=sa dataset property which allows file extended attribute data to be stored in the dnode bonus buffer as an alternative to the traditional directory-based format. Workloads such as SELinux and the Lustre distributed filesystem often store enough xattr data to force spill bocks when xattr=sa is in effect. Large dnodes may therefore provide a performance benefit to such systems. Other use cases that may benefit from this feature include files with large ACLs and symbolic links with long target names. Furthermore, this feature may be desirable on other platforms in case future applications or features are developed that could make use of a larger bonus buffer area. Implementation -------------- The size of a dnode may be a multiple of 512 bytes up to the size of a dnode block (currently 16384 bytes). A dn_extra_slots field was added to the current on-disk dnode_phys_t structure to describe the size of the physical dnode on disk. The 8 bits for this field were taken from the zero filled dn_pad2 field. The field represents how many "extra" dnode_phys_t slots a dnode consumes in its dnode block. This convention results in a value of 0 for 512 byte dnodes which preserves on-disk format compatibility with older software. Similarly, the in-memory dnode_t structure has a new dn_num_slots field to represent the total number of dnode_phys_t slots consumed on disk. Thus dn->dn_num_slots is 1 greater than the corresponding dnp->dn_extra_slots. This difference in convention was adopted because, unlike on-disk structures, backward compatibility is not a concern for in-memory objects, so we used a more natural way to represent size for a dnode_t. The default size for newly created dnodes is determined by the value of a new "dnodesize" dataset property. By default the property is set to "legacy" which is compatible with older software. Setting the property to "auto" will allow the filesystem to choose the most suitable dnode size. Currently this just sets the default dnode size to 1k, but future code improvements could dynamically choose a size based on observed workload patterns. Dnodes of varying sizes can coexist within the same dataset and even within the same dnode block. For example, to enable automatically-sized dnodes, run # zfs set dnodesize=auto tank/fish The user can also specify literal values for the dnodesize property. These are currently limited to powers of two from 1k to 16k. The power-of-2 limitation is only for simplicity of the user interface. Internally the implementation can handle any multiple of 512 up to 16k, and consumers of the DMU API can specify any legal dnode value. The size of a new dnode is determined at object allocation time and stored as a new field in the znode in-memory structure. New DMU interfaces are added to allow the consumer to specify the dnode size that a newly allocated object should use. Existing interfaces are unchanged to avoid having to update every call site and to preserve compatibility with external consumers such as Lustre. The new interfaces names are given below. The versions of these functions that don't take a dnodesize parameter now just call the _dnsize() versions with a dnodesize of 0, which means use the legacy dnode size. New DMU interfaces: dmu_object_alloc_dnsize() dmu_object_claim_dnsize() dmu_object_reclaim_dnsize() New ZAP interfaces: zap_create_dnsize() zap_create_norm_dnsize() zap_create_flags_dnsize() zap_create_claim_norm_dnsize() zap_create_link_dnsize() The constant DN_MAX_BONUSLEN is renamed to DN_OLD_MAX_BONUSLEN. The spa_maxdnodesize() function should be used to determine the maximum bonus length for a pool. These are a few noteworthy changes to key functions: * The prototype for dnode_hold_impl() now takes a "slots" parameter. When the DNODE_MUST_BE_FREE flag is set, this parameter is used to ensure the hole at the specified object offset is large enough to hold the dnode being created. The slots parameter is also used to ensure a dnode does not span multiple dnode blocks. In both of these cases, if a failure occurs, ENOSPC is returned. Keep in mind, these failure cases are only possible when using DNODE_MUST_BE_FREE. If the DNODE_MUST_BE_ALLOCATED flag is set, "slots" must be 0. dnode_hold_impl() will check if the requested dnode is already consumed as an extra dnode slot by an large dnode, in which case it returns ENOENT. * The function dmu_object_alloc() advances to the next dnode block if dnode_hold_impl() returns an error for a requested object. This is because the beginning of the next dnode block is the only location it can safely assume to either be a hole or a valid starting point for a dnode. * dnode_next_offset_level() and other functions that iterate through dnode blocks may no longer use a simple array indexing scheme. These now use the current dnode's dn_num_slots field to advance to the next dnode in the block. This is to ensure we properly skip the current dnode's bonus area and don't interpret it as a valid dnode. zdb --- The zdb command was updated to display a dnode's size under the "dnsize" column when the object is dumped. For ZIL create log records, zdb will now display the slot count for the object. ztest ----- Ztest chooses a random dnodesize for every newly created object. The random distribution is more heavily weighted toward small dnodes to better simulate real-world datasets. Unused bonus buffer space is filled with non-zero values computed from the object number, dataset id, offset, and generation number. This helps ensure that the dnode traversal code properly skips the interior regions of large dnodes, and that these interior regions are not overwritten by data belonging to other dnodes. A new test visits each object in a dataset. It verifies that the actual dnode size matches what was stored in the ztest block tag when it was created. It also verifies that the unused bonus buffer space is filled with the expected data patterns. ZFS Test Suite -------------- Added six new large dnode-specific tests, and integrated the dnodesize property into existing tests for zfs allow and send/recv. Send/Receive ------------ ZFS send streams for datasets containing large dnodes cannot be received on pools that don't support the large_dnode feature. A send stream with large dnodes sets a DMU_BACKUP_FEATURE_LARGE_DNODE flag which will be unrecognized by an incompatible receiving pool so that the zfs receive will fail gracefully. While not implemented here, it may be possible to generate a backward-compatible send stream from a dataset containing large dnodes. The implementation may be tricky, however, because the send object record for a large dnode would need to be resized to a 512 byte dnode, possibly kicking in a spill block in the process. This means we would need to construct a new SA layout and possibly register it in the SA layout object. The SA layout is normally just sent as an ordinary object record. But if we are constructing new layouts while generating the send stream we'd have to build the SA layout object dynamically and send it at the end of the stream. For sending and receiving between pools that do support large dnodes, the drr_object send record type is extended with a new field to store the dnode slot count. This field was repurposed from unused padding in the structure. ZIL Replay ---------- The dnode slot count is stored in the uppermost 8 bits of the lr_foid field. The bits were unused as the object id is currently capped at 48 bits. Resizing Dnodes --------------- It should be possible to resize a dnode when it is dirtied if the current dnodesize dataset property differs from the dnode's size, but this functionality is not currently implemented. Clearly a dnode can only grow if there are sufficient contiguous unused slots in the dnode block, but it should always be possible to shrink a dnode. Growing dnodes may be useful to reduce fragmentation in a pool with many spill blocks in use. Shrinking dnodes may be useful to allow sending a dataset to a pool that doesn't support the large_dnode feature. Feature Reference Counting -------------------------- The reference count for the large_dnode pool feature tracks the number of datasets that have ever contained a dnode of size larger than 512 bytes. The first time a large dnode is created in a dataset the dataset is converted to an extensible dataset. This is a one-way operation and the only way to decrement the feature count is to destroy the dataset, even if the dataset no longer contains any large dnodes. The complexity of reference counting on a per-dnode basis was too high, so we chose to track it on a per-dataset basis similarly to the large_block feature. Signed-off-by: Ned Bass <bass6@llnl.gov> Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov> Closes #3542
2016-03-17 04:25:34 +03:00
ZTI_INIT(ztest_verify_dnode_bt, 1, &zopt_sometimes),
ZTI_INIT(ztest_pool_prefetch_ddt, 1, &zopt_rarely),
ZTI_INIT(ztest_ddt_prune, 1, &zopt_rarely),
2008-11-20 23:01:55 +03:00
};
#define ZTEST_FUNCS (sizeof (ztest_info) / sizeof (ztest_info_t))
/*
* The following struct is used to hold a list of uncalled commit callbacks.
* The callbacks are ordered by txg number.
*/
typedef struct ztest_cb_list {
kmutex_t zcl_callbacks_lock;
list_t zcl_callbacks;
} ztest_cb_list_t;
2008-11-20 23:01:55 +03:00
/*
* Stuff we need to share writably between parent and child.
*/
typedef struct ztest_shared {
boolean_t zs_do_init;
hrtime_t zs_proc_start;
hrtime_t zs_proc_stop;
hrtime_t zs_thread_start;
hrtime_t zs_thread_stop;
hrtime_t zs_thread_kill;
2008-11-20 23:01:55 +03:00
uint64_t zs_enospc_count;
uint64_t zs_vdev_next_leaf;
uint64_t zs_vdev_aux;
2008-11-20 23:01:55 +03:00
uint64_t zs_alloc;
uint64_t zs_space;
uint64_t zs_splits;
uint64_t zs_mirrors;
uint64_t zs_metaslab_sz;
uint64_t zs_metaslab_df_alloc_threshold;
uint64_t zs_guid;
2008-11-20 23:01:55 +03:00
} ztest_shared_t;
#define ID_PARALLEL -1ULL
2008-11-20 23:01:55 +03:00
static char ztest_dev_template[] = "%s/%s.%llua";
static char ztest_aux_template[] = "%s/%s.%s.%llu";
static ztest_shared_t *ztest_shared;
2008-11-20 23:01:55 +03:00
static spa_t *ztest_spa = NULL;
static ztest_ds_t *ztest_ds;
static kmutex_t ztest_vdev_lock;
OpenZFS 9290 - device removal reduces redundancy of mirrors Mirrors are supposed to provide redundancy in the face of whole-disk failure and silent damage (e.g. some data on disk is not right, but ZFS hasn't detected the whole device as being broken). However, the current device removal implementation bypasses some of the mirror's redundancy. Note that in no case is incorrect data returned, but we might get a checksum error when we should have been able to find the right data. There are two underlying problems: 1. When we remove a mirror device, we only read one side of the mirror. Since we can't verify the checksum, this side may be silently bad, but the good data is on the other side of the mirror (which we didn't read). This can cause the removal to "bake in" the busted data – all copies of the data in the new location are the same, busted version, while we left the good version behind. The fix for this is to read and copy both sides of the mirror. If the old and new vdevs are mirrors, we will read both sides of the old mirror, and write each copy to the corresponding side of the new mirror. (If the old and new vdevs have a different number of children, we will do this as best as possible.) Even though we aren't verifying checksums, this ensures that as long as there's a good copy of the data, we'll have a good copy after the removal, even if there's silent damage to one side of the mirror. If we're removing a mirror that has some silent damage, we'll have exactly the same damage in the new location (assuming that the new location is also a mirror). 2. When we read from an indirect vdev that points to a mirror vdev, we only consider one copy of the data. This can lead to reduced effective redundancy, because we might read a bad copy of the data from one side of the mirror, and not retry the other, good side of the mirror. Note that the problem is not with the removal process, but rather after the removal has completed (having copied correct data to both sides of the mirror), if one side of the new mirror is silently damaged, we encounter the problem when reading the relocated data via the indirect vdev. Also note that the problem doesn't occur when ZFS knows that one side of the mirror is bad, e.g. when a disk entirely fails or is offlined. The impact is that reads (from indirect vdevs that point to mirrors) may return a checksum error even though the good data exists on one side of the mirror, and scrub doesn't repair all data on the mirror (if some of it is pointed to via an indirect vdev). The fix for this is complicated by "split blocks" - one logical block may be split into two (or more) pieces with each piece moved to a different new location. In this case we need to read all versions of each split (one from each side of the mirror), and figure out which combination of versions results in the correct checksum, and then repair the incorrect versions. This ensures that we supply the same redundancy whether you use device removal or not. For example, if a mirror has small silent errors on all of its children, we can still reconstruct the correct data, as long as those errors are at sufficiently-separated offsets (specifically, separated by the largest block size - default of 128KB, but up to 16MB). Porting notes: * A new indirect vdev check was moved from dsl_scan_needs_resilver_cb() to dsl_scan_needs_resilver(), which was added to ZoL as part of the sequential scrub work. * Passed NULL for zfs_ereport_post_checksum()'s zbookmark_phys_t parameter. The extra parameter is unique to ZoL. * When posting indirect checksum errors the ABD can be passed directly, zfs_ereport_post_checksum() is not yet ABD-aware in OpenZFS. Authored by: Matthew Ahrens <mahrens@delphix.com> Reviewed by: Tim Chase <tim@chase2k.com> Reviewed by: Brian Behlendorf <behlendorf1@llnl.gov> Ported-by: Tim Chase <tim@chase2k.com> OpenZFS-issue: https://illumos.org/issues/9290 OpenZFS-commit: https://github.com/openzfs/openzfs/pull/591 Closes #6900
2018-02-13 22:37:56 +03:00
static boolean_t ztest_device_removal_active = B_FALSE;
static boolean_t ztest_pool_scrubbed = B_FALSE;
OpenZFS 9166 - zfs storage pool checkpoint Details about the motivation of this feature and its usage can be found in this blogpost: https://sdimitro.github.io/post/zpool-checkpoint/ A lightning talk of this feature can be found here: https://www.youtube.com/watch?v=fPQA8K40jAM Implementation details can be found in big block comment of spa_checkpoint.c Side-changes that are relevant to this commit but not explained elsewhere: * renames members of "struct metaslab trees to be shorter without losing meaning * space_map_{alloc,truncate}() accept a block size as a parameter. The reason is that in the current state all space maps that we allocate through the DMU use a global tunable (space_map_blksz) which defauls to 4KB. This is ok for metaslab space maps in terms of bandwirdth since they are scattered all over the disk. But for other space maps this default is probably not what we want. Examples are device removal's vdev_obsolete_sm or vdev_chedkpoint_sm from this review. Both of these have a 1:1 relationship with each vdev and could benefit from a bigger block size. Porting notes: * The part of dsl_scan_sync() which handles async destroys has been moved into the new dsl_process_async_destroys() function. * Remove "VERIFY(!(flags & FWRITE))" in "kernel.c" so zhack can write to block device backed pools. * ZTS: * Fix get_txg() in zpool_sync_001_pos due to "checkpoint_txg". * Don't use large dd block sizes on /dev/urandom under Linux in checkpoint_capacity. * Adopt Delphix-OS's setting of 4 (spa_asize_inflation = SPA_DVAS_PER_BP + 1) for the checkpoint_capacity test to speed its attempts to fill the pool * Create the base and nested pools with sync=disabled to speed up the "setup" phase. * Clear labels in test pool between checkpoint tests to avoid duplicate pool issues. * The import_rewind_device_replaced test has been marked as "known to fail" for the reasons listed in its DISCLAIMER. * New module parameters: zfs_spa_discard_memory_limit, zfs_remove_max_bytes_pause (not documented - debugging only) vdev_max_ms_count (formerly metaslabs_per_vdev) vdev_min_ms_count Authored by: Serapheim Dimitropoulos <serapheim.dimitro@delphix.com> Reviewed by: Matthew Ahrens <mahrens@delphix.com> Reviewed by: John Kennedy <john.kennedy@delphix.com> Reviewed by: Dan Kimmel <dan.kimmel@delphix.com> Reviewed by: Brian Behlendorf <behlendorf1@llnl.gov> Approved by: Richard Lowe <richlowe@richlowe.net> Ported-by: Tim Chase <tim@chase2k.com> Signed-off-by: Tim Chase <tim@chase2k.com> OpenZFS-issue: https://illumos.org/issues/9166 OpenZFS-commit: https://github.com/openzfs/openzfs/commit/7159fdb8 Closes #7570
2016-12-17 01:11:29 +03:00
static kmutex_t ztest_checkpoint_lock;
/*
* The ztest_name_lock protects the pool and dataset namespace used by
* the individual tests. To modify the namespace, consumers must grab
* this lock as writer. Grabbing the lock as reader will ensure that the
* namespace does not change while the lock is held.
*/
static pthread_rwlock_t ztest_name_lock;
2008-11-20 23:01:55 +03:00
static boolean_t ztest_dump_core = B_TRUE;
static boolean_t ztest_exiting;
2008-11-20 23:01:55 +03:00
/* Global commit callback list */
static ztest_cb_list_t zcl;
/* Commit cb delay */
static uint64_t zc_min_txg_delay = UINT64_MAX;
static int zc_cb_counter = 0;
/*
* Minimum number of commit callbacks that need to be registered for us to check
* whether the minimum txg delay is acceptable.
*/
#define ZTEST_COMMIT_CB_MIN_REG 100
/*
* If a number of txgs equal to this threshold have been created after a commit
* callback has been registered but not called, then we assume there is an
* implementation bug.
*/
#define ZTEST_COMMIT_CB_THRESH (TXG_CONCURRENT_STATES + 1000)
enum ztest_object {
ZTEST_META_DNODE = 0,
ZTEST_DIROBJ,
ZTEST_OBJECTS
};
2008-11-20 23:01:55 +03:00
static __attribute__((noreturn)) void usage(boolean_t requested);
static int ztest_scrub_impl(spa_t *spa);
2008-11-20 23:01:55 +03:00
/*
* These libumem hooks provide a reasonable set of defaults for the allocator's
* debugging facilities.
*/
const char *
_umem_debug_init(void)
2008-11-20 23:01:55 +03:00
{
return ("default,verbose"); /* $UMEM_DEBUG setting */
}
const char *
_umem_logging_init(void)
{
return ("fail,contents"); /* $UMEM_LOGGING setting */
}
Extend deadman logic The intent of this patch is extend the existing deadman code such that it's flexible enough to be used by both ztest and on production systems. The proposed changes include: * Added a new `zfs_deadman_failmode` module option which is used to dynamically control the behavior of the deadman. It's loosely modeled after, but independant from, the pool failmode property. It can be set to wait, continue, or panic. * wait - Wait for the "hung" I/O (default) * continue - Attempt to recover from a "hung" I/O * panic - Panic the system * Added a new `zfs_deadman_ziotime_ms` module option which is analogous to `zfs_deadman_synctime_ms` except instead of applying to a pool TXG sync it applies to zio_wait(). A default value of 300s is used to define a "hung" zio. * The ztest deadman thread has been re-enabled by default, aligned with the upstream OpenZFS code, and then extended to terminate the process when it takes significantly longer to complete than expected. * The -G option was added to ztest to print the internal debug log when a fatal error is encountered. This same option was previously added to zdb in commit fa603f82. Update zloop.sh to unconditionally pass -G to obtain additional debugging. * The FM_EREPORT_ZFS_DELAY event which was previously posted when the deadman detect a "hung" pool has been replaced by a new dedicated FM_EREPORT_ZFS_DEADMAN event. * The proposed recovery logic attempts to restart a "hung" zio by calling zio_interrupt() on any outstanding leaf zios. We may want to further restrict this to zios in either the ZIO_STAGE_VDEV_IO_START or ZIO_STAGE_VDEV_IO_DONE stages. Calling zio_interrupt() is expected to only be useful for cases when an IO has been submitted to the physical device but for some reasonable the completion callback hasn't been called by the lower layers. This shouldn't be possible but has been observed and may be caused by kernel/driver bugs. * The 'zfs_deadman_synctime_ms' default value was reduced from 1000s to 600s. * Depending on how ztest fails there may be no cache file to move. This should not be considered fatal, collect the logs which are available and carry on. * Add deadman test cases for spa_deadman() and zio_wait(). * Increase default zfs_deadman_checktime_ms to 60s. Reviewed-by: Tim Chase <tim@chase2k.com> Reviewed by: Thomas Caputi <tcaputi@datto.com> Reviewed-by: Giuseppe Di Natale <dinatale2@llnl.gov> Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov> Closes #6999
2017-12-19 01:06:07 +03:00
static void
dump_debug_buffer(void)
{
ssize_t ret __attribute__((unused));
if (!ztest_opts.zo_dump_dbgmsg)
Extend deadman logic The intent of this patch is extend the existing deadman code such that it's flexible enough to be used by both ztest and on production systems. The proposed changes include: * Added a new `zfs_deadman_failmode` module option which is used to dynamically control the behavior of the deadman. It's loosely modeled after, but independant from, the pool failmode property. It can be set to wait, continue, or panic. * wait - Wait for the "hung" I/O (default) * continue - Attempt to recover from a "hung" I/O * panic - Panic the system * Added a new `zfs_deadman_ziotime_ms` module option which is analogous to `zfs_deadman_synctime_ms` except instead of applying to a pool TXG sync it applies to zio_wait(). A default value of 300s is used to define a "hung" zio. * The ztest deadman thread has been re-enabled by default, aligned with the upstream OpenZFS code, and then extended to terminate the process when it takes significantly longer to complete than expected. * The -G option was added to ztest to print the internal debug log when a fatal error is encountered. This same option was previously added to zdb in commit fa603f82. Update zloop.sh to unconditionally pass -G to obtain additional debugging. * The FM_EREPORT_ZFS_DELAY event which was previously posted when the deadman detect a "hung" pool has been replaced by a new dedicated FM_EREPORT_ZFS_DEADMAN event. * The proposed recovery logic attempts to restart a "hung" zio by calling zio_interrupt() on any outstanding leaf zios. We may want to further restrict this to zios in either the ZIO_STAGE_VDEV_IO_START or ZIO_STAGE_VDEV_IO_DONE stages. Calling zio_interrupt() is expected to only be useful for cases when an IO has been submitted to the physical device but for some reasonable the completion callback hasn't been called by the lower layers. This shouldn't be possible but has been observed and may be caused by kernel/driver bugs. * The 'zfs_deadman_synctime_ms' default value was reduced from 1000s to 600s. * Depending on how ztest fails there may be no cache file to move. This should not be considered fatal, collect the logs which are available and carry on. * Add deadman test cases for spa_deadman() and zio_wait(). * Increase default zfs_deadman_checktime_ms to 60s. Reviewed-by: Tim Chase <tim@chase2k.com> Reviewed by: Thomas Caputi <tcaputi@datto.com> Reviewed-by: Giuseppe Di Natale <dinatale2@llnl.gov> Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov> Closes #6999
2017-12-19 01:06:07 +03:00
return;
/*
* We use write() instead of printf() so that this function
* is safe to call from a signal handler.
*/
ret = write(STDERR_FILENO, "\n", 1);
zfs_dbgmsg_print(STDERR_FILENO, "ztest");
Extend deadman logic The intent of this patch is extend the existing deadman code such that it's flexible enough to be used by both ztest and on production systems. The proposed changes include: * Added a new `zfs_deadman_failmode` module option which is used to dynamically control the behavior of the deadman. It's loosely modeled after, but independant from, the pool failmode property. It can be set to wait, continue, or panic. * wait - Wait for the "hung" I/O (default) * continue - Attempt to recover from a "hung" I/O * panic - Panic the system * Added a new `zfs_deadman_ziotime_ms` module option which is analogous to `zfs_deadman_synctime_ms` except instead of applying to a pool TXG sync it applies to zio_wait(). A default value of 300s is used to define a "hung" zio. * The ztest deadman thread has been re-enabled by default, aligned with the upstream OpenZFS code, and then extended to terminate the process when it takes significantly longer to complete than expected. * The -G option was added to ztest to print the internal debug log when a fatal error is encountered. This same option was previously added to zdb in commit fa603f82. Update zloop.sh to unconditionally pass -G to obtain additional debugging. * The FM_EREPORT_ZFS_DELAY event which was previously posted when the deadman detect a "hung" pool has been replaced by a new dedicated FM_EREPORT_ZFS_DEADMAN event. * The proposed recovery logic attempts to restart a "hung" zio by calling zio_interrupt() on any outstanding leaf zios. We may want to further restrict this to zios in either the ZIO_STAGE_VDEV_IO_START or ZIO_STAGE_VDEV_IO_DONE stages. Calling zio_interrupt() is expected to only be useful for cases when an IO has been submitted to the physical device but for some reasonable the completion callback hasn't been called by the lower layers. This shouldn't be possible but has been observed and may be caused by kernel/driver bugs. * The 'zfs_deadman_synctime_ms' default value was reduced from 1000s to 600s. * Depending on how ztest fails there may be no cache file to move. This should not be considered fatal, collect the logs which are available and carry on. * Add deadman test cases for spa_deadman() and zio_wait(). * Increase default zfs_deadman_checktime_ms to 60s. Reviewed-by: Tim Chase <tim@chase2k.com> Reviewed by: Thomas Caputi <tcaputi@datto.com> Reviewed-by: Giuseppe Di Natale <dinatale2@llnl.gov> Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov> Closes #6999
2017-12-19 01:06:07 +03:00
}
static void sig_handler(int signo)
{
struct sigaction action;
libspl_backtrace(STDERR_FILENO);
Extend deadman logic The intent of this patch is extend the existing deadman code such that it's flexible enough to be used by both ztest and on production systems. The proposed changes include: * Added a new `zfs_deadman_failmode` module option which is used to dynamically control the behavior of the deadman. It's loosely modeled after, but independant from, the pool failmode property. It can be set to wait, continue, or panic. * wait - Wait for the "hung" I/O (default) * continue - Attempt to recover from a "hung" I/O * panic - Panic the system * Added a new `zfs_deadman_ziotime_ms` module option which is analogous to `zfs_deadman_synctime_ms` except instead of applying to a pool TXG sync it applies to zio_wait(). A default value of 300s is used to define a "hung" zio. * The ztest deadman thread has been re-enabled by default, aligned with the upstream OpenZFS code, and then extended to terminate the process when it takes significantly longer to complete than expected. * The -G option was added to ztest to print the internal debug log when a fatal error is encountered. This same option was previously added to zdb in commit fa603f82. Update zloop.sh to unconditionally pass -G to obtain additional debugging. * The FM_EREPORT_ZFS_DELAY event which was previously posted when the deadman detect a "hung" pool has been replaced by a new dedicated FM_EREPORT_ZFS_DEADMAN event. * The proposed recovery logic attempts to restart a "hung" zio by calling zio_interrupt() on any outstanding leaf zios. We may want to further restrict this to zios in either the ZIO_STAGE_VDEV_IO_START or ZIO_STAGE_VDEV_IO_DONE stages. Calling zio_interrupt() is expected to only be useful for cases when an IO has been submitted to the physical device but for some reasonable the completion callback hasn't been called by the lower layers. This shouldn't be possible but has been observed and may be caused by kernel/driver bugs. * The 'zfs_deadman_synctime_ms' default value was reduced from 1000s to 600s. * Depending on how ztest fails there may be no cache file to move. This should not be considered fatal, collect the logs which are available and carry on. * Add deadman test cases for spa_deadman() and zio_wait(). * Increase default zfs_deadman_checktime_ms to 60s. Reviewed-by: Tim Chase <tim@chase2k.com> Reviewed by: Thomas Caputi <tcaputi@datto.com> Reviewed-by: Giuseppe Di Natale <dinatale2@llnl.gov> Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov> Closes #6999
2017-12-19 01:06:07 +03:00
dump_debug_buffer();
/*
* Restore default action and re-raise signal so SIGSEGV and
* SIGABRT can trigger a core dump.
*/
action.sa_handler = SIG_DFL;
sigemptyset(&action.sa_mask);
action.sa_flags = 0;
(void) sigaction(signo, &action, NULL);
raise(signo);
}
2008-11-20 23:01:55 +03:00
#define FATAL_MSG_SZ 1024
static const char *fatal_msg;
2008-11-20 23:01:55 +03:00
static __attribute__((format(printf, 2, 3))) __attribute__((noreturn)) void
fatal(int do_perror, const char *message, ...)
2008-11-20 23:01:55 +03:00
{
va_list args;
int save_errno = errno;
char *buf;
2008-11-20 23:01:55 +03:00
(void) fflush(stdout);
buf = umem_alloc(FATAL_MSG_SZ, UMEM_NOFAIL);
if (buf == NULL)
goto out;
2008-11-20 23:01:55 +03:00
va_start(args, message);
(void) sprintf(buf, "ztest: ");
/* LINTED */
(void) vsprintf(buf + strlen(buf), message, args);
va_end(args);
if (do_perror) {
(void) snprintf(buf + strlen(buf), FATAL_MSG_SZ - strlen(buf),
": %s", strerror(save_errno));
}
(void) fprintf(stderr, "%s\n", buf);
fatal_msg = buf; /* to ease debugging */
Extend deadman logic The intent of this patch is extend the existing deadman code such that it's flexible enough to be used by both ztest and on production systems. The proposed changes include: * Added a new `zfs_deadman_failmode` module option which is used to dynamically control the behavior of the deadman. It's loosely modeled after, but independant from, the pool failmode property. It can be set to wait, continue, or panic. * wait - Wait for the "hung" I/O (default) * continue - Attempt to recover from a "hung" I/O * panic - Panic the system * Added a new `zfs_deadman_ziotime_ms` module option which is analogous to `zfs_deadman_synctime_ms` except instead of applying to a pool TXG sync it applies to zio_wait(). A default value of 300s is used to define a "hung" zio. * The ztest deadman thread has been re-enabled by default, aligned with the upstream OpenZFS code, and then extended to terminate the process when it takes significantly longer to complete than expected. * The -G option was added to ztest to print the internal debug log when a fatal error is encountered. This same option was previously added to zdb in commit fa603f82. Update zloop.sh to unconditionally pass -G to obtain additional debugging. * The FM_EREPORT_ZFS_DELAY event which was previously posted when the deadman detect a "hung" pool has been replaced by a new dedicated FM_EREPORT_ZFS_DEADMAN event. * The proposed recovery logic attempts to restart a "hung" zio by calling zio_interrupt() on any outstanding leaf zios. We may want to further restrict this to zios in either the ZIO_STAGE_VDEV_IO_START or ZIO_STAGE_VDEV_IO_DONE stages. Calling zio_interrupt() is expected to only be useful for cases when an IO has been submitted to the physical device but for some reasonable the completion callback hasn't been called by the lower layers. This shouldn't be possible but has been observed and may be caused by kernel/driver bugs. * The 'zfs_deadman_synctime_ms' default value was reduced from 1000s to 600s. * Depending on how ztest fails there may be no cache file to move. This should not be considered fatal, collect the logs which are available and carry on. * Add deadman test cases for spa_deadman() and zio_wait(). * Increase default zfs_deadman_checktime_ms to 60s. Reviewed-by: Tim Chase <tim@chase2k.com> Reviewed by: Thomas Caputi <tcaputi@datto.com> Reviewed-by: Giuseppe Di Natale <dinatale2@llnl.gov> Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov> Closes #6999
2017-12-19 01:06:07 +03:00
out:
2008-11-20 23:01:55 +03:00
if (ztest_dump_core)
abort();
else
dump_debug_buffer();
2008-11-20 23:01:55 +03:00
exit(3);
}
static int
str2shift(const char *buf)
{
const char *ends = "BKMGTPEZ";
int i;
if (buf[0] == '\0')
return (0);
for (i = 0; i < strlen(ends); i++) {
if (toupper(buf[0]) == ends[i])
break;
}
if (i == strlen(ends)) {
(void) fprintf(stderr, "ztest: invalid bytes suffix: %s\n",
buf);
usage(B_FALSE);
}
if (buf[1] == '\0' || (toupper(buf[1]) == 'B' && buf[2] == '\0')) {
return (10*i);
}
(void) fprintf(stderr, "ztest: invalid bytes suffix: %s\n", buf);
usage(B_FALSE);
}
static uint64_t
nicenumtoull(const char *buf)
{
char *end;
uint64_t val;
val = strtoull(buf, &end, 0);
if (end == buf) {
(void) fprintf(stderr, "ztest: bad numeric value: %s\n", buf);
usage(B_FALSE);
} else if (end[0] == '.') {
double fval = strtod(buf, &end);
fval *= pow(2, str2shift(end));
/*
* UINT64_MAX is not exactly representable as a double.
* The closest representation is UINT64_MAX + 1, so we
* use a >= comparison instead of > for the bounds check.
*/
if (fval >= (double)UINT64_MAX) {
2008-11-20 23:01:55 +03:00
(void) fprintf(stderr, "ztest: value too large: %s\n",
buf);
usage(B_FALSE);
}
val = (uint64_t)fval;
} else {
int shift = str2shift(end);
if (shift >= 64 || (val << shift) >> shift != val) {
(void) fprintf(stderr, "ztest: value too large: %s\n",
buf);
usage(B_FALSE);
}
val <<= shift;
}
return (val);
}
typedef struct ztest_option {
const char short_opt;
const char *long_opt;
const char *long_opt_param;
const char *comment;
unsigned int default_int;
const char *default_str;
} ztest_option_t;
/*
* The following option_table is used for generating the usage info as well as
* the long and short option information for calling getopt_long().
*/
static ztest_option_t option_table[] = {
{ 'v', "vdevs", "INTEGER", "Number of vdevs", DEFAULT_VDEV_COUNT,
NULL},
{ 's', "vdev-size", "INTEGER", "Size of each vdev",
NO_DEFAULT, DEFAULT_VDEV_SIZE_STR},
{ 'a', "alignment-shift", "INTEGER",
"Alignment shift; use 0 for random", DEFAULT_ASHIFT, NULL},
{ 'm', "mirror-copies", "INTEGER", "Number of mirror copies",
DEFAULT_MIRRORS, NULL},
{ 'r', "raid-disks", "INTEGER", "Number of raidz/draid disks",
DEFAULT_RAID_CHILDREN, NULL},
{ 'R', "raid-parity", "INTEGER", "Raid parity",
DEFAULT_RAID_PARITY, NULL},
RAID-Z expansion feature This feature allows disks to be added one at a time to a RAID-Z group, expanding its capacity incrementally. This feature is especially useful for small pools (typically with only one RAID-Z group), where there isn't sufficient hardware to add capacity by adding a whole new RAID-Z group (typically doubling the number of disks). == Initiating expansion == A new device (disk) can be attached to an existing RAIDZ vdev, by running `zpool attach POOL raidzP-N NEW_DEVICE`, e.g. `zpool attach tank raidz2-0 sda`. The new device will become part of the RAIDZ group. A "raidz expansion" will be initiated, and the new device will contribute additional space to the RAIDZ group once the expansion completes. The `feature@raidz_expansion` on-disk feature flag must be `enabled` to initiate an expansion, and it remains `active` for the life of the pool. In other words, pools with expanded RAIDZ vdevs can not be imported by older releases of the ZFS software. == During expansion == The expansion entails reading all allocated space from existing disks in the RAIDZ group, and rewriting it to the new disks in the RAIDZ group (including the newly added device). The expansion progress can be monitored with `zpool status`. Data redundancy is maintained during (and after) the expansion. If a disk fails while the expansion is in progress, the expansion pauses until the health of the RAIDZ vdev is restored (e.g. by replacing the failed disk and waiting for reconstruction to complete). The pool remains accessible during expansion. Following a reboot or export/import, the expansion resumes where it left off. == After expansion == When the expansion completes, the additional space is available for use, and is reflected in the `available` zfs property (as seen in `zfs list`, `df`, etc). Expansion does not change the number of failures that can be tolerated without data loss (e.g. a RAIDZ2 is still a RAIDZ2 even after expansion). A RAIDZ vdev can be expanded multiple times. After the expansion completes, old blocks remain with their old data-to-parity ratio (e.g. 5-wide RAIDZ2, has 3 data to 2 parity), but distributed among the larger set of disks. New blocks will be written with the new data-to-parity ratio (e.g. a 5-wide RAIDZ2 which has been expanded once to 6-wide, has 4 data to 2 parity). However, the RAIDZ vdev's "assumed parity ratio" does not change, so slightly less space than is expected may be reported for newly-written blocks, according to `zfs list`, `df`, `ls -s`, and similar tools. Sponsored-by: The FreeBSD Foundation Sponsored-by: iXsystems, Inc. Sponsored-by: vStack Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov> Reviewed-by: Mark Maybee <mark.maybee@delphix.com> Authored-by: Matthew Ahrens <mahrens@delphix.com> Contributions-by: Fedor Uporov <fuporov.vstack@gmail.com> Contributions-by: Stuart Maybee <stuart.maybee@comcast.net> Contributions-by: Thorsten Behrens <tbehrens@outlook.com> Contributions-by: Fmstrat <nospam@nowsci.com> Contributions-by: Don Brady <dev.fs.zfs@gmail.com> Signed-off-by: Don Brady <dev.fs.zfs@gmail.com> Closes #15022
2023-11-08 21:19:41 +03:00
{ 'K', "raid-kind", "raidz|eraidz|draid|random", "Raid kind",
NO_DEFAULT, "random"},
{ 'D', "draid-data", "INTEGER", "Number of draid data drives",
DEFAULT_DRAID_DATA, NULL},
{ 'S', "draid-spares", "INTEGER", "Number of draid spares",
DEFAULT_DRAID_SPARES, NULL},
{ 'd', "datasets", "INTEGER", "Number of datasets",
DEFAULT_DATASETS_COUNT, NULL},
{ 't', "threads", "INTEGER", "Number of ztest threads",
DEFAULT_THREADS, NULL},
{ 'g', "gang-block-threshold", "INTEGER",
"Metaslab gang block threshold",
NO_DEFAULT, DEFAULT_FORCE_GANGING_STR},
{ 'i', "init-count", "INTEGER", "Number of times to initialize pool",
DEFAULT_INITS, NULL},
{ 'k', "kill-percentage", "INTEGER", "Kill percentage",
NO_DEFAULT, DEFAULT_KILLRATE_STR},
{ 'p', "pool-name", "STRING", "Pool name",
NO_DEFAULT, DEFAULT_POOL},
{ 'f', "vdev-file-directory", "PATH", "File directory for vdev files",
NO_DEFAULT, DEFAULT_VDEV_DIR},
{ 'M', "multi-host", NULL,
"Multi-host; simulate pool imported on remote host",
NO_DEFAULT, NULL},
{ 'E', "use-existing-pool", NULL,
"Use existing pool instead of creating new one", NO_DEFAULT, NULL},
{ 'T', "run-time", "INTEGER", "Total run time",
NO_DEFAULT, DEFAULT_RUN_TIME_STR},
{ 'P', "pass-time", "INTEGER", "Time per pass",
NO_DEFAULT, DEFAULT_PASS_TIME_STR},
{ 'F', "freeze-loops", "INTEGER", "Max loops in spa_freeze()",
DEFAULT_MAX_LOOPS, NULL},
{ 'B', "alt-ztest", "PATH", "Alternate ztest path",
NO_DEFAULT, NULL},
{ 'C', "vdev-class-state", "on|off|random", "vdev class state",
NO_DEFAULT, "random"},
RAID-Z expansion feature This feature allows disks to be added one at a time to a RAID-Z group, expanding its capacity incrementally. This feature is especially useful for small pools (typically with only one RAID-Z group), where there isn't sufficient hardware to add capacity by adding a whole new RAID-Z group (typically doubling the number of disks). == Initiating expansion == A new device (disk) can be attached to an existing RAIDZ vdev, by running `zpool attach POOL raidzP-N NEW_DEVICE`, e.g. `zpool attach tank raidz2-0 sda`. The new device will become part of the RAIDZ group. A "raidz expansion" will be initiated, and the new device will contribute additional space to the RAIDZ group once the expansion completes. The `feature@raidz_expansion` on-disk feature flag must be `enabled` to initiate an expansion, and it remains `active` for the life of the pool. In other words, pools with expanded RAIDZ vdevs can not be imported by older releases of the ZFS software. == During expansion == The expansion entails reading all allocated space from existing disks in the RAIDZ group, and rewriting it to the new disks in the RAIDZ group (including the newly added device). The expansion progress can be monitored with `zpool status`. Data redundancy is maintained during (and after) the expansion. If a disk fails while the expansion is in progress, the expansion pauses until the health of the RAIDZ vdev is restored (e.g. by replacing the failed disk and waiting for reconstruction to complete). The pool remains accessible during expansion. Following a reboot or export/import, the expansion resumes where it left off. == After expansion == When the expansion completes, the additional space is available for use, and is reflected in the `available` zfs property (as seen in `zfs list`, `df`, etc). Expansion does not change the number of failures that can be tolerated without data loss (e.g. a RAIDZ2 is still a RAIDZ2 even after expansion). A RAIDZ vdev can be expanded multiple times. After the expansion completes, old blocks remain with their old data-to-parity ratio (e.g. 5-wide RAIDZ2, has 3 data to 2 parity), but distributed among the larger set of disks. New blocks will be written with the new data-to-parity ratio (e.g. a 5-wide RAIDZ2 which has been expanded once to 6-wide, has 4 data to 2 parity). However, the RAIDZ vdev's "assumed parity ratio" does not change, so slightly less space than is expected may be reported for newly-written blocks, according to `zfs list`, `df`, `ls -s`, and similar tools. Sponsored-by: The FreeBSD Foundation Sponsored-by: iXsystems, Inc. Sponsored-by: vStack Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov> Reviewed-by: Mark Maybee <mark.maybee@delphix.com> Authored-by: Matthew Ahrens <mahrens@delphix.com> Contributions-by: Fedor Uporov <fuporov.vstack@gmail.com> Contributions-by: Stuart Maybee <stuart.maybee@comcast.net> Contributions-by: Thorsten Behrens <tbehrens@outlook.com> Contributions-by: Fmstrat <nospam@nowsci.com> Contributions-by: Don Brady <dev.fs.zfs@gmail.com> Signed-off-by: Don Brady <dev.fs.zfs@gmail.com> Closes #15022
2023-11-08 21:19:41 +03:00
{ 'X', "raidz-expansion", NULL,
"Perform a dedicated raidz expansion test",
NO_DEFAULT, NULL},
{ 'o', "option", "\"OPTION=INTEGER\"",
"Set global variable to an unsigned 32-bit integer value",
NO_DEFAULT, NULL},
{ 'G', "dump-debug-msg", NULL,
"Dump zfs_dbgmsg buffer before exiting due to an error",
NO_DEFAULT, NULL},
{ 'V', "verbose", NULL,
"Verbose (use multiple times for ever more verbosity)",
NO_DEFAULT, NULL},
{ 'h', "help", NULL, "Show this help",
NO_DEFAULT, NULL},
{0, 0, 0, 0, 0, 0}
};
static struct option *long_opts = NULL;
static char *short_opts = NULL;
2008-11-20 23:01:55 +03:00
static void
init_options(void)
{
ASSERT3P(long_opts, ==, NULL);
ASSERT3P(short_opts, ==, NULL);
int count = sizeof (option_table) / sizeof (option_table[0]);
long_opts = umem_alloc(sizeof (struct option) * count, UMEM_NOFAIL);
short_opts = umem_alloc(sizeof (char) * 2 * count, UMEM_NOFAIL);
int short_opt_index = 0;
for (int i = 0; i < count; i++) {
long_opts[i].val = option_table[i].short_opt;
long_opts[i].name = option_table[i].long_opt;
long_opts[i].has_arg = option_table[i].long_opt_param != NULL
? required_argument : no_argument;
long_opts[i].flag = NULL;
short_opts[short_opt_index++] = option_table[i].short_opt;
if (option_table[i].long_opt_param != NULL) {
short_opts[short_opt_index++] = ':';
}
}
}
static void
fini_options(void)
2008-11-20 23:01:55 +03:00
{
int count = sizeof (option_table) / sizeof (option_table[0]);
umem_free(long_opts, sizeof (struct option) * count);
umem_free(short_opts, sizeof (char) * 2 * count);
long_opts = NULL;
short_opts = NULL;
}
static __attribute__((noreturn)) void
usage(boolean_t requested)
{
char option[80];
2008-11-20 23:01:55 +03:00
FILE *fp = requested ? stdout : stderr;
(void) fprintf(fp, "Usage: %s [OPTIONS...]\n", DEFAULT_POOL);
for (int i = 0; option_table[i].short_opt != 0; i++) {
if (option_table[i].long_opt_param != NULL) {
(void) sprintf(option, " -%c --%s=%s",
option_table[i].short_opt,
option_table[i].long_opt,
option_table[i].long_opt_param);
} else {
(void) sprintf(option, " -%c --%s",
option_table[i].short_opt,
option_table[i].long_opt);
}
RAID-Z expansion feature This feature allows disks to be added one at a time to a RAID-Z group, expanding its capacity incrementally. This feature is especially useful for small pools (typically with only one RAID-Z group), where there isn't sufficient hardware to add capacity by adding a whole new RAID-Z group (typically doubling the number of disks). == Initiating expansion == A new device (disk) can be attached to an existing RAIDZ vdev, by running `zpool attach POOL raidzP-N NEW_DEVICE`, e.g. `zpool attach tank raidz2-0 sda`. The new device will become part of the RAIDZ group. A "raidz expansion" will be initiated, and the new device will contribute additional space to the RAIDZ group once the expansion completes. The `feature@raidz_expansion` on-disk feature flag must be `enabled` to initiate an expansion, and it remains `active` for the life of the pool. In other words, pools with expanded RAIDZ vdevs can not be imported by older releases of the ZFS software. == During expansion == The expansion entails reading all allocated space from existing disks in the RAIDZ group, and rewriting it to the new disks in the RAIDZ group (including the newly added device). The expansion progress can be monitored with `zpool status`. Data redundancy is maintained during (and after) the expansion. If a disk fails while the expansion is in progress, the expansion pauses until the health of the RAIDZ vdev is restored (e.g. by replacing the failed disk and waiting for reconstruction to complete). The pool remains accessible during expansion. Following a reboot or export/import, the expansion resumes where it left off. == After expansion == When the expansion completes, the additional space is available for use, and is reflected in the `available` zfs property (as seen in `zfs list`, `df`, etc). Expansion does not change the number of failures that can be tolerated without data loss (e.g. a RAIDZ2 is still a RAIDZ2 even after expansion). A RAIDZ vdev can be expanded multiple times. After the expansion completes, old blocks remain with their old data-to-parity ratio (e.g. 5-wide RAIDZ2, has 3 data to 2 parity), but distributed among the larger set of disks. New blocks will be written with the new data-to-parity ratio (e.g. a 5-wide RAIDZ2 which has been expanded once to 6-wide, has 4 data to 2 parity). However, the RAIDZ vdev's "assumed parity ratio" does not change, so slightly less space than is expected may be reported for newly-written blocks, according to `zfs list`, `df`, `ls -s`, and similar tools. Sponsored-by: The FreeBSD Foundation Sponsored-by: iXsystems, Inc. Sponsored-by: vStack Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov> Reviewed-by: Mark Maybee <mark.maybee@delphix.com> Authored-by: Matthew Ahrens <mahrens@delphix.com> Contributions-by: Fedor Uporov <fuporov.vstack@gmail.com> Contributions-by: Stuart Maybee <stuart.maybee@comcast.net> Contributions-by: Thorsten Behrens <tbehrens@outlook.com> Contributions-by: Fmstrat <nospam@nowsci.com> Contributions-by: Don Brady <dev.fs.zfs@gmail.com> Signed-off-by: Don Brady <dev.fs.zfs@gmail.com> Closes #15022
2023-11-08 21:19:41 +03:00
(void) fprintf(fp, " %-43s%s", option,
option_table[i].comment);
if (option_table[i].long_opt_param != NULL) {
if (option_table[i].default_str != NULL) {
(void) fprintf(fp, " (default: %s)",
option_table[i].default_str);
} else if (option_table[i].default_int != NO_DEFAULT) {
(void) fprintf(fp, " (default: %u)",
option_table[i].default_int);
}
}
(void) fprintf(fp, "\n");
}
2008-11-20 23:01:55 +03:00
exit(requested ? 0 : 1);
}
Distributed Spare (dRAID) Feature This patch adds a new top-level vdev type called dRAID, which stands for Distributed parity RAID. This pool configuration allows all dRAID vdevs to participate when rebuilding to a distributed hot spare device. This can substantially reduce the total time required to restore full parity to pool with a failed device. A dRAID pool can be created using the new top-level `draid` type. Like `raidz`, the desired redundancy is specified after the type: `draid[1,2,3]`. No additional information is required to create the pool and reasonable default values will be chosen based on the number of child vdevs in the dRAID vdev. zpool create <pool> draid[1,2,3] <vdevs...> Unlike raidz, additional optional dRAID configuration values can be provided as part of the draid type as colon separated values. This allows administrators to fully specify a layout for either performance or capacity reasons. The supported options include: zpool create <pool> \ draid[<parity>][:<data>d][:<children>c][:<spares>s] \ <vdevs...> - draid[parity] - Parity level (default 1) - draid[:<data>d] - Data devices per group (default 8) - draid[:<children>c] - Expected number of child vdevs - draid[:<spares>s] - Distributed hot spares (default 0) Abbreviated example `zpool status` output for a 68 disk dRAID pool with two distributed spares using special allocation classes. ``` pool: tank state: ONLINE config: NAME STATE READ WRITE CKSUM slag7 ONLINE 0 0 0 draid2:8d:68c:2s-0 ONLINE 0 0 0 L0 ONLINE 0 0 0 L1 ONLINE 0 0 0 ... U25 ONLINE 0 0 0 U26 ONLINE 0 0 0 spare-53 ONLINE 0 0 0 U27 ONLINE 0 0 0 draid2-0-0 ONLINE 0 0 0 U28 ONLINE 0 0 0 U29 ONLINE 0 0 0 ... U42 ONLINE 0 0 0 U43 ONLINE 0 0 0 special mirror-1 ONLINE 0 0 0 L5 ONLINE 0 0 0 U5 ONLINE 0 0 0 mirror-2 ONLINE 0 0 0 L6 ONLINE 0 0 0 U6 ONLINE 0 0 0 spares draid2-0-0 INUSE currently in use draid2-0-1 AVAIL ``` When adding test coverage for the new dRAID vdev type the following options were added to the ztest command. These options are leverages by zloop.sh to test a wide range of dRAID configurations. -K draid|raidz|random - kind of RAID to test -D <value> - dRAID data drives per group -S <value> - dRAID distributed hot spares -R <value> - RAID parity (raidz or dRAID) The zpool_create, zpool_import, redundancy, replacement and fault test groups have all been updated provide test coverage for the dRAID feature. Co-authored-by: Isaac Huang <he.huang@intel.com> Co-authored-by: Mark Maybee <mmaybee@cray.com> Co-authored-by: Don Brady <don.brady@delphix.com> Co-authored-by: Matthew Ahrens <mahrens@delphix.com> Co-authored-by: Brian Behlendorf <behlendorf1@llnl.gov> Reviewed-by: Mark Maybee <mmaybee@cray.com> Reviewed-by: Matt Ahrens <matt@delphix.com> Reviewed-by: Tony Hutter <hutter2@llnl.gov> Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov> Closes #10102
2020-11-14 00:51:51 +03:00
static uint64_t
ztest_random(uint64_t range)
{
uint64_t r;
ASSERT3S(ztest_fd_rand, >=, 0);
if (range == 0)
return (0);
if (read(ztest_fd_rand, &r, sizeof (r)) != sizeof (r))
fatal(B_TRUE, "short read from /dev/urandom");
Distributed Spare (dRAID) Feature This patch adds a new top-level vdev type called dRAID, which stands for Distributed parity RAID. This pool configuration allows all dRAID vdevs to participate when rebuilding to a distributed hot spare device. This can substantially reduce the total time required to restore full parity to pool with a failed device. A dRAID pool can be created using the new top-level `draid` type. Like `raidz`, the desired redundancy is specified after the type: `draid[1,2,3]`. No additional information is required to create the pool and reasonable default values will be chosen based on the number of child vdevs in the dRAID vdev. zpool create <pool> draid[1,2,3] <vdevs...> Unlike raidz, additional optional dRAID configuration values can be provided as part of the draid type as colon separated values. This allows administrators to fully specify a layout for either performance or capacity reasons. The supported options include: zpool create <pool> \ draid[<parity>][:<data>d][:<children>c][:<spares>s] \ <vdevs...> - draid[parity] - Parity level (default 1) - draid[:<data>d] - Data devices per group (default 8) - draid[:<children>c] - Expected number of child vdevs - draid[:<spares>s] - Distributed hot spares (default 0) Abbreviated example `zpool status` output for a 68 disk dRAID pool with two distributed spares using special allocation classes. ``` pool: tank state: ONLINE config: NAME STATE READ WRITE CKSUM slag7 ONLINE 0 0 0 draid2:8d:68c:2s-0 ONLINE 0 0 0 L0 ONLINE 0 0 0 L1 ONLINE 0 0 0 ... U25 ONLINE 0 0 0 U26 ONLINE 0 0 0 spare-53 ONLINE 0 0 0 U27 ONLINE 0 0 0 draid2-0-0 ONLINE 0 0 0 U28 ONLINE 0 0 0 U29 ONLINE 0 0 0 ... U42 ONLINE 0 0 0 U43 ONLINE 0 0 0 special mirror-1 ONLINE 0 0 0 L5 ONLINE 0 0 0 U5 ONLINE 0 0 0 mirror-2 ONLINE 0 0 0 L6 ONLINE 0 0 0 U6 ONLINE 0 0 0 spares draid2-0-0 INUSE currently in use draid2-0-1 AVAIL ``` When adding test coverage for the new dRAID vdev type the following options were added to the ztest command. These options are leverages by zloop.sh to test a wide range of dRAID configurations. -K draid|raidz|random - kind of RAID to test -D <value> - dRAID data drives per group -S <value> - dRAID distributed hot spares -R <value> - RAID parity (raidz or dRAID) The zpool_create, zpool_import, redundancy, replacement and fault test groups have all been updated provide test coverage for the dRAID feature. Co-authored-by: Isaac Huang <he.huang@intel.com> Co-authored-by: Mark Maybee <mmaybee@cray.com> Co-authored-by: Don Brady <don.brady@delphix.com> Co-authored-by: Matthew Ahrens <mahrens@delphix.com> Co-authored-by: Brian Behlendorf <behlendorf1@llnl.gov> Reviewed-by: Mark Maybee <mmaybee@cray.com> Reviewed-by: Matt Ahrens <matt@delphix.com> Reviewed-by: Tony Hutter <hutter2@llnl.gov> Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov> Closes #10102
2020-11-14 00:51:51 +03:00
return (r % range);
}
static void
ztest_parse_name_value(const char *input, ztest_shared_opts_t *zo)
{
char name[32];
char *value;
int state = ZTEST_VDEV_CLASS_RND;
(void) strlcpy(name, input, sizeof (name));
value = strchr(name, '=');
if (value == NULL) {
(void) fprintf(stderr, "missing value in property=value "
"'-C' argument (%s)\n", input);
usage(B_FALSE);
}
*(value) = '\0';
value++;
if (strcmp(value, "on") == 0) {
state = ZTEST_VDEV_CLASS_ON;
} else if (strcmp(value, "off") == 0) {
state = ZTEST_VDEV_CLASS_OFF;
} else if (strcmp(value, "random") == 0) {
state = ZTEST_VDEV_CLASS_RND;
} else {
(void) fprintf(stderr, "invalid property value '%s'\n", value);
usage(B_FALSE);
}
if (strcmp(name, "special") == 0) {
zo->zo_special_vdevs = state;
} else {
(void) fprintf(stderr, "invalid property name '%s'\n", name);
usage(B_FALSE);
}
if (zo->zo_verbose >= 3)
(void) printf("%s vdev state is '%s'\n", name, value);
}
2008-11-20 23:01:55 +03:00
static void
process_options(int argc, char **argv)
{
char *path;
ztest_shared_opts_t *zo = &ztest_opts;
2008-11-20 23:01:55 +03:00
int opt;
uint64_t value;
const char *raid_kind = "random";
2008-11-20 23:01:55 +03:00
memcpy(zo, &ztest_opts_defaults, sizeof (*zo));
2008-11-20 23:01:55 +03:00
init_options();
while ((opt = getopt_long(argc, argv, short_opts, long_opts,
NULL)) != EOF) {
2008-11-20 23:01:55 +03:00
value = 0;
switch (opt) {
case 'v':
case 's':
case 'a':
case 'm':
case 'r':
case 'R':
Distributed Spare (dRAID) Feature This patch adds a new top-level vdev type called dRAID, which stands for Distributed parity RAID. This pool configuration allows all dRAID vdevs to participate when rebuilding to a distributed hot spare device. This can substantially reduce the total time required to restore full parity to pool with a failed device. A dRAID pool can be created using the new top-level `draid` type. Like `raidz`, the desired redundancy is specified after the type: `draid[1,2,3]`. No additional information is required to create the pool and reasonable default values will be chosen based on the number of child vdevs in the dRAID vdev. zpool create <pool> draid[1,2,3] <vdevs...> Unlike raidz, additional optional dRAID configuration values can be provided as part of the draid type as colon separated values. This allows administrators to fully specify a layout for either performance or capacity reasons. The supported options include: zpool create <pool> \ draid[<parity>][:<data>d][:<children>c][:<spares>s] \ <vdevs...> - draid[parity] - Parity level (default 1) - draid[:<data>d] - Data devices per group (default 8) - draid[:<children>c] - Expected number of child vdevs - draid[:<spares>s] - Distributed hot spares (default 0) Abbreviated example `zpool status` output for a 68 disk dRAID pool with two distributed spares using special allocation classes. ``` pool: tank state: ONLINE config: NAME STATE READ WRITE CKSUM slag7 ONLINE 0 0 0 draid2:8d:68c:2s-0 ONLINE 0 0 0 L0 ONLINE 0 0 0 L1 ONLINE 0 0 0 ... U25 ONLINE 0 0 0 U26 ONLINE 0 0 0 spare-53 ONLINE 0 0 0 U27 ONLINE 0 0 0 draid2-0-0 ONLINE 0 0 0 U28 ONLINE 0 0 0 U29 ONLINE 0 0 0 ... U42 ONLINE 0 0 0 U43 ONLINE 0 0 0 special mirror-1 ONLINE 0 0 0 L5 ONLINE 0 0 0 U5 ONLINE 0 0 0 mirror-2 ONLINE 0 0 0 L6 ONLINE 0 0 0 U6 ONLINE 0 0 0 spares draid2-0-0 INUSE currently in use draid2-0-1 AVAIL ``` When adding test coverage for the new dRAID vdev type the following options were added to the ztest command. These options are leverages by zloop.sh to test a wide range of dRAID configurations. -K draid|raidz|random - kind of RAID to test -D <value> - dRAID data drives per group -S <value> - dRAID distributed hot spares -R <value> - RAID parity (raidz or dRAID) The zpool_create, zpool_import, redundancy, replacement and fault test groups have all been updated provide test coverage for the dRAID feature. Co-authored-by: Isaac Huang <he.huang@intel.com> Co-authored-by: Mark Maybee <mmaybee@cray.com> Co-authored-by: Don Brady <don.brady@delphix.com> Co-authored-by: Matthew Ahrens <mahrens@delphix.com> Co-authored-by: Brian Behlendorf <behlendorf1@llnl.gov> Reviewed-by: Mark Maybee <mmaybee@cray.com> Reviewed-by: Matt Ahrens <matt@delphix.com> Reviewed-by: Tony Hutter <hutter2@llnl.gov> Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov> Closes #10102
2020-11-14 00:51:51 +03:00
case 'D':
case 'S':
2008-11-20 23:01:55 +03:00
case 'd':
case 't':
case 'g':
case 'i':
case 'k':
case 'T':
case 'P':
case 'F':
2008-11-20 23:01:55 +03:00
value = nicenumtoull(optarg);
}
switch (opt) {
case 'v':
zo->zo_vdevs = value;
2008-11-20 23:01:55 +03:00
break;
case 's':
zo->zo_vdev_size = MAX(SPA_MINDEVSIZE, value);
2008-11-20 23:01:55 +03:00
break;
case 'a':
zo->zo_ashift = value;
2008-11-20 23:01:55 +03:00
break;
case 'm':
zo->zo_mirrors = value;
2008-11-20 23:01:55 +03:00
break;
case 'r':
Distributed Spare (dRAID) Feature This patch adds a new top-level vdev type called dRAID, which stands for Distributed parity RAID. This pool configuration allows all dRAID vdevs to participate when rebuilding to a distributed hot spare device. This can substantially reduce the total time required to restore full parity to pool with a failed device. A dRAID pool can be created using the new top-level `draid` type. Like `raidz`, the desired redundancy is specified after the type: `draid[1,2,3]`. No additional information is required to create the pool and reasonable default values will be chosen based on the number of child vdevs in the dRAID vdev. zpool create <pool> draid[1,2,3] <vdevs...> Unlike raidz, additional optional dRAID configuration values can be provided as part of the draid type as colon separated values. This allows administrators to fully specify a layout for either performance or capacity reasons. The supported options include: zpool create <pool> \ draid[<parity>][:<data>d][:<children>c][:<spares>s] \ <vdevs...> - draid[parity] - Parity level (default 1) - draid[:<data>d] - Data devices per group (default 8) - draid[:<children>c] - Expected number of child vdevs - draid[:<spares>s] - Distributed hot spares (default 0) Abbreviated example `zpool status` output for a 68 disk dRAID pool with two distributed spares using special allocation classes. ``` pool: tank state: ONLINE config: NAME STATE READ WRITE CKSUM slag7 ONLINE 0 0 0 draid2:8d:68c:2s-0 ONLINE 0 0 0 L0 ONLINE 0 0 0 L1 ONLINE 0 0 0 ... U25 ONLINE 0 0 0 U26 ONLINE 0 0 0 spare-53 ONLINE 0 0 0 U27 ONLINE 0 0 0 draid2-0-0 ONLINE 0 0 0 U28 ONLINE 0 0 0 U29 ONLINE 0 0 0 ... U42 ONLINE 0 0 0 U43 ONLINE 0 0 0 special mirror-1 ONLINE 0 0 0 L5 ONLINE 0 0 0 U5 ONLINE 0 0 0 mirror-2 ONLINE 0 0 0 L6 ONLINE 0 0 0 U6 ONLINE 0 0 0 spares draid2-0-0 INUSE currently in use draid2-0-1 AVAIL ``` When adding test coverage for the new dRAID vdev type the following options were added to the ztest command. These options are leverages by zloop.sh to test a wide range of dRAID configurations. -K draid|raidz|random - kind of RAID to test -D <value> - dRAID data drives per group -S <value> - dRAID distributed hot spares -R <value> - RAID parity (raidz or dRAID) The zpool_create, zpool_import, redundancy, replacement and fault test groups have all been updated provide test coverage for the dRAID feature. Co-authored-by: Isaac Huang <he.huang@intel.com> Co-authored-by: Mark Maybee <mmaybee@cray.com> Co-authored-by: Don Brady <don.brady@delphix.com> Co-authored-by: Matthew Ahrens <mahrens@delphix.com> Co-authored-by: Brian Behlendorf <behlendorf1@llnl.gov> Reviewed-by: Mark Maybee <mmaybee@cray.com> Reviewed-by: Matt Ahrens <matt@delphix.com> Reviewed-by: Tony Hutter <hutter2@llnl.gov> Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov> Closes #10102
2020-11-14 00:51:51 +03:00
zo->zo_raid_children = MAX(1, value);
2008-11-20 23:01:55 +03:00
break;
case 'R':
Distributed Spare (dRAID) Feature This patch adds a new top-level vdev type called dRAID, which stands for Distributed parity RAID. This pool configuration allows all dRAID vdevs to participate when rebuilding to a distributed hot spare device. This can substantially reduce the total time required to restore full parity to pool with a failed device. A dRAID pool can be created using the new top-level `draid` type. Like `raidz`, the desired redundancy is specified after the type: `draid[1,2,3]`. No additional information is required to create the pool and reasonable default values will be chosen based on the number of child vdevs in the dRAID vdev. zpool create <pool> draid[1,2,3] <vdevs...> Unlike raidz, additional optional dRAID configuration values can be provided as part of the draid type as colon separated values. This allows administrators to fully specify a layout for either performance or capacity reasons. The supported options include: zpool create <pool> \ draid[<parity>][:<data>d][:<children>c][:<spares>s] \ <vdevs...> - draid[parity] - Parity level (default 1) - draid[:<data>d] - Data devices per group (default 8) - draid[:<children>c] - Expected number of child vdevs - draid[:<spares>s] - Distributed hot spares (default 0) Abbreviated example `zpool status` output for a 68 disk dRAID pool with two distributed spares using special allocation classes. ``` pool: tank state: ONLINE config: NAME STATE READ WRITE CKSUM slag7 ONLINE 0 0 0 draid2:8d:68c:2s-0 ONLINE 0 0 0 L0 ONLINE 0 0 0 L1 ONLINE 0 0 0 ... U25 ONLINE 0 0 0 U26 ONLINE 0 0 0 spare-53 ONLINE 0 0 0 U27 ONLINE 0 0 0 draid2-0-0 ONLINE 0 0 0 U28 ONLINE 0 0 0 U29 ONLINE 0 0 0 ... U42 ONLINE 0 0 0 U43 ONLINE 0 0 0 special mirror-1 ONLINE 0 0 0 L5 ONLINE 0 0 0 U5 ONLINE 0 0 0 mirror-2 ONLINE 0 0 0 L6 ONLINE 0 0 0 U6 ONLINE 0 0 0 spares draid2-0-0 INUSE currently in use draid2-0-1 AVAIL ``` When adding test coverage for the new dRAID vdev type the following options were added to the ztest command. These options are leverages by zloop.sh to test a wide range of dRAID configurations. -K draid|raidz|random - kind of RAID to test -D <value> - dRAID data drives per group -S <value> - dRAID distributed hot spares -R <value> - RAID parity (raidz or dRAID) The zpool_create, zpool_import, redundancy, replacement and fault test groups have all been updated provide test coverage for the dRAID feature. Co-authored-by: Isaac Huang <he.huang@intel.com> Co-authored-by: Mark Maybee <mmaybee@cray.com> Co-authored-by: Don Brady <don.brady@delphix.com> Co-authored-by: Matthew Ahrens <mahrens@delphix.com> Co-authored-by: Brian Behlendorf <behlendorf1@llnl.gov> Reviewed-by: Mark Maybee <mmaybee@cray.com> Reviewed-by: Matt Ahrens <matt@delphix.com> Reviewed-by: Tony Hutter <hutter2@llnl.gov> Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov> Closes #10102
2020-11-14 00:51:51 +03:00
zo->zo_raid_parity = MIN(MAX(value, 1), 3);
break;
case 'K':
raid_kind = optarg;
Distributed Spare (dRAID) Feature This patch adds a new top-level vdev type called dRAID, which stands for Distributed parity RAID. This pool configuration allows all dRAID vdevs to participate when rebuilding to a distributed hot spare device. This can substantially reduce the total time required to restore full parity to pool with a failed device. A dRAID pool can be created using the new top-level `draid` type. Like `raidz`, the desired redundancy is specified after the type: `draid[1,2,3]`. No additional information is required to create the pool and reasonable default values will be chosen based on the number of child vdevs in the dRAID vdev. zpool create <pool> draid[1,2,3] <vdevs...> Unlike raidz, additional optional dRAID configuration values can be provided as part of the draid type as colon separated values. This allows administrators to fully specify a layout for either performance or capacity reasons. The supported options include: zpool create <pool> \ draid[<parity>][:<data>d][:<children>c][:<spares>s] \ <vdevs...> - draid[parity] - Parity level (default 1) - draid[:<data>d] - Data devices per group (default 8) - draid[:<children>c] - Expected number of child vdevs - draid[:<spares>s] - Distributed hot spares (default 0) Abbreviated example `zpool status` output for a 68 disk dRAID pool with two distributed spares using special allocation classes. ``` pool: tank state: ONLINE config: NAME STATE READ WRITE CKSUM slag7 ONLINE 0 0 0 draid2:8d:68c:2s-0 ONLINE 0 0 0 L0 ONLINE 0 0 0 L1 ONLINE 0 0 0 ... U25 ONLINE 0 0 0 U26 ONLINE 0 0 0 spare-53 ONLINE 0 0 0 U27 ONLINE 0 0 0 draid2-0-0 ONLINE 0 0 0 U28 ONLINE 0 0 0 U29 ONLINE 0 0 0 ... U42 ONLINE 0 0 0 U43 ONLINE 0 0 0 special mirror-1 ONLINE 0 0 0 L5 ONLINE 0 0 0 U5 ONLINE 0 0 0 mirror-2 ONLINE 0 0 0 L6 ONLINE 0 0 0 U6 ONLINE 0 0 0 spares draid2-0-0 INUSE currently in use draid2-0-1 AVAIL ``` When adding test coverage for the new dRAID vdev type the following options were added to the ztest command. These options are leverages by zloop.sh to test a wide range of dRAID configurations. -K draid|raidz|random - kind of RAID to test -D <value> - dRAID data drives per group -S <value> - dRAID distributed hot spares -R <value> - RAID parity (raidz or dRAID) The zpool_create, zpool_import, redundancy, replacement and fault test groups have all been updated provide test coverage for the dRAID feature. Co-authored-by: Isaac Huang <he.huang@intel.com> Co-authored-by: Mark Maybee <mmaybee@cray.com> Co-authored-by: Don Brady <don.brady@delphix.com> Co-authored-by: Matthew Ahrens <mahrens@delphix.com> Co-authored-by: Brian Behlendorf <behlendorf1@llnl.gov> Reviewed-by: Mark Maybee <mmaybee@cray.com> Reviewed-by: Matt Ahrens <matt@delphix.com> Reviewed-by: Tony Hutter <hutter2@llnl.gov> Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov> Closes #10102
2020-11-14 00:51:51 +03:00
break;
case 'D':
zo->zo_draid_data = MAX(1, value);
break;
case 'S':
zo->zo_draid_spares = MAX(1, value);
2008-11-20 23:01:55 +03:00
break;
case 'd':
zo->zo_datasets = MAX(1, value);
2008-11-20 23:01:55 +03:00
break;
case 't':
zo->zo_threads = MAX(1, value);
2008-11-20 23:01:55 +03:00
break;
case 'g':
zo->zo_metaslab_force_ganging =
MAX(SPA_MINBLOCKSIZE << 1, value);
2008-11-20 23:01:55 +03:00
break;
case 'i':
zo->zo_init = value;
2008-11-20 23:01:55 +03:00
break;
case 'k':
zo->zo_killrate = value;
2008-11-20 23:01:55 +03:00
break;
case 'p':
(void) strlcpy(zo->zo_pool, optarg,
sizeof (zo->zo_pool));
2008-11-20 23:01:55 +03:00
break;
case 'f':
path = realpath(optarg, NULL);
if (path == NULL) {
(void) fprintf(stderr, "error: %s: %s\n",
optarg, strerror(errno));
usage(B_FALSE);
} else {
(void) strlcpy(zo->zo_dir, path,
sizeof (zo->zo_dir));
free(path);
}
2008-11-20 23:01:55 +03:00
break;
Multi-modifier protection (MMP) Add multihost=on|off pool property to control MMP. When enabled a new thread writes uberblocks to the last slot in each label, at a set frequency, to indicate to other hosts the pool is actively imported. These uberblocks are the last synced uberblock with an updated timestamp. Property defaults to off. During tryimport, find the "best" uberblock (newest txg and timestamp) repeatedly, checking for change in the found uberblock. Include the results of the activity test in the config returned by tryimport. These results are reported to user in "zpool import". Allow the user to control the period between MMP writes, and the duration of the activity test on import, via a new module parameter zfs_multihost_interval. The period is specified in milliseconds. The activity test duration is calculated from this value, and from the mmp_delay in the "best" uberblock found initially. Add a kstat interface to export statistics about Multiple Modifier Protection (MMP) updates. Include the last synced txg number, the timestamp, the delay since the last MMP update, the VDEV GUID, the VDEV label that received the last MMP update, and the VDEV path. Abbreviated output below. $ cat /proc/spl/kstat/zfs/mypool/multihost 31 0 0x01 10 880 105092382393521 105144180101111 txg timestamp mmp_delay vdev_guid vdev_label vdev_path 20468 261337 250274925 68396651780 3 /dev/sda 20468 261339 252023374 6267402363293 1 /dev/sdc 20468 261340 252000858 6698080955233 1 /dev/sdx 20468 261341 251980635 783892869810 2 /dev/sdy 20468 261342 253385953 8923255792467 3 /dev/sdd 20468 261344 253336622 042125143176 0 /dev/sdab 20468 261345 253310522 1200778101278 2 /dev/sde 20468 261346 253286429 0950576198362 2 /dev/sdt 20468 261347 253261545 96209817917 3 /dev/sds 20468 261349 253238188 8555725937673 3 /dev/sdb Add a new tunable zfs_multihost_history to specify the number of MMP updates to store history for. By default it is set to zero meaning that no MMP statistics are stored. When using ztest to generate activity, for automated tests of the MMP function, some test functions interfere with the test. For example, the pool is exported to run zdb and then imported again. Add a new ztest function, "-M", to alter ztest behavior to prevent this. Add new tests to verify the new functionality. Tests provided by Giuseppe Di Natale. Reviewed by: Matthew Ahrens <mahrens@delphix.com> Reviewed-by: Giuseppe Di Natale <dinatale2@llnl.gov> Reviewed-by: Ned Bass <bass6@llnl.gov> Reviewed-by: Andreas Dilger <andreas.dilger@intel.com> Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov> Signed-off-by: Olaf Faaland <faaland1@llnl.gov> Closes #745 Closes #6279
2017-07-08 06:20:35 +03:00
case 'M':
zo->zo_mmp_test = 1;
break;
2008-11-20 23:01:55 +03:00
case 'V':
zo->zo_verbose++;
2008-11-20 23:01:55 +03:00
break;
RAID-Z expansion feature This feature allows disks to be added one at a time to a RAID-Z group, expanding its capacity incrementally. This feature is especially useful for small pools (typically with only one RAID-Z group), where there isn't sufficient hardware to add capacity by adding a whole new RAID-Z group (typically doubling the number of disks). == Initiating expansion == A new device (disk) can be attached to an existing RAIDZ vdev, by running `zpool attach POOL raidzP-N NEW_DEVICE`, e.g. `zpool attach tank raidz2-0 sda`. The new device will become part of the RAIDZ group. A "raidz expansion" will be initiated, and the new device will contribute additional space to the RAIDZ group once the expansion completes. The `feature@raidz_expansion` on-disk feature flag must be `enabled` to initiate an expansion, and it remains `active` for the life of the pool. In other words, pools with expanded RAIDZ vdevs can not be imported by older releases of the ZFS software. == During expansion == The expansion entails reading all allocated space from existing disks in the RAIDZ group, and rewriting it to the new disks in the RAIDZ group (including the newly added device). The expansion progress can be monitored with `zpool status`. Data redundancy is maintained during (and after) the expansion. If a disk fails while the expansion is in progress, the expansion pauses until the health of the RAIDZ vdev is restored (e.g. by replacing the failed disk and waiting for reconstruction to complete). The pool remains accessible during expansion. Following a reboot or export/import, the expansion resumes where it left off. == After expansion == When the expansion completes, the additional space is available for use, and is reflected in the `available` zfs property (as seen in `zfs list`, `df`, etc). Expansion does not change the number of failures that can be tolerated without data loss (e.g. a RAIDZ2 is still a RAIDZ2 even after expansion). A RAIDZ vdev can be expanded multiple times. After the expansion completes, old blocks remain with their old data-to-parity ratio (e.g. 5-wide RAIDZ2, has 3 data to 2 parity), but distributed among the larger set of disks. New blocks will be written with the new data-to-parity ratio (e.g. a 5-wide RAIDZ2 which has been expanded once to 6-wide, has 4 data to 2 parity). However, the RAIDZ vdev's "assumed parity ratio" does not change, so slightly less space than is expected may be reported for newly-written blocks, according to `zfs list`, `df`, `ls -s`, and similar tools. Sponsored-by: The FreeBSD Foundation Sponsored-by: iXsystems, Inc. Sponsored-by: vStack Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov> Reviewed-by: Mark Maybee <mark.maybee@delphix.com> Authored-by: Matthew Ahrens <mahrens@delphix.com> Contributions-by: Fedor Uporov <fuporov.vstack@gmail.com> Contributions-by: Stuart Maybee <stuart.maybee@comcast.net> Contributions-by: Thorsten Behrens <tbehrens@outlook.com> Contributions-by: Fmstrat <nospam@nowsci.com> Contributions-by: Don Brady <dev.fs.zfs@gmail.com> Signed-off-by: Don Brady <dev.fs.zfs@gmail.com> Closes #15022
2023-11-08 21:19:41 +03:00
case 'X':
zo->zo_raidz_expand_test = RAIDZ_EXPAND_REQUESTED;
break;
2008-11-20 23:01:55 +03:00
case 'E':
zo->zo_init = 0;
2008-11-20 23:01:55 +03:00
break;
case 'T':
zo->zo_time = value;
2008-11-20 23:01:55 +03:00
break;
case 'P':
zo->zo_passtime = MAX(1, value);
2008-11-20 23:01:55 +03:00
break;
case 'F':
zo->zo_maxloops = MAX(1, value);
break;
case 'B':
(void) strlcpy(zo->zo_alt_ztest, optarg,
sizeof (zo->zo_alt_ztest));
break;
case 'C':
ztest_parse_name_value(optarg, zo);
break;
case 'o':
if (zo->zo_gvars_count >= ZO_GVARS_MAX_COUNT) {
(void) fprintf(stderr,
"max global var count (%zu) exceeded\n",
ZO_GVARS_MAX_COUNT);
usage(B_FALSE);
}
char *v = zo->zo_gvars[zo->zo_gvars_count];
if (strlcpy(v, optarg, ZO_GVARS_MAX_ARGLEN) >=
ZO_GVARS_MAX_ARGLEN) {
(void) fprintf(stderr,
"global var option '%s' is too long\n",
optarg);
usage(B_FALSE);
}
zo->zo_gvars_count++;
break;
Extend deadman logic The intent of this patch is extend the existing deadman code such that it's flexible enough to be used by both ztest and on production systems. The proposed changes include: * Added a new `zfs_deadman_failmode` module option which is used to dynamically control the behavior of the deadman. It's loosely modeled after, but independant from, the pool failmode property. It can be set to wait, continue, or panic. * wait - Wait for the "hung" I/O (default) * continue - Attempt to recover from a "hung" I/O * panic - Panic the system * Added a new `zfs_deadman_ziotime_ms` module option which is analogous to `zfs_deadman_synctime_ms` except instead of applying to a pool TXG sync it applies to zio_wait(). A default value of 300s is used to define a "hung" zio. * The ztest deadman thread has been re-enabled by default, aligned with the upstream OpenZFS code, and then extended to terminate the process when it takes significantly longer to complete than expected. * The -G option was added to ztest to print the internal debug log when a fatal error is encountered. This same option was previously added to zdb in commit fa603f82. Update zloop.sh to unconditionally pass -G to obtain additional debugging. * The FM_EREPORT_ZFS_DELAY event which was previously posted when the deadman detect a "hung" pool has been replaced by a new dedicated FM_EREPORT_ZFS_DEADMAN event. * The proposed recovery logic attempts to restart a "hung" zio by calling zio_interrupt() on any outstanding leaf zios. We may want to further restrict this to zios in either the ZIO_STAGE_VDEV_IO_START or ZIO_STAGE_VDEV_IO_DONE stages. Calling zio_interrupt() is expected to only be useful for cases when an IO has been submitted to the physical device but for some reasonable the completion callback hasn't been called by the lower layers. This shouldn't be possible but has been observed and may be caused by kernel/driver bugs. * The 'zfs_deadman_synctime_ms' default value was reduced from 1000s to 600s. * Depending on how ztest fails there may be no cache file to move. This should not be considered fatal, collect the logs which are available and carry on. * Add deadman test cases for spa_deadman() and zio_wait(). * Increase default zfs_deadman_checktime_ms to 60s. Reviewed-by: Tim Chase <tim@chase2k.com> Reviewed by: Thomas Caputi <tcaputi@datto.com> Reviewed-by: Giuseppe Di Natale <dinatale2@llnl.gov> Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov> Closes #6999
2017-12-19 01:06:07 +03:00
case 'G':
zo->zo_dump_dbgmsg = 1;
Extend deadman logic The intent of this patch is extend the existing deadman code such that it's flexible enough to be used by both ztest and on production systems. The proposed changes include: * Added a new `zfs_deadman_failmode` module option which is used to dynamically control the behavior of the deadman. It's loosely modeled after, but independant from, the pool failmode property. It can be set to wait, continue, or panic. * wait - Wait for the "hung" I/O (default) * continue - Attempt to recover from a "hung" I/O * panic - Panic the system * Added a new `zfs_deadman_ziotime_ms` module option which is analogous to `zfs_deadman_synctime_ms` except instead of applying to a pool TXG sync it applies to zio_wait(). A default value of 300s is used to define a "hung" zio. * The ztest deadman thread has been re-enabled by default, aligned with the upstream OpenZFS code, and then extended to terminate the process when it takes significantly longer to complete than expected. * The -G option was added to ztest to print the internal debug log when a fatal error is encountered. This same option was previously added to zdb in commit fa603f82. Update zloop.sh to unconditionally pass -G to obtain additional debugging. * The FM_EREPORT_ZFS_DELAY event which was previously posted when the deadman detect a "hung" pool has been replaced by a new dedicated FM_EREPORT_ZFS_DEADMAN event. * The proposed recovery logic attempts to restart a "hung" zio by calling zio_interrupt() on any outstanding leaf zios. We may want to further restrict this to zios in either the ZIO_STAGE_VDEV_IO_START or ZIO_STAGE_VDEV_IO_DONE stages. Calling zio_interrupt() is expected to only be useful for cases when an IO has been submitted to the physical device but for some reasonable the completion callback hasn't been called by the lower layers. This shouldn't be possible but has been observed and may be caused by kernel/driver bugs. * The 'zfs_deadman_synctime_ms' default value was reduced from 1000s to 600s. * Depending on how ztest fails there may be no cache file to move. This should not be considered fatal, collect the logs which are available and carry on. * Add deadman test cases for spa_deadman() and zio_wait(). * Increase default zfs_deadman_checktime_ms to 60s. Reviewed-by: Tim Chase <tim@chase2k.com> Reviewed by: Thomas Caputi <tcaputi@datto.com> Reviewed-by: Giuseppe Di Natale <dinatale2@llnl.gov> Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov> Closes #6999
2017-12-19 01:06:07 +03:00
break;
2008-11-20 23:01:55 +03:00
case 'h':
usage(B_TRUE);
break;
case '?':
default:
usage(B_FALSE);
break;
}
}
fini_options();
RAID-Z expansion feature This feature allows disks to be added one at a time to a RAID-Z group, expanding its capacity incrementally. This feature is especially useful for small pools (typically with only one RAID-Z group), where there isn't sufficient hardware to add capacity by adding a whole new RAID-Z group (typically doubling the number of disks). == Initiating expansion == A new device (disk) can be attached to an existing RAIDZ vdev, by running `zpool attach POOL raidzP-N NEW_DEVICE`, e.g. `zpool attach tank raidz2-0 sda`. The new device will become part of the RAIDZ group. A "raidz expansion" will be initiated, and the new device will contribute additional space to the RAIDZ group once the expansion completes. The `feature@raidz_expansion` on-disk feature flag must be `enabled` to initiate an expansion, and it remains `active` for the life of the pool. In other words, pools with expanded RAIDZ vdevs can not be imported by older releases of the ZFS software. == During expansion == The expansion entails reading all allocated space from existing disks in the RAIDZ group, and rewriting it to the new disks in the RAIDZ group (including the newly added device). The expansion progress can be monitored with `zpool status`. Data redundancy is maintained during (and after) the expansion. If a disk fails while the expansion is in progress, the expansion pauses until the health of the RAIDZ vdev is restored (e.g. by replacing the failed disk and waiting for reconstruction to complete). The pool remains accessible during expansion. Following a reboot or export/import, the expansion resumes where it left off. == After expansion == When the expansion completes, the additional space is available for use, and is reflected in the `available` zfs property (as seen in `zfs list`, `df`, etc). Expansion does not change the number of failures that can be tolerated without data loss (e.g. a RAIDZ2 is still a RAIDZ2 even after expansion). A RAIDZ vdev can be expanded multiple times. After the expansion completes, old blocks remain with their old data-to-parity ratio (e.g. 5-wide RAIDZ2, has 3 data to 2 parity), but distributed among the larger set of disks. New blocks will be written with the new data-to-parity ratio (e.g. a 5-wide RAIDZ2 which has been expanded once to 6-wide, has 4 data to 2 parity). However, the RAIDZ vdev's "assumed parity ratio" does not change, so slightly less space than is expected may be reported for newly-written blocks, according to `zfs list`, `df`, `ls -s`, and similar tools. Sponsored-by: The FreeBSD Foundation Sponsored-by: iXsystems, Inc. Sponsored-by: vStack Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov> Reviewed-by: Mark Maybee <mark.maybee@delphix.com> Authored-by: Matthew Ahrens <mahrens@delphix.com> Contributions-by: Fedor Uporov <fuporov.vstack@gmail.com> Contributions-by: Stuart Maybee <stuart.maybee@comcast.net> Contributions-by: Thorsten Behrens <tbehrens@outlook.com> Contributions-by: Fmstrat <nospam@nowsci.com> Contributions-by: Don Brady <dev.fs.zfs@gmail.com> Signed-off-by: Don Brady <dev.fs.zfs@gmail.com> Closes #15022
2023-11-08 21:19:41 +03:00
/* Force compatible options for raidz expansion run */
if (zo->zo_raidz_expand_test == RAIDZ_EXPAND_REQUESTED) {
zo->zo_mmp_test = 0;
zo->zo_mirrors = 0;
zo->zo_vdevs = 1;
zo->zo_vdev_size = DEFAULT_VDEV_SIZE * 2;
zo->zo_raid_do_expand = B_FALSE;
raid_kind = "raidz";
}
Distributed Spare (dRAID) Feature This patch adds a new top-level vdev type called dRAID, which stands for Distributed parity RAID. This pool configuration allows all dRAID vdevs to participate when rebuilding to a distributed hot spare device. This can substantially reduce the total time required to restore full parity to pool with a failed device. A dRAID pool can be created using the new top-level `draid` type. Like `raidz`, the desired redundancy is specified after the type: `draid[1,2,3]`. No additional information is required to create the pool and reasonable default values will be chosen based on the number of child vdevs in the dRAID vdev. zpool create <pool> draid[1,2,3] <vdevs...> Unlike raidz, additional optional dRAID configuration values can be provided as part of the draid type as colon separated values. This allows administrators to fully specify a layout for either performance or capacity reasons. The supported options include: zpool create <pool> \ draid[<parity>][:<data>d][:<children>c][:<spares>s] \ <vdevs...> - draid[parity] - Parity level (default 1) - draid[:<data>d] - Data devices per group (default 8) - draid[:<children>c] - Expected number of child vdevs - draid[:<spares>s] - Distributed hot spares (default 0) Abbreviated example `zpool status` output for a 68 disk dRAID pool with two distributed spares using special allocation classes. ``` pool: tank state: ONLINE config: NAME STATE READ WRITE CKSUM slag7 ONLINE 0 0 0 draid2:8d:68c:2s-0 ONLINE 0 0 0 L0 ONLINE 0 0 0 L1 ONLINE 0 0 0 ... U25 ONLINE 0 0 0 U26 ONLINE 0 0 0 spare-53 ONLINE 0 0 0 U27 ONLINE 0 0 0 draid2-0-0 ONLINE 0 0 0 U28 ONLINE 0 0 0 U29 ONLINE 0 0 0 ... U42 ONLINE 0 0 0 U43 ONLINE 0 0 0 special mirror-1 ONLINE 0 0 0 L5 ONLINE 0 0 0 U5 ONLINE 0 0 0 mirror-2 ONLINE 0 0 0 L6 ONLINE 0 0 0 U6 ONLINE 0 0 0 spares draid2-0-0 INUSE currently in use draid2-0-1 AVAIL ``` When adding test coverage for the new dRAID vdev type the following options were added to the ztest command. These options are leverages by zloop.sh to test a wide range of dRAID configurations. -K draid|raidz|random - kind of RAID to test -D <value> - dRAID data drives per group -S <value> - dRAID distributed hot spares -R <value> - RAID parity (raidz or dRAID) The zpool_create, zpool_import, redundancy, replacement and fault test groups have all been updated provide test coverage for the dRAID feature. Co-authored-by: Isaac Huang <he.huang@intel.com> Co-authored-by: Mark Maybee <mmaybee@cray.com> Co-authored-by: Don Brady <don.brady@delphix.com> Co-authored-by: Matthew Ahrens <mahrens@delphix.com> Co-authored-by: Brian Behlendorf <behlendorf1@llnl.gov> Reviewed-by: Mark Maybee <mmaybee@cray.com> Reviewed-by: Matt Ahrens <matt@delphix.com> Reviewed-by: Tony Hutter <hutter2@llnl.gov> Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov> Closes #10102
2020-11-14 00:51:51 +03:00
if (strcmp(raid_kind, "random") == 0) {
RAID-Z expansion feature This feature allows disks to be added one at a time to a RAID-Z group, expanding its capacity incrementally. This feature is especially useful for small pools (typically with only one RAID-Z group), where there isn't sufficient hardware to add capacity by adding a whole new RAID-Z group (typically doubling the number of disks). == Initiating expansion == A new device (disk) can be attached to an existing RAIDZ vdev, by running `zpool attach POOL raidzP-N NEW_DEVICE`, e.g. `zpool attach tank raidz2-0 sda`. The new device will become part of the RAIDZ group. A "raidz expansion" will be initiated, and the new device will contribute additional space to the RAIDZ group once the expansion completes. The `feature@raidz_expansion` on-disk feature flag must be `enabled` to initiate an expansion, and it remains `active` for the life of the pool. In other words, pools with expanded RAIDZ vdevs can not be imported by older releases of the ZFS software. == During expansion == The expansion entails reading all allocated space from existing disks in the RAIDZ group, and rewriting it to the new disks in the RAIDZ group (including the newly added device). The expansion progress can be monitored with `zpool status`. Data redundancy is maintained during (and after) the expansion. If a disk fails while the expansion is in progress, the expansion pauses until the health of the RAIDZ vdev is restored (e.g. by replacing the failed disk and waiting for reconstruction to complete). The pool remains accessible during expansion. Following a reboot or export/import, the expansion resumes where it left off. == After expansion == When the expansion completes, the additional space is available for use, and is reflected in the `available` zfs property (as seen in `zfs list`, `df`, etc). Expansion does not change the number of failures that can be tolerated without data loss (e.g. a RAIDZ2 is still a RAIDZ2 even after expansion). A RAIDZ vdev can be expanded multiple times. After the expansion completes, old blocks remain with their old data-to-parity ratio (e.g. 5-wide RAIDZ2, has 3 data to 2 parity), but distributed among the larger set of disks. New blocks will be written with the new data-to-parity ratio (e.g. a 5-wide RAIDZ2 which has been expanded once to 6-wide, has 4 data to 2 parity). However, the RAIDZ vdev's "assumed parity ratio" does not change, so slightly less space than is expected may be reported for newly-written blocks, according to `zfs list`, `df`, `ls -s`, and similar tools. Sponsored-by: The FreeBSD Foundation Sponsored-by: iXsystems, Inc. Sponsored-by: vStack Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov> Reviewed-by: Mark Maybee <mark.maybee@delphix.com> Authored-by: Matthew Ahrens <mahrens@delphix.com> Contributions-by: Fedor Uporov <fuporov.vstack@gmail.com> Contributions-by: Stuart Maybee <stuart.maybee@comcast.net> Contributions-by: Thorsten Behrens <tbehrens@outlook.com> Contributions-by: Fmstrat <nospam@nowsci.com> Contributions-by: Don Brady <dev.fs.zfs@gmail.com> Signed-off-by: Don Brady <dev.fs.zfs@gmail.com> Closes #15022
2023-11-08 21:19:41 +03:00
switch (ztest_random(3)) {
case 0:
raid_kind = "raidz";
break;
case 1:
raid_kind = "eraidz";
break;
case 2:
raid_kind = "draid";
break;
}
Distributed Spare (dRAID) Feature This patch adds a new top-level vdev type called dRAID, which stands for Distributed parity RAID. This pool configuration allows all dRAID vdevs to participate when rebuilding to a distributed hot spare device. This can substantially reduce the total time required to restore full parity to pool with a failed device. A dRAID pool can be created using the new top-level `draid` type. Like `raidz`, the desired redundancy is specified after the type: `draid[1,2,3]`. No additional information is required to create the pool and reasonable default values will be chosen based on the number of child vdevs in the dRAID vdev. zpool create <pool> draid[1,2,3] <vdevs...> Unlike raidz, additional optional dRAID configuration values can be provided as part of the draid type as colon separated values. This allows administrators to fully specify a layout for either performance or capacity reasons. The supported options include: zpool create <pool> \ draid[<parity>][:<data>d][:<children>c][:<spares>s] \ <vdevs...> - draid[parity] - Parity level (default 1) - draid[:<data>d] - Data devices per group (default 8) - draid[:<children>c] - Expected number of child vdevs - draid[:<spares>s] - Distributed hot spares (default 0) Abbreviated example `zpool status` output for a 68 disk dRAID pool with two distributed spares using special allocation classes. ``` pool: tank state: ONLINE config: NAME STATE READ WRITE CKSUM slag7 ONLINE 0 0 0 draid2:8d:68c:2s-0 ONLINE 0 0 0 L0 ONLINE 0 0 0 L1 ONLINE 0 0 0 ... U25 ONLINE 0 0 0 U26 ONLINE 0 0 0 spare-53 ONLINE 0 0 0 U27 ONLINE 0 0 0 draid2-0-0 ONLINE 0 0 0 U28 ONLINE 0 0 0 U29 ONLINE 0 0 0 ... U42 ONLINE 0 0 0 U43 ONLINE 0 0 0 special mirror-1 ONLINE 0 0 0 L5 ONLINE 0 0 0 U5 ONLINE 0 0 0 mirror-2 ONLINE 0 0 0 L6 ONLINE 0 0 0 U6 ONLINE 0 0 0 spares draid2-0-0 INUSE currently in use draid2-0-1 AVAIL ``` When adding test coverage for the new dRAID vdev type the following options were added to the ztest command. These options are leverages by zloop.sh to test a wide range of dRAID configurations. -K draid|raidz|random - kind of RAID to test -D <value> - dRAID data drives per group -S <value> - dRAID distributed hot spares -R <value> - RAID parity (raidz or dRAID) The zpool_create, zpool_import, redundancy, replacement and fault test groups have all been updated provide test coverage for the dRAID feature. Co-authored-by: Isaac Huang <he.huang@intel.com> Co-authored-by: Mark Maybee <mmaybee@cray.com> Co-authored-by: Don Brady <don.brady@delphix.com> Co-authored-by: Matthew Ahrens <mahrens@delphix.com> Co-authored-by: Brian Behlendorf <behlendorf1@llnl.gov> Reviewed-by: Mark Maybee <mmaybee@cray.com> Reviewed-by: Matt Ahrens <matt@delphix.com> Reviewed-by: Tony Hutter <hutter2@llnl.gov> Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov> Closes #10102
2020-11-14 00:51:51 +03:00
if (ztest_opts.zo_verbose >= 3)
(void) printf("choosing RAID type '%s'\n", raid_kind);
}
if (strcmp(raid_kind, "draid") == 0) {
uint64_t min_devsize;
/* With fewer disk use 256M, otherwise 128M is OK */
min_devsize = (ztest_opts.zo_raid_children < 16) ?
(256ULL << 20) : (128ULL << 20);
/* No top-level mirrors with dRAID for now */
zo->zo_mirrors = 0;
/* Use more appropriate defaults for dRAID */
if (zo->zo_vdevs == ztest_opts_defaults.zo_vdevs)
zo->zo_vdevs = 1;
if (zo->zo_raid_children ==
ztest_opts_defaults.zo_raid_children)
zo->zo_raid_children = 16;
if (zo->zo_ashift < 12)
zo->zo_ashift = 12;
if (zo->zo_vdev_size < min_devsize)
zo->zo_vdev_size = min_devsize;
if (zo->zo_draid_data + zo->zo_raid_parity >
zo->zo_raid_children - zo->zo_draid_spares) {
(void) fprintf(stderr, "error: too few draid "
"children (%d) for stripe width (%d)\n",
zo->zo_raid_children,
zo->zo_draid_data + zo->zo_raid_parity);
usage(B_FALSE);
}
(void) strlcpy(zo->zo_raid_type, VDEV_TYPE_DRAID,
sizeof (zo->zo_raid_type));
RAID-Z expansion feature This feature allows disks to be added one at a time to a RAID-Z group, expanding its capacity incrementally. This feature is especially useful for small pools (typically with only one RAID-Z group), where there isn't sufficient hardware to add capacity by adding a whole new RAID-Z group (typically doubling the number of disks). == Initiating expansion == A new device (disk) can be attached to an existing RAIDZ vdev, by running `zpool attach POOL raidzP-N NEW_DEVICE`, e.g. `zpool attach tank raidz2-0 sda`. The new device will become part of the RAIDZ group. A "raidz expansion" will be initiated, and the new device will contribute additional space to the RAIDZ group once the expansion completes. The `feature@raidz_expansion` on-disk feature flag must be `enabled` to initiate an expansion, and it remains `active` for the life of the pool. In other words, pools with expanded RAIDZ vdevs can not be imported by older releases of the ZFS software. == During expansion == The expansion entails reading all allocated space from existing disks in the RAIDZ group, and rewriting it to the new disks in the RAIDZ group (including the newly added device). The expansion progress can be monitored with `zpool status`. Data redundancy is maintained during (and after) the expansion. If a disk fails while the expansion is in progress, the expansion pauses until the health of the RAIDZ vdev is restored (e.g. by replacing the failed disk and waiting for reconstruction to complete). The pool remains accessible during expansion. Following a reboot or export/import, the expansion resumes where it left off. == After expansion == When the expansion completes, the additional space is available for use, and is reflected in the `available` zfs property (as seen in `zfs list`, `df`, etc). Expansion does not change the number of failures that can be tolerated without data loss (e.g. a RAIDZ2 is still a RAIDZ2 even after expansion). A RAIDZ vdev can be expanded multiple times. After the expansion completes, old blocks remain with their old data-to-parity ratio (e.g. 5-wide RAIDZ2, has 3 data to 2 parity), but distributed among the larger set of disks. New blocks will be written with the new data-to-parity ratio (e.g. a 5-wide RAIDZ2 which has been expanded once to 6-wide, has 4 data to 2 parity). However, the RAIDZ vdev's "assumed parity ratio" does not change, so slightly less space than is expected may be reported for newly-written blocks, according to `zfs list`, `df`, `ls -s`, and similar tools. Sponsored-by: The FreeBSD Foundation Sponsored-by: iXsystems, Inc. Sponsored-by: vStack Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov> Reviewed-by: Mark Maybee <mark.maybee@delphix.com> Authored-by: Matthew Ahrens <mahrens@delphix.com> Contributions-by: Fedor Uporov <fuporov.vstack@gmail.com> Contributions-by: Stuart Maybee <stuart.maybee@comcast.net> Contributions-by: Thorsten Behrens <tbehrens@outlook.com> Contributions-by: Fmstrat <nospam@nowsci.com> Contributions-by: Don Brady <dev.fs.zfs@gmail.com> Signed-off-by: Don Brady <dev.fs.zfs@gmail.com> Closes #15022
2023-11-08 21:19:41 +03:00
} else if (strcmp(raid_kind, "eraidz") == 0) {
/* using eraidz (expandable raidz) */
zo->zo_raid_do_expand = B_TRUE;
/* tests expect top-level to be raidz */
zo->zo_mirrors = 0;
zo->zo_vdevs = 1;
/* Make sure parity is less than data columns */
zo->zo_raid_parity = MIN(zo->zo_raid_parity,
zo->zo_raid_children - 1);
Distributed Spare (dRAID) Feature This patch adds a new top-level vdev type called dRAID, which stands for Distributed parity RAID. This pool configuration allows all dRAID vdevs to participate when rebuilding to a distributed hot spare device. This can substantially reduce the total time required to restore full parity to pool with a failed device. A dRAID pool can be created using the new top-level `draid` type. Like `raidz`, the desired redundancy is specified after the type: `draid[1,2,3]`. No additional information is required to create the pool and reasonable default values will be chosen based on the number of child vdevs in the dRAID vdev. zpool create <pool> draid[1,2,3] <vdevs...> Unlike raidz, additional optional dRAID configuration values can be provided as part of the draid type as colon separated values. This allows administrators to fully specify a layout for either performance or capacity reasons. The supported options include: zpool create <pool> \ draid[<parity>][:<data>d][:<children>c][:<spares>s] \ <vdevs...> - draid[parity] - Parity level (default 1) - draid[:<data>d] - Data devices per group (default 8) - draid[:<children>c] - Expected number of child vdevs - draid[:<spares>s] - Distributed hot spares (default 0) Abbreviated example `zpool status` output for a 68 disk dRAID pool with two distributed spares using special allocation classes. ``` pool: tank state: ONLINE config: NAME STATE READ WRITE CKSUM slag7 ONLINE 0 0 0 draid2:8d:68c:2s-0 ONLINE 0 0 0 L0 ONLINE 0 0 0 L1 ONLINE 0 0 0 ... U25 ONLINE 0 0 0 U26 ONLINE 0 0 0 spare-53 ONLINE 0 0 0 U27 ONLINE 0 0 0 draid2-0-0 ONLINE 0 0 0 U28 ONLINE 0 0 0 U29 ONLINE 0 0 0 ... U42 ONLINE 0 0 0 U43 ONLINE 0 0 0 special mirror-1 ONLINE 0 0 0 L5 ONLINE 0 0 0 U5 ONLINE 0 0 0 mirror-2 ONLINE 0 0 0 L6 ONLINE 0 0 0 U6 ONLINE 0 0 0 spares draid2-0-0 INUSE currently in use draid2-0-1 AVAIL ``` When adding test coverage for the new dRAID vdev type the following options were added to the ztest command. These options are leverages by zloop.sh to test a wide range of dRAID configurations. -K draid|raidz|random - kind of RAID to test -D <value> - dRAID data drives per group -S <value> - dRAID distributed hot spares -R <value> - RAID parity (raidz or dRAID) The zpool_create, zpool_import, redundancy, replacement and fault test groups have all been updated provide test coverage for the dRAID feature. Co-authored-by: Isaac Huang <he.huang@intel.com> Co-authored-by: Mark Maybee <mmaybee@cray.com> Co-authored-by: Don Brady <don.brady@delphix.com> Co-authored-by: Matthew Ahrens <mahrens@delphix.com> Co-authored-by: Brian Behlendorf <behlendorf1@llnl.gov> Reviewed-by: Mark Maybee <mmaybee@cray.com> Reviewed-by: Matt Ahrens <matt@delphix.com> Reviewed-by: Tony Hutter <hutter2@llnl.gov> Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov> Closes #10102
2020-11-14 00:51:51 +03:00
} else /* using raidz */ {
ASSERT0(strcmp(raid_kind, "raidz"));
zo->zo_raid_parity = MIN(zo->zo_raid_parity,
zo->zo_raid_children - 1);
}
2008-11-20 23:01:55 +03:00
zo->zo_vdevtime =
(zo->zo_vdevs > 0 ? zo->zo_time * NANOSEC / zo->zo_vdevs :
UINT64_MAX >> 2);
if (*zo->zo_alt_ztest) {
const char *invalid_what = "ztest";
char *val = zo->zo_alt_ztest;
if (0 != access(val, X_OK) ||
(strrchr(val, '/') == NULL && (errno == EINVAL)))
goto invalid;
int dirlen = strrchr(val, '/') - val;
Cleanup: Switch to strlcpy from strncpy Coverity found a bug in `zfs_secpolicy_create_clone()` where it is possible for us to pass an unterminated string when `zfs_get_parent()` returns an error. Upon inspection, it is clear that using `strlcpy()` would have avoided this issue. Looking at the codebase, there are a number of other uses of `strncpy()` that are unsafe and even when it is used safely, switching to `strlcpy()` would make the code more readable. Therefore, we switch all instances where we use `strncpy()` to use `strlcpy()`. Unfortunately, we do not portably have access to `strlcpy()` in tests/zfs-tests/cmd/zfs_diff-socket.c because it does not link to libspl. Modifying the appropriate Makefile.am to try to link to it resulted in an error from the naming choice used in the file. Trying to disable the check on the file did not work on FreeBSD because Clang ignores `#undef` when a definition is provided by `-Dstrncpy(...)=...`. We workaround that by explictly including the C file from libspl into the test. This makes things build correctly everywhere. We add a deprecation warning to `config/Rules.am` and suppress it on the remaining `strncpy()` usage. `strlcpy()` is not portably avaliable in tests/zfs-tests/cmd/zfs_diff-socket.c, so we use `snprintf()` there as a substitute. This patch does not tackle the related problem of `strcpy()`, which is even less safe. Thankfully, a quick inspection found that it is used far more correctly than strncpy() was used. A quick inspection did not find any problems with `strcpy()` usage outside of zhack, but it should be said that I only checked around 90% of them. Lastly, some of the fields in kstat_t varied in size by 1 depending on whether they were in userspace or in the kernel. The origin of this discrepancy appears to be 04a479f7066ccdaa23a6546955303b172f4a6909 where it was made for no apparent reason. It conflicts with the comment on KSTAT_STRLEN, so we shrink the kernel field sizes to match the userspace field sizes. Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov> Reviewed-by: Ryan Moeller <ryan@iXsystems.com> Signed-off-by: Richard Yao <richard.yao@alumni.stonybrook.edu> Closes #13876
2022-09-28 02:35:29 +03:00
strlcpy(zo->zo_alt_libpath, val,
MIN(sizeof (zo->zo_alt_libpath), dirlen + 1));
invalid_what = "library path", val = zo->zo_alt_libpath;
if (strrchr(val, '/') == NULL && (errno == EINVAL))
goto invalid;
*strrchr(val, '/') = '\0';
strlcat(val, "/lib", sizeof (zo->zo_alt_libpath));
if (0 != access(zo->zo_alt_libpath, X_OK))
goto invalid;
return;
invalid:
ztest_dump_core = B_FALSE;
fatal(B_TRUE, "invalid alternate %s %s", invalid_what, val);
}
}
static void
ztest_kill(ztest_shared_t *zs)
{
zs->zs_alloc = metaslab_class_get_alloc(spa_normal_class(ztest_spa));
zs->zs_space = metaslab_class_get_space(spa_normal_class(ztest_spa));
Illumos #3956, #3957, #3958, #3959, #3960, #3961, #3962 3956 ::vdev -r should work with pipelines 3957 ztest should update the cachefile before killing itself 3958 multiple scans can lead to partial resilvering 3959 ddt entries are not always resilvered 3960 dsl_scan can skip over dedup-ed blocks if physical birth != logical birth 3961 freed gang blocks are not resilvered and can cause pool to suspend 3962 ztest should print out zfs debug buffer before exiting Reviewed by: Matthew Ahrens <mahrens@delphix.com> Reviewed by: Adam Leventhal <ahl@delphix.com> Approved by: Richard Lowe <richlowe@richlowe.net> References: https://www.illumos.org/issues/3956 https://www.illumos.org/issues/3957 https://www.illumos.org/issues/3958 https://www.illumos.org/issues/3959 https://www.illumos.org/issues/3960 https://www.illumos.org/issues/3961 https://www.illumos.org/issues/3962 illumos/illumos-gate@b4952e17e8858d3225793b28788278de9fe6038d Ported-by: Richard Yao <ryao@gentoo.org> Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov> Porting notes: 1. zfs_dbgmsg_print() is only used in userland. Since we do not have mdb on Linux, it does not make sense to make it available in the kernel. This means that a build failure will occur if any future kernel patch depends on it. However, that is unlikely given that this functionality was added to support zdb. 2. zfs_dbgmsg_print() is only invoked for -VVV or greater log levels. This preserves the existing behavior of minimal noise when running with -V, and -VV. 3. In vdev_config_generate() the call to nvlist_alloc() was not changed to fnvlist_alloc() because we must pass KM_PUSHPAGE in the txg_sync context.
2013-08-08 00:16:22 +04:00
/*
* Before we kill ourselves, make sure that the config is updated.
OpenZFS 7614, 9064 - zfs device evacuation/removal OpenZFS 7614 - zfs device evacuation/removal OpenZFS 9064 - remove_mirror should wait for device removal to complete This project allows top-level vdevs to be removed from the storage pool with "zpool remove", reducing the total amount of storage in the pool. This operation copies all allocated regions of the device to be removed onto other devices, recording the mapping from old to new location. After the removal is complete, read and free operations to the removed (now "indirect") vdev must be remapped and performed at the new location on disk. The indirect mapping table is kept in memory whenever the pool is loaded, so there is minimal performance overhead when doing operations on the indirect vdev. The size of the in-memory mapping table will be reduced when its entries become "obsolete" because they are no longer used by any block pointers in the pool. An entry becomes obsolete when all the blocks that use it are freed. An entry can also become obsolete when all the snapshots that reference it are deleted, and the block pointers that reference it have been "remapped" in all filesystems/zvols (and clones). Whenever an indirect block is written, all the block pointers in it will be "remapped" to their new (concrete) locations if possible. This process can be accelerated by using the "zfs remap" command to proactively rewrite all indirect blocks that reference indirect (removed) vdevs. Note that when a device is removed, we do not verify the checksum of the data that is copied. This makes the process much faster, but if it were used on redundant vdevs (i.e. mirror or raidz vdevs), it would be possible to copy the wrong data, when we have the correct data on e.g. the other side of the mirror. At the moment, only mirrors and simple top-level vdevs can be removed and no removal is allowed if any of the top-level vdevs are raidz. Porting Notes: * Avoid zero-sized kmem_alloc() in vdev_compact_children(). The device evacuation code adds a dependency that vdev_compact_children() be able to properly empty the vdev_child array by setting it to NULL and zeroing vdev_children. Under Linux, kmem_alloc() and related functions return a sentinel pointer rather than NULL for zero-sized allocations. * Remove comment regarding "mpt" driver where zfs_remove_max_segment is initialized to SPA_MAXBLOCKSIZE. Change zfs_condense_indirect_commit_entry_delay_ticks to zfs_condense_indirect_commit_entry_delay_ms for consistency with most other tunables in which delays are specified in ms. * ZTS changes: Use set_tunable rather than mdb Use zpool sync as appropriate Use sync_pool instead of sync Kill jobs during test_removal_with_operation to allow unmount/export Don't add non-disk names such as "mirror" or "raidz" to $DISKS Use $TEST_BASE_DIR instead of /tmp Increase HZ from 100 to 1000 which is more common on Linux removal_multiple_indirection.ksh Reduce iterations in order to not time out on the code coverage builders. removal_resume_export: Functionally, the test case is correct but there exists a race where the kernel thread hasn't been fully started yet and is not visible. Wait for up to 1 second for the removal thread to be started before giving up on it. Also, increase the amount of data copied in order that the removal not finish before the export has a chance to fail. * MMP compatibility, the concept of concrete versus non-concrete devices has slightly changed the semantics of vdev_writeable(). Update mmp_random_leaf_impl() accordingly. * Updated dbuf_remap() to handle the org.zfsonlinux:large_dnode pool feature which is not supported by OpenZFS. * Added support for new vdev removal tracepoints. * Test cases removal_with_zdb and removal_condense_export have been intentionally disabled. When run manually they pass as intended, but when running in the automated test environment they produce unreliable results on the latest Fedora release. They may work better once the upstream pool import refectoring is merged into ZoL at which point they will be re-enabled. Authored by: Matthew Ahrens <mahrens@delphix.com> Reviewed-by: Alex Reece <alex@delphix.com> Reviewed-by: George Wilson <george.wilson@delphix.com> Reviewed-by: John Kennedy <john.kennedy@delphix.com> Reviewed-by: Prakash Surya <prakash.surya@delphix.com> Reviewed by: Richard Laager <rlaager@wiktel.com> Reviewed by: Tim Chase <tim@chase2k.com> Reviewed by: Brian Behlendorf <behlendorf1@llnl.gov> Approved by: Garrett D'Amore <garrett@damore.org> Ported-by: Tim Chase <tim@chase2k.com> Signed-off-by: Tim Chase <tim@chase2k.com> OpenZFS-issue: https://www.illumos.org/issues/7614 OpenZFS-commit: https://github.com/openzfs/openzfs/commit/f539f1eb Closes #6900
2016-09-22 19:30:13 +03:00
* See comment above spa_write_cachefile().
Illumos #3956, #3957, #3958, #3959, #3960, #3961, #3962 3956 ::vdev -r should work with pipelines 3957 ztest should update the cachefile before killing itself 3958 multiple scans can lead to partial resilvering 3959 ddt entries are not always resilvered 3960 dsl_scan can skip over dedup-ed blocks if physical birth != logical birth 3961 freed gang blocks are not resilvered and can cause pool to suspend 3962 ztest should print out zfs debug buffer before exiting Reviewed by: Matthew Ahrens <mahrens@delphix.com> Reviewed by: Adam Leventhal <ahl@delphix.com> Approved by: Richard Lowe <richlowe@richlowe.net> References: https://www.illumos.org/issues/3956 https://www.illumos.org/issues/3957 https://www.illumos.org/issues/3958 https://www.illumos.org/issues/3959 https://www.illumos.org/issues/3960 https://www.illumos.org/issues/3961 https://www.illumos.org/issues/3962 illumos/illumos-gate@b4952e17e8858d3225793b28788278de9fe6038d Ported-by: Richard Yao <ryao@gentoo.org> Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov> Porting notes: 1. zfs_dbgmsg_print() is only used in userland. Since we do not have mdb on Linux, it does not make sense to make it available in the kernel. This means that a build failure will occur if any future kernel patch depends on it. However, that is unlikely given that this functionality was added to support zdb. 2. zfs_dbgmsg_print() is only invoked for -VVV or greater log levels. This preserves the existing behavior of minimal noise when running with -V, and -VV. 3. In vdev_config_generate() the call to nvlist_alloc() was not changed to fnvlist_alloc() because we must pass KM_PUSHPAGE in the txg_sync context.
2013-08-08 00:16:22 +04:00
*/
RAID-Z expansion feature This feature allows disks to be added one at a time to a RAID-Z group, expanding its capacity incrementally. This feature is especially useful for small pools (typically with only one RAID-Z group), where there isn't sufficient hardware to add capacity by adding a whole new RAID-Z group (typically doubling the number of disks). == Initiating expansion == A new device (disk) can be attached to an existing RAIDZ vdev, by running `zpool attach POOL raidzP-N NEW_DEVICE`, e.g. `zpool attach tank raidz2-0 sda`. The new device will become part of the RAIDZ group. A "raidz expansion" will be initiated, and the new device will contribute additional space to the RAIDZ group once the expansion completes. The `feature@raidz_expansion` on-disk feature flag must be `enabled` to initiate an expansion, and it remains `active` for the life of the pool. In other words, pools with expanded RAIDZ vdevs can not be imported by older releases of the ZFS software. == During expansion == The expansion entails reading all allocated space from existing disks in the RAIDZ group, and rewriting it to the new disks in the RAIDZ group (including the newly added device). The expansion progress can be monitored with `zpool status`. Data redundancy is maintained during (and after) the expansion. If a disk fails while the expansion is in progress, the expansion pauses until the health of the RAIDZ vdev is restored (e.g. by replacing the failed disk and waiting for reconstruction to complete). The pool remains accessible during expansion. Following a reboot or export/import, the expansion resumes where it left off. == After expansion == When the expansion completes, the additional space is available for use, and is reflected in the `available` zfs property (as seen in `zfs list`, `df`, etc). Expansion does not change the number of failures that can be tolerated without data loss (e.g. a RAIDZ2 is still a RAIDZ2 even after expansion). A RAIDZ vdev can be expanded multiple times. After the expansion completes, old blocks remain with their old data-to-parity ratio (e.g. 5-wide RAIDZ2, has 3 data to 2 parity), but distributed among the larger set of disks. New blocks will be written with the new data-to-parity ratio (e.g. a 5-wide RAIDZ2 which has been expanded once to 6-wide, has 4 data to 2 parity). However, the RAIDZ vdev's "assumed parity ratio" does not change, so slightly less space than is expected may be reported for newly-written blocks, according to `zfs list`, `df`, `ls -s`, and similar tools. Sponsored-by: The FreeBSD Foundation Sponsored-by: iXsystems, Inc. Sponsored-by: vStack Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov> Reviewed-by: Mark Maybee <mark.maybee@delphix.com> Authored-by: Matthew Ahrens <mahrens@delphix.com> Contributions-by: Fedor Uporov <fuporov.vstack@gmail.com> Contributions-by: Stuart Maybee <stuart.maybee@comcast.net> Contributions-by: Thorsten Behrens <tbehrens@outlook.com> Contributions-by: Fmstrat <nospam@nowsci.com> Contributions-by: Don Brady <dev.fs.zfs@gmail.com> Signed-off-by: Don Brady <dev.fs.zfs@gmail.com> Closes #15022
2023-11-08 21:19:41 +03:00
if (raidz_expand_pause_point != RAIDZ_EXPAND_PAUSE_NONE) {
if (mutex_tryenter(&spa_namespace_lock)) {
spa_write_cachefile(ztest_spa, B_FALSE, B_FALSE,
B_FALSE);
mutex_exit(&spa_namespace_lock);
ztest_scratch_state->zs_raidz_scratch_verify_pause =
raidz_expand_pause_point;
} else {
/*
* Do not verify scratch object in case if
* spa_namespace_lock cannot be acquired,
* it can cause deadlock in spa_config_update().
*/
raidz_expand_pause_point = RAIDZ_EXPAND_PAUSE_NONE;
return;
}
} else {
mutex_enter(&spa_namespace_lock);
spa_write_cachefile(ztest_spa, B_FALSE, B_FALSE, B_FALSE);
mutex_exit(&spa_namespace_lock);
}
Illumos #3956, #3957, #3958, #3959, #3960, #3961, #3962 3956 ::vdev -r should work with pipelines 3957 ztest should update the cachefile before killing itself 3958 multiple scans can lead to partial resilvering 3959 ddt entries are not always resilvered 3960 dsl_scan can skip over dedup-ed blocks if physical birth != logical birth 3961 freed gang blocks are not resilvered and can cause pool to suspend 3962 ztest should print out zfs debug buffer before exiting Reviewed by: Matthew Ahrens <mahrens@delphix.com> Reviewed by: Adam Leventhal <ahl@delphix.com> Approved by: Richard Lowe <richlowe@richlowe.net> References: https://www.illumos.org/issues/3956 https://www.illumos.org/issues/3957 https://www.illumos.org/issues/3958 https://www.illumos.org/issues/3959 https://www.illumos.org/issues/3960 https://www.illumos.org/issues/3961 https://www.illumos.org/issues/3962 illumos/illumos-gate@b4952e17e8858d3225793b28788278de9fe6038d Ported-by: Richard Yao <ryao@gentoo.org> Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov> Porting notes: 1. zfs_dbgmsg_print() is only used in userland. Since we do not have mdb on Linux, it does not make sense to make it available in the kernel. This means that a build failure will occur if any future kernel patch depends on it. However, that is unlikely given that this functionality was added to support zdb. 2. zfs_dbgmsg_print() is only invoked for -VVV or greater log levels. This preserves the existing behavior of minimal noise when running with -V, and -VV. 3. In vdev_config_generate() the call to nvlist_alloc() was not changed to fnvlist_alloc() because we must pass KM_PUSHPAGE in the txg_sync context.
2013-08-08 00:16:22 +04:00
(void) raise(SIGKILL);
}
static void
ztest_record_enospc(const char *s)
{
(void) s;
ztest_shared->zs_enospc_count++;
2008-11-20 23:01:55 +03:00
}
static uint64_t
ztest_get_ashift(void)
{
if (ztest_opts.zo_ashift == 0)
return (SPA_MINBLOCKSHIFT + ztest_random(5));
return (ztest_opts.zo_ashift);
2008-11-20 23:01:55 +03:00
}
Distributed Spare (dRAID) Feature This patch adds a new top-level vdev type called dRAID, which stands for Distributed parity RAID. This pool configuration allows all dRAID vdevs to participate when rebuilding to a distributed hot spare device. This can substantially reduce the total time required to restore full parity to pool with a failed device. A dRAID pool can be created using the new top-level `draid` type. Like `raidz`, the desired redundancy is specified after the type: `draid[1,2,3]`. No additional information is required to create the pool and reasonable default values will be chosen based on the number of child vdevs in the dRAID vdev. zpool create <pool> draid[1,2,3] <vdevs...> Unlike raidz, additional optional dRAID configuration values can be provided as part of the draid type as colon separated values. This allows administrators to fully specify a layout for either performance or capacity reasons. The supported options include: zpool create <pool> \ draid[<parity>][:<data>d][:<children>c][:<spares>s] \ <vdevs...> - draid[parity] - Parity level (default 1) - draid[:<data>d] - Data devices per group (default 8) - draid[:<children>c] - Expected number of child vdevs - draid[:<spares>s] - Distributed hot spares (default 0) Abbreviated example `zpool status` output for a 68 disk dRAID pool with two distributed spares using special allocation classes. ``` pool: tank state: ONLINE config: NAME STATE READ WRITE CKSUM slag7 ONLINE 0 0 0 draid2:8d:68c:2s-0 ONLINE 0 0 0 L0 ONLINE 0 0 0 L1 ONLINE 0 0 0 ... U25 ONLINE 0 0 0 U26 ONLINE 0 0 0 spare-53 ONLINE 0 0 0 U27 ONLINE 0 0 0 draid2-0-0 ONLINE 0 0 0 U28 ONLINE 0 0 0 U29 ONLINE 0 0 0 ... U42 ONLINE 0 0 0 U43 ONLINE 0 0 0 special mirror-1 ONLINE 0 0 0 L5 ONLINE 0 0 0 U5 ONLINE 0 0 0 mirror-2 ONLINE 0 0 0 L6 ONLINE 0 0 0 U6 ONLINE 0 0 0 spares draid2-0-0 INUSE currently in use draid2-0-1 AVAIL ``` When adding test coverage for the new dRAID vdev type the following options were added to the ztest command. These options are leverages by zloop.sh to test a wide range of dRAID configurations. -K draid|raidz|random - kind of RAID to test -D <value> - dRAID data drives per group -S <value> - dRAID distributed hot spares -R <value> - RAID parity (raidz or dRAID) The zpool_create, zpool_import, redundancy, replacement and fault test groups have all been updated provide test coverage for the dRAID feature. Co-authored-by: Isaac Huang <he.huang@intel.com> Co-authored-by: Mark Maybee <mmaybee@cray.com> Co-authored-by: Don Brady <don.brady@delphix.com> Co-authored-by: Matthew Ahrens <mahrens@delphix.com> Co-authored-by: Brian Behlendorf <behlendorf1@llnl.gov> Reviewed-by: Mark Maybee <mmaybee@cray.com> Reviewed-by: Matt Ahrens <matt@delphix.com> Reviewed-by: Tony Hutter <hutter2@llnl.gov> Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov> Closes #10102
2020-11-14 00:51:51 +03:00
static boolean_t
ztest_is_draid_spare(const char *name)
{
uint64_t spare_id = 0, parity = 0, vdev_id = 0;
if (sscanf(name, VDEV_TYPE_DRAID "%"PRIu64"-%"PRIu64"-%"PRIu64"",
&parity, &vdev_id, &spare_id) == 3) {
Distributed Spare (dRAID) Feature This patch adds a new top-level vdev type called dRAID, which stands for Distributed parity RAID. This pool configuration allows all dRAID vdevs to participate when rebuilding to a distributed hot spare device. This can substantially reduce the total time required to restore full parity to pool with a failed device. A dRAID pool can be created using the new top-level `draid` type. Like `raidz`, the desired redundancy is specified after the type: `draid[1,2,3]`. No additional information is required to create the pool and reasonable default values will be chosen based on the number of child vdevs in the dRAID vdev. zpool create <pool> draid[1,2,3] <vdevs...> Unlike raidz, additional optional dRAID configuration values can be provided as part of the draid type as colon separated values. This allows administrators to fully specify a layout for either performance or capacity reasons. The supported options include: zpool create <pool> \ draid[<parity>][:<data>d][:<children>c][:<spares>s] \ <vdevs...> - draid[parity] - Parity level (default 1) - draid[:<data>d] - Data devices per group (default 8) - draid[:<children>c] - Expected number of child vdevs - draid[:<spares>s] - Distributed hot spares (default 0) Abbreviated example `zpool status` output for a 68 disk dRAID pool with two distributed spares using special allocation classes. ``` pool: tank state: ONLINE config: NAME STATE READ WRITE CKSUM slag7 ONLINE 0 0 0 draid2:8d:68c:2s-0 ONLINE 0 0 0 L0 ONLINE 0 0 0 L1 ONLINE 0 0 0 ... U25 ONLINE 0 0 0 U26 ONLINE 0 0 0 spare-53 ONLINE 0 0 0 U27 ONLINE 0 0 0 draid2-0-0 ONLINE 0 0 0 U28 ONLINE 0 0 0 U29 ONLINE 0 0 0 ... U42 ONLINE 0 0 0 U43 ONLINE 0 0 0 special mirror-1 ONLINE 0 0 0 L5 ONLINE 0 0 0 U5 ONLINE 0 0 0 mirror-2 ONLINE 0 0 0 L6 ONLINE 0 0 0 U6 ONLINE 0 0 0 spares draid2-0-0 INUSE currently in use draid2-0-1 AVAIL ``` When adding test coverage for the new dRAID vdev type the following options were added to the ztest command. These options are leverages by zloop.sh to test a wide range of dRAID configurations. -K draid|raidz|random - kind of RAID to test -D <value> - dRAID data drives per group -S <value> - dRAID distributed hot spares -R <value> - RAID parity (raidz or dRAID) The zpool_create, zpool_import, redundancy, replacement and fault test groups have all been updated provide test coverage for the dRAID feature. Co-authored-by: Isaac Huang <he.huang@intel.com> Co-authored-by: Mark Maybee <mmaybee@cray.com> Co-authored-by: Don Brady <don.brady@delphix.com> Co-authored-by: Matthew Ahrens <mahrens@delphix.com> Co-authored-by: Brian Behlendorf <behlendorf1@llnl.gov> Reviewed-by: Mark Maybee <mmaybee@cray.com> Reviewed-by: Matt Ahrens <matt@delphix.com> Reviewed-by: Tony Hutter <hutter2@llnl.gov> Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov> Closes #10102
2020-11-14 00:51:51 +03:00
return (B_TRUE);
}
return (B_FALSE);
}
2008-11-20 23:01:55 +03:00
static nvlist_t *
make_vdev_file(const char *path, const char *aux, const char *pool,
size_t size, uint64_t ashift)
2008-11-20 23:01:55 +03:00
{
char *pathbuf = NULL;
2008-11-20 23:01:55 +03:00
uint64_t vdev;
nvlist_t *file;
Distributed Spare (dRAID) Feature This patch adds a new top-level vdev type called dRAID, which stands for Distributed parity RAID. This pool configuration allows all dRAID vdevs to participate when rebuilding to a distributed hot spare device. This can substantially reduce the total time required to restore full parity to pool with a failed device. A dRAID pool can be created using the new top-level `draid` type. Like `raidz`, the desired redundancy is specified after the type: `draid[1,2,3]`. No additional information is required to create the pool and reasonable default values will be chosen based on the number of child vdevs in the dRAID vdev. zpool create <pool> draid[1,2,3] <vdevs...> Unlike raidz, additional optional dRAID configuration values can be provided as part of the draid type as colon separated values. This allows administrators to fully specify a layout for either performance or capacity reasons. The supported options include: zpool create <pool> \ draid[<parity>][:<data>d][:<children>c][:<spares>s] \ <vdevs...> - draid[parity] - Parity level (default 1) - draid[:<data>d] - Data devices per group (default 8) - draid[:<children>c] - Expected number of child vdevs - draid[:<spares>s] - Distributed hot spares (default 0) Abbreviated example `zpool status` output for a 68 disk dRAID pool with two distributed spares using special allocation classes. ``` pool: tank state: ONLINE config: NAME STATE READ WRITE CKSUM slag7 ONLINE 0 0 0 draid2:8d:68c:2s-0 ONLINE 0 0 0 L0 ONLINE 0 0 0 L1 ONLINE 0 0 0 ... U25 ONLINE 0 0 0 U26 ONLINE 0 0 0 spare-53 ONLINE 0 0 0 U27 ONLINE 0 0 0 draid2-0-0 ONLINE 0 0 0 U28 ONLINE 0 0 0 U29 ONLINE 0 0 0 ... U42 ONLINE 0 0 0 U43 ONLINE 0 0 0 special mirror-1 ONLINE 0 0 0 L5 ONLINE 0 0 0 U5 ONLINE 0 0 0 mirror-2 ONLINE 0 0 0 L6 ONLINE 0 0 0 U6 ONLINE 0 0 0 spares draid2-0-0 INUSE currently in use draid2-0-1 AVAIL ``` When adding test coverage for the new dRAID vdev type the following options were added to the ztest command. These options are leverages by zloop.sh to test a wide range of dRAID configurations. -K draid|raidz|random - kind of RAID to test -D <value> - dRAID data drives per group -S <value> - dRAID distributed hot spares -R <value> - RAID parity (raidz or dRAID) The zpool_create, zpool_import, redundancy, replacement and fault test groups have all been updated provide test coverage for the dRAID feature. Co-authored-by: Isaac Huang <he.huang@intel.com> Co-authored-by: Mark Maybee <mmaybee@cray.com> Co-authored-by: Don Brady <don.brady@delphix.com> Co-authored-by: Matthew Ahrens <mahrens@delphix.com> Co-authored-by: Brian Behlendorf <behlendorf1@llnl.gov> Reviewed-by: Mark Maybee <mmaybee@cray.com> Reviewed-by: Matt Ahrens <matt@delphix.com> Reviewed-by: Tony Hutter <hutter2@llnl.gov> Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov> Closes #10102
2020-11-14 00:51:51 +03:00
boolean_t draid_spare = B_FALSE;
2008-11-20 23:01:55 +03:00
if (ashift == 0)
ashift = ztest_get_ashift();
if (path == NULL) {
pathbuf = umem_alloc(MAXPATHLEN, UMEM_NOFAIL);
path = pathbuf;
if (aux != NULL) {
vdev = ztest_shared->zs_vdev_aux;
(void) snprintf(pathbuf, MAXPATHLEN,
ztest_aux_template, ztest_opts.zo_dir,
pool == NULL ? ztest_opts.zo_pool : pool,
aux, vdev);
} else {
vdev = ztest_shared->zs_vdev_next_leaf++;
(void) snprintf(pathbuf, MAXPATHLEN,
ztest_dev_template, ztest_opts.zo_dir,
pool == NULL ? ztest_opts.zo_pool : pool, vdev);
}
Distributed Spare (dRAID) Feature This patch adds a new top-level vdev type called dRAID, which stands for Distributed parity RAID. This pool configuration allows all dRAID vdevs to participate when rebuilding to a distributed hot spare device. This can substantially reduce the total time required to restore full parity to pool with a failed device. A dRAID pool can be created using the new top-level `draid` type. Like `raidz`, the desired redundancy is specified after the type: `draid[1,2,3]`. No additional information is required to create the pool and reasonable default values will be chosen based on the number of child vdevs in the dRAID vdev. zpool create <pool> draid[1,2,3] <vdevs...> Unlike raidz, additional optional dRAID configuration values can be provided as part of the draid type as colon separated values. This allows administrators to fully specify a layout for either performance or capacity reasons. The supported options include: zpool create <pool> \ draid[<parity>][:<data>d][:<children>c][:<spares>s] \ <vdevs...> - draid[parity] - Parity level (default 1) - draid[:<data>d] - Data devices per group (default 8) - draid[:<children>c] - Expected number of child vdevs - draid[:<spares>s] - Distributed hot spares (default 0) Abbreviated example `zpool status` output for a 68 disk dRAID pool with two distributed spares using special allocation classes. ``` pool: tank state: ONLINE config: NAME STATE READ WRITE CKSUM slag7 ONLINE 0 0 0 draid2:8d:68c:2s-0 ONLINE 0 0 0 L0 ONLINE 0 0 0 L1 ONLINE 0 0 0 ... U25 ONLINE 0 0 0 U26 ONLINE 0 0 0 spare-53 ONLINE 0 0 0 U27 ONLINE 0 0 0 draid2-0-0 ONLINE 0 0 0 U28 ONLINE 0 0 0 U29 ONLINE 0 0 0 ... U42 ONLINE 0 0 0 U43 ONLINE 0 0 0 special mirror-1 ONLINE 0 0 0 L5 ONLINE 0 0 0 U5 ONLINE 0 0 0 mirror-2 ONLINE 0 0 0 L6 ONLINE 0 0 0 U6 ONLINE 0 0 0 spares draid2-0-0 INUSE currently in use draid2-0-1 AVAIL ``` When adding test coverage for the new dRAID vdev type the following options were added to the ztest command. These options are leverages by zloop.sh to test a wide range of dRAID configurations. -K draid|raidz|random - kind of RAID to test -D <value> - dRAID data drives per group -S <value> - dRAID distributed hot spares -R <value> - RAID parity (raidz or dRAID) The zpool_create, zpool_import, redundancy, replacement and fault test groups have all been updated provide test coverage for the dRAID feature. Co-authored-by: Isaac Huang <he.huang@intel.com> Co-authored-by: Mark Maybee <mmaybee@cray.com> Co-authored-by: Don Brady <don.brady@delphix.com> Co-authored-by: Matthew Ahrens <mahrens@delphix.com> Co-authored-by: Brian Behlendorf <behlendorf1@llnl.gov> Reviewed-by: Mark Maybee <mmaybee@cray.com> Reviewed-by: Matt Ahrens <matt@delphix.com> Reviewed-by: Tony Hutter <hutter2@llnl.gov> Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov> Closes #10102
2020-11-14 00:51:51 +03:00
} else {
draid_spare = ztest_is_draid_spare(path);
}
2008-11-20 23:01:55 +03:00
Distributed Spare (dRAID) Feature This patch adds a new top-level vdev type called dRAID, which stands for Distributed parity RAID. This pool configuration allows all dRAID vdevs to participate when rebuilding to a distributed hot spare device. This can substantially reduce the total time required to restore full parity to pool with a failed device. A dRAID pool can be created using the new top-level `draid` type. Like `raidz`, the desired redundancy is specified after the type: `draid[1,2,3]`. No additional information is required to create the pool and reasonable default values will be chosen based on the number of child vdevs in the dRAID vdev. zpool create <pool> draid[1,2,3] <vdevs...> Unlike raidz, additional optional dRAID configuration values can be provided as part of the draid type as colon separated values. This allows administrators to fully specify a layout for either performance or capacity reasons. The supported options include: zpool create <pool> \ draid[<parity>][:<data>d][:<children>c][:<spares>s] \ <vdevs...> - draid[parity] - Parity level (default 1) - draid[:<data>d] - Data devices per group (default 8) - draid[:<children>c] - Expected number of child vdevs - draid[:<spares>s] - Distributed hot spares (default 0) Abbreviated example `zpool status` output for a 68 disk dRAID pool with two distributed spares using special allocation classes. ``` pool: tank state: ONLINE config: NAME STATE READ WRITE CKSUM slag7 ONLINE 0 0 0 draid2:8d:68c:2s-0 ONLINE 0 0 0 L0 ONLINE 0 0 0 L1 ONLINE 0 0 0 ... U25 ONLINE 0 0 0 U26 ONLINE 0 0 0 spare-53 ONLINE 0 0 0 U27 ONLINE 0 0 0 draid2-0-0 ONLINE 0 0 0 U28 ONLINE 0 0 0 U29 ONLINE 0 0 0 ... U42 ONLINE 0 0 0 U43 ONLINE 0 0 0 special mirror-1 ONLINE 0 0 0 L5 ONLINE 0 0 0 U5 ONLINE 0 0 0 mirror-2 ONLINE 0 0 0 L6 ONLINE 0 0 0 U6 ONLINE 0 0 0 spares draid2-0-0 INUSE currently in use draid2-0-1 AVAIL ``` When adding test coverage for the new dRAID vdev type the following options were added to the ztest command. These options are leverages by zloop.sh to test a wide range of dRAID configurations. -K draid|raidz|random - kind of RAID to test -D <value> - dRAID data drives per group -S <value> - dRAID distributed hot spares -R <value> - RAID parity (raidz or dRAID) The zpool_create, zpool_import, redundancy, replacement and fault test groups have all been updated provide test coverage for the dRAID feature. Co-authored-by: Isaac Huang <he.huang@intel.com> Co-authored-by: Mark Maybee <mmaybee@cray.com> Co-authored-by: Don Brady <don.brady@delphix.com> Co-authored-by: Matthew Ahrens <mahrens@delphix.com> Co-authored-by: Brian Behlendorf <behlendorf1@llnl.gov> Reviewed-by: Mark Maybee <mmaybee@cray.com> Reviewed-by: Matt Ahrens <matt@delphix.com> Reviewed-by: Tony Hutter <hutter2@llnl.gov> Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov> Closes #10102
2020-11-14 00:51:51 +03:00
if (size != 0 && !draid_spare) {
int fd = open(path, O_RDWR | O_CREAT | O_TRUNC, 0666);
2008-11-20 23:01:55 +03:00
if (fd == -1)
fatal(B_TRUE, "can't open %s", path);
2008-11-20 23:01:55 +03:00
if (ftruncate(fd, size) != 0)
fatal(B_TRUE, "can't ftruncate %s", path);
2008-11-20 23:01:55 +03:00
(void) close(fd);
}
file = fnvlist_alloc();
fnvlist_add_string(file, ZPOOL_CONFIG_TYPE,
draid_spare ? VDEV_TYPE_DRAID_SPARE : VDEV_TYPE_FILE);
fnvlist_add_string(file, ZPOOL_CONFIG_PATH, path);
fnvlist_add_uint64(file, ZPOOL_CONFIG_ASHIFT, ashift);
umem_free(pathbuf, MAXPATHLEN);
2008-11-20 23:01:55 +03:00
return (file);
}
static nvlist_t *
make_vdev_raid(const char *path, const char *aux, const char *pool, size_t size,
uint64_t ashift, int r)
2008-11-20 23:01:55 +03:00
{
Distributed Spare (dRAID) Feature This patch adds a new top-level vdev type called dRAID, which stands for Distributed parity RAID. This pool configuration allows all dRAID vdevs to participate when rebuilding to a distributed hot spare device. This can substantially reduce the total time required to restore full parity to pool with a failed device. A dRAID pool can be created using the new top-level `draid` type. Like `raidz`, the desired redundancy is specified after the type: `draid[1,2,3]`. No additional information is required to create the pool and reasonable default values will be chosen based on the number of child vdevs in the dRAID vdev. zpool create <pool> draid[1,2,3] <vdevs...> Unlike raidz, additional optional dRAID configuration values can be provided as part of the draid type as colon separated values. This allows administrators to fully specify a layout for either performance or capacity reasons. The supported options include: zpool create <pool> \ draid[<parity>][:<data>d][:<children>c][:<spares>s] \ <vdevs...> - draid[parity] - Parity level (default 1) - draid[:<data>d] - Data devices per group (default 8) - draid[:<children>c] - Expected number of child vdevs - draid[:<spares>s] - Distributed hot spares (default 0) Abbreviated example `zpool status` output for a 68 disk dRAID pool with two distributed spares using special allocation classes. ``` pool: tank state: ONLINE config: NAME STATE READ WRITE CKSUM slag7 ONLINE 0 0 0 draid2:8d:68c:2s-0 ONLINE 0 0 0 L0 ONLINE 0 0 0 L1 ONLINE 0 0 0 ... U25 ONLINE 0 0 0 U26 ONLINE 0 0 0 spare-53 ONLINE 0 0 0 U27 ONLINE 0 0 0 draid2-0-0 ONLINE 0 0 0 U28 ONLINE 0 0 0 U29 ONLINE 0 0 0 ... U42 ONLINE 0 0 0 U43 ONLINE 0 0 0 special mirror-1 ONLINE 0 0 0 L5 ONLINE 0 0 0 U5 ONLINE 0 0 0 mirror-2 ONLINE 0 0 0 L6 ONLINE 0 0 0 U6 ONLINE 0 0 0 spares draid2-0-0 INUSE currently in use draid2-0-1 AVAIL ``` When adding test coverage for the new dRAID vdev type the following options were added to the ztest command. These options are leverages by zloop.sh to test a wide range of dRAID configurations. -K draid|raidz|random - kind of RAID to test -D <value> - dRAID data drives per group -S <value> - dRAID distributed hot spares -R <value> - RAID parity (raidz or dRAID) The zpool_create, zpool_import, redundancy, replacement and fault test groups have all been updated provide test coverage for the dRAID feature. Co-authored-by: Isaac Huang <he.huang@intel.com> Co-authored-by: Mark Maybee <mmaybee@cray.com> Co-authored-by: Don Brady <don.brady@delphix.com> Co-authored-by: Matthew Ahrens <mahrens@delphix.com> Co-authored-by: Brian Behlendorf <behlendorf1@llnl.gov> Reviewed-by: Mark Maybee <mmaybee@cray.com> Reviewed-by: Matt Ahrens <matt@delphix.com> Reviewed-by: Tony Hutter <hutter2@llnl.gov> Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov> Closes #10102
2020-11-14 00:51:51 +03:00
nvlist_t *raid, **child;
2008-11-20 23:01:55 +03:00
int c;
if (r < 2)
return (make_vdev_file(path, aux, pool, size, ashift));
2008-11-20 23:01:55 +03:00
child = umem_alloc(r * sizeof (nvlist_t *), UMEM_NOFAIL);
for (c = 0; c < r; c++)
child[c] = make_vdev_file(path, aux, pool, size, ashift);
2008-11-20 23:01:55 +03:00
raid = fnvlist_alloc();
fnvlist_add_string(raid, ZPOOL_CONFIG_TYPE,
ztest_opts.zo_raid_type);
fnvlist_add_uint64(raid, ZPOOL_CONFIG_NPARITY,
ztest_opts.zo_raid_parity);
fnvlist_add_nvlist_array(raid, ZPOOL_CONFIG_CHILDREN,
(const nvlist_t **)child, r);
Distributed Spare (dRAID) Feature This patch adds a new top-level vdev type called dRAID, which stands for Distributed parity RAID. This pool configuration allows all dRAID vdevs to participate when rebuilding to a distributed hot spare device. This can substantially reduce the total time required to restore full parity to pool with a failed device. A dRAID pool can be created using the new top-level `draid` type. Like `raidz`, the desired redundancy is specified after the type: `draid[1,2,3]`. No additional information is required to create the pool and reasonable default values will be chosen based on the number of child vdevs in the dRAID vdev. zpool create <pool> draid[1,2,3] <vdevs...> Unlike raidz, additional optional dRAID configuration values can be provided as part of the draid type as colon separated values. This allows administrators to fully specify a layout for either performance or capacity reasons. The supported options include: zpool create <pool> \ draid[<parity>][:<data>d][:<children>c][:<spares>s] \ <vdevs...> - draid[parity] - Parity level (default 1) - draid[:<data>d] - Data devices per group (default 8) - draid[:<children>c] - Expected number of child vdevs - draid[:<spares>s] - Distributed hot spares (default 0) Abbreviated example `zpool status` output for a 68 disk dRAID pool with two distributed spares using special allocation classes. ``` pool: tank state: ONLINE config: NAME STATE READ WRITE CKSUM slag7 ONLINE 0 0 0 draid2:8d:68c:2s-0 ONLINE 0 0 0 L0 ONLINE 0 0 0 L1 ONLINE 0 0 0 ... U25 ONLINE 0 0 0 U26 ONLINE 0 0 0 spare-53 ONLINE 0 0 0 U27 ONLINE 0 0 0 draid2-0-0 ONLINE 0 0 0 U28 ONLINE 0 0 0 U29 ONLINE 0 0 0 ... U42 ONLINE 0 0 0 U43 ONLINE 0 0 0 special mirror-1 ONLINE 0 0 0 L5 ONLINE 0 0 0 U5 ONLINE 0 0 0 mirror-2 ONLINE 0 0 0 L6 ONLINE 0 0 0 U6 ONLINE 0 0 0 spares draid2-0-0 INUSE currently in use draid2-0-1 AVAIL ``` When adding test coverage for the new dRAID vdev type the following options were added to the ztest command. These options are leverages by zloop.sh to test a wide range of dRAID configurations. -K draid|raidz|random - kind of RAID to test -D <value> - dRAID data drives per group -S <value> - dRAID distributed hot spares -R <value> - RAID parity (raidz or dRAID) The zpool_create, zpool_import, redundancy, replacement and fault test groups have all been updated provide test coverage for the dRAID feature. Co-authored-by: Isaac Huang <he.huang@intel.com> Co-authored-by: Mark Maybee <mmaybee@cray.com> Co-authored-by: Don Brady <don.brady@delphix.com> Co-authored-by: Matthew Ahrens <mahrens@delphix.com> Co-authored-by: Brian Behlendorf <behlendorf1@llnl.gov> Reviewed-by: Mark Maybee <mmaybee@cray.com> Reviewed-by: Matt Ahrens <matt@delphix.com> Reviewed-by: Tony Hutter <hutter2@llnl.gov> Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov> Closes #10102
2020-11-14 00:51:51 +03:00
if (strcmp(ztest_opts.zo_raid_type, VDEV_TYPE_DRAID) == 0) {
uint64_t ndata = ztest_opts.zo_draid_data;
uint64_t nparity = ztest_opts.zo_raid_parity;
uint64_t nspares = ztest_opts.zo_draid_spares;
uint64_t children = ztest_opts.zo_raid_children;
uint64_t ngroups = 1;
/*
* Calculate the minimum number of groups required to fill a
* slice. This is the LCM of the stripe width (data + parity)
* and the number of data drives (children - spares).
*/
while (ngroups * (ndata + nparity) % (children - nspares) != 0)
ngroups++;
/* Store the basic dRAID configuration. */
fnvlist_add_uint64(raid, ZPOOL_CONFIG_DRAID_NDATA, ndata);
fnvlist_add_uint64(raid, ZPOOL_CONFIG_DRAID_NSPARES, nspares);
fnvlist_add_uint64(raid, ZPOOL_CONFIG_DRAID_NGROUPS, ngroups);
}
2008-11-20 23:01:55 +03:00
for (c = 0; c < r; c++)
fnvlist_free(child[c]);
2008-11-20 23:01:55 +03:00
umem_free(child, r * sizeof (nvlist_t *));
Distributed Spare (dRAID) Feature This patch adds a new top-level vdev type called dRAID, which stands for Distributed parity RAID. This pool configuration allows all dRAID vdevs to participate when rebuilding to a distributed hot spare device. This can substantially reduce the total time required to restore full parity to pool with a failed device. A dRAID pool can be created using the new top-level `draid` type. Like `raidz`, the desired redundancy is specified after the type: `draid[1,2,3]`. No additional information is required to create the pool and reasonable default values will be chosen based on the number of child vdevs in the dRAID vdev. zpool create <pool> draid[1,2,3] <vdevs...> Unlike raidz, additional optional dRAID configuration values can be provided as part of the draid type as colon separated values. This allows administrators to fully specify a layout for either performance or capacity reasons. The supported options include: zpool create <pool> \ draid[<parity>][:<data>d][:<children>c][:<spares>s] \ <vdevs...> - draid[parity] - Parity level (default 1) - draid[:<data>d] - Data devices per group (default 8) - draid[:<children>c] - Expected number of child vdevs - draid[:<spares>s] - Distributed hot spares (default 0) Abbreviated example `zpool status` output for a 68 disk dRAID pool with two distributed spares using special allocation classes. ``` pool: tank state: ONLINE config: NAME STATE READ WRITE CKSUM slag7 ONLINE 0 0 0 draid2:8d:68c:2s-0 ONLINE 0 0 0 L0 ONLINE 0 0 0 L1 ONLINE 0 0 0 ... U25 ONLINE 0 0 0 U26 ONLINE 0 0 0 spare-53 ONLINE 0 0 0 U27 ONLINE 0 0 0 draid2-0-0 ONLINE 0 0 0 U28 ONLINE 0 0 0 U29 ONLINE 0 0 0 ... U42 ONLINE 0 0 0 U43 ONLINE 0 0 0 special mirror-1 ONLINE 0 0 0 L5 ONLINE 0 0 0 U5 ONLINE 0 0 0 mirror-2 ONLINE 0 0 0 L6 ONLINE 0 0 0 U6 ONLINE 0 0 0 spares draid2-0-0 INUSE currently in use draid2-0-1 AVAIL ``` When adding test coverage for the new dRAID vdev type the following options were added to the ztest command. These options are leverages by zloop.sh to test a wide range of dRAID configurations. -K draid|raidz|random - kind of RAID to test -D <value> - dRAID data drives per group -S <value> - dRAID distributed hot spares -R <value> - RAID parity (raidz or dRAID) The zpool_create, zpool_import, redundancy, replacement and fault test groups have all been updated provide test coverage for the dRAID feature. Co-authored-by: Isaac Huang <he.huang@intel.com> Co-authored-by: Mark Maybee <mmaybee@cray.com> Co-authored-by: Don Brady <don.brady@delphix.com> Co-authored-by: Matthew Ahrens <mahrens@delphix.com> Co-authored-by: Brian Behlendorf <behlendorf1@llnl.gov> Reviewed-by: Mark Maybee <mmaybee@cray.com> Reviewed-by: Matt Ahrens <matt@delphix.com> Reviewed-by: Tony Hutter <hutter2@llnl.gov> Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov> Closes #10102
2020-11-14 00:51:51 +03:00
return (raid);
2008-11-20 23:01:55 +03:00
}
static nvlist_t *
make_vdev_mirror(const char *path, const char *aux, const char *pool,
size_t size, uint64_t ashift, int r, int m)
2008-11-20 23:01:55 +03:00
{
nvlist_t *mirror, **child;
int c;
if (m < 1)
Distributed Spare (dRAID) Feature This patch adds a new top-level vdev type called dRAID, which stands for Distributed parity RAID. This pool configuration allows all dRAID vdevs to participate when rebuilding to a distributed hot spare device. This can substantially reduce the total time required to restore full parity to pool with a failed device. A dRAID pool can be created using the new top-level `draid` type. Like `raidz`, the desired redundancy is specified after the type: `draid[1,2,3]`. No additional information is required to create the pool and reasonable default values will be chosen based on the number of child vdevs in the dRAID vdev. zpool create <pool> draid[1,2,3] <vdevs...> Unlike raidz, additional optional dRAID configuration values can be provided as part of the draid type as colon separated values. This allows administrators to fully specify a layout for either performance or capacity reasons. The supported options include: zpool create <pool> \ draid[<parity>][:<data>d][:<children>c][:<spares>s] \ <vdevs...> - draid[parity] - Parity level (default 1) - draid[:<data>d] - Data devices per group (default 8) - draid[:<children>c] - Expected number of child vdevs - draid[:<spares>s] - Distributed hot spares (default 0) Abbreviated example `zpool status` output for a 68 disk dRAID pool with two distributed spares using special allocation classes. ``` pool: tank state: ONLINE config: NAME STATE READ WRITE CKSUM slag7 ONLINE 0 0 0 draid2:8d:68c:2s-0 ONLINE 0 0 0 L0 ONLINE 0 0 0 L1 ONLINE 0 0 0 ... U25 ONLINE 0 0 0 U26 ONLINE 0 0 0 spare-53 ONLINE 0 0 0 U27 ONLINE 0 0 0 draid2-0-0 ONLINE 0 0 0 U28 ONLINE 0 0 0 U29 ONLINE 0 0 0 ... U42 ONLINE 0 0 0 U43 ONLINE 0 0 0 special mirror-1 ONLINE 0 0 0 L5 ONLINE 0 0 0 U5 ONLINE 0 0 0 mirror-2 ONLINE 0 0 0 L6 ONLINE 0 0 0 U6 ONLINE 0 0 0 spares draid2-0-0 INUSE currently in use draid2-0-1 AVAIL ``` When adding test coverage for the new dRAID vdev type the following options were added to the ztest command. These options are leverages by zloop.sh to test a wide range of dRAID configurations. -K draid|raidz|random - kind of RAID to test -D <value> - dRAID data drives per group -S <value> - dRAID distributed hot spares -R <value> - RAID parity (raidz or dRAID) The zpool_create, zpool_import, redundancy, replacement and fault test groups have all been updated provide test coverage for the dRAID feature. Co-authored-by: Isaac Huang <he.huang@intel.com> Co-authored-by: Mark Maybee <mmaybee@cray.com> Co-authored-by: Don Brady <don.brady@delphix.com> Co-authored-by: Matthew Ahrens <mahrens@delphix.com> Co-authored-by: Brian Behlendorf <behlendorf1@llnl.gov> Reviewed-by: Mark Maybee <mmaybee@cray.com> Reviewed-by: Matt Ahrens <matt@delphix.com> Reviewed-by: Tony Hutter <hutter2@llnl.gov> Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov> Closes #10102
2020-11-14 00:51:51 +03:00
return (make_vdev_raid(path, aux, pool, size, ashift, r));
2008-11-20 23:01:55 +03:00
child = umem_alloc(m * sizeof (nvlist_t *), UMEM_NOFAIL);
for (c = 0; c < m; c++)
Distributed Spare (dRAID) Feature This patch adds a new top-level vdev type called dRAID, which stands for Distributed parity RAID. This pool configuration allows all dRAID vdevs to participate when rebuilding to a distributed hot spare device. This can substantially reduce the total time required to restore full parity to pool with a failed device. A dRAID pool can be created using the new top-level `draid` type. Like `raidz`, the desired redundancy is specified after the type: `draid[1,2,3]`. No additional information is required to create the pool and reasonable default values will be chosen based on the number of child vdevs in the dRAID vdev. zpool create <pool> draid[1,2,3] <vdevs...> Unlike raidz, additional optional dRAID configuration values can be provided as part of the draid type as colon separated values. This allows administrators to fully specify a layout for either performance or capacity reasons. The supported options include: zpool create <pool> \ draid[<parity>][:<data>d][:<children>c][:<spares>s] \ <vdevs...> - draid[parity] - Parity level (default 1) - draid[:<data>d] - Data devices per group (default 8) - draid[:<children>c] - Expected number of child vdevs - draid[:<spares>s] - Distributed hot spares (default 0) Abbreviated example `zpool status` output for a 68 disk dRAID pool with two distributed spares using special allocation classes. ``` pool: tank state: ONLINE config: NAME STATE READ WRITE CKSUM slag7 ONLINE 0 0 0 draid2:8d:68c:2s-0 ONLINE 0 0 0 L0 ONLINE 0 0 0 L1 ONLINE 0 0 0 ... U25 ONLINE 0 0 0 U26 ONLINE 0 0 0 spare-53 ONLINE 0 0 0 U27 ONLINE 0 0 0 draid2-0-0 ONLINE 0 0 0 U28 ONLINE 0 0 0 U29 ONLINE 0 0 0 ... U42 ONLINE 0 0 0 U43 ONLINE 0 0 0 special mirror-1 ONLINE 0 0 0 L5 ONLINE 0 0 0 U5 ONLINE 0 0 0 mirror-2 ONLINE 0 0 0 L6 ONLINE 0 0 0 U6 ONLINE 0 0 0 spares draid2-0-0 INUSE currently in use draid2-0-1 AVAIL ``` When adding test coverage for the new dRAID vdev type the following options were added to the ztest command. These options are leverages by zloop.sh to test a wide range of dRAID configurations. -K draid|raidz|random - kind of RAID to test -D <value> - dRAID data drives per group -S <value> - dRAID distributed hot spares -R <value> - RAID parity (raidz or dRAID) The zpool_create, zpool_import, redundancy, replacement and fault test groups have all been updated provide test coverage for the dRAID feature. Co-authored-by: Isaac Huang <he.huang@intel.com> Co-authored-by: Mark Maybee <mmaybee@cray.com> Co-authored-by: Don Brady <don.brady@delphix.com> Co-authored-by: Matthew Ahrens <mahrens@delphix.com> Co-authored-by: Brian Behlendorf <behlendorf1@llnl.gov> Reviewed-by: Mark Maybee <mmaybee@cray.com> Reviewed-by: Matt Ahrens <matt@delphix.com> Reviewed-by: Tony Hutter <hutter2@llnl.gov> Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov> Closes #10102
2020-11-14 00:51:51 +03:00
child[c] = make_vdev_raid(path, aux, pool, size, ashift, r);
2008-11-20 23:01:55 +03:00
mirror = fnvlist_alloc();
fnvlist_add_string(mirror, ZPOOL_CONFIG_TYPE, VDEV_TYPE_MIRROR);
fnvlist_add_nvlist_array(mirror, ZPOOL_CONFIG_CHILDREN,
(const nvlist_t **)child, m);
2008-11-20 23:01:55 +03:00
for (c = 0; c < m; c++)
fnvlist_free(child[c]);
2008-11-20 23:01:55 +03:00
umem_free(child, m * sizeof (nvlist_t *));
return (mirror);
}
static nvlist_t *
make_vdev_root(const char *path, const char *aux, const char *pool, size_t size,
uint64_t ashift, const char *class, int r, int m, int t)
2008-11-20 23:01:55 +03:00
{
nvlist_t *root, **child;
int c;
boolean_t log;
2008-11-20 23:01:55 +03:00
ASSERT3S(t, >, 0);
2008-11-20 23:01:55 +03:00
log = (class != NULL && strcmp(class, "log") == 0);
2008-11-20 23:01:55 +03:00
child = umem_alloc(t * sizeof (nvlist_t *), UMEM_NOFAIL);
for (c = 0; c < t; c++) {
child[c] = make_vdev_mirror(path, aux, pool, size, ashift,
r, m);
fnvlist_add_uint64(child[c], ZPOOL_CONFIG_IS_LOG, log);
if (class != NULL && class[0] != '\0') {
ASSERT(m > 1 || log); /* expecting a mirror */
fnvlist_add_string(child[c],
ZPOOL_CONFIG_ALLOCATION_BIAS, class);
}
}
2008-11-20 23:01:55 +03:00
root = fnvlist_alloc();
fnvlist_add_string(root, ZPOOL_CONFIG_TYPE, VDEV_TYPE_ROOT);
fnvlist_add_nvlist_array(root, aux ? aux : ZPOOL_CONFIG_CHILDREN,
(const nvlist_t **)child, t);
2008-11-20 23:01:55 +03:00
for (c = 0; c < t; c++)
fnvlist_free(child[c]);
2008-11-20 23:01:55 +03:00
umem_free(child, t * sizeof (nvlist_t *));
return (root);
}
/*
* Find a random spa version. Returns back a random spa version in the
* range [initial_version, SPA_VERSION_FEATURES].
*/
static uint64_t
ztest_random_spa_version(uint64_t initial_version)
{
uint64_t version = initial_version;
if (version <= SPA_VERSION_BEFORE_FEATURES) {
version = version +
ztest_random(SPA_VERSION_BEFORE_FEATURES - version + 1);
}
if (version > SPA_VERSION_BEFORE_FEATURES)
version = SPA_VERSION_FEATURES;
ASSERT(SPA_VERSION_IS_SUPPORTED(version));
return (version);
}
static int
ztest_random_blocksize(void)
2008-11-20 23:01:55 +03:00
{
ASSERT3U(ztest_spa->spa_max_ashift, !=, 0);
Illumos 5027 - zfs large block support 5027 zfs large block support Reviewed by: Alek Pinchuk <pinchuk.alek@gmail.com> Reviewed by: George Wilson <george.wilson@delphix.com> Reviewed by: Josef 'Jeff' Sipek <josef.sipek@nexenta.com> Reviewed by: Richard Elling <richard.elling@richardelling.com> Reviewed by: Saso Kiselkov <skiselkov.ml@gmail.com> Reviewed by: Brian Behlendorf <behlendorf1@llnl.gov> Approved by: Dan McDonald <danmcd@omniti.com> References: https://www.illumos.org/issues/5027 https://github.com/illumos/illumos-gate/commit/b515258 Porting Notes: * Included in this patch is a tiny ISP2() cleanup in zio_init() from Illumos 5255. * Unlike the upstream Illumos commit this patch does not impose an arbitrary 128K block size limit on volumes. Volumes, like filesystems, are limited by the zfs_max_recordsize=1M module option. * By default the maximum record size is limited to 1M by the module option zfs_max_recordsize. This value may be safely increased up to 16M which is the largest block size supported by the on-disk format. At the moment, 1M blocks clearly offer a significant performance improvement but the benefits of going beyond this for the majority of workloads are less clear. * The illumos version of this patch increased DMU_MAX_ACCESS to 32M. This was determined not to be large enough when using 16M blocks because the zfs_make_xattrdir() function will fail (EFBIG) when assigning a TX. This was immediately observed under Linux because all newly created files must have a security xattr created and that was failing. Therefore, we've set DMU_MAX_ACCESS to 64M. * On 32-bit platforms a hard limit of 1M is set for blocks due to the limited virtual address space. We should be able to relax this one the ABD patches are merged. Ported-by: Brian Behlendorf <behlendorf1@llnl.gov> Closes #354
2014-11-03 23:15:08 +03:00
/*
* Choose a block size >= the ashift.
* If the SPA supports new MAXBLOCKSIZE, test up to 1MB blocks.
*/
int maxbs = SPA_OLD_MAXBLOCKSHIFT;
if (spa_maxblocksize(ztest_spa) == SPA_MAXBLOCKSIZE)
maxbs = 20;
uint64_t block_shift =
ztest_random(maxbs - ztest_spa->spa_max_ashift + 1);
return (1 << (SPA_MINBLOCKSHIFT + block_shift));
}
2008-11-20 23:01:55 +03:00
Implement large_dnode pool feature Justification ------------- This feature adds support for variable length dnodes. Our motivation is to eliminate the overhead associated with using spill blocks. Spill blocks are used to store system attribute data (i.e. file metadata) that does not fit in the dnode's bonus buffer. By allowing a larger bonus buffer area the use of a spill block can be avoided. Spill blocks potentially incur an additional read I/O for every dnode in a dnode block. As a worst case example, reading 32 dnodes from a 16k dnode block and all of the spill blocks could issue 33 separate reads. Now suppose those dnodes have size 1024 and therefore don't need spill blocks. Then the worst case number of blocks read is reduced to from 33 to two--one per dnode block. In practice spill blocks may tend to be co-located on disk with the dnode blocks so the reduction in I/O would not be this drastic. In a badly fragmented pool, however, the improvement could be significant. ZFS-on-Linux systems that make heavy use of extended attributes would benefit from this feature. In particular, ZFS-on-Linux supports the xattr=sa dataset property which allows file extended attribute data to be stored in the dnode bonus buffer as an alternative to the traditional directory-based format. Workloads such as SELinux and the Lustre distributed filesystem often store enough xattr data to force spill bocks when xattr=sa is in effect. Large dnodes may therefore provide a performance benefit to such systems. Other use cases that may benefit from this feature include files with large ACLs and symbolic links with long target names. Furthermore, this feature may be desirable on other platforms in case future applications or features are developed that could make use of a larger bonus buffer area. Implementation -------------- The size of a dnode may be a multiple of 512 bytes up to the size of a dnode block (currently 16384 bytes). A dn_extra_slots field was added to the current on-disk dnode_phys_t structure to describe the size of the physical dnode on disk. The 8 bits for this field were taken from the zero filled dn_pad2 field. The field represents how many "extra" dnode_phys_t slots a dnode consumes in its dnode block. This convention results in a value of 0 for 512 byte dnodes which preserves on-disk format compatibility with older software. Similarly, the in-memory dnode_t structure has a new dn_num_slots field to represent the total number of dnode_phys_t slots consumed on disk. Thus dn->dn_num_slots is 1 greater than the corresponding dnp->dn_extra_slots. This difference in convention was adopted because, unlike on-disk structures, backward compatibility is not a concern for in-memory objects, so we used a more natural way to represent size for a dnode_t. The default size for newly created dnodes is determined by the value of a new "dnodesize" dataset property. By default the property is set to "legacy" which is compatible with older software. Setting the property to "auto" will allow the filesystem to choose the most suitable dnode size. Currently this just sets the default dnode size to 1k, but future code improvements could dynamically choose a size based on observed workload patterns. Dnodes of varying sizes can coexist within the same dataset and even within the same dnode block. For example, to enable automatically-sized dnodes, run # zfs set dnodesize=auto tank/fish The user can also specify literal values for the dnodesize property. These are currently limited to powers of two from 1k to 16k. The power-of-2 limitation is only for simplicity of the user interface. Internally the implementation can handle any multiple of 512 up to 16k, and consumers of the DMU API can specify any legal dnode value. The size of a new dnode is determined at object allocation time and stored as a new field in the znode in-memory structure. New DMU interfaces are added to allow the consumer to specify the dnode size that a newly allocated object should use. Existing interfaces are unchanged to avoid having to update every call site and to preserve compatibility with external consumers such as Lustre. The new interfaces names are given below. The versions of these functions that don't take a dnodesize parameter now just call the _dnsize() versions with a dnodesize of 0, which means use the legacy dnode size. New DMU interfaces: dmu_object_alloc_dnsize() dmu_object_claim_dnsize() dmu_object_reclaim_dnsize() New ZAP interfaces: zap_create_dnsize() zap_create_norm_dnsize() zap_create_flags_dnsize() zap_create_claim_norm_dnsize() zap_create_link_dnsize() The constant DN_MAX_BONUSLEN is renamed to DN_OLD_MAX_BONUSLEN. The spa_maxdnodesize() function should be used to determine the maximum bonus length for a pool. These are a few noteworthy changes to key functions: * The prototype for dnode_hold_impl() now takes a "slots" parameter. When the DNODE_MUST_BE_FREE flag is set, this parameter is used to ensure the hole at the specified object offset is large enough to hold the dnode being created. The slots parameter is also used to ensure a dnode does not span multiple dnode blocks. In both of these cases, if a failure occurs, ENOSPC is returned. Keep in mind, these failure cases are only possible when using DNODE_MUST_BE_FREE. If the DNODE_MUST_BE_ALLOCATED flag is set, "slots" must be 0. dnode_hold_impl() will check if the requested dnode is already consumed as an extra dnode slot by an large dnode, in which case it returns ENOENT. * The function dmu_object_alloc() advances to the next dnode block if dnode_hold_impl() returns an error for a requested object. This is because the beginning of the next dnode block is the only location it can safely assume to either be a hole or a valid starting point for a dnode. * dnode_next_offset_level() and other functions that iterate through dnode blocks may no longer use a simple array indexing scheme. These now use the current dnode's dn_num_slots field to advance to the next dnode in the block. This is to ensure we properly skip the current dnode's bonus area and don't interpret it as a valid dnode. zdb --- The zdb command was updated to display a dnode's size under the "dnsize" column when the object is dumped. For ZIL create log records, zdb will now display the slot count for the object. ztest ----- Ztest chooses a random dnodesize for every newly created object. The random distribution is more heavily weighted toward small dnodes to better simulate real-world datasets. Unused bonus buffer space is filled with non-zero values computed from the object number, dataset id, offset, and generation number. This helps ensure that the dnode traversal code properly skips the interior regions of large dnodes, and that these interior regions are not overwritten by data belonging to other dnodes. A new test visits each object in a dataset. It verifies that the actual dnode size matches what was stored in the ztest block tag when it was created. It also verifies that the unused bonus buffer space is filled with the expected data patterns. ZFS Test Suite -------------- Added six new large dnode-specific tests, and integrated the dnodesize property into existing tests for zfs allow and send/recv. Send/Receive ------------ ZFS send streams for datasets containing large dnodes cannot be received on pools that don't support the large_dnode feature. A send stream with large dnodes sets a DMU_BACKUP_FEATURE_LARGE_DNODE flag which will be unrecognized by an incompatible receiving pool so that the zfs receive will fail gracefully. While not implemented here, it may be possible to generate a backward-compatible send stream from a dataset containing large dnodes. The implementation may be tricky, however, because the send object record for a large dnode would need to be resized to a 512 byte dnode, possibly kicking in a spill block in the process. This means we would need to construct a new SA layout and possibly register it in the SA layout object. The SA layout is normally just sent as an ordinary object record. But if we are constructing new layouts while generating the send stream we'd have to build the SA layout object dynamically and send it at the end of the stream. For sending and receiving between pools that do support large dnodes, the drr_object send record type is extended with a new field to store the dnode slot count. This field was repurposed from unused padding in the structure. ZIL Replay ---------- The dnode slot count is stored in the uppermost 8 bits of the lr_foid field. The bits were unused as the object id is currently capped at 48 bits. Resizing Dnodes --------------- It should be possible to resize a dnode when it is dirtied if the current dnodesize dataset property differs from the dnode's size, but this functionality is not currently implemented. Clearly a dnode can only grow if there are sufficient contiguous unused slots in the dnode block, but it should always be possible to shrink a dnode. Growing dnodes may be useful to reduce fragmentation in a pool with many spill blocks in use. Shrinking dnodes may be useful to allow sending a dataset to a pool that doesn't support the large_dnode feature. Feature Reference Counting -------------------------- The reference count for the large_dnode pool feature tracks the number of datasets that have ever contained a dnode of size larger than 512 bytes. The first time a large dnode is created in a dataset the dataset is converted to an extensible dataset. This is a one-way operation and the only way to decrement the feature count is to destroy the dataset, even if the dataset no longer contains any large dnodes. The complexity of reference counting on a per-dnode basis was too high, so we chose to track it on a per-dataset basis similarly to the large_block feature. Signed-off-by: Ned Bass <bass6@llnl.gov> Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov> Closes #3542
2016-03-17 04:25:34 +03:00
static int
ztest_random_dnodesize(void)
{
int slots;
int max_slots = spa_maxdnodesize(ztest_spa) >> DNODE_SHIFT;
if (max_slots == DNODE_MIN_SLOTS)
return (DNODE_MIN_SIZE);
/*
* Weight the random distribution more heavily toward smaller
* dnode sizes since that is more likely to reflect real-world
* usage.
*/
ASSERT3U(max_slots, >, 4);
switch (ztest_random(10)) {
case 0:
slots = 5 + ztest_random(max_slots - 4);
break;
case 1 ... 4:
slots = 2 + ztest_random(3);
break;
default:
slots = 1;
break;
}
return (slots << DNODE_SHIFT);
}
static int
ztest_random_ibshift(void)
{
return (DN_MIN_INDBLKSHIFT +
ztest_random(DN_MAX_INDBLKSHIFT - DN_MIN_INDBLKSHIFT + 1));
2008-11-20 23:01:55 +03:00
}
static uint64_t
ztest_random_vdev_top(spa_t *spa, boolean_t log_ok)
2008-11-20 23:01:55 +03:00
{
uint64_t top;
vdev_t *rvd = spa->spa_root_vdev;
vdev_t *tvd;
2008-11-20 23:01:55 +03:00
ASSERT3U(spa_config_held(spa, SCL_ALL, RW_READER), !=, 0);
2008-11-20 23:01:55 +03:00
do {
top = ztest_random(rvd->vdev_children);
tvd = rvd->vdev_child[top];
OpenZFS 7614, 9064 - zfs device evacuation/removal OpenZFS 7614 - zfs device evacuation/removal OpenZFS 9064 - remove_mirror should wait for device removal to complete This project allows top-level vdevs to be removed from the storage pool with "zpool remove", reducing the total amount of storage in the pool. This operation copies all allocated regions of the device to be removed onto other devices, recording the mapping from old to new location. After the removal is complete, read and free operations to the removed (now "indirect") vdev must be remapped and performed at the new location on disk. The indirect mapping table is kept in memory whenever the pool is loaded, so there is minimal performance overhead when doing operations on the indirect vdev. The size of the in-memory mapping table will be reduced when its entries become "obsolete" because they are no longer used by any block pointers in the pool. An entry becomes obsolete when all the blocks that use it are freed. An entry can also become obsolete when all the snapshots that reference it are deleted, and the block pointers that reference it have been "remapped" in all filesystems/zvols (and clones). Whenever an indirect block is written, all the block pointers in it will be "remapped" to their new (concrete) locations if possible. This process can be accelerated by using the "zfs remap" command to proactively rewrite all indirect blocks that reference indirect (removed) vdevs. Note that when a device is removed, we do not verify the checksum of the data that is copied. This makes the process much faster, but if it were used on redundant vdevs (i.e. mirror or raidz vdevs), it would be possible to copy the wrong data, when we have the correct data on e.g. the other side of the mirror. At the moment, only mirrors and simple top-level vdevs can be removed and no removal is allowed if any of the top-level vdevs are raidz. Porting Notes: * Avoid zero-sized kmem_alloc() in vdev_compact_children(). The device evacuation code adds a dependency that vdev_compact_children() be able to properly empty the vdev_child array by setting it to NULL and zeroing vdev_children. Under Linux, kmem_alloc() and related functions return a sentinel pointer rather than NULL for zero-sized allocations. * Remove comment regarding "mpt" driver where zfs_remove_max_segment is initialized to SPA_MAXBLOCKSIZE. Change zfs_condense_indirect_commit_entry_delay_ticks to zfs_condense_indirect_commit_entry_delay_ms for consistency with most other tunables in which delays are specified in ms. * ZTS changes: Use set_tunable rather than mdb Use zpool sync as appropriate Use sync_pool instead of sync Kill jobs during test_removal_with_operation to allow unmount/export Don't add non-disk names such as "mirror" or "raidz" to $DISKS Use $TEST_BASE_DIR instead of /tmp Increase HZ from 100 to 1000 which is more common on Linux removal_multiple_indirection.ksh Reduce iterations in order to not time out on the code coverage builders. removal_resume_export: Functionally, the test case is correct but there exists a race where the kernel thread hasn't been fully started yet and is not visible. Wait for up to 1 second for the removal thread to be started before giving up on it. Also, increase the amount of data copied in order that the removal not finish before the export has a chance to fail. * MMP compatibility, the concept of concrete versus non-concrete devices has slightly changed the semantics of vdev_writeable(). Update mmp_random_leaf_impl() accordingly. * Updated dbuf_remap() to handle the org.zfsonlinux:large_dnode pool feature which is not supported by OpenZFS. * Added support for new vdev removal tracepoints. * Test cases removal_with_zdb and removal_condense_export have been intentionally disabled. When run manually they pass as intended, but when running in the automated test environment they produce unreliable results on the latest Fedora release. They may work better once the upstream pool import refectoring is merged into ZoL at which point they will be re-enabled. Authored by: Matthew Ahrens <mahrens@delphix.com> Reviewed-by: Alex Reece <alex@delphix.com> Reviewed-by: George Wilson <george.wilson@delphix.com> Reviewed-by: John Kennedy <john.kennedy@delphix.com> Reviewed-by: Prakash Surya <prakash.surya@delphix.com> Reviewed by: Richard Laager <rlaager@wiktel.com> Reviewed by: Tim Chase <tim@chase2k.com> Reviewed by: Brian Behlendorf <behlendorf1@llnl.gov> Approved by: Garrett D'Amore <garrett@damore.org> Ported-by: Tim Chase <tim@chase2k.com> Signed-off-by: Tim Chase <tim@chase2k.com> OpenZFS-issue: https://www.illumos.org/issues/7614 OpenZFS-commit: https://github.com/openzfs/openzfs/commit/f539f1eb Closes #6900
2016-09-22 19:30:13 +03:00
} while (!vdev_is_concrete(tvd) || (tvd->vdev_islog && !log_ok) ||
tvd->vdev_mg == NULL || tvd->vdev_mg->mg_class == NULL);
2008-11-20 23:01:55 +03:00
return (top);
2008-11-20 23:01:55 +03:00
}
static uint64_t
ztest_random_dsl_prop(zfs_prop_t prop)
2008-11-20 23:01:55 +03:00
{
uint64_t value;
do {
value = zfs_prop_random_value(prop, ztest_random(-1ULL));
} while (prop == ZFS_PROP_CHECKSUM && value == ZIO_CHECKSUM_OFF);
return (value);
2008-11-20 23:01:55 +03:00
}
static int
ztest_dsl_prop_set_uint64(char *osname, zfs_prop_t prop, uint64_t value,
boolean_t inherit)
2008-11-20 23:01:55 +03:00
{
const char *propname = zfs_prop_to_name(prop);
const char *valname;
char *setpoint;
uint64_t curval;
2008-11-20 23:01:55 +03:00
int error;
error = dsl_prop_set_int(osname, propname,
(inherit ? ZPROP_SRC_NONE : ZPROP_SRC_LOCAL), value);
2008-11-20 23:01:55 +03:00
if (error == ENOSPC) {
ztest_record_enospc(FTAG);
2008-11-20 23:01:55 +03:00
return (error);
}
ASSERT0(error);
2008-11-20 23:01:55 +03:00
setpoint = umem_alloc(MAXPATHLEN, UMEM_NOFAIL);
VERIFY0(dsl_prop_get_integer(osname, propname, &curval, setpoint));
if (ztest_opts.zo_verbose >= 6) {
int err;
err = zfs_prop_index_to_string(prop, curval, &valname);
if (err)
(void) printf("%s %s = %llu at '%s'\n", osname,
propname, (unsigned long long)curval, setpoint);
else
(void) printf("%s %s = %s at '%s'\n",
osname, propname, valname, setpoint);
2008-11-20 23:01:55 +03:00
}
umem_free(setpoint, MAXPATHLEN);
2008-11-20 23:01:55 +03:00
return (error);
}
static int
ztest_spa_prop_set_uint64(zpool_prop_t prop, uint64_t value)
2008-11-20 23:01:55 +03:00
{
spa_t *spa = ztest_spa;
nvlist_t *props = NULL;
2008-11-20 23:01:55 +03:00
int error;
props = fnvlist_alloc();
fnvlist_add_uint64(props, zpool_prop_to_name(prop), value);
2008-11-20 23:01:55 +03:00
error = spa_prop_set(spa, props);
fnvlist_free(props);
if (error == ENOSPC) {
ztest_record_enospc(FTAG);
2008-11-20 23:01:55 +03:00
return (error);
}
ASSERT0(error);
2008-11-20 23:01:55 +03:00
return (error);
}
static int
ztest_dmu_objset_own(const char *name, dmu_objset_type_t type,
boolean_t readonly, boolean_t decrypt, const void *tag, objset_t **osp)
{
int err;
char *cp = NULL;
char ddname[ZFS_MAX_DATASET_NAME_LEN];
Fix unsafe string operations Coverity caught unsafe use of `strcpy()` in `ztest_dmu_objset_own()`, `nfs_init_tmpfile()` and `dump_snapshot()`. It also caught an unsafe use of `strlcat()` in `nfs_init_tmpfile()`. Inspired by this, I did an audit of every single usage of `strcpy()` and `strcat()` in the code. If I could not prove that the usage was safe, I changed the code to use either `strlcpy()` or `strlcat()`, depending on which function was originally used. In some cases, `snprintf()` was used to replace multiple uses of `strcat` because it was cleaner. Whenever I changed a function, I preferred to use `sizeof(dst)` when the compiler is able to provide the string size via that. When it could not because the string was passed by a caller, I checked the entire call tree of the function to find out how big the buffer was and hard coded it. Hardcoding is less than ideal, but it is safe unless someone shrinks the buffer sizes being passed. Additionally, Coverity reported three more string related issues: * It caught a case where we do an overlapping memory copy in a call to `snprintf()`. We fix that via `kmem_strdup()` and `kmem_strfree()`. * It caught `sizeof (buf)` being used instead of `buflen` in `zdb_nicenum()`'s call to `zfs_nicenum()`, which is passed to `snprintf()`. We change that to pass `buflen`. * It caught a theoretical unterminated string passed to `strcmp()`. This one is likely a false positive, but we have the information needed to do this more safely, so we change this to silence the false positive not just in coverity, but potentially other static analysis tools too. We switch to `strncmp()`. * There was a false positive in tests/zfs-tests/cmd/dir_rd_update.c. We suppress it by switching to `snprintf()` since other static analysis tools might complain about it too. Interestingly, there is a possible real bug there too, since it assumes that the passed directory path ends with '/'. We add a '/' to fix that potential bug. Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov> Signed-off-by: Richard Yao <richard.yao@alumni.stonybrook.edu> Closes #13913
2022-09-28 02:47:24 +03:00
strlcpy(ddname, name, sizeof (ddname));
cp = strchr(ddname, '@');
if (cp != NULL)
*cp = '\0';
err = dmu_objset_own(name, type, readonly, decrypt, tag, osp);
while (decrypt && err == EACCES) {
dsl_crypto_params_t *dcp;
nvlist_t *crypto_args = fnvlist_alloc();
fnvlist_add_uint8_array(crypto_args, "wkeydata",
(uint8_t *)ztest_wkeydata, WRAPPING_KEY_LEN);
VERIFY0(dsl_crypto_params_create_nvlist(DCP_CMD_NONE, NULL,
crypto_args, &dcp));
err = spa_keystore_load_wkey(ddname, dcp, B_FALSE);
/*
* Note: if there was an error loading, the wkey was not
* consumed, and needs to be freed.
*/
dsl_crypto_params_free(dcp, (err != 0));
fnvlist_free(crypto_args);
if (err == EINVAL) {
/*
* We couldn't load a key for this dataset so try
* the parent. This loop will eventually hit the
* encryption root since ztest only makes clones
* as children of their origin datasets.
*/
cp = strrchr(ddname, '/');
if (cp == NULL)
return (err);
*cp = '\0';
err = EACCES;
continue;
} else if (err != 0) {
break;
}
err = dmu_objset_own(name, type, readonly, decrypt, tag, osp);
break;
}
return (err);
}
static void
ztest_rll_init(rll_t *rll)
{
rll->rll_writer = NULL;
rll->rll_readers = 0;
mutex_init(&rll->rll_lock, NULL, MUTEX_DEFAULT, NULL);
cv_init(&rll->rll_cv, NULL, CV_DEFAULT, NULL);
}
2008-11-20 23:01:55 +03:00
static void
ztest_rll_destroy(rll_t *rll)
2008-11-20 23:01:55 +03:00
{
ASSERT3P(rll->rll_writer, ==, NULL);
ASSERT0(rll->rll_readers);
mutex_destroy(&rll->rll_lock);
cv_destroy(&rll->rll_cv);
}
2008-11-20 23:01:55 +03:00
static void
ztest_rll_lock(rll_t *rll, rl_type_t type)
{
mutex_enter(&rll->rll_lock);
2008-11-20 23:01:55 +03:00
RAID-Z expansion feature This feature allows disks to be added one at a time to a RAID-Z group, expanding its capacity incrementally. This feature is especially useful for small pools (typically with only one RAID-Z group), where there isn't sufficient hardware to add capacity by adding a whole new RAID-Z group (typically doubling the number of disks). == Initiating expansion == A new device (disk) can be attached to an existing RAIDZ vdev, by running `zpool attach POOL raidzP-N NEW_DEVICE`, e.g. `zpool attach tank raidz2-0 sda`. The new device will become part of the RAIDZ group. A "raidz expansion" will be initiated, and the new device will contribute additional space to the RAIDZ group once the expansion completes. The `feature@raidz_expansion` on-disk feature flag must be `enabled` to initiate an expansion, and it remains `active` for the life of the pool. In other words, pools with expanded RAIDZ vdevs can not be imported by older releases of the ZFS software. == During expansion == The expansion entails reading all allocated space from existing disks in the RAIDZ group, and rewriting it to the new disks in the RAIDZ group (including the newly added device). The expansion progress can be monitored with `zpool status`. Data redundancy is maintained during (and after) the expansion. If a disk fails while the expansion is in progress, the expansion pauses until the health of the RAIDZ vdev is restored (e.g. by replacing the failed disk and waiting for reconstruction to complete). The pool remains accessible during expansion. Following a reboot or export/import, the expansion resumes where it left off. == After expansion == When the expansion completes, the additional space is available for use, and is reflected in the `available` zfs property (as seen in `zfs list`, `df`, etc). Expansion does not change the number of failures that can be tolerated without data loss (e.g. a RAIDZ2 is still a RAIDZ2 even after expansion). A RAIDZ vdev can be expanded multiple times. After the expansion completes, old blocks remain with their old data-to-parity ratio (e.g. 5-wide RAIDZ2, has 3 data to 2 parity), but distributed among the larger set of disks. New blocks will be written with the new data-to-parity ratio (e.g. a 5-wide RAIDZ2 which has been expanded once to 6-wide, has 4 data to 2 parity). However, the RAIDZ vdev's "assumed parity ratio" does not change, so slightly less space than is expected may be reported for newly-written blocks, according to `zfs list`, `df`, `ls -s`, and similar tools. Sponsored-by: The FreeBSD Foundation Sponsored-by: iXsystems, Inc. Sponsored-by: vStack Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov> Reviewed-by: Mark Maybee <mark.maybee@delphix.com> Authored-by: Matthew Ahrens <mahrens@delphix.com> Contributions-by: Fedor Uporov <fuporov.vstack@gmail.com> Contributions-by: Stuart Maybee <stuart.maybee@comcast.net> Contributions-by: Thorsten Behrens <tbehrens@outlook.com> Contributions-by: Fmstrat <nospam@nowsci.com> Contributions-by: Don Brady <dev.fs.zfs@gmail.com> Signed-off-by: Don Brady <dev.fs.zfs@gmail.com> Closes #15022
2023-11-08 21:19:41 +03:00
if (type == ZTRL_READER) {
while (rll->rll_writer != NULL)
(void) cv_wait(&rll->rll_cv, &rll->rll_lock);
rll->rll_readers++;
} else {
while (rll->rll_writer != NULL || rll->rll_readers)
(void) cv_wait(&rll->rll_cv, &rll->rll_lock);
rll->rll_writer = curthread;
}
2008-11-20 23:01:55 +03:00
mutex_exit(&rll->rll_lock);
}
2008-11-20 23:01:55 +03:00
static void
ztest_rll_unlock(rll_t *rll)
{
mutex_enter(&rll->rll_lock);
2008-11-20 23:01:55 +03:00
if (rll->rll_writer) {
ASSERT0(rll->rll_readers);
rll->rll_writer = NULL;
} else {
ASSERT3S(rll->rll_readers, >, 0);
ASSERT3P(rll->rll_writer, ==, NULL);
rll->rll_readers--;
}
2008-11-20 23:01:55 +03:00
if (rll->rll_writer == NULL && rll->rll_readers == 0)
cv_broadcast(&rll->rll_cv);
mutex_exit(&rll->rll_lock);
2008-11-20 23:01:55 +03:00
}
static void
ztest_object_lock(ztest_ds_t *zd, uint64_t object, rl_type_t type)
{
rll_t *rll = &zd->zd_object_lock[object & (ZTEST_OBJECT_LOCKS - 1)];
ztest_rll_lock(rll, type);
}
static void
ztest_object_unlock(ztest_ds_t *zd, uint64_t object)
{
rll_t *rll = &zd->zd_object_lock[object & (ZTEST_OBJECT_LOCKS - 1)];
ztest_rll_unlock(rll);
}
OpenZFS 9689 - zfs range lock code should not be zpl-specific The ZFS range locking code in zfs_rlock.c/h depends on ZPL-specific data structures, specifically znode_t. However, it's also used by the ZVOL code, which uses a "dummy" znode_t to pass to the range locking code. We should clean this up so that the range locking code is generic and can be used equally by ZPL and ZVOL, and also can be used by future consumers that may need to run in userland (libzpool) as well as the kernel. Porting notes: * Added missing sys/avl.h include to sys/zfs_rlock.h. * Removed 'dbuf is within the locked range' ASSERTs from dmu_sync(). This was needed because ztest does not yet use a locked_range_t. * Removed "Approved by:" tag requirement from OpenZFS commit check to prevent needless warnings when integrating changes which has not been merged to illumos. * Reverted free_list range lock changes which were originally needed to defer the cv_destroy() which was called immediately after cv_broadcast(). With d2733258 this should be safe but if not we may need to reintroduce this logic. * Reverts: The following two commits were reverted and squashed in to this change in order to make it easier to apply OpenZFS 9689. - d88895a0, which removed the dummy znode from zvol_state - e3a07cd0, which updated ztest to use range locks * Preserved optimized rangelock comparison function. Preserved the rangelock free list. The cv_destroy() function will block waiting for all processes in cv_wait() to be scheduled and drop their reference. This is done to ensure it's safe to free the condition variable. However, blocking while holding the rl->rl_lock mutex can result in a deadlock on Linux. A free list is introduced to defer the cv_destroy() and kmem_free() until after the mutex is released. Authored by: Matthew Ahrens <mahrens@delphix.com> Reviewed by: Brian Behlendorf <behlendorf1@llnl.gov> Reviewed by: Serapheim Dimitropoulos <serapheim.dimitro@delphix.com> Reviewed by: George Wilson <george.wilson@delphix.com> Reviewed by: Brad Lewis <brad.lewis@delphix.com> Ported-by: Brian Behlendorf <behlendorf1@llnl.gov> OpenZFS-issue: https://illumos.org/issues/9689 OpenZFS-commit: https://github.com/openzfs/openzfs/pull/680 External-issue: DLPX-58662 Closes #7980
2018-10-02 01:13:12 +03:00
static rl_t *
ztest_range_lock(ztest_ds_t *zd, uint64_t object, uint64_t offset,
uint64_t size, rl_type_t type)
{
OpenZFS 9689 - zfs range lock code should not be zpl-specific The ZFS range locking code in zfs_rlock.c/h depends on ZPL-specific data structures, specifically znode_t. However, it's also used by the ZVOL code, which uses a "dummy" znode_t to pass to the range locking code. We should clean this up so that the range locking code is generic and can be used equally by ZPL and ZVOL, and also can be used by future consumers that may need to run in userland (libzpool) as well as the kernel. Porting notes: * Added missing sys/avl.h include to sys/zfs_rlock.h. * Removed 'dbuf is within the locked range' ASSERTs from dmu_sync(). This was needed because ztest does not yet use a locked_range_t. * Removed "Approved by:" tag requirement from OpenZFS commit check to prevent needless warnings when integrating changes which has not been merged to illumos. * Reverted free_list range lock changes which were originally needed to defer the cv_destroy() which was called immediately after cv_broadcast(). With d2733258 this should be safe but if not we may need to reintroduce this logic. * Reverts: The following two commits were reverted and squashed in to this change in order to make it easier to apply OpenZFS 9689. - d88895a0, which removed the dummy znode from zvol_state - e3a07cd0, which updated ztest to use range locks * Preserved optimized rangelock comparison function. Preserved the rangelock free list. The cv_destroy() function will block waiting for all processes in cv_wait() to be scheduled and drop their reference. This is done to ensure it's safe to free the condition variable. However, blocking while holding the rl->rl_lock mutex can result in a deadlock on Linux. A free list is introduced to defer the cv_destroy() and kmem_free() until after the mutex is released. Authored by: Matthew Ahrens <mahrens@delphix.com> Reviewed by: Brian Behlendorf <behlendorf1@llnl.gov> Reviewed by: Serapheim Dimitropoulos <serapheim.dimitro@delphix.com> Reviewed by: George Wilson <george.wilson@delphix.com> Reviewed by: Brad Lewis <brad.lewis@delphix.com> Ported-by: Brian Behlendorf <behlendorf1@llnl.gov> OpenZFS-issue: https://illumos.org/issues/9689 OpenZFS-commit: https://github.com/openzfs/openzfs/pull/680 External-issue: DLPX-58662 Closes #7980
2018-10-02 01:13:12 +03:00
uint64_t hash = object ^ (offset % (ZTEST_RANGE_LOCKS + 1));
rll_t *rll = &zd->zd_range_lock[hash & (ZTEST_RANGE_LOCKS - 1)];
rl_t *rl;
rl = umem_alloc(sizeof (*rl), UMEM_NOFAIL);
rl->rl_object = object;
rl->rl_offset = offset;
rl->rl_size = size;
rl->rl_lock = rll;
ztest_rll_lock(rll, type);
return (rl);
}
2008-11-20 23:01:55 +03:00
static void
OpenZFS 9689 - zfs range lock code should not be zpl-specific The ZFS range locking code in zfs_rlock.c/h depends on ZPL-specific data structures, specifically znode_t. However, it's also used by the ZVOL code, which uses a "dummy" znode_t to pass to the range locking code. We should clean this up so that the range locking code is generic and can be used equally by ZPL and ZVOL, and also can be used by future consumers that may need to run in userland (libzpool) as well as the kernel. Porting notes: * Added missing sys/avl.h include to sys/zfs_rlock.h. * Removed 'dbuf is within the locked range' ASSERTs from dmu_sync(). This was needed because ztest does not yet use a locked_range_t. * Removed "Approved by:" tag requirement from OpenZFS commit check to prevent needless warnings when integrating changes which has not been merged to illumos. * Reverted free_list range lock changes which were originally needed to defer the cv_destroy() which was called immediately after cv_broadcast(). With d2733258 this should be safe but if not we may need to reintroduce this logic. * Reverts: The following two commits were reverted and squashed in to this change in order to make it easier to apply OpenZFS 9689. - d88895a0, which removed the dummy znode from zvol_state - e3a07cd0, which updated ztest to use range locks * Preserved optimized rangelock comparison function. Preserved the rangelock free list. The cv_destroy() function will block waiting for all processes in cv_wait() to be scheduled and drop their reference. This is done to ensure it's safe to free the condition variable. However, blocking while holding the rl->rl_lock mutex can result in a deadlock on Linux. A free list is introduced to defer the cv_destroy() and kmem_free() until after the mutex is released. Authored by: Matthew Ahrens <mahrens@delphix.com> Reviewed by: Brian Behlendorf <behlendorf1@llnl.gov> Reviewed by: Serapheim Dimitropoulos <serapheim.dimitro@delphix.com> Reviewed by: George Wilson <george.wilson@delphix.com> Reviewed by: Brad Lewis <brad.lewis@delphix.com> Ported-by: Brian Behlendorf <behlendorf1@llnl.gov> OpenZFS-issue: https://illumos.org/issues/9689 OpenZFS-commit: https://github.com/openzfs/openzfs/pull/680 External-issue: DLPX-58662 Closes #7980
2018-10-02 01:13:12 +03:00
ztest_range_unlock(rl_t *rl)
{
OpenZFS 9689 - zfs range lock code should not be zpl-specific The ZFS range locking code in zfs_rlock.c/h depends on ZPL-specific data structures, specifically znode_t. However, it's also used by the ZVOL code, which uses a "dummy" znode_t to pass to the range locking code. We should clean this up so that the range locking code is generic and can be used equally by ZPL and ZVOL, and also can be used by future consumers that may need to run in userland (libzpool) as well as the kernel. Porting notes: * Added missing sys/avl.h include to sys/zfs_rlock.h. * Removed 'dbuf is within the locked range' ASSERTs from dmu_sync(). This was needed because ztest does not yet use a locked_range_t. * Removed "Approved by:" tag requirement from OpenZFS commit check to prevent needless warnings when integrating changes which has not been merged to illumos. * Reverted free_list range lock changes which were originally needed to defer the cv_destroy() which was called immediately after cv_broadcast(). With d2733258 this should be safe but if not we may need to reintroduce this logic. * Reverts: The following two commits were reverted and squashed in to this change in order to make it easier to apply OpenZFS 9689. - d88895a0, which removed the dummy znode from zvol_state - e3a07cd0, which updated ztest to use range locks * Preserved optimized rangelock comparison function. Preserved the rangelock free list. The cv_destroy() function will block waiting for all processes in cv_wait() to be scheduled and drop their reference. This is done to ensure it's safe to free the condition variable. However, blocking while holding the rl->rl_lock mutex can result in a deadlock on Linux. A free list is introduced to defer the cv_destroy() and kmem_free() until after the mutex is released. Authored by: Matthew Ahrens <mahrens@delphix.com> Reviewed by: Brian Behlendorf <behlendorf1@llnl.gov> Reviewed by: Serapheim Dimitropoulos <serapheim.dimitro@delphix.com> Reviewed by: George Wilson <george.wilson@delphix.com> Reviewed by: Brad Lewis <brad.lewis@delphix.com> Ported-by: Brian Behlendorf <behlendorf1@llnl.gov> OpenZFS-issue: https://illumos.org/issues/9689 OpenZFS-commit: https://github.com/openzfs/openzfs/pull/680 External-issue: DLPX-58662 Closes #7980
2018-10-02 01:13:12 +03:00
rll_t *rll = rl->rl_lock;
ztest_rll_unlock(rll);
umem_free(rl, sizeof (*rl));
}
2008-11-20 23:01:55 +03:00
static void
ztest_zd_init(ztest_ds_t *zd, ztest_shared_ds_t *szd, objset_t *os)
{
zd->zd_os = os;
zd->zd_zilog = dmu_objset_zil(os);
zd->zd_shared = szd;
dmu_objset_name(os, zd->zd_name);
int l;
if (zd->zd_shared != NULL)
zd->zd_shared->zd_seq = 0;
VERIFY0(pthread_rwlock_init(&zd->zd_zilog_lock, NULL));
mutex_init(&zd->zd_dirobj_lock, NULL, MUTEX_DEFAULT, NULL);
2008-11-20 23:01:55 +03:00
for (l = 0; l < ZTEST_OBJECT_LOCKS; l++)
ztest_rll_init(&zd->zd_object_lock[l]);
2008-11-20 23:01:55 +03:00
for (l = 0; l < ZTEST_RANGE_LOCKS; l++)
OpenZFS 9689 - zfs range lock code should not be zpl-specific The ZFS range locking code in zfs_rlock.c/h depends on ZPL-specific data structures, specifically znode_t. However, it's also used by the ZVOL code, which uses a "dummy" znode_t to pass to the range locking code. We should clean this up so that the range locking code is generic and can be used equally by ZPL and ZVOL, and also can be used by future consumers that may need to run in userland (libzpool) as well as the kernel. Porting notes: * Added missing sys/avl.h include to sys/zfs_rlock.h. * Removed 'dbuf is within the locked range' ASSERTs from dmu_sync(). This was needed because ztest does not yet use a locked_range_t. * Removed "Approved by:" tag requirement from OpenZFS commit check to prevent needless warnings when integrating changes which has not been merged to illumos. * Reverted free_list range lock changes which were originally needed to defer the cv_destroy() which was called immediately after cv_broadcast(). With d2733258 this should be safe but if not we may need to reintroduce this logic. * Reverts: The following two commits were reverted and squashed in to this change in order to make it easier to apply OpenZFS 9689. - d88895a0, which removed the dummy znode from zvol_state - e3a07cd0, which updated ztest to use range locks * Preserved optimized rangelock comparison function. Preserved the rangelock free list. The cv_destroy() function will block waiting for all processes in cv_wait() to be scheduled and drop their reference. This is done to ensure it's safe to free the condition variable. However, blocking while holding the rl->rl_lock mutex can result in a deadlock on Linux. A free list is introduced to defer the cv_destroy() and kmem_free() until after the mutex is released. Authored by: Matthew Ahrens <mahrens@delphix.com> Reviewed by: Brian Behlendorf <behlendorf1@llnl.gov> Reviewed by: Serapheim Dimitropoulos <serapheim.dimitro@delphix.com> Reviewed by: George Wilson <george.wilson@delphix.com> Reviewed by: Brad Lewis <brad.lewis@delphix.com> Ported-by: Brian Behlendorf <behlendorf1@llnl.gov> OpenZFS-issue: https://illumos.org/issues/9689 OpenZFS-commit: https://github.com/openzfs/openzfs/pull/680 External-issue: DLPX-58662 Closes #7980
2018-10-02 01:13:12 +03:00
ztest_rll_init(&zd->zd_range_lock[l]);
2008-11-20 23:01:55 +03:00
}
static void
ztest_zd_fini(ztest_ds_t *zd)
2008-11-20 23:01:55 +03:00
{
int l;
mutex_destroy(&zd->zd_dirobj_lock);
(void) pthread_rwlock_destroy(&zd->zd_zilog_lock);
2008-11-20 23:01:55 +03:00
for (l = 0; l < ZTEST_OBJECT_LOCKS; l++)
ztest_rll_destroy(&zd->zd_object_lock[l]);
for (l = 0; l < ZTEST_RANGE_LOCKS; l++)
OpenZFS 9689 - zfs range lock code should not be zpl-specific The ZFS range locking code in zfs_rlock.c/h depends on ZPL-specific data structures, specifically znode_t. However, it's also used by the ZVOL code, which uses a "dummy" znode_t to pass to the range locking code. We should clean this up so that the range locking code is generic and can be used equally by ZPL and ZVOL, and also can be used by future consumers that may need to run in userland (libzpool) as well as the kernel. Porting notes: * Added missing sys/avl.h include to sys/zfs_rlock.h. * Removed 'dbuf is within the locked range' ASSERTs from dmu_sync(). This was needed because ztest does not yet use a locked_range_t. * Removed "Approved by:" tag requirement from OpenZFS commit check to prevent needless warnings when integrating changes which has not been merged to illumos. * Reverted free_list range lock changes which were originally needed to defer the cv_destroy() which was called immediately after cv_broadcast(). With d2733258 this should be safe but if not we may need to reintroduce this logic. * Reverts: The following two commits were reverted and squashed in to this change in order to make it easier to apply OpenZFS 9689. - d88895a0, which removed the dummy znode from zvol_state - e3a07cd0, which updated ztest to use range locks * Preserved optimized rangelock comparison function. Preserved the rangelock free list. The cv_destroy() function will block waiting for all processes in cv_wait() to be scheduled and drop their reference. This is done to ensure it's safe to free the condition variable. However, blocking while holding the rl->rl_lock mutex can result in a deadlock on Linux. A free list is introduced to defer the cv_destroy() and kmem_free() until after the mutex is released. Authored by: Matthew Ahrens <mahrens@delphix.com> Reviewed by: Brian Behlendorf <behlendorf1@llnl.gov> Reviewed by: Serapheim Dimitropoulos <serapheim.dimitro@delphix.com> Reviewed by: George Wilson <george.wilson@delphix.com> Reviewed by: Brad Lewis <brad.lewis@delphix.com> Ported-by: Brian Behlendorf <behlendorf1@llnl.gov> OpenZFS-issue: https://illumos.org/issues/9689 OpenZFS-commit: https://github.com/openzfs/openzfs/pull/680 External-issue: DLPX-58662 Closes #7980
2018-10-02 01:13:12 +03:00
ztest_rll_destroy(&zd->zd_range_lock[l]);
}
#define TXG_MIGHTWAIT (ztest_random(10) == 0 ? TXG_NOWAIT : TXG_WAIT)
static uint64_t
ztest_tx_assign(dmu_tx_t *tx, uint64_t txg_how, const char *tag)
{
uint64_t txg;
int error;
/*
* Attempt to assign tx to some transaction group.
*/
error = dmu_tx_assign(tx, txg_how);
if (error) {
if (error == ERESTART) {
ASSERT3U(txg_how, ==, TXG_NOWAIT);
dmu_tx_wait(tx);
} else {
ASSERT3U(error, ==, ENOSPC);
ztest_record_enospc(tag);
}
dmu_tx_abort(tx);
return (0);
}
txg = dmu_tx_get_txg(tx);
ASSERT3U(txg, !=, 0);
return (txg);
}
static void
ztest_bt_generate(ztest_block_tag_t *bt, objset_t *os, uint64_t object,
Implement large_dnode pool feature Justification ------------- This feature adds support for variable length dnodes. Our motivation is to eliminate the overhead associated with using spill blocks. Spill blocks are used to store system attribute data (i.e. file metadata) that does not fit in the dnode's bonus buffer. By allowing a larger bonus buffer area the use of a spill block can be avoided. Spill blocks potentially incur an additional read I/O for every dnode in a dnode block. As a worst case example, reading 32 dnodes from a 16k dnode block and all of the spill blocks could issue 33 separate reads. Now suppose those dnodes have size 1024 and therefore don't need spill blocks. Then the worst case number of blocks read is reduced to from 33 to two--one per dnode block. In practice spill blocks may tend to be co-located on disk with the dnode blocks so the reduction in I/O would not be this drastic. In a badly fragmented pool, however, the improvement could be significant. ZFS-on-Linux systems that make heavy use of extended attributes would benefit from this feature. In particular, ZFS-on-Linux supports the xattr=sa dataset property which allows file extended attribute data to be stored in the dnode bonus buffer as an alternative to the traditional directory-based format. Workloads such as SELinux and the Lustre distributed filesystem often store enough xattr data to force spill bocks when xattr=sa is in effect. Large dnodes may therefore provide a performance benefit to such systems. Other use cases that may benefit from this feature include files with large ACLs and symbolic links with long target names. Furthermore, this feature may be desirable on other platforms in case future applications or features are developed that could make use of a larger bonus buffer area. Implementation -------------- The size of a dnode may be a multiple of 512 bytes up to the size of a dnode block (currently 16384 bytes). A dn_extra_slots field was added to the current on-disk dnode_phys_t structure to describe the size of the physical dnode on disk. The 8 bits for this field were taken from the zero filled dn_pad2 field. The field represents how many "extra" dnode_phys_t slots a dnode consumes in its dnode block. This convention results in a value of 0 for 512 byte dnodes which preserves on-disk format compatibility with older software. Similarly, the in-memory dnode_t structure has a new dn_num_slots field to represent the total number of dnode_phys_t slots consumed on disk. Thus dn->dn_num_slots is 1 greater than the corresponding dnp->dn_extra_slots. This difference in convention was adopted because, unlike on-disk structures, backward compatibility is not a concern for in-memory objects, so we used a more natural way to represent size for a dnode_t. The default size for newly created dnodes is determined by the value of a new "dnodesize" dataset property. By default the property is set to "legacy" which is compatible with older software. Setting the property to "auto" will allow the filesystem to choose the most suitable dnode size. Currently this just sets the default dnode size to 1k, but future code improvements could dynamically choose a size based on observed workload patterns. Dnodes of varying sizes can coexist within the same dataset and even within the same dnode block. For example, to enable automatically-sized dnodes, run # zfs set dnodesize=auto tank/fish The user can also specify literal values for the dnodesize property. These are currently limited to powers of two from 1k to 16k. The power-of-2 limitation is only for simplicity of the user interface. Internally the implementation can handle any multiple of 512 up to 16k, and consumers of the DMU API can specify any legal dnode value. The size of a new dnode is determined at object allocation time and stored as a new field in the znode in-memory structure. New DMU interfaces are added to allow the consumer to specify the dnode size that a newly allocated object should use. Existing interfaces are unchanged to avoid having to update every call site and to preserve compatibility with external consumers such as Lustre. The new interfaces names are given below. The versions of these functions that don't take a dnodesize parameter now just call the _dnsize() versions with a dnodesize of 0, which means use the legacy dnode size. New DMU interfaces: dmu_object_alloc_dnsize() dmu_object_claim_dnsize() dmu_object_reclaim_dnsize() New ZAP interfaces: zap_create_dnsize() zap_create_norm_dnsize() zap_create_flags_dnsize() zap_create_claim_norm_dnsize() zap_create_link_dnsize() The constant DN_MAX_BONUSLEN is renamed to DN_OLD_MAX_BONUSLEN. The spa_maxdnodesize() function should be used to determine the maximum bonus length for a pool. These are a few noteworthy changes to key functions: * The prototype for dnode_hold_impl() now takes a "slots" parameter. When the DNODE_MUST_BE_FREE flag is set, this parameter is used to ensure the hole at the specified object offset is large enough to hold the dnode being created. The slots parameter is also used to ensure a dnode does not span multiple dnode blocks. In both of these cases, if a failure occurs, ENOSPC is returned. Keep in mind, these failure cases are only possible when using DNODE_MUST_BE_FREE. If the DNODE_MUST_BE_ALLOCATED flag is set, "slots" must be 0. dnode_hold_impl() will check if the requested dnode is already consumed as an extra dnode slot by an large dnode, in which case it returns ENOENT. * The function dmu_object_alloc() advances to the next dnode block if dnode_hold_impl() returns an error for a requested object. This is because the beginning of the next dnode block is the only location it can safely assume to either be a hole or a valid starting point for a dnode. * dnode_next_offset_level() and other functions that iterate through dnode blocks may no longer use a simple array indexing scheme. These now use the current dnode's dn_num_slots field to advance to the next dnode in the block. This is to ensure we properly skip the current dnode's bonus area and don't interpret it as a valid dnode. zdb --- The zdb command was updated to display a dnode's size under the "dnsize" column when the object is dumped. For ZIL create log records, zdb will now display the slot count for the object. ztest ----- Ztest chooses a random dnodesize for every newly created object. The random distribution is more heavily weighted toward small dnodes to better simulate real-world datasets. Unused bonus buffer space is filled with non-zero values computed from the object number, dataset id, offset, and generation number. This helps ensure that the dnode traversal code properly skips the interior regions of large dnodes, and that these interior regions are not overwritten by data belonging to other dnodes. A new test visits each object in a dataset. It verifies that the actual dnode size matches what was stored in the ztest block tag when it was created. It also verifies that the unused bonus buffer space is filled with the expected data patterns. ZFS Test Suite -------------- Added six new large dnode-specific tests, and integrated the dnodesize property into existing tests for zfs allow and send/recv. Send/Receive ------------ ZFS send streams for datasets containing large dnodes cannot be received on pools that don't support the large_dnode feature. A send stream with large dnodes sets a DMU_BACKUP_FEATURE_LARGE_DNODE flag which will be unrecognized by an incompatible receiving pool so that the zfs receive will fail gracefully. While not implemented here, it may be possible to generate a backward-compatible send stream from a dataset containing large dnodes. The implementation may be tricky, however, because the send object record for a large dnode would need to be resized to a 512 byte dnode, possibly kicking in a spill block in the process. This means we would need to construct a new SA layout and possibly register it in the SA layout object. The SA layout is normally just sent as an ordinary object record. But if we are constructing new layouts while generating the send stream we'd have to build the SA layout object dynamically and send it at the end of the stream. For sending and receiving between pools that do support large dnodes, the drr_object send record type is extended with a new field to store the dnode slot count. This field was repurposed from unused padding in the structure. ZIL Replay ---------- The dnode slot count is stored in the uppermost 8 bits of the lr_foid field. The bits were unused as the object id is currently capped at 48 bits. Resizing Dnodes --------------- It should be possible to resize a dnode when it is dirtied if the current dnodesize dataset property differs from the dnode's size, but this functionality is not currently implemented. Clearly a dnode can only grow if there are sufficient contiguous unused slots in the dnode block, but it should always be possible to shrink a dnode. Growing dnodes may be useful to reduce fragmentation in a pool with many spill blocks in use. Shrinking dnodes may be useful to allow sending a dataset to a pool that doesn't support the large_dnode feature. Feature Reference Counting -------------------------- The reference count for the large_dnode pool feature tracks the number of datasets that have ever contained a dnode of size larger than 512 bytes. The first time a large dnode is created in a dataset the dataset is converted to an extensible dataset. This is a one-way operation and the only way to decrement the feature count is to destroy the dataset, even if the dataset no longer contains any large dnodes. The complexity of reference counting on a per-dnode basis was too high, so we chose to track it on a per-dataset basis similarly to the large_block feature. Signed-off-by: Ned Bass <bass6@llnl.gov> Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov> Closes #3542
2016-03-17 04:25:34 +03:00
uint64_t dnodesize, uint64_t offset, uint64_t gen, uint64_t txg,
uint64_t crtxg)
{
bt->bt_magic = BT_MAGIC;
bt->bt_objset = dmu_objset_id(os);
bt->bt_object = object;
Implement large_dnode pool feature Justification ------------- This feature adds support for variable length dnodes. Our motivation is to eliminate the overhead associated with using spill blocks. Spill blocks are used to store system attribute data (i.e. file metadata) that does not fit in the dnode's bonus buffer. By allowing a larger bonus buffer area the use of a spill block can be avoided. Spill blocks potentially incur an additional read I/O for every dnode in a dnode block. As a worst case example, reading 32 dnodes from a 16k dnode block and all of the spill blocks could issue 33 separate reads. Now suppose those dnodes have size 1024 and therefore don't need spill blocks. Then the worst case number of blocks read is reduced to from 33 to two--one per dnode block. In practice spill blocks may tend to be co-located on disk with the dnode blocks so the reduction in I/O would not be this drastic. In a badly fragmented pool, however, the improvement could be significant. ZFS-on-Linux systems that make heavy use of extended attributes would benefit from this feature. In particular, ZFS-on-Linux supports the xattr=sa dataset property which allows file extended attribute data to be stored in the dnode bonus buffer as an alternative to the traditional directory-based format. Workloads such as SELinux and the Lustre distributed filesystem often store enough xattr data to force spill bocks when xattr=sa is in effect. Large dnodes may therefore provide a performance benefit to such systems. Other use cases that may benefit from this feature include files with large ACLs and symbolic links with long target names. Furthermore, this feature may be desirable on other platforms in case future applications or features are developed that could make use of a larger bonus buffer area. Implementation -------------- The size of a dnode may be a multiple of 512 bytes up to the size of a dnode block (currently 16384 bytes). A dn_extra_slots field was added to the current on-disk dnode_phys_t structure to describe the size of the physical dnode on disk. The 8 bits for this field were taken from the zero filled dn_pad2 field. The field represents how many "extra" dnode_phys_t slots a dnode consumes in its dnode block. This convention results in a value of 0 for 512 byte dnodes which preserves on-disk format compatibility with older software. Similarly, the in-memory dnode_t structure has a new dn_num_slots field to represent the total number of dnode_phys_t slots consumed on disk. Thus dn->dn_num_slots is 1 greater than the corresponding dnp->dn_extra_slots. This difference in convention was adopted because, unlike on-disk structures, backward compatibility is not a concern for in-memory objects, so we used a more natural way to represent size for a dnode_t. The default size for newly created dnodes is determined by the value of a new "dnodesize" dataset property. By default the property is set to "legacy" which is compatible with older software. Setting the property to "auto" will allow the filesystem to choose the most suitable dnode size. Currently this just sets the default dnode size to 1k, but future code improvements could dynamically choose a size based on observed workload patterns. Dnodes of varying sizes can coexist within the same dataset and even within the same dnode block. For example, to enable automatically-sized dnodes, run # zfs set dnodesize=auto tank/fish The user can also specify literal values for the dnodesize property. These are currently limited to powers of two from 1k to 16k. The power-of-2 limitation is only for simplicity of the user interface. Internally the implementation can handle any multiple of 512 up to 16k, and consumers of the DMU API can specify any legal dnode value. The size of a new dnode is determined at object allocation time and stored as a new field in the znode in-memory structure. New DMU interfaces are added to allow the consumer to specify the dnode size that a newly allocated object should use. Existing interfaces are unchanged to avoid having to update every call site and to preserve compatibility with external consumers such as Lustre. The new interfaces names are given below. The versions of these functions that don't take a dnodesize parameter now just call the _dnsize() versions with a dnodesize of 0, which means use the legacy dnode size. New DMU interfaces: dmu_object_alloc_dnsize() dmu_object_claim_dnsize() dmu_object_reclaim_dnsize() New ZAP interfaces: zap_create_dnsize() zap_create_norm_dnsize() zap_create_flags_dnsize() zap_create_claim_norm_dnsize() zap_create_link_dnsize() The constant DN_MAX_BONUSLEN is renamed to DN_OLD_MAX_BONUSLEN. The spa_maxdnodesize() function should be used to determine the maximum bonus length for a pool. These are a few noteworthy changes to key functions: * The prototype for dnode_hold_impl() now takes a "slots" parameter. When the DNODE_MUST_BE_FREE flag is set, this parameter is used to ensure the hole at the specified object offset is large enough to hold the dnode being created. The slots parameter is also used to ensure a dnode does not span multiple dnode blocks. In both of these cases, if a failure occurs, ENOSPC is returned. Keep in mind, these failure cases are only possible when using DNODE_MUST_BE_FREE. If the DNODE_MUST_BE_ALLOCATED flag is set, "slots" must be 0. dnode_hold_impl() will check if the requested dnode is already consumed as an extra dnode slot by an large dnode, in which case it returns ENOENT. * The function dmu_object_alloc() advances to the next dnode block if dnode_hold_impl() returns an error for a requested object. This is because the beginning of the next dnode block is the only location it can safely assume to either be a hole or a valid starting point for a dnode. * dnode_next_offset_level() and other functions that iterate through dnode blocks may no longer use a simple array indexing scheme. These now use the current dnode's dn_num_slots field to advance to the next dnode in the block. This is to ensure we properly skip the current dnode's bonus area and don't interpret it as a valid dnode. zdb --- The zdb command was updated to display a dnode's size under the "dnsize" column when the object is dumped. For ZIL create log records, zdb will now display the slot count for the object. ztest ----- Ztest chooses a random dnodesize for every newly created object. The random distribution is more heavily weighted toward small dnodes to better simulate real-world datasets. Unused bonus buffer space is filled with non-zero values computed from the object number, dataset id, offset, and generation number. This helps ensure that the dnode traversal code properly skips the interior regions of large dnodes, and that these interior regions are not overwritten by data belonging to other dnodes. A new test visits each object in a dataset. It verifies that the actual dnode size matches what was stored in the ztest block tag when it was created. It also verifies that the unused bonus buffer space is filled with the expected data patterns. ZFS Test Suite -------------- Added six new large dnode-specific tests, and integrated the dnodesize property into existing tests for zfs allow and send/recv. Send/Receive ------------ ZFS send streams for datasets containing large dnodes cannot be received on pools that don't support the large_dnode feature. A send stream with large dnodes sets a DMU_BACKUP_FEATURE_LARGE_DNODE flag which will be unrecognized by an incompatible receiving pool so that the zfs receive will fail gracefully. While not implemented here, it may be possible to generate a backward-compatible send stream from a dataset containing large dnodes. The implementation may be tricky, however, because the send object record for a large dnode would need to be resized to a 512 byte dnode, possibly kicking in a spill block in the process. This means we would need to construct a new SA layout and possibly register it in the SA layout object. The SA layout is normally just sent as an ordinary object record. But if we are constructing new layouts while generating the send stream we'd have to build the SA layout object dynamically and send it at the end of the stream. For sending and receiving between pools that do support large dnodes, the drr_object send record type is extended with a new field to store the dnode slot count. This field was repurposed from unused padding in the structure. ZIL Replay ---------- The dnode slot count is stored in the uppermost 8 bits of the lr_foid field. The bits were unused as the object id is currently capped at 48 bits. Resizing Dnodes --------------- It should be possible to resize a dnode when it is dirtied if the current dnodesize dataset property differs from the dnode's size, but this functionality is not currently implemented. Clearly a dnode can only grow if there are sufficient contiguous unused slots in the dnode block, but it should always be possible to shrink a dnode. Growing dnodes may be useful to reduce fragmentation in a pool with many spill blocks in use. Shrinking dnodes may be useful to allow sending a dataset to a pool that doesn't support the large_dnode feature. Feature Reference Counting -------------------------- The reference count for the large_dnode pool feature tracks the number of datasets that have ever contained a dnode of size larger than 512 bytes. The first time a large dnode is created in a dataset the dataset is converted to an extensible dataset. This is a one-way operation and the only way to decrement the feature count is to destroy the dataset, even if the dataset no longer contains any large dnodes. The complexity of reference counting on a per-dnode basis was too high, so we chose to track it on a per-dataset basis similarly to the large_block feature. Signed-off-by: Ned Bass <bass6@llnl.gov> Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov> Closes #3542
2016-03-17 04:25:34 +03:00
bt->bt_dnodesize = dnodesize;
bt->bt_offset = offset;
bt->bt_gen = gen;
bt->bt_txg = txg;
bt->bt_crtxg = crtxg;
}
static void
ztest_bt_verify(ztest_block_tag_t *bt, objset_t *os, uint64_t object,
Implement large_dnode pool feature Justification ------------- This feature adds support for variable length dnodes. Our motivation is to eliminate the overhead associated with using spill blocks. Spill blocks are used to store system attribute data (i.e. file metadata) that does not fit in the dnode's bonus buffer. By allowing a larger bonus buffer area the use of a spill block can be avoided. Spill blocks potentially incur an additional read I/O for every dnode in a dnode block. As a worst case example, reading 32 dnodes from a 16k dnode block and all of the spill blocks could issue 33 separate reads. Now suppose those dnodes have size 1024 and therefore don't need spill blocks. Then the worst case number of blocks read is reduced to from 33 to two--one per dnode block. In practice spill blocks may tend to be co-located on disk with the dnode blocks so the reduction in I/O would not be this drastic. In a badly fragmented pool, however, the improvement could be significant. ZFS-on-Linux systems that make heavy use of extended attributes would benefit from this feature. In particular, ZFS-on-Linux supports the xattr=sa dataset property which allows file extended attribute data to be stored in the dnode bonus buffer as an alternative to the traditional directory-based format. Workloads such as SELinux and the Lustre distributed filesystem often store enough xattr data to force spill bocks when xattr=sa is in effect. Large dnodes may therefore provide a performance benefit to such systems. Other use cases that may benefit from this feature include files with large ACLs and symbolic links with long target names. Furthermore, this feature may be desirable on other platforms in case future applications or features are developed that could make use of a larger bonus buffer area. Implementation -------------- The size of a dnode may be a multiple of 512 bytes up to the size of a dnode block (currently 16384 bytes). A dn_extra_slots field was added to the current on-disk dnode_phys_t structure to describe the size of the physical dnode on disk. The 8 bits for this field were taken from the zero filled dn_pad2 field. The field represents how many "extra" dnode_phys_t slots a dnode consumes in its dnode block. This convention results in a value of 0 for 512 byte dnodes which preserves on-disk format compatibility with older software. Similarly, the in-memory dnode_t structure has a new dn_num_slots field to represent the total number of dnode_phys_t slots consumed on disk. Thus dn->dn_num_slots is 1 greater than the corresponding dnp->dn_extra_slots. This difference in convention was adopted because, unlike on-disk structures, backward compatibility is not a concern for in-memory objects, so we used a more natural way to represent size for a dnode_t. The default size for newly created dnodes is determined by the value of a new "dnodesize" dataset property. By default the property is set to "legacy" which is compatible with older software. Setting the property to "auto" will allow the filesystem to choose the most suitable dnode size. Currently this just sets the default dnode size to 1k, but future code improvements could dynamically choose a size based on observed workload patterns. Dnodes of varying sizes can coexist within the same dataset and even within the same dnode block. For example, to enable automatically-sized dnodes, run # zfs set dnodesize=auto tank/fish The user can also specify literal values for the dnodesize property. These are currently limited to powers of two from 1k to 16k. The power-of-2 limitation is only for simplicity of the user interface. Internally the implementation can handle any multiple of 512 up to 16k, and consumers of the DMU API can specify any legal dnode value. The size of a new dnode is determined at object allocation time and stored as a new field in the znode in-memory structure. New DMU interfaces are added to allow the consumer to specify the dnode size that a newly allocated object should use. Existing interfaces are unchanged to avoid having to update every call site and to preserve compatibility with external consumers such as Lustre. The new interfaces names are given below. The versions of these functions that don't take a dnodesize parameter now just call the _dnsize() versions with a dnodesize of 0, which means use the legacy dnode size. New DMU interfaces: dmu_object_alloc_dnsize() dmu_object_claim_dnsize() dmu_object_reclaim_dnsize() New ZAP interfaces: zap_create_dnsize() zap_create_norm_dnsize() zap_create_flags_dnsize() zap_create_claim_norm_dnsize() zap_create_link_dnsize() The constant DN_MAX_BONUSLEN is renamed to DN_OLD_MAX_BONUSLEN. The spa_maxdnodesize() function should be used to determine the maximum bonus length for a pool. These are a few noteworthy changes to key functions: * The prototype for dnode_hold_impl() now takes a "slots" parameter. When the DNODE_MUST_BE_FREE flag is set, this parameter is used to ensure the hole at the specified object offset is large enough to hold the dnode being created. The slots parameter is also used to ensure a dnode does not span multiple dnode blocks. In both of these cases, if a failure occurs, ENOSPC is returned. Keep in mind, these failure cases are only possible when using DNODE_MUST_BE_FREE. If the DNODE_MUST_BE_ALLOCATED flag is set, "slots" must be 0. dnode_hold_impl() will check if the requested dnode is already consumed as an extra dnode slot by an large dnode, in which case it returns ENOENT. * The function dmu_object_alloc() advances to the next dnode block if dnode_hold_impl() returns an error for a requested object. This is because the beginning of the next dnode block is the only location it can safely assume to either be a hole or a valid starting point for a dnode. * dnode_next_offset_level() and other functions that iterate through dnode blocks may no longer use a simple array indexing scheme. These now use the current dnode's dn_num_slots field to advance to the next dnode in the block. This is to ensure we properly skip the current dnode's bonus area and don't interpret it as a valid dnode. zdb --- The zdb command was updated to display a dnode's size under the "dnsize" column when the object is dumped. For ZIL create log records, zdb will now display the slot count for the object. ztest ----- Ztest chooses a random dnodesize for every newly created object. The random distribution is more heavily weighted toward small dnodes to better simulate real-world datasets. Unused bonus buffer space is filled with non-zero values computed from the object number, dataset id, offset, and generation number. This helps ensure that the dnode traversal code properly skips the interior regions of large dnodes, and that these interior regions are not overwritten by data belonging to other dnodes. A new test visits each object in a dataset. It verifies that the actual dnode size matches what was stored in the ztest block tag when it was created. It also verifies that the unused bonus buffer space is filled with the expected data patterns. ZFS Test Suite -------------- Added six new large dnode-specific tests, and integrated the dnodesize property into existing tests for zfs allow and send/recv. Send/Receive ------------ ZFS send streams for datasets containing large dnodes cannot be received on pools that don't support the large_dnode feature. A send stream with large dnodes sets a DMU_BACKUP_FEATURE_LARGE_DNODE flag which will be unrecognized by an incompatible receiving pool so that the zfs receive will fail gracefully. While not implemented here, it may be possible to generate a backward-compatible send stream from a dataset containing large dnodes. The implementation may be tricky, however, because the send object record for a large dnode would need to be resized to a 512 byte dnode, possibly kicking in a spill block in the process. This means we would need to construct a new SA layout and possibly register it in the SA layout object. The SA layout is normally just sent as an ordinary object record. But if we are constructing new layouts while generating the send stream we'd have to build the SA layout object dynamically and send it at the end of the stream. For sending and receiving between pools that do support large dnodes, the drr_object send record type is extended with a new field to store the dnode slot count. This field was repurposed from unused padding in the structure. ZIL Replay ---------- The dnode slot count is stored in the uppermost 8 bits of the lr_foid field. The bits were unused as the object id is currently capped at 48 bits. Resizing Dnodes --------------- It should be possible to resize a dnode when it is dirtied if the current dnodesize dataset property differs from the dnode's size, but this functionality is not currently implemented. Clearly a dnode can only grow if there are sufficient contiguous unused slots in the dnode block, but it should always be possible to shrink a dnode. Growing dnodes may be useful to reduce fragmentation in a pool with many spill blocks in use. Shrinking dnodes may be useful to allow sending a dataset to a pool that doesn't support the large_dnode feature. Feature Reference Counting -------------------------- The reference count for the large_dnode pool feature tracks the number of datasets that have ever contained a dnode of size larger than 512 bytes. The first time a large dnode is created in a dataset the dataset is converted to an extensible dataset. This is a one-way operation and the only way to decrement the feature count is to destroy the dataset, even if the dataset no longer contains any large dnodes. The complexity of reference counting on a per-dnode basis was too high, so we chose to track it on a per-dataset basis similarly to the large_block feature. Signed-off-by: Ned Bass <bass6@llnl.gov> Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov> Closes #3542
2016-03-17 04:25:34 +03:00
uint64_t dnodesize, uint64_t offset, uint64_t gen, uint64_t txg,
uint64_t crtxg)
{
ASSERT3U(bt->bt_magic, ==, BT_MAGIC);
ASSERT3U(bt->bt_objset, ==, dmu_objset_id(os));
ASSERT3U(bt->bt_object, ==, object);
Implement large_dnode pool feature Justification ------------- This feature adds support for variable length dnodes. Our motivation is to eliminate the overhead associated with using spill blocks. Spill blocks are used to store system attribute data (i.e. file metadata) that does not fit in the dnode's bonus buffer. By allowing a larger bonus buffer area the use of a spill block can be avoided. Spill blocks potentially incur an additional read I/O for every dnode in a dnode block. As a worst case example, reading 32 dnodes from a 16k dnode block and all of the spill blocks could issue 33 separate reads. Now suppose those dnodes have size 1024 and therefore don't need spill blocks. Then the worst case number of blocks read is reduced to from 33 to two--one per dnode block. In practice spill blocks may tend to be co-located on disk with the dnode blocks so the reduction in I/O would not be this drastic. In a badly fragmented pool, however, the improvement could be significant. ZFS-on-Linux systems that make heavy use of extended attributes would benefit from this feature. In particular, ZFS-on-Linux supports the xattr=sa dataset property which allows file extended attribute data to be stored in the dnode bonus buffer as an alternative to the traditional directory-based format. Workloads such as SELinux and the Lustre distributed filesystem often store enough xattr data to force spill bocks when xattr=sa is in effect. Large dnodes may therefore provide a performance benefit to such systems. Other use cases that may benefit from this feature include files with large ACLs and symbolic links with long target names. Furthermore, this feature may be desirable on other platforms in case future applications or features are developed that could make use of a larger bonus buffer area. Implementation -------------- The size of a dnode may be a multiple of 512 bytes up to the size of a dnode block (currently 16384 bytes). A dn_extra_slots field was added to the current on-disk dnode_phys_t structure to describe the size of the physical dnode on disk. The 8 bits for this field were taken from the zero filled dn_pad2 field. The field represents how many "extra" dnode_phys_t slots a dnode consumes in its dnode block. This convention results in a value of 0 for 512 byte dnodes which preserves on-disk format compatibility with older software. Similarly, the in-memory dnode_t structure has a new dn_num_slots field to represent the total number of dnode_phys_t slots consumed on disk. Thus dn->dn_num_slots is 1 greater than the corresponding dnp->dn_extra_slots. This difference in convention was adopted because, unlike on-disk structures, backward compatibility is not a concern for in-memory objects, so we used a more natural way to represent size for a dnode_t. The default size for newly created dnodes is determined by the value of a new "dnodesize" dataset property. By default the property is set to "legacy" which is compatible with older software. Setting the property to "auto" will allow the filesystem to choose the most suitable dnode size. Currently this just sets the default dnode size to 1k, but future code improvements could dynamically choose a size based on observed workload patterns. Dnodes of varying sizes can coexist within the same dataset and even within the same dnode block. For example, to enable automatically-sized dnodes, run # zfs set dnodesize=auto tank/fish The user can also specify literal values for the dnodesize property. These are currently limited to powers of two from 1k to 16k. The power-of-2 limitation is only for simplicity of the user interface. Internally the implementation can handle any multiple of 512 up to 16k, and consumers of the DMU API can specify any legal dnode value. The size of a new dnode is determined at object allocation time and stored as a new field in the znode in-memory structure. New DMU interfaces are added to allow the consumer to specify the dnode size that a newly allocated object should use. Existing interfaces are unchanged to avoid having to update every call site and to preserve compatibility with external consumers such as Lustre. The new interfaces names are given below. The versions of these functions that don't take a dnodesize parameter now just call the _dnsize() versions with a dnodesize of 0, which means use the legacy dnode size. New DMU interfaces: dmu_object_alloc_dnsize() dmu_object_claim_dnsize() dmu_object_reclaim_dnsize() New ZAP interfaces: zap_create_dnsize() zap_create_norm_dnsize() zap_create_flags_dnsize() zap_create_claim_norm_dnsize() zap_create_link_dnsize() The constant DN_MAX_BONUSLEN is renamed to DN_OLD_MAX_BONUSLEN. The spa_maxdnodesize() function should be used to determine the maximum bonus length for a pool. These are a few noteworthy changes to key functions: * The prototype for dnode_hold_impl() now takes a "slots" parameter. When the DNODE_MUST_BE_FREE flag is set, this parameter is used to ensure the hole at the specified object offset is large enough to hold the dnode being created. The slots parameter is also used to ensure a dnode does not span multiple dnode blocks. In both of these cases, if a failure occurs, ENOSPC is returned. Keep in mind, these failure cases are only possible when using DNODE_MUST_BE_FREE. If the DNODE_MUST_BE_ALLOCATED flag is set, "slots" must be 0. dnode_hold_impl() will check if the requested dnode is already consumed as an extra dnode slot by an large dnode, in which case it returns ENOENT. * The function dmu_object_alloc() advances to the next dnode block if dnode_hold_impl() returns an error for a requested object. This is because the beginning of the next dnode block is the only location it can safely assume to either be a hole or a valid starting point for a dnode. * dnode_next_offset_level() and other functions that iterate through dnode blocks may no longer use a simple array indexing scheme. These now use the current dnode's dn_num_slots field to advance to the next dnode in the block. This is to ensure we properly skip the current dnode's bonus area and don't interpret it as a valid dnode. zdb --- The zdb command was updated to display a dnode's size under the "dnsize" column when the object is dumped. For ZIL create log records, zdb will now display the slot count for the object. ztest ----- Ztest chooses a random dnodesize for every newly created object. The random distribution is more heavily weighted toward small dnodes to better simulate real-world datasets. Unused bonus buffer space is filled with non-zero values computed from the object number, dataset id, offset, and generation number. This helps ensure that the dnode traversal code properly skips the interior regions of large dnodes, and that these interior regions are not overwritten by data belonging to other dnodes. A new test visits each object in a dataset. It verifies that the actual dnode size matches what was stored in the ztest block tag when it was created. It also verifies that the unused bonus buffer space is filled with the expected data patterns. ZFS Test Suite -------------- Added six new large dnode-specific tests, and integrated the dnodesize property into existing tests for zfs allow and send/recv. Send/Receive ------------ ZFS send streams for datasets containing large dnodes cannot be received on pools that don't support the large_dnode feature. A send stream with large dnodes sets a DMU_BACKUP_FEATURE_LARGE_DNODE flag which will be unrecognized by an incompatible receiving pool so that the zfs receive will fail gracefully. While not implemented here, it may be possible to generate a backward-compatible send stream from a dataset containing large dnodes. The implementation may be tricky, however, because the send object record for a large dnode would need to be resized to a 512 byte dnode, possibly kicking in a spill block in the process. This means we would need to construct a new SA layout and possibly register it in the SA layout object. The SA layout is normally just sent as an ordinary object record. But if we are constructing new layouts while generating the send stream we'd have to build the SA layout object dynamically and send it at the end of the stream. For sending and receiving between pools that do support large dnodes, the drr_object send record type is extended with a new field to store the dnode slot count. This field was repurposed from unused padding in the structure. ZIL Replay ---------- The dnode slot count is stored in the uppermost 8 bits of the lr_foid field. The bits were unused as the object id is currently capped at 48 bits. Resizing Dnodes --------------- It should be possible to resize a dnode when it is dirtied if the current dnodesize dataset property differs from the dnode's size, but this functionality is not currently implemented. Clearly a dnode can only grow if there are sufficient contiguous unused slots in the dnode block, but it should always be possible to shrink a dnode. Growing dnodes may be useful to reduce fragmentation in a pool with many spill blocks in use. Shrinking dnodes may be useful to allow sending a dataset to a pool that doesn't support the large_dnode feature. Feature Reference Counting -------------------------- The reference count for the large_dnode pool feature tracks the number of datasets that have ever contained a dnode of size larger than 512 bytes. The first time a large dnode is created in a dataset the dataset is converted to an extensible dataset. This is a one-way operation and the only way to decrement the feature count is to destroy the dataset, even if the dataset no longer contains any large dnodes. The complexity of reference counting on a per-dnode basis was too high, so we chose to track it on a per-dataset basis similarly to the large_block feature. Signed-off-by: Ned Bass <bass6@llnl.gov> Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov> Closes #3542
2016-03-17 04:25:34 +03:00
ASSERT3U(bt->bt_dnodesize, ==, dnodesize);
ASSERT3U(bt->bt_offset, ==, offset);
ASSERT3U(bt->bt_gen, <=, gen);
ASSERT3U(bt->bt_txg, <=, txg);
ASSERT3U(bt->bt_crtxg, ==, crtxg);
}
static ztest_block_tag_t *
ztest_bt_bonus(dmu_buf_t *db)
{
dmu_object_info_t doi;
ztest_block_tag_t *bt;
dmu_object_info_from_db(db, &doi);
ASSERT3U(doi.doi_bonus_size, <=, db->db_size);
ASSERT3U(doi.doi_bonus_size, >=, sizeof (*bt));
bt = (void *)((char *)db->db_data + doi.doi_bonus_size - sizeof (*bt));
return (bt);
}
Implement large_dnode pool feature Justification ------------- This feature adds support for variable length dnodes. Our motivation is to eliminate the overhead associated with using spill blocks. Spill blocks are used to store system attribute data (i.e. file metadata) that does not fit in the dnode's bonus buffer. By allowing a larger bonus buffer area the use of a spill block can be avoided. Spill blocks potentially incur an additional read I/O for every dnode in a dnode block. As a worst case example, reading 32 dnodes from a 16k dnode block and all of the spill blocks could issue 33 separate reads. Now suppose those dnodes have size 1024 and therefore don't need spill blocks. Then the worst case number of blocks read is reduced to from 33 to two--one per dnode block. In practice spill blocks may tend to be co-located on disk with the dnode blocks so the reduction in I/O would not be this drastic. In a badly fragmented pool, however, the improvement could be significant. ZFS-on-Linux systems that make heavy use of extended attributes would benefit from this feature. In particular, ZFS-on-Linux supports the xattr=sa dataset property which allows file extended attribute data to be stored in the dnode bonus buffer as an alternative to the traditional directory-based format. Workloads such as SELinux and the Lustre distributed filesystem often store enough xattr data to force spill bocks when xattr=sa is in effect. Large dnodes may therefore provide a performance benefit to such systems. Other use cases that may benefit from this feature include files with large ACLs and symbolic links with long target names. Furthermore, this feature may be desirable on other platforms in case future applications or features are developed that could make use of a larger bonus buffer area. Implementation -------------- The size of a dnode may be a multiple of 512 bytes up to the size of a dnode block (currently 16384 bytes). A dn_extra_slots field was added to the current on-disk dnode_phys_t structure to describe the size of the physical dnode on disk. The 8 bits for this field were taken from the zero filled dn_pad2 field. The field represents how many "extra" dnode_phys_t slots a dnode consumes in its dnode block. This convention results in a value of 0 for 512 byte dnodes which preserves on-disk format compatibility with older software. Similarly, the in-memory dnode_t structure has a new dn_num_slots field to represent the total number of dnode_phys_t slots consumed on disk. Thus dn->dn_num_slots is 1 greater than the corresponding dnp->dn_extra_slots. This difference in convention was adopted because, unlike on-disk structures, backward compatibility is not a concern for in-memory objects, so we used a more natural way to represent size for a dnode_t. The default size for newly created dnodes is determined by the value of a new "dnodesize" dataset property. By default the property is set to "legacy" which is compatible with older software. Setting the property to "auto" will allow the filesystem to choose the most suitable dnode size. Currently this just sets the default dnode size to 1k, but future code improvements could dynamically choose a size based on observed workload patterns. Dnodes of varying sizes can coexist within the same dataset and even within the same dnode block. For example, to enable automatically-sized dnodes, run # zfs set dnodesize=auto tank/fish The user can also specify literal values for the dnodesize property. These are currently limited to powers of two from 1k to 16k. The power-of-2 limitation is only for simplicity of the user interface. Internally the implementation can handle any multiple of 512 up to 16k, and consumers of the DMU API can specify any legal dnode value. The size of a new dnode is determined at object allocation time and stored as a new field in the znode in-memory structure. New DMU interfaces are added to allow the consumer to specify the dnode size that a newly allocated object should use. Existing interfaces are unchanged to avoid having to update every call site and to preserve compatibility with external consumers such as Lustre. The new interfaces names are given below. The versions of these functions that don't take a dnodesize parameter now just call the _dnsize() versions with a dnodesize of 0, which means use the legacy dnode size. New DMU interfaces: dmu_object_alloc_dnsize() dmu_object_claim_dnsize() dmu_object_reclaim_dnsize() New ZAP interfaces: zap_create_dnsize() zap_create_norm_dnsize() zap_create_flags_dnsize() zap_create_claim_norm_dnsize() zap_create_link_dnsize() The constant DN_MAX_BONUSLEN is renamed to DN_OLD_MAX_BONUSLEN. The spa_maxdnodesize() function should be used to determine the maximum bonus length for a pool. These are a few noteworthy changes to key functions: * The prototype for dnode_hold_impl() now takes a "slots" parameter. When the DNODE_MUST_BE_FREE flag is set, this parameter is used to ensure the hole at the specified object offset is large enough to hold the dnode being created. The slots parameter is also used to ensure a dnode does not span multiple dnode blocks. In both of these cases, if a failure occurs, ENOSPC is returned. Keep in mind, these failure cases are only possible when using DNODE_MUST_BE_FREE. If the DNODE_MUST_BE_ALLOCATED flag is set, "slots" must be 0. dnode_hold_impl() will check if the requested dnode is already consumed as an extra dnode slot by an large dnode, in which case it returns ENOENT. * The function dmu_object_alloc() advances to the next dnode block if dnode_hold_impl() returns an error for a requested object. This is because the beginning of the next dnode block is the only location it can safely assume to either be a hole or a valid starting point for a dnode. * dnode_next_offset_level() and other functions that iterate through dnode blocks may no longer use a simple array indexing scheme. These now use the current dnode's dn_num_slots field to advance to the next dnode in the block. This is to ensure we properly skip the current dnode's bonus area and don't interpret it as a valid dnode. zdb --- The zdb command was updated to display a dnode's size under the "dnsize" column when the object is dumped. For ZIL create log records, zdb will now display the slot count for the object. ztest ----- Ztest chooses a random dnodesize for every newly created object. The random distribution is more heavily weighted toward small dnodes to better simulate real-world datasets. Unused bonus buffer space is filled with non-zero values computed from the object number, dataset id, offset, and generation number. This helps ensure that the dnode traversal code properly skips the interior regions of large dnodes, and that these interior regions are not overwritten by data belonging to other dnodes. A new test visits each object in a dataset. It verifies that the actual dnode size matches what was stored in the ztest block tag when it was created. It also verifies that the unused bonus buffer space is filled with the expected data patterns. ZFS Test Suite -------------- Added six new large dnode-specific tests, and integrated the dnodesize property into existing tests for zfs allow and send/recv. Send/Receive ------------ ZFS send streams for datasets containing large dnodes cannot be received on pools that don't support the large_dnode feature. A send stream with large dnodes sets a DMU_BACKUP_FEATURE_LARGE_DNODE flag which will be unrecognized by an incompatible receiving pool so that the zfs receive will fail gracefully. While not implemented here, it may be possible to generate a backward-compatible send stream from a dataset containing large dnodes. The implementation may be tricky, however, because the send object record for a large dnode would need to be resized to a 512 byte dnode, possibly kicking in a spill block in the process. This means we would need to construct a new SA layout and possibly register it in the SA layout object. The SA layout is normally just sent as an ordinary object record. But if we are constructing new layouts while generating the send stream we'd have to build the SA layout object dynamically and send it at the end of the stream. For sending and receiving between pools that do support large dnodes, the drr_object send record type is extended with a new field to store the dnode slot count. This field was repurposed from unused padding in the structure. ZIL Replay ---------- The dnode slot count is stored in the uppermost 8 bits of the lr_foid field. The bits were unused as the object id is currently capped at 48 bits. Resizing Dnodes --------------- It should be possible to resize a dnode when it is dirtied if the current dnodesize dataset property differs from the dnode's size, but this functionality is not currently implemented. Clearly a dnode can only grow if there are sufficient contiguous unused slots in the dnode block, but it should always be possible to shrink a dnode. Growing dnodes may be useful to reduce fragmentation in a pool with many spill blocks in use. Shrinking dnodes may be useful to allow sending a dataset to a pool that doesn't support the large_dnode feature. Feature Reference Counting -------------------------- The reference count for the large_dnode pool feature tracks the number of datasets that have ever contained a dnode of size larger than 512 bytes. The first time a large dnode is created in a dataset the dataset is converted to an extensible dataset. This is a one-way operation and the only way to decrement the feature count is to destroy the dataset, even if the dataset no longer contains any large dnodes. The complexity of reference counting on a per-dnode basis was too high, so we chose to track it on a per-dataset basis similarly to the large_block feature. Signed-off-by: Ned Bass <bass6@llnl.gov> Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov> Closes #3542
2016-03-17 04:25:34 +03:00
/*
* Generate a token to fill up unused bonus buffer space. Try to make
* it unique to the object, generation, and offset to verify that data
* is not getting overwritten by data from other dnodes.
*/
#define ZTEST_BONUS_FILL_TOKEN(obj, ds, gen, offset) \
(((ds) << 48) | ((gen) << 32) | ((obj) << 8) | (offset))
/*
* Fill up the unused bonus buffer region before the block tag with a
* verifiable pattern. Filling the whole bonus area with non-zero data
* helps ensure that all dnode traversal code properly skips the
* interior regions of large dnodes.
*/
static void
Implement large_dnode pool feature Justification ------------- This feature adds support for variable length dnodes. Our motivation is to eliminate the overhead associated with using spill blocks. Spill blocks are used to store system attribute data (i.e. file metadata) that does not fit in the dnode's bonus buffer. By allowing a larger bonus buffer area the use of a spill block can be avoided. Spill blocks potentially incur an additional read I/O for every dnode in a dnode block. As a worst case example, reading 32 dnodes from a 16k dnode block and all of the spill blocks could issue 33 separate reads. Now suppose those dnodes have size 1024 and therefore don't need spill blocks. Then the worst case number of blocks read is reduced to from 33 to two--one per dnode block. In practice spill blocks may tend to be co-located on disk with the dnode blocks so the reduction in I/O would not be this drastic. In a badly fragmented pool, however, the improvement could be significant. ZFS-on-Linux systems that make heavy use of extended attributes would benefit from this feature. In particular, ZFS-on-Linux supports the xattr=sa dataset property which allows file extended attribute data to be stored in the dnode bonus buffer as an alternative to the traditional directory-based format. Workloads such as SELinux and the Lustre distributed filesystem often store enough xattr data to force spill bocks when xattr=sa is in effect. Large dnodes may therefore provide a performance benefit to such systems. Other use cases that may benefit from this feature include files with large ACLs and symbolic links with long target names. Furthermore, this feature may be desirable on other platforms in case future applications or features are developed that could make use of a larger bonus buffer area. Implementation -------------- The size of a dnode may be a multiple of 512 bytes up to the size of a dnode block (currently 16384 bytes). A dn_extra_slots field was added to the current on-disk dnode_phys_t structure to describe the size of the physical dnode on disk. The 8 bits for this field were taken from the zero filled dn_pad2 field. The field represents how many "extra" dnode_phys_t slots a dnode consumes in its dnode block. This convention results in a value of 0 for 512 byte dnodes which preserves on-disk format compatibility with older software. Similarly, the in-memory dnode_t structure has a new dn_num_slots field to represent the total number of dnode_phys_t slots consumed on disk. Thus dn->dn_num_slots is 1 greater than the corresponding dnp->dn_extra_slots. This difference in convention was adopted because, unlike on-disk structures, backward compatibility is not a concern for in-memory objects, so we used a more natural way to represent size for a dnode_t. The default size for newly created dnodes is determined by the value of a new "dnodesize" dataset property. By default the property is set to "legacy" which is compatible with older software. Setting the property to "auto" will allow the filesystem to choose the most suitable dnode size. Currently this just sets the default dnode size to 1k, but future code improvements could dynamically choose a size based on observed workload patterns. Dnodes of varying sizes can coexist within the same dataset and even within the same dnode block. For example, to enable automatically-sized dnodes, run # zfs set dnodesize=auto tank/fish The user can also specify literal values for the dnodesize property. These are currently limited to powers of two from 1k to 16k. The power-of-2 limitation is only for simplicity of the user interface. Internally the implementation can handle any multiple of 512 up to 16k, and consumers of the DMU API can specify any legal dnode value. The size of a new dnode is determined at object allocation time and stored as a new field in the znode in-memory structure. New DMU interfaces are added to allow the consumer to specify the dnode size that a newly allocated object should use. Existing interfaces are unchanged to avoid having to update every call site and to preserve compatibility with external consumers such as Lustre. The new interfaces names are given below. The versions of these functions that don't take a dnodesize parameter now just call the _dnsize() versions with a dnodesize of 0, which means use the legacy dnode size. New DMU interfaces: dmu_object_alloc_dnsize() dmu_object_claim_dnsize() dmu_object_reclaim_dnsize() New ZAP interfaces: zap_create_dnsize() zap_create_norm_dnsize() zap_create_flags_dnsize() zap_create_claim_norm_dnsize() zap_create_link_dnsize() The constant DN_MAX_BONUSLEN is renamed to DN_OLD_MAX_BONUSLEN. The spa_maxdnodesize() function should be used to determine the maximum bonus length for a pool. These are a few noteworthy changes to key functions: * The prototype for dnode_hold_impl() now takes a "slots" parameter. When the DNODE_MUST_BE_FREE flag is set, this parameter is used to ensure the hole at the specified object offset is large enough to hold the dnode being created. The slots parameter is also used to ensure a dnode does not span multiple dnode blocks. In both of these cases, if a failure occurs, ENOSPC is returned. Keep in mind, these failure cases are only possible when using DNODE_MUST_BE_FREE. If the DNODE_MUST_BE_ALLOCATED flag is set, "slots" must be 0. dnode_hold_impl() will check if the requested dnode is already consumed as an extra dnode slot by an large dnode, in which case it returns ENOENT. * The function dmu_object_alloc() advances to the next dnode block if dnode_hold_impl() returns an error for a requested object. This is because the beginning of the next dnode block is the only location it can safely assume to either be a hole or a valid starting point for a dnode. * dnode_next_offset_level() and other functions that iterate through dnode blocks may no longer use a simple array indexing scheme. These now use the current dnode's dn_num_slots field to advance to the next dnode in the block. This is to ensure we properly skip the current dnode's bonus area and don't interpret it as a valid dnode. zdb --- The zdb command was updated to display a dnode's size under the "dnsize" column when the object is dumped. For ZIL create log records, zdb will now display the slot count for the object. ztest ----- Ztest chooses a random dnodesize for every newly created object. The random distribution is more heavily weighted toward small dnodes to better simulate real-world datasets. Unused bonus buffer space is filled with non-zero values computed from the object number, dataset id, offset, and generation number. This helps ensure that the dnode traversal code properly skips the interior regions of large dnodes, and that these interior regions are not overwritten by data belonging to other dnodes. A new test visits each object in a dataset. It verifies that the actual dnode size matches what was stored in the ztest block tag when it was created. It also verifies that the unused bonus buffer space is filled with the expected data patterns. ZFS Test Suite -------------- Added six new large dnode-specific tests, and integrated the dnodesize property into existing tests for zfs allow and send/recv. Send/Receive ------------ ZFS send streams for datasets containing large dnodes cannot be received on pools that don't support the large_dnode feature. A send stream with large dnodes sets a DMU_BACKUP_FEATURE_LARGE_DNODE flag which will be unrecognized by an incompatible receiving pool so that the zfs receive will fail gracefully. While not implemented here, it may be possible to generate a backward-compatible send stream from a dataset containing large dnodes. The implementation may be tricky, however, because the send object record for a large dnode would need to be resized to a 512 byte dnode, possibly kicking in a spill block in the process. This means we would need to construct a new SA layout and possibly register it in the SA layout object. The SA layout is normally just sent as an ordinary object record. But if we are constructing new layouts while generating the send stream we'd have to build the SA layout object dynamically and send it at the end of the stream. For sending and receiving between pools that do support large dnodes, the drr_object send record type is extended with a new field to store the dnode slot count. This field was repurposed from unused padding in the structure. ZIL Replay ---------- The dnode slot count is stored in the uppermost 8 bits of the lr_foid field. The bits were unused as the object id is currently capped at 48 bits. Resizing Dnodes --------------- It should be possible to resize a dnode when it is dirtied if the current dnodesize dataset property differs from the dnode's size, but this functionality is not currently implemented. Clearly a dnode can only grow if there are sufficient contiguous unused slots in the dnode block, but it should always be possible to shrink a dnode. Growing dnodes may be useful to reduce fragmentation in a pool with many spill blocks in use. Shrinking dnodes may be useful to allow sending a dataset to a pool that doesn't support the large_dnode feature. Feature Reference Counting -------------------------- The reference count for the large_dnode pool feature tracks the number of datasets that have ever contained a dnode of size larger than 512 bytes. The first time a large dnode is created in a dataset the dataset is converted to an extensible dataset. This is a one-way operation and the only way to decrement the feature count is to destroy the dataset, even if the dataset no longer contains any large dnodes. The complexity of reference counting on a per-dnode basis was too high, so we chose to track it on a per-dataset basis similarly to the large_block feature. Signed-off-by: Ned Bass <bass6@llnl.gov> Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov> Closes #3542
2016-03-17 04:25:34 +03:00
ztest_fill_unused_bonus(dmu_buf_t *db, void *end, uint64_t obj,
objset_t *os, uint64_t gen)
{
uint64_t *bonusp;
ASSERT(IS_P2ALIGNED((char *)end - (char *)db->db_data, 8));
for (bonusp = db->db_data; bonusp < (uint64_t *)end; bonusp++) {
uint64_t token = ZTEST_BONUS_FILL_TOKEN(obj, dmu_objset_id(os),
gen, bonusp - (uint64_t *)db->db_data);
*bonusp = token;
}
}
/*
* Verify that the unused area of a bonus buffer is filled with the
* expected tokens.
*/
static void
Implement large_dnode pool feature Justification ------------- This feature adds support for variable length dnodes. Our motivation is to eliminate the overhead associated with using spill blocks. Spill blocks are used to store system attribute data (i.e. file metadata) that does not fit in the dnode's bonus buffer. By allowing a larger bonus buffer area the use of a spill block can be avoided. Spill blocks potentially incur an additional read I/O for every dnode in a dnode block. As a worst case example, reading 32 dnodes from a 16k dnode block and all of the spill blocks could issue 33 separate reads. Now suppose those dnodes have size 1024 and therefore don't need spill blocks. Then the worst case number of blocks read is reduced to from 33 to two--one per dnode block. In practice spill blocks may tend to be co-located on disk with the dnode blocks so the reduction in I/O would not be this drastic. In a badly fragmented pool, however, the improvement could be significant. ZFS-on-Linux systems that make heavy use of extended attributes would benefit from this feature. In particular, ZFS-on-Linux supports the xattr=sa dataset property which allows file extended attribute data to be stored in the dnode bonus buffer as an alternative to the traditional directory-based format. Workloads such as SELinux and the Lustre distributed filesystem often store enough xattr data to force spill bocks when xattr=sa is in effect. Large dnodes may therefore provide a performance benefit to such systems. Other use cases that may benefit from this feature include files with large ACLs and symbolic links with long target names. Furthermore, this feature may be desirable on other platforms in case future applications or features are developed that could make use of a larger bonus buffer area. Implementation -------------- The size of a dnode may be a multiple of 512 bytes up to the size of a dnode block (currently 16384 bytes). A dn_extra_slots field was added to the current on-disk dnode_phys_t structure to describe the size of the physical dnode on disk. The 8 bits for this field were taken from the zero filled dn_pad2 field. The field represents how many "extra" dnode_phys_t slots a dnode consumes in its dnode block. This convention results in a value of 0 for 512 byte dnodes which preserves on-disk format compatibility with older software. Similarly, the in-memory dnode_t structure has a new dn_num_slots field to represent the total number of dnode_phys_t slots consumed on disk. Thus dn->dn_num_slots is 1 greater than the corresponding dnp->dn_extra_slots. This difference in convention was adopted because, unlike on-disk structures, backward compatibility is not a concern for in-memory objects, so we used a more natural way to represent size for a dnode_t. The default size for newly created dnodes is determined by the value of a new "dnodesize" dataset property. By default the property is set to "legacy" which is compatible with older software. Setting the property to "auto" will allow the filesystem to choose the most suitable dnode size. Currently this just sets the default dnode size to 1k, but future code improvements could dynamically choose a size based on observed workload patterns. Dnodes of varying sizes can coexist within the same dataset and even within the same dnode block. For example, to enable automatically-sized dnodes, run # zfs set dnodesize=auto tank/fish The user can also specify literal values for the dnodesize property. These are currently limited to powers of two from 1k to 16k. The power-of-2 limitation is only for simplicity of the user interface. Internally the implementation can handle any multiple of 512 up to 16k, and consumers of the DMU API can specify any legal dnode value. The size of a new dnode is determined at object allocation time and stored as a new field in the znode in-memory structure. New DMU interfaces are added to allow the consumer to specify the dnode size that a newly allocated object should use. Existing interfaces are unchanged to avoid having to update every call site and to preserve compatibility with external consumers such as Lustre. The new interfaces names are given below. The versions of these functions that don't take a dnodesize parameter now just call the _dnsize() versions with a dnodesize of 0, which means use the legacy dnode size. New DMU interfaces: dmu_object_alloc_dnsize() dmu_object_claim_dnsize() dmu_object_reclaim_dnsize() New ZAP interfaces: zap_create_dnsize() zap_create_norm_dnsize() zap_create_flags_dnsize() zap_create_claim_norm_dnsize() zap_create_link_dnsize() The constant DN_MAX_BONUSLEN is renamed to DN_OLD_MAX_BONUSLEN. The spa_maxdnodesize() function should be used to determine the maximum bonus length for a pool. These are a few noteworthy changes to key functions: * The prototype for dnode_hold_impl() now takes a "slots" parameter. When the DNODE_MUST_BE_FREE flag is set, this parameter is used to ensure the hole at the specified object offset is large enough to hold the dnode being created. The slots parameter is also used to ensure a dnode does not span multiple dnode blocks. In both of these cases, if a failure occurs, ENOSPC is returned. Keep in mind, these failure cases are only possible when using DNODE_MUST_BE_FREE. If the DNODE_MUST_BE_ALLOCATED flag is set, "slots" must be 0. dnode_hold_impl() will check if the requested dnode is already consumed as an extra dnode slot by an large dnode, in which case it returns ENOENT. * The function dmu_object_alloc() advances to the next dnode block if dnode_hold_impl() returns an error for a requested object. This is because the beginning of the next dnode block is the only location it can safely assume to either be a hole or a valid starting point for a dnode. * dnode_next_offset_level() and other functions that iterate through dnode blocks may no longer use a simple array indexing scheme. These now use the current dnode's dn_num_slots field to advance to the next dnode in the block. This is to ensure we properly skip the current dnode's bonus area and don't interpret it as a valid dnode. zdb --- The zdb command was updated to display a dnode's size under the "dnsize" column when the object is dumped. For ZIL create log records, zdb will now display the slot count for the object. ztest ----- Ztest chooses a random dnodesize for every newly created object. The random distribution is more heavily weighted toward small dnodes to better simulate real-world datasets. Unused bonus buffer space is filled with non-zero values computed from the object number, dataset id, offset, and generation number. This helps ensure that the dnode traversal code properly skips the interior regions of large dnodes, and that these interior regions are not overwritten by data belonging to other dnodes. A new test visits each object in a dataset. It verifies that the actual dnode size matches what was stored in the ztest block tag when it was created. It also verifies that the unused bonus buffer space is filled with the expected data patterns. ZFS Test Suite -------------- Added six new large dnode-specific tests, and integrated the dnodesize property into existing tests for zfs allow and send/recv. Send/Receive ------------ ZFS send streams for datasets containing large dnodes cannot be received on pools that don't support the large_dnode feature. A send stream with large dnodes sets a DMU_BACKUP_FEATURE_LARGE_DNODE flag which will be unrecognized by an incompatible receiving pool so that the zfs receive will fail gracefully. While not implemented here, it may be possible to generate a backward-compatible send stream from a dataset containing large dnodes. The implementation may be tricky, however, because the send object record for a large dnode would need to be resized to a 512 byte dnode, possibly kicking in a spill block in the process. This means we would need to construct a new SA layout and possibly register it in the SA layout object. The SA layout is normally just sent as an ordinary object record. But if we are constructing new layouts while generating the send stream we'd have to build the SA layout object dynamically and send it at the end of the stream. For sending and receiving between pools that do support large dnodes, the drr_object send record type is extended with a new field to store the dnode slot count. This field was repurposed from unused padding in the structure. ZIL Replay ---------- The dnode slot count is stored in the uppermost 8 bits of the lr_foid field. The bits were unused as the object id is currently capped at 48 bits. Resizing Dnodes --------------- It should be possible to resize a dnode when it is dirtied if the current dnodesize dataset property differs from the dnode's size, but this functionality is not currently implemented. Clearly a dnode can only grow if there are sufficient contiguous unused slots in the dnode block, but it should always be possible to shrink a dnode. Growing dnodes may be useful to reduce fragmentation in a pool with many spill blocks in use. Shrinking dnodes may be useful to allow sending a dataset to a pool that doesn't support the large_dnode feature. Feature Reference Counting -------------------------- The reference count for the large_dnode pool feature tracks the number of datasets that have ever contained a dnode of size larger than 512 bytes. The first time a large dnode is created in a dataset the dataset is converted to an extensible dataset. This is a one-way operation and the only way to decrement the feature count is to destroy the dataset, even if the dataset no longer contains any large dnodes. The complexity of reference counting on a per-dnode basis was too high, so we chose to track it on a per-dataset basis similarly to the large_block feature. Signed-off-by: Ned Bass <bass6@llnl.gov> Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov> Closes #3542
2016-03-17 04:25:34 +03:00
ztest_verify_unused_bonus(dmu_buf_t *db, void *end, uint64_t obj,
objset_t *os, uint64_t gen)
{
uint64_t *bonusp;
for (bonusp = db->db_data; bonusp < (uint64_t *)end; bonusp++) {
uint64_t token = ZTEST_BONUS_FILL_TOKEN(obj, dmu_objset_id(os),
gen, bonusp - (uint64_t *)db->db_data);
VERIFY3U(*bonusp, ==, token);
}
}
/*
* ZIL logging ops
*/
#define lrz_type lr_mode
#define lrz_blocksize lr_uid
#define lrz_ibshift lr_gid
#define lrz_bonustype lr_rdev
Implement large_dnode pool feature Justification ------------- This feature adds support for variable length dnodes. Our motivation is to eliminate the overhead associated with using spill blocks. Spill blocks are used to store system attribute data (i.e. file metadata) that does not fit in the dnode's bonus buffer. By allowing a larger bonus buffer area the use of a spill block can be avoided. Spill blocks potentially incur an additional read I/O for every dnode in a dnode block. As a worst case example, reading 32 dnodes from a 16k dnode block and all of the spill blocks could issue 33 separate reads. Now suppose those dnodes have size 1024 and therefore don't need spill blocks. Then the worst case number of blocks read is reduced to from 33 to two--one per dnode block. In practice spill blocks may tend to be co-located on disk with the dnode blocks so the reduction in I/O would not be this drastic. In a badly fragmented pool, however, the improvement could be significant. ZFS-on-Linux systems that make heavy use of extended attributes would benefit from this feature. In particular, ZFS-on-Linux supports the xattr=sa dataset property which allows file extended attribute data to be stored in the dnode bonus buffer as an alternative to the traditional directory-based format. Workloads such as SELinux and the Lustre distributed filesystem often store enough xattr data to force spill bocks when xattr=sa is in effect. Large dnodes may therefore provide a performance benefit to such systems. Other use cases that may benefit from this feature include files with large ACLs and symbolic links with long target names. Furthermore, this feature may be desirable on other platforms in case future applications or features are developed that could make use of a larger bonus buffer area. Implementation -------------- The size of a dnode may be a multiple of 512 bytes up to the size of a dnode block (currently 16384 bytes). A dn_extra_slots field was added to the current on-disk dnode_phys_t structure to describe the size of the physical dnode on disk. The 8 bits for this field were taken from the zero filled dn_pad2 field. The field represents how many "extra" dnode_phys_t slots a dnode consumes in its dnode block. This convention results in a value of 0 for 512 byte dnodes which preserves on-disk format compatibility with older software. Similarly, the in-memory dnode_t structure has a new dn_num_slots field to represent the total number of dnode_phys_t slots consumed on disk. Thus dn->dn_num_slots is 1 greater than the corresponding dnp->dn_extra_slots. This difference in convention was adopted because, unlike on-disk structures, backward compatibility is not a concern for in-memory objects, so we used a more natural way to represent size for a dnode_t. The default size for newly created dnodes is determined by the value of a new "dnodesize" dataset property. By default the property is set to "legacy" which is compatible with older software. Setting the property to "auto" will allow the filesystem to choose the most suitable dnode size. Currently this just sets the default dnode size to 1k, but future code improvements could dynamically choose a size based on observed workload patterns. Dnodes of varying sizes can coexist within the same dataset and even within the same dnode block. For example, to enable automatically-sized dnodes, run # zfs set dnodesize=auto tank/fish The user can also specify literal values for the dnodesize property. These are currently limited to powers of two from 1k to 16k. The power-of-2 limitation is only for simplicity of the user interface. Internally the implementation can handle any multiple of 512 up to 16k, and consumers of the DMU API can specify any legal dnode value. The size of a new dnode is determined at object allocation time and stored as a new field in the znode in-memory structure. New DMU interfaces are added to allow the consumer to specify the dnode size that a newly allocated object should use. Existing interfaces are unchanged to avoid having to update every call site and to preserve compatibility with external consumers such as Lustre. The new interfaces names are given below. The versions of these functions that don't take a dnodesize parameter now just call the _dnsize() versions with a dnodesize of 0, which means use the legacy dnode size. New DMU interfaces: dmu_object_alloc_dnsize() dmu_object_claim_dnsize() dmu_object_reclaim_dnsize() New ZAP interfaces: zap_create_dnsize() zap_create_norm_dnsize() zap_create_flags_dnsize() zap_create_claim_norm_dnsize() zap_create_link_dnsize() The constant DN_MAX_BONUSLEN is renamed to DN_OLD_MAX_BONUSLEN. The spa_maxdnodesize() function should be used to determine the maximum bonus length for a pool. These are a few noteworthy changes to key functions: * The prototype for dnode_hold_impl() now takes a "slots" parameter. When the DNODE_MUST_BE_FREE flag is set, this parameter is used to ensure the hole at the specified object offset is large enough to hold the dnode being created. The slots parameter is also used to ensure a dnode does not span multiple dnode blocks. In both of these cases, if a failure occurs, ENOSPC is returned. Keep in mind, these failure cases are only possible when using DNODE_MUST_BE_FREE. If the DNODE_MUST_BE_ALLOCATED flag is set, "slots" must be 0. dnode_hold_impl() will check if the requested dnode is already consumed as an extra dnode slot by an large dnode, in which case it returns ENOENT. * The function dmu_object_alloc() advances to the next dnode block if dnode_hold_impl() returns an error for a requested object. This is because the beginning of the next dnode block is the only location it can safely assume to either be a hole or a valid starting point for a dnode. * dnode_next_offset_level() and other functions that iterate through dnode blocks may no longer use a simple array indexing scheme. These now use the current dnode's dn_num_slots field to advance to the next dnode in the block. This is to ensure we properly skip the current dnode's bonus area and don't interpret it as a valid dnode. zdb --- The zdb command was updated to display a dnode's size under the "dnsize" column when the object is dumped. For ZIL create log records, zdb will now display the slot count for the object. ztest ----- Ztest chooses a random dnodesize for every newly created object. The random distribution is more heavily weighted toward small dnodes to better simulate real-world datasets. Unused bonus buffer space is filled with non-zero values computed from the object number, dataset id, offset, and generation number. This helps ensure that the dnode traversal code properly skips the interior regions of large dnodes, and that these interior regions are not overwritten by data belonging to other dnodes. A new test visits each object in a dataset. It verifies that the actual dnode size matches what was stored in the ztest block tag when it was created. It also verifies that the unused bonus buffer space is filled with the expected data patterns. ZFS Test Suite -------------- Added six new large dnode-specific tests, and integrated the dnodesize property into existing tests for zfs allow and send/recv. Send/Receive ------------ ZFS send streams for datasets containing large dnodes cannot be received on pools that don't support the large_dnode feature. A send stream with large dnodes sets a DMU_BACKUP_FEATURE_LARGE_DNODE flag which will be unrecognized by an incompatible receiving pool so that the zfs receive will fail gracefully. While not implemented here, it may be possible to generate a backward-compatible send stream from a dataset containing large dnodes. The implementation may be tricky, however, because the send object record for a large dnode would need to be resized to a 512 byte dnode, possibly kicking in a spill block in the process. This means we would need to construct a new SA layout and possibly register it in the SA layout object. The SA layout is normally just sent as an ordinary object record. But if we are constructing new layouts while generating the send stream we'd have to build the SA layout object dynamically and send it at the end of the stream. For sending and receiving between pools that do support large dnodes, the drr_object send record type is extended with a new field to store the dnode slot count. This field was repurposed from unused padding in the structure. ZIL Replay ---------- The dnode slot count is stored in the uppermost 8 bits of the lr_foid field. The bits were unused as the object id is currently capped at 48 bits. Resizing Dnodes --------------- It should be possible to resize a dnode when it is dirtied if the current dnodesize dataset property differs from the dnode's size, but this functionality is not currently implemented. Clearly a dnode can only grow if there are sufficient contiguous unused slots in the dnode block, but it should always be possible to shrink a dnode. Growing dnodes may be useful to reduce fragmentation in a pool with many spill blocks in use. Shrinking dnodes may be useful to allow sending a dataset to a pool that doesn't support the large_dnode feature. Feature Reference Counting -------------------------- The reference count for the large_dnode pool feature tracks the number of datasets that have ever contained a dnode of size larger than 512 bytes. The first time a large dnode is created in a dataset the dataset is converted to an extensible dataset. This is a one-way operation and the only way to decrement the feature count is to destroy the dataset, even if the dataset no longer contains any large dnodes. The complexity of reference counting on a per-dnode basis was too high, so we chose to track it on a per-dataset basis similarly to the large_block feature. Signed-off-by: Ned Bass <bass6@llnl.gov> Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov> Closes #3542
2016-03-17 04:25:34 +03:00
#define lrz_dnodesize lr_crtime[1]
static void
ztest_log_create(ztest_ds_t *zd, dmu_tx_t *tx, lr_create_t *lr)
{
char *name = (void *)(lr + 1); /* name follows lr */
size_t namesize = strlen(name) + 1;
itx_t *itx;
if (zil_replaying(zd->zd_zilog, tx))
return;
itx = zil_itx_create(TX_CREATE, sizeof (*lr) + namesize);
memcpy(&itx->itx_lr + 1, &lr->lr_common + 1,
sizeof (*lr) + namesize - sizeof (lr_t));
zil_itx_assign(zd->zd_zilog, itx, tx);
}
static void
ztest_log_remove(ztest_ds_t *zd, dmu_tx_t *tx, lr_remove_t *lr, uint64_t object)
{
char *name = (void *)(lr + 1); /* name follows lr */
size_t namesize = strlen(name) + 1;
itx_t *itx;
if (zil_replaying(zd->zd_zilog, tx))
return;
itx = zil_itx_create(TX_REMOVE, sizeof (*lr) + namesize);
memcpy(&itx->itx_lr + 1, &lr->lr_common + 1,
sizeof (*lr) + namesize - sizeof (lr_t));
itx->itx_oid = object;
zil_itx_assign(zd->zd_zilog, itx, tx);
}
static void
ztest_log_write(ztest_ds_t *zd, dmu_tx_t *tx, lr_write_t *lr)
{
itx_t *itx;
itx_wr_state_t write_state = ztest_random(WR_NUM_STATES);
if (zil_replaying(zd->zd_zilog, tx))
return;
if (lr->lr_length > zil_max_log_data(zd->zd_zilog, sizeof (lr_write_t)))
write_state = WR_INDIRECT;
itx = zil_itx_create(TX_WRITE,
sizeof (*lr) + (write_state == WR_COPIED ? lr->lr_length : 0));
if (write_state == WR_COPIED &&
dmu_read(zd->zd_os, lr->lr_foid, lr->lr_offset, lr->lr_length,
((lr_write_t *)&itx->itx_lr) + 1, DMU_READ_NO_PREFETCH) != 0) {
zil_itx_destroy(itx);
itx = zil_itx_create(TX_WRITE, sizeof (*lr));
write_state = WR_NEED_COPY;
}
itx->itx_private = zd;
itx->itx_wr_state = write_state;
itx->itx_sync = (ztest_random(8) == 0);
memcpy(&itx->itx_lr + 1, &lr->lr_common + 1,
sizeof (*lr) - sizeof (lr_t));
zil_itx_assign(zd->zd_zilog, itx, tx);
}
static void
ztest_log_truncate(ztest_ds_t *zd, dmu_tx_t *tx, lr_truncate_t *lr)
{
itx_t *itx;
if (zil_replaying(zd->zd_zilog, tx))
return;
itx = zil_itx_create(TX_TRUNCATE, sizeof (*lr));
memcpy(&itx->itx_lr + 1, &lr->lr_common + 1,
sizeof (*lr) - sizeof (lr_t));
itx->itx_sync = B_FALSE;
zil_itx_assign(zd->zd_zilog, itx, tx);
}
static void
ztest_log_setattr(ztest_ds_t *zd, dmu_tx_t *tx, lr_setattr_t *lr)
{
itx_t *itx;
if (zil_replaying(zd->zd_zilog, tx))
return;
itx = zil_itx_create(TX_SETATTR, sizeof (*lr));
memcpy(&itx->itx_lr + 1, &lr->lr_common + 1,
sizeof (*lr) - sizeof (lr_t));
itx->itx_sync = B_FALSE;
zil_itx_assign(zd->zd_zilog, itx, tx);
}
/*
* ZIL replay ops
*/
static int
OpenZFS 8081 - Compiler warnings in zdb Fix compiler warnings in zdb. With these changes, FreeBSD can compile zdb with all compiler warnings enabled save -Wunused-parameter. usr/src/cmd/zdb/zdb.c usr/src/cmd/zdb/zdb_il.c usr/src/uts/common/fs/zfs/sys/sa.h usr/src/uts/common/fs/zfs/sys/spa.h Fix numerous warnings, including: * const-correctness * shadowing global definitions * signed vs unsigned comparisons * missing prototypes, or missing static declarations * unused variables and functions * Unreadable array initializations * Missing struct initializers usr/src/cmd/zdb/zdb.h Add a header file to declare common symbols usr/src/lib/libzpool/common/sys/zfs_context.h usr/src/uts/common/fs/zfs/arc.c usr/src/uts/common/fs/zfs/dbuf.c usr/src/uts/common/fs/zfs/spa.c usr/src/uts/common/fs/zfs/txg.c Add a function prototype for zk_thread_create, and ensure that every callback supplied to this function actually matches the prototype. usr/src/cmd/ztest/ztest.c usr/src/uts/common/fs/zfs/sys/zil.h usr/src/uts/common/fs/zfs/zfs_replay.c usr/src/uts/common/fs/zfs/zvol.c Add a function prototype for zil_replay_func_t, and ensure that every function of this type actually matches the prototype. usr/src/uts/common/fs/zfs/sys/refcount.h Change FTAG so it discards any constness of __func__, necessary since existing APIs expect it passed as void *. Porting Notes: - Many of these fixes have already been applied to Linux. For consistency the OpenZFS version of a change was applied if the warning was addressed in an equivalent but different fashion. Reviewed by: Matthew Ahrens <mahrens@delphix.com> Reviewed by: Prakash Surya <prakash.surya@delphix.com> Authored by: Alan Somers <asomers@gmail.com> Approved by: Richard Lowe <richlowe@richlowe.net> Ported-by: Brian Behlendorf <behlendorf1@llnl.gov> OpenZFS-issue: https://www.illumos.org/issues/8081 OpenZFS-commit: https://github.com/openzfs/openzfs/commit/843abe1b8a Closes #6787
2017-10-27 22:46:35 +03:00
ztest_replay_create(void *arg1, void *arg2, boolean_t byteswap)
{
OpenZFS 8081 - Compiler warnings in zdb Fix compiler warnings in zdb. With these changes, FreeBSD can compile zdb with all compiler warnings enabled save -Wunused-parameter. usr/src/cmd/zdb/zdb.c usr/src/cmd/zdb/zdb_il.c usr/src/uts/common/fs/zfs/sys/sa.h usr/src/uts/common/fs/zfs/sys/spa.h Fix numerous warnings, including: * const-correctness * shadowing global definitions * signed vs unsigned comparisons * missing prototypes, or missing static declarations * unused variables and functions * Unreadable array initializations * Missing struct initializers usr/src/cmd/zdb/zdb.h Add a header file to declare common symbols usr/src/lib/libzpool/common/sys/zfs_context.h usr/src/uts/common/fs/zfs/arc.c usr/src/uts/common/fs/zfs/dbuf.c usr/src/uts/common/fs/zfs/spa.c usr/src/uts/common/fs/zfs/txg.c Add a function prototype for zk_thread_create, and ensure that every callback supplied to this function actually matches the prototype. usr/src/cmd/ztest/ztest.c usr/src/uts/common/fs/zfs/sys/zil.h usr/src/uts/common/fs/zfs/zfs_replay.c usr/src/uts/common/fs/zfs/zvol.c Add a function prototype for zil_replay_func_t, and ensure that every function of this type actually matches the prototype. usr/src/uts/common/fs/zfs/sys/refcount.h Change FTAG so it discards any constness of __func__, necessary since existing APIs expect it passed as void *. Porting Notes: - Many of these fixes have already been applied to Linux. For consistency the OpenZFS version of a change was applied if the warning was addressed in an equivalent but different fashion. Reviewed by: Matthew Ahrens <mahrens@delphix.com> Reviewed by: Prakash Surya <prakash.surya@delphix.com> Authored by: Alan Somers <asomers@gmail.com> Approved by: Richard Lowe <richlowe@richlowe.net> Ported-by: Brian Behlendorf <behlendorf1@llnl.gov> OpenZFS-issue: https://www.illumos.org/issues/8081 OpenZFS-commit: https://github.com/openzfs/openzfs/commit/843abe1b8a Closes #6787
2017-10-27 22:46:35 +03:00
ztest_ds_t *zd = arg1;
lr_create_t *lr = arg2;
char *name = (void *)(lr + 1); /* name follows lr */
objset_t *os = zd->zd_os;
ztest_block_tag_t *bbt;
dmu_buf_t *db;
dmu_tx_t *tx;
uint64_t txg;
int error = 0;
Implement large_dnode pool feature Justification ------------- This feature adds support for variable length dnodes. Our motivation is to eliminate the overhead associated with using spill blocks. Spill blocks are used to store system attribute data (i.e. file metadata) that does not fit in the dnode's bonus buffer. By allowing a larger bonus buffer area the use of a spill block can be avoided. Spill blocks potentially incur an additional read I/O for every dnode in a dnode block. As a worst case example, reading 32 dnodes from a 16k dnode block and all of the spill blocks could issue 33 separate reads. Now suppose those dnodes have size 1024 and therefore don't need spill blocks. Then the worst case number of blocks read is reduced to from 33 to two--one per dnode block. In practice spill blocks may tend to be co-located on disk with the dnode blocks so the reduction in I/O would not be this drastic. In a badly fragmented pool, however, the improvement could be significant. ZFS-on-Linux systems that make heavy use of extended attributes would benefit from this feature. In particular, ZFS-on-Linux supports the xattr=sa dataset property which allows file extended attribute data to be stored in the dnode bonus buffer as an alternative to the traditional directory-based format. Workloads such as SELinux and the Lustre distributed filesystem often store enough xattr data to force spill bocks when xattr=sa is in effect. Large dnodes may therefore provide a performance benefit to such systems. Other use cases that may benefit from this feature include files with large ACLs and symbolic links with long target names. Furthermore, this feature may be desirable on other platforms in case future applications or features are developed that could make use of a larger bonus buffer area. Implementation -------------- The size of a dnode may be a multiple of 512 bytes up to the size of a dnode block (currently 16384 bytes). A dn_extra_slots field was added to the current on-disk dnode_phys_t structure to describe the size of the physical dnode on disk. The 8 bits for this field were taken from the zero filled dn_pad2 field. The field represents how many "extra" dnode_phys_t slots a dnode consumes in its dnode block. This convention results in a value of 0 for 512 byte dnodes which preserves on-disk format compatibility with older software. Similarly, the in-memory dnode_t structure has a new dn_num_slots field to represent the total number of dnode_phys_t slots consumed on disk. Thus dn->dn_num_slots is 1 greater than the corresponding dnp->dn_extra_slots. This difference in convention was adopted because, unlike on-disk structures, backward compatibility is not a concern for in-memory objects, so we used a more natural way to represent size for a dnode_t. The default size for newly created dnodes is determined by the value of a new "dnodesize" dataset property. By default the property is set to "legacy" which is compatible with older software. Setting the property to "auto" will allow the filesystem to choose the most suitable dnode size. Currently this just sets the default dnode size to 1k, but future code improvements could dynamically choose a size based on observed workload patterns. Dnodes of varying sizes can coexist within the same dataset and even within the same dnode block. For example, to enable automatically-sized dnodes, run # zfs set dnodesize=auto tank/fish The user can also specify literal values for the dnodesize property. These are currently limited to powers of two from 1k to 16k. The power-of-2 limitation is only for simplicity of the user interface. Internally the implementation can handle any multiple of 512 up to 16k, and consumers of the DMU API can specify any legal dnode value. The size of a new dnode is determined at object allocation time and stored as a new field in the znode in-memory structure. New DMU interfaces are added to allow the consumer to specify the dnode size that a newly allocated object should use. Existing interfaces are unchanged to avoid having to update every call site and to preserve compatibility with external consumers such as Lustre. The new interfaces names are given below. The versions of these functions that don't take a dnodesize parameter now just call the _dnsize() versions with a dnodesize of 0, which means use the legacy dnode size. New DMU interfaces: dmu_object_alloc_dnsize() dmu_object_claim_dnsize() dmu_object_reclaim_dnsize() New ZAP interfaces: zap_create_dnsize() zap_create_norm_dnsize() zap_create_flags_dnsize() zap_create_claim_norm_dnsize() zap_create_link_dnsize() The constant DN_MAX_BONUSLEN is renamed to DN_OLD_MAX_BONUSLEN. The spa_maxdnodesize() function should be used to determine the maximum bonus length for a pool. These are a few noteworthy changes to key functions: * The prototype for dnode_hold_impl() now takes a "slots" parameter. When the DNODE_MUST_BE_FREE flag is set, this parameter is used to ensure the hole at the specified object offset is large enough to hold the dnode being created. The slots parameter is also used to ensure a dnode does not span multiple dnode blocks. In both of these cases, if a failure occurs, ENOSPC is returned. Keep in mind, these failure cases are only possible when using DNODE_MUST_BE_FREE. If the DNODE_MUST_BE_ALLOCATED flag is set, "slots" must be 0. dnode_hold_impl() will check if the requested dnode is already consumed as an extra dnode slot by an large dnode, in which case it returns ENOENT. * The function dmu_object_alloc() advances to the next dnode block if dnode_hold_impl() returns an error for a requested object. This is because the beginning of the next dnode block is the only location it can safely assume to either be a hole or a valid starting point for a dnode. * dnode_next_offset_level() and other functions that iterate through dnode blocks may no longer use a simple array indexing scheme. These now use the current dnode's dn_num_slots field to advance to the next dnode in the block. This is to ensure we properly skip the current dnode's bonus area and don't interpret it as a valid dnode. zdb --- The zdb command was updated to display a dnode's size under the "dnsize" column when the object is dumped. For ZIL create log records, zdb will now display the slot count for the object. ztest ----- Ztest chooses a random dnodesize for every newly created object. The random distribution is more heavily weighted toward small dnodes to better simulate real-world datasets. Unused bonus buffer space is filled with non-zero values computed from the object number, dataset id, offset, and generation number. This helps ensure that the dnode traversal code properly skips the interior regions of large dnodes, and that these interior regions are not overwritten by data belonging to other dnodes. A new test visits each object in a dataset. It verifies that the actual dnode size matches what was stored in the ztest block tag when it was created. It also verifies that the unused bonus buffer space is filled with the expected data patterns. ZFS Test Suite -------------- Added six new large dnode-specific tests, and integrated the dnodesize property into existing tests for zfs allow and send/recv. Send/Receive ------------ ZFS send streams for datasets containing large dnodes cannot be received on pools that don't support the large_dnode feature. A send stream with large dnodes sets a DMU_BACKUP_FEATURE_LARGE_DNODE flag which will be unrecognized by an incompatible receiving pool so that the zfs receive will fail gracefully. While not implemented here, it may be possible to generate a backward-compatible send stream from a dataset containing large dnodes. The implementation may be tricky, however, because the send object record for a large dnode would need to be resized to a 512 byte dnode, possibly kicking in a spill block in the process. This means we would need to construct a new SA layout and possibly register it in the SA layout object. The SA layout is normally just sent as an ordinary object record. But if we are constructing new layouts while generating the send stream we'd have to build the SA layout object dynamically and send it at the end of the stream. For sending and receiving between pools that do support large dnodes, the drr_object send record type is extended with a new field to store the dnode slot count. This field was repurposed from unused padding in the structure. ZIL Replay ---------- The dnode slot count is stored in the uppermost 8 bits of the lr_foid field. The bits were unused as the object id is currently capped at 48 bits. Resizing Dnodes --------------- It should be possible to resize a dnode when it is dirtied if the current dnodesize dataset property differs from the dnode's size, but this functionality is not currently implemented. Clearly a dnode can only grow if there are sufficient contiguous unused slots in the dnode block, but it should always be possible to shrink a dnode. Growing dnodes may be useful to reduce fragmentation in a pool with many spill blocks in use. Shrinking dnodes may be useful to allow sending a dataset to a pool that doesn't support the large_dnode feature. Feature Reference Counting -------------------------- The reference count for the large_dnode pool feature tracks the number of datasets that have ever contained a dnode of size larger than 512 bytes. The first time a large dnode is created in a dataset the dataset is converted to an extensible dataset. This is a one-way operation and the only way to decrement the feature count is to destroy the dataset, even if the dataset no longer contains any large dnodes. The complexity of reference counting on a per-dnode basis was too high, so we chose to track it on a per-dataset basis similarly to the large_block feature. Signed-off-by: Ned Bass <bass6@llnl.gov> Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov> Closes #3542
2016-03-17 04:25:34 +03:00
int bonuslen;
if (byteswap)
byteswap_uint64_array(lr, sizeof (*lr));
ASSERT3U(lr->lr_doid, ==, ZTEST_DIROBJ);
ASSERT3S(name[0], !=, '\0');
tx = dmu_tx_create(os);
dmu_tx_hold_zap(tx, lr->lr_doid, B_TRUE, name);
if (lr->lrz_type == DMU_OT_ZAP_OTHER) {
dmu_tx_hold_zap(tx, DMU_NEW_OBJECT, B_TRUE, NULL);
} else {
dmu_tx_hold_bonus(tx, DMU_NEW_OBJECT);
}
txg = ztest_tx_assign(tx, TXG_WAIT, FTAG);
if (txg == 0)
return (ENOSPC);
ASSERT3U(dmu_objset_zil(os)->zl_replay, ==, !!lr->lr_foid);
Implement large_dnode pool feature Justification ------------- This feature adds support for variable length dnodes. Our motivation is to eliminate the overhead associated with using spill blocks. Spill blocks are used to store system attribute data (i.e. file metadata) that does not fit in the dnode's bonus buffer. By allowing a larger bonus buffer area the use of a spill block can be avoided. Spill blocks potentially incur an additional read I/O for every dnode in a dnode block. As a worst case example, reading 32 dnodes from a 16k dnode block and all of the spill blocks could issue 33 separate reads. Now suppose those dnodes have size 1024 and therefore don't need spill blocks. Then the worst case number of blocks read is reduced to from 33 to two--one per dnode block. In practice spill blocks may tend to be co-located on disk with the dnode blocks so the reduction in I/O would not be this drastic. In a badly fragmented pool, however, the improvement could be significant. ZFS-on-Linux systems that make heavy use of extended attributes would benefit from this feature. In particular, ZFS-on-Linux supports the xattr=sa dataset property which allows file extended attribute data to be stored in the dnode bonus buffer as an alternative to the traditional directory-based format. Workloads such as SELinux and the Lustre distributed filesystem often store enough xattr data to force spill bocks when xattr=sa is in effect. Large dnodes may therefore provide a performance benefit to such systems. Other use cases that may benefit from this feature include files with large ACLs and symbolic links with long target names. Furthermore, this feature may be desirable on other platforms in case future applications or features are developed that could make use of a larger bonus buffer area. Implementation -------------- The size of a dnode may be a multiple of 512 bytes up to the size of a dnode block (currently 16384 bytes). A dn_extra_slots field was added to the current on-disk dnode_phys_t structure to describe the size of the physical dnode on disk. The 8 bits for this field were taken from the zero filled dn_pad2 field. The field represents how many "extra" dnode_phys_t slots a dnode consumes in its dnode block. This convention results in a value of 0 for 512 byte dnodes which preserves on-disk format compatibility with older software. Similarly, the in-memory dnode_t structure has a new dn_num_slots field to represent the total number of dnode_phys_t slots consumed on disk. Thus dn->dn_num_slots is 1 greater than the corresponding dnp->dn_extra_slots. This difference in convention was adopted because, unlike on-disk structures, backward compatibility is not a concern for in-memory objects, so we used a more natural way to represent size for a dnode_t. The default size for newly created dnodes is determined by the value of a new "dnodesize" dataset property. By default the property is set to "legacy" which is compatible with older software. Setting the property to "auto" will allow the filesystem to choose the most suitable dnode size. Currently this just sets the default dnode size to 1k, but future code improvements could dynamically choose a size based on observed workload patterns. Dnodes of varying sizes can coexist within the same dataset and even within the same dnode block. For example, to enable automatically-sized dnodes, run # zfs set dnodesize=auto tank/fish The user can also specify literal values for the dnodesize property. These are currently limited to powers of two from 1k to 16k. The power-of-2 limitation is only for simplicity of the user interface. Internally the implementation can handle any multiple of 512 up to 16k, and consumers of the DMU API can specify any legal dnode value. The size of a new dnode is determined at object allocation time and stored as a new field in the znode in-memory structure. New DMU interfaces are added to allow the consumer to specify the dnode size that a newly allocated object should use. Existing interfaces are unchanged to avoid having to update every call site and to preserve compatibility with external consumers such as Lustre. The new interfaces names are given below. The versions of these functions that don't take a dnodesize parameter now just call the _dnsize() versions with a dnodesize of 0, which means use the legacy dnode size. New DMU interfaces: dmu_object_alloc_dnsize() dmu_object_claim_dnsize() dmu_object_reclaim_dnsize() New ZAP interfaces: zap_create_dnsize() zap_create_norm_dnsize() zap_create_flags_dnsize() zap_create_claim_norm_dnsize() zap_create_link_dnsize() The constant DN_MAX_BONUSLEN is renamed to DN_OLD_MAX_BONUSLEN. The spa_maxdnodesize() function should be used to determine the maximum bonus length for a pool. These are a few noteworthy changes to key functions: * The prototype for dnode_hold_impl() now takes a "slots" parameter. When the DNODE_MUST_BE_FREE flag is set, this parameter is used to ensure the hole at the specified object offset is large enough to hold the dnode being created. The slots parameter is also used to ensure a dnode does not span multiple dnode blocks. In both of these cases, if a failure occurs, ENOSPC is returned. Keep in mind, these failure cases are only possible when using DNODE_MUST_BE_FREE. If the DNODE_MUST_BE_ALLOCATED flag is set, "slots" must be 0. dnode_hold_impl() will check if the requested dnode is already consumed as an extra dnode slot by an large dnode, in which case it returns ENOENT. * The function dmu_object_alloc() advances to the next dnode block if dnode_hold_impl() returns an error for a requested object. This is because the beginning of the next dnode block is the only location it can safely assume to either be a hole or a valid starting point for a dnode. * dnode_next_offset_level() and other functions that iterate through dnode blocks may no longer use a simple array indexing scheme. These now use the current dnode's dn_num_slots field to advance to the next dnode in the block. This is to ensure we properly skip the current dnode's bonus area and don't interpret it as a valid dnode. zdb --- The zdb command was updated to display a dnode's size under the "dnsize" column when the object is dumped. For ZIL create log records, zdb will now display the slot count for the object. ztest ----- Ztest chooses a random dnodesize for every newly created object. The random distribution is more heavily weighted toward small dnodes to better simulate real-world datasets. Unused bonus buffer space is filled with non-zero values computed from the object number, dataset id, offset, and generation number. This helps ensure that the dnode traversal code properly skips the interior regions of large dnodes, and that these interior regions are not overwritten by data belonging to other dnodes. A new test visits each object in a dataset. It verifies that the actual dnode size matches what was stored in the ztest block tag when it was created. It also verifies that the unused bonus buffer space is filled with the expected data patterns. ZFS Test Suite -------------- Added six new large dnode-specific tests, and integrated the dnodesize property into existing tests for zfs allow and send/recv. Send/Receive ------------ ZFS send streams for datasets containing large dnodes cannot be received on pools that don't support the large_dnode feature. A send stream with large dnodes sets a DMU_BACKUP_FEATURE_LARGE_DNODE flag which will be unrecognized by an incompatible receiving pool so that the zfs receive will fail gracefully. While not implemented here, it may be possible to generate a backward-compatible send stream from a dataset containing large dnodes. The implementation may be tricky, however, because the send object record for a large dnode would need to be resized to a 512 byte dnode, possibly kicking in a spill block in the process. This means we would need to construct a new SA layout and possibly register it in the SA layout object. The SA layout is normally just sent as an ordinary object record. But if we are constructing new layouts while generating the send stream we'd have to build the SA layout object dynamically and send it at the end of the stream. For sending and receiving between pools that do support large dnodes, the drr_object send record type is extended with a new field to store the dnode slot count. This field was repurposed from unused padding in the structure. ZIL Replay ---------- The dnode slot count is stored in the uppermost 8 bits of the lr_foid field. The bits were unused as the object id is currently capped at 48 bits. Resizing Dnodes --------------- It should be possible to resize a dnode when it is dirtied if the current dnodesize dataset property differs from the dnode's size, but this functionality is not currently implemented. Clearly a dnode can only grow if there are sufficient contiguous unused slots in the dnode block, but it should always be possible to shrink a dnode. Growing dnodes may be useful to reduce fragmentation in a pool with many spill blocks in use. Shrinking dnodes may be useful to allow sending a dataset to a pool that doesn't support the large_dnode feature. Feature Reference Counting -------------------------- The reference count for the large_dnode pool feature tracks the number of datasets that have ever contained a dnode of size larger than 512 bytes. The first time a large dnode is created in a dataset the dataset is converted to an extensible dataset. This is a one-way operation and the only way to decrement the feature count is to destroy the dataset, even if the dataset no longer contains any large dnodes. The complexity of reference counting on a per-dnode basis was too high, so we chose to track it on a per-dataset basis similarly to the large_block feature. Signed-off-by: Ned Bass <bass6@llnl.gov> Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov> Closes #3542
2016-03-17 04:25:34 +03:00
bonuslen = DN_BONUS_SIZE(lr->lrz_dnodesize);
if (lr->lrz_type == DMU_OT_ZAP_OTHER) {
if (lr->lr_foid == 0) {
Implement large_dnode pool feature Justification ------------- This feature adds support for variable length dnodes. Our motivation is to eliminate the overhead associated with using spill blocks. Spill blocks are used to store system attribute data (i.e. file metadata) that does not fit in the dnode's bonus buffer. By allowing a larger bonus buffer area the use of a spill block can be avoided. Spill blocks potentially incur an additional read I/O for every dnode in a dnode block. As a worst case example, reading 32 dnodes from a 16k dnode block and all of the spill blocks could issue 33 separate reads. Now suppose those dnodes have size 1024 and therefore don't need spill blocks. Then the worst case number of blocks read is reduced to from 33 to two--one per dnode block. In practice spill blocks may tend to be co-located on disk with the dnode blocks so the reduction in I/O would not be this drastic. In a badly fragmented pool, however, the improvement could be significant. ZFS-on-Linux systems that make heavy use of extended attributes would benefit from this feature. In particular, ZFS-on-Linux supports the xattr=sa dataset property which allows file extended attribute data to be stored in the dnode bonus buffer as an alternative to the traditional directory-based format. Workloads such as SELinux and the Lustre distributed filesystem often store enough xattr data to force spill bocks when xattr=sa is in effect. Large dnodes may therefore provide a performance benefit to such systems. Other use cases that may benefit from this feature include files with large ACLs and symbolic links with long target names. Furthermore, this feature may be desirable on other platforms in case future applications or features are developed that could make use of a larger bonus buffer area. Implementation -------------- The size of a dnode may be a multiple of 512 bytes up to the size of a dnode block (currently 16384 bytes). A dn_extra_slots field was added to the current on-disk dnode_phys_t structure to describe the size of the physical dnode on disk. The 8 bits for this field were taken from the zero filled dn_pad2 field. The field represents how many "extra" dnode_phys_t slots a dnode consumes in its dnode block. This convention results in a value of 0 for 512 byte dnodes which preserves on-disk format compatibility with older software. Similarly, the in-memory dnode_t structure has a new dn_num_slots field to represent the total number of dnode_phys_t slots consumed on disk. Thus dn->dn_num_slots is 1 greater than the corresponding dnp->dn_extra_slots. This difference in convention was adopted because, unlike on-disk structures, backward compatibility is not a concern for in-memory objects, so we used a more natural way to represent size for a dnode_t. The default size for newly created dnodes is determined by the value of a new "dnodesize" dataset property. By default the property is set to "legacy" which is compatible with older software. Setting the property to "auto" will allow the filesystem to choose the most suitable dnode size. Currently this just sets the default dnode size to 1k, but future code improvements could dynamically choose a size based on observed workload patterns. Dnodes of varying sizes can coexist within the same dataset and even within the same dnode block. For example, to enable automatically-sized dnodes, run # zfs set dnodesize=auto tank/fish The user can also specify literal values for the dnodesize property. These are currently limited to powers of two from 1k to 16k. The power-of-2 limitation is only for simplicity of the user interface. Internally the implementation can handle any multiple of 512 up to 16k, and consumers of the DMU API can specify any legal dnode value. The size of a new dnode is determined at object allocation time and stored as a new field in the znode in-memory structure. New DMU interfaces are added to allow the consumer to specify the dnode size that a newly allocated object should use. Existing interfaces are unchanged to avoid having to update every call site and to preserve compatibility with external consumers such as Lustre. The new interfaces names are given below. The versions of these functions that don't take a dnodesize parameter now just call the _dnsize() versions with a dnodesize of 0, which means use the legacy dnode size. New DMU interfaces: dmu_object_alloc_dnsize() dmu_object_claim_dnsize() dmu_object_reclaim_dnsize() New ZAP interfaces: zap_create_dnsize() zap_create_norm_dnsize() zap_create_flags_dnsize() zap_create_claim_norm_dnsize() zap_create_link_dnsize() The constant DN_MAX_BONUSLEN is renamed to DN_OLD_MAX_BONUSLEN. The spa_maxdnodesize() function should be used to determine the maximum bonus length for a pool. These are a few noteworthy changes to key functions: * The prototype for dnode_hold_impl() now takes a "slots" parameter. When the DNODE_MUST_BE_FREE flag is set, this parameter is used to ensure the hole at the specified object offset is large enough to hold the dnode being created. The slots parameter is also used to ensure a dnode does not span multiple dnode blocks. In both of these cases, if a failure occurs, ENOSPC is returned. Keep in mind, these failure cases are only possible when using DNODE_MUST_BE_FREE. If the DNODE_MUST_BE_ALLOCATED flag is set, "slots" must be 0. dnode_hold_impl() will check if the requested dnode is already consumed as an extra dnode slot by an large dnode, in which case it returns ENOENT. * The function dmu_object_alloc() advances to the next dnode block if dnode_hold_impl() returns an error for a requested object. This is because the beginning of the next dnode block is the only location it can safely assume to either be a hole or a valid starting point for a dnode. * dnode_next_offset_level() and other functions that iterate through dnode blocks may no longer use a simple array indexing scheme. These now use the current dnode's dn_num_slots field to advance to the next dnode in the block. This is to ensure we properly skip the current dnode's bonus area and don't interpret it as a valid dnode. zdb --- The zdb command was updated to display a dnode's size under the "dnsize" column when the object is dumped. For ZIL create log records, zdb will now display the slot count for the object. ztest ----- Ztest chooses a random dnodesize for every newly created object. The random distribution is more heavily weighted toward small dnodes to better simulate real-world datasets. Unused bonus buffer space is filled with non-zero values computed from the object number, dataset id, offset, and generation number. This helps ensure that the dnode traversal code properly skips the interior regions of large dnodes, and that these interior regions are not overwritten by data belonging to other dnodes. A new test visits each object in a dataset. It verifies that the actual dnode size matches what was stored in the ztest block tag when it was created. It also verifies that the unused bonus buffer space is filled with the expected data patterns. ZFS Test Suite -------------- Added six new large dnode-specific tests, and integrated the dnodesize property into existing tests for zfs allow and send/recv. Send/Receive ------------ ZFS send streams for datasets containing large dnodes cannot be received on pools that don't support the large_dnode feature. A send stream with large dnodes sets a DMU_BACKUP_FEATURE_LARGE_DNODE flag which will be unrecognized by an incompatible receiving pool so that the zfs receive will fail gracefully. While not implemented here, it may be possible to generate a backward-compatible send stream from a dataset containing large dnodes. The implementation may be tricky, however, because the send object record for a large dnode would need to be resized to a 512 byte dnode, possibly kicking in a spill block in the process. This means we would need to construct a new SA layout and possibly register it in the SA layout object. The SA layout is normally just sent as an ordinary object record. But if we are constructing new layouts while generating the send stream we'd have to build the SA layout object dynamically and send it at the end of the stream. For sending and receiving between pools that do support large dnodes, the drr_object send record type is extended with a new field to store the dnode slot count. This field was repurposed from unused padding in the structure. ZIL Replay ---------- The dnode slot count is stored in the uppermost 8 bits of the lr_foid field. The bits were unused as the object id is currently capped at 48 bits. Resizing Dnodes --------------- It should be possible to resize a dnode when it is dirtied if the current dnodesize dataset property differs from the dnode's size, but this functionality is not currently implemented. Clearly a dnode can only grow if there are sufficient contiguous unused slots in the dnode block, but it should always be possible to shrink a dnode. Growing dnodes may be useful to reduce fragmentation in a pool with many spill blocks in use. Shrinking dnodes may be useful to allow sending a dataset to a pool that doesn't support the large_dnode feature. Feature Reference Counting -------------------------- The reference count for the large_dnode pool feature tracks the number of datasets that have ever contained a dnode of size larger than 512 bytes. The first time a large dnode is created in a dataset the dataset is converted to an extensible dataset. This is a one-way operation and the only way to decrement the feature count is to destroy the dataset, even if the dataset no longer contains any large dnodes. The complexity of reference counting on a per-dnode basis was too high, so we chose to track it on a per-dataset basis similarly to the large_block feature. Signed-off-by: Ned Bass <bass6@llnl.gov> Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov> Closes #3542
2016-03-17 04:25:34 +03:00
lr->lr_foid = zap_create_dnsize(os,
lr->lrz_type, lr->lrz_bonustype,
Implement large_dnode pool feature Justification ------------- This feature adds support for variable length dnodes. Our motivation is to eliminate the overhead associated with using spill blocks. Spill blocks are used to store system attribute data (i.e. file metadata) that does not fit in the dnode's bonus buffer. By allowing a larger bonus buffer area the use of a spill block can be avoided. Spill blocks potentially incur an additional read I/O for every dnode in a dnode block. As a worst case example, reading 32 dnodes from a 16k dnode block and all of the spill blocks could issue 33 separate reads. Now suppose those dnodes have size 1024 and therefore don't need spill blocks. Then the worst case number of blocks read is reduced to from 33 to two--one per dnode block. In practice spill blocks may tend to be co-located on disk with the dnode blocks so the reduction in I/O would not be this drastic. In a badly fragmented pool, however, the improvement could be significant. ZFS-on-Linux systems that make heavy use of extended attributes would benefit from this feature. In particular, ZFS-on-Linux supports the xattr=sa dataset property which allows file extended attribute data to be stored in the dnode bonus buffer as an alternative to the traditional directory-based format. Workloads such as SELinux and the Lustre distributed filesystem often store enough xattr data to force spill bocks when xattr=sa is in effect. Large dnodes may therefore provide a performance benefit to such systems. Other use cases that may benefit from this feature include files with large ACLs and symbolic links with long target names. Furthermore, this feature may be desirable on other platforms in case future applications or features are developed that could make use of a larger bonus buffer area. Implementation -------------- The size of a dnode may be a multiple of 512 bytes up to the size of a dnode block (currently 16384 bytes). A dn_extra_slots field was added to the current on-disk dnode_phys_t structure to describe the size of the physical dnode on disk. The 8 bits for this field were taken from the zero filled dn_pad2 field. The field represents how many "extra" dnode_phys_t slots a dnode consumes in its dnode block. This convention results in a value of 0 for 512 byte dnodes which preserves on-disk format compatibility with older software. Similarly, the in-memory dnode_t structure has a new dn_num_slots field to represent the total number of dnode_phys_t slots consumed on disk. Thus dn->dn_num_slots is 1 greater than the corresponding dnp->dn_extra_slots. This difference in convention was adopted because, unlike on-disk structures, backward compatibility is not a concern for in-memory objects, so we used a more natural way to represent size for a dnode_t. The default size for newly created dnodes is determined by the value of a new "dnodesize" dataset property. By default the property is set to "legacy" which is compatible with older software. Setting the property to "auto" will allow the filesystem to choose the most suitable dnode size. Currently this just sets the default dnode size to 1k, but future code improvements could dynamically choose a size based on observed workload patterns. Dnodes of varying sizes can coexist within the same dataset and even within the same dnode block. For example, to enable automatically-sized dnodes, run # zfs set dnodesize=auto tank/fish The user can also specify literal values for the dnodesize property. These are currently limited to powers of two from 1k to 16k. The power-of-2 limitation is only for simplicity of the user interface. Internally the implementation can handle any multiple of 512 up to 16k, and consumers of the DMU API can specify any legal dnode value. The size of a new dnode is determined at object allocation time and stored as a new field in the znode in-memory structure. New DMU interfaces are added to allow the consumer to specify the dnode size that a newly allocated object should use. Existing interfaces are unchanged to avoid having to update every call site and to preserve compatibility with external consumers such as Lustre. The new interfaces names are given below. The versions of these functions that don't take a dnodesize parameter now just call the _dnsize() versions with a dnodesize of 0, which means use the legacy dnode size. New DMU interfaces: dmu_object_alloc_dnsize() dmu_object_claim_dnsize() dmu_object_reclaim_dnsize() New ZAP interfaces: zap_create_dnsize() zap_create_norm_dnsize() zap_create_flags_dnsize() zap_create_claim_norm_dnsize() zap_create_link_dnsize() The constant DN_MAX_BONUSLEN is renamed to DN_OLD_MAX_BONUSLEN. The spa_maxdnodesize() function should be used to determine the maximum bonus length for a pool. These are a few noteworthy changes to key functions: * The prototype for dnode_hold_impl() now takes a "slots" parameter. When the DNODE_MUST_BE_FREE flag is set, this parameter is used to ensure the hole at the specified object offset is large enough to hold the dnode being created. The slots parameter is also used to ensure a dnode does not span multiple dnode blocks. In both of these cases, if a failure occurs, ENOSPC is returned. Keep in mind, these failure cases are only possible when using DNODE_MUST_BE_FREE. If the DNODE_MUST_BE_ALLOCATED flag is set, "slots" must be 0. dnode_hold_impl() will check if the requested dnode is already consumed as an extra dnode slot by an large dnode, in which case it returns ENOENT. * The function dmu_object_alloc() advances to the next dnode block if dnode_hold_impl() returns an error for a requested object. This is because the beginning of the next dnode block is the only location it can safely assume to either be a hole or a valid starting point for a dnode. * dnode_next_offset_level() and other functions that iterate through dnode blocks may no longer use a simple array indexing scheme. These now use the current dnode's dn_num_slots field to advance to the next dnode in the block. This is to ensure we properly skip the current dnode's bonus area and don't interpret it as a valid dnode. zdb --- The zdb command was updated to display a dnode's size under the "dnsize" column when the object is dumped. For ZIL create log records, zdb will now display the slot count for the object. ztest ----- Ztest chooses a random dnodesize for every newly created object. The random distribution is more heavily weighted toward small dnodes to better simulate real-world datasets. Unused bonus buffer space is filled with non-zero values computed from the object number, dataset id, offset, and generation number. This helps ensure that the dnode traversal code properly skips the interior regions of large dnodes, and that these interior regions are not overwritten by data belonging to other dnodes. A new test visits each object in a dataset. It verifies that the actual dnode size matches what was stored in the ztest block tag when it was created. It also verifies that the unused bonus buffer space is filled with the expected data patterns. ZFS Test Suite -------------- Added six new large dnode-specific tests, and integrated the dnodesize property into existing tests for zfs allow and send/recv. Send/Receive ------------ ZFS send streams for datasets containing large dnodes cannot be received on pools that don't support the large_dnode feature. A send stream with large dnodes sets a DMU_BACKUP_FEATURE_LARGE_DNODE flag which will be unrecognized by an incompatible receiving pool so that the zfs receive will fail gracefully. While not implemented here, it may be possible to generate a backward-compatible send stream from a dataset containing large dnodes. The implementation may be tricky, however, because the send object record for a large dnode would need to be resized to a 512 byte dnode, possibly kicking in a spill block in the process. This means we would need to construct a new SA layout and possibly register it in the SA layout object. The SA layout is normally just sent as an ordinary object record. But if we are constructing new layouts while generating the send stream we'd have to build the SA layout object dynamically and send it at the end of the stream. For sending and receiving between pools that do support large dnodes, the drr_object send record type is extended with a new field to store the dnode slot count. This field was repurposed from unused padding in the structure. ZIL Replay ---------- The dnode slot count is stored in the uppermost 8 bits of the lr_foid field. The bits were unused as the object id is currently capped at 48 bits. Resizing Dnodes --------------- It should be possible to resize a dnode when it is dirtied if the current dnodesize dataset property differs from the dnode's size, but this functionality is not currently implemented. Clearly a dnode can only grow if there are sufficient contiguous unused slots in the dnode block, but it should always be possible to shrink a dnode. Growing dnodes may be useful to reduce fragmentation in a pool with many spill blocks in use. Shrinking dnodes may be useful to allow sending a dataset to a pool that doesn't support the large_dnode feature. Feature Reference Counting -------------------------- The reference count for the large_dnode pool feature tracks the number of datasets that have ever contained a dnode of size larger than 512 bytes. The first time a large dnode is created in a dataset the dataset is converted to an extensible dataset. This is a one-way operation and the only way to decrement the feature count is to destroy the dataset, even if the dataset no longer contains any large dnodes. The complexity of reference counting on a per-dnode basis was too high, so we chose to track it on a per-dataset basis similarly to the large_block feature. Signed-off-by: Ned Bass <bass6@llnl.gov> Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov> Closes #3542
2016-03-17 04:25:34 +03:00
bonuslen, lr->lrz_dnodesize, tx);
} else {
Implement large_dnode pool feature Justification ------------- This feature adds support for variable length dnodes. Our motivation is to eliminate the overhead associated with using spill blocks. Spill blocks are used to store system attribute data (i.e. file metadata) that does not fit in the dnode's bonus buffer. By allowing a larger bonus buffer area the use of a spill block can be avoided. Spill blocks potentially incur an additional read I/O for every dnode in a dnode block. As a worst case example, reading 32 dnodes from a 16k dnode block and all of the spill blocks could issue 33 separate reads. Now suppose those dnodes have size 1024 and therefore don't need spill blocks. Then the worst case number of blocks read is reduced to from 33 to two--one per dnode block. In practice spill blocks may tend to be co-located on disk with the dnode blocks so the reduction in I/O would not be this drastic. In a badly fragmented pool, however, the improvement could be significant. ZFS-on-Linux systems that make heavy use of extended attributes would benefit from this feature. In particular, ZFS-on-Linux supports the xattr=sa dataset property which allows file extended attribute data to be stored in the dnode bonus buffer as an alternative to the traditional directory-based format. Workloads such as SELinux and the Lustre distributed filesystem often store enough xattr data to force spill bocks when xattr=sa is in effect. Large dnodes may therefore provide a performance benefit to such systems. Other use cases that may benefit from this feature include files with large ACLs and symbolic links with long target names. Furthermore, this feature may be desirable on other platforms in case future applications or features are developed that could make use of a larger bonus buffer area. Implementation -------------- The size of a dnode may be a multiple of 512 bytes up to the size of a dnode block (currently 16384 bytes). A dn_extra_slots field was added to the current on-disk dnode_phys_t structure to describe the size of the physical dnode on disk. The 8 bits for this field were taken from the zero filled dn_pad2 field. The field represents how many "extra" dnode_phys_t slots a dnode consumes in its dnode block. This convention results in a value of 0 for 512 byte dnodes which preserves on-disk format compatibility with older software. Similarly, the in-memory dnode_t structure has a new dn_num_slots field to represent the total number of dnode_phys_t slots consumed on disk. Thus dn->dn_num_slots is 1 greater than the corresponding dnp->dn_extra_slots. This difference in convention was adopted because, unlike on-disk structures, backward compatibility is not a concern for in-memory objects, so we used a more natural way to represent size for a dnode_t. The default size for newly created dnodes is determined by the value of a new "dnodesize" dataset property. By default the property is set to "legacy" which is compatible with older software. Setting the property to "auto" will allow the filesystem to choose the most suitable dnode size. Currently this just sets the default dnode size to 1k, but future code improvements could dynamically choose a size based on observed workload patterns. Dnodes of varying sizes can coexist within the same dataset and even within the same dnode block. For example, to enable automatically-sized dnodes, run # zfs set dnodesize=auto tank/fish The user can also specify literal values for the dnodesize property. These are currently limited to powers of two from 1k to 16k. The power-of-2 limitation is only for simplicity of the user interface. Internally the implementation can handle any multiple of 512 up to 16k, and consumers of the DMU API can specify any legal dnode value. The size of a new dnode is determined at object allocation time and stored as a new field in the znode in-memory structure. New DMU interfaces are added to allow the consumer to specify the dnode size that a newly allocated object should use. Existing interfaces are unchanged to avoid having to update every call site and to preserve compatibility with external consumers such as Lustre. The new interfaces names are given below. The versions of these functions that don't take a dnodesize parameter now just call the _dnsize() versions with a dnodesize of 0, which means use the legacy dnode size. New DMU interfaces: dmu_object_alloc_dnsize() dmu_object_claim_dnsize() dmu_object_reclaim_dnsize() New ZAP interfaces: zap_create_dnsize() zap_create_norm_dnsize() zap_create_flags_dnsize() zap_create_claim_norm_dnsize() zap_create_link_dnsize() The constant DN_MAX_BONUSLEN is renamed to DN_OLD_MAX_BONUSLEN. The spa_maxdnodesize() function should be used to determine the maximum bonus length for a pool. These are a few noteworthy changes to key functions: * The prototype for dnode_hold_impl() now takes a "slots" parameter. When the DNODE_MUST_BE_FREE flag is set, this parameter is used to ensure the hole at the specified object offset is large enough to hold the dnode being created. The slots parameter is also used to ensure a dnode does not span multiple dnode blocks. In both of these cases, if a failure occurs, ENOSPC is returned. Keep in mind, these failure cases are only possible when using DNODE_MUST_BE_FREE. If the DNODE_MUST_BE_ALLOCATED flag is set, "slots" must be 0. dnode_hold_impl() will check if the requested dnode is already consumed as an extra dnode slot by an large dnode, in which case it returns ENOENT. * The function dmu_object_alloc() advances to the next dnode block if dnode_hold_impl() returns an error for a requested object. This is because the beginning of the next dnode block is the only location it can safely assume to either be a hole or a valid starting point for a dnode. * dnode_next_offset_level() and other functions that iterate through dnode blocks may no longer use a simple array indexing scheme. These now use the current dnode's dn_num_slots field to advance to the next dnode in the block. This is to ensure we properly skip the current dnode's bonus area and don't interpret it as a valid dnode. zdb --- The zdb command was updated to display a dnode's size under the "dnsize" column when the object is dumped. For ZIL create log records, zdb will now display the slot count for the object. ztest ----- Ztest chooses a random dnodesize for every newly created object. The random distribution is more heavily weighted toward small dnodes to better simulate real-world datasets. Unused bonus buffer space is filled with non-zero values computed from the object number, dataset id, offset, and generation number. This helps ensure that the dnode traversal code properly skips the interior regions of large dnodes, and that these interior regions are not overwritten by data belonging to other dnodes. A new test visits each object in a dataset. It verifies that the actual dnode size matches what was stored in the ztest block tag when it was created. It also verifies that the unused bonus buffer space is filled with the expected data patterns. ZFS Test Suite -------------- Added six new large dnode-specific tests, and integrated the dnodesize property into existing tests for zfs allow and send/recv. Send/Receive ------------ ZFS send streams for datasets containing large dnodes cannot be received on pools that don't support the large_dnode feature. A send stream with large dnodes sets a DMU_BACKUP_FEATURE_LARGE_DNODE flag which will be unrecognized by an incompatible receiving pool so that the zfs receive will fail gracefully. While not implemented here, it may be possible to generate a backward-compatible send stream from a dataset containing large dnodes. The implementation may be tricky, however, because the send object record for a large dnode would need to be resized to a 512 byte dnode, possibly kicking in a spill block in the process. This means we would need to construct a new SA layout and possibly register it in the SA layout object. The SA layout is normally just sent as an ordinary object record. But if we are constructing new layouts while generating the send stream we'd have to build the SA layout object dynamically and send it at the end of the stream. For sending and receiving between pools that do support large dnodes, the drr_object send record type is extended with a new field to store the dnode slot count. This field was repurposed from unused padding in the structure. ZIL Replay ---------- The dnode slot count is stored in the uppermost 8 bits of the lr_foid field. The bits were unused as the object id is currently capped at 48 bits. Resizing Dnodes --------------- It should be possible to resize a dnode when it is dirtied if the current dnodesize dataset property differs from the dnode's size, but this functionality is not currently implemented. Clearly a dnode can only grow if there are sufficient contiguous unused slots in the dnode block, but it should always be possible to shrink a dnode. Growing dnodes may be useful to reduce fragmentation in a pool with many spill blocks in use. Shrinking dnodes may be useful to allow sending a dataset to a pool that doesn't support the large_dnode feature. Feature Reference Counting -------------------------- The reference count for the large_dnode pool feature tracks the number of datasets that have ever contained a dnode of size larger than 512 bytes. The first time a large dnode is created in a dataset the dataset is converted to an extensible dataset. This is a one-way operation and the only way to decrement the feature count is to destroy the dataset, even if the dataset no longer contains any large dnodes. The complexity of reference counting on a per-dnode basis was too high, so we chose to track it on a per-dataset basis similarly to the large_block feature. Signed-off-by: Ned Bass <bass6@llnl.gov> Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov> Closes #3542
2016-03-17 04:25:34 +03:00
error = zap_create_claim_dnsize(os, lr->lr_foid,
lr->lrz_type, lr->lrz_bonustype,
Implement large_dnode pool feature Justification ------------- This feature adds support for variable length dnodes. Our motivation is to eliminate the overhead associated with using spill blocks. Spill blocks are used to store system attribute data (i.e. file metadata) that does not fit in the dnode's bonus buffer. By allowing a larger bonus buffer area the use of a spill block can be avoided. Spill blocks potentially incur an additional read I/O for every dnode in a dnode block. As a worst case example, reading 32 dnodes from a 16k dnode block and all of the spill blocks could issue 33 separate reads. Now suppose those dnodes have size 1024 and therefore don't need spill blocks. Then the worst case number of blocks read is reduced to from 33 to two--one per dnode block. In practice spill blocks may tend to be co-located on disk with the dnode blocks so the reduction in I/O would not be this drastic. In a badly fragmented pool, however, the improvement could be significant. ZFS-on-Linux systems that make heavy use of extended attributes would benefit from this feature. In particular, ZFS-on-Linux supports the xattr=sa dataset property which allows file extended attribute data to be stored in the dnode bonus buffer as an alternative to the traditional directory-based format. Workloads such as SELinux and the Lustre distributed filesystem often store enough xattr data to force spill bocks when xattr=sa is in effect. Large dnodes may therefore provide a performance benefit to such systems. Other use cases that may benefit from this feature include files with large ACLs and symbolic links with long target names. Furthermore, this feature may be desirable on other platforms in case future applications or features are developed that could make use of a larger bonus buffer area. Implementation -------------- The size of a dnode may be a multiple of 512 bytes up to the size of a dnode block (currently 16384 bytes). A dn_extra_slots field was added to the current on-disk dnode_phys_t structure to describe the size of the physical dnode on disk. The 8 bits for this field were taken from the zero filled dn_pad2 field. The field represents how many "extra" dnode_phys_t slots a dnode consumes in its dnode block. This convention results in a value of 0 for 512 byte dnodes which preserves on-disk format compatibility with older software. Similarly, the in-memory dnode_t structure has a new dn_num_slots field to represent the total number of dnode_phys_t slots consumed on disk. Thus dn->dn_num_slots is 1 greater than the corresponding dnp->dn_extra_slots. This difference in convention was adopted because, unlike on-disk structures, backward compatibility is not a concern for in-memory objects, so we used a more natural way to represent size for a dnode_t. The default size for newly created dnodes is determined by the value of a new "dnodesize" dataset property. By default the property is set to "legacy" which is compatible with older software. Setting the property to "auto" will allow the filesystem to choose the most suitable dnode size. Currently this just sets the default dnode size to 1k, but future code improvements could dynamically choose a size based on observed workload patterns. Dnodes of varying sizes can coexist within the same dataset and even within the same dnode block. For example, to enable automatically-sized dnodes, run # zfs set dnodesize=auto tank/fish The user can also specify literal values for the dnodesize property. These are currently limited to powers of two from 1k to 16k. The power-of-2 limitation is only for simplicity of the user interface. Internally the implementation can handle any multiple of 512 up to 16k, and consumers of the DMU API can specify any legal dnode value. The size of a new dnode is determined at object allocation time and stored as a new field in the znode in-memory structure. New DMU interfaces are added to allow the consumer to specify the dnode size that a newly allocated object should use. Existing interfaces are unchanged to avoid having to update every call site and to preserve compatibility with external consumers such as Lustre. The new interfaces names are given below. The versions of these functions that don't take a dnodesize parameter now just call the _dnsize() versions with a dnodesize of 0, which means use the legacy dnode size. New DMU interfaces: dmu_object_alloc_dnsize() dmu_object_claim_dnsize() dmu_object_reclaim_dnsize() New ZAP interfaces: zap_create_dnsize() zap_create_norm_dnsize() zap_create_flags_dnsize() zap_create_claim_norm_dnsize() zap_create_link_dnsize() The constant DN_MAX_BONUSLEN is renamed to DN_OLD_MAX_BONUSLEN. The spa_maxdnodesize() function should be used to determine the maximum bonus length for a pool. These are a few noteworthy changes to key functions: * The prototype for dnode_hold_impl() now takes a "slots" parameter. When the DNODE_MUST_BE_FREE flag is set, this parameter is used to ensure the hole at the specified object offset is large enough to hold the dnode being created. The slots parameter is also used to ensure a dnode does not span multiple dnode blocks. In both of these cases, if a failure occurs, ENOSPC is returned. Keep in mind, these failure cases are only possible when using DNODE_MUST_BE_FREE. If the DNODE_MUST_BE_ALLOCATED flag is set, "slots" must be 0. dnode_hold_impl() will check if the requested dnode is already consumed as an extra dnode slot by an large dnode, in which case it returns ENOENT. * The function dmu_object_alloc() advances to the next dnode block if dnode_hold_impl() returns an error for a requested object. This is because the beginning of the next dnode block is the only location it can safely assume to either be a hole or a valid starting point for a dnode. * dnode_next_offset_level() and other functions that iterate through dnode blocks may no longer use a simple array indexing scheme. These now use the current dnode's dn_num_slots field to advance to the next dnode in the block. This is to ensure we properly skip the current dnode's bonus area and don't interpret it as a valid dnode. zdb --- The zdb command was updated to display a dnode's size under the "dnsize" column when the object is dumped. For ZIL create log records, zdb will now display the slot count for the object. ztest ----- Ztest chooses a random dnodesize for every newly created object. The random distribution is more heavily weighted toward small dnodes to better simulate real-world datasets. Unused bonus buffer space is filled with non-zero values computed from the object number, dataset id, offset, and generation number. This helps ensure that the dnode traversal code properly skips the interior regions of large dnodes, and that these interior regions are not overwritten by data belonging to other dnodes. A new test visits each object in a dataset. It verifies that the actual dnode size matches what was stored in the ztest block tag when it was created. It also verifies that the unused bonus buffer space is filled with the expected data patterns. ZFS Test Suite -------------- Added six new large dnode-specific tests, and integrated the dnodesize property into existing tests for zfs allow and send/recv. Send/Receive ------------ ZFS send streams for datasets containing large dnodes cannot be received on pools that don't support the large_dnode feature. A send stream with large dnodes sets a DMU_BACKUP_FEATURE_LARGE_DNODE flag which will be unrecognized by an incompatible receiving pool so that the zfs receive will fail gracefully. While not implemented here, it may be possible to generate a backward-compatible send stream from a dataset containing large dnodes. The implementation may be tricky, however, because the send object record for a large dnode would need to be resized to a 512 byte dnode, possibly kicking in a spill block in the process. This means we would need to construct a new SA layout and possibly register it in the SA layout object. The SA layout is normally just sent as an ordinary object record. But if we are constructing new layouts while generating the send stream we'd have to build the SA layout object dynamically and send it at the end of the stream. For sending and receiving between pools that do support large dnodes, the drr_object send record type is extended with a new field to store the dnode slot count. This field was repurposed from unused padding in the structure. ZIL Replay ---------- The dnode slot count is stored in the uppermost 8 bits of the lr_foid field. The bits were unused as the object id is currently capped at 48 bits. Resizing Dnodes --------------- It should be possible to resize a dnode when it is dirtied if the current dnodesize dataset property differs from the dnode's size, but this functionality is not currently implemented. Clearly a dnode can only grow if there are sufficient contiguous unused slots in the dnode block, but it should always be possible to shrink a dnode. Growing dnodes may be useful to reduce fragmentation in a pool with many spill blocks in use. Shrinking dnodes may be useful to allow sending a dataset to a pool that doesn't support the large_dnode feature. Feature Reference Counting -------------------------- The reference count for the large_dnode pool feature tracks the number of datasets that have ever contained a dnode of size larger than 512 bytes. The first time a large dnode is created in a dataset the dataset is converted to an extensible dataset. This is a one-way operation and the only way to decrement the feature count is to destroy the dataset, even if the dataset no longer contains any large dnodes. The complexity of reference counting on a per-dnode basis was too high, so we chose to track it on a per-dataset basis similarly to the large_block feature. Signed-off-by: Ned Bass <bass6@llnl.gov> Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov> Closes #3542
2016-03-17 04:25:34 +03:00
bonuslen, lr->lrz_dnodesize, tx);
}
} else {
if (lr->lr_foid == 0) {
Implement large_dnode pool feature Justification ------------- This feature adds support for variable length dnodes. Our motivation is to eliminate the overhead associated with using spill blocks. Spill blocks are used to store system attribute data (i.e. file metadata) that does not fit in the dnode's bonus buffer. By allowing a larger bonus buffer area the use of a spill block can be avoided. Spill blocks potentially incur an additional read I/O for every dnode in a dnode block. As a worst case example, reading 32 dnodes from a 16k dnode block and all of the spill blocks could issue 33 separate reads. Now suppose those dnodes have size 1024 and therefore don't need spill blocks. Then the worst case number of blocks read is reduced to from 33 to two--one per dnode block. In practice spill blocks may tend to be co-located on disk with the dnode blocks so the reduction in I/O would not be this drastic. In a badly fragmented pool, however, the improvement could be significant. ZFS-on-Linux systems that make heavy use of extended attributes would benefit from this feature. In particular, ZFS-on-Linux supports the xattr=sa dataset property which allows file extended attribute data to be stored in the dnode bonus buffer as an alternative to the traditional directory-based format. Workloads such as SELinux and the Lustre distributed filesystem often store enough xattr data to force spill bocks when xattr=sa is in effect. Large dnodes may therefore provide a performance benefit to such systems. Other use cases that may benefit from this feature include files with large ACLs and symbolic links with long target names. Furthermore, this feature may be desirable on other platforms in case future applications or features are developed that could make use of a larger bonus buffer area. Implementation -------------- The size of a dnode may be a multiple of 512 bytes up to the size of a dnode block (currently 16384 bytes). A dn_extra_slots field was added to the current on-disk dnode_phys_t structure to describe the size of the physical dnode on disk. The 8 bits for this field were taken from the zero filled dn_pad2 field. The field represents how many "extra" dnode_phys_t slots a dnode consumes in its dnode block. This convention results in a value of 0 for 512 byte dnodes which preserves on-disk format compatibility with older software. Similarly, the in-memory dnode_t structure has a new dn_num_slots field to represent the total number of dnode_phys_t slots consumed on disk. Thus dn->dn_num_slots is 1 greater than the corresponding dnp->dn_extra_slots. This difference in convention was adopted because, unlike on-disk structures, backward compatibility is not a concern for in-memory objects, so we used a more natural way to represent size for a dnode_t. The default size for newly created dnodes is determined by the value of a new "dnodesize" dataset property. By default the property is set to "legacy" which is compatible with older software. Setting the property to "auto" will allow the filesystem to choose the most suitable dnode size. Currently this just sets the default dnode size to 1k, but future code improvements could dynamically choose a size based on observed workload patterns. Dnodes of varying sizes can coexist within the same dataset and even within the same dnode block. For example, to enable automatically-sized dnodes, run # zfs set dnodesize=auto tank/fish The user can also specify literal values for the dnodesize property. These are currently limited to powers of two from 1k to 16k. The power-of-2 limitation is only for simplicity of the user interface. Internally the implementation can handle any multiple of 512 up to 16k, and consumers of the DMU API can specify any legal dnode value. The size of a new dnode is determined at object allocation time and stored as a new field in the znode in-memory structure. New DMU interfaces are added to allow the consumer to specify the dnode size that a newly allocated object should use. Existing interfaces are unchanged to avoid having to update every call site and to preserve compatibility with external consumers such as Lustre. The new interfaces names are given below. The versions of these functions that don't take a dnodesize parameter now just call the _dnsize() versions with a dnodesize of 0, which means use the legacy dnode size. New DMU interfaces: dmu_object_alloc_dnsize() dmu_object_claim_dnsize() dmu_object_reclaim_dnsize() New ZAP interfaces: zap_create_dnsize() zap_create_norm_dnsize() zap_create_flags_dnsize() zap_create_claim_norm_dnsize() zap_create_link_dnsize() The constant DN_MAX_BONUSLEN is renamed to DN_OLD_MAX_BONUSLEN. The spa_maxdnodesize() function should be used to determine the maximum bonus length for a pool. These are a few noteworthy changes to key functions: * The prototype for dnode_hold_impl() now takes a "slots" parameter. When the DNODE_MUST_BE_FREE flag is set, this parameter is used to ensure the hole at the specified object offset is large enough to hold the dnode being created. The slots parameter is also used to ensure a dnode does not span multiple dnode blocks. In both of these cases, if a failure occurs, ENOSPC is returned. Keep in mind, these failure cases are only possible when using DNODE_MUST_BE_FREE. If the DNODE_MUST_BE_ALLOCATED flag is set, "slots" must be 0. dnode_hold_impl() will check if the requested dnode is already consumed as an extra dnode slot by an large dnode, in which case it returns ENOENT. * The function dmu_object_alloc() advances to the next dnode block if dnode_hold_impl() returns an error for a requested object. This is because the beginning of the next dnode block is the only location it can safely assume to either be a hole or a valid starting point for a dnode. * dnode_next_offset_level() and other functions that iterate through dnode blocks may no longer use a simple array indexing scheme. These now use the current dnode's dn_num_slots field to advance to the next dnode in the block. This is to ensure we properly skip the current dnode's bonus area and don't interpret it as a valid dnode. zdb --- The zdb command was updated to display a dnode's size under the "dnsize" column when the object is dumped. For ZIL create log records, zdb will now display the slot count for the object. ztest ----- Ztest chooses a random dnodesize for every newly created object. The random distribution is more heavily weighted toward small dnodes to better simulate real-world datasets. Unused bonus buffer space is filled with non-zero values computed from the object number, dataset id, offset, and generation number. This helps ensure that the dnode traversal code properly skips the interior regions of large dnodes, and that these interior regions are not overwritten by data belonging to other dnodes. A new test visits each object in a dataset. It verifies that the actual dnode size matches what was stored in the ztest block tag when it was created. It also verifies that the unused bonus buffer space is filled with the expected data patterns. ZFS Test Suite -------------- Added six new large dnode-specific tests, and integrated the dnodesize property into existing tests for zfs allow and send/recv. Send/Receive ------------ ZFS send streams for datasets containing large dnodes cannot be received on pools that don't support the large_dnode feature. A send stream with large dnodes sets a DMU_BACKUP_FEATURE_LARGE_DNODE flag which will be unrecognized by an incompatible receiving pool so that the zfs receive will fail gracefully. While not implemented here, it may be possible to generate a backward-compatible send stream from a dataset containing large dnodes. The implementation may be tricky, however, because the send object record for a large dnode would need to be resized to a 512 byte dnode, possibly kicking in a spill block in the process. This means we would need to construct a new SA layout and possibly register it in the SA layout object. The SA layout is normally just sent as an ordinary object record. But if we are constructing new layouts while generating the send stream we'd have to build the SA layout object dynamically and send it at the end of the stream. For sending and receiving between pools that do support large dnodes, the drr_object send record type is extended with a new field to store the dnode slot count. This field was repurposed from unused padding in the structure. ZIL Replay ---------- The dnode slot count is stored in the uppermost 8 bits of the lr_foid field. The bits were unused as the object id is currently capped at 48 bits. Resizing Dnodes --------------- It should be possible to resize a dnode when it is dirtied if the current dnodesize dataset property differs from the dnode's size, but this functionality is not currently implemented. Clearly a dnode can only grow if there are sufficient contiguous unused slots in the dnode block, but it should always be possible to shrink a dnode. Growing dnodes may be useful to reduce fragmentation in a pool with many spill blocks in use. Shrinking dnodes may be useful to allow sending a dataset to a pool that doesn't support the large_dnode feature. Feature Reference Counting -------------------------- The reference count for the large_dnode pool feature tracks the number of datasets that have ever contained a dnode of size larger than 512 bytes. The first time a large dnode is created in a dataset the dataset is converted to an extensible dataset. This is a one-way operation and the only way to decrement the feature count is to destroy the dataset, even if the dataset no longer contains any large dnodes. The complexity of reference counting on a per-dnode basis was too high, so we chose to track it on a per-dataset basis similarly to the large_block feature. Signed-off-by: Ned Bass <bass6@llnl.gov> Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov> Closes #3542
2016-03-17 04:25:34 +03:00
lr->lr_foid = dmu_object_alloc_dnsize(os,
lr->lrz_type, 0, lr->lrz_bonustype,
Implement large_dnode pool feature Justification ------------- This feature adds support for variable length dnodes. Our motivation is to eliminate the overhead associated with using spill blocks. Spill blocks are used to store system attribute data (i.e. file metadata) that does not fit in the dnode's bonus buffer. By allowing a larger bonus buffer area the use of a spill block can be avoided. Spill blocks potentially incur an additional read I/O for every dnode in a dnode block. As a worst case example, reading 32 dnodes from a 16k dnode block and all of the spill blocks could issue 33 separate reads. Now suppose those dnodes have size 1024 and therefore don't need spill blocks. Then the worst case number of blocks read is reduced to from 33 to two--one per dnode block. In practice spill blocks may tend to be co-located on disk with the dnode blocks so the reduction in I/O would not be this drastic. In a badly fragmented pool, however, the improvement could be significant. ZFS-on-Linux systems that make heavy use of extended attributes would benefit from this feature. In particular, ZFS-on-Linux supports the xattr=sa dataset property which allows file extended attribute data to be stored in the dnode bonus buffer as an alternative to the traditional directory-based format. Workloads such as SELinux and the Lustre distributed filesystem often store enough xattr data to force spill bocks when xattr=sa is in effect. Large dnodes may therefore provide a performance benefit to such systems. Other use cases that may benefit from this feature include files with large ACLs and symbolic links with long target names. Furthermore, this feature may be desirable on other platforms in case future applications or features are developed that could make use of a larger bonus buffer area. Implementation -------------- The size of a dnode may be a multiple of 512 bytes up to the size of a dnode block (currently 16384 bytes). A dn_extra_slots field was added to the current on-disk dnode_phys_t structure to describe the size of the physical dnode on disk. The 8 bits for this field were taken from the zero filled dn_pad2 field. The field represents how many "extra" dnode_phys_t slots a dnode consumes in its dnode block. This convention results in a value of 0 for 512 byte dnodes which preserves on-disk format compatibility with older software. Similarly, the in-memory dnode_t structure has a new dn_num_slots field to represent the total number of dnode_phys_t slots consumed on disk. Thus dn->dn_num_slots is 1 greater than the corresponding dnp->dn_extra_slots. This difference in convention was adopted because, unlike on-disk structures, backward compatibility is not a concern for in-memory objects, so we used a more natural way to represent size for a dnode_t. The default size for newly created dnodes is determined by the value of a new "dnodesize" dataset property. By default the property is set to "legacy" which is compatible with older software. Setting the property to "auto" will allow the filesystem to choose the most suitable dnode size. Currently this just sets the default dnode size to 1k, but future code improvements could dynamically choose a size based on observed workload patterns. Dnodes of varying sizes can coexist within the same dataset and even within the same dnode block. For example, to enable automatically-sized dnodes, run # zfs set dnodesize=auto tank/fish The user can also specify literal values for the dnodesize property. These are currently limited to powers of two from 1k to 16k. The power-of-2 limitation is only for simplicity of the user interface. Internally the implementation can handle any multiple of 512 up to 16k, and consumers of the DMU API can specify any legal dnode value. The size of a new dnode is determined at object allocation time and stored as a new field in the znode in-memory structure. New DMU interfaces are added to allow the consumer to specify the dnode size that a newly allocated object should use. Existing interfaces are unchanged to avoid having to update every call site and to preserve compatibility with external consumers such as Lustre. The new interfaces names are given below. The versions of these functions that don't take a dnodesize parameter now just call the _dnsize() versions with a dnodesize of 0, which means use the legacy dnode size. New DMU interfaces: dmu_object_alloc_dnsize() dmu_object_claim_dnsize() dmu_object_reclaim_dnsize() New ZAP interfaces: zap_create_dnsize() zap_create_norm_dnsize() zap_create_flags_dnsize() zap_create_claim_norm_dnsize() zap_create_link_dnsize() The constant DN_MAX_BONUSLEN is renamed to DN_OLD_MAX_BONUSLEN. The spa_maxdnodesize() function should be used to determine the maximum bonus length for a pool. These are a few noteworthy changes to key functions: * The prototype for dnode_hold_impl() now takes a "slots" parameter. When the DNODE_MUST_BE_FREE flag is set, this parameter is used to ensure the hole at the specified object offset is large enough to hold the dnode being created. The slots parameter is also used to ensure a dnode does not span multiple dnode blocks. In both of these cases, if a failure occurs, ENOSPC is returned. Keep in mind, these failure cases are only possible when using DNODE_MUST_BE_FREE. If the DNODE_MUST_BE_ALLOCATED flag is set, "slots" must be 0. dnode_hold_impl() will check if the requested dnode is already consumed as an extra dnode slot by an large dnode, in which case it returns ENOENT. * The function dmu_object_alloc() advances to the next dnode block if dnode_hold_impl() returns an error for a requested object. This is because the beginning of the next dnode block is the only location it can safely assume to either be a hole or a valid starting point for a dnode. * dnode_next_offset_level() and other functions that iterate through dnode blocks may no longer use a simple array indexing scheme. These now use the current dnode's dn_num_slots field to advance to the next dnode in the block. This is to ensure we properly skip the current dnode's bonus area and don't interpret it as a valid dnode. zdb --- The zdb command was updated to display a dnode's size under the "dnsize" column when the object is dumped. For ZIL create log records, zdb will now display the slot count for the object. ztest ----- Ztest chooses a random dnodesize for every newly created object. The random distribution is more heavily weighted toward small dnodes to better simulate real-world datasets. Unused bonus buffer space is filled with non-zero values computed from the object number, dataset id, offset, and generation number. This helps ensure that the dnode traversal code properly skips the interior regions of large dnodes, and that these interior regions are not overwritten by data belonging to other dnodes. A new test visits each object in a dataset. It verifies that the actual dnode size matches what was stored in the ztest block tag when it was created. It also verifies that the unused bonus buffer space is filled with the expected data patterns. ZFS Test Suite -------------- Added six new large dnode-specific tests, and integrated the dnodesize property into existing tests for zfs allow and send/recv. Send/Receive ------------ ZFS send streams for datasets containing large dnodes cannot be received on pools that don't support the large_dnode feature. A send stream with large dnodes sets a DMU_BACKUP_FEATURE_LARGE_DNODE flag which will be unrecognized by an incompatible receiving pool so that the zfs receive will fail gracefully. While not implemented here, it may be possible to generate a backward-compatible send stream from a dataset containing large dnodes. The implementation may be tricky, however, because the send object record for a large dnode would need to be resized to a 512 byte dnode, possibly kicking in a spill block in the process. This means we would need to construct a new SA layout and possibly register it in the SA layout object. The SA layout is normally just sent as an ordinary object record. But if we are constructing new layouts while generating the send stream we'd have to build the SA layout object dynamically and send it at the end of the stream. For sending and receiving between pools that do support large dnodes, the drr_object send record type is extended with a new field to store the dnode slot count. This field was repurposed from unused padding in the structure. ZIL Replay ---------- The dnode slot count is stored in the uppermost 8 bits of the lr_foid field. The bits were unused as the object id is currently capped at 48 bits. Resizing Dnodes --------------- It should be possible to resize a dnode when it is dirtied if the current dnodesize dataset property differs from the dnode's size, but this functionality is not currently implemented. Clearly a dnode can only grow if there are sufficient contiguous unused slots in the dnode block, but it should always be possible to shrink a dnode. Growing dnodes may be useful to reduce fragmentation in a pool with many spill blocks in use. Shrinking dnodes may be useful to allow sending a dataset to a pool that doesn't support the large_dnode feature. Feature Reference Counting -------------------------- The reference count for the large_dnode pool feature tracks the number of datasets that have ever contained a dnode of size larger than 512 bytes. The first time a large dnode is created in a dataset the dataset is converted to an extensible dataset. This is a one-way operation and the only way to decrement the feature count is to destroy the dataset, even if the dataset no longer contains any large dnodes. The complexity of reference counting on a per-dnode basis was too high, so we chose to track it on a per-dataset basis similarly to the large_block feature. Signed-off-by: Ned Bass <bass6@llnl.gov> Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov> Closes #3542
2016-03-17 04:25:34 +03:00
bonuslen, lr->lrz_dnodesize, tx);
} else {
Implement large_dnode pool feature Justification ------------- This feature adds support for variable length dnodes. Our motivation is to eliminate the overhead associated with using spill blocks. Spill blocks are used to store system attribute data (i.e. file metadata) that does not fit in the dnode's bonus buffer. By allowing a larger bonus buffer area the use of a spill block can be avoided. Spill blocks potentially incur an additional read I/O for every dnode in a dnode block. As a worst case example, reading 32 dnodes from a 16k dnode block and all of the spill blocks could issue 33 separate reads. Now suppose those dnodes have size 1024 and therefore don't need spill blocks. Then the worst case number of blocks read is reduced to from 33 to two--one per dnode block. In practice spill blocks may tend to be co-located on disk with the dnode blocks so the reduction in I/O would not be this drastic. In a badly fragmented pool, however, the improvement could be significant. ZFS-on-Linux systems that make heavy use of extended attributes would benefit from this feature. In particular, ZFS-on-Linux supports the xattr=sa dataset property which allows file extended attribute data to be stored in the dnode bonus buffer as an alternative to the traditional directory-based format. Workloads such as SELinux and the Lustre distributed filesystem often store enough xattr data to force spill bocks when xattr=sa is in effect. Large dnodes may therefore provide a performance benefit to such systems. Other use cases that may benefit from this feature include files with large ACLs and symbolic links with long target names. Furthermore, this feature may be desirable on other platforms in case future applications or features are developed that could make use of a larger bonus buffer area. Implementation -------------- The size of a dnode may be a multiple of 512 bytes up to the size of a dnode block (currently 16384 bytes). A dn_extra_slots field was added to the current on-disk dnode_phys_t structure to describe the size of the physical dnode on disk. The 8 bits for this field were taken from the zero filled dn_pad2 field. The field represents how many "extra" dnode_phys_t slots a dnode consumes in its dnode block. This convention results in a value of 0 for 512 byte dnodes which preserves on-disk format compatibility with older software. Similarly, the in-memory dnode_t structure has a new dn_num_slots field to represent the total number of dnode_phys_t slots consumed on disk. Thus dn->dn_num_slots is 1 greater than the corresponding dnp->dn_extra_slots. This difference in convention was adopted because, unlike on-disk structures, backward compatibility is not a concern for in-memory objects, so we used a more natural way to represent size for a dnode_t. The default size for newly created dnodes is determined by the value of a new "dnodesize" dataset property. By default the property is set to "legacy" which is compatible with older software. Setting the property to "auto" will allow the filesystem to choose the most suitable dnode size. Currently this just sets the default dnode size to 1k, but future code improvements could dynamically choose a size based on observed workload patterns. Dnodes of varying sizes can coexist within the same dataset and even within the same dnode block. For example, to enable automatically-sized dnodes, run # zfs set dnodesize=auto tank/fish The user can also specify literal values for the dnodesize property. These are currently limited to powers of two from 1k to 16k. The power-of-2 limitation is only for simplicity of the user interface. Internally the implementation can handle any multiple of 512 up to 16k, and consumers of the DMU API can specify any legal dnode value. The size of a new dnode is determined at object allocation time and stored as a new field in the znode in-memory structure. New DMU interfaces are added to allow the consumer to specify the dnode size that a newly allocated object should use. Existing interfaces are unchanged to avoid having to update every call site and to preserve compatibility with external consumers such as Lustre. The new interfaces names are given below. The versions of these functions that don't take a dnodesize parameter now just call the _dnsize() versions with a dnodesize of 0, which means use the legacy dnode size. New DMU interfaces: dmu_object_alloc_dnsize() dmu_object_claim_dnsize() dmu_object_reclaim_dnsize() New ZAP interfaces: zap_create_dnsize() zap_create_norm_dnsize() zap_create_flags_dnsize() zap_create_claim_norm_dnsize() zap_create_link_dnsize() The constant DN_MAX_BONUSLEN is renamed to DN_OLD_MAX_BONUSLEN. The spa_maxdnodesize() function should be used to determine the maximum bonus length for a pool. These are a few noteworthy changes to key functions: * The prototype for dnode_hold_impl() now takes a "slots" parameter. When the DNODE_MUST_BE_FREE flag is set, this parameter is used to ensure the hole at the specified object offset is large enough to hold the dnode being created. The slots parameter is also used to ensure a dnode does not span multiple dnode blocks. In both of these cases, if a failure occurs, ENOSPC is returned. Keep in mind, these failure cases are only possible when using DNODE_MUST_BE_FREE. If the DNODE_MUST_BE_ALLOCATED flag is set, "slots" must be 0. dnode_hold_impl() will check if the requested dnode is already consumed as an extra dnode slot by an large dnode, in which case it returns ENOENT. * The function dmu_object_alloc() advances to the next dnode block if dnode_hold_impl() returns an error for a requested object. This is because the beginning of the next dnode block is the only location it can safely assume to either be a hole or a valid starting point for a dnode. * dnode_next_offset_level() and other functions that iterate through dnode blocks may no longer use a simple array indexing scheme. These now use the current dnode's dn_num_slots field to advance to the next dnode in the block. This is to ensure we properly skip the current dnode's bonus area and don't interpret it as a valid dnode. zdb --- The zdb command was updated to display a dnode's size under the "dnsize" column when the object is dumped. For ZIL create log records, zdb will now display the slot count for the object. ztest ----- Ztest chooses a random dnodesize for every newly created object. The random distribution is more heavily weighted toward small dnodes to better simulate real-world datasets. Unused bonus buffer space is filled with non-zero values computed from the object number, dataset id, offset, and generation number. This helps ensure that the dnode traversal code properly skips the interior regions of large dnodes, and that these interior regions are not overwritten by data belonging to other dnodes. A new test visits each object in a dataset. It verifies that the actual dnode size matches what was stored in the ztest block tag when it was created. It also verifies that the unused bonus buffer space is filled with the expected data patterns. ZFS Test Suite -------------- Added six new large dnode-specific tests, and integrated the dnodesize property into existing tests for zfs allow and send/recv. Send/Receive ------------ ZFS send streams for datasets containing large dnodes cannot be received on pools that don't support the large_dnode feature. A send stream with large dnodes sets a DMU_BACKUP_FEATURE_LARGE_DNODE flag which will be unrecognized by an incompatible receiving pool so that the zfs receive will fail gracefully. While not implemented here, it may be possible to generate a backward-compatible send stream from a dataset containing large dnodes. The implementation may be tricky, however, because the send object record for a large dnode would need to be resized to a 512 byte dnode, possibly kicking in a spill block in the process. This means we would need to construct a new SA layout and possibly register it in the SA layout object. The SA layout is normally just sent as an ordinary object record. But if we are constructing new layouts while generating the send stream we'd have to build the SA layout object dynamically and send it at the end of the stream. For sending and receiving between pools that do support large dnodes, the drr_object send record type is extended with a new field to store the dnode slot count. This field was repurposed from unused padding in the structure. ZIL Replay ---------- The dnode slot count is stored in the uppermost 8 bits of the lr_foid field. The bits were unused as the object id is currently capped at 48 bits. Resizing Dnodes --------------- It should be possible to resize a dnode when it is dirtied if the current dnodesize dataset property differs from the dnode's size, but this functionality is not currently implemented. Clearly a dnode can only grow if there are sufficient contiguous unused slots in the dnode block, but it should always be possible to shrink a dnode. Growing dnodes may be useful to reduce fragmentation in a pool with many spill blocks in use. Shrinking dnodes may be useful to allow sending a dataset to a pool that doesn't support the large_dnode feature. Feature Reference Counting -------------------------- The reference count for the large_dnode pool feature tracks the number of datasets that have ever contained a dnode of size larger than 512 bytes. The first time a large dnode is created in a dataset the dataset is converted to an extensible dataset. This is a one-way operation and the only way to decrement the feature count is to destroy the dataset, even if the dataset no longer contains any large dnodes. The complexity of reference counting on a per-dnode basis was too high, so we chose to track it on a per-dataset basis similarly to the large_block feature. Signed-off-by: Ned Bass <bass6@llnl.gov> Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov> Closes #3542
2016-03-17 04:25:34 +03:00
error = dmu_object_claim_dnsize(os, lr->lr_foid,
lr->lrz_type, 0, lr->lrz_bonustype,
Implement large_dnode pool feature Justification ------------- This feature adds support for variable length dnodes. Our motivation is to eliminate the overhead associated with using spill blocks. Spill blocks are used to store system attribute data (i.e. file metadata) that does not fit in the dnode's bonus buffer. By allowing a larger bonus buffer area the use of a spill block can be avoided. Spill blocks potentially incur an additional read I/O for every dnode in a dnode block. As a worst case example, reading 32 dnodes from a 16k dnode block and all of the spill blocks could issue 33 separate reads. Now suppose those dnodes have size 1024 and therefore don't need spill blocks. Then the worst case number of blocks read is reduced to from 33 to two--one per dnode block. In practice spill blocks may tend to be co-located on disk with the dnode blocks so the reduction in I/O would not be this drastic. In a badly fragmented pool, however, the improvement could be significant. ZFS-on-Linux systems that make heavy use of extended attributes would benefit from this feature. In particular, ZFS-on-Linux supports the xattr=sa dataset property which allows file extended attribute data to be stored in the dnode bonus buffer as an alternative to the traditional directory-based format. Workloads such as SELinux and the Lustre distributed filesystem often store enough xattr data to force spill bocks when xattr=sa is in effect. Large dnodes may therefore provide a performance benefit to such systems. Other use cases that may benefit from this feature include files with large ACLs and symbolic links with long target names. Furthermore, this feature may be desirable on other platforms in case future applications or features are developed that could make use of a larger bonus buffer area. Implementation -------------- The size of a dnode may be a multiple of 512 bytes up to the size of a dnode block (currently 16384 bytes). A dn_extra_slots field was added to the current on-disk dnode_phys_t structure to describe the size of the physical dnode on disk. The 8 bits for this field were taken from the zero filled dn_pad2 field. The field represents how many "extra" dnode_phys_t slots a dnode consumes in its dnode block. This convention results in a value of 0 for 512 byte dnodes which preserves on-disk format compatibility with older software. Similarly, the in-memory dnode_t structure has a new dn_num_slots field to represent the total number of dnode_phys_t slots consumed on disk. Thus dn->dn_num_slots is 1 greater than the corresponding dnp->dn_extra_slots. This difference in convention was adopted because, unlike on-disk structures, backward compatibility is not a concern for in-memory objects, so we used a more natural way to represent size for a dnode_t. The default size for newly created dnodes is determined by the value of a new "dnodesize" dataset property. By default the property is set to "legacy" which is compatible with older software. Setting the property to "auto" will allow the filesystem to choose the most suitable dnode size. Currently this just sets the default dnode size to 1k, but future code improvements could dynamically choose a size based on observed workload patterns. Dnodes of varying sizes can coexist within the same dataset and even within the same dnode block. For example, to enable automatically-sized dnodes, run # zfs set dnodesize=auto tank/fish The user can also specify literal values for the dnodesize property. These are currently limited to powers of two from 1k to 16k. The power-of-2 limitation is only for simplicity of the user interface. Internally the implementation can handle any multiple of 512 up to 16k, and consumers of the DMU API can specify any legal dnode value. The size of a new dnode is determined at object allocation time and stored as a new field in the znode in-memory structure. New DMU interfaces are added to allow the consumer to specify the dnode size that a newly allocated object should use. Existing interfaces are unchanged to avoid having to update every call site and to preserve compatibility with external consumers such as Lustre. The new interfaces names are given below. The versions of these functions that don't take a dnodesize parameter now just call the _dnsize() versions with a dnodesize of 0, which means use the legacy dnode size. New DMU interfaces: dmu_object_alloc_dnsize() dmu_object_claim_dnsize() dmu_object_reclaim_dnsize() New ZAP interfaces: zap_create_dnsize() zap_create_norm_dnsize() zap_create_flags_dnsize() zap_create_claim_norm_dnsize() zap_create_link_dnsize() The constant DN_MAX_BONUSLEN is renamed to DN_OLD_MAX_BONUSLEN. The spa_maxdnodesize() function should be used to determine the maximum bonus length for a pool. These are a few noteworthy changes to key functions: * The prototype for dnode_hold_impl() now takes a "slots" parameter. When the DNODE_MUST_BE_FREE flag is set, this parameter is used to ensure the hole at the specified object offset is large enough to hold the dnode being created. The slots parameter is also used to ensure a dnode does not span multiple dnode blocks. In both of these cases, if a failure occurs, ENOSPC is returned. Keep in mind, these failure cases are only possible when using DNODE_MUST_BE_FREE. If the DNODE_MUST_BE_ALLOCATED flag is set, "slots" must be 0. dnode_hold_impl() will check if the requested dnode is already consumed as an extra dnode slot by an large dnode, in which case it returns ENOENT. * The function dmu_object_alloc() advances to the next dnode block if dnode_hold_impl() returns an error for a requested object. This is because the beginning of the next dnode block is the only location it can safely assume to either be a hole or a valid starting point for a dnode. * dnode_next_offset_level() and other functions that iterate through dnode blocks may no longer use a simple array indexing scheme. These now use the current dnode's dn_num_slots field to advance to the next dnode in the block. This is to ensure we properly skip the current dnode's bonus area and don't interpret it as a valid dnode. zdb --- The zdb command was updated to display a dnode's size under the "dnsize" column when the object is dumped. For ZIL create log records, zdb will now display the slot count for the object. ztest ----- Ztest chooses a random dnodesize for every newly created object. The random distribution is more heavily weighted toward small dnodes to better simulate real-world datasets. Unused bonus buffer space is filled with non-zero values computed from the object number, dataset id, offset, and generation number. This helps ensure that the dnode traversal code properly skips the interior regions of large dnodes, and that these interior regions are not overwritten by data belonging to other dnodes. A new test visits each object in a dataset. It verifies that the actual dnode size matches what was stored in the ztest block tag when it was created. It also verifies that the unused bonus buffer space is filled with the expected data patterns. ZFS Test Suite -------------- Added six new large dnode-specific tests, and integrated the dnodesize property into existing tests for zfs allow and send/recv. Send/Receive ------------ ZFS send streams for datasets containing large dnodes cannot be received on pools that don't support the large_dnode feature. A send stream with large dnodes sets a DMU_BACKUP_FEATURE_LARGE_DNODE flag which will be unrecognized by an incompatible receiving pool so that the zfs receive will fail gracefully. While not implemented here, it may be possible to generate a backward-compatible send stream from a dataset containing large dnodes. The implementation may be tricky, however, because the send object record for a large dnode would need to be resized to a 512 byte dnode, possibly kicking in a spill block in the process. This means we would need to construct a new SA layout and possibly register it in the SA layout object. The SA layout is normally just sent as an ordinary object record. But if we are constructing new layouts while generating the send stream we'd have to build the SA layout object dynamically and send it at the end of the stream. For sending and receiving between pools that do support large dnodes, the drr_object send record type is extended with a new field to store the dnode slot count. This field was repurposed from unused padding in the structure. ZIL Replay ---------- The dnode slot count is stored in the uppermost 8 bits of the lr_foid field. The bits were unused as the object id is currently capped at 48 bits. Resizing Dnodes --------------- It should be possible to resize a dnode when it is dirtied if the current dnodesize dataset property differs from the dnode's size, but this functionality is not currently implemented. Clearly a dnode can only grow if there are sufficient contiguous unused slots in the dnode block, but it should always be possible to shrink a dnode. Growing dnodes may be useful to reduce fragmentation in a pool with many spill blocks in use. Shrinking dnodes may be useful to allow sending a dataset to a pool that doesn't support the large_dnode feature. Feature Reference Counting -------------------------- The reference count for the large_dnode pool feature tracks the number of datasets that have ever contained a dnode of size larger than 512 bytes. The first time a large dnode is created in a dataset the dataset is converted to an extensible dataset. This is a one-way operation and the only way to decrement the feature count is to destroy the dataset, even if the dataset no longer contains any large dnodes. The complexity of reference counting on a per-dnode basis was too high, so we chose to track it on a per-dataset basis similarly to the large_block feature. Signed-off-by: Ned Bass <bass6@llnl.gov> Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov> Closes #3542
2016-03-17 04:25:34 +03:00
bonuslen, lr->lrz_dnodesize, tx);
}
}
if (error) {
ASSERT3U(error, ==, EEXIST);
ASSERT(zd->zd_zilog->zl_replay);
dmu_tx_commit(tx);
return (error);
}
ASSERT3U(lr->lr_foid, !=, 0);
if (lr->lrz_type != DMU_OT_ZAP_OTHER)
VERIFY0(dmu_object_set_blocksize(os, lr->lr_foid,
lr->lrz_blocksize, lr->lrz_ibshift, tx));
VERIFY0(dmu_bonus_hold(os, lr->lr_foid, FTAG, &db));
bbt = ztest_bt_bonus(db);
dmu_buf_will_dirty(db, tx);
Implement large_dnode pool feature Justification ------------- This feature adds support for variable length dnodes. Our motivation is to eliminate the overhead associated with using spill blocks. Spill blocks are used to store system attribute data (i.e. file metadata) that does not fit in the dnode's bonus buffer. By allowing a larger bonus buffer area the use of a spill block can be avoided. Spill blocks potentially incur an additional read I/O for every dnode in a dnode block. As a worst case example, reading 32 dnodes from a 16k dnode block and all of the spill blocks could issue 33 separate reads. Now suppose those dnodes have size 1024 and therefore don't need spill blocks. Then the worst case number of blocks read is reduced to from 33 to two--one per dnode block. In practice spill blocks may tend to be co-located on disk with the dnode blocks so the reduction in I/O would not be this drastic. In a badly fragmented pool, however, the improvement could be significant. ZFS-on-Linux systems that make heavy use of extended attributes would benefit from this feature. In particular, ZFS-on-Linux supports the xattr=sa dataset property which allows file extended attribute data to be stored in the dnode bonus buffer as an alternative to the traditional directory-based format. Workloads such as SELinux and the Lustre distributed filesystem often store enough xattr data to force spill bocks when xattr=sa is in effect. Large dnodes may therefore provide a performance benefit to such systems. Other use cases that may benefit from this feature include files with large ACLs and symbolic links with long target names. Furthermore, this feature may be desirable on other platforms in case future applications or features are developed that could make use of a larger bonus buffer area. Implementation -------------- The size of a dnode may be a multiple of 512 bytes up to the size of a dnode block (currently 16384 bytes). A dn_extra_slots field was added to the current on-disk dnode_phys_t structure to describe the size of the physical dnode on disk. The 8 bits for this field were taken from the zero filled dn_pad2 field. The field represents how many "extra" dnode_phys_t slots a dnode consumes in its dnode block. This convention results in a value of 0 for 512 byte dnodes which preserves on-disk format compatibility with older software. Similarly, the in-memory dnode_t structure has a new dn_num_slots field to represent the total number of dnode_phys_t slots consumed on disk. Thus dn->dn_num_slots is 1 greater than the corresponding dnp->dn_extra_slots. This difference in convention was adopted because, unlike on-disk structures, backward compatibility is not a concern for in-memory objects, so we used a more natural way to represent size for a dnode_t. The default size for newly created dnodes is determined by the value of a new "dnodesize" dataset property. By default the property is set to "legacy" which is compatible with older software. Setting the property to "auto" will allow the filesystem to choose the most suitable dnode size. Currently this just sets the default dnode size to 1k, but future code improvements could dynamically choose a size based on observed workload patterns. Dnodes of varying sizes can coexist within the same dataset and even within the same dnode block. For example, to enable automatically-sized dnodes, run # zfs set dnodesize=auto tank/fish The user can also specify literal values for the dnodesize property. These are currently limited to powers of two from 1k to 16k. The power-of-2 limitation is only for simplicity of the user interface. Internally the implementation can handle any multiple of 512 up to 16k, and consumers of the DMU API can specify any legal dnode value. The size of a new dnode is determined at object allocation time and stored as a new field in the znode in-memory structure. New DMU interfaces are added to allow the consumer to specify the dnode size that a newly allocated object should use. Existing interfaces are unchanged to avoid having to update every call site and to preserve compatibility with external consumers such as Lustre. The new interfaces names are given below. The versions of these functions that don't take a dnodesize parameter now just call the _dnsize() versions with a dnodesize of 0, which means use the legacy dnode size. New DMU interfaces: dmu_object_alloc_dnsize() dmu_object_claim_dnsize() dmu_object_reclaim_dnsize() New ZAP interfaces: zap_create_dnsize() zap_create_norm_dnsize() zap_create_flags_dnsize() zap_create_claim_norm_dnsize() zap_create_link_dnsize() The constant DN_MAX_BONUSLEN is renamed to DN_OLD_MAX_BONUSLEN. The spa_maxdnodesize() function should be used to determine the maximum bonus length for a pool. These are a few noteworthy changes to key functions: * The prototype for dnode_hold_impl() now takes a "slots" parameter. When the DNODE_MUST_BE_FREE flag is set, this parameter is used to ensure the hole at the specified object offset is large enough to hold the dnode being created. The slots parameter is also used to ensure a dnode does not span multiple dnode blocks. In both of these cases, if a failure occurs, ENOSPC is returned. Keep in mind, these failure cases are only possible when using DNODE_MUST_BE_FREE. If the DNODE_MUST_BE_ALLOCATED flag is set, "slots" must be 0. dnode_hold_impl() will check if the requested dnode is already consumed as an extra dnode slot by an large dnode, in which case it returns ENOENT. * The function dmu_object_alloc() advances to the next dnode block if dnode_hold_impl() returns an error for a requested object. This is because the beginning of the next dnode block is the only location it can safely assume to either be a hole or a valid starting point for a dnode. * dnode_next_offset_level() and other functions that iterate through dnode blocks may no longer use a simple array indexing scheme. These now use the current dnode's dn_num_slots field to advance to the next dnode in the block. This is to ensure we properly skip the current dnode's bonus area and don't interpret it as a valid dnode. zdb --- The zdb command was updated to display a dnode's size under the "dnsize" column when the object is dumped. For ZIL create log records, zdb will now display the slot count for the object. ztest ----- Ztest chooses a random dnodesize for every newly created object. The random distribution is more heavily weighted toward small dnodes to better simulate real-world datasets. Unused bonus buffer space is filled with non-zero values computed from the object number, dataset id, offset, and generation number. This helps ensure that the dnode traversal code properly skips the interior regions of large dnodes, and that these interior regions are not overwritten by data belonging to other dnodes. A new test visits each object in a dataset. It verifies that the actual dnode size matches what was stored in the ztest block tag when it was created. It also verifies that the unused bonus buffer space is filled with the expected data patterns. ZFS Test Suite -------------- Added six new large dnode-specific tests, and integrated the dnodesize property into existing tests for zfs allow and send/recv. Send/Receive ------------ ZFS send streams for datasets containing large dnodes cannot be received on pools that don't support the large_dnode feature. A send stream with large dnodes sets a DMU_BACKUP_FEATURE_LARGE_DNODE flag which will be unrecognized by an incompatible receiving pool so that the zfs receive will fail gracefully. While not implemented here, it may be possible to generate a backward-compatible send stream from a dataset containing large dnodes. The implementation may be tricky, however, because the send object record for a large dnode would need to be resized to a 512 byte dnode, possibly kicking in a spill block in the process. This means we would need to construct a new SA layout and possibly register it in the SA layout object. The SA layout is normally just sent as an ordinary object record. But if we are constructing new layouts while generating the send stream we'd have to build the SA layout object dynamically and send it at the end of the stream. For sending and receiving between pools that do support large dnodes, the drr_object send record type is extended with a new field to store the dnode slot count. This field was repurposed from unused padding in the structure. ZIL Replay ---------- The dnode slot count is stored in the uppermost 8 bits of the lr_foid field. The bits were unused as the object id is currently capped at 48 bits. Resizing Dnodes --------------- It should be possible to resize a dnode when it is dirtied if the current dnodesize dataset property differs from the dnode's size, but this functionality is not currently implemented. Clearly a dnode can only grow if there are sufficient contiguous unused slots in the dnode block, but it should always be possible to shrink a dnode. Growing dnodes may be useful to reduce fragmentation in a pool with many spill blocks in use. Shrinking dnodes may be useful to allow sending a dataset to a pool that doesn't support the large_dnode feature. Feature Reference Counting -------------------------- The reference count for the large_dnode pool feature tracks the number of datasets that have ever contained a dnode of size larger than 512 bytes. The first time a large dnode is created in a dataset the dataset is converted to an extensible dataset. This is a one-way operation and the only way to decrement the feature count is to destroy the dataset, even if the dataset no longer contains any large dnodes. The complexity of reference counting on a per-dnode basis was too high, so we chose to track it on a per-dataset basis similarly to the large_block feature. Signed-off-by: Ned Bass <bass6@llnl.gov> Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov> Closes #3542
2016-03-17 04:25:34 +03:00
ztest_bt_generate(bbt, os, lr->lr_foid, lr->lrz_dnodesize, -1ULL,
lr->lr_gen, txg, txg);
ztest_fill_unused_bonus(db, bbt, lr->lr_foid, os, lr->lr_gen);
dmu_buf_rele(db, FTAG);
VERIFY0(zap_add(os, lr->lr_doid, name, sizeof (uint64_t), 1,
&lr->lr_foid, tx));
(void) ztest_log_create(zd, tx, lr);
dmu_tx_commit(tx);
return (0);
}
static int
OpenZFS 8081 - Compiler warnings in zdb Fix compiler warnings in zdb. With these changes, FreeBSD can compile zdb with all compiler warnings enabled save -Wunused-parameter. usr/src/cmd/zdb/zdb.c usr/src/cmd/zdb/zdb_il.c usr/src/uts/common/fs/zfs/sys/sa.h usr/src/uts/common/fs/zfs/sys/spa.h Fix numerous warnings, including: * const-correctness * shadowing global definitions * signed vs unsigned comparisons * missing prototypes, or missing static declarations * unused variables and functions * Unreadable array initializations * Missing struct initializers usr/src/cmd/zdb/zdb.h Add a header file to declare common symbols usr/src/lib/libzpool/common/sys/zfs_context.h usr/src/uts/common/fs/zfs/arc.c usr/src/uts/common/fs/zfs/dbuf.c usr/src/uts/common/fs/zfs/spa.c usr/src/uts/common/fs/zfs/txg.c Add a function prototype for zk_thread_create, and ensure that every callback supplied to this function actually matches the prototype. usr/src/cmd/ztest/ztest.c usr/src/uts/common/fs/zfs/sys/zil.h usr/src/uts/common/fs/zfs/zfs_replay.c usr/src/uts/common/fs/zfs/zvol.c Add a function prototype for zil_replay_func_t, and ensure that every function of this type actually matches the prototype. usr/src/uts/common/fs/zfs/sys/refcount.h Change FTAG so it discards any constness of __func__, necessary since existing APIs expect it passed as void *. Porting Notes: - Many of these fixes have already been applied to Linux. For consistency the OpenZFS version of a change was applied if the warning was addressed in an equivalent but different fashion. Reviewed by: Matthew Ahrens <mahrens@delphix.com> Reviewed by: Prakash Surya <prakash.surya@delphix.com> Authored by: Alan Somers <asomers@gmail.com> Approved by: Richard Lowe <richlowe@richlowe.net> Ported-by: Brian Behlendorf <behlendorf1@llnl.gov> OpenZFS-issue: https://www.illumos.org/issues/8081 OpenZFS-commit: https://github.com/openzfs/openzfs/commit/843abe1b8a Closes #6787
2017-10-27 22:46:35 +03:00
ztest_replay_remove(void *arg1, void *arg2, boolean_t byteswap)
{
OpenZFS 8081 - Compiler warnings in zdb Fix compiler warnings in zdb. With these changes, FreeBSD can compile zdb with all compiler warnings enabled save -Wunused-parameter. usr/src/cmd/zdb/zdb.c usr/src/cmd/zdb/zdb_il.c usr/src/uts/common/fs/zfs/sys/sa.h usr/src/uts/common/fs/zfs/sys/spa.h Fix numerous warnings, including: * const-correctness * shadowing global definitions * signed vs unsigned comparisons * missing prototypes, or missing static declarations * unused variables and functions * Unreadable array initializations * Missing struct initializers usr/src/cmd/zdb/zdb.h Add a header file to declare common symbols usr/src/lib/libzpool/common/sys/zfs_context.h usr/src/uts/common/fs/zfs/arc.c usr/src/uts/common/fs/zfs/dbuf.c usr/src/uts/common/fs/zfs/spa.c usr/src/uts/common/fs/zfs/txg.c Add a function prototype for zk_thread_create, and ensure that every callback supplied to this function actually matches the prototype. usr/src/cmd/ztest/ztest.c usr/src/uts/common/fs/zfs/sys/zil.h usr/src/uts/common/fs/zfs/zfs_replay.c usr/src/uts/common/fs/zfs/zvol.c Add a function prototype for zil_replay_func_t, and ensure that every function of this type actually matches the prototype. usr/src/uts/common/fs/zfs/sys/refcount.h Change FTAG so it discards any constness of __func__, necessary since existing APIs expect it passed as void *. Porting Notes: - Many of these fixes have already been applied to Linux. For consistency the OpenZFS version of a change was applied if the warning was addressed in an equivalent but different fashion. Reviewed by: Matthew Ahrens <mahrens@delphix.com> Reviewed by: Prakash Surya <prakash.surya@delphix.com> Authored by: Alan Somers <asomers@gmail.com> Approved by: Richard Lowe <richlowe@richlowe.net> Ported-by: Brian Behlendorf <behlendorf1@llnl.gov> OpenZFS-issue: https://www.illumos.org/issues/8081 OpenZFS-commit: https://github.com/openzfs/openzfs/commit/843abe1b8a Closes #6787
2017-10-27 22:46:35 +03:00
ztest_ds_t *zd = arg1;
lr_remove_t *lr = arg2;
char *name = (void *)(lr + 1); /* name follows lr */
objset_t *os = zd->zd_os;
dmu_object_info_t doi;
dmu_tx_t *tx;
uint64_t object, txg;
if (byteswap)
byteswap_uint64_array(lr, sizeof (*lr));
ASSERT3U(lr->lr_doid, ==, ZTEST_DIROBJ);
ASSERT3S(name[0], !=, '\0');
VERIFY0(
zap_lookup(os, lr->lr_doid, name, sizeof (object), 1, &object));
ASSERT3U(object, !=, 0);
RAID-Z expansion feature This feature allows disks to be added one at a time to a RAID-Z group, expanding its capacity incrementally. This feature is especially useful for small pools (typically with only one RAID-Z group), where there isn't sufficient hardware to add capacity by adding a whole new RAID-Z group (typically doubling the number of disks). == Initiating expansion == A new device (disk) can be attached to an existing RAIDZ vdev, by running `zpool attach POOL raidzP-N NEW_DEVICE`, e.g. `zpool attach tank raidz2-0 sda`. The new device will become part of the RAIDZ group. A "raidz expansion" will be initiated, and the new device will contribute additional space to the RAIDZ group once the expansion completes. The `feature@raidz_expansion` on-disk feature flag must be `enabled` to initiate an expansion, and it remains `active` for the life of the pool. In other words, pools with expanded RAIDZ vdevs can not be imported by older releases of the ZFS software. == During expansion == The expansion entails reading all allocated space from existing disks in the RAIDZ group, and rewriting it to the new disks in the RAIDZ group (including the newly added device). The expansion progress can be monitored with `zpool status`. Data redundancy is maintained during (and after) the expansion. If a disk fails while the expansion is in progress, the expansion pauses until the health of the RAIDZ vdev is restored (e.g. by replacing the failed disk and waiting for reconstruction to complete). The pool remains accessible during expansion. Following a reboot or export/import, the expansion resumes where it left off. == After expansion == When the expansion completes, the additional space is available for use, and is reflected in the `available` zfs property (as seen in `zfs list`, `df`, etc). Expansion does not change the number of failures that can be tolerated without data loss (e.g. a RAIDZ2 is still a RAIDZ2 even after expansion). A RAIDZ vdev can be expanded multiple times. After the expansion completes, old blocks remain with their old data-to-parity ratio (e.g. 5-wide RAIDZ2, has 3 data to 2 parity), but distributed among the larger set of disks. New blocks will be written with the new data-to-parity ratio (e.g. a 5-wide RAIDZ2 which has been expanded once to 6-wide, has 4 data to 2 parity). However, the RAIDZ vdev's "assumed parity ratio" does not change, so slightly less space than is expected may be reported for newly-written blocks, according to `zfs list`, `df`, `ls -s`, and similar tools. Sponsored-by: The FreeBSD Foundation Sponsored-by: iXsystems, Inc. Sponsored-by: vStack Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov> Reviewed-by: Mark Maybee <mark.maybee@delphix.com> Authored-by: Matthew Ahrens <mahrens@delphix.com> Contributions-by: Fedor Uporov <fuporov.vstack@gmail.com> Contributions-by: Stuart Maybee <stuart.maybee@comcast.net> Contributions-by: Thorsten Behrens <tbehrens@outlook.com> Contributions-by: Fmstrat <nospam@nowsci.com> Contributions-by: Don Brady <dev.fs.zfs@gmail.com> Signed-off-by: Don Brady <dev.fs.zfs@gmail.com> Closes #15022
2023-11-08 21:19:41 +03:00
ztest_object_lock(zd, object, ZTRL_WRITER);
VERIFY0(dmu_object_info(os, object, &doi));
tx = dmu_tx_create(os);
dmu_tx_hold_zap(tx, lr->lr_doid, B_FALSE, name);
dmu_tx_hold_free(tx, object, 0, DMU_OBJECT_END);
txg = ztest_tx_assign(tx, TXG_WAIT, FTAG);
if (txg == 0) {
ztest_object_unlock(zd, object);
return (ENOSPC);
}
if (doi.doi_type == DMU_OT_ZAP_OTHER) {
VERIFY0(zap_destroy(os, object, tx));
} else {
VERIFY0(dmu_object_free(os, object, tx));
}
VERIFY0(zap_remove(os, lr->lr_doid, name, tx));
(void) ztest_log_remove(zd, tx, lr, object);
dmu_tx_commit(tx);
ztest_object_unlock(zd, object);
return (0);
}
static int
OpenZFS 8081 - Compiler warnings in zdb Fix compiler warnings in zdb. With these changes, FreeBSD can compile zdb with all compiler warnings enabled save -Wunused-parameter. usr/src/cmd/zdb/zdb.c usr/src/cmd/zdb/zdb_il.c usr/src/uts/common/fs/zfs/sys/sa.h usr/src/uts/common/fs/zfs/sys/spa.h Fix numerous warnings, including: * const-correctness * shadowing global definitions * signed vs unsigned comparisons * missing prototypes, or missing static declarations * unused variables and functions * Unreadable array initializations * Missing struct initializers usr/src/cmd/zdb/zdb.h Add a header file to declare common symbols usr/src/lib/libzpool/common/sys/zfs_context.h usr/src/uts/common/fs/zfs/arc.c usr/src/uts/common/fs/zfs/dbuf.c usr/src/uts/common/fs/zfs/spa.c usr/src/uts/common/fs/zfs/txg.c Add a function prototype for zk_thread_create, and ensure that every callback supplied to this function actually matches the prototype. usr/src/cmd/ztest/ztest.c usr/src/uts/common/fs/zfs/sys/zil.h usr/src/uts/common/fs/zfs/zfs_replay.c usr/src/uts/common/fs/zfs/zvol.c Add a function prototype for zil_replay_func_t, and ensure that every function of this type actually matches the prototype. usr/src/uts/common/fs/zfs/sys/refcount.h Change FTAG so it discards any constness of __func__, necessary since existing APIs expect it passed as void *. Porting Notes: - Many of these fixes have already been applied to Linux. For consistency the OpenZFS version of a change was applied if the warning was addressed in an equivalent but different fashion. Reviewed by: Matthew Ahrens <mahrens@delphix.com> Reviewed by: Prakash Surya <prakash.surya@delphix.com> Authored by: Alan Somers <asomers@gmail.com> Approved by: Richard Lowe <richlowe@richlowe.net> Ported-by: Brian Behlendorf <behlendorf1@llnl.gov> OpenZFS-issue: https://www.illumos.org/issues/8081 OpenZFS-commit: https://github.com/openzfs/openzfs/commit/843abe1b8a Closes #6787
2017-10-27 22:46:35 +03:00
ztest_replay_write(void *arg1, void *arg2, boolean_t byteswap)
{
OpenZFS 8081 - Compiler warnings in zdb Fix compiler warnings in zdb. With these changes, FreeBSD can compile zdb with all compiler warnings enabled save -Wunused-parameter. usr/src/cmd/zdb/zdb.c usr/src/cmd/zdb/zdb_il.c usr/src/uts/common/fs/zfs/sys/sa.h usr/src/uts/common/fs/zfs/sys/spa.h Fix numerous warnings, including: * const-correctness * shadowing global definitions * signed vs unsigned comparisons * missing prototypes, or missing static declarations * unused variables and functions * Unreadable array initializations * Missing struct initializers usr/src/cmd/zdb/zdb.h Add a header file to declare common symbols usr/src/lib/libzpool/common/sys/zfs_context.h usr/src/uts/common/fs/zfs/arc.c usr/src/uts/common/fs/zfs/dbuf.c usr/src/uts/common/fs/zfs/spa.c usr/src/uts/common/fs/zfs/txg.c Add a function prototype for zk_thread_create, and ensure that every callback supplied to this function actually matches the prototype. usr/src/cmd/ztest/ztest.c usr/src/uts/common/fs/zfs/sys/zil.h usr/src/uts/common/fs/zfs/zfs_replay.c usr/src/uts/common/fs/zfs/zvol.c Add a function prototype for zil_replay_func_t, and ensure that every function of this type actually matches the prototype. usr/src/uts/common/fs/zfs/sys/refcount.h Change FTAG so it discards any constness of __func__, necessary since existing APIs expect it passed as void *. Porting Notes: - Many of these fixes have already been applied to Linux. For consistency the OpenZFS version of a change was applied if the warning was addressed in an equivalent but different fashion. Reviewed by: Matthew Ahrens <mahrens@delphix.com> Reviewed by: Prakash Surya <prakash.surya@delphix.com> Authored by: Alan Somers <asomers@gmail.com> Approved by: Richard Lowe <richlowe@richlowe.net> Ported-by: Brian Behlendorf <behlendorf1@llnl.gov> OpenZFS-issue: https://www.illumos.org/issues/8081 OpenZFS-commit: https://github.com/openzfs/openzfs/commit/843abe1b8a Closes #6787
2017-10-27 22:46:35 +03:00
ztest_ds_t *zd = arg1;
lr_write_t *lr = arg2;
objset_t *os = zd->zd_os;
void *data = lr + 1; /* data follows lr */
uint64_t offset, length;
ztest_block_tag_t *bt = data;
ztest_block_tag_t *bbt;
uint64_t gen, txg, lrtxg, crtxg;
dmu_object_info_t doi;
dmu_tx_t *tx;
dmu_buf_t *db;
arc_buf_t *abuf = NULL;
OpenZFS 9689 - zfs range lock code should not be zpl-specific The ZFS range locking code in zfs_rlock.c/h depends on ZPL-specific data structures, specifically znode_t. However, it's also used by the ZVOL code, which uses a "dummy" znode_t to pass to the range locking code. We should clean this up so that the range locking code is generic and can be used equally by ZPL and ZVOL, and also can be used by future consumers that may need to run in userland (libzpool) as well as the kernel. Porting notes: * Added missing sys/avl.h include to sys/zfs_rlock.h. * Removed 'dbuf is within the locked range' ASSERTs from dmu_sync(). This was needed because ztest does not yet use a locked_range_t. * Removed "Approved by:" tag requirement from OpenZFS commit check to prevent needless warnings when integrating changes which has not been merged to illumos. * Reverted free_list range lock changes which were originally needed to defer the cv_destroy() which was called immediately after cv_broadcast(). With d2733258 this should be safe but if not we may need to reintroduce this logic. * Reverts: The following two commits were reverted and squashed in to this change in order to make it easier to apply OpenZFS 9689. - d88895a0, which removed the dummy znode from zvol_state - e3a07cd0, which updated ztest to use range locks * Preserved optimized rangelock comparison function. Preserved the rangelock free list. The cv_destroy() function will block waiting for all processes in cv_wait() to be scheduled and drop their reference. This is done to ensure it's safe to free the condition variable. However, blocking while holding the rl->rl_lock mutex can result in a deadlock on Linux. A free list is introduced to defer the cv_destroy() and kmem_free() until after the mutex is released. Authored by: Matthew Ahrens <mahrens@delphix.com> Reviewed by: Brian Behlendorf <behlendorf1@llnl.gov> Reviewed by: Serapheim Dimitropoulos <serapheim.dimitro@delphix.com> Reviewed by: George Wilson <george.wilson@delphix.com> Reviewed by: Brad Lewis <brad.lewis@delphix.com> Ported-by: Brian Behlendorf <behlendorf1@llnl.gov> OpenZFS-issue: https://illumos.org/issues/9689 OpenZFS-commit: https://github.com/openzfs/openzfs/pull/680 External-issue: DLPX-58662 Closes #7980
2018-10-02 01:13:12 +03:00
rl_t *rl;
if (byteswap)
byteswap_uint64_array(lr, sizeof (*lr));
offset = lr->lr_offset;
length = lr->lr_length;
/* If it's a dmu_sync() block, write the whole block */
if (lr->lr_common.lrc_reclen == sizeof (lr_write_t)) {
uint64_t blocksize = BP_GET_LSIZE(&lr->lr_blkptr);
if (length < blocksize) {
offset -= offset % blocksize;
length = blocksize;
}
}
if (bt->bt_magic == BSWAP_64(BT_MAGIC))
byteswap_uint64_array(bt, sizeof (*bt));
if (bt->bt_magic != BT_MAGIC)
bt = NULL;
RAID-Z expansion feature This feature allows disks to be added one at a time to a RAID-Z group, expanding its capacity incrementally. This feature is especially useful for small pools (typically with only one RAID-Z group), where there isn't sufficient hardware to add capacity by adding a whole new RAID-Z group (typically doubling the number of disks). == Initiating expansion == A new device (disk) can be attached to an existing RAIDZ vdev, by running `zpool attach POOL raidzP-N NEW_DEVICE`, e.g. `zpool attach tank raidz2-0 sda`. The new device will become part of the RAIDZ group. A "raidz expansion" will be initiated, and the new device will contribute additional space to the RAIDZ group once the expansion completes. The `feature@raidz_expansion` on-disk feature flag must be `enabled` to initiate an expansion, and it remains `active` for the life of the pool. In other words, pools with expanded RAIDZ vdevs can not be imported by older releases of the ZFS software. == During expansion == The expansion entails reading all allocated space from existing disks in the RAIDZ group, and rewriting it to the new disks in the RAIDZ group (including the newly added device). The expansion progress can be monitored with `zpool status`. Data redundancy is maintained during (and after) the expansion. If a disk fails while the expansion is in progress, the expansion pauses until the health of the RAIDZ vdev is restored (e.g. by replacing the failed disk and waiting for reconstruction to complete). The pool remains accessible during expansion. Following a reboot or export/import, the expansion resumes where it left off. == After expansion == When the expansion completes, the additional space is available for use, and is reflected in the `available` zfs property (as seen in `zfs list`, `df`, etc). Expansion does not change the number of failures that can be tolerated without data loss (e.g. a RAIDZ2 is still a RAIDZ2 even after expansion). A RAIDZ vdev can be expanded multiple times. After the expansion completes, old blocks remain with their old data-to-parity ratio (e.g. 5-wide RAIDZ2, has 3 data to 2 parity), but distributed among the larger set of disks. New blocks will be written with the new data-to-parity ratio (e.g. a 5-wide RAIDZ2 which has been expanded once to 6-wide, has 4 data to 2 parity). However, the RAIDZ vdev's "assumed parity ratio" does not change, so slightly less space than is expected may be reported for newly-written blocks, according to `zfs list`, `df`, `ls -s`, and similar tools. Sponsored-by: The FreeBSD Foundation Sponsored-by: iXsystems, Inc. Sponsored-by: vStack Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov> Reviewed-by: Mark Maybee <mark.maybee@delphix.com> Authored-by: Matthew Ahrens <mahrens@delphix.com> Contributions-by: Fedor Uporov <fuporov.vstack@gmail.com> Contributions-by: Stuart Maybee <stuart.maybee@comcast.net> Contributions-by: Thorsten Behrens <tbehrens@outlook.com> Contributions-by: Fmstrat <nospam@nowsci.com> Contributions-by: Don Brady <dev.fs.zfs@gmail.com> Signed-off-by: Don Brady <dev.fs.zfs@gmail.com> Closes #15022
2023-11-08 21:19:41 +03:00
ztest_object_lock(zd, lr->lr_foid, ZTRL_READER);
rl = ztest_range_lock(zd, lr->lr_foid, offset, length, ZTRL_WRITER);
VERIFY0(dmu_bonus_hold(os, lr->lr_foid, FTAG, &db));
dmu_object_info_from_db(db, &doi);
bbt = ztest_bt_bonus(db);
ASSERT3U(bbt->bt_magic, ==, BT_MAGIC);
gen = bbt->bt_gen;
crtxg = bbt->bt_crtxg;
lrtxg = lr->lr_common.lrc_txg;
tx = dmu_tx_create(os);
dmu_tx_hold_write(tx, lr->lr_foid, offset, length);
if (ztest_random(8) == 0 && length == doi.doi_data_block_size &&
P2PHASE(offset, length) == 0)
abuf = dmu_request_arcbuf(db, length);
txg = ztest_tx_assign(tx, TXG_WAIT, FTAG);
if (txg == 0) {
if (abuf != NULL)
dmu_return_arcbuf(abuf);
dmu_buf_rele(db, FTAG);
OpenZFS 9689 - zfs range lock code should not be zpl-specific The ZFS range locking code in zfs_rlock.c/h depends on ZPL-specific data structures, specifically znode_t. However, it's also used by the ZVOL code, which uses a "dummy" znode_t to pass to the range locking code. We should clean this up so that the range locking code is generic and can be used equally by ZPL and ZVOL, and also can be used by future consumers that may need to run in userland (libzpool) as well as the kernel. Porting notes: * Added missing sys/avl.h include to sys/zfs_rlock.h. * Removed 'dbuf is within the locked range' ASSERTs from dmu_sync(). This was needed because ztest does not yet use a locked_range_t. * Removed "Approved by:" tag requirement from OpenZFS commit check to prevent needless warnings when integrating changes which has not been merged to illumos. * Reverted free_list range lock changes which were originally needed to defer the cv_destroy() which was called immediately after cv_broadcast(). With d2733258 this should be safe but if not we may need to reintroduce this logic. * Reverts: The following two commits were reverted and squashed in to this change in order to make it easier to apply OpenZFS 9689. - d88895a0, which removed the dummy znode from zvol_state - e3a07cd0, which updated ztest to use range locks * Preserved optimized rangelock comparison function. Preserved the rangelock free list. The cv_destroy() function will block waiting for all processes in cv_wait() to be scheduled and drop their reference. This is done to ensure it's safe to free the condition variable. However, blocking while holding the rl->rl_lock mutex can result in a deadlock on Linux. A free list is introduced to defer the cv_destroy() and kmem_free() until after the mutex is released. Authored by: Matthew Ahrens <mahrens@delphix.com> Reviewed by: Brian Behlendorf <behlendorf1@llnl.gov> Reviewed by: Serapheim Dimitropoulos <serapheim.dimitro@delphix.com> Reviewed by: George Wilson <george.wilson@delphix.com> Reviewed by: Brad Lewis <brad.lewis@delphix.com> Ported-by: Brian Behlendorf <behlendorf1@llnl.gov> OpenZFS-issue: https://illumos.org/issues/9689 OpenZFS-commit: https://github.com/openzfs/openzfs/pull/680 External-issue: DLPX-58662 Closes #7980
2018-10-02 01:13:12 +03:00
ztest_range_unlock(rl);
ztest_object_unlock(zd, lr->lr_foid);
return (ENOSPC);
}
if (bt != NULL) {
/*
* Usually, verify the old data before writing new data --
* but not always, because we also want to verify correct
* behavior when the data was not recently read into cache.
*/
ASSERT(doi.doi_data_block_size);
ASSERT0(offset % doi.doi_data_block_size);
if (ztest_random(4) != 0) {
int prefetch = ztest_random(2) ?
DMU_READ_PREFETCH : DMU_READ_NO_PREFETCH;
Adding Direct IO Support Adding O_DIRECT support to ZFS to bypass the ARC for writes/reads. O_DIRECT support in ZFS will always ensure there is coherency between buffered and O_DIRECT IO requests. This ensures that all IO requests, whether buffered or direct, will see the same file contents at all times. Just as in other FS's , O_DIRECT does not imply O_SYNC. While data is written directly to VDEV disks, metadata will not be synced until the associated TXG is synced. For both O_DIRECT read and write request the offset and request sizes, at a minimum, must be PAGE_SIZE aligned. In the event they are not, then EINVAL is returned unless the direct property is set to always (see below). For O_DIRECT writes: The request also must be block aligned (recordsize) or the write request will take the normal (buffered) write path. In the event that request is block aligned and a cached copy of the buffer in the ARC, then it will be discarded from the ARC forcing all further reads to retrieve the data from disk. For O_DIRECT reads: The only alignment restrictions are PAGE_SIZE alignment. In the event that the requested data is in buffered (in the ARC) it will just be copied from the ARC into the user buffer. For both O_DIRECT writes and reads the O_DIRECT flag will be ignored in the event that file contents are mmap'ed. In this case, all requests that are at least PAGE_SIZE aligned will just fall back to the buffered paths. If the request however is not PAGE_SIZE aligned, EINVAL will be returned as always regardless if the file's contents are mmap'ed. Since O_DIRECT writes go through the normal ZIO pipeline, the following operations are supported just as with normal buffered writes: Checksum Compression Encryption Erasure Coding There is one caveat for the data integrity of O_DIRECT writes that is distinct for each of the OS's supported by ZFS. FreeBSD - FreeBSD is able to place user pages under write protection so any data in the user buffers and written directly down to the VDEV disks is guaranteed to not change. There is no concern with data integrity and O_DIRECT writes. Linux - Linux is not able to place anonymous user pages under write protection. Because of this, if the user decides to manipulate the page contents while the write operation is occurring, data integrity can not be guaranteed. However, there is a module parameter `zfs_vdev_direct_write_verify` that controls the if a O_DIRECT writes that can occur to a top-level VDEV before a checksum verify is run before the contents of the I/O buffer are committed to disk. In the event of a checksum verification failure the write will return EIO. The number of O_DIRECT write checksum verification errors can be observed by doing `zpool status -d`, which will list all verification errors that have occurred on a top-level VDEV. Along with `zpool status`, a ZED event will be issues as `dio_verify` when a checksum verification error occurs. ZVOLs and dedup is not currently supported with Direct I/O. A new dataset property `direct` has been added with the following 3 allowable values: disabled - Accepts O_DIRECT flag, but silently ignores it and treats the request as a buffered IO request. standard - Follows the alignment restrictions outlined above for write/read IO requests when the O_DIRECT flag is used. always - Treats every write/read IO request as though it passed O_DIRECT and will do O_DIRECT if the alignment restrictions are met otherwise will redirect through the ARC. This property will not allow a request to fail. There is also a module parameter zfs_dio_enabled that can be used to force all reads and writes through the ARC. By setting this module parameter to 0, it mimics as if the direct dataset property is set to disabled. Reviewed-by: Brian Behlendorf <behlendorf@llnl.gov> Reviewed-by: Alexander Motin <mav@FreeBSD.org> Reviewed-by: Tony Hutter <hutter2@llnl.gov> Signed-off-by: Brian Atkinson <batkinson@lanl.gov> Co-authored-by: Mark Maybee <mark.maybee@delphix.com> Co-authored-by: Matt Macy <mmacy@FreeBSD.org> Co-authored-by: Brian Behlendorf <behlendorf@llnl.gov> Closes #10018
2024-09-14 23:47:59 +03:00
/*
* We will randomly set when to do O_DIRECT on a read.
*/
if (ztest_random(4) == 0)
prefetch |= DMU_DIRECTIO;
ztest_block_tag_t rbt;
VERIFY(dmu_read(os, lr->lr_foid, offset,
sizeof (rbt), &rbt, prefetch) == 0);
if (rbt.bt_magic == BT_MAGIC) {
Implement large_dnode pool feature Justification ------------- This feature adds support for variable length dnodes. Our motivation is to eliminate the overhead associated with using spill blocks. Spill blocks are used to store system attribute data (i.e. file metadata) that does not fit in the dnode's bonus buffer. By allowing a larger bonus buffer area the use of a spill block can be avoided. Spill blocks potentially incur an additional read I/O for every dnode in a dnode block. As a worst case example, reading 32 dnodes from a 16k dnode block and all of the spill blocks could issue 33 separate reads. Now suppose those dnodes have size 1024 and therefore don't need spill blocks. Then the worst case number of blocks read is reduced to from 33 to two--one per dnode block. In practice spill blocks may tend to be co-located on disk with the dnode blocks so the reduction in I/O would not be this drastic. In a badly fragmented pool, however, the improvement could be significant. ZFS-on-Linux systems that make heavy use of extended attributes would benefit from this feature. In particular, ZFS-on-Linux supports the xattr=sa dataset property which allows file extended attribute data to be stored in the dnode bonus buffer as an alternative to the traditional directory-based format. Workloads such as SELinux and the Lustre distributed filesystem often store enough xattr data to force spill bocks when xattr=sa is in effect. Large dnodes may therefore provide a performance benefit to such systems. Other use cases that may benefit from this feature include files with large ACLs and symbolic links with long target names. Furthermore, this feature may be desirable on other platforms in case future applications or features are developed that could make use of a larger bonus buffer area. Implementation -------------- The size of a dnode may be a multiple of 512 bytes up to the size of a dnode block (currently 16384 bytes). A dn_extra_slots field was added to the current on-disk dnode_phys_t structure to describe the size of the physical dnode on disk. The 8 bits for this field were taken from the zero filled dn_pad2 field. The field represents how many "extra" dnode_phys_t slots a dnode consumes in its dnode block. This convention results in a value of 0 for 512 byte dnodes which preserves on-disk format compatibility with older software. Similarly, the in-memory dnode_t structure has a new dn_num_slots field to represent the total number of dnode_phys_t slots consumed on disk. Thus dn->dn_num_slots is 1 greater than the corresponding dnp->dn_extra_slots. This difference in convention was adopted because, unlike on-disk structures, backward compatibility is not a concern for in-memory objects, so we used a more natural way to represent size for a dnode_t. The default size for newly created dnodes is determined by the value of a new "dnodesize" dataset property. By default the property is set to "legacy" which is compatible with older software. Setting the property to "auto" will allow the filesystem to choose the most suitable dnode size. Currently this just sets the default dnode size to 1k, but future code improvements could dynamically choose a size based on observed workload patterns. Dnodes of varying sizes can coexist within the same dataset and even within the same dnode block. For example, to enable automatically-sized dnodes, run # zfs set dnodesize=auto tank/fish The user can also specify literal values for the dnodesize property. These are currently limited to powers of two from 1k to 16k. The power-of-2 limitation is only for simplicity of the user interface. Internally the implementation can handle any multiple of 512 up to 16k, and consumers of the DMU API can specify any legal dnode value. The size of a new dnode is determined at object allocation time and stored as a new field in the znode in-memory structure. New DMU interfaces are added to allow the consumer to specify the dnode size that a newly allocated object should use. Existing interfaces are unchanged to avoid having to update every call site and to preserve compatibility with external consumers such as Lustre. The new interfaces names are given below. The versions of these functions that don't take a dnodesize parameter now just call the _dnsize() versions with a dnodesize of 0, which means use the legacy dnode size. New DMU interfaces: dmu_object_alloc_dnsize() dmu_object_claim_dnsize() dmu_object_reclaim_dnsize() New ZAP interfaces: zap_create_dnsize() zap_create_norm_dnsize() zap_create_flags_dnsize() zap_create_claim_norm_dnsize() zap_create_link_dnsize() The constant DN_MAX_BONUSLEN is renamed to DN_OLD_MAX_BONUSLEN. The spa_maxdnodesize() function should be used to determine the maximum bonus length for a pool. These are a few noteworthy changes to key functions: * The prototype for dnode_hold_impl() now takes a "slots" parameter. When the DNODE_MUST_BE_FREE flag is set, this parameter is used to ensure the hole at the specified object offset is large enough to hold the dnode being created. The slots parameter is also used to ensure a dnode does not span multiple dnode blocks. In both of these cases, if a failure occurs, ENOSPC is returned. Keep in mind, these failure cases are only possible when using DNODE_MUST_BE_FREE. If the DNODE_MUST_BE_ALLOCATED flag is set, "slots" must be 0. dnode_hold_impl() will check if the requested dnode is already consumed as an extra dnode slot by an large dnode, in which case it returns ENOENT. * The function dmu_object_alloc() advances to the next dnode block if dnode_hold_impl() returns an error for a requested object. This is because the beginning of the next dnode block is the only location it can safely assume to either be a hole or a valid starting point for a dnode. * dnode_next_offset_level() and other functions that iterate through dnode blocks may no longer use a simple array indexing scheme. These now use the current dnode's dn_num_slots field to advance to the next dnode in the block. This is to ensure we properly skip the current dnode's bonus area and don't interpret it as a valid dnode. zdb --- The zdb command was updated to display a dnode's size under the "dnsize" column when the object is dumped. For ZIL create log records, zdb will now display the slot count for the object. ztest ----- Ztest chooses a random dnodesize for every newly created object. The random distribution is more heavily weighted toward small dnodes to better simulate real-world datasets. Unused bonus buffer space is filled with non-zero values computed from the object number, dataset id, offset, and generation number. This helps ensure that the dnode traversal code properly skips the interior regions of large dnodes, and that these interior regions are not overwritten by data belonging to other dnodes. A new test visits each object in a dataset. It verifies that the actual dnode size matches what was stored in the ztest block tag when it was created. It also verifies that the unused bonus buffer space is filled with the expected data patterns. ZFS Test Suite -------------- Added six new large dnode-specific tests, and integrated the dnodesize property into existing tests for zfs allow and send/recv. Send/Receive ------------ ZFS send streams for datasets containing large dnodes cannot be received on pools that don't support the large_dnode feature. A send stream with large dnodes sets a DMU_BACKUP_FEATURE_LARGE_DNODE flag which will be unrecognized by an incompatible receiving pool so that the zfs receive will fail gracefully. While not implemented here, it may be possible to generate a backward-compatible send stream from a dataset containing large dnodes. The implementation may be tricky, however, because the send object record for a large dnode would need to be resized to a 512 byte dnode, possibly kicking in a spill block in the process. This means we would need to construct a new SA layout and possibly register it in the SA layout object. The SA layout is normally just sent as an ordinary object record. But if we are constructing new layouts while generating the send stream we'd have to build the SA layout object dynamically and send it at the end of the stream. For sending and receiving between pools that do support large dnodes, the drr_object send record type is extended with a new field to store the dnode slot count. This field was repurposed from unused padding in the structure. ZIL Replay ---------- The dnode slot count is stored in the uppermost 8 bits of the lr_foid field. The bits were unused as the object id is currently capped at 48 bits. Resizing Dnodes --------------- It should be possible to resize a dnode when it is dirtied if the current dnodesize dataset property differs from the dnode's size, but this functionality is not currently implemented. Clearly a dnode can only grow if there are sufficient contiguous unused slots in the dnode block, but it should always be possible to shrink a dnode. Growing dnodes may be useful to reduce fragmentation in a pool with many spill blocks in use. Shrinking dnodes may be useful to allow sending a dataset to a pool that doesn't support the large_dnode feature. Feature Reference Counting -------------------------- The reference count for the large_dnode pool feature tracks the number of datasets that have ever contained a dnode of size larger than 512 bytes. The first time a large dnode is created in a dataset the dataset is converted to an extensible dataset. This is a one-way operation and the only way to decrement the feature count is to destroy the dataset, even if the dataset no longer contains any large dnodes. The complexity of reference counting on a per-dnode basis was too high, so we chose to track it on a per-dataset basis similarly to the large_block feature. Signed-off-by: Ned Bass <bass6@llnl.gov> Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov> Closes #3542
2016-03-17 04:25:34 +03:00
ztest_bt_verify(&rbt, os, lr->lr_foid, 0,
offset, gen, txg, crtxg);
}
}
/*
* Writes can appear to be newer than the bonus buffer because
* the ztest_get_data() callback does a dmu_read() of the
* open-context data, which may be different than the data
* as it was when the write was generated.
*/
if (zd->zd_zilog->zl_replay) {
Implement large_dnode pool feature Justification ------------- This feature adds support for variable length dnodes. Our motivation is to eliminate the overhead associated with using spill blocks. Spill blocks are used to store system attribute data (i.e. file metadata) that does not fit in the dnode's bonus buffer. By allowing a larger bonus buffer area the use of a spill block can be avoided. Spill blocks potentially incur an additional read I/O for every dnode in a dnode block. As a worst case example, reading 32 dnodes from a 16k dnode block and all of the spill blocks could issue 33 separate reads. Now suppose those dnodes have size 1024 and therefore don't need spill blocks. Then the worst case number of blocks read is reduced to from 33 to two--one per dnode block. In practice spill blocks may tend to be co-located on disk with the dnode blocks so the reduction in I/O would not be this drastic. In a badly fragmented pool, however, the improvement could be significant. ZFS-on-Linux systems that make heavy use of extended attributes would benefit from this feature. In particular, ZFS-on-Linux supports the xattr=sa dataset property which allows file extended attribute data to be stored in the dnode bonus buffer as an alternative to the traditional directory-based format. Workloads such as SELinux and the Lustre distributed filesystem often store enough xattr data to force spill bocks when xattr=sa is in effect. Large dnodes may therefore provide a performance benefit to such systems. Other use cases that may benefit from this feature include files with large ACLs and symbolic links with long target names. Furthermore, this feature may be desirable on other platforms in case future applications or features are developed that could make use of a larger bonus buffer area. Implementation -------------- The size of a dnode may be a multiple of 512 bytes up to the size of a dnode block (currently 16384 bytes). A dn_extra_slots field was added to the current on-disk dnode_phys_t structure to describe the size of the physical dnode on disk. The 8 bits for this field were taken from the zero filled dn_pad2 field. The field represents how many "extra" dnode_phys_t slots a dnode consumes in its dnode block. This convention results in a value of 0 for 512 byte dnodes which preserves on-disk format compatibility with older software. Similarly, the in-memory dnode_t structure has a new dn_num_slots field to represent the total number of dnode_phys_t slots consumed on disk. Thus dn->dn_num_slots is 1 greater than the corresponding dnp->dn_extra_slots. This difference in convention was adopted because, unlike on-disk structures, backward compatibility is not a concern for in-memory objects, so we used a more natural way to represent size for a dnode_t. The default size for newly created dnodes is determined by the value of a new "dnodesize" dataset property. By default the property is set to "legacy" which is compatible with older software. Setting the property to "auto" will allow the filesystem to choose the most suitable dnode size. Currently this just sets the default dnode size to 1k, but future code improvements could dynamically choose a size based on observed workload patterns. Dnodes of varying sizes can coexist within the same dataset and even within the same dnode block. For example, to enable automatically-sized dnodes, run # zfs set dnodesize=auto tank/fish The user can also specify literal values for the dnodesize property. These are currently limited to powers of two from 1k to 16k. The power-of-2 limitation is only for simplicity of the user interface. Internally the implementation can handle any multiple of 512 up to 16k, and consumers of the DMU API can specify any legal dnode value. The size of a new dnode is determined at object allocation time and stored as a new field in the znode in-memory structure. New DMU interfaces are added to allow the consumer to specify the dnode size that a newly allocated object should use. Existing interfaces are unchanged to avoid having to update every call site and to preserve compatibility with external consumers such as Lustre. The new interfaces names are given below. The versions of these functions that don't take a dnodesize parameter now just call the _dnsize() versions with a dnodesize of 0, which means use the legacy dnode size. New DMU interfaces: dmu_object_alloc_dnsize() dmu_object_claim_dnsize() dmu_object_reclaim_dnsize() New ZAP interfaces: zap_create_dnsize() zap_create_norm_dnsize() zap_create_flags_dnsize() zap_create_claim_norm_dnsize() zap_create_link_dnsize() The constant DN_MAX_BONUSLEN is renamed to DN_OLD_MAX_BONUSLEN. The spa_maxdnodesize() function should be used to determine the maximum bonus length for a pool. These are a few noteworthy changes to key functions: * The prototype for dnode_hold_impl() now takes a "slots" parameter. When the DNODE_MUST_BE_FREE flag is set, this parameter is used to ensure the hole at the specified object offset is large enough to hold the dnode being created. The slots parameter is also used to ensure a dnode does not span multiple dnode blocks. In both of these cases, if a failure occurs, ENOSPC is returned. Keep in mind, these failure cases are only possible when using DNODE_MUST_BE_FREE. If the DNODE_MUST_BE_ALLOCATED flag is set, "slots" must be 0. dnode_hold_impl() will check if the requested dnode is already consumed as an extra dnode slot by an large dnode, in which case it returns ENOENT. * The function dmu_object_alloc() advances to the next dnode block if dnode_hold_impl() returns an error for a requested object. This is because the beginning of the next dnode block is the only location it can safely assume to either be a hole or a valid starting point for a dnode. * dnode_next_offset_level() and other functions that iterate through dnode blocks may no longer use a simple array indexing scheme. These now use the current dnode's dn_num_slots field to advance to the next dnode in the block. This is to ensure we properly skip the current dnode's bonus area and don't interpret it as a valid dnode. zdb --- The zdb command was updated to display a dnode's size under the "dnsize" column when the object is dumped. For ZIL create log records, zdb will now display the slot count for the object. ztest ----- Ztest chooses a random dnodesize for every newly created object. The random distribution is more heavily weighted toward small dnodes to better simulate real-world datasets. Unused bonus buffer space is filled with non-zero values computed from the object number, dataset id, offset, and generation number. This helps ensure that the dnode traversal code properly skips the interior regions of large dnodes, and that these interior regions are not overwritten by data belonging to other dnodes. A new test visits each object in a dataset. It verifies that the actual dnode size matches what was stored in the ztest block tag when it was created. It also verifies that the unused bonus buffer space is filled with the expected data patterns. ZFS Test Suite -------------- Added six new large dnode-specific tests, and integrated the dnodesize property into existing tests for zfs allow and send/recv. Send/Receive ------------ ZFS send streams for datasets containing large dnodes cannot be received on pools that don't support the large_dnode feature. A send stream with large dnodes sets a DMU_BACKUP_FEATURE_LARGE_DNODE flag which will be unrecognized by an incompatible receiving pool so that the zfs receive will fail gracefully. While not implemented here, it may be possible to generate a backward-compatible send stream from a dataset containing large dnodes. The implementation may be tricky, however, because the send object record for a large dnode would need to be resized to a 512 byte dnode, possibly kicking in a spill block in the process. This means we would need to construct a new SA layout and possibly register it in the SA layout object. The SA layout is normally just sent as an ordinary object record. But if we are constructing new layouts while generating the send stream we'd have to build the SA layout object dynamically and send it at the end of the stream. For sending and receiving between pools that do support large dnodes, the drr_object send record type is extended with a new field to store the dnode slot count. This field was repurposed from unused padding in the structure. ZIL Replay ---------- The dnode slot count is stored in the uppermost 8 bits of the lr_foid field. The bits were unused as the object id is currently capped at 48 bits. Resizing Dnodes --------------- It should be possible to resize a dnode when it is dirtied if the current dnodesize dataset property differs from the dnode's size, but this functionality is not currently implemented. Clearly a dnode can only grow if there are sufficient contiguous unused slots in the dnode block, but it should always be possible to shrink a dnode. Growing dnodes may be useful to reduce fragmentation in a pool with many spill blocks in use. Shrinking dnodes may be useful to allow sending a dataset to a pool that doesn't support the large_dnode feature. Feature Reference Counting -------------------------- The reference count for the large_dnode pool feature tracks the number of datasets that have ever contained a dnode of size larger than 512 bytes. The first time a large dnode is created in a dataset the dataset is converted to an extensible dataset. This is a one-way operation and the only way to decrement the feature count is to destroy the dataset, even if the dataset no longer contains any large dnodes. The complexity of reference counting on a per-dnode basis was too high, so we chose to track it on a per-dataset basis similarly to the large_block feature. Signed-off-by: Ned Bass <bass6@llnl.gov> Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov> Closes #3542
2016-03-17 04:25:34 +03:00
ztest_bt_verify(bt, os, lr->lr_foid, 0, offset,
MAX(gen, bt->bt_gen), MAX(txg, lrtxg),
bt->bt_crtxg);
}
/*
* Set the bt's gen/txg to the bonus buffer's gen/txg
* so that all of the usual ASSERTs will work.
*/
Implement large_dnode pool feature Justification ------------- This feature adds support for variable length dnodes. Our motivation is to eliminate the overhead associated with using spill blocks. Spill blocks are used to store system attribute data (i.e. file metadata) that does not fit in the dnode's bonus buffer. By allowing a larger bonus buffer area the use of a spill block can be avoided. Spill blocks potentially incur an additional read I/O for every dnode in a dnode block. As a worst case example, reading 32 dnodes from a 16k dnode block and all of the spill blocks could issue 33 separate reads. Now suppose those dnodes have size 1024 and therefore don't need spill blocks. Then the worst case number of blocks read is reduced to from 33 to two--one per dnode block. In practice spill blocks may tend to be co-located on disk with the dnode blocks so the reduction in I/O would not be this drastic. In a badly fragmented pool, however, the improvement could be significant. ZFS-on-Linux systems that make heavy use of extended attributes would benefit from this feature. In particular, ZFS-on-Linux supports the xattr=sa dataset property which allows file extended attribute data to be stored in the dnode bonus buffer as an alternative to the traditional directory-based format. Workloads such as SELinux and the Lustre distributed filesystem often store enough xattr data to force spill bocks when xattr=sa is in effect. Large dnodes may therefore provide a performance benefit to such systems. Other use cases that may benefit from this feature include files with large ACLs and symbolic links with long target names. Furthermore, this feature may be desirable on other platforms in case future applications or features are developed that could make use of a larger bonus buffer area. Implementation -------------- The size of a dnode may be a multiple of 512 bytes up to the size of a dnode block (currently 16384 bytes). A dn_extra_slots field was added to the current on-disk dnode_phys_t structure to describe the size of the physical dnode on disk. The 8 bits for this field were taken from the zero filled dn_pad2 field. The field represents how many "extra" dnode_phys_t slots a dnode consumes in its dnode block. This convention results in a value of 0 for 512 byte dnodes which preserves on-disk format compatibility with older software. Similarly, the in-memory dnode_t structure has a new dn_num_slots field to represent the total number of dnode_phys_t slots consumed on disk. Thus dn->dn_num_slots is 1 greater than the corresponding dnp->dn_extra_slots. This difference in convention was adopted because, unlike on-disk structures, backward compatibility is not a concern for in-memory objects, so we used a more natural way to represent size for a dnode_t. The default size for newly created dnodes is determined by the value of a new "dnodesize" dataset property. By default the property is set to "legacy" which is compatible with older software. Setting the property to "auto" will allow the filesystem to choose the most suitable dnode size. Currently this just sets the default dnode size to 1k, but future code improvements could dynamically choose a size based on observed workload patterns. Dnodes of varying sizes can coexist within the same dataset and even within the same dnode block. For example, to enable automatically-sized dnodes, run # zfs set dnodesize=auto tank/fish The user can also specify literal values for the dnodesize property. These are currently limited to powers of two from 1k to 16k. The power-of-2 limitation is only for simplicity of the user interface. Internally the implementation can handle any multiple of 512 up to 16k, and consumers of the DMU API can specify any legal dnode value. The size of a new dnode is determined at object allocation time and stored as a new field in the znode in-memory structure. New DMU interfaces are added to allow the consumer to specify the dnode size that a newly allocated object should use. Existing interfaces are unchanged to avoid having to update every call site and to preserve compatibility with external consumers such as Lustre. The new interfaces names are given below. The versions of these functions that don't take a dnodesize parameter now just call the _dnsize() versions with a dnodesize of 0, which means use the legacy dnode size. New DMU interfaces: dmu_object_alloc_dnsize() dmu_object_claim_dnsize() dmu_object_reclaim_dnsize() New ZAP interfaces: zap_create_dnsize() zap_create_norm_dnsize() zap_create_flags_dnsize() zap_create_claim_norm_dnsize() zap_create_link_dnsize() The constant DN_MAX_BONUSLEN is renamed to DN_OLD_MAX_BONUSLEN. The spa_maxdnodesize() function should be used to determine the maximum bonus length for a pool. These are a few noteworthy changes to key functions: * The prototype for dnode_hold_impl() now takes a "slots" parameter. When the DNODE_MUST_BE_FREE flag is set, this parameter is used to ensure the hole at the specified object offset is large enough to hold the dnode being created. The slots parameter is also used to ensure a dnode does not span multiple dnode blocks. In both of these cases, if a failure occurs, ENOSPC is returned. Keep in mind, these failure cases are only possible when using DNODE_MUST_BE_FREE. If the DNODE_MUST_BE_ALLOCATED flag is set, "slots" must be 0. dnode_hold_impl() will check if the requested dnode is already consumed as an extra dnode slot by an large dnode, in which case it returns ENOENT. * The function dmu_object_alloc() advances to the next dnode block if dnode_hold_impl() returns an error for a requested object. This is because the beginning of the next dnode block is the only location it can safely assume to either be a hole or a valid starting point for a dnode. * dnode_next_offset_level() and other functions that iterate through dnode blocks may no longer use a simple array indexing scheme. These now use the current dnode's dn_num_slots field to advance to the next dnode in the block. This is to ensure we properly skip the current dnode's bonus area and don't interpret it as a valid dnode. zdb --- The zdb command was updated to display a dnode's size under the "dnsize" column when the object is dumped. For ZIL create log records, zdb will now display the slot count for the object. ztest ----- Ztest chooses a random dnodesize for every newly created object. The random distribution is more heavily weighted toward small dnodes to better simulate real-world datasets. Unused bonus buffer space is filled with non-zero values computed from the object number, dataset id, offset, and generation number. This helps ensure that the dnode traversal code properly skips the interior regions of large dnodes, and that these interior regions are not overwritten by data belonging to other dnodes. A new test visits each object in a dataset. It verifies that the actual dnode size matches what was stored in the ztest block tag when it was created. It also verifies that the unused bonus buffer space is filled with the expected data patterns. ZFS Test Suite -------------- Added six new large dnode-specific tests, and integrated the dnodesize property into existing tests for zfs allow and send/recv. Send/Receive ------------ ZFS send streams for datasets containing large dnodes cannot be received on pools that don't support the large_dnode feature. A send stream with large dnodes sets a DMU_BACKUP_FEATURE_LARGE_DNODE flag which will be unrecognized by an incompatible receiving pool so that the zfs receive will fail gracefully. While not implemented here, it may be possible to generate a backward-compatible send stream from a dataset containing large dnodes. The implementation may be tricky, however, because the send object record for a large dnode would need to be resized to a 512 byte dnode, possibly kicking in a spill block in the process. This means we would need to construct a new SA layout and possibly register it in the SA layout object. The SA layout is normally just sent as an ordinary object record. But if we are constructing new layouts while generating the send stream we'd have to build the SA layout object dynamically and send it at the end of the stream. For sending and receiving between pools that do support large dnodes, the drr_object send record type is extended with a new field to store the dnode slot count. This field was repurposed from unused padding in the structure. ZIL Replay ---------- The dnode slot count is stored in the uppermost 8 bits of the lr_foid field. The bits were unused as the object id is currently capped at 48 bits. Resizing Dnodes --------------- It should be possible to resize a dnode when it is dirtied if the current dnodesize dataset property differs from the dnode's size, but this functionality is not currently implemented. Clearly a dnode can only grow if there are sufficient contiguous unused slots in the dnode block, but it should always be possible to shrink a dnode. Growing dnodes may be useful to reduce fragmentation in a pool with many spill blocks in use. Shrinking dnodes may be useful to allow sending a dataset to a pool that doesn't support the large_dnode feature. Feature Reference Counting -------------------------- The reference count for the large_dnode pool feature tracks the number of datasets that have ever contained a dnode of size larger than 512 bytes. The first time a large dnode is created in a dataset the dataset is converted to an extensible dataset. This is a one-way operation and the only way to decrement the feature count is to destroy the dataset, even if the dataset no longer contains any large dnodes. The complexity of reference counting on a per-dnode basis was too high, so we chose to track it on a per-dataset basis similarly to the large_block feature. Signed-off-by: Ned Bass <bass6@llnl.gov> Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov> Closes #3542
2016-03-17 04:25:34 +03:00
ztest_bt_generate(bt, os, lr->lr_foid, 0, offset, gen, txg,
crtxg);
}
if (abuf == NULL) {
dmu_write(os, lr->lr_foid, offset, length, data, tx);
} else {
memcpy(abuf->b_data, data, length);
Fix unchecked return values and unused return values Coverity complained about unchecked return values and unused values that turned out to be unused return values. Different approaches were used to handle the different cases of unchecked return values: * cmd/zdb/zdb.c: VERIFY0 was used in one place since the existing code had no error handling. An error message was printed in another to match the rest of the code. * cmd/zed/agents/zfs_retire.c: We dismiss the return value with `(void)` because the value is expected to be potentially unset. * cmd/zpool_influxdb/zpool_influxdb.c: We dismiss the return value with `(void)` because the values are expected to be potentially unset. * cmd/ztest.c: VERIFY0 was used since we want failures if something goes wrong in ztest. * module/zfs/dsl_dir.c: We dismiss the return value with `(void)` because there is no guarantee that the zap entry will always be there. For example, old pools imported readonly would not have it and we do not want to fail here because of that. * module/zfs/zfs_fm.c: `fnvlist_add_*()` was used since the allocations sleep and thus can never fail. * module/zfs/zvol.c: We dismiss the return value with `(void)` because we do not need it. This matches what is already done in the analogous `zfs_replay_write2()`. * tests/zfs-tests/cmd/draid.c: We suppress one return value with `(void)` since the code handles errors already. The other return value is handled by switching to `fnvlist_lookup_uint8_array()`. * tests/zfs-tests/cmd/file/file_fadvise.c: We add error handling. * tests/zfs-tests/cmd/mmap_sync.c: We add error handling for munmap, but ignore failures on remove() with (void) since it is expected to be able to fail. * tests/zfs-tests/cmd/mmapwrite.c: We add error handling. As for unused return values, they were all in places where there was error handling, so logic was added to handle the return values. Reviewed-by: Alexander Motin <mav@FreeBSD.org> Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov> Signed-off-by: Richard Yao <richard.yao@alumni.stonybrook.edu> Closes #13920
2022-09-24 02:52:03 +03:00
VERIFY0(dmu_assign_arcbuf_by_dbuf(db, offset, abuf, tx));
}
(void) ztest_log_write(zd, tx, lr);
dmu_buf_rele(db, FTAG);
dmu_tx_commit(tx);
OpenZFS 9689 - zfs range lock code should not be zpl-specific The ZFS range locking code in zfs_rlock.c/h depends on ZPL-specific data structures, specifically znode_t. However, it's also used by the ZVOL code, which uses a "dummy" znode_t to pass to the range locking code. We should clean this up so that the range locking code is generic and can be used equally by ZPL and ZVOL, and also can be used by future consumers that may need to run in userland (libzpool) as well as the kernel. Porting notes: * Added missing sys/avl.h include to sys/zfs_rlock.h. * Removed 'dbuf is within the locked range' ASSERTs from dmu_sync(). This was needed because ztest does not yet use a locked_range_t. * Removed "Approved by:" tag requirement from OpenZFS commit check to prevent needless warnings when integrating changes which has not been merged to illumos. * Reverted free_list range lock changes which were originally needed to defer the cv_destroy() which was called immediately after cv_broadcast(). With d2733258 this should be safe but if not we may need to reintroduce this logic. * Reverts: The following two commits were reverted and squashed in to this change in order to make it easier to apply OpenZFS 9689. - d88895a0, which removed the dummy znode from zvol_state - e3a07cd0, which updated ztest to use range locks * Preserved optimized rangelock comparison function. Preserved the rangelock free list. The cv_destroy() function will block waiting for all processes in cv_wait() to be scheduled and drop their reference. This is done to ensure it's safe to free the condition variable. However, blocking while holding the rl->rl_lock mutex can result in a deadlock on Linux. A free list is introduced to defer the cv_destroy() and kmem_free() until after the mutex is released. Authored by: Matthew Ahrens <mahrens@delphix.com> Reviewed by: Brian Behlendorf <behlendorf1@llnl.gov> Reviewed by: Serapheim Dimitropoulos <serapheim.dimitro@delphix.com> Reviewed by: George Wilson <george.wilson@delphix.com> Reviewed by: Brad Lewis <brad.lewis@delphix.com> Ported-by: Brian Behlendorf <behlendorf1@llnl.gov> OpenZFS-issue: https://illumos.org/issues/9689 OpenZFS-commit: https://github.com/openzfs/openzfs/pull/680 External-issue: DLPX-58662 Closes #7980
2018-10-02 01:13:12 +03:00
ztest_range_unlock(rl);
ztest_object_unlock(zd, lr->lr_foid);
return (0);
}
static int
OpenZFS 8081 - Compiler warnings in zdb Fix compiler warnings in zdb. With these changes, FreeBSD can compile zdb with all compiler warnings enabled save -Wunused-parameter. usr/src/cmd/zdb/zdb.c usr/src/cmd/zdb/zdb_il.c usr/src/uts/common/fs/zfs/sys/sa.h usr/src/uts/common/fs/zfs/sys/spa.h Fix numerous warnings, including: * const-correctness * shadowing global definitions * signed vs unsigned comparisons * missing prototypes, or missing static declarations * unused variables and functions * Unreadable array initializations * Missing struct initializers usr/src/cmd/zdb/zdb.h Add a header file to declare common symbols usr/src/lib/libzpool/common/sys/zfs_context.h usr/src/uts/common/fs/zfs/arc.c usr/src/uts/common/fs/zfs/dbuf.c usr/src/uts/common/fs/zfs/spa.c usr/src/uts/common/fs/zfs/txg.c Add a function prototype for zk_thread_create, and ensure that every callback supplied to this function actually matches the prototype. usr/src/cmd/ztest/ztest.c usr/src/uts/common/fs/zfs/sys/zil.h usr/src/uts/common/fs/zfs/zfs_replay.c usr/src/uts/common/fs/zfs/zvol.c Add a function prototype for zil_replay_func_t, and ensure that every function of this type actually matches the prototype. usr/src/uts/common/fs/zfs/sys/refcount.h Change FTAG so it discards any constness of __func__, necessary since existing APIs expect it passed as void *. Porting Notes: - Many of these fixes have already been applied to Linux. For consistency the OpenZFS version of a change was applied if the warning was addressed in an equivalent but different fashion. Reviewed by: Matthew Ahrens <mahrens@delphix.com> Reviewed by: Prakash Surya <prakash.surya@delphix.com> Authored by: Alan Somers <asomers@gmail.com> Approved by: Richard Lowe <richlowe@richlowe.net> Ported-by: Brian Behlendorf <behlendorf1@llnl.gov> OpenZFS-issue: https://www.illumos.org/issues/8081 OpenZFS-commit: https://github.com/openzfs/openzfs/commit/843abe1b8a Closes #6787
2017-10-27 22:46:35 +03:00
ztest_replay_truncate(void *arg1, void *arg2, boolean_t byteswap)
{
OpenZFS 8081 - Compiler warnings in zdb Fix compiler warnings in zdb. With these changes, FreeBSD can compile zdb with all compiler warnings enabled save -Wunused-parameter. usr/src/cmd/zdb/zdb.c usr/src/cmd/zdb/zdb_il.c usr/src/uts/common/fs/zfs/sys/sa.h usr/src/uts/common/fs/zfs/sys/spa.h Fix numerous warnings, including: * const-correctness * shadowing global definitions * signed vs unsigned comparisons * missing prototypes, or missing static declarations * unused variables and functions * Unreadable array initializations * Missing struct initializers usr/src/cmd/zdb/zdb.h Add a header file to declare common symbols usr/src/lib/libzpool/common/sys/zfs_context.h usr/src/uts/common/fs/zfs/arc.c usr/src/uts/common/fs/zfs/dbuf.c usr/src/uts/common/fs/zfs/spa.c usr/src/uts/common/fs/zfs/txg.c Add a function prototype for zk_thread_create, and ensure that every callback supplied to this function actually matches the prototype. usr/src/cmd/ztest/ztest.c usr/src/uts/common/fs/zfs/sys/zil.h usr/src/uts/common/fs/zfs/zfs_replay.c usr/src/uts/common/fs/zfs/zvol.c Add a function prototype for zil_replay_func_t, and ensure that every function of this type actually matches the prototype. usr/src/uts/common/fs/zfs/sys/refcount.h Change FTAG so it discards any constness of __func__, necessary since existing APIs expect it passed as void *. Porting Notes: - Many of these fixes have already been applied to Linux. For consistency the OpenZFS version of a change was applied if the warning was addressed in an equivalent but different fashion. Reviewed by: Matthew Ahrens <mahrens@delphix.com> Reviewed by: Prakash Surya <prakash.surya@delphix.com> Authored by: Alan Somers <asomers@gmail.com> Approved by: Richard Lowe <richlowe@richlowe.net> Ported-by: Brian Behlendorf <behlendorf1@llnl.gov> OpenZFS-issue: https://www.illumos.org/issues/8081 OpenZFS-commit: https://github.com/openzfs/openzfs/commit/843abe1b8a Closes #6787
2017-10-27 22:46:35 +03:00
ztest_ds_t *zd = arg1;
lr_truncate_t *lr = arg2;
objset_t *os = zd->zd_os;
dmu_tx_t *tx;
uint64_t txg;
OpenZFS 9689 - zfs range lock code should not be zpl-specific The ZFS range locking code in zfs_rlock.c/h depends on ZPL-specific data structures, specifically znode_t. However, it's also used by the ZVOL code, which uses a "dummy" znode_t to pass to the range locking code. We should clean this up so that the range locking code is generic and can be used equally by ZPL and ZVOL, and also can be used by future consumers that may need to run in userland (libzpool) as well as the kernel. Porting notes: * Added missing sys/avl.h include to sys/zfs_rlock.h. * Removed 'dbuf is within the locked range' ASSERTs from dmu_sync(). This was needed because ztest does not yet use a locked_range_t. * Removed "Approved by:" tag requirement from OpenZFS commit check to prevent needless warnings when integrating changes which has not been merged to illumos. * Reverted free_list range lock changes which were originally needed to defer the cv_destroy() which was called immediately after cv_broadcast(). With d2733258 this should be safe but if not we may need to reintroduce this logic. * Reverts: The following two commits were reverted and squashed in to this change in order to make it easier to apply OpenZFS 9689. - d88895a0, which removed the dummy znode from zvol_state - e3a07cd0, which updated ztest to use range locks * Preserved optimized rangelock comparison function. Preserved the rangelock free list. The cv_destroy() function will block waiting for all processes in cv_wait() to be scheduled and drop their reference. This is done to ensure it's safe to free the condition variable. However, blocking while holding the rl->rl_lock mutex can result in a deadlock on Linux. A free list is introduced to defer the cv_destroy() and kmem_free() until after the mutex is released. Authored by: Matthew Ahrens <mahrens@delphix.com> Reviewed by: Brian Behlendorf <behlendorf1@llnl.gov> Reviewed by: Serapheim Dimitropoulos <serapheim.dimitro@delphix.com> Reviewed by: George Wilson <george.wilson@delphix.com> Reviewed by: Brad Lewis <brad.lewis@delphix.com> Ported-by: Brian Behlendorf <behlendorf1@llnl.gov> OpenZFS-issue: https://illumos.org/issues/9689 OpenZFS-commit: https://github.com/openzfs/openzfs/pull/680 External-issue: DLPX-58662 Closes #7980
2018-10-02 01:13:12 +03:00
rl_t *rl;
if (byteswap)
byteswap_uint64_array(lr, sizeof (*lr));
RAID-Z expansion feature This feature allows disks to be added one at a time to a RAID-Z group, expanding its capacity incrementally. This feature is especially useful for small pools (typically with only one RAID-Z group), where there isn't sufficient hardware to add capacity by adding a whole new RAID-Z group (typically doubling the number of disks). == Initiating expansion == A new device (disk) can be attached to an existing RAIDZ vdev, by running `zpool attach POOL raidzP-N NEW_DEVICE`, e.g. `zpool attach tank raidz2-0 sda`. The new device will become part of the RAIDZ group. A "raidz expansion" will be initiated, and the new device will contribute additional space to the RAIDZ group once the expansion completes. The `feature@raidz_expansion` on-disk feature flag must be `enabled` to initiate an expansion, and it remains `active` for the life of the pool. In other words, pools with expanded RAIDZ vdevs can not be imported by older releases of the ZFS software. == During expansion == The expansion entails reading all allocated space from existing disks in the RAIDZ group, and rewriting it to the new disks in the RAIDZ group (including the newly added device). The expansion progress can be monitored with `zpool status`. Data redundancy is maintained during (and after) the expansion. If a disk fails while the expansion is in progress, the expansion pauses until the health of the RAIDZ vdev is restored (e.g. by replacing the failed disk and waiting for reconstruction to complete). The pool remains accessible during expansion. Following a reboot or export/import, the expansion resumes where it left off. == After expansion == When the expansion completes, the additional space is available for use, and is reflected in the `available` zfs property (as seen in `zfs list`, `df`, etc). Expansion does not change the number of failures that can be tolerated without data loss (e.g. a RAIDZ2 is still a RAIDZ2 even after expansion). A RAIDZ vdev can be expanded multiple times. After the expansion completes, old blocks remain with their old data-to-parity ratio (e.g. 5-wide RAIDZ2, has 3 data to 2 parity), but distributed among the larger set of disks. New blocks will be written with the new data-to-parity ratio (e.g. a 5-wide RAIDZ2 which has been expanded once to 6-wide, has 4 data to 2 parity). However, the RAIDZ vdev's "assumed parity ratio" does not change, so slightly less space than is expected may be reported for newly-written blocks, according to `zfs list`, `df`, `ls -s`, and similar tools. Sponsored-by: The FreeBSD Foundation Sponsored-by: iXsystems, Inc. Sponsored-by: vStack Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov> Reviewed-by: Mark Maybee <mark.maybee@delphix.com> Authored-by: Matthew Ahrens <mahrens@delphix.com> Contributions-by: Fedor Uporov <fuporov.vstack@gmail.com> Contributions-by: Stuart Maybee <stuart.maybee@comcast.net> Contributions-by: Thorsten Behrens <tbehrens@outlook.com> Contributions-by: Fmstrat <nospam@nowsci.com> Contributions-by: Don Brady <dev.fs.zfs@gmail.com> Signed-off-by: Don Brady <dev.fs.zfs@gmail.com> Closes #15022
2023-11-08 21:19:41 +03:00
ztest_object_lock(zd, lr->lr_foid, ZTRL_READER);
rl = ztest_range_lock(zd, lr->lr_foid, lr->lr_offset, lr->lr_length,
RAID-Z expansion feature This feature allows disks to be added one at a time to a RAID-Z group, expanding its capacity incrementally. This feature is especially useful for small pools (typically with only one RAID-Z group), where there isn't sufficient hardware to add capacity by adding a whole new RAID-Z group (typically doubling the number of disks). == Initiating expansion == A new device (disk) can be attached to an existing RAIDZ vdev, by running `zpool attach POOL raidzP-N NEW_DEVICE`, e.g. `zpool attach tank raidz2-0 sda`. The new device will become part of the RAIDZ group. A "raidz expansion" will be initiated, and the new device will contribute additional space to the RAIDZ group once the expansion completes. The `feature@raidz_expansion` on-disk feature flag must be `enabled` to initiate an expansion, and it remains `active` for the life of the pool. In other words, pools with expanded RAIDZ vdevs can not be imported by older releases of the ZFS software. == During expansion == The expansion entails reading all allocated space from existing disks in the RAIDZ group, and rewriting it to the new disks in the RAIDZ group (including the newly added device). The expansion progress can be monitored with `zpool status`. Data redundancy is maintained during (and after) the expansion. If a disk fails while the expansion is in progress, the expansion pauses until the health of the RAIDZ vdev is restored (e.g. by replacing the failed disk and waiting for reconstruction to complete). The pool remains accessible during expansion. Following a reboot or export/import, the expansion resumes where it left off. == After expansion == When the expansion completes, the additional space is available for use, and is reflected in the `available` zfs property (as seen in `zfs list`, `df`, etc). Expansion does not change the number of failures that can be tolerated without data loss (e.g. a RAIDZ2 is still a RAIDZ2 even after expansion). A RAIDZ vdev can be expanded multiple times. After the expansion completes, old blocks remain with their old data-to-parity ratio (e.g. 5-wide RAIDZ2, has 3 data to 2 parity), but distributed among the larger set of disks. New blocks will be written with the new data-to-parity ratio (e.g. a 5-wide RAIDZ2 which has been expanded once to 6-wide, has 4 data to 2 parity). However, the RAIDZ vdev's "assumed parity ratio" does not change, so slightly less space than is expected may be reported for newly-written blocks, according to `zfs list`, `df`, `ls -s`, and similar tools. Sponsored-by: The FreeBSD Foundation Sponsored-by: iXsystems, Inc. Sponsored-by: vStack Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov> Reviewed-by: Mark Maybee <mark.maybee@delphix.com> Authored-by: Matthew Ahrens <mahrens@delphix.com> Contributions-by: Fedor Uporov <fuporov.vstack@gmail.com> Contributions-by: Stuart Maybee <stuart.maybee@comcast.net> Contributions-by: Thorsten Behrens <tbehrens@outlook.com> Contributions-by: Fmstrat <nospam@nowsci.com> Contributions-by: Don Brady <dev.fs.zfs@gmail.com> Signed-off-by: Don Brady <dev.fs.zfs@gmail.com> Closes #15022
2023-11-08 21:19:41 +03:00
ZTRL_WRITER);
tx = dmu_tx_create(os);
dmu_tx_hold_free(tx, lr->lr_foid, lr->lr_offset, lr->lr_length);
txg = ztest_tx_assign(tx, TXG_WAIT, FTAG);
if (txg == 0) {
OpenZFS 9689 - zfs range lock code should not be zpl-specific The ZFS range locking code in zfs_rlock.c/h depends on ZPL-specific data structures, specifically znode_t. However, it's also used by the ZVOL code, which uses a "dummy" znode_t to pass to the range locking code. We should clean this up so that the range locking code is generic and can be used equally by ZPL and ZVOL, and also can be used by future consumers that may need to run in userland (libzpool) as well as the kernel. Porting notes: * Added missing sys/avl.h include to sys/zfs_rlock.h. * Removed 'dbuf is within the locked range' ASSERTs from dmu_sync(). This was needed because ztest does not yet use a locked_range_t. * Removed "Approved by:" tag requirement from OpenZFS commit check to prevent needless warnings when integrating changes which has not been merged to illumos. * Reverted free_list range lock changes which were originally needed to defer the cv_destroy() which was called immediately after cv_broadcast(). With d2733258 this should be safe but if not we may need to reintroduce this logic. * Reverts: The following two commits were reverted and squashed in to this change in order to make it easier to apply OpenZFS 9689. - d88895a0, which removed the dummy znode from zvol_state - e3a07cd0, which updated ztest to use range locks * Preserved optimized rangelock comparison function. Preserved the rangelock free list. The cv_destroy() function will block waiting for all processes in cv_wait() to be scheduled and drop their reference. This is done to ensure it's safe to free the condition variable. However, blocking while holding the rl->rl_lock mutex can result in a deadlock on Linux. A free list is introduced to defer the cv_destroy() and kmem_free() until after the mutex is released. Authored by: Matthew Ahrens <mahrens@delphix.com> Reviewed by: Brian Behlendorf <behlendorf1@llnl.gov> Reviewed by: Serapheim Dimitropoulos <serapheim.dimitro@delphix.com> Reviewed by: George Wilson <george.wilson@delphix.com> Reviewed by: Brad Lewis <brad.lewis@delphix.com> Ported-by: Brian Behlendorf <behlendorf1@llnl.gov> OpenZFS-issue: https://illumos.org/issues/9689 OpenZFS-commit: https://github.com/openzfs/openzfs/pull/680 External-issue: DLPX-58662 Closes #7980
2018-10-02 01:13:12 +03:00
ztest_range_unlock(rl);
ztest_object_unlock(zd, lr->lr_foid);
return (ENOSPC);
}
VERIFY0(dmu_free_range(os, lr->lr_foid, lr->lr_offset,
lr->lr_length, tx));
(void) ztest_log_truncate(zd, tx, lr);
dmu_tx_commit(tx);
OpenZFS 9689 - zfs range lock code should not be zpl-specific The ZFS range locking code in zfs_rlock.c/h depends on ZPL-specific data structures, specifically znode_t. However, it's also used by the ZVOL code, which uses a "dummy" znode_t to pass to the range locking code. We should clean this up so that the range locking code is generic and can be used equally by ZPL and ZVOL, and also can be used by future consumers that may need to run in userland (libzpool) as well as the kernel. Porting notes: * Added missing sys/avl.h include to sys/zfs_rlock.h. * Removed 'dbuf is within the locked range' ASSERTs from dmu_sync(). This was needed because ztest does not yet use a locked_range_t. * Removed "Approved by:" tag requirement from OpenZFS commit check to prevent needless warnings when integrating changes which has not been merged to illumos. * Reverted free_list range lock changes which were originally needed to defer the cv_destroy() which was called immediately after cv_broadcast(). With d2733258 this should be safe but if not we may need to reintroduce this logic. * Reverts: The following two commits were reverted and squashed in to this change in order to make it easier to apply OpenZFS 9689. - d88895a0, which removed the dummy znode from zvol_state - e3a07cd0, which updated ztest to use range locks * Preserved optimized rangelock comparison function. Preserved the rangelock free list. The cv_destroy() function will block waiting for all processes in cv_wait() to be scheduled and drop their reference. This is done to ensure it's safe to free the condition variable. However, blocking while holding the rl->rl_lock mutex can result in a deadlock on Linux. A free list is introduced to defer the cv_destroy() and kmem_free() until after the mutex is released. Authored by: Matthew Ahrens <mahrens@delphix.com> Reviewed by: Brian Behlendorf <behlendorf1@llnl.gov> Reviewed by: Serapheim Dimitropoulos <serapheim.dimitro@delphix.com> Reviewed by: George Wilson <george.wilson@delphix.com> Reviewed by: Brad Lewis <brad.lewis@delphix.com> Ported-by: Brian Behlendorf <behlendorf1@llnl.gov> OpenZFS-issue: https://illumos.org/issues/9689 OpenZFS-commit: https://github.com/openzfs/openzfs/pull/680 External-issue: DLPX-58662 Closes #7980
2018-10-02 01:13:12 +03:00
ztest_range_unlock(rl);
ztest_object_unlock(zd, lr->lr_foid);
return (0);
}
static int
OpenZFS 8081 - Compiler warnings in zdb Fix compiler warnings in zdb. With these changes, FreeBSD can compile zdb with all compiler warnings enabled save -Wunused-parameter. usr/src/cmd/zdb/zdb.c usr/src/cmd/zdb/zdb_il.c usr/src/uts/common/fs/zfs/sys/sa.h usr/src/uts/common/fs/zfs/sys/spa.h Fix numerous warnings, including: * const-correctness * shadowing global definitions * signed vs unsigned comparisons * missing prototypes, or missing static declarations * unused variables and functions * Unreadable array initializations * Missing struct initializers usr/src/cmd/zdb/zdb.h Add a header file to declare common symbols usr/src/lib/libzpool/common/sys/zfs_context.h usr/src/uts/common/fs/zfs/arc.c usr/src/uts/common/fs/zfs/dbuf.c usr/src/uts/common/fs/zfs/spa.c usr/src/uts/common/fs/zfs/txg.c Add a function prototype for zk_thread_create, and ensure that every callback supplied to this function actually matches the prototype. usr/src/cmd/ztest/ztest.c usr/src/uts/common/fs/zfs/sys/zil.h usr/src/uts/common/fs/zfs/zfs_replay.c usr/src/uts/common/fs/zfs/zvol.c Add a function prototype for zil_replay_func_t, and ensure that every function of this type actually matches the prototype. usr/src/uts/common/fs/zfs/sys/refcount.h Change FTAG so it discards any constness of __func__, necessary since existing APIs expect it passed as void *. Porting Notes: - Many of these fixes have already been applied to Linux. For consistency the OpenZFS version of a change was applied if the warning was addressed in an equivalent but different fashion. Reviewed by: Matthew Ahrens <mahrens@delphix.com> Reviewed by: Prakash Surya <prakash.surya@delphix.com> Authored by: Alan Somers <asomers@gmail.com> Approved by: Richard Lowe <richlowe@richlowe.net> Ported-by: Brian Behlendorf <behlendorf1@llnl.gov> OpenZFS-issue: https://www.illumos.org/issues/8081 OpenZFS-commit: https://github.com/openzfs/openzfs/commit/843abe1b8a Closes #6787
2017-10-27 22:46:35 +03:00
ztest_replay_setattr(void *arg1, void *arg2, boolean_t byteswap)
{
OpenZFS 8081 - Compiler warnings in zdb Fix compiler warnings in zdb. With these changes, FreeBSD can compile zdb with all compiler warnings enabled save -Wunused-parameter. usr/src/cmd/zdb/zdb.c usr/src/cmd/zdb/zdb_il.c usr/src/uts/common/fs/zfs/sys/sa.h usr/src/uts/common/fs/zfs/sys/spa.h Fix numerous warnings, including: * const-correctness * shadowing global definitions * signed vs unsigned comparisons * missing prototypes, or missing static declarations * unused variables and functions * Unreadable array initializations * Missing struct initializers usr/src/cmd/zdb/zdb.h Add a header file to declare common symbols usr/src/lib/libzpool/common/sys/zfs_context.h usr/src/uts/common/fs/zfs/arc.c usr/src/uts/common/fs/zfs/dbuf.c usr/src/uts/common/fs/zfs/spa.c usr/src/uts/common/fs/zfs/txg.c Add a function prototype for zk_thread_create, and ensure that every callback supplied to this function actually matches the prototype. usr/src/cmd/ztest/ztest.c usr/src/uts/common/fs/zfs/sys/zil.h usr/src/uts/common/fs/zfs/zfs_replay.c usr/src/uts/common/fs/zfs/zvol.c Add a function prototype for zil_replay_func_t, and ensure that every function of this type actually matches the prototype. usr/src/uts/common/fs/zfs/sys/refcount.h Change FTAG so it discards any constness of __func__, necessary since existing APIs expect it passed as void *. Porting Notes: - Many of these fixes have already been applied to Linux. For consistency the OpenZFS version of a change was applied if the warning was addressed in an equivalent but different fashion. Reviewed by: Matthew Ahrens <mahrens@delphix.com> Reviewed by: Prakash Surya <prakash.surya@delphix.com> Authored by: Alan Somers <asomers@gmail.com> Approved by: Richard Lowe <richlowe@richlowe.net> Ported-by: Brian Behlendorf <behlendorf1@llnl.gov> OpenZFS-issue: https://www.illumos.org/issues/8081 OpenZFS-commit: https://github.com/openzfs/openzfs/commit/843abe1b8a Closes #6787
2017-10-27 22:46:35 +03:00
ztest_ds_t *zd = arg1;
lr_setattr_t *lr = arg2;
objset_t *os = zd->zd_os;
dmu_tx_t *tx;
dmu_buf_t *db;
ztest_block_tag_t *bbt;
Implement large_dnode pool feature Justification ------------- This feature adds support for variable length dnodes. Our motivation is to eliminate the overhead associated with using spill blocks. Spill blocks are used to store system attribute data (i.e. file metadata) that does not fit in the dnode's bonus buffer. By allowing a larger bonus buffer area the use of a spill block can be avoided. Spill blocks potentially incur an additional read I/O for every dnode in a dnode block. As a worst case example, reading 32 dnodes from a 16k dnode block and all of the spill blocks could issue 33 separate reads. Now suppose those dnodes have size 1024 and therefore don't need spill blocks. Then the worst case number of blocks read is reduced to from 33 to two--one per dnode block. In practice spill blocks may tend to be co-located on disk with the dnode blocks so the reduction in I/O would not be this drastic. In a badly fragmented pool, however, the improvement could be significant. ZFS-on-Linux systems that make heavy use of extended attributes would benefit from this feature. In particular, ZFS-on-Linux supports the xattr=sa dataset property which allows file extended attribute data to be stored in the dnode bonus buffer as an alternative to the traditional directory-based format. Workloads such as SELinux and the Lustre distributed filesystem often store enough xattr data to force spill bocks when xattr=sa is in effect. Large dnodes may therefore provide a performance benefit to such systems. Other use cases that may benefit from this feature include files with large ACLs and symbolic links with long target names. Furthermore, this feature may be desirable on other platforms in case future applications or features are developed that could make use of a larger bonus buffer area. Implementation -------------- The size of a dnode may be a multiple of 512 bytes up to the size of a dnode block (currently 16384 bytes). A dn_extra_slots field was added to the current on-disk dnode_phys_t structure to describe the size of the physical dnode on disk. The 8 bits for this field were taken from the zero filled dn_pad2 field. The field represents how many "extra" dnode_phys_t slots a dnode consumes in its dnode block. This convention results in a value of 0 for 512 byte dnodes which preserves on-disk format compatibility with older software. Similarly, the in-memory dnode_t structure has a new dn_num_slots field to represent the total number of dnode_phys_t slots consumed on disk. Thus dn->dn_num_slots is 1 greater than the corresponding dnp->dn_extra_slots. This difference in convention was adopted because, unlike on-disk structures, backward compatibility is not a concern for in-memory objects, so we used a more natural way to represent size for a dnode_t. The default size for newly created dnodes is determined by the value of a new "dnodesize" dataset property. By default the property is set to "legacy" which is compatible with older software. Setting the property to "auto" will allow the filesystem to choose the most suitable dnode size. Currently this just sets the default dnode size to 1k, but future code improvements could dynamically choose a size based on observed workload patterns. Dnodes of varying sizes can coexist within the same dataset and even within the same dnode block. For example, to enable automatically-sized dnodes, run # zfs set dnodesize=auto tank/fish The user can also specify literal values for the dnodesize property. These are currently limited to powers of two from 1k to 16k. The power-of-2 limitation is only for simplicity of the user interface. Internally the implementation can handle any multiple of 512 up to 16k, and consumers of the DMU API can specify any legal dnode value. The size of a new dnode is determined at object allocation time and stored as a new field in the znode in-memory structure. New DMU interfaces are added to allow the consumer to specify the dnode size that a newly allocated object should use. Existing interfaces are unchanged to avoid having to update every call site and to preserve compatibility with external consumers such as Lustre. The new interfaces names are given below. The versions of these functions that don't take a dnodesize parameter now just call the _dnsize() versions with a dnodesize of 0, which means use the legacy dnode size. New DMU interfaces: dmu_object_alloc_dnsize() dmu_object_claim_dnsize() dmu_object_reclaim_dnsize() New ZAP interfaces: zap_create_dnsize() zap_create_norm_dnsize() zap_create_flags_dnsize() zap_create_claim_norm_dnsize() zap_create_link_dnsize() The constant DN_MAX_BONUSLEN is renamed to DN_OLD_MAX_BONUSLEN. The spa_maxdnodesize() function should be used to determine the maximum bonus length for a pool. These are a few noteworthy changes to key functions: * The prototype for dnode_hold_impl() now takes a "slots" parameter. When the DNODE_MUST_BE_FREE flag is set, this parameter is used to ensure the hole at the specified object offset is large enough to hold the dnode being created. The slots parameter is also used to ensure a dnode does not span multiple dnode blocks. In both of these cases, if a failure occurs, ENOSPC is returned. Keep in mind, these failure cases are only possible when using DNODE_MUST_BE_FREE. If the DNODE_MUST_BE_ALLOCATED flag is set, "slots" must be 0. dnode_hold_impl() will check if the requested dnode is already consumed as an extra dnode slot by an large dnode, in which case it returns ENOENT. * The function dmu_object_alloc() advances to the next dnode block if dnode_hold_impl() returns an error for a requested object. This is because the beginning of the next dnode block is the only location it can safely assume to either be a hole or a valid starting point for a dnode. * dnode_next_offset_level() and other functions that iterate through dnode blocks may no longer use a simple array indexing scheme. These now use the current dnode's dn_num_slots field to advance to the next dnode in the block. This is to ensure we properly skip the current dnode's bonus area and don't interpret it as a valid dnode. zdb --- The zdb command was updated to display a dnode's size under the "dnsize" column when the object is dumped. For ZIL create log records, zdb will now display the slot count for the object. ztest ----- Ztest chooses a random dnodesize for every newly created object. The random distribution is more heavily weighted toward small dnodes to better simulate real-world datasets. Unused bonus buffer space is filled with non-zero values computed from the object number, dataset id, offset, and generation number. This helps ensure that the dnode traversal code properly skips the interior regions of large dnodes, and that these interior regions are not overwritten by data belonging to other dnodes. A new test visits each object in a dataset. It verifies that the actual dnode size matches what was stored in the ztest block tag when it was created. It also verifies that the unused bonus buffer space is filled with the expected data patterns. ZFS Test Suite -------------- Added six new large dnode-specific tests, and integrated the dnodesize property into existing tests for zfs allow and send/recv. Send/Receive ------------ ZFS send streams for datasets containing large dnodes cannot be received on pools that don't support the large_dnode feature. A send stream with large dnodes sets a DMU_BACKUP_FEATURE_LARGE_DNODE flag which will be unrecognized by an incompatible receiving pool so that the zfs receive will fail gracefully. While not implemented here, it may be possible to generate a backward-compatible send stream from a dataset containing large dnodes. The implementation may be tricky, however, because the send object record for a large dnode would need to be resized to a 512 byte dnode, possibly kicking in a spill block in the process. This means we would need to construct a new SA layout and possibly register it in the SA layout object. The SA layout is normally just sent as an ordinary object record. But if we are constructing new layouts while generating the send stream we'd have to build the SA layout object dynamically and send it at the end of the stream. For sending and receiving between pools that do support large dnodes, the drr_object send record type is extended with a new field to store the dnode slot count. This field was repurposed from unused padding in the structure. ZIL Replay ---------- The dnode slot count is stored in the uppermost 8 bits of the lr_foid field. The bits were unused as the object id is currently capped at 48 bits. Resizing Dnodes --------------- It should be possible to resize a dnode when it is dirtied if the current dnodesize dataset property differs from the dnode's size, but this functionality is not currently implemented. Clearly a dnode can only grow if there are sufficient contiguous unused slots in the dnode block, but it should always be possible to shrink a dnode. Growing dnodes may be useful to reduce fragmentation in a pool with many spill blocks in use. Shrinking dnodes may be useful to allow sending a dataset to a pool that doesn't support the large_dnode feature. Feature Reference Counting -------------------------- The reference count for the large_dnode pool feature tracks the number of datasets that have ever contained a dnode of size larger than 512 bytes. The first time a large dnode is created in a dataset the dataset is converted to an extensible dataset. This is a one-way operation and the only way to decrement the feature count is to destroy the dataset, even if the dataset no longer contains any large dnodes. The complexity of reference counting on a per-dnode basis was too high, so we chose to track it on a per-dataset basis similarly to the large_block feature. Signed-off-by: Ned Bass <bass6@llnl.gov> Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov> Closes #3542
2016-03-17 04:25:34 +03:00
uint64_t txg, lrtxg, crtxg, dnodesize;
if (byteswap)
byteswap_uint64_array(lr, sizeof (*lr));
RAID-Z expansion feature This feature allows disks to be added one at a time to a RAID-Z group, expanding its capacity incrementally. This feature is especially useful for small pools (typically with only one RAID-Z group), where there isn't sufficient hardware to add capacity by adding a whole new RAID-Z group (typically doubling the number of disks). == Initiating expansion == A new device (disk) can be attached to an existing RAIDZ vdev, by running `zpool attach POOL raidzP-N NEW_DEVICE`, e.g. `zpool attach tank raidz2-0 sda`. The new device will become part of the RAIDZ group. A "raidz expansion" will be initiated, and the new device will contribute additional space to the RAIDZ group once the expansion completes. The `feature@raidz_expansion` on-disk feature flag must be `enabled` to initiate an expansion, and it remains `active` for the life of the pool. In other words, pools with expanded RAIDZ vdevs can not be imported by older releases of the ZFS software. == During expansion == The expansion entails reading all allocated space from existing disks in the RAIDZ group, and rewriting it to the new disks in the RAIDZ group (including the newly added device). The expansion progress can be monitored with `zpool status`. Data redundancy is maintained during (and after) the expansion. If a disk fails while the expansion is in progress, the expansion pauses until the health of the RAIDZ vdev is restored (e.g. by replacing the failed disk and waiting for reconstruction to complete). The pool remains accessible during expansion. Following a reboot or export/import, the expansion resumes where it left off. == After expansion == When the expansion completes, the additional space is available for use, and is reflected in the `available` zfs property (as seen in `zfs list`, `df`, etc). Expansion does not change the number of failures that can be tolerated without data loss (e.g. a RAIDZ2 is still a RAIDZ2 even after expansion). A RAIDZ vdev can be expanded multiple times. After the expansion completes, old blocks remain with their old data-to-parity ratio (e.g. 5-wide RAIDZ2, has 3 data to 2 parity), but distributed among the larger set of disks. New blocks will be written with the new data-to-parity ratio (e.g. a 5-wide RAIDZ2 which has been expanded once to 6-wide, has 4 data to 2 parity). However, the RAIDZ vdev's "assumed parity ratio" does not change, so slightly less space than is expected may be reported for newly-written blocks, according to `zfs list`, `df`, `ls -s`, and similar tools. Sponsored-by: The FreeBSD Foundation Sponsored-by: iXsystems, Inc. Sponsored-by: vStack Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov> Reviewed-by: Mark Maybee <mark.maybee@delphix.com> Authored-by: Matthew Ahrens <mahrens@delphix.com> Contributions-by: Fedor Uporov <fuporov.vstack@gmail.com> Contributions-by: Stuart Maybee <stuart.maybee@comcast.net> Contributions-by: Thorsten Behrens <tbehrens@outlook.com> Contributions-by: Fmstrat <nospam@nowsci.com> Contributions-by: Don Brady <dev.fs.zfs@gmail.com> Signed-off-by: Don Brady <dev.fs.zfs@gmail.com> Closes #15022
2023-11-08 21:19:41 +03:00
ztest_object_lock(zd, lr->lr_foid, ZTRL_WRITER);
VERIFY0(dmu_bonus_hold(os, lr->lr_foid, FTAG, &db));
tx = dmu_tx_create(os);
dmu_tx_hold_bonus(tx, lr->lr_foid);
txg = ztest_tx_assign(tx, TXG_WAIT, FTAG);
if (txg == 0) {
dmu_buf_rele(db, FTAG);
ztest_object_unlock(zd, lr->lr_foid);
return (ENOSPC);
}
bbt = ztest_bt_bonus(db);
ASSERT3U(bbt->bt_magic, ==, BT_MAGIC);
crtxg = bbt->bt_crtxg;
lrtxg = lr->lr_common.lrc_txg;
Implement large_dnode pool feature Justification ------------- This feature adds support for variable length dnodes. Our motivation is to eliminate the overhead associated with using spill blocks. Spill blocks are used to store system attribute data (i.e. file metadata) that does not fit in the dnode's bonus buffer. By allowing a larger bonus buffer area the use of a spill block can be avoided. Spill blocks potentially incur an additional read I/O for every dnode in a dnode block. As a worst case example, reading 32 dnodes from a 16k dnode block and all of the spill blocks could issue 33 separate reads. Now suppose those dnodes have size 1024 and therefore don't need spill blocks. Then the worst case number of blocks read is reduced to from 33 to two--one per dnode block. In practice spill blocks may tend to be co-located on disk with the dnode blocks so the reduction in I/O would not be this drastic. In a badly fragmented pool, however, the improvement could be significant. ZFS-on-Linux systems that make heavy use of extended attributes would benefit from this feature. In particular, ZFS-on-Linux supports the xattr=sa dataset property which allows file extended attribute data to be stored in the dnode bonus buffer as an alternative to the traditional directory-based format. Workloads such as SELinux and the Lustre distributed filesystem often store enough xattr data to force spill bocks when xattr=sa is in effect. Large dnodes may therefore provide a performance benefit to such systems. Other use cases that may benefit from this feature include files with large ACLs and symbolic links with long target names. Furthermore, this feature may be desirable on other platforms in case future applications or features are developed that could make use of a larger bonus buffer area. Implementation -------------- The size of a dnode may be a multiple of 512 bytes up to the size of a dnode block (currently 16384 bytes). A dn_extra_slots field was added to the current on-disk dnode_phys_t structure to describe the size of the physical dnode on disk. The 8 bits for this field were taken from the zero filled dn_pad2 field. The field represents how many "extra" dnode_phys_t slots a dnode consumes in its dnode block. This convention results in a value of 0 for 512 byte dnodes which preserves on-disk format compatibility with older software. Similarly, the in-memory dnode_t structure has a new dn_num_slots field to represent the total number of dnode_phys_t slots consumed on disk. Thus dn->dn_num_slots is 1 greater than the corresponding dnp->dn_extra_slots. This difference in convention was adopted because, unlike on-disk structures, backward compatibility is not a concern for in-memory objects, so we used a more natural way to represent size for a dnode_t. The default size for newly created dnodes is determined by the value of a new "dnodesize" dataset property. By default the property is set to "legacy" which is compatible with older software. Setting the property to "auto" will allow the filesystem to choose the most suitable dnode size. Currently this just sets the default dnode size to 1k, but future code improvements could dynamically choose a size based on observed workload patterns. Dnodes of varying sizes can coexist within the same dataset and even within the same dnode block. For example, to enable automatically-sized dnodes, run # zfs set dnodesize=auto tank/fish The user can also specify literal values for the dnodesize property. These are currently limited to powers of two from 1k to 16k. The power-of-2 limitation is only for simplicity of the user interface. Internally the implementation can handle any multiple of 512 up to 16k, and consumers of the DMU API can specify any legal dnode value. The size of a new dnode is determined at object allocation time and stored as a new field in the znode in-memory structure. New DMU interfaces are added to allow the consumer to specify the dnode size that a newly allocated object should use. Existing interfaces are unchanged to avoid having to update every call site and to preserve compatibility with external consumers such as Lustre. The new interfaces names are given below. The versions of these functions that don't take a dnodesize parameter now just call the _dnsize() versions with a dnodesize of 0, which means use the legacy dnode size. New DMU interfaces: dmu_object_alloc_dnsize() dmu_object_claim_dnsize() dmu_object_reclaim_dnsize() New ZAP interfaces: zap_create_dnsize() zap_create_norm_dnsize() zap_create_flags_dnsize() zap_create_claim_norm_dnsize() zap_create_link_dnsize() The constant DN_MAX_BONUSLEN is renamed to DN_OLD_MAX_BONUSLEN. The spa_maxdnodesize() function should be used to determine the maximum bonus length for a pool. These are a few noteworthy changes to key functions: * The prototype for dnode_hold_impl() now takes a "slots" parameter. When the DNODE_MUST_BE_FREE flag is set, this parameter is used to ensure the hole at the specified object offset is large enough to hold the dnode being created. The slots parameter is also used to ensure a dnode does not span multiple dnode blocks. In both of these cases, if a failure occurs, ENOSPC is returned. Keep in mind, these failure cases are only possible when using DNODE_MUST_BE_FREE. If the DNODE_MUST_BE_ALLOCATED flag is set, "slots" must be 0. dnode_hold_impl() will check if the requested dnode is already consumed as an extra dnode slot by an large dnode, in which case it returns ENOENT. * The function dmu_object_alloc() advances to the next dnode block if dnode_hold_impl() returns an error for a requested object. This is because the beginning of the next dnode block is the only location it can safely assume to either be a hole or a valid starting point for a dnode. * dnode_next_offset_level() and other functions that iterate through dnode blocks may no longer use a simple array indexing scheme. These now use the current dnode's dn_num_slots field to advance to the next dnode in the block. This is to ensure we properly skip the current dnode's bonus area and don't interpret it as a valid dnode. zdb --- The zdb command was updated to display a dnode's size under the "dnsize" column when the object is dumped. For ZIL create log records, zdb will now display the slot count for the object. ztest ----- Ztest chooses a random dnodesize for every newly created object. The random distribution is more heavily weighted toward small dnodes to better simulate real-world datasets. Unused bonus buffer space is filled with non-zero values computed from the object number, dataset id, offset, and generation number. This helps ensure that the dnode traversal code properly skips the interior regions of large dnodes, and that these interior regions are not overwritten by data belonging to other dnodes. A new test visits each object in a dataset. It verifies that the actual dnode size matches what was stored in the ztest block tag when it was created. It also verifies that the unused bonus buffer space is filled with the expected data patterns. ZFS Test Suite -------------- Added six new large dnode-specific tests, and integrated the dnodesize property into existing tests for zfs allow and send/recv. Send/Receive ------------ ZFS send streams for datasets containing large dnodes cannot be received on pools that don't support the large_dnode feature. A send stream with large dnodes sets a DMU_BACKUP_FEATURE_LARGE_DNODE flag which will be unrecognized by an incompatible receiving pool so that the zfs receive will fail gracefully. While not implemented here, it may be possible to generate a backward-compatible send stream from a dataset containing large dnodes. The implementation may be tricky, however, because the send object record for a large dnode would need to be resized to a 512 byte dnode, possibly kicking in a spill block in the process. This means we would need to construct a new SA layout and possibly register it in the SA layout object. The SA layout is normally just sent as an ordinary object record. But if we are constructing new layouts while generating the send stream we'd have to build the SA layout object dynamically and send it at the end of the stream. For sending and receiving between pools that do support large dnodes, the drr_object send record type is extended with a new field to store the dnode slot count. This field was repurposed from unused padding in the structure. ZIL Replay ---------- The dnode slot count is stored in the uppermost 8 bits of the lr_foid field. The bits were unused as the object id is currently capped at 48 bits. Resizing Dnodes --------------- It should be possible to resize a dnode when it is dirtied if the current dnodesize dataset property differs from the dnode's size, but this functionality is not currently implemented. Clearly a dnode can only grow if there are sufficient contiguous unused slots in the dnode block, but it should always be possible to shrink a dnode. Growing dnodes may be useful to reduce fragmentation in a pool with many spill blocks in use. Shrinking dnodes may be useful to allow sending a dataset to a pool that doesn't support the large_dnode feature. Feature Reference Counting -------------------------- The reference count for the large_dnode pool feature tracks the number of datasets that have ever contained a dnode of size larger than 512 bytes. The first time a large dnode is created in a dataset the dataset is converted to an extensible dataset. This is a one-way operation and the only way to decrement the feature count is to destroy the dataset, even if the dataset no longer contains any large dnodes. The complexity of reference counting on a per-dnode basis was too high, so we chose to track it on a per-dataset basis similarly to the large_block feature. Signed-off-by: Ned Bass <bass6@llnl.gov> Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov> Closes #3542
2016-03-17 04:25:34 +03:00
dnodesize = bbt->bt_dnodesize;
if (zd->zd_zilog->zl_replay) {
ASSERT3U(lr->lr_size, !=, 0);
ASSERT3U(lr->lr_mode, !=, 0);
ASSERT3U(lrtxg, !=, 0);
} else {
/*
* Randomly change the size and increment the generation.
*/
lr->lr_size = (ztest_random(db->db_size / sizeof (*bbt)) + 1) *
sizeof (*bbt);
lr->lr_mode = bbt->bt_gen + 1;
ASSERT0(lrtxg);
}
/*
* Verify that the current bonus buffer is not newer than our txg.
*/
Implement large_dnode pool feature Justification ------------- This feature adds support for variable length dnodes. Our motivation is to eliminate the overhead associated with using spill blocks. Spill blocks are used to store system attribute data (i.e. file metadata) that does not fit in the dnode's bonus buffer. By allowing a larger bonus buffer area the use of a spill block can be avoided. Spill blocks potentially incur an additional read I/O for every dnode in a dnode block. As a worst case example, reading 32 dnodes from a 16k dnode block and all of the spill blocks could issue 33 separate reads. Now suppose those dnodes have size 1024 and therefore don't need spill blocks. Then the worst case number of blocks read is reduced to from 33 to two--one per dnode block. In practice spill blocks may tend to be co-located on disk with the dnode blocks so the reduction in I/O would not be this drastic. In a badly fragmented pool, however, the improvement could be significant. ZFS-on-Linux systems that make heavy use of extended attributes would benefit from this feature. In particular, ZFS-on-Linux supports the xattr=sa dataset property which allows file extended attribute data to be stored in the dnode bonus buffer as an alternative to the traditional directory-based format. Workloads such as SELinux and the Lustre distributed filesystem often store enough xattr data to force spill bocks when xattr=sa is in effect. Large dnodes may therefore provide a performance benefit to such systems. Other use cases that may benefit from this feature include files with large ACLs and symbolic links with long target names. Furthermore, this feature may be desirable on other platforms in case future applications or features are developed that could make use of a larger bonus buffer area. Implementation -------------- The size of a dnode may be a multiple of 512 bytes up to the size of a dnode block (currently 16384 bytes). A dn_extra_slots field was added to the current on-disk dnode_phys_t structure to describe the size of the physical dnode on disk. The 8 bits for this field were taken from the zero filled dn_pad2 field. The field represents how many "extra" dnode_phys_t slots a dnode consumes in its dnode block. This convention results in a value of 0 for 512 byte dnodes which preserves on-disk format compatibility with older software. Similarly, the in-memory dnode_t structure has a new dn_num_slots field to represent the total number of dnode_phys_t slots consumed on disk. Thus dn->dn_num_slots is 1 greater than the corresponding dnp->dn_extra_slots. This difference in convention was adopted because, unlike on-disk structures, backward compatibility is not a concern for in-memory objects, so we used a more natural way to represent size for a dnode_t. The default size for newly created dnodes is determined by the value of a new "dnodesize" dataset property. By default the property is set to "legacy" which is compatible with older software. Setting the property to "auto" will allow the filesystem to choose the most suitable dnode size. Currently this just sets the default dnode size to 1k, but future code improvements could dynamically choose a size based on observed workload patterns. Dnodes of varying sizes can coexist within the same dataset and even within the same dnode block. For example, to enable automatically-sized dnodes, run # zfs set dnodesize=auto tank/fish The user can also specify literal values for the dnodesize property. These are currently limited to powers of two from 1k to 16k. The power-of-2 limitation is only for simplicity of the user interface. Internally the implementation can handle any multiple of 512 up to 16k, and consumers of the DMU API can specify any legal dnode value. The size of a new dnode is determined at object allocation time and stored as a new field in the znode in-memory structure. New DMU interfaces are added to allow the consumer to specify the dnode size that a newly allocated object should use. Existing interfaces are unchanged to avoid having to update every call site and to preserve compatibility with external consumers such as Lustre. The new interfaces names are given below. The versions of these functions that don't take a dnodesize parameter now just call the _dnsize() versions with a dnodesize of 0, which means use the legacy dnode size. New DMU interfaces: dmu_object_alloc_dnsize() dmu_object_claim_dnsize() dmu_object_reclaim_dnsize() New ZAP interfaces: zap_create_dnsize() zap_create_norm_dnsize() zap_create_flags_dnsize() zap_create_claim_norm_dnsize() zap_create_link_dnsize() The constant DN_MAX_BONUSLEN is renamed to DN_OLD_MAX_BONUSLEN. The spa_maxdnodesize() function should be used to determine the maximum bonus length for a pool. These are a few noteworthy changes to key functions: * The prototype for dnode_hold_impl() now takes a "slots" parameter. When the DNODE_MUST_BE_FREE flag is set, this parameter is used to ensure the hole at the specified object offset is large enough to hold the dnode being created. The slots parameter is also used to ensure a dnode does not span multiple dnode blocks. In both of these cases, if a failure occurs, ENOSPC is returned. Keep in mind, these failure cases are only possible when using DNODE_MUST_BE_FREE. If the DNODE_MUST_BE_ALLOCATED flag is set, "slots" must be 0. dnode_hold_impl() will check if the requested dnode is already consumed as an extra dnode slot by an large dnode, in which case it returns ENOENT. * The function dmu_object_alloc() advances to the next dnode block if dnode_hold_impl() returns an error for a requested object. This is because the beginning of the next dnode block is the only location it can safely assume to either be a hole or a valid starting point for a dnode. * dnode_next_offset_level() and other functions that iterate through dnode blocks may no longer use a simple array indexing scheme. These now use the current dnode's dn_num_slots field to advance to the next dnode in the block. This is to ensure we properly skip the current dnode's bonus area and don't interpret it as a valid dnode. zdb --- The zdb command was updated to display a dnode's size under the "dnsize" column when the object is dumped. For ZIL create log records, zdb will now display the slot count for the object. ztest ----- Ztest chooses a random dnodesize for every newly created object. The random distribution is more heavily weighted toward small dnodes to better simulate real-world datasets. Unused bonus buffer space is filled with non-zero values computed from the object number, dataset id, offset, and generation number. This helps ensure that the dnode traversal code properly skips the interior regions of large dnodes, and that these interior regions are not overwritten by data belonging to other dnodes. A new test visits each object in a dataset. It verifies that the actual dnode size matches what was stored in the ztest block tag when it was created. It also verifies that the unused bonus buffer space is filled with the expected data patterns. ZFS Test Suite -------------- Added six new large dnode-specific tests, and integrated the dnodesize property into existing tests for zfs allow and send/recv. Send/Receive ------------ ZFS send streams for datasets containing large dnodes cannot be received on pools that don't support the large_dnode feature. A send stream with large dnodes sets a DMU_BACKUP_FEATURE_LARGE_DNODE flag which will be unrecognized by an incompatible receiving pool so that the zfs receive will fail gracefully. While not implemented here, it may be possible to generate a backward-compatible send stream from a dataset containing large dnodes. The implementation may be tricky, however, because the send object record for a large dnode would need to be resized to a 512 byte dnode, possibly kicking in a spill block in the process. This means we would need to construct a new SA layout and possibly register it in the SA layout object. The SA layout is normally just sent as an ordinary object record. But if we are constructing new layouts while generating the send stream we'd have to build the SA layout object dynamically and send it at the end of the stream. For sending and receiving between pools that do support large dnodes, the drr_object send record type is extended with a new field to store the dnode slot count. This field was repurposed from unused padding in the structure. ZIL Replay ---------- The dnode slot count is stored in the uppermost 8 bits of the lr_foid field. The bits were unused as the object id is currently capped at 48 bits. Resizing Dnodes --------------- It should be possible to resize a dnode when it is dirtied if the current dnodesize dataset property differs from the dnode's size, but this functionality is not currently implemented. Clearly a dnode can only grow if there are sufficient contiguous unused slots in the dnode block, but it should always be possible to shrink a dnode. Growing dnodes may be useful to reduce fragmentation in a pool with many spill blocks in use. Shrinking dnodes may be useful to allow sending a dataset to a pool that doesn't support the large_dnode feature. Feature Reference Counting -------------------------- The reference count for the large_dnode pool feature tracks the number of datasets that have ever contained a dnode of size larger than 512 bytes. The first time a large dnode is created in a dataset the dataset is converted to an extensible dataset. This is a one-way operation and the only way to decrement the feature count is to destroy the dataset, even if the dataset no longer contains any large dnodes. The complexity of reference counting on a per-dnode basis was too high, so we chose to track it on a per-dataset basis similarly to the large_block feature. Signed-off-by: Ned Bass <bass6@llnl.gov> Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov> Closes #3542
2016-03-17 04:25:34 +03:00
ztest_bt_verify(bbt, os, lr->lr_foid, dnodesize, -1ULL, lr->lr_mode,
MAX(txg, lrtxg), crtxg);
dmu_buf_will_dirty(db, tx);
ASSERT3U(lr->lr_size, >=, sizeof (*bbt));
ASSERT3U(lr->lr_size, <=, db->db_size);
VERIFY0(dmu_set_bonus(db, lr->lr_size, tx));
bbt = ztest_bt_bonus(db);
Implement large_dnode pool feature Justification ------------- This feature adds support for variable length dnodes. Our motivation is to eliminate the overhead associated with using spill blocks. Spill blocks are used to store system attribute data (i.e. file metadata) that does not fit in the dnode's bonus buffer. By allowing a larger bonus buffer area the use of a spill block can be avoided. Spill blocks potentially incur an additional read I/O for every dnode in a dnode block. As a worst case example, reading 32 dnodes from a 16k dnode block and all of the spill blocks could issue 33 separate reads. Now suppose those dnodes have size 1024 and therefore don't need spill blocks. Then the worst case number of blocks read is reduced to from 33 to two--one per dnode block. In practice spill blocks may tend to be co-located on disk with the dnode blocks so the reduction in I/O would not be this drastic. In a badly fragmented pool, however, the improvement could be significant. ZFS-on-Linux systems that make heavy use of extended attributes would benefit from this feature. In particular, ZFS-on-Linux supports the xattr=sa dataset property which allows file extended attribute data to be stored in the dnode bonus buffer as an alternative to the traditional directory-based format. Workloads such as SELinux and the Lustre distributed filesystem often store enough xattr data to force spill bocks when xattr=sa is in effect. Large dnodes may therefore provide a performance benefit to such systems. Other use cases that may benefit from this feature include files with large ACLs and symbolic links with long target names. Furthermore, this feature may be desirable on other platforms in case future applications or features are developed that could make use of a larger bonus buffer area. Implementation -------------- The size of a dnode may be a multiple of 512 bytes up to the size of a dnode block (currently 16384 bytes). A dn_extra_slots field was added to the current on-disk dnode_phys_t structure to describe the size of the physical dnode on disk. The 8 bits for this field were taken from the zero filled dn_pad2 field. The field represents how many "extra" dnode_phys_t slots a dnode consumes in its dnode block. This convention results in a value of 0 for 512 byte dnodes which preserves on-disk format compatibility with older software. Similarly, the in-memory dnode_t structure has a new dn_num_slots field to represent the total number of dnode_phys_t slots consumed on disk. Thus dn->dn_num_slots is 1 greater than the corresponding dnp->dn_extra_slots. This difference in convention was adopted because, unlike on-disk structures, backward compatibility is not a concern for in-memory objects, so we used a more natural way to represent size for a dnode_t. The default size for newly created dnodes is determined by the value of a new "dnodesize" dataset property. By default the property is set to "legacy" which is compatible with older software. Setting the property to "auto" will allow the filesystem to choose the most suitable dnode size. Currently this just sets the default dnode size to 1k, but future code improvements could dynamically choose a size based on observed workload patterns. Dnodes of varying sizes can coexist within the same dataset and even within the same dnode block. For example, to enable automatically-sized dnodes, run # zfs set dnodesize=auto tank/fish The user can also specify literal values for the dnodesize property. These are currently limited to powers of two from 1k to 16k. The power-of-2 limitation is only for simplicity of the user interface. Internally the implementation can handle any multiple of 512 up to 16k, and consumers of the DMU API can specify any legal dnode value. The size of a new dnode is determined at object allocation time and stored as a new field in the znode in-memory structure. New DMU interfaces are added to allow the consumer to specify the dnode size that a newly allocated object should use. Existing interfaces are unchanged to avoid having to update every call site and to preserve compatibility with external consumers such as Lustre. The new interfaces names are given below. The versions of these functions that don't take a dnodesize parameter now just call the _dnsize() versions with a dnodesize of 0, which means use the legacy dnode size. New DMU interfaces: dmu_object_alloc_dnsize() dmu_object_claim_dnsize() dmu_object_reclaim_dnsize() New ZAP interfaces: zap_create_dnsize() zap_create_norm_dnsize() zap_create_flags_dnsize() zap_create_claim_norm_dnsize() zap_create_link_dnsize() The constant DN_MAX_BONUSLEN is renamed to DN_OLD_MAX_BONUSLEN. The spa_maxdnodesize() function should be used to determine the maximum bonus length for a pool. These are a few noteworthy changes to key functions: * The prototype for dnode_hold_impl() now takes a "slots" parameter. When the DNODE_MUST_BE_FREE flag is set, this parameter is used to ensure the hole at the specified object offset is large enough to hold the dnode being created. The slots parameter is also used to ensure a dnode does not span multiple dnode blocks. In both of these cases, if a failure occurs, ENOSPC is returned. Keep in mind, these failure cases are only possible when using DNODE_MUST_BE_FREE. If the DNODE_MUST_BE_ALLOCATED flag is set, "slots" must be 0. dnode_hold_impl() will check if the requested dnode is already consumed as an extra dnode slot by an large dnode, in which case it returns ENOENT. * The function dmu_object_alloc() advances to the next dnode block if dnode_hold_impl() returns an error for a requested object. This is because the beginning of the next dnode block is the only location it can safely assume to either be a hole or a valid starting point for a dnode. * dnode_next_offset_level() and other functions that iterate through dnode blocks may no longer use a simple array indexing scheme. These now use the current dnode's dn_num_slots field to advance to the next dnode in the block. This is to ensure we properly skip the current dnode's bonus area and don't interpret it as a valid dnode. zdb --- The zdb command was updated to display a dnode's size under the "dnsize" column when the object is dumped. For ZIL create log records, zdb will now display the slot count for the object. ztest ----- Ztest chooses a random dnodesize for every newly created object. The random distribution is more heavily weighted toward small dnodes to better simulate real-world datasets. Unused bonus buffer space is filled with non-zero values computed from the object number, dataset id, offset, and generation number. This helps ensure that the dnode traversal code properly skips the interior regions of large dnodes, and that these interior regions are not overwritten by data belonging to other dnodes. A new test visits each object in a dataset. It verifies that the actual dnode size matches what was stored in the ztest block tag when it was created. It also verifies that the unused bonus buffer space is filled with the expected data patterns. ZFS Test Suite -------------- Added six new large dnode-specific tests, and integrated the dnodesize property into existing tests for zfs allow and send/recv. Send/Receive ------------ ZFS send streams for datasets containing large dnodes cannot be received on pools that don't support the large_dnode feature. A send stream with large dnodes sets a DMU_BACKUP_FEATURE_LARGE_DNODE flag which will be unrecognized by an incompatible receiving pool so that the zfs receive will fail gracefully. While not implemented here, it may be possible to generate a backward-compatible send stream from a dataset containing large dnodes. The implementation may be tricky, however, because the send object record for a large dnode would need to be resized to a 512 byte dnode, possibly kicking in a spill block in the process. This means we would need to construct a new SA layout and possibly register it in the SA layout object. The SA layout is normally just sent as an ordinary object record. But if we are constructing new layouts while generating the send stream we'd have to build the SA layout object dynamically and send it at the end of the stream. For sending and receiving between pools that do support large dnodes, the drr_object send record type is extended with a new field to store the dnode slot count. This field was repurposed from unused padding in the structure. ZIL Replay ---------- The dnode slot count is stored in the uppermost 8 bits of the lr_foid field. The bits were unused as the object id is currently capped at 48 bits. Resizing Dnodes --------------- It should be possible to resize a dnode when it is dirtied if the current dnodesize dataset property differs from the dnode's size, but this functionality is not currently implemented. Clearly a dnode can only grow if there are sufficient contiguous unused slots in the dnode block, but it should always be possible to shrink a dnode. Growing dnodes may be useful to reduce fragmentation in a pool with many spill blocks in use. Shrinking dnodes may be useful to allow sending a dataset to a pool that doesn't support the large_dnode feature. Feature Reference Counting -------------------------- The reference count for the large_dnode pool feature tracks the number of datasets that have ever contained a dnode of size larger than 512 bytes. The first time a large dnode is created in a dataset the dataset is converted to an extensible dataset. This is a one-way operation and the only way to decrement the feature count is to destroy the dataset, even if the dataset no longer contains any large dnodes. The complexity of reference counting on a per-dnode basis was too high, so we chose to track it on a per-dataset basis similarly to the large_block feature. Signed-off-by: Ned Bass <bass6@llnl.gov> Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov> Closes #3542
2016-03-17 04:25:34 +03:00
ztest_bt_generate(bbt, os, lr->lr_foid, dnodesize, -1ULL, lr->lr_mode,
txg, crtxg);
ztest_fill_unused_bonus(db, bbt, lr->lr_foid, os, bbt->bt_gen);
dmu_buf_rele(db, FTAG);
(void) ztest_log_setattr(zd, tx, lr);
dmu_tx_commit(tx);
ztest_object_unlock(zd, lr->lr_foid);
return (0);
}
static zil_replay_func_t *ztest_replay_vector[TX_MAX_TYPE] = {
OpenZFS 8081 - Compiler warnings in zdb Fix compiler warnings in zdb. With these changes, FreeBSD can compile zdb with all compiler warnings enabled save -Wunused-parameter. usr/src/cmd/zdb/zdb.c usr/src/cmd/zdb/zdb_il.c usr/src/uts/common/fs/zfs/sys/sa.h usr/src/uts/common/fs/zfs/sys/spa.h Fix numerous warnings, including: * const-correctness * shadowing global definitions * signed vs unsigned comparisons * missing prototypes, or missing static declarations * unused variables and functions * Unreadable array initializations * Missing struct initializers usr/src/cmd/zdb/zdb.h Add a header file to declare common symbols usr/src/lib/libzpool/common/sys/zfs_context.h usr/src/uts/common/fs/zfs/arc.c usr/src/uts/common/fs/zfs/dbuf.c usr/src/uts/common/fs/zfs/spa.c usr/src/uts/common/fs/zfs/txg.c Add a function prototype for zk_thread_create, and ensure that every callback supplied to this function actually matches the prototype. usr/src/cmd/ztest/ztest.c usr/src/uts/common/fs/zfs/sys/zil.h usr/src/uts/common/fs/zfs/zfs_replay.c usr/src/uts/common/fs/zfs/zvol.c Add a function prototype for zil_replay_func_t, and ensure that every function of this type actually matches the prototype. usr/src/uts/common/fs/zfs/sys/refcount.h Change FTAG so it discards any constness of __func__, necessary since existing APIs expect it passed as void *. Porting Notes: - Many of these fixes have already been applied to Linux. For consistency the OpenZFS version of a change was applied if the warning was addressed in an equivalent but different fashion. Reviewed by: Matthew Ahrens <mahrens@delphix.com> Reviewed by: Prakash Surya <prakash.surya@delphix.com> Authored by: Alan Somers <asomers@gmail.com> Approved by: Richard Lowe <richlowe@richlowe.net> Ported-by: Brian Behlendorf <behlendorf1@llnl.gov> OpenZFS-issue: https://www.illumos.org/issues/8081 OpenZFS-commit: https://github.com/openzfs/openzfs/commit/843abe1b8a Closes #6787
2017-10-27 22:46:35 +03:00
NULL, /* 0 no such transaction type */
ztest_replay_create, /* TX_CREATE */
NULL, /* TX_MKDIR */
NULL, /* TX_MKXATTR */
NULL, /* TX_SYMLINK */
ztest_replay_remove, /* TX_REMOVE */
NULL, /* TX_RMDIR */
NULL, /* TX_LINK */
NULL, /* TX_RENAME */
ztest_replay_write, /* TX_WRITE */
ztest_replay_truncate, /* TX_TRUNCATE */
ztest_replay_setattr, /* TX_SETATTR */
NULL, /* TX_ACL */
NULL, /* TX_CREATE_ACL */
NULL, /* TX_CREATE_ATTR */
NULL, /* TX_CREATE_ACL_ATTR */
NULL, /* TX_MKDIR_ACL */
NULL, /* TX_MKDIR_ATTR */
NULL, /* TX_MKDIR_ACL_ATTR */
NULL, /* TX_WRITE2 */
log xattr=sa create/remove/update to ZIL As such, there are no specific synchronous semantics defined for the xattrs. But for xattr=on, it does log to ZIL and zil_commit() is done, if sync=always is set on dataset. This provides sync semantics for xattr=on with sync=always set on dataset. For the xattr=sa implementation, it doesn't log to ZIL, so, even with sync=always, xattrs are not guaranteed to be synced before xattr call returns to caller. So, xattr can be lost if system crash happens, before txg carrying xattr transaction is synced. This change adds xattr=sa logging to ZIL on xattr create/remove/update and xattrs are synced to ZIL (zil_commit() done) for sync=always. This makes xattr=sa behavior similar to xattr=on. Implementation notes: The actual logging is fairly straight-forward and does not warrant additional explanation. However, it has been 14 years since we last added new TX types to the ZIL [1], hence this is the first time we do it after the introduction of zpool features. Therefore, here is an overview of the feature activation and deactivation workflow: 1. The feature must be enabled. Otherwise, we don't log the new record type. This ensures compatibility with older software. 2. The feature is activated per-dataset, since the ZIL is per-dataset. 3. If the feature is enabled and dataset is not for zvol, any append to the ZIL chain will activate the feature for the dataset. Likewise for starting a new ZIL chain. 4. A dataset that doesn't have a ZIL chain has the feature deactivated. We ensure (3) by activating on the first zil_commit() after the feature was enabled. Since activating the features requires waiting for txg sync, the first zil_commit() after enabling the feature will be slower than usual. The downside is that this is really a conservative approximation: even if we never append a 'TX_SETSAXATTR' to the ZIL chain, we pay the penalty for feature activation. The upside is that the user is in control of when we pay the penalty, i.e., upon enabling the feature. We ensure (4) by hooking into zil_sync(), where ZIL destroy actually happens. One more piece on feature activation, since it's spread across multiple functions: zil_commit() zil_process_commit_list() if lwb == NULL // first zil_commit since zil_open zil_create() if no log block pointer in ZIL header: if feature enabled and not active: // CASE 1 enable, COALESCE txg wait with dmu_tx that allocated the log block else // log block was allocated earlier than this zil_open if feature enabled and not active: // CASE 2 enable, EXPLICIT txg wait else // already have an in-DRAM LWB if feature enabled and not active: // this happens when we enable the feature after zil_create // CASE 3 enable, EXPLICIT txg wait [1] https://github.com/illumos/illumos-gate/commit/da6c28aaf62fa55f0fdb8004aa40f88f23bf53f0 Reviewed-by: Matthew Ahrens <mahrens@delphix.com> Reviewed-by: Christian Schwarz <christian.schwarz@nutanix.com> Reviewed-by: Ahelenia Ziemiańska <nabijaczleweli@nabijaczleweli.xyz> Reviewed-by: Ryan Moeller <freqlabs@FreeBSD.org> Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov> Signed-off-by: Jitendra Patidar <jitendra.patidar@nutanix.com> Closes #8768 Closes #9078
2022-02-23 00:06:43 +03:00
NULL, /* TX_SETSAXATTR */
NULL, /* TX_RENAME_EXCHANGE */
NULL, /* TX_RENAME_WHITEOUT */
};
/*
* ZIL get_data callbacks
*/
static void
ztest_get_done(zgd_t *zgd, int error)
{
(void) error;
OpenZFS 9689 - zfs range lock code should not be zpl-specific The ZFS range locking code in zfs_rlock.c/h depends on ZPL-specific data structures, specifically znode_t. However, it's also used by the ZVOL code, which uses a "dummy" znode_t to pass to the range locking code. We should clean this up so that the range locking code is generic and can be used equally by ZPL and ZVOL, and also can be used by future consumers that may need to run in userland (libzpool) as well as the kernel. Porting notes: * Added missing sys/avl.h include to sys/zfs_rlock.h. * Removed 'dbuf is within the locked range' ASSERTs from dmu_sync(). This was needed because ztest does not yet use a locked_range_t. * Removed "Approved by:" tag requirement from OpenZFS commit check to prevent needless warnings when integrating changes which has not been merged to illumos. * Reverted free_list range lock changes which were originally needed to defer the cv_destroy() which was called immediately after cv_broadcast(). With d2733258 this should be safe but if not we may need to reintroduce this logic. * Reverts: The following two commits were reverted and squashed in to this change in order to make it easier to apply OpenZFS 9689. - d88895a0, which removed the dummy znode from zvol_state - e3a07cd0, which updated ztest to use range locks * Preserved optimized rangelock comparison function. Preserved the rangelock free list. The cv_destroy() function will block waiting for all processes in cv_wait() to be scheduled and drop their reference. This is done to ensure it's safe to free the condition variable. However, blocking while holding the rl->rl_lock mutex can result in a deadlock on Linux. A free list is introduced to defer the cv_destroy() and kmem_free() until after the mutex is released. Authored by: Matthew Ahrens <mahrens@delphix.com> Reviewed by: Brian Behlendorf <behlendorf1@llnl.gov> Reviewed by: Serapheim Dimitropoulos <serapheim.dimitro@delphix.com> Reviewed by: George Wilson <george.wilson@delphix.com> Reviewed by: Brad Lewis <brad.lewis@delphix.com> Ported-by: Brian Behlendorf <behlendorf1@llnl.gov> OpenZFS-issue: https://illumos.org/issues/9689 OpenZFS-commit: https://github.com/openzfs/openzfs/pull/680 External-issue: DLPX-58662 Closes #7980
2018-10-02 01:13:12 +03:00
ztest_ds_t *zd = zgd->zgd_private;
uint64_t object = ((rl_t *)zgd->zgd_lr)->rl_object;
if (zgd->zgd_db)
dmu_buf_rele(zgd->zgd_db, zgd);
OpenZFS 9689 - zfs range lock code should not be zpl-specific The ZFS range locking code in zfs_rlock.c/h depends on ZPL-specific data structures, specifically znode_t. However, it's also used by the ZVOL code, which uses a "dummy" znode_t to pass to the range locking code. We should clean this up so that the range locking code is generic and can be used equally by ZPL and ZVOL, and also can be used by future consumers that may need to run in userland (libzpool) as well as the kernel. Porting notes: * Added missing sys/avl.h include to sys/zfs_rlock.h. * Removed 'dbuf is within the locked range' ASSERTs from dmu_sync(). This was needed because ztest does not yet use a locked_range_t. * Removed "Approved by:" tag requirement from OpenZFS commit check to prevent needless warnings when integrating changes which has not been merged to illumos. * Reverted free_list range lock changes which were originally needed to defer the cv_destroy() which was called immediately after cv_broadcast(). With d2733258 this should be safe but if not we may need to reintroduce this logic. * Reverts: The following two commits were reverted and squashed in to this change in order to make it easier to apply OpenZFS 9689. - d88895a0, which removed the dummy znode from zvol_state - e3a07cd0, which updated ztest to use range locks * Preserved optimized rangelock comparison function. Preserved the rangelock free list. The cv_destroy() function will block waiting for all processes in cv_wait() to be scheduled and drop their reference. This is done to ensure it's safe to free the condition variable. However, blocking while holding the rl->rl_lock mutex can result in a deadlock on Linux. A free list is introduced to defer the cv_destroy() and kmem_free() until after the mutex is released. Authored by: Matthew Ahrens <mahrens@delphix.com> Reviewed by: Brian Behlendorf <behlendorf1@llnl.gov> Reviewed by: Serapheim Dimitropoulos <serapheim.dimitro@delphix.com> Reviewed by: George Wilson <george.wilson@delphix.com> Reviewed by: Brad Lewis <brad.lewis@delphix.com> Ported-by: Brian Behlendorf <behlendorf1@llnl.gov> OpenZFS-issue: https://illumos.org/issues/9689 OpenZFS-commit: https://github.com/openzfs/openzfs/pull/680 External-issue: DLPX-58662 Closes #7980
2018-10-02 01:13:12 +03:00
ztest_range_unlock((rl_t *)zgd->zgd_lr);
ztest_object_unlock(zd, object);
umem_free(zgd, sizeof (*zgd));
}
static int
ztest_get_data(void *arg, uint64_t arg2, lr_write_t *lr, char *buf,
struct lwb *lwb, zio_t *zio)
{
(void) arg2;
ztest_ds_t *zd = arg;
objset_t *os = zd->zd_os;
uint64_t object = lr->lr_foid;
uint64_t offset = lr->lr_offset;
uint64_t size = lr->lr_length;
uint64_t txg = lr->lr_common.lrc_txg;
uint64_t crtxg;
dmu_object_info_t doi;
dmu_buf_t *db;
zgd_t *zgd;
int error;
OpenZFS 8585 - improve batching done in zil_commit() Authored by: Prakash Surya <prakash.surya@delphix.com> Reviewed by: Brad Lewis <brad.lewis@delphix.com> Reviewed by: Matt Ahrens <mahrens@delphix.com> Reviewed by: George Wilson <george.wilson@delphix.com> Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov> Approved by: Dan McDonald <danmcd@joyent.com> Ported-by: Prakash Surya <prakash.surya@delphix.com> Problem ======= The current implementation of zil_commit() can introduce significant latency, beyond what is inherent due to the latency of the underlying storage. The additional latency comes from two main problems: 1. When there's outstanding ZIL blocks being written (i.e. there's already a "writer thread" in progress), then any new calls to zil_commit() will block waiting for the currently oustanding ZIL blocks to complete. The blocks written for each "writer thread" is coined a "batch", and there can only ever be a single "batch" being written at a time. When a batch is being written, any new ZIL transactions will have to wait for the next batch to be written, which won't occur until the current batch finishes. As a result, the underlying storage may not be used as efficiently as possible. While "new" threads enter zil_commit() and are blocked waiting for the next batch, it's possible that the underlying storage isn't fully utilized by the current batch of ZIL blocks. In that case, it'd be better to allow these new threads to generate (and issue) a new ZIL block, such that it could be serviced by the underlying storage concurrently with the other ZIL blocks that are being serviced. 2. Any call to zil_commit() must wait for all ZIL blocks in its "batch" to complete, prior to zil_commit() returning. The size of any given batch is proportional to the number of ZIL transaction in the queue at the time that the batch starts processing the queue; which doesn't occur until the previous batch completes. Thus, if there's a lot of transactions in the queue, the batch could be composed of many ZIL blocks, and each call to zil_commit() will have to wait for all of these writes to complete (even if the thread calling zil_commit() only cared about one of the transactions in the batch). To further complicate the situation, these two issues result in the following side effect: 3. If a given batch takes longer to complete than normal, this results in larger batch sizes, which then take longer to complete and further drive up the latency of zil_commit(). This can occur for a number of reasons, including (but not limited to): transient changes in the workload, and storage latency irregularites. Solution ======== The solution attempted by this change has the following goals: 1. no on-disk changes; maintain current on-disk format. 2. modify the "batch size" to be equal to the "ZIL block size". 3. allow new batches to be generated and issued to disk, while there's already batches being serviced by the disk. 4. allow zil_commit() to wait for as few ZIL blocks as possible. 5. use as few ZIL blocks as possible, for the same amount of ZIL transactions, without introducing significant latency to any individual ZIL transaction. i.e. use fewer, but larger, ZIL blocks. In theory, with these goals met, the new allgorithm will allow the following improvements: 1. new ZIL blocks can be generated and issued, while there's already oustanding ZIL blocks being serviced by the storage. 2. the latency of zil_commit() should be proportional to the underlying storage latency, rather than the incoming synchronous workload. Porting Notes ============= Due to the changes made in commit 119a394ab0, the lifetime of an itx structure differs than in OpenZFS. Specifically, the itx structure is kept around until the data associated with the itx is considered to be safe on disk; this is so that the itx's callback can be called after the data is committed to stable storage. Since OpenZFS doesn't have this itx callback mechanism, it's able to destroy the itx structure immediately after the itx is committed to an lwb (before the lwb is written to disk). To support this difference, and to ensure the itx's callbacks can still be called after the itx's data is on disk, a few changes had to be made: * A list of itxs was added to the lwb structure. This list contains all of the itxs that have been committed to the lwb, such that the callbacks for these itxs can be called from zil_lwb_flush_vdevs_done(), after the data for the itxs is committed to disk. * A list of itxs was added on the stack of the zil_process_commit_list() function; the "nolwb_itxs" list. In some circumstances, an itx may not be committed to an lwb (e.g. if allocating the "next" ZIL block on disk fails), so this list is used to keep track of which itxs fall into this state, such that their callbacks can be called after the ZIL's writer pipeline is "stalled". * The logic to actually call the itx's callback was moved into the zil_itx_destroy() function. Since all consumers of zil_itx_destroy() were effectively performing the same logic (i.e. if callback is non-null, call the callback), it seemed like useful code cleanup to consolidate this logic into a single function. Additionally, the existing Linux tracepoint infrastructure dealing with the ZIL's probes and structures had to be updated to reflect these code changes. Specifically: * The "zil__cw1" and "zil__cw2" probes were removed, so they had to be removed from "trace_zil.h" as well. * Some of the zilog structure's fields were removed, which affected the tracepoint definitions of the structure. * New tracepoints had to be added for the following 3 new probes: * zil__process__commit__itx * zil__process__normal__itx * zil__commit__io__error OpenZFS-issue: https://www.illumos.org/issues/8585 OpenZFS-commit: https://github.com/openzfs/openzfs/commit/5d95a3a Closes #6566
2017-12-05 20:39:16 +03:00
ASSERT3P(lwb, !=, NULL);
ASSERT3U(size, !=, 0);
RAID-Z expansion feature This feature allows disks to be added one at a time to a RAID-Z group, expanding its capacity incrementally. This feature is especially useful for small pools (typically with only one RAID-Z group), where there isn't sufficient hardware to add capacity by adding a whole new RAID-Z group (typically doubling the number of disks). == Initiating expansion == A new device (disk) can be attached to an existing RAIDZ vdev, by running `zpool attach POOL raidzP-N NEW_DEVICE`, e.g. `zpool attach tank raidz2-0 sda`. The new device will become part of the RAIDZ group. A "raidz expansion" will be initiated, and the new device will contribute additional space to the RAIDZ group once the expansion completes. The `feature@raidz_expansion` on-disk feature flag must be `enabled` to initiate an expansion, and it remains `active` for the life of the pool. In other words, pools with expanded RAIDZ vdevs can not be imported by older releases of the ZFS software. == During expansion == The expansion entails reading all allocated space from existing disks in the RAIDZ group, and rewriting it to the new disks in the RAIDZ group (including the newly added device). The expansion progress can be monitored with `zpool status`. Data redundancy is maintained during (and after) the expansion. If a disk fails while the expansion is in progress, the expansion pauses until the health of the RAIDZ vdev is restored (e.g. by replacing the failed disk and waiting for reconstruction to complete). The pool remains accessible during expansion. Following a reboot or export/import, the expansion resumes where it left off. == After expansion == When the expansion completes, the additional space is available for use, and is reflected in the `available` zfs property (as seen in `zfs list`, `df`, etc). Expansion does not change the number of failures that can be tolerated without data loss (e.g. a RAIDZ2 is still a RAIDZ2 even after expansion). A RAIDZ vdev can be expanded multiple times. After the expansion completes, old blocks remain with their old data-to-parity ratio (e.g. 5-wide RAIDZ2, has 3 data to 2 parity), but distributed among the larger set of disks. New blocks will be written with the new data-to-parity ratio (e.g. a 5-wide RAIDZ2 which has been expanded once to 6-wide, has 4 data to 2 parity). However, the RAIDZ vdev's "assumed parity ratio" does not change, so slightly less space than is expected may be reported for newly-written blocks, according to `zfs list`, `df`, `ls -s`, and similar tools. Sponsored-by: The FreeBSD Foundation Sponsored-by: iXsystems, Inc. Sponsored-by: vStack Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov> Reviewed-by: Mark Maybee <mark.maybee@delphix.com> Authored-by: Matthew Ahrens <mahrens@delphix.com> Contributions-by: Fedor Uporov <fuporov.vstack@gmail.com> Contributions-by: Stuart Maybee <stuart.maybee@comcast.net> Contributions-by: Thorsten Behrens <tbehrens@outlook.com> Contributions-by: Fmstrat <nospam@nowsci.com> Contributions-by: Don Brady <dev.fs.zfs@gmail.com> Signed-off-by: Don Brady <dev.fs.zfs@gmail.com> Closes #15022
2023-11-08 21:19:41 +03:00
ztest_object_lock(zd, object, ZTRL_READER);
error = dmu_bonus_hold(os, object, FTAG, &db);
if (error) {
ztest_object_unlock(zd, object);
return (error);
}
crtxg = ztest_bt_bonus(db)->bt_crtxg;
if (crtxg == 0 || crtxg > txg) {
dmu_buf_rele(db, FTAG);
ztest_object_unlock(zd, object);
return (ENOENT);
}
dmu_object_info_from_db(db, &doi);
dmu_buf_rele(db, FTAG);
db = NULL;
zgd = umem_zalloc(sizeof (*zgd), UMEM_NOFAIL);
OpenZFS 8585 - improve batching done in zil_commit() Authored by: Prakash Surya <prakash.surya@delphix.com> Reviewed by: Brad Lewis <brad.lewis@delphix.com> Reviewed by: Matt Ahrens <mahrens@delphix.com> Reviewed by: George Wilson <george.wilson@delphix.com> Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov> Approved by: Dan McDonald <danmcd@joyent.com> Ported-by: Prakash Surya <prakash.surya@delphix.com> Problem ======= The current implementation of zil_commit() can introduce significant latency, beyond what is inherent due to the latency of the underlying storage. The additional latency comes from two main problems: 1. When there's outstanding ZIL blocks being written (i.e. there's already a "writer thread" in progress), then any new calls to zil_commit() will block waiting for the currently oustanding ZIL blocks to complete. The blocks written for each "writer thread" is coined a "batch", and there can only ever be a single "batch" being written at a time. When a batch is being written, any new ZIL transactions will have to wait for the next batch to be written, which won't occur until the current batch finishes. As a result, the underlying storage may not be used as efficiently as possible. While "new" threads enter zil_commit() and are blocked waiting for the next batch, it's possible that the underlying storage isn't fully utilized by the current batch of ZIL blocks. In that case, it'd be better to allow these new threads to generate (and issue) a new ZIL block, such that it could be serviced by the underlying storage concurrently with the other ZIL blocks that are being serviced. 2. Any call to zil_commit() must wait for all ZIL blocks in its "batch" to complete, prior to zil_commit() returning. The size of any given batch is proportional to the number of ZIL transaction in the queue at the time that the batch starts processing the queue; which doesn't occur until the previous batch completes. Thus, if there's a lot of transactions in the queue, the batch could be composed of many ZIL blocks, and each call to zil_commit() will have to wait for all of these writes to complete (even if the thread calling zil_commit() only cared about one of the transactions in the batch). To further complicate the situation, these two issues result in the following side effect: 3. If a given batch takes longer to complete than normal, this results in larger batch sizes, which then take longer to complete and further drive up the latency of zil_commit(). This can occur for a number of reasons, including (but not limited to): transient changes in the workload, and storage latency irregularites. Solution ======== The solution attempted by this change has the following goals: 1. no on-disk changes; maintain current on-disk format. 2. modify the "batch size" to be equal to the "ZIL block size". 3. allow new batches to be generated and issued to disk, while there's already batches being serviced by the disk. 4. allow zil_commit() to wait for as few ZIL blocks as possible. 5. use as few ZIL blocks as possible, for the same amount of ZIL transactions, without introducing significant latency to any individual ZIL transaction. i.e. use fewer, but larger, ZIL blocks. In theory, with these goals met, the new allgorithm will allow the following improvements: 1. new ZIL blocks can be generated and issued, while there's already oustanding ZIL blocks being serviced by the storage. 2. the latency of zil_commit() should be proportional to the underlying storage latency, rather than the incoming synchronous workload. Porting Notes ============= Due to the changes made in commit 119a394ab0, the lifetime of an itx structure differs than in OpenZFS. Specifically, the itx structure is kept around until the data associated with the itx is considered to be safe on disk; this is so that the itx's callback can be called after the data is committed to stable storage. Since OpenZFS doesn't have this itx callback mechanism, it's able to destroy the itx structure immediately after the itx is committed to an lwb (before the lwb is written to disk). To support this difference, and to ensure the itx's callbacks can still be called after the itx's data is on disk, a few changes had to be made: * A list of itxs was added to the lwb structure. This list contains all of the itxs that have been committed to the lwb, such that the callbacks for these itxs can be called from zil_lwb_flush_vdevs_done(), after the data for the itxs is committed to disk. * A list of itxs was added on the stack of the zil_process_commit_list() function; the "nolwb_itxs" list. In some circumstances, an itx may not be committed to an lwb (e.g. if allocating the "next" ZIL block on disk fails), so this list is used to keep track of which itxs fall into this state, such that their callbacks can be called after the ZIL's writer pipeline is "stalled". * The logic to actually call the itx's callback was moved into the zil_itx_destroy() function. Since all consumers of zil_itx_destroy() were effectively performing the same logic (i.e. if callback is non-null, call the callback), it seemed like useful code cleanup to consolidate this logic into a single function. Additionally, the existing Linux tracepoint infrastructure dealing with the ZIL's probes and structures had to be updated to reflect these code changes. Specifically: * The "zil__cw1" and "zil__cw2" probes were removed, so they had to be removed from "trace_zil.h" as well. * Some of the zilog structure's fields were removed, which affected the tracepoint definitions of the structure. * New tracepoints had to be added for the following 3 new probes: * zil__process__commit__itx * zil__process__normal__itx * zil__commit__io__error OpenZFS-issue: https://www.illumos.org/issues/8585 OpenZFS-commit: https://github.com/openzfs/openzfs/commit/5d95a3a Closes #6566
2017-12-05 20:39:16 +03:00
zgd->zgd_lwb = lwb;
OpenZFS 9689 - zfs range lock code should not be zpl-specific The ZFS range locking code in zfs_rlock.c/h depends on ZPL-specific data structures, specifically znode_t. However, it's also used by the ZVOL code, which uses a "dummy" znode_t to pass to the range locking code. We should clean this up so that the range locking code is generic and can be used equally by ZPL and ZVOL, and also can be used by future consumers that may need to run in userland (libzpool) as well as the kernel. Porting notes: * Added missing sys/avl.h include to sys/zfs_rlock.h. * Removed 'dbuf is within the locked range' ASSERTs from dmu_sync(). This was needed because ztest does not yet use a locked_range_t. * Removed "Approved by:" tag requirement from OpenZFS commit check to prevent needless warnings when integrating changes which has not been merged to illumos. * Reverted free_list range lock changes which were originally needed to defer the cv_destroy() which was called immediately after cv_broadcast(). With d2733258 this should be safe but if not we may need to reintroduce this logic. * Reverts: The following two commits were reverted and squashed in to this change in order to make it easier to apply OpenZFS 9689. - d88895a0, which removed the dummy znode from zvol_state - e3a07cd0, which updated ztest to use range locks * Preserved optimized rangelock comparison function. Preserved the rangelock free list. The cv_destroy() function will block waiting for all processes in cv_wait() to be scheduled and drop their reference. This is done to ensure it's safe to free the condition variable. However, blocking while holding the rl->rl_lock mutex can result in a deadlock on Linux. A free list is introduced to defer the cv_destroy() and kmem_free() until after the mutex is released. Authored by: Matthew Ahrens <mahrens@delphix.com> Reviewed by: Brian Behlendorf <behlendorf1@llnl.gov> Reviewed by: Serapheim Dimitropoulos <serapheim.dimitro@delphix.com> Reviewed by: George Wilson <george.wilson@delphix.com> Reviewed by: Brad Lewis <brad.lewis@delphix.com> Ported-by: Brian Behlendorf <behlendorf1@llnl.gov> OpenZFS-issue: https://illumos.org/issues/9689 OpenZFS-commit: https://github.com/openzfs/openzfs/pull/680 External-issue: DLPX-58662 Closes #7980
2018-10-02 01:13:12 +03:00
zgd->zgd_private = zd;
if (buf != NULL) { /* immediate write */
zgd->zgd_lr = (struct zfs_locked_range *)ztest_range_lock(zd,
RAID-Z expansion feature This feature allows disks to be added one at a time to a RAID-Z group, expanding its capacity incrementally. This feature is especially useful for small pools (typically with only one RAID-Z group), where there isn't sufficient hardware to add capacity by adding a whole new RAID-Z group (typically doubling the number of disks). == Initiating expansion == A new device (disk) can be attached to an existing RAIDZ vdev, by running `zpool attach POOL raidzP-N NEW_DEVICE`, e.g. `zpool attach tank raidz2-0 sda`. The new device will become part of the RAIDZ group. A "raidz expansion" will be initiated, and the new device will contribute additional space to the RAIDZ group once the expansion completes. The `feature@raidz_expansion` on-disk feature flag must be `enabled` to initiate an expansion, and it remains `active` for the life of the pool. In other words, pools with expanded RAIDZ vdevs can not be imported by older releases of the ZFS software. == During expansion == The expansion entails reading all allocated space from existing disks in the RAIDZ group, and rewriting it to the new disks in the RAIDZ group (including the newly added device). The expansion progress can be monitored with `zpool status`. Data redundancy is maintained during (and after) the expansion. If a disk fails while the expansion is in progress, the expansion pauses until the health of the RAIDZ vdev is restored (e.g. by replacing the failed disk and waiting for reconstruction to complete). The pool remains accessible during expansion. Following a reboot or export/import, the expansion resumes where it left off. == After expansion == When the expansion completes, the additional space is available for use, and is reflected in the `available` zfs property (as seen in `zfs list`, `df`, etc). Expansion does not change the number of failures that can be tolerated without data loss (e.g. a RAIDZ2 is still a RAIDZ2 even after expansion). A RAIDZ vdev can be expanded multiple times. After the expansion completes, old blocks remain with their old data-to-parity ratio (e.g. 5-wide RAIDZ2, has 3 data to 2 parity), but distributed among the larger set of disks. New blocks will be written with the new data-to-parity ratio (e.g. a 5-wide RAIDZ2 which has been expanded once to 6-wide, has 4 data to 2 parity). However, the RAIDZ vdev's "assumed parity ratio" does not change, so slightly less space than is expected may be reported for newly-written blocks, according to `zfs list`, `df`, `ls -s`, and similar tools. Sponsored-by: The FreeBSD Foundation Sponsored-by: iXsystems, Inc. Sponsored-by: vStack Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov> Reviewed-by: Mark Maybee <mark.maybee@delphix.com> Authored-by: Matthew Ahrens <mahrens@delphix.com> Contributions-by: Fedor Uporov <fuporov.vstack@gmail.com> Contributions-by: Stuart Maybee <stuart.maybee@comcast.net> Contributions-by: Thorsten Behrens <tbehrens@outlook.com> Contributions-by: Fmstrat <nospam@nowsci.com> Contributions-by: Don Brady <dev.fs.zfs@gmail.com> Signed-off-by: Don Brady <dev.fs.zfs@gmail.com> Closes #15022
2023-11-08 21:19:41 +03:00
object, offset, size, ZTRL_READER);
error = dmu_read(os, object, offset, size, buf,
DMU_READ_NO_PREFETCH);
ASSERT0(error);
} else {
ASSERT3P(zio, !=, NULL);
size = doi.doi_data_block_size;
if (ISP2(size)) {
offset = P2ALIGN_TYPED(offset, size, uint64_t);
} else {
ASSERT3U(offset, <, size);
offset = 0;
}
zgd->zgd_lr = (struct zfs_locked_range *)ztest_range_lock(zd,
RAID-Z expansion feature This feature allows disks to be added one at a time to a RAID-Z group, expanding its capacity incrementally. This feature is especially useful for small pools (typically with only one RAID-Z group), where there isn't sufficient hardware to add capacity by adding a whole new RAID-Z group (typically doubling the number of disks). == Initiating expansion == A new device (disk) can be attached to an existing RAIDZ vdev, by running `zpool attach POOL raidzP-N NEW_DEVICE`, e.g. `zpool attach tank raidz2-0 sda`. The new device will become part of the RAIDZ group. A "raidz expansion" will be initiated, and the new device will contribute additional space to the RAIDZ group once the expansion completes. The `feature@raidz_expansion` on-disk feature flag must be `enabled` to initiate an expansion, and it remains `active` for the life of the pool. In other words, pools with expanded RAIDZ vdevs can not be imported by older releases of the ZFS software. == During expansion == The expansion entails reading all allocated space from existing disks in the RAIDZ group, and rewriting it to the new disks in the RAIDZ group (including the newly added device). The expansion progress can be monitored with `zpool status`. Data redundancy is maintained during (and after) the expansion. If a disk fails while the expansion is in progress, the expansion pauses until the health of the RAIDZ vdev is restored (e.g. by replacing the failed disk and waiting for reconstruction to complete). The pool remains accessible during expansion. Following a reboot or export/import, the expansion resumes where it left off. == After expansion == When the expansion completes, the additional space is available for use, and is reflected in the `available` zfs property (as seen in `zfs list`, `df`, etc). Expansion does not change the number of failures that can be tolerated without data loss (e.g. a RAIDZ2 is still a RAIDZ2 even after expansion). A RAIDZ vdev can be expanded multiple times. After the expansion completes, old blocks remain with their old data-to-parity ratio (e.g. 5-wide RAIDZ2, has 3 data to 2 parity), but distributed among the larger set of disks. New blocks will be written with the new data-to-parity ratio (e.g. a 5-wide RAIDZ2 which has been expanded once to 6-wide, has 4 data to 2 parity). However, the RAIDZ vdev's "assumed parity ratio" does not change, so slightly less space than is expected may be reported for newly-written blocks, according to `zfs list`, `df`, `ls -s`, and similar tools. Sponsored-by: The FreeBSD Foundation Sponsored-by: iXsystems, Inc. Sponsored-by: vStack Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov> Reviewed-by: Mark Maybee <mark.maybee@delphix.com> Authored-by: Matthew Ahrens <mahrens@delphix.com> Contributions-by: Fedor Uporov <fuporov.vstack@gmail.com> Contributions-by: Stuart Maybee <stuart.maybee@comcast.net> Contributions-by: Thorsten Behrens <tbehrens@outlook.com> Contributions-by: Fmstrat <nospam@nowsci.com> Contributions-by: Don Brady <dev.fs.zfs@gmail.com> Signed-off-by: Don Brady <dev.fs.zfs@gmail.com> Closes #15022
2023-11-08 21:19:41 +03:00
object, offset, size, ZTRL_READER);
error = dmu_buf_hold_noread(os, object, offset, zgd, &db);
if (error == 0) {
blkptr_t *bp = &lr->lr_blkptr;
zgd->zgd_db = db;
zgd->zgd_bp = bp;
ASSERT3U(db->db_offset, ==, offset);
ASSERT3U(db->db_size, ==, size);
error = dmu_sync(zio, lr->lr_common.lrc_txg,
ztest_get_done, zgd);
if (error == 0)
return (0);
}
}
ztest_get_done(zgd, error);
return (error);
}
static void *
ztest_lr_alloc(size_t lrsize, char *name)
{
char *lr;
size_t namesize = name ? strlen(name) + 1 : 0;
lr = umem_zalloc(lrsize + namesize, UMEM_NOFAIL);
if (name)
memcpy(lr + lrsize, name, namesize);
return (lr);
}
static void
ztest_lr_free(void *lr, size_t lrsize, char *name)
{
size_t namesize = name ? strlen(name) + 1 : 0;
umem_free(lr, lrsize + namesize);
}
/*
* Lookup a bunch of objects. Returns the number of objects not found.
*/
static int
ztest_lookup(ztest_ds_t *zd, ztest_od_t *od, int count)
{
int missing = 0;
int error;
int i;
Simplify threads, mutexs, cvs and rwlocks * Simplify threads, mutexs, cvs and rwlocks * Update the zk_thread_create() function to use the same trick as Illumos. Specifically, cast the new pthread_t to a void pointer and return that as the kthread_t *. This avoids the issues associated with managing a wrapper structure and is safe as long as the callers never attempt to dereference it. * Update all function prototypes passed to pthread_create() to match the expected prototype. We were getting away this with before since the function were explicitly cast. * Replaced direct zk_thread_create() calls with thread_create() for code consistency. All consumers of libzpool now use the proper wrappers. * The mutex_held() calls were converted to MUTEX_HELD(). * Removed all mutex_owner() calls and retired the interface. Instead use MUTEX_HELD() which provides the same information and allows the implementation details to be hidden. In this case the use of the pthread_equals() function. * The kthread_t, kmutex_t, krwlock_t, and krwlock_t types had any non essential fields removed. In the case of kthread_t and kcondvar_t they could be directly typedef'd to pthread_t and pthread_cond_t respectively. * Removed all extra ASSERTS from the thread, mutex, rwlock, and cv wrapper functions. In practice, pthreads already provides the vast majority of checks as long as we check the return code. Removing this code from our wrappers help readability. * Added TS_JOINABLE state flag to pass to request a joinable rather than detached thread. This isn't a standard thread_create() state but it's the least invasive way to pass this information and is only used by ztest. TEST_ZTEST_TIMEOUT=3600 Chunwei Chen <tuxoko@gmail.com> Reviewed-by: Tom Caputi <tcaputi@datto.com> Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov> Closes #4547 Closes #5503 Closes #5523 Closes #6377 Closes #6495
2017-08-11 18:51:44 +03:00
ASSERT(MUTEX_HELD(&zd->zd_dirobj_lock));
for (i = 0; i < count; i++, od++) {
od->od_object = 0;
error = zap_lookup(zd->zd_os, od->od_dir, od->od_name,
sizeof (uint64_t), 1, &od->od_object);
if (error) {
ASSERT3S(error, ==, ENOENT);
ASSERT0(od->od_object);
missing++;
} else {
dmu_buf_t *db;
ztest_block_tag_t *bbt;
dmu_object_info_t doi;
ASSERT3U(od->od_object, !=, 0);
ASSERT0(missing); /* there should be no gaps */
RAID-Z expansion feature This feature allows disks to be added one at a time to a RAID-Z group, expanding its capacity incrementally. This feature is especially useful for small pools (typically with only one RAID-Z group), where there isn't sufficient hardware to add capacity by adding a whole new RAID-Z group (typically doubling the number of disks). == Initiating expansion == A new device (disk) can be attached to an existing RAIDZ vdev, by running `zpool attach POOL raidzP-N NEW_DEVICE`, e.g. `zpool attach tank raidz2-0 sda`. The new device will become part of the RAIDZ group. A "raidz expansion" will be initiated, and the new device will contribute additional space to the RAIDZ group once the expansion completes. The `feature@raidz_expansion` on-disk feature flag must be `enabled` to initiate an expansion, and it remains `active` for the life of the pool. In other words, pools with expanded RAIDZ vdevs can not be imported by older releases of the ZFS software. == During expansion == The expansion entails reading all allocated space from existing disks in the RAIDZ group, and rewriting it to the new disks in the RAIDZ group (including the newly added device). The expansion progress can be monitored with `zpool status`. Data redundancy is maintained during (and after) the expansion. If a disk fails while the expansion is in progress, the expansion pauses until the health of the RAIDZ vdev is restored (e.g. by replacing the failed disk and waiting for reconstruction to complete). The pool remains accessible during expansion. Following a reboot or export/import, the expansion resumes where it left off. == After expansion == When the expansion completes, the additional space is available for use, and is reflected in the `available` zfs property (as seen in `zfs list`, `df`, etc). Expansion does not change the number of failures that can be tolerated without data loss (e.g. a RAIDZ2 is still a RAIDZ2 even after expansion). A RAIDZ vdev can be expanded multiple times. After the expansion completes, old blocks remain with their old data-to-parity ratio (e.g. 5-wide RAIDZ2, has 3 data to 2 parity), but distributed among the larger set of disks. New blocks will be written with the new data-to-parity ratio (e.g. a 5-wide RAIDZ2 which has been expanded once to 6-wide, has 4 data to 2 parity). However, the RAIDZ vdev's "assumed parity ratio" does not change, so slightly less space than is expected may be reported for newly-written blocks, according to `zfs list`, `df`, `ls -s`, and similar tools. Sponsored-by: The FreeBSD Foundation Sponsored-by: iXsystems, Inc. Sponsored-by: vStack Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov> Reviewed-by: Mark Maybee <mark.maybee@delphix.com> Authored-by: Matthew Ahrens <mahrens@delphix.com> Contributions-by: Fedor Uporov <fuporov.vstack@gmail.com> Contributions-by: Stuart Maybee <stuart.maybee@comcast.net> Contributions-by: Thorsten Behrens <tbehrens@outlook.com> Contributions-by: Fmstrat <nospam@nowsci.com> Contributions-by: Don Brady <dev.fs.zfs@gmail.com> Signed-off-by: Don Brady <dev.fs.zfs@gmail.com> Closes #15022
2023-11-08 21:19:41 +03:00
ztest_object_lock(zd, od->od_object, ZTRL_READER);
VERIFY0(dmu_bonus_hold(zd->zd_os, od->od_object,
FTAG, &db));
dmu_object_info_from_db(db, &doi);
bbt = ztest_bt_bonus(db);
ASSERT3U(bbt->bt_magic, ==, BT_MAGIC);
od->od_type = doi.doi_type;
od->od_blocksize = doi.doi_data_block_size;
od->od_gen = bbt->bt_gen;
dmu_buf_rele(db, FTAG);
ztest_object_unlock(zd, od->od_object);
}
}
return (missing);
}
static int
ztest_create(ztest_ds_t *zd, ztest_od_t *od, int count)
{
int missing = 0;
int i;
Simplify threads, mutexs, cvs and rwlocks * Simplify threads, mutexs, cvs and rwlocks * Update the zk_thread_create() function to use the same trick as Illumos. Specifically, cast the new pthread_t to a void pointer and return that as the kthread_t *. This avoids the issues associated with managing a wrapper structure and is safe as long as the callers never attempt to dereference it. * Update all function prototypes passed to pthread_create() to match the expected prototype. We were getting away this with before since the function were explicitly cast. * Replaced direct zk_thread_create() calls with thread_create() for code consistency. All consumers of libzpool now use the proper wrappers. * The mutex_held() calls were converted to MUTEX_HELD(). * Removed all mutex_owner() calls and retired the interface. Instead use MUTEX_HELD() which provides the same information and allows the implementation details to be hidden. In this case the use of the pthread_equals() function. * The kthread_t, kmutex_t, krwlock_t, and krwlock_t types had any non essential fields removed. In the case of kthread_t and kcondvar_t they could be directly typedef'd to pthread_t and pthread_cond_t respectively. * Removed all extra ASSERTS from the thread, mutex, rwlock, and cv wrapper functions. In practice, pthreads already provides the vast majority of checks as long as we check the return code. Removing this code from our wrappers help readability. * Added TS_JOINABLE state flag to pass to request a joinable rather than detached thread. This isn't a standard thread_create() state but it's the least invasive way to pass this information and is only used by ztest. TEST_ZTEST_TIMEOUT=3600 Chunwei Chen <tuxoko@gmail.com> Reviewed-by: Tom Caputi <tcaputi@datto.com> Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov> Closes #4547 Closes #5503 Closes #5523 Closes #6377 Closes #6495
2017-08-11 18:51:44 +03:00
ASSERT(MUTEX_HELD(&zd->zd_dirobj_lock));
for (i = 0; i < count; i++, od++) {
if (missing) {
od->od_object = 0;
missing++;
continue;
}
lr_create_t *lr = ztest_lr_alloc(sizeof (*lr), od->od_name);
lr->lr_doid = od->od_dir;
lr->lr_foid = 0; /* 0 to allocate, > 0 to claim */
lr->lrz_type = od->od_crtype;
lr->lrz_blocksize = od->od_crblocksize;
lr->lrz_ibshift = ztest_random_ibshift();
lr->lrz_bonustype = DMU_OT_UINT64_OTHER;
Implement large_dnode pool feature Justification ------------- This feature adds support for variable length dnodes. Our motivation is to eliminate the overhead associated with using spill blocks. Spill blocks are used to store system attribute data (i.e. file metadata) that does not fit in the dnode's bonus buffer. By allowing a larger bonus buffer area the use of a spill block can be avoided. Spill blocks potentially incur an additional read I/O for every dnode in a dnode block. As a worst case example, reading 32 dnodes from a 16k dnode block and all of the spill blocks could issue 33 separate reads. Now suppose those dnodes have size 1024 and therefore don't need spill blocks. Then the worst case number of blocks read is reduced to from 33 to two--one per dnode block. In practice spill blocks may tend to be co-located on disk with the dnode blocks so the reduction in I/O would not be this drastic. In a badly fragmented pool, however, the improvement could be significant. ZFS-on-Linux systems that make heavy use of extended attributes would benefit from this feature. In particular, ZFS-on-Linux supports the xattr=sa dataset property which allows file extended attribute data to be stored in the dnode bonus buffer as an alternative to the traditional directory-based format. Workloads such as SELinux and the Lustre distributed filesystem often store enough xattr data to force spill bocks when xattr=sa is in effect. Large dnodes may therefore provide a performance benefit to such systems. Other use cases that may benefit from this feature include files with large ACLs and symbolic links with long target names. Furthermore, this feature may be desirable on other platforms in case future applications or features are developed that could make use of a larger bonus buffer area. Implementation -------------- The size of a dnode may be a multiple of 512 bytes up to the size of a dnode block (currently 16384 bytes). A dn_extra_slots field was added to the current on-disk dnode_phys_t structure to describe the size of the physical dnode on disk. The 8 bits for this field were taken from the zero filled dn_pad2 field. The field represents how many "extra" dnode_phys_t slots a dnode consumes in its dnode block. This convention results in a value of 0 for 512 byte dnodes which preserves on-disk format compatibility with older software. Similarly, the in-memory dnode_t structure has a new dn_num_slots field to represent the total number of dnode_phys_t slots consumed on disk. Thus dn->dn_num_slots is 1 greater than the corresponding dnp->dn_extra_slots. This difference in convention was adopted because, unlike on-disk structures, backward compatibility is not a concern for in-memory objects, so we used a more natural way to represent size for a dnode_t. The default size for newly created dnodes is determined by the value of a new "dnodesize" dataset property. By default the property is set to "legacy" which is compatible with older software. Setting the property to "auto" will allow the filesystem to choose the most suitable dnode size. Currently this just sets the default dnode size to 1k, but future code improvements could dynamically choose a size based on observed workload patterns. Dnodes of varying sizes can coexist within the same dataset and even within the same dnode block. For example, to enable automatically-sized dnodes, run # zfs set dnodesize=auto tank/fish The user can also specify literal values for the dnodesize property. These are currently limited to powers of two from 1k to 16k. The power-of-2 limitation is only for simplicity of the user interface. Internally the implementation can handle any multiple of 512 up to 16k, and consumers of the DMU API can specify any legal dnode value. The size of a new dnode is determined at object allocation time and stored as a new field in the znode in-memory structure. New DMU interfaces are added to allow the consumer to specify the dnode size that a newly allocated object should use. Existing interfaces are unchanged to avoid having to update every call site and to preserve compatibility with external consumers such as Lustre. The new interfaces names are given below. The versions of these functions that don't take a dnodesize parameter now just call the _dnsize() versions with a dnodesize of 0, which means use the legacy dnode size. New DMU interfaces: dmu_object_alloc_dnsize() dmu_object_claim_dnsize() dmu_object_reclaim_dnsize() New ZAP interfaces: zap_create_dnsize() zap_create_norm_dnsize() zap_create_flags_dnsize() zap_create_claim_norm_dnsize() zap_create_link_dnsize() The constant DN_MAX_BONUSLEN is renamed to DN_OLD_MAX_BONUSLEN. The spa_maxdnodesize() function should be used to determine the maximum bonus length for a pool. These are a few noteworthy changes to key functions: * The prototype for dnode_hold_impl() now takes a "slots" parameter. When the DNODE_MUST_BE_FREE flag is set, this parameter is used to ensure the hole at the specified object offset is large enough to hold the dnode being created. The slots parameter is also used to ensure a dnode does not span multiple dnode blocks. In both of these cases, if a failure occurs, ENOSPC is returned. Keep in mind, these failure cases are only possible when using DNODE_MUST_BE_FREE. If the DNODE_MUST_BE_ALLOCATED flag is set, "slots" must be 0. dnode_hold_impl() will check if the requested dnode is already consumed as an extra dnode slot by an large dnode, in which case it returns ENOENT. * The function dmu_object_alloc() advances to the next dnode block if dnode_hold_impl() returns an error for a requested object. This is because the beginning of the next dnode block is the only location it can safely assume to either be a hole or a valid starting point for a dnode. * dnode_next_offset_level() and other functions that iterate through dnode blocks may no longer use a simple array indexing scheme. These now use the current dnode's dn_num_slots field to advance to the next dnode in the block. This is to ensure we properly skip the current dnode's bonus area and don't interpret it as a valid dnode. zdb --- The zdb command was updated to display a dnode's size under the "dnsize" column when the object is dumped. For ZIL create log records, zdb will now display the slot count for the object. ztest ----- Ztest chooses a random dnodesize for every newly created object. The random distribution is more heavily weighted toward small dnodes to better simulate real-world datasets. Unused bonus buffer space is filled with non-zero values computed from the object number, dataset id, offset, and generation number. This helps ensure that the dnode traversal code properly skips the interior regions of large dnodes, and that these interior regions are not overwritten by data belonging to other dnodes. A new test visits each object in a dataset. It verifies that the actual dnode size matches what was stored in the ztest block tag when it was created. It also verifies that the unused bonus buffer space is filled with the expected data patterns. ZFS Test Suite -------------- Added six new large dnode-specific tests, and integrated the dnodesize property into existing tests for zfs allow and send/recv. Send/Receive ------------ ZFS send streams for datasets containing large dnodes cannot be received on pools that don't support the large_dnode feature. A send stream with large dnodes sets a DMU_BACKUP_FEATURE_LARGE_DNODE flag which will be unrecognized by an incompatible receiving pool so that the zfs receive will fail gracefully. While not implemented here, it may be possible to generate a backward-compatible send stream from a dataset containing large dnodes. The implementation may be tricky, however, because the send object record for a large dnode would need to be resized to a 512 byte dnode, possibly kicking in a spill block in the process. This means we would need to construct a new SA layout and possibly register it in the SA layout object. The SA layout is normally just sent as an ordinary object record. But if we are constructing new layouts while generating the send stream we'd have to build the SA layout object dynamically and send it at the end of the stream. For sending and receiving between pools that do support large dnodes, the drr_object send record type is extended with a new field to store the dnode slot count. This field was repurposed from unused padding in the structure. ZIL Replay ---------- The dnode slot count is stored in the uppermost 8 bits of the lr_foid field. The bits were unused as the object id is currently capped at 48 bits. Resizing Dnodes --------------- It should be possible to resize a dnode when it is dirtied if the current dnodesize dataset property differs from the dnode's size, but this functionality is not currently implemented. Clearly a dnode can only grow if there are sufficient contiguous unused slots in the dnode block, but it should always be possible to shrink a dnode. Growing dnodes may be useful to reduce fragmentation in a pool with many spill blocks in use. Shrinking dnodes may be useful to allow sending a dataset to a pool that doesn't support the large_dnode feature. Feature Reference Counting -------------------------- The reference count for the large_dnode pool feature tracks the number of datasets that have ever contained a dnode of size larger than 512 bytes. The first time a large dnode is created in a dataset the dataset is converted to an extensible dataset. This is a one-way operation and the only way to decrement the feature count is to destroy the dataset, even if the dataset no longer contains any large dnodes. The complexity of reference counting on a per-dnode basis was too high, so we chose to track it on a per-dataset basis similarly to the large_block feature. Signed-off-by: Ned Bass <bass6@llnl.gov> Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov> Closes #3542
2016-03-17 04:25:34 +03:00
lr->lrz_dnodesize = od->od_crdnodesize;
lr->lr_gen = od->od_crgen;
lr->lr_crtime[0] = time(NULL);
if (ztest_replay_create(zd, lr, B_FALSE) != 0) {
ASSERT0(missing);
od->od_object = 0;
missing++;
} else {
od->od_object = lr->lr_foid;
od->od_type = od->od_crtype;
od->od_blocksize = od->od_crblocksize;
od->od_gen = od->od_crgen;
ASSERT3U(od->od_object, !=, 0);
}
ztest_lr_free(lr, sizeof (*lr), od->od_name);
}
return (missing);
}
static int
ztest_remove(ztest_ds_t *zd, ztest_od_t *od, int count)
{
int missing = 0;
int error;
int i;
Simplify threads, mutexs, cvs and rwlocks * Simplify threads, mutexs, cvs and rwlocks * Update the zk_thread_create() function to use the same trick as Illumos. Specifically, cast the new pthread_t to a void pointer and return that as the kthread_t *. This avoids the issues associated with managing a wrapper structure and is safe as long as the callers never attempt to dereference it. * Update all function prototypes passed to pthread_create() to match the expected prototype. We were getting away this with before since the function were explicitly cast. * Replaced direct zk_thread_create() calls with thread_create() for code consistency. All consumers of libzpool now use the proper wrappers. * The mutex_held() calls were converted to MUTEX_HELD(). * Removed all mutex_owner() calls and retired the interface. Instead use MUTEX_HELD() which provides the same information and allows the implementation details to be hidden. In this case the use of the pthread_equals() function. * The kthread_t, kmutex_t, krwlock_t, and krwlock_t types had any non essential fields removed. In the case of kthread_t and kcondvar_t they could be directly typedef'd to pthread_t and pthread_cond_t respectively. * Removed all extra ASSERTS from the thread, mutex, rwlock, and cv wrapper functions. In practice, pthreads already provides the vast majority of checks as long as we check the return code. Removing this code from our wrappers help readability. * Added TS_JOINABLE state flag to pass to request a joinable rather than detached thread. This isn't a standard thread_create() state but it's the least invasive way to pass this information and is only used by ztest. TEST_ZTEST_TIMEOUT=3600 Chunwei Chen <tuxoko@gmail.com> Reviewed-by: Tom Caputi <tcaputi@datto.com> Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov> Closes #4547 Closes #5503 Closes #5523 Closes #6377 Closes #6495
2017-08-11 18:51:44 +03:00
ASSERT(MUTEX_HELD(&zd->zd_dirobj_lock));
od += count - 1;
for (i = count - 1; i >= 0; i--, od--) {
if (missing) {
missing++;
continue;
}
/*
* No object was found.
*/
if (od->od_object == 0)
continue;
lr_remove_t *lr = ztest_lr_alloc(sizeof (*lr), od->od_name);
lr->lr_doid = od->od_dir;
if ((error = ztest_replay_remove(zd, lr, B_FALSE)) != 0) {
ASSERT3U(error, ==, ENOSPC);
missing++;
} else {
od->od_object = 0;
}
ztest_lr_free(lr, sizeof (*lr), od->od_name);
}
return (missing);
}
static int
ztest_write(ztest_ds_t *zd, uint64_t object, uint64_t offset, uint64_t size,
RAID-Z expansion feature This feature allows disks to be added one at a time to a RAID-Z group, expanding its capacity incrementally. This feature is especially useful for small pools (typically with only one RAID-Z group), where there isn't sufficient hardware to add capacity by adding a whole new RAID-Z group (typically doubling the number of disks). == Initiating expansion == A new device (disk) can be attached to an existing RAIDZ vdev, by running `zpool attach POOL raidzP-N NEW_DEVICE`, e.g. `zpool attach tank raidz2-0 sda`. The new device will become part of the RAIDZ group. A "raidz expansion" will be initiated, and the new device will contribute additional space to the RAIDZ group once the expansion completes. The `feature@raidz_expansion` on-disk feature flag must be `enabled` to initiate an expansion, and it remains `active` for the life of the pool. In other words, pools with expanded RAIDZ vdevs can not be imported by older releases of the ZFS software. == During expansion == The expansion entails reading all allocated space from existing disks in the RAIDZ group, and rewriting it to the new disks in the RAIDZ group (including the newly added device). The expansion progress can be monitored with `zpool status`. Data redundancy is maintained during (and after) the expansion. If a disk fails while the expansion is in progress, the expansion pauses until the health of the RAIDZ vdev is restored (e.g. by replacing the failed disk and waiting for reconstruction to complete). The pool remains accessible during expansion. Following a reboot or export/import, the expansion resumes where it left off. == After expansion == When the expansion completes, the additional space is available for use, and is reflected in the `available` zfs property (as seen in `zfs list`, `df`, etc). Expansion does not change the number of failures that can be tolerated without data loss (e.g. a RAIDZ2 is still a RAIDZ2 even after expansion). A RAIDZ vdev can be expanded multiple times. After the expansion completes, old blocks remain with their old data-to-parity ratio (e.g. 5-wide RAIDZ2, has 3 data to 2 parity), but distributed among the larger set of disks. New blocks will be written with the new data-to-parity ratio (e.g. a 5-wide RAIDZ2 which has been expanded once to 6-wide, has 4 data to 2 parity). However, the RAIDZ vdev's "assumed parity ratio" does not change, so slightly less space than is expected may be reported for newly-written blocks, according to `zfs list`, `df`, `ls -s`, and similar tools. Sponsored-by: The FreeBSD Foundation Sponsored-by: iXsystems, Inc. Sponsored-by: vStack Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov> Reviewed-by: Mark Maybee <mark.maybee@delphix.com> Authored-by: Matthew Ahrens <mahrens@delphix.com> Contributions-by: Fedor Uporov <fuporov.vstack@gmail.com> Contributions-by: Stuart Maybee <stuart.maybee@comcast.net> Contributions-by: Thorsten Behrens <tbehrens@outlook.com> Contributions-by: Fmstrat <nospam@nowsci.com> Contributions-by: Don Brady <dev.fs.zfs@gmail.com> Signed-off-by: Don Brady <dev.fs.zfs@gmail.com> Closes #15022
2023-11-08 21:19:41 +03:00
const void *data)
{
lr_write_t *lr;
int error;
lr = ztest_lr_alloc(sizeof (*lr) + size, NULL);
lr->lr_foid = object;
lr->lr_offset = offset;
lr->lr_length = size;
lr->lr_blkoff = 0;
BP_ZERO(&lr->lr_blkptr);
memcpy(lr + 1, data, size);
error = ztest_replay_write(zd, lr, B_FALSE);
ztest_lr_free(lr, sizeof (*lr) + size, NULL);
return (error);
}
static int
ztest_truncate(ztest_ds_t *zd, uint64_t object, uint64_t offset, uint64_t size)
{
lr_truncate_t *lr;
int error;
lr = ztest_lr_alloc(sizeof (*lr), NULL);
lr->lr_foid = object;
lr->lr_offset = offset;
lr->lr_length = size;
error = ztest_replay_truncate(zd, lr, B_FALSE);
ztest_lr_free(lr, sizeof (*lr), NULL);
return (error);
}
static int
ztest_setattr(ztest_ds_t *zd, uint64_t object)
{
lr_setattr_t *lr;
int error;
lr = ztest_lr_alloc(sizeof (*lr), NULL);
lr->lr_foid = object;
lr->lr_size = 0;
lr->lr_mode = 0;
error = ztest_replay_setattr(zd, lr, B_FALSE);
ztest_lr_free(lr, sizeof (*lr), NULL);
return (error);
}
static void
ztest_prealloc(ztest_ds_t *zd, uint64_t object, uint64_t offset, uint64_t size)
{
objset_t *os = zd->zd_os;
dmu_tx_t *tx;
uint64_t txg;
OpenZFS 9689 - zfs range lock code should not be zpl-specific The ZFS range locking code in zfs_rlock.c/h depends on ZPL-specific data structures, specifically znode_t. However, it's also used by the ZVOL code, which uses a "dummy" znode_t to pass to the range locking code. We should clean this up so that the range locking code is generic and can be used equally by ZPL and ZVOL, and also can be used by future consumers that may need to run in userland (libzpool) as well as the kernel. Porting notes: * Added missing sys/avl.h include to sys/zfs_rlock.h. * Removed 'dbuf is within the locked range' ASSERTs from dmu_sync(). This was needed because ztest does not yet use a locked_range_t. * Removed "Approved by:" tag requirement from OpenZFS commit check to prevent needless warnings when integrating changes which has not been merged to illumos. * Reverted free_list range lock changes which were originally needed to defer the cv_destroy() which was called immediately after cv_broadcast(). With d2733258 this should be safe but if not we may need to reintroduce this logic. * Reverts: The following two commits were reverted and squashed in to this change in order to make it easier to apply OpenZFS 9689. - d88895a0, which removed the dummy znode from zvol_state - e3a07cd0, which updated ztest to use range locks * Preserved optimized rangelock comparison function. Preserved the rangelock free list. The cv_destroy() function will block waiting for all processes in cv_wait() to be scheduled and drop their reference. This is done to ensure it's safe to free the condition variable. However, blocking while holding the rl->rl_lock mutex can result in a deadlock on Linux. A free list is introduced to defer the cv_destroy() and kmem_free() until after the mutex is released. Authored by: Matthew Ahrens <mahrens@delphix.com> Reviewed by: Brian Behlendorf <behlendorf1@llnl.gov> Reviewed by: Serapheim Dimitropoulos <serapheim.dimitro@delphix.com> Reviewed by: George Wilson <george.wilson@delphix.com> Reviewed by: Brad Lewis <brad.lewis@delphix.com> Ported-by: Brian Behlendorf <behlendorf1@llnl.gov> OpenZFS-issue: https://illumos.org/issues/9689 OpenZFS-commit: https://github.com/openzfs/openzfs/pull/680 External-issue: DLPX-58662 Closes #7980
2018-10-02 01:13:12 +03:00
rl_t *rl;
txg_wait_synced(dmu_objset_pool(os), 0);
RAID-Z expansion feature This feature allows disks to be added one at a time to a RAID-Z group, expanding its capacity incrementally. This feature is especially useful for small pools (typically with only one RAID-Z group), where there isn't sufficient hardware to add capacity by adding a whole new RAID-Z group (typically doubling the number of disks). == Initiating expansion == A new device (disk) can be attached to an existing RAIDZ vdev, by running `zpool attach POOL raidzP-N NEW_DEVICE`, e.g. `zpool attach tank raidz2-0 sda`. The new device will become part of the RAIDZ group. A "raidz expansion" will be initiated, and the new device will contribute additional space to the RAIDZ group once the expansion completes. The `feature@raidz_expansion` on-disk feature flag must be `enabled` to initiate an expansion, and it remains `active` for the life of the pool. In other words, pools with expanded RAIDZ vdevs can not be imported by older releases of the ZFS software. == During expansion == The expansion entails reading all allocated space from existing disks in the RAIDZ group, and rewriting it to the new disks in the RAIDZ group (including the newly added device). The expansion progress can be monitored with `zpool status`. Data redundancy is maintained during (and after) the expansion. If a disk fails while the expansion is in progress, the expansion pauses until the health of the RAIDZ vdev is restored (e.g. by replacing the failed disk and waiting for reconstruction to complete). The pool remains accessible during expansion. Following a reboot or export/import, the expansion resumes where it left off. == After expansion == When the expansion completes, the additional space is available for use, and is reflected in the `available` zfs property (as seen in `zfs list`, `df`, etc). Expansion does not change the number of failures that can be tolerated without data loss (e.g. a RAIDZ2 is still a RAIDZ2 even after expansion). A RAIDZ vdev can be expanded multiple times. After the expansion completes, old blocks remain with their old data-to-parity ratio (e.g. 5-wide RAIDZ2, has 3 data to 2 parity), but distributed among the larger set of disks. New blocks will be written with the new data-to-parity ratio (e.g. a 5-wide RAIDZ2 which has been expanded once to 6-wide, has 4 data to 2 parity). However, the RAIDZ vdev's "assumed parity ratio" does not change, so slightly less space than is expected may be reported for newly-written blocks, according to `zfs list`, `df`, `ls -s`, and similar tools. Sponsored-by: The FreeBSD Foundation Sponsored-by: iXsystems, Inc. Sponsored-by: vStack Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov> Reviewed-by: Mark Maybee <mark.maybee@delphix.com> Authored-by: Matthew Ahrens <mahrens@delphix.com> Contributions-by: Fedor Uporov <fuporov.vstack@gmail.com> Contributions-by: Stuart Maybee <stuart.maybee@comcast.net> Contributions-by: Thorsten Behrens <tbehrens@outlook.com> Contributions-by: Fmstrat <nospam@nowsci.com> Contributions-by: Don Brady <dev.fs.zfs@gmail.com> Signed-off-by: Don Brady <dev.fs.zfs@gmail.com> Closes #15022
2023-11-08 21:19:41 +03:00
ztest_object_lock(zd, object, ZTRL_READER);
rl = ztest_range_lock(zd, object, offset, size, ZTRL_WRITER);
tx = dmu_tx_create(os);
dmu_tx_hold_write(tx, object, offset, size);
txg = ztest_tx_assign(tx, TXG_WAIT, FTAG);
if (txg != 0) {
dmu_prealloc(os, object, offset, size, tx);
dmu_tx_commit(tx);
txg_wait_synced(dmu_objset_pool(os), txg);
} else {
(void) dmu_free_long_range(os, object, offset, size);
}
OpenZFS 9689 - zfs range lock code should not be zpl-specific The ZFS range locking code in zfs_rlock.c/h depends on ZPL-specific data structures, specifically znode_t. However, it's also used by the ZVOL code, which uses a "dummy" znode_t to pass to the range locking code. We should clean this up so that the range locking code is generic and can be used equally by ZPL and ZVOL, and also can be used by future consumers that may need to run in userland (libzpool) as well as the kernel. Porting notes: * Added missing sys/avl.h include to sys/zfs_rlock.h. * Removed 'dbuf is within the locked range' ASSERTs from dmu_sync(). This was needed because ztest does not yet use a locked_range_t. * Removed "Approved by:" tag requirement from OpenZFS commit check to prevent needless warnings when integrating changes which has not been merged to illumos. * Reverted free_list range lock changes which were originally needed to defer the cv_destroy() which was called immediately after cv_broadcast(). With d2733258 this should be safe but if not we may need to reintroduce this logic. * Reverts: The following two commits were reverted and squashed in to this change in order to make it easier to apply OpenZFS 9689. - d88895a0, which removed the dummy znode from zvol_state - e3a07cd0, which updated ztest to use range locks * Preserved optimized rangelock comparison function. Preserved the rangelock free list. The cv_destroy() function will block waiting for all processes in cv_wait() to be scheduled and drop their reference. This is done to ensure it's safe to free the condition variable. However, blocking while holding the rl->rl_lock mutex can result in a deadlock on Linux. A free list is introduced to defer the cv_destroy() and kmem_free() until after the mutex is released. Authored by: Matthew Ahrens <mahrens@delphix.com> Reviewed by: Brian Behlendorf <behlendorf1@llnl.gov> Reviewed by: Serapheim Dimitropoulos <serapheim.dimitro@delphix.com> Reviewed by: George Wilson <george.wilson@delphix.com> Reviewed by: Brad Lewis <brad.lewis@delphix.com> Ported-by: Brian Behlendorf <behlendorf1@llnl.gov> OpenZFS-issue: https://illumos.org/issues/9689 OpenZFS-commit: https://github.com/openzfs/openzfs/pull/680 External-issue: DLPX-58662 Closes #7980
2018-10-02 01:13:12 +03:00
ztest_range_unlock(rl);
ztest_object_unlock(zd, object);
}
static void
ztest_io(ztest_ds_t *zd, uint64_t object, uint64_t offset)
{
int err;
ztest_block_tag_t wbt;
dmu_object_info_t doi;
enum ztest_io_type io_type;
uint64_t blocksize;
void *data;
Adding Direct IO Support Adding O_DIRECT support to ZFS to bypass the ARC for writes/reads. O_DIRECT support in ZFS will always ensure there is coherency between buffered and O_DIRECT IO requests. This ensures that all IO requests, whether buffered or direct, will see the same file contents at all times. Just as in other FS's , O_DIRECT does not imply O_SYNC. While data is written directly to VDEV disks, metadata will not be synced until the associated TXG is synced. For both O_DIRECT read and write request the offset and request sizes, at a minimum, must be PAGE_SIZE aligned. In the event they are not, then EINVAL is returned unless the direct property is set to always (see below). For O_DIRECT writes: The request also must be block aligned (recordsize) or the write request will take the normal (buffered) write path. In the event that request is block aligned and a cached copy of the buffer in the ARC, then it will be discarded from the ARC forcing all further reads to retrieve the data from disk. For O_DIRECT reads: The only alignment restrictions are PAGE_SIZE alignment. In the event that the requested data is in buffered (in the ARC) it will just be copied from the ARC into the user buffer. For both O_DIRECT writes and reads the O_DIRECT flag will be ignored in the event that file contents are mmap'ed. In this case, all requests that are at least PAGE_SIZE aligned will just fall back to the buffered paths. If the request however is not PAGE_SIZE aligned, EINVAL will be returned as always regardless if the file's contents are mmap'ed. Since O_DIRECT writes go through the normal ZIO pipeline, the following operations are supported just as with normal buffered writes: Checksum Compression Encryption Erasure Coding There is one caveat for the data integrity of O_DIRECT writes that is distinct for each of the OS's supported by ZFS. FreeBSD - FreeBSD is able to place user pages under write protection so any data in the user buffers and written directly down to the VDEV disks is guaranteed to not change. There is no concern with data integrity and O_DIRECT writes. Linux - Linux is not able to place anonymous user pages under write protection. Because of this, if the user decides to manipulate the page contents while the write operation is occurring, data integrity can not be guaranteed. However, there is a module parameter `zfs_vdev_direct_write_verify` that controls the if a O_DIRECT writes that can occur to a top-level VDEV before a checksum verify is run before the contents of the I/O buffer are committed to disk. In the event of a checksum verification failure the write will return EIO. The number of O_DIRECT write checksum verification errors can be observed by doing `zpool status -d`, which will list all verification errors that have occurred on a top-level VDEV. Along with `zpool status`, a ZED event will be issues as `dio_verify` when a checksum verification error occurs. ZVOLs and dedup is not currently supported with Direct I/O. A new dataset property `direct` has been added with the following 3 allowable values: disabled - Accepts O_DIRECT flag, but silently ignores it and treats the request as a buffered IO request. standard - Follows the alignment restrictions outlined above for write/read IO requests when the O_DIRECT flag is used. always - Treats every write/read IO request as though it passed O_DIRECT and will do O_DIRECT if the alignment restrictions are met otherwise will redirect through the ARC. This property will not allow a request to fail. There is also a module parameter zfs_dio_enabled that can be used to force all reads and writes through the ARC. By setting this module parameter to 0, it mimics as if the direct dataset property is set to disabled. Reviewed-by: Brian Behlendorf <behlendorf@llnl.gov> Reviewed-by: Alexander Motin <mav@FreeBSD.org> Reviewed-by: Tony Hutter <hutter2@llnl.gov> Signed-off-by: Brian Atkinson <batkinson@lanl.gov> Co-authored-by: Mark Maybee <mark.maybee@delphix.com> Co-authored-by: Matt Macy <mmacy@FreeBSD.org> Co-authored-by: Brian Behlendorf <behlendorf@llnl.gov> Closes #10018
2024-09-14 23:47:59 +03:00
uint32_t dmu_read_flags = DMU_READ_NO_PREFETCH;
/*
* We will randomly set when to do O_DIRECT on a read.
*/
if (ztest_random(4) == 0)
dmu_read_flags |= DMU_DIRECTIO;
VERIFY0(dmu_object_info(zd->zd_os, object, &doi));
blocksize = doi.doi_data_block_size;
data = umem_alloc(blocksize, UMEM_NOFAIL);
/*
* Pick an i/o type at random, biased toward writing block tags.
*/
io_type = ztest_random(ZTEST_IO_TYPES);
if (ztest_random(2) == 0)
io_type = ZTEST_IO_WRITE_TAG;
(void) pthread_rwlock_rdlock(&zd->zd_zilog_lock);
switch (io_type) {
case ZTEST_IO_WRITE_TAG:
Implement large_dnode pool feature Justification ------------- This feature adds support for variable length dnodes. Our motivation is to eliminate the overhead associated with using spill blocks. Spill blocks are used to store system attribute data (i.e. file metadata) that does not fit in the dnode's bonus buffer. By allowing a larger bonus buffer area the use of a spill block can be avoided. Spill blocks potentially incur an additional read I/O for every dnode in a dnode block. As a worst case example, reading 32 dnodes from a 16k dnode block and all of the spill blocks could issue 33 separate reads. Now suppose those dnodes have size 1024 and therefore don't need spill blocks. Then the worst case number of blocks read is reduced to from 33 to two--one per dnode block. In practice spill blocks may tend to be co-located on disk with the dnode blocks so the reduction in I/O would not be this drastic. In a badly fragmented pool, however, the improvement could be significant. ZFS-on-Linux systems that make heavy use of extended attributes would benefit from this feature. In particular, ZFS-on-Linux supports the xattr=sa dataset property which allows file extended attribute data to be stored in the dnode bonus buffer as an alternative to the traditional directory-based format. Workloads such as SELinux and the Lustre distributed filesystem often store enough xattr data to force spill bocks when xattr=sa is in effect. Large dnodes may therefore provide a performance benefit to such systems. Other use cases that may benefit from this feature include files with large ACLs and symbolic links with long target names. Furthermore, this feature may be desirable on other platforms in case future applications or features are developed that could make use of a larger bonus buffer area. Implementation -------------- The size of a dnode may be a multiple of 512 bytes up to the size of a dnode block (currently 16384 bytes). A dn_extra_slots field was added to the current on-disk dnode_phys_t structure to describe the size of the physical dnode on disk. The 8 bits for this field were taken from the zero filled dn_pad2 field. The field represents how many "extra" dnode_phys_t slots a dnode consumes in its dnode block. This convention results in a value of 0 for 512 byte dnodes which preserves on-disk format compatibility with older software. Similarly, the in-memory dnode_t structure has a new dn_num_slots field to represent the total number of dnode_phys_t slots consumed on disk. Thus dn->dn_num_slots is 1 greater than the corresponding dnp->dn_extra_slots. This difference in convention was adopted because, unlike on-disk structures, backward compatibility is not a concern for in-memory objects, so we used a more natural way to represent size for a dnode_t. The default size for newly created dnodes is determined by the value of a new "dnodesize" dataset property. By default the property is set to "legacy" which is compatible with older software. Setting the property to "auto" will allow the filesystem to choose the most suitable dnode size. Currently this just sets the default dnode size to 1k, but future code improvements could dynamically choose a size based on observed workload patterns. Dnodes of varying sizes can coexist within the same dataset and even within the same dnode block. For example, to enable automatically-sized dnodes, run # zfs set dnodesize=auto tank/fish The user can also specify literal values for the dnodesize property. These are currently limited to powers of two from 1k to 16k. The power-of-2 limitation is only for simplicity of the user interface. Internally the implementation can handle any multiple of 512 up to 16k, and consumers of the DMU API can specify any legal dnode value. The size of a new dnode is determined at object allocation time and stored as a new field in the znode in-memory structure. New DMU interfaces are added to allow the consumer to specify the dnode size that a newly allocated object should use. Existing interfaces are unchanged to avoid having to update every call site and to preserve compatibility with external consumers such as Lustre. The new interfaces names are given below. The versions of these functions that don't take a dnodesize parameter now just call the _dnsize() versions with a dnodesize of 0, which means use the legacy dnode size. New DMU interfaces: dmu_object_alloc_dnsize() dmu_object_claim_dnsize() dmu_object_reclaim_dnsize() New ZAP interfaces: zap_create_dnsize() zap_create_norm_dnsize() zap_create_flags_dnsize() zap_create_claim_norm_dnsize() zap_create_link_dnsize() The constant DN_MAX_BONUSLEN is renamed to DN_OLD_MAX_BONUSLEN. The spa_maxdnodesize() function should be used to determine the maximum bonus length for a pool. These are a few noteworthy changes to key functions: * The prototype for dnode_hold_impl() now takes a "slots" parameter. When the DNODE_MUST_BE_FREE flag is set, this parameter is used to ensure the hole at the specified object offset is large enough to hold the dnode being created. The slots parameter is also used to ensure a dnode does not span multiple dnode blocks. In both of these cases, if a failure occurs, ENOSPC is returned. Keep in mind, these failure cases are only possible when using DNODE_MUST_BE_FREE. If the DNODE_MUST_BE_ALLOCATED flag is set, "slots" must be 0. dnode_hold_impl() will check if the requested dnode is already consumed as an extra dnode slot by an large dnode, in which case it returns ENOENT. * The function dmu_object_alloc() advances to the next dnode block if dnode_hold_impl() returns an error for a requested object. This is because the beginning of the next dnode block is the only location it can safely assume to either be a hole or a valid starting point for a dnode. * dnode_next_offset_level() and other functions that iterate through dnode blocks may no longer use a simple array indexing scheme. These now use the current dnode's dn_num_slots field to advance to the next dnode in the block. This is to ensure we properly skip the current dnode's bonus area and don't interpret it as a valid dnode. zdb --- The zdb command was updated to display a dnode's size under the "dnsize" column when the object is dumped. For ZIL create log records, zdb will now display the slot count for the object. ztest ----- Ztest chooses a random dnodesize for every newly created object. The random distribution is more heavily weighted toward small dnodes to better simulate real-world datasets. Unused bonus buffer space is filled with non-zero values computed from the object number, dataset id, offset, and generation number. This helps ensure that the dnode traversal code properly skips the interior regions of large dnodes, and that these interior regions are not overwritten by data belonging to other dnodes. A new test visits each object in a dataset. It verifies that the actual dnode size matches what was stored in the ztest block tag when it was created. It also verifies that the unused bonus buffer space is filled with the expected data patterns. ZFS Test Suite -------------- Added six new large dnode-specific tests, and integrated the dnodesize property into existing tests for zfs allow and send/recv. Send/Receive ------------ ZFS send streams for datasets containing large dnodes cannot be received on pools that don't support the large_dnode feature. A send stream with large dnodes sets a DMU_BACKUP_FEATURE_LARGE_DNODE flag which will be unrecognized by an incompatible receiving pool so that the zfs receive will fail gracefully. While not implemented here, it may be possible to generate a backward-compatible send stream from a dataset containing large dnodes. The implementation may be tricky, however, because the send object record for a large dnode would need to be resized to a 512 byte dnode, possibly kicking in a spill block in the process. This means we would need to construct a new SA layout and possibly register it in the SA layout object. The SA layout is normally just sent as an ordinary object record. But if we are constructing new layouts while generating the send stream we'd have to build the SA layout object dynamically and send it at the end of the stream. For sending and receiving between pools that do support large dnodes, the drr_object send record type is extended with a new field to store the dnode slot count. This field was repurposed from unused padding in the structure. ZIL Replay ---------- The dnode slot count is stored in the uppermost 8 bits of the lr_foid field. The bits were unused as the object id is currently capped at 48 bits. Resizing Dnodes --------------- It should be possible to resize a dnode when it is dirtied if the current dnodesize dataset property differs from the dnode's size, but this functionality is not currently implemented. Clearly a dnode can only grow if there are sufficient contiguous unused slots in the dnode block, but it should always be possible to shrink a dnode. Growing dnodes may be useful to reduce fragmentation in a pool with many spill blocks in use. Shrinking dnodes may be useful to allow sending a dataset to a pool that doesn't support the large_dnode feature. Feature Reference Counting -------------------------- The reference count for the large_dnode pool feature tracks the number of datasets that have ever contained a dnode of size larger than 512 bytes. The first time a large dnode is created in a dataset the dataset is converted to an extensible dataset. This is a one-way operation and the only way to decrement the feature count is to destroy the dataset, even if the dataset no longer contains any large dnodes. The complexity of reference counting on a per-dnode basis was too high, so we chose to track it on a per-dataset basis similarly to the large_block feature. Signed-off-by: Ned Bass <bass6@llnl.gov> Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov> Closes #3542
2016-03-17 04:25:34 +03:00
ztest_bt_generate(&wbt, zd->zd_os, object, doi.doi_dnodesize,
offset, 0, 0, 0);
(void) ztest_write(zd, object, offset, sizeof (wbt), &wbt);
break;
case ZTEST_IO_WRITE_PATTERN:
(void) memset(data, 'a' + (object + offset) % 5, blocksize);
if (ztest_random(2) == 0) {
/*
* Induce fletcher2 collisions to ensure that
* zio_ddt_collision() detects and resolves them
* when using fletcher2-verify for deduplication.
*/
((uint64_t *)data)[0] ^= 1ULL << 63;
((uint64_t *)data)[4] ^= 1ULL << 63;
}
(void) ztest_write(zd, object, offset, blocksize, data);
break;
case ZTEST_IO_WRITE_ZEROES:
memset(data, 0, blocksize);
(void) ztest_write(zd, object, offset, blocksize, data);
break;
case ZTEST_IO_TRUNCATE:
(void) ztest_truncate(zd, object, offset, blocksize);
break;
case ZTEST_IO_SETATTR:
(void) ztest_setattr(zd, object);
break;
default:
break;
case ZTEST_IO_REWRITE:
(void) pthread_rwlock_rdlock(&ztest_name_lock);
err = ztest_dsl_prop_set_uint64(zd->zd_name,
ZFS_PROP_CHECKSUM, spa_dedup_checksum(ztest_spa),
B_FALSE);
ASSERT(err == 0 || err == ENOSPC);
err = ztest_dsl_prop_set_uint64(zd->zd_name,
ZFS_PROP_COMPRESSION,
ztest_random_dsl_prop(ZFS_PROP_COMPRESSION),
B_FALSE);
ASSERT(err == 0 || err == ENOSPC);
(void) pthread_rwlock_unlock(&ztest_name_lock);
VERIFY0(dmu_read(zd->zd_os, object, offset, blocksize, data,
Adding Direct IO Support Adding O_DIRECT support to ZFS to bypass the ARC for writes/reads. O_DIRECT support in ZFS will always ensure there is coherency between buffered and O_DIRECT IO requests. This ensures that all IO requests, whether buffered or direct, will see the same file contents at all times. Just as in other FS's , O_DIRECT does not imply O_SYNC. While data is written directly to VDEV disks, metadata will not be synced until the associated TXG is synced. For both O_DIRECT read and write request the offset and request sizes, at a minimum, must be PAGE_SIZE aligned. In the event they are not, then EINVAL is returned unless the direct property is set to always (see below). For O_DIRECT writes: The request also must be block aligned (recordsize) or the write request will take the normal (buffered) write path. In the event that request is block aligned and a cached copy of the buffer in the ARC, then it will be discarded from the ARC forcing all further reads to retrieve the data from disk. For O_DIRECT reads: The only alignment restrictions are PAGE_SIZE alignment. In the event that the requested data is in buffered (in the ARC) it will just be copied from the ARC into the user buffer. For both O_DIRECT writes and reads the O_DIRECT flag will be ignored in the event that file contents are mmap'ed. In this case, all requests that are at least PAGE_SIZE aligned will just fall back to the buffered paths. If the request however is not PAGE_SIZE aligned, EINVAL will be returned as always regardless if the file's contents are mmap'ed. Since O_DIRECT writes go through the normal ZIO pipeline, the following operations are supported just as with normal buffered writes: Checksum Compression Encryption Erasure Coding There is one caveat for the data integrity of O_DIRECT writes that is distinct for each of the OS's supported by ZFS. FreeBSD - FreeBSD is able to place user pages under write protection so any data in the user buffers and written directly down to the VDEV disks is guaranteed to not change. There is no concern with data integrity and O_DIRECT writes. Linux - Linux is not able to place anonymous user pages under write protection. Because of this, if the user decides to manipulate the page contents while the write operation is occurring, data integrity can not be guaranteed. However, there is a module parameter `zfs_vdev_direct_write_verify` that controls the if a O_DIRECT writes that can occur to a top-level VDEV before a checksum verify is run before the contents of the I/O buffer are committed to disk. In the event of a checksum verification failure the write will return EIO. The number of O_DIRECT write checksum verification errors can be observed by doing `zpool status -d`, which will list all verification errors that have occurred on a top-level VDEV. Along with `zpool status`, a ZED event will be issues as `dio_verify` when a checksum verification error occurs. ZVOLs and dedup is not currently supported with Direct I/O. A new dataset property `direct` has been added with the following 3 allowable values: disabled - Accepts O_DIRECT flag, but silently ignores it and treats the request as a buffered IO request. standard - Follows the alignment restrictions outlined above for write/read IO requests when the O_DIRECT flag is used. always - Treats every write/read IO request as though it passed O_DIRECT and will do O_DIRECT if the alignment restrictions are met otherwise will redirect through the ARC. This property will not allow a request to fail. There is also a module parameter zfs_dio_enabled that can be used to force all reads and writes through the ARC. By setting this module parameter to 0, it mimics as if the direct dataset property is set to disabled. Reviewed-by: Brian Behlendorf <behlendorf@llnl.gov> Reviewed-by: Alexander Motin <mav@FreeBSD.org> Reviewed-by: Tony Hutter <hutter2@llnl.gov> Signed-off-by: Brian Atkinson <batkinson@lanl.gov> Co-authored-by: Mark Maybee <mark.maybee@delphix.com> Co-authored-by: Matt Macy <mmacy@FreeBSD.org> Co-authored-by: Brian Behlendorf <behlendorf@llnl.gov> Closes #10018
2024-09-14 23:47:59 +03:00
dmu_read_flags));
(void) ztest_write(zd, object, offset, blocksize, data);
break;
}
(void) pthread_rwlock_unlock(&zd->zd_zilog_lock);
umem_free(data, blocksize);
}
/*
* Initialize an object description template.
*/
static void
ztest_od_init(ztest_od_t *od, uint64_t id, const char *tag, uint64_t index,
Implement large_dnode pool feature Justification ------------- This feature adds support for variable length dnodes. Our motivation is to eliminate the overhead associated with using spill blocks. Spill blocks are used to store system attribute data (i.e. file metadata) that does not fit in the dnode's bonus buffer. By allowing a larger bonus buffer area the use of a spill block can be avoided. Spill blocks potentially incur an additional read I/O for every dnode in a dnode block. As a worst case example, reading 32 dnodes from a 16k dnode block and all of the spill blocks could issue 33 separate reads. Now suppose those dnodes have size 1024 and therefore don't need spill blocks. Then the worst case number of blocks read is reduced to from 33 to two--one per dnode block. In practice spill blocks may tend to be co-located on disk with the dnode blocks so the reduction in I/O would not be this drastic. In a badly fragmented pool, however, the improvement could be significant. ZFS-on-Linux systems that make heavy use of extended attributes would benefit from this feature. In particular, ZFS-on-Linux supports the xattr=sa dataset property which allows file extended attribute data to be stored in the dnode bonus buffer as an alternative to the traditional directory-based format. Workloads such as SELinux and the Lustre distributed filesystem often store enough xattr data to force spill bocks when xattr=sa is in effect. Large dnodes may therefore provide a performance benefit to such systems. Other use cases that may benefit from this feature include files with large ACLs and symbolic links with long target names. Furthermore, this feature may be desirable on other platforms in case future applications or features are developed that could make use of a larger bonus buffer area. Implementation -------------- The size of a dnode may be a multiple of 512 bytes up to the size of a dnode block (currently 16384 bytes). A dn_extra_slots field was added to the current on-disk dnode_phys_t structure to describe the size of the physical dnode on disk. The 8 bits for this field were taken from the zero filled dn_pad2 field. The field represents how many "extra" dnode_phys_t slots a dnode consumes in its dnode block. This convention results in a value of 0 for 512 byte dnodes which preserves on-disk format compatibility with older software. Similarly, the in-memory dnode_t structure has a new dn_num_slots field to represent the total number of dnode_phys_t slots consumed on disk. Thus dn->dn_num_slots is 1 greater than the corresponding dnp->dn_extra_slots. This difference in convention was adopted because, unlike on-disk structures, backward compatibility is not a concern for in-memory objects, so we used a more natural way to represent size for a dnode_t. The default size for newly created dnodes is determined by the value of a new "dnodesize" dataset property. By default the property is set to "legacy" which is compatible with older software. Setting the property to "auto" will allow the filesystem to choose the most suitable dnode size. Currently this just sets the default dnode size to 1k, but future code improvements could dynamically choose a size based on observed workload patterns. Dnodes of varying sizes can coexist within the same dataset and even within the same dnode block. For example, to enable automatically-sized dnodes, run # zfs set dnodesize=auto tank/fish The user can also specify literal values for the dnodesize property. These are currently limited to powers of two from 1k to 16k. The power-of-2 limitation is only for simplicity of the user interface. Internally the implementation can handle any multiple of 512 up to 16k, and consumers of the DMU API can specify any legal dnode value. The size of a new dnode is determined at object allocation time and stored as a new field in the znode in-memory structure. New DMU interfaces are added to allow the consumer to specify the dnode size that a newly allocated object should use. Existing interfaces are unchanged to avoid having to update every call site and to preserve compatibility with external consumers such as Lustre. The new interfaces names are given below. The versions of these functions that don't take a dnodesize parameter now just call the _dnsize() versions with a dnodesize of 0, which means use the legacy dnode size. New DMU interfaces: dmu_object_alloc_dnsize() dmu_object_claim_dnsize() dmu_object_reclaim_dnsize() New ZAP interfaces: zap_create_dnsize() zap_create_norm_dnsize() zap_create_flags_dnsize() zap_create_claim_norm_dnsize() zap_create_link_dnsize() The constant DN_MAX_BONUSLEN is renamed to DN_OLD_MAX_BONUSLEN. The spa_maxdnodesize() function should be used to determine the maximum bonus length for a pool. These are a few noteworthy changes to key functions: * The prototype for dnode_hold_impl() now takes a "slots" parameter. When the DNODE_MUST_BE_FREE flag is set, this parameter is used to ensure the hole at the specified object offset is large enough to hold the dnode being created. The slots parameter is also used to ensure a dnode does not span multiple dnode blocks. In both of these cases, if a failure occurs, ENOSPC is returned. Keep in mind, these failure cases are only possible when using DNODE_MUST_BE_FREE. If the DNODE_MUST_BE_ALLOCATED flag is set, "slots" must be 0. dnode_hold_impl() will check if the requested dnode is already consumed as an extra dnode slot by an large dnode, in which case it returns ENOENT. * The function dmu_object_alloc() advances to the next dnode block if dnode_hold_impl() returns an error for a requested object. This is because the beginning of the next dnode block is the only location it can safely assume to either be a hole or a valid starting point for a dnode. * dnode_next_offset_level() and other functions that iterate through dnode blocks may no longer use a simple array indexing scheme. These now use the current dnode's dn_num_slots field to advance to the next dnode in the block. This is to ensure we properly skip the current dnode's bonus area and don't interpret it as a valid dnode. zdb --- The zdb command was updated to display a dnode's size under the "dnsize" column when the object is dumped. For ZIL create log records, zdb will now display the slot count for the object. ztest ----- Ztest chooses a random dnodesize for every newly created object. The random distribution is more heavily weighted toward small dnodes to better simulate real-world datasets. Unused bonus buffer space is filled with non-zero values computed from the object number, dataset id, offset, and generation number. This helps ensure that the dnode traversal code properly skips the interior regions of large dnodes, and that these interior regions are not overwritten by data belonging to other dnodes. A new test visits each object in a dataset. It verifies that the actual dnode size matches what was stored in the ztest block tag when it was created. It also verifies that the unused bonus buffer space is filled with the expected data patterns. ZFS Test Suite -------------- Added six new large dnode-specific tests, and integrated the dnodesize property into existing tests for zfs allow and send/recv. Send/Receive ------------ ZFS send streams for datasets containing large dnodes cannot be received on pools that don't support the large_dnode feature. A send stream with large dnodes sets a DMU_BACKUP_FEATURE_LARGE_DNODE flag which will be unrecognized by an incompatible receiving pool so that the zfs receive will fail gracefully. While not implemented here, it may be possible to generate a backward-compatible send stream from a dataset containing large dnodes. The implementation may be tricky, however, because the send object record for a large dnode would need to be resized to a 512 byte dnode, possibly kicking in a spill block in the process. This means we would need to construct a new SA layout and possibly register it in the SA layout object. The SA layout is normally just sent as an ordinary object record. But if we are constructing new layouts while generating the send stream we'd have to build the SA layout object dynamically and send it at the end of the stream. For sending and receiving between pools that do support large dnodes, the drr_object send record type is extended with a new field to store the dnode slot count. This field was repurposed from unused padding in the structure. ZIL Replay ---------- The dnode slot count is stored in the uppermost 8 bits of the lr_foid field. The bits were unused as the object id is currently capped at 48 bits. Resizing Dnodes --------------- It should be possible to resize a dnode when it is dirtied if the current dnodesize dataset property differs from the dnode's size, but this functionality is not currently implemented. Clearly a dnode can only grow if there are sufficient contiguous unused slots in the dnode block, but it should always be possible to shrink a dnode. Growing dnodes may be useful to reduce fragmentation in a pool with many spill blocks in use. Shrinking dnodes may be useful to allow sending a dataset to a pool that doesn't support the large_dnode feature. Feature Reference Counting -------------------------- The reference count for the large_dnode pool feature tracks the number of datasets that have ever contained a dnode of size larger than 512 bytes. The first time a large dnode is created in a dataset the dataset is converted to an extensible dataset. This is a one-way operation and the only way to decrement the feature count is to destroy the dataset, even if the dataset no longer contains any large dnodes. The complexity of reference counting on a per-dnode basis was too high, so we chose to track it on a per-dataset basis similarly to the large_block feature. Signed-off-by: Ned Bass <bass6@llnl.gov> Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov> Closes #3542
2016-03-17 04:25:34 +03:00
dmu_object_type_t type, uint64_t blocksize, uint64_t dnodesize,
uint64_t gen)
{
od->od_dir = ZTEST_DIROBJ;
od->od_object = 0;
od->od_crtype = type;
od->od_crblocksize = blocksize ? blocksize : ztest_random_blocksize();
Implement large_dnode pool feature Justification ------------- This feature adds support for variable length dnodes. Our motivation is to eliminate the overhead associated with using spill blocks. Spill blocks are used to store system attribute data (i.e. file metadata) that does not fit in the dnode's bonus buffer. By allowing a larger bonus buffer area the use of a spill block can be avoided. Spill blocks potentially incur an additional read I/O for every dnode in a dnode block. As a worst case example, reading 32 dnodes from a 16k dnode block and all of the spill blocks could issue 33 separate reads. Now suppose those dnodes have size 1024 and therefore don't need spill blocks. Then the worst case number of blocks read is reduced to from 33 to two--one per dnode block. In practice spill blocks may tend to be co-located on disk with the dnode blocks so the reduction in I/O would not be this drastic. In a badly fragmented pool, however, the improvement could be significant. ZFS-on-Linux systems that make heavy use of extended attributes would benefit from this feature. In particular, ZFS-on-Linux supports the xattr=sa dataset property which allows file extended attribute data to be stored in the dnode bonus buffer as an alternative to the traditional directory-based format. Workloads such as SELinux and the Lustre distributed filesystem often store enough xattr data to force spill bocks when xattr=sa is in effect. Large dnodes may therefore provide a performance benefit to such systems. Other use cases that may benefit from this feature include files with large ACLs and symbolic links with long target names. Furthermore, this feature may be desirable on other platforms in case future applications or features are developed that could make use of a larger bonus buffer area. Implementation -------------- The size of a dnode may be a multiple of 512 bytes up to the size of a dnode block (currently 16384 bytes). A dn_extra_slots field was added to the current on-disk dnode_phys_t structure to describe the size of the physical dnode on disk. The 8 bits for this field were taken from the zero filled dn_pad2 field. The field represents how many "extra" dnode_phys_t slots a dnode consumes in its dnode block. This convention results in a value of 0 for 512 byte dnodes which preserves on-disk format compatibility with older software. Similarly, the in-memory dnode_t structure has a new dn_num_slots field to represent the total number of dnode_phys_t slots consumed on disk. Thus dn->dn_num_slots is 1 greater than the corresponding dnp->dn_extra_slots. This difference in convention was adopted because, unlike on-disk structures, backward compatibility is not a concern for in-memory objects, so we used a more natural way to represent size for a dnode_t. The default size for newly created dnodes is determined by the value of a new "dnodesize" dataset property. By default the property is set to "legacy" which is compatible with older software. Setting the property to "auto" will allow the filesystem to choose the most suitable dnode size. Currently this just sets the default dnode size to 1k, but future code improvements could dynamically choose a size based on observed workload patterns. Dnodes of varying sizes can coexist within the same dataset and even within the same dnode block. For example, to enable automatically-sized dnodes, run # zfs set dnodesize=auto tank/fish The user can also specify literal values for the dnodesize property. These are currently limited to powers of two from 1k to 16k. The power-of-2 limitation is only for simplicity of the user interface. Internally the implementation can handle any multiple of 512 up to 16k, and consumers of the DMU API can specify any legal dnode value. The size of a new dnode is determined at object allocation time and stored as a new field in the znode in-memory structure. New DMU interfaces are added to allow the consumer to specify the dnode size that a newly allocated object should use. Existing interfaces are unchanged to avoid having to update every call site and to preserve compatibility with external consumers such as Lustre. The new interfaces names are given below. The versions of these functions that don't take a dnodesize parameter now just call the _dnsize() versions with a dnodesize of 0, which means use the legacy dnode size. New DMU interfaces: dmu_object_alloc_dnsize() dmu_object_claim_dnsize() dmu_object_reclaim_dnsize() New ZAP interfaces: zap_create_dnsize() zap_create_norm_dnsize() zap_create_flags_dnsize() zap_create_claim_norm_dnsize() zap_create_link_dnsize() The constant DN_MAX_BONUSLEN is renamed to DN_OLD_MAX_BONUSLEN. The spa_maxdnodesize() function should be used to determine the maximum bonus length for a pool. These are a few noteworthy changes to key functions: * The prototype for dnode_hold_impl() now takes a "slots" parameter. When the DNODE_MUST_BE_FREE flag is set, this parameter is used to ensure the hole at the specified object offset is large enough to hold the dnode being created. The slots parameter is also used to ensure a dnode does not span multiple dnode blocks. In both of these cases, if a failure occurs, ENOSPC is returned. Keep in mind, these failure cases are only possible when using DNODE_MUST_BE_FREE. If the DNODE_MUST_BE_ALLOCATED flag is set, "slots" must be 0. dnode_hold_impl() will check if the requested dnode is already consumed as an extra dnode slot by an large dnode, in which case it returns ENOENT. * The function dmu_object_alloc() advances to the next dnode block if dnode_hold_impl() returns an error for a requested object. This is because the beginning of the next dnode block is the only location it can safely assume to either be a hole or a valid starting point for a dnode. * dnode_next_offset_level() and other functions that iterate through dnode blocks may no longer use a simple array indexing scheme. These now use the current dnode's dn_num_slots field to advance to the next dnode in the block. This is to ensure we properly skip the current dnode's bonus area and don't interpret it as a valid dnode. zdb --- The zdb command was updated to display a dnode's size under the "dnsize" column when the object is dumped. For ZIL create log records, zdb will now display the slot count for the object. ztest ----- Ztest chooses a random dnodesize for every newly created object. The random distribution is more heavily weighted toward small dnodes to better simulate real-world datasets. Unused bonus buffer space is filled with non-zero values computed from the object number, dataset id, offset, and generation number. This helps ensure that the dnode traversal code properly skips the interior regions of large dnodes, and that these interior regions are not overwritten by data belonging to other dnodes. A new test visits each object in a dataset. It verifies that the actual dnode size matches what was stored in the ztest block tag when it was created. It also verifies that the unused bonus buffer space is filled with the expected data patterns. ZFS Test Suite -------------- Added six new large dnode-specific tests, and integrated the dnodesize property into existing tests for zfs allow and send/recv. Send/Receive ------------ ZFS send streams for datasets containing large dnodes cannot be received on pools that don't support the large_dnode feature. A send stream with large dnodes sets a DMU_BACKUP_FEATURE_LARGE_DNODE flag which will be unrecognized by an incompatible receiving pool so that the zfs receive will fail gracefully. While not implemented here, it may be possible to generate a backward-compatible send stream from a dataset containing large dnodes. The implementation may be tricky, however, because the send object record for a large dnode would need to be resized to a 512 byte dnode, possibly kicking in a spill block in the process. This means we would need to construct a new SA layout and possibly register it in the SA layout object. The SA layout is normally just sent as an ordinary object record. But if we are constructing new layouts while generating the send stream we'd have to build the SA layout object dynamically and send it at the end of the stream. For sending and receiving between pools that do support large dnodes, the drr_object send record type is extended with a new field to store the dnode slot count. This field was repurposed from unused padding in the structure. ZIL Replay ---------- The dnode slot count is stored in the uppermost 8 bits of the lr_foid field. The bits were unused as the object id is currently capped at 48 bits. Resizing Dnodes --------------- It should be possible to resize a dnode when it is dirtied if the current dnodesize dataset property differs from the dnode's size, but this functionality is not currently implemented. Clearly a dnode can only grow if there are sufficient contiguous unused slots in the dnode block, but it should always be possible to shrink a dnode. Growing dnodes may be useful to reduce fragmentation in a pool with many spill blocks in use. Shrinking dnodes may be useful to allow sending a dataset to a pool that doesn't support the large_dnode feature. Feature Reference Counting -------------------------- The reference count for the large_dnode pool feature tracks the number of datasets that have ever contained a dnode of size larger than 512 bytes. The first time a large dnode is created in a dataset the dataset is converted to an extensible dataset. This is a one-way operation and the only way to decrement the feature count is to destroy the dataset, even if the dataset no longer contains any large dnodes. The complexity of reference counting on a per-dnode basis was too high, so we chose to track it on a per-dataset basis similarly to the large_block feature. Signed-off-by: Ned Bass <bass6@llnl.gov> Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov> Closes #3542
2016-03-17 04:25:34 +03:00
od->od_crdnodesize = dnodesize ? dnodesize : ztest_random_dnodesize();
od->od_crgen = gen;
od->od_type = DMU_OT_NONE;
od->od_blocksize = 0;
od->od_gen = 0;
(void) snprintf(od->od_name, sizeof (od->od_name),
"%s(%"PRId64")[%"PRIu64"]",
tag, id, index);
}
/*
* Lookup or create the objects for a test using the od template.
* If the objects do not all exist, or if 'remove' is specified,
* remove any existing objects and create new ones. Otherwise,
* use the existing objects.
*/
static int
ztest_object_init(ztest_ds_t *zd, ztest_od_t *od, size_t size, boolean_t remove)
{
int count = size / sizeof (*od);
int rv = 0;
mutex_enter(&zd->zd_dirobj_lock);
if ((ztest_lookup(zd, od, count) != 0 || remove) &&
(ztest_remove(zd, od, count) != 0 ||
ztest_create(zd, od, count) != 0))
rv = -1;
zd->zd_od = od;
mutex_exit(&zd->zd_dirobj_lock);
return (rv);
}
void
ztest_zil_commit(ztest_ds_t *zd, uint64_t id)
{
(void) id;
zilog_t *zilog = zd->zd_zilog;
(void) pthread_rwlock_rdlock(&zd->zd_zilog_lock);
zil_commit(zilog, ztest_random(ZTEST_OBJECTS));
/*
* Remember the committed values in zd, which is in parent/child
* shared memory. If we die, the next iteration of ztest_run()
* will verify that the log really does contain this record.
*/
mutex_enter(&zilog->zl_lock);
ASSERT3P(zd->zd_shared, !=, NULL);
ASSERT3U(zd->zd_shared->zd_seq, <=, zilog->zl_commit_lr_seq);
zd->zd_shared->zd_seq = zilog->zl_commit_lr_seq;
mutex_exit(&zilog->zl_lock);
(void) pthread_rwlock_unlock(&zd->zd_zilog_lock);
}
/*
* This function is designed to simulate the operations that occur during a
* mount/unmount operation. We hold the dataset across these operations in an
* attempt to expose any implicit assumptions about ZIL management.
*/
void
ztest_zil_remount(ztest_ds_t *zd, uint64_t id)
{
(void) id;
objset_t *os = zd->zd_os;
/*
* We hold the ztest_vdev_lock so we don't cause problems with
* other threads that wish to remove a log device, such as
* ztest_device_removal().
*/
mutex_enter(&ztest_vdev_lock);
/*
* We grab the zd_dirobj_lock to ensure that no other thread is
* updating the zil (i.e. adding in-memory log records) and the
* zd_zilog_lock to block any I/O.
*/
mutex_enter(&zd->zd_dirobj_lock);
(void) pthread_rwlock_wrlock(&zd->zd_zilog_lock);
/* zfsvfs_teardown() */
zil_close(zd->zd_zilog);
/* zfsvfs_setup() */
VERIFY3P(zil_open(os, ztest_get_data, NULL), ==, zd->zd_zilog);
zil_replay(os, zd, ztest_replay_vector);
(void) pthread_rwlock_unlock(&zd->zd_zilog_lock);
mutex_exit(&zd->zd_dirobj_lock);
mutex_exit(&ztest_vdev_lock);
}
/*
* Verify that we can't destroy an active pool, create an existing pool,
* or create a pool with a bad vdev spec.
*/
void
ztest_spa_create_destroy(ztest_ds_t *zd, uint64_t id)
{
(void) zd, (void) id;
ztest_shared_opts_t *zo = &ztest_opts;
spa_t *spa;
nvlist_t *nvroot;
Multi-modifier protection (MMP) Add multihost=on|off pool property to control MMP. When enabled a new thread writes uberblocks to the last slot in each label, at a set frequency, to indicate to other hosts the pool is actively imported. These uberblocks are the last synced uberblock with an updated timestamp. Property defaults to off. During tryimport, find the "best" uberblock (newest txg and timestamp) repeatedly, checking for change in the found uberblock. Include the results of the activity test in the config returned by tryimport. These results are reported to user in "zpool import". Allow the user to control the period between MMP writes, and the duration of the activity test on import, via a new module parameter zfs_multihost_interval. The period is specified in milliseconds. The activity test duration is calculated from this value, and from the mmp_delay in the "best" uberblock found initially. Add a kstat interface to export statistics about Multiple Modifier Protection (MMP) updates. Include the last synced txg number, the timestamp, the delay since the last MMP update, the VDEV GUID, the VDEV label that received the last MMP update, and the VDEV path. Abbreviated output below. $ cat /proc/spl/kstat/zfs/mypool/multihost 31 0 0x01 10 880 105092382393521 105144180101111 txg timestamp mmp_delay vdev_guid vdev_label vdev_path 20468 261337 250274925 68396651780 3 /dev/sda 20468 261339 252023374 6267402363293 1 /dev/sdc 20468 261340 252000858 6698080955233 1 /dev/sdx 20468 261341 251980635 783892869810 2 /dev/sdy 20468 261342 253385953 8923255792467 3 /dev/sdd 20468 261344 253336622 042125143176 0 /dev/sdab 20468 261345 253310522 1200778101278 2 /dev/sde 20468 261346 253286429 0950576198362 2 /dev/sdt 20468 261347 253261545 96209817917 3 /dev/sds 20468 261349 253238188 8555725937673 3 /dev/sdb Add a new tunable zfs_multihost_history to specify the number of MMP updates to store history for. By default it is set to zero meaning that no MMP statistics are stored. When using ztest to generate activity, for automated tests of the MMP function, some test functions interfere with the test. For example, the pool is exported to run zdb and then imported again. Add a new ztest function, "-M", to alter ztest behavior to prevent this. Add new tests to verify the new functionality. Tests provided by Giuseppe Di Natale. Reviewed by: Matthew Ahrens <mahrens@delphix.com> Reviewed-by: Giuseppe Di Natale <dinatale2@llnl.gov> Reviewed-by: Ned Bass <bass6@llnl.gov> Reviewed-by: Andreas Dilger <andreas.dilger@intel.com> Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov> Signed-off-by: Olaf Faaland <faaland1@llnl.gov> Closes #745 Closes #6279
2017-07-08 06:20:35 +03:00
if (zo->zo_mmp_test)
return;
/*
* Attempt to create using a bad file.
*/
nvroot = make_vdev_root("/dev/bogus", NULL, NULL, 0, 0, NULL, 0, 0, 1);
VERIFY3U(ENOENT, ==,
Native Encryption for ZFS on Linux This change incorporates three major pieces: The first change is a keystore that manages wrapping and encryption keys for encrypted datasets. These commands mostly involve manipulating the new DSL Crypto Key ZAP Objects that live in the MOS. Each encrypted dataset has its own DSL Crypto Key that is protected with a user's key. This level of indirection allows users to change their keys without re-encrypting their entire datasets. The change implements the new subcommands "zfs load-key", "zfs unload-key" and "zfs change-key" which allow the user to manage their encryption keys and settings. In addition, several new flags and properties have been added to allow dataset creation and to make mounting and unmounting more convenient. The second piece of this patch provides the ability to encrypt, decyrpt, and authenticate protected datasets. Each object set maintains a Merkel tree of Message Authentication Codes that protect the lower layers, similarly to how checksums are maintained. This part impacts the zio layer, which handles the actual encryption and generation of MACs, as well as the ARC and DMU, which need to be able to handle encrypted buffers and protected data. The last addition is the ability to do raw, encrypted sends and receives. The idea here is to send raw encrypted and compressed data and receive it exactly as is on a backup system. This means that the dataset on the receiving system is protected using the same user key that is in use on the sending side. By doing so, datasets can be efficiently backed up to an untrusted system without fear of data being compromised. Reviewed by: Matthew Ahrens <mahrens@delphix.com> Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov> Reviewed-by: Jorgen Lundman <lundman@lundman.net> Signed-off-by: Tom Caputi <tcaputi@datto.com> Closes #494 Closes #5769
2017-08-14 20:36:48 +03:00
spa_create("ztest_bad_file", nvroot, NULL, NULL, NULL));
fnvlist_free(nvroot);
/*
* Attempt to create using a bad mirror.
*/
nvroot = make_vdev_root("/dev/bogus", NULL, NULL, 0, 0, NULL, 0, 2, 1);
VERIFY3U(ENOENT, ==,
Native Encryption for ZFS on Linux This change incorporates three major pieces: The first change is a keystore that manages wrapping and encryption keys for encrypted datasets. These commands mostly involve manipulating the new DSL Crypto Key ZAP Objects that live in the MOS. Each encrypted dataset has its own DSL Crypto Key that is protected with a user's key. This level of indirection allows users to change their keys without re-encrypting their entire datasets. The change implements the new subcommands "zfs load-key", "zfs unload-key" and "zfs change-key" which allow the user to manage their encryption keys and settings. In addition, several new flags and properties have been added to allow dataset creation and to make mounting and unmounting more convenient. The second piece of this patch provides the ability to encrypt, decyrpt, and authenticate protected datasets. Each object set maintains a Merkel tree of Message Authentication Codes that protect the lower layers, similarly to how checksums are maintained. This part impacts the zio layer, which handles the actual encryption and generation of MACs, as well as the ARC and DMU, which need to be able to handle encrypted buffers and protected data. The last addition is the ability to do raw, encrypted sends and receives. The idea here is to send raw encrypted and compressed data and receive it exactly as is on a backup system. This means that the dataset on the receiving system is protected using the same user key that is in use on the sending side. By doing so, datasets can be efficiently backed up to an untrusted system without fear of data being compromised. Reviewed by: Matthew Ahrens <mahrens@delphix.com> Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov> Reviewed-by: Jorgen Lundman <lundman@lundman.net> Signed-off-by: Tom Caputi <tcaputi@datto.com> Closes #494 Closes #5769
2017-08-14 20:36:48 +03:00
spa_create("ztest_bad_mirror", nvroot, NULL, NULL, NULL));
fnvlist_free(nvroot);
/*
* Attempt to create an existing pool. It shouldn't matter
* what's in the nvroot; we should fail with EEXIST.
*/
(void) pthread_rwlock_rdlock(&ztest_name_lock);
nvroot = make_vdev_root("/dev/bogus", NULL, NULL, 0, 0, NULL, 0, 0, 1);
Native Encryption for ZFS on Linux This change incorporates three major pieces: The first change is a keystore that manages wrapping and encryption keys for encrypted datasets. These commands mostly involve manipulating the new DSL Crypto Key ZAP Objects that live in the MOS. Each encrypted dataset has its own DSL Crypto Key that is protected with a user's key. This level of indirection allows users to change their keys without re-encrypting their entire datasets. The change implements the new subcommands "zfs load-key", "zfs unload-key" and "zfs change-key" which allow the user to manage their encryption keys and settings. In addition, several new flags and properties have been added to allow dataset creation and to make mounting and unmounting more convenient. The second piece of this patch provides the ability to encrypt, decyrpt, and authenticate protected datasets. Each object set maintains a Merkel tree of Message Authentication Codes that protect the lower layers, similarly to how checksums are maintained. This part impacts the zio layer, which handles the actual encryption and generation of MACs, as well as the ARC and DMU, which need to be able to handle encrypted buffers and protected data. The last addition is the ability to do raw, encrypted sends and receives. The idea here is to send raw encrypted and compressed data and receive it exactly as is on a backup system. This means that the dataset on the receiving system is protected using the same user key that is in use on the sending side. By doing so, datasets can be efficiently backed up to an untrusted system without fear of data being compromised. Reviewed by: Matthew Ahrens <mahrens@delphix.com> Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov> Reviewed-by: Jorgen Lundman <lundman@lundman.net> Signed-off-by: Tom Caputi <tcaputi@datto.com> Closes #494 Closes #5769
2017-08-14 20:36:48 +03:00
VERIFY3U(EEXIST, ==,
spa_create(zo->zo_pool, nvroot, NULL, NULL, NULL));
fnvlist_free(nvroot);
/*
* We open a reference to the spa and then we try to export it
* expecting one of the following errors:
*
* EBUSY
* Because of the reference we just opened.
*
* ZFS_ERR_EXPORT_IN_PROGRESS
* For the case that there is another ztest thread doing
* an export concurrently.
*/
VERIFY0(spa_open(zo->zo_pool, &spa, FTAG));
int error = spa_destroy(zo->zo_pool);
if (error != EBUSY && error != ZFS_ERR_EXPORT_IN_PROGRESS) {
fatal(B_FALSE, "spa_destroy(%s) returned unexpected value %d",
spa->spa_name, error);
}
spa_close(spa, FTAG);
(void) pthread_rwlock_unlock(&ztest_name_lock);
}
/*
* Start and then stop the MMP threads to ensure the startup and shutdown code
* works properly. Actual protection and property-related code tested via ZTS.
*/
void
ztest_mmp_enable_disable(ztest_ds_t *zd, uint64_t id)
{
(void) zd, (void) id;
ztest_shared_opts_t *zo = &ztest_opts;
spa_t *spa = ztest_spa;
if (zo->zo_mmp_test)
return;
/*
* Since enabling MMP involves setting a property, it could not be done
* while the pool is suspended.
*/
if (spa_suspended(spa))
return;
spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
mutex_enter(&spa->spa_props_lock);
zfs_multihost_fail_intervals = 0;
if (!spa_multihost(spa)) {
spa->spa_multihost = B_TRUE;
mmp_thread_start(spa);
}
mutex_exit(&spa->spa_props_lock);
spa_config_exit(spa, SCL_CONFIG, FTAG);
txg_wait_synced(spa_get_dsl(spa), 0);
mmp_signal_all_threads();
txg_wait_synced(spa_get_dsl(spa), 0);
spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
mutex_enter(&spa->spa_props_lock);
if (spa_multihost(spa)) {
mmp_thread_stop(spa);
spa->spa_multihost = B_FALSE;
}
mutex_exit(&spa->spa_props_lock);
spa_config_exit(spa, SCL_CONFIG, FTAG);
}
RAID-Z expansion feature This feature allows disks to be added one at a time to a RAID-Z group, expanding its capacity incrementally. This feature is especially useful for small pools (typically with only one RAID-Z group), where there isn't sufficient hardware to add capacity by adding a whole new RAID-Z group (typically doubling the number of disks). == Initiating expansion == A new device (disk) can be attached to an existing RAIDZ vdev, by running `zpool attach POOL raidzP-N NEW_DEVICE`, e.g. `zpool attach tank raidz2-0 sda`. The new device will become part of the RAIDZ group. A "raidz expansion" will be initiated, and the new device will contribute additional space to the RAIDZ group once the expansion completes. The `feature@raidz_expansion` on-disk feature flag must be `enabled` to initiate an expansion, and it remains `active` for the life of the pool. In other words, pools with expanded RAIDZ vdevs can not be imported by older releases of the ZFS software. == During expansion == The expansion entails reading all allocated space from existing disks in the RAIDZ group, and rewriting it to the new disks in the RAIDZ group (including the newly added device). The expansion progress can be monitored with `zpool status`. Data redundancy is maintained during (and after) the expansion. If a disk fails while the expansion is in progress, the expansion pauses until the health of the RAIDZ vdev is restored (e.g. by replacing the failed disk and waiting for reconstruction to complete). The pool remains accessible during expansion. Following a reboot or export/import, the expansion resumes where it left off. == After expansion == When the expansion completes, the additional space is available for use, and is reflected in the `available` zfs property (as seen in `zfs list`, `df`, etc). Expansion does not change the number of failures that can be tolerated without data loss (e.g. a RAIDZ2 is still a RAIDZ2 even after expansion). A RAIDZ vdev can be expanded multiple times. After the expansion completes, old blocks remain with their old data-to-parity ratio (e.g. 5-wide RAIDZ2, has 3 data to 2 parity), but distributed among the larger set of disks. New blocks will be written with the new data-to-parity ratio (e.g. a 5-wide RAIDZ2 which has been expanded once to 6-wide, has 4 data to 2 parity). However, the RAIDZ vdev's "assumed parity ratio" does not change, so slightly less space than is expected may be reported for newly-written blocks, according to `zfs list`, `df`, `ls -s`, and similar tools. Sponsored-by: The FreeBSD Foundation Sponsored-by: iXsystems, Inc. Sponsored-by: vStack Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov> Reviewed-by: Mark Maybee <mark.maybee@delphix.com> Authored-by: Matthew Ahrens <mahrens@delphix.com> Contributions-by: Fedor Uporov <fuporov.vstack@gmail.com> Contributions-by: Stuart Maybee <stuart.maybee@comcast.net> Contributions-by: Thorsten Behrens <tbehrens@outlook.com> Contributions-by: Fmstrat <nospam@nowsci.com> Contributions-by: Don Brady <dev.fs.zfs@gmail.com> Signed-off-by: Don Brady <dev.fs.zfs@gmail.com> Closes #15022
2023-11-08 21:19:41 +03:00
static int
ztest_get_raidz_children(spa_t *spa)
{
(void) spa;
vdev_t *raidvd;
ASSERT(MUTEX_HELD(&ztest_vdev_lock));
if (ztest_opts.zo_raid_do_expand) {
raidvd = ztest_spa->spa_root_vdev->vdev_child[0];
ASSERT(raidvd->vdev_ops == &vdev_raidz_ops);
return (raidvd->vdev_children);
}
return (ztest_opts.zo_raid_children);
}
void
ztest_spa_upgrade(ztest_ds_t *zd, uint64_t id)
{
(void) zd, (void) id;
spa_t *spa;
uint64_t initial_version = SPA_VERSION_INITIAL;
RAID-Z expansion feature This feature allows disks to be added one at a time to a RAID-Z group, expanding its capacity incrementally. This feature is especially useful for small pools (typically with only one RAID-Z group), where there isn't sufficient hardware to add capacity by adding a whole new RAID-Z group (typically doubling the number of disks). == Initiating expansion == A new device (disk) can be attached to an existing RAIDZ vdev, by running `zpool attach POOL raidzP-N NEW_DEVICE`, e.g. `zpool attach tank raidz2-0 sda`. The new device will become part of the RAIDZ group. A "raidz expansion" will be initiated, and the new device will contribute additional space to the RAIDZ group once the expansion completes. The `feature@raidz_expansion` on-disk feature flag must be `enabled` to initiate an expansion, and it remains `active` for the life of the pool. In other words, pools with expanded RAIDZ vdevs can not be imported by older releases of the ZFS software. == During expansion == The expansion entails reading all allocated space from existing disks in the RAIDZ group, and rewriting it to the new disks in the RAIDZ group (including the newly added device). The expansion progress can be monitored with `zpool status`. Data redundancy is maintained during (and after) the expansion. If a disk fails while the expansion is in progress, the expansion pauses until the health of the RAIDZ vdev is restored (e.g. by replacing the failed disk and waiting for reconstruction to complete). The pool remains accessible during expansion. Following a reboot or export/import, the expansion resumes where it left off. == After expansion == When the expansion completes, the additional space is available for use, and is reflected in the `available` zfs property (as seen in `zfs list`, `df`, etc). Expansion does not change the number of failures that can be tolerated without data loss (e.g. a RAIDZ2 is still a RAIDZ2 even after expansion). A RAIDZ vdev can be expanded multiple times. After the expansion completes, old blocks remain with their old data-to-parity ratio (e.g. 5-wide RAIDZ2, has 3 data to 2 parity), but distributed among the larger set of disks. New blocks will be written with the new data-to-parity ratio (e.g. a 5-wide RAIDZ2 which has been expanded once to 6-wide, has 4 data to 2 parity). However, the RAIDZ vdev's "assumed parity ratio" does not change, so slightly less space than is expected may be reported for newly-written blocks, according to `zfs list`, `df`, `ls -s`, and similar tools. Sponsored-by: The FreeBSD Foundation Sponsored-by: iXsystems, Inc. Sponsored-by: vStack Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov> Reviewed-by: Mark Maybee <mark.maybee@delphix.com> Authored-by: Matthew Ahrens <mahrens@delphix.com> Contributions-by: Fedor Uporov <fuporov.vstack@gmail.com> Contributions-by: Stuart Maybee <stuart.maybee@comcast.net> Contributions-by: Thorsten Behrens <tbehrens@outlook.com> Contributions-by: Fmstrat <nospam@nowsci.com> Contributions-by: Don Brady <dev.fs.zfs@gmail.com> Signed-off-by: Don Brady <dev.fs.zfs@gmail.com> Closes #15022
2023-11-08 21:19:41 +03:00
uint64_t raidz_children, version, newversion;
nvlist_t *nvroot, *props;
char *name;
Multi-modifier protection (MMP) Add multihost=on|off pool property to control MMP. When enabled a new thread writes uberblocks to the last slot in each label, at a set frequency, to indicate to other hosts the pool is actively imported. These uberblocks are the last synced uberblock with an updated timestamp. Property defaults to off. During tryimport, find the "best" uberblock (newest txg and timestamp) repeatedly, checking for change in the found uberblock. Include the results of the activity test in the config returned by tryimport. These results are reported to user in "zpool import". Allow the user to control the period between MMP writes, and the duration of the activity test on import, via a new module parameter zfs_multihost_interval. The period is specified in milliseconds. The activity test duration is calculated from this value, and from the mmp_delay in the "best" uberblock found initially. Add a kstat interface to export statistics about Multiple Modifier Protection (MMP) updates. Include the last synced txg number, the timestamp, the delay since the last MMP update, the VDEV GUID, the VDEV label that received the last MMP update, and the VDEV path. Abbreviated output below. $ cat /proc/spl/kstat/zfs/mypool/multihost 31 0 0x01 10 880 105092382393521 105144180101111 txg timestamp mmp_delay vdev_guid vdev_label vdev_path 20468 261337 250274925 68396651780 3 /dev/sda 20468 261339 252023374 6267402363293 1 /dev/sdc 20468 261340 252000858 6698080955233 1 /dev/sdx 20468 261341 251980635 783892869810 2 /dev/sdy 20468 261342 253385953 8923255792467 3 /dev/sdd 20468 261344 253336622 042125143176 0 /dev/sdab 20468 261345 253310522 1200778101278 2 /dev/sde 20468 261346 253286429 0950576198362 2 /dev/sdt 20468 261347 253261545 96209817917 3 /dev/sds 20468 261349 253238188 8555725937673 3 /dev/sdb Add a new tunable zfs_multihost_history to specify the number of MMP updates to store history for. By default it is set to zero meaning that no MMP statistics are stored. When using ztest to generate activity, for automated tests of the MMP function, some test functions interfere with the test. For example, the pool is exported to run zdb and then imported again. Add a new ztest function, "-M", to alter ztest behavior to prevent this. Add new tests to verify the new functionality. Tests provided by Giuseppe Di Natale. Reviewed by: Matthew Ahrens <mahrens@delphix.com> Reviewed-by: Giuseppe Di Natale <dinatale2@llnl.gov> Reviewed-by: Ned Bass <bass6@llnl.gov> Reviewed-by: Andreas Dilger <andreas.dilger@intel.com> Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov> Signed-off-by: Olaf Faaland <faaland1@llnl.gov> Closes #745 Closes #6279
2017-07-08 06:20:35 +03:00
if (ztest_opts.zo_mmp_test)
return;
Distributed Spare (dRAID) Feature This patch adds a new top-level vdev type called dRAID, which stands for Distributed parity RAID. This pool configuration allows all dRAID vdevs to participate when rebuilding to a distributed hot spare device. This can substantially reduce the total time required to restore full parity to pool with a failed device. A dRAID pool can be created using the new top-level `draid` type. Like `raidz`, the desired redundancy is specified after the type: `draid[1,2,3]`. No additional information is required to create the pool and reasonable default values will be chosen based on the number of child vdevs in the dRAID vdev. zpool create <pool> draid[1,2,3] <vdevs...> Unlike raidz, additional optional dRAID configuration values can be provided as part of the draid type as colon separated values. This allows administrators to fully specify a layout for either performance or capacity reasons. The supported options include: zpool create <pool> \ draid[<parity>][:<data>d][:<children>c][:<spares>s] \ <vdevs...> - draid[parity] - Parity level (default 1) - draid[:<data>d] - Data devices per group (default 8) - draid[:<children>c] - Expected number of child vdevs - draid[:<spares>s] - Distributed hot spares (default 0) Abbreviated example `zpool status` output for a 68 disk dRAID pool with two distributed spares using special allocation classes. ``` pool: tank state: ONLINE config: NAME STATE READ WRITE CKSUM slag7 ONLINE 0 0 0 draid2:8d:68c:2s-0 ONLINE 0 0 0 L0 ONLINE 0 0 0 L1 ONLINE 0 0 0 ... U25 ONLINE 0 0 0 U26 ONLINE 0 0 0 spare-53 ONLINE 0 0 0 U27 ONLINE 0 0 0 draid2-0-0 ONLINE 0 0 0 U28 ONLINE 0 0 0 U29 ONLINE 0 0 0 ... U42 ONLINE 0 0 0 U43 ONLINE 0 0 0 special mirror-1 ONLINE 0 0 0 L5 ONLINE 0 0 0 U5 ONLINE 0 0 0 mirror-2 ONLINE 0 0 0 L6 ONLINE 0 0 0 U6 ONLINE 0 0 0 spares draid2-0-0 INUSE currently in use draid2-0-1 AVAIL ``` When adding test coverage for the new dRAID vdev type the following options were added to the ztest command. These options are leverages by zloop.sh to test a wide range of dRAID configurations. -K draid|raidz|random - kind of RAID to test -D <value> - dRAID data drives per group -S <value> - dRAID distributed hot spares -R <value> - RAID parity (raidz or dRAID) The zpool_create, zpool_import, redundancy, replacement and fault test groups have all been updated provide test coverage for the dRAID feature. Co-authored-by: Isaac Huang <he.huang@intel.com> Co-authored-by: Mark Maybee <mmaybee@cray.com> Co-authored-by: Don Brady <don.brady@delphix.com> Co-authored-by: Matthew Ahrens <mahrens@delphix.com> Co-authored-by: Brian Behlendorf <behlendorf1@llnl.gov> Reviewed-by: Mark Maybee <mmaybee@cray.com> Reviewed-by: Matt Ahrens <matt@delphix.com> Reviewed-by: Tony Hutter <hutter2@llnl.gov> Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov> Closes #10102
2020-11-14 00:51:51 +03:00
/* dRAID added after feature flags, skip upgrade test. */
if (strcmp(ztest_opts.zo_raid_type, VDEV_TYPE_DRAID) == 0)
return;
mutex_enter(&ztest_vdev_lock);
name = kmem_asprintf("%s_upgrade", ztest_opts.zo_pool);
/*
* Clean up from previous runs.
*/
(void) spa_destroy(name);
RAID-Z expansion feature This feature allows disks to be added one at a time to a RAID-Z group, expanding its capacity incrementally. This feature is especially useful for small pools (typically with only one RAID-Z group), where there isn't sufficient hardware to add capacity by adding a whole new RAID-Z group (typically doubling the number of disks). == Initiating expansion == A new device (disk) can be attached to an existing RAIDZ vdev, by running `zpool attach POOL raidzP-N NEW_DEVICE`, e.g. `zpool attach tank raidz2-0 sda`. The new device will become part of the RAIDZ group. A "raidz expansion" will be initiated, and the new device will contribute additional space to the RAIDZ group once the expansion completes. The `feature@raidz_expansion` on-disk feature flag must be `enabled` to initiate an expansion, and it remains `active` for the life of the pool. In other words, pools with expanded RAIDZ vdevs can not be imported by older releases of the ZFS software. == During expansion == The expansion entails reading all allocated space from existing disks in the RAIDZ group, and rewriting it to the new disks in the RAIDZ group (including the newly added device). The expansion progress can be monitored with `zpool status`. Data redundancy is maintained during (and after) the expansion. If a disk fails while the expansion is in progress, the expansion pauses until the health of the RAIDZ vdev is restored (e.g. by replacing the failed disk and waiting for reconstruction to complete). The pool remains accessible during expansion. Following a reboot or export/import, the expansion resumes where it left off. == After expansion == When the expansion completes, the additional space is available for use, and is reflected in the `available` zfs property (as seen in `zfs list`, `df`, etc). Expansion does not change the number of failures that can be tolerated without data loss (e.g. a RAIDZ2 is still a RAIDZ2 even after expansion). A RAIDZ vdev can be expanded multiple times. After the expansion completes, old blocks remain with their old data-to-parity ratio (e.g. 5-wide RAIDZ2, has 3 data to 2 parity), but distributed among the larger set of disks. New blocks will be written with the new data-to-parity ratio (e.g. a 5-wide RAIDZ2 which has been expanded once to 6-wide, has 4 data to 2 parity). However, the RAIDZ vdev's "assumed parity ratio" does not change, so slightly less space than is expected may be reported for newly-written blocks, according to `zfs list`, `df`, `ls -s`, and similar tools. Sponsored-by: The FreeBSD Foundation Sponsored-by: iXsystems, Inc. Sponsored-by: vStack Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov> Reviewed-by: Mark Maybee <mark.maybee@delphix.com> Authored-by: Matthew Ahrens <mahrens@delphix.com> Contributions-by: Fedor Uporov <fuporov.vstack@gmail.com> Contributions-by: Stuart Maybee <stuart.maybee@comcast.net> Contributions-by: Thorsten Behrens <tbehrens@outlook.com> Contributions-by: Fmstrat <nospam@nowsci.com> Contributions-by: Don Brady <dev.fs.zfs@gmail.com> Signed-off-by: Don Brady <dev.fs.zfs@gmail.com> Closes #15022
2023-11-08 21:19:41 +03:00
raidz_children = ztest_get_raidz_children(ztest_spa);
nvroot = make_vdev_root(NULL, NULL, name, ztest_opts.zo_vdev_size, 0,
RAID-Z expansion feature This feature allows disks to be added one at a time to a RAID-Z group, expanding its capacity incrementally. This feature is especially useful for small pools (typically with only one RAID-Z group), where there isn't sufficient hardware to add capacity by adding a whole new RAID-Z group (typically doubling the number of disks). == Initiating expansion == A new device (disk) can be attached to an existing RAIDZ vdev, by running `zpool attach POOL raidzP-N NEW_DEVICE`, e.g. `zpool attach tank raidz2-0 sda`. The new device will become part of the RAIDZ group. A "raidz expansion" will be initiated, and the new device will contribute additional space to the RAIDZ group once the expansion completes. The `feature@raidz_expansion` on-disk feature flag must be `enabled` to initiate an expansion, and it remains `active` for the life of the pool. In other words, pools with expanded RAIDZ vdevs can not be imported by older releases of the ZFS software. == During expansion == The expansion entails reading all allocated space from existing disks in the RAIDZ group, and rewriting it to the new disks in the RAIDZ group (including the newly added device). The expansion progress can be monitored with `zpool status`. Data redundancy is maintained during (and after) the expansion. If a disk fails while the expansion is in progress, the expansion pauses until the health of the RAIDZ vdev is restored (e.g. by replacing the failed disk and waiting for reconstruction to complete). The pool remains accessible during expansion. Following a reboot or export/import, the expansion resumes where it left off. == After expansion == When the expansion completes, the additional space is available for use, and is reflected in the `available` zfs property (as seen in `zfs list`, `df`, etc). Expansion does not change the number of failures that can be tolerated without data loss (e.g. a RAIDZ2 is still a RAIDZ2 even after expansion). A RAIDZ vdev can be expanded multiple times. After the expansion completes, old blocks remain with their old data-to-parity ratio (e.g. 5-wide RAIDZ2, has 3 data to 2 parity), but distributed among the larger set of disks. New blocks will be written with the new data-to-parity ratio (e.g. a 5-wide RAIDZ2 which has been expanded once to 6-wide, has 4 data to 2 parity). However, the RAIDZ vdev's "assumed parity ratio" does not change, so slightly less space than is expected may be reported for newly-written blocks, according to `zfs list`, `df`, `ls -s`, and similar tools. Sponsored-by: The FreeBSD Foundation Sponsored-by: iXsystems, Inc. Sponsored-by: vStack Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov> Reviewed-by: Mark Maybee <mark.maybee@delphix.com> Authored-by: Matthew Ahrens <mahrens@delphix.com> Contributions-by: Fedor Uporov <fuporov.vstack@gmail.com> Contributions-by: Stuart Maybee <stuart.maybee@comcast.net> Contributions-by: Thorsten Behrens <tbehrens@outlook.com> Contributions-by: Fmstrat <nospam@nowsci.com> Contributions-by: Don Brady <dev.fs.zfs@gmail.com> Signed-off-by: Don Brady <dev.fs.zfs@gmail.com> Closes #15022
2023-11-08 21:19:41 +03:00
NULL, raidz_children, ztest_opts.zo_mirrors, 1);
/*
* If we're configuring a RAIDZ device then make sure that the
* initial version is capable of supporting that feature.
*/
Distributed Spare (dRAID) Feature This patch adds a new top-level vdev type called dRAID, which stands for Distributed parity RAID. This pool configuration allows all dRAID vdevs to participate when rebuilding to a distributed hot spare device. This can substantially reduce the total time required to restore full parity to pool with a failed device. A dRAID pool can be created using the new top-level `draid` type. Like `raidz`, the desired redundancy is specified after the type: `draid[1,2,3]`. No additional information is required to create the pool and reasonable default values will be chosen based on the number of child vdevs in the dRAID vdev. zpool create <pool> draid[1,2,3] <vdevs...> Unlike raidz, additional optional dRAID configuration values can be provided as part of the draid type as colon separated values. This allows administrators to fully specify a layout for either performance or capacity reasons. The supported options include: zpool create <pool> \ draid[<parity>][:<data>d][:<children>c][:<spares>s] \ <vdevs...> - draid[parity] - Parity level (default 1) - draid[:<data>d] - Data devices per group (default 8) - draid[:<children>c] - Expected number of child vdevs - draid[:<spares>s] - Distributed hot spares (default 0) Abbreviated example `zpool status` output for a 68 disk dRAID pool with two distributed spares using special allocation classes. ``` pool: tank state: ONLINE config: NAME STATE READ WRITE CKSUM slag7 ONLINE 0 0 0 draid2:8d:68c:2s-0 ONLINE 0 0 0 L0 ONLINE 0 0 0 L1 ONLINE 0 0 0 ... U25 ONLINE 0 0 0 U26 ONLINE 0 0 0 spare-53 ONLINE 0 0 0 U27 ONLINE 0 0 0 draid2-0-0 ONLINE 0 0 0 U28 ONLINE 0 0 0 U29 ONLINE 0 0 0 ... U42 ONLINE 0 0 0 U43 ONLINE 0 0 0 special mirror-1 ONLINE 0 0 0 L5 ONLINE 0 0 0 U5 ONLINE 0 0 0 mirror-2 ONLINE 0 0 0 L6 ONLINE 0 0 0 U6 ONLINE 0 0 0 spares draid2-0-0 INUSE currently in use draid2-0-1 AVAIL ``` When adding test coverage for the new dRAID vdev type the following options were added to the ztest command. These options are leverages by zloop.sh to test a wide range of dRAID configurations. -K draid|raidz|random - kind of RAID to test -D <value> - dRAID data drives per group -S <value> - dRAID distributed hot spares -R <value> - RAID parity (raidz or dRAID) The zpool_create, zpool_import, redundancy, replacement and fault test groups have all been updated provide test coverage for the dRAID feature. Co-authored-by: Isaac Huang <he.huang@intel.com> Co-authored-by: Mark Maybee <mmaybee@cray.com> Co-authored-by: Don Brady <don.brady@delphix.com> Co-authored-by: Matthew Ahrens <mahrens@delphix.com> Co-authored-by: Brian Behlendorf <behlendorf1@llnl.gov> Reviewed-by: Mark Maybee <mmaybee@cray.com> Reviewed-by: Matt Ahrens <matt@delphix.com> Reviewed-by: Tony Hutter <hutter2@llnl.gov> Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov> Closes #10102
2020-11-14 00:51:51 +03:00
switch (ztest_opts.zo_raid_parity) {
case 0:
case 1:
initial_version = SPA_VERSION_INITIAL;
break;
case 2:
initial_version = SPA_VERSION_RAIDZ2;
break;
case 3:
initial_version = SPA_VERSION_RAIDZ3;
break;
}
/*
* Create a pool with a spa version that can be upgraded. Pick
* a value between initial_version and SPA_VERSION_BEFORE_FEATURES.
*/
do {
version = ztest_random_spa_version(initial_version);
} while (version > SPA_VERSION_BEFORE_FEATURES);
props = fnvlist_alloc();
fnvlist_add_uint64(props,
zpool_prop_to_name(ZPOOL_PROP_VERSION), version);
VERIFY0(spa_create(name, nvroot, props, NULL, NULL));
fnvlist_free(nvroot);
fnvlist_free(props);
VERIFY0(spa_open(name, &spa, FTAG));
VERIFY3U(spa_version(spa), ==, version);
newversion = ztest_random_spa_version(version + 1);
if (ztest_opts.zo_verbose >= 4) {
(void) printf("upgrading spa version from "
"%"PRIu64" to %"PRIu64"\n",
version, newversion);
}
spa_upgrade(spa, newversion);
VERIFY3U(spa_version(spa), >, version);
VERIFY3U(spa_version(spa), ==, fnvlist_lookup_uint64(spa->spa_config,
zpool_prop_to_name(ZPOOL_PROP_VERSION)));
spa_close(spa, FTAG);
kmem_strfree(name);
mutex_exit(&ztest_vdev_lock);
}
OpenZFS 9166 - zfs storage pool checkpoint Details about the motivation of this feature and its usage can be found in this blogpost: https://sdimitro.github.io/post/zpool-checkpoint/ A lightning talk of this feature can be found here: https://www.youtube.com/watch?v=fPQA8K40jAM Implementation details can be found in big block comment of spa_checkpoint.c Side-changes that are relevant to this commit but not explained elsewhere: * renames members of "struct metaslab trees to be shorter without losing meaning * space_map_{alloc,truncate}() accept a block size as a parameter. The reason is that in the current state all space maps that we allocate through the DMU use a global tunable (space_map_blksz) which defauls to 4KB. This is ok for metaslab space maps in terms of bandwirdth since they are scattered all over the disk. But for other space maps this default is probably not what we want. Examples are device removal's vdev_obsolete_sm or vdev_chedkpoint_sm from this review. Both of these have a 1:1 relationship with each vdev and could benefit from a bigger block size. Porting notes: * The part of dsl_scan_sync() which handles async destroys has been moved into the new dsl_process_async_destroys() function. * Remove "VERIFY(!(flags & FWRITE))" in "kernel.c" so zhack can write to block device backed pools. * ZTS: * Fix get_txg() in zpool_sync_001_pos due to "checkpoint_txg". * Don't use large dd block sizes on /dev/urandom under Linux in checkpoint_capacity. * Adopt Delphix-OS's setting of 4 (spa_asize_inflation = SPA_DVAS_PER_BP + 1) for the checkpoint_capacity test to speed its attempts to fill the pool * Create the base and nested pools with sync=disabled to speed up the "setup" phase. * Clear labels in test pool between checkpoint tests to avoid duplicate pool issues. * The import_rewind_device_replaced test has been marked as "known to fail" for the reasons listed in its DISCLAIMER. * New module parameters: zfs_spa_discard_memory_limit, zfs_remove_max_bytes_pause (not documented - debugging only) vdev_max_ms_count (formerly metaslabs_per_vdev) vdev_min_ms_count Authored by: Serapheim Dimitropoulos <serapheim.dimitro@delphix.com> Reviewed by: Matthew Ahrens <mahrens@delphix.com> Reviewed by: John Kennedy <john.kennedy@delphix.com> Reviewed by: Dan Kimmel <dan.kimmel@delphix.com> Reviewed by: Brian Behlendorf <behlendorf1@llnl.gov> Approved by: Richard Lowe <richlowe@richlowe.net> Ported-by: Tim Chase <tim@chase2k.com> Signed-off-by: Tim Chase <tim@chase2k.com> OpenZFS-issue: https://illumos.org/issues/9166 OpenZFS-commit: https://github.com/openzfs/openzfs/commit/7159fdb8 Closes #7570
2016-12-17 01:11:29 +03:00
static void
ztest_spa_checkpoint(spa_t *spa)
{
ASSERT(MUTEX_HELD(&ztest_checkpoint_lock));
int error = spa_checkpoint(spa->spa_name);
switch (error) {
case 0:
case ZFS_ERR_DEVRM_IN_PROGRESS:
case ZFS_ERR_DISCARDING_CHECKPOINT:
case ZFS_ERR_CHECKPOINT_EXISTS:
RAID-Z expansion feature This feature allows disks to be added one at a time to a RAID-Z group, expanding its capacity incrementally. This feature is especially useful for small pools (typically with only one RAID-Z group), where there isn't sufficient hardware to add capacity by adding a whole new RAID-Z group (typically doubling the number of disks). == Initiating expansion == A new device (disk) can be attached to an existing RAIDZ vdev, by running `zpool attach POOL raidzP-N NEW_DEVICE`, e.g. `zpool attach tank raidz2-0 sda`. The new device will become part of the RAIDZ group. A "raidz expansion" will be initiated, and the new device will contribute additional space to the RAIDZ group once the expansion completes. The `feature@raidz_expansion` on-disk feature flag must be `enabled` to initiate an expansion, and it remains `active` for the life of the pool. In other words, pools with expanded RAIDZ vdevs can not be imported by older releases of the ZFS software. == During expansion == The expansion entails reading all allocated space from existing disks in the RAIDZ group, and rewriting it to the new disks in the RAIDZ group (including the newly added device). The expansion progress can be monitored with `zpool status`. Data redundancy is maintained during (and after) the expansion. If a disk fails while the expansion is in progress, the expansion pauses until the health of the RAIDZ vdev is restored (e.g. by replacing the failed disk and waiting for reconstruction to complete). The pool remains accessible during expansion. Following a reboot or export/import, the expansion resumes where it left off. == After expansion == When the expansion completes, the additional space is available for use, and is reflected in the `available` zfs property (as seen in `zfs list`, `df`, etc). Expansion does not change the number of failures that can be tolerated without data loss (e.g. a RAIDZ2 is still a RAIDZ2 even after expansion). A RAIDZ vdev can be expanded multiple times. After the expansion completes, old blocks remain with their old data-to-parity ratio (e.g. 5-wide RAIDZ2, has 3 data to 2 parity), but distributed among the larger set of disks. New blocks will be written with the new data-to-parity ratio (e.g. a 5-wide RAIDZ2 which has been expanded once to 6-wide, has 4 data to 2 parity). However, the RAIDZ vdev's "assumed parity ratio" does not change, so slightly less space than is expected may be reported for newly-written blocks, according to `zfs list`, `df`, `ls -s`, and similar tools. Sponsored-by: The FreeBSD Foundation Sponsored-by: iXsystems, Inc. Sponsored-by: vStack Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov> Reviewed-by: Mark Maybee <mark.maybee@delphix.com> Authored-by: Matthew Ahrens <mahrens@delphix.com> Contributions-by: Fedor Uporov <fuporov.vstack@gmail.com> Contributions-by: Stuart Maybee <stuart.maybee@comcast.net> Contributions-by: Thorsten Behrens <tbehrens@outlook.com> Contributions-by: Fmstrat <nospam@nowsci.com> Contributions-by: Don Brady <dev.fs.zfs@gmail.com> Signed-off-by: Don Brady <dev.fs.zfs@gmail.com> Closes #15022
2023-11-08 21:19:41 +03:00
case ZFS_ERR_RAIDZ_EXPAND_IN_PROGRESS:
OpenZFS 9166 - zfs storage pool checkpoint Details about the motivation of this feature and its usage can be found in this blogpost: https://sdimitro.github.io/post/zpool-checkpoint/ A lightning talk of this feature can be found here: https://www.youtube.com/watch?v=fPQA8K40jAM Implementation details can be found in big block comment of spa_checkpoint.c Side-changes that are relevant to this commit but not explained elsewhere: * renames members of "struct metaslab trees to be shorter without losing meaning * space_map_{alloc,truncate}() accept a block size as a parameter. The reason is that in the current state all space maps that we allocate through the DMU use a global tunable (space_map_blksz) which defauls to 4KB. This is ok for metaslab space maps in terms of bandwirdth since they are scattered all over the disk. But for other space maps this default is probably not what we want. Examples are device removal's vdev_obsolete_sm or vdev_chedkpoint_sm from this review. Both of these have a 1:1 relationship with each vdev and could benefit from a bigger block size. Porting notes: * The part of dsl_scan_sync() which handles async destroys has been moved into the new dsl_process_async_destroys() function. * Remove "VERIFY(!(flags & FWRITE))" in "kernel.c" so zhack can write to block device backed pools. * ZTS: * Fix get_txg() in zpool_sync_001_pos due to "checkpoint_txg". * Don't use large dd block sizes on /dev/urandom under Linux in checkpoint_capacity. * Adopt Delphix-OS's setting of 4 (spa_asize_inflation = SPA_DVAS_PER_BP + 1) for the checkpoint_capacity test to speed its attempts to fill the pool * Create the base and nested pools with sync=disabled to speed up the "setup" phase. * Clear labels in test pool between checkpoint tests to avoid duplicate pool issues. * The import_rewind_device_replaced test has been marked as "known to fail" for the reasons listed in its DISCLAIMER. * New module parameters: zfs_spa_discard_memory_limit, zfs_remove_max_bytes_pause (not documented - debugging only) vdev_max_ms_count (formerly metaslabs_per_vdev) vdev_min_ms_count Authored by: Serapheim Dimitropoulos <serapheim.dimitro@delphix.com> Reviewed by: Matthew Ahrens <mahrens@delphix.com> Reviewed by: John Kennedy <john.kennedy@delphix.com> Reviewed by: Dan Kimmel <dan.kimmel@delphix.com> Reviewed by: Brian Behlendorf <behlendorf1@llnl.gov> Approved by: Richard Lowe <richlowe@richlowe.net> Ported-by: Tim Chase <tim@chase2k.com> Signed-off-by: Tim Chase <tim@chase2k.com> OpenZFS-issue: https://illumos.org/issues/9166 OpenZFS-commit: https://github.com/openzfs/openzfs/commit/7159fdb8 Closes #7570
2016-12-17 01:11:29 +03:00
break;
case ENOSPC:
ztest_record_enospc(FTAG);
break;
default:
fatal(B_FALSE, "spa_checkpoint(%s) = %d", spa->spa_name, error);
OpenZFS 9166 - zfs storage pool checkpoint Details about the motivation of this feature and its usage can be found in this blogpost: https://sdimitro.github.io/post/zpool-checkpoint/ A lightning talk of this feature can be found here: https://www.youtube.com/watch?v=fPQA8K40jAM Implementation details can be found in big block comment of spa_checkpoint.c Side-changes that are relevant to this commit but not explained elsewhere: * renames members of "struct metaslab trees to be shorter without losing meaning * space_map_{alloc,truncate}() accept a block size as a parameter. The reason is that in the current state all space maps that we allocate through the DMU use a global tunable (space_map_blksz) which defauls to 4KB. This is ok for metaslab space maps in terms of bandwirdth since they are scattered all over the disk. But for other space maps this default is probably not what we want. Examples are device removal's vdev_obsolete_sm or vdev_chedkpoint_sm from this review. Both of these have a 1:1 relationship with each vdev and could benefit from a bigger block size. Porting notes: * The part of dsl_scan_sync() which handles async destroys has been moved into the new dsl_process_async_destroys() function. * Remove "VERIFY(!(flags & FWRITE))" in "kernel.c" so zhack can write to block device backed pools. * ZTS: * Fix get_txg() in zpool_sync_001_pos due to "checkpoint_txg". * Don't use large dd block sizes on /dev/urandom under Linux in checkpoint_capacity. * Adopt Delphix-OS's setting of 4 (spa_asize_inflation = SPA_DVAS_PER_BP + 1) for the checkpoint_capacity test to speed its attempts to fill the pool * Create the base and nested pools with sync=disabled to speed up the "setup" phase. * Clear labels in test pool between checkpoint tests to avoid duplicate pool issues. * The import_rewind_device_replaced test has been marked as "known to fail" for the reasons listed in its DISCLAIMER. * New module parameters: zfs_spa_discard_memory_limit, zfs_remove_max_bytes_pause (not documented - debugging only) vdev_max_ms_count (formerly metaslabs_per_vdev) vdev_min_ms_count Authored by: Serapheim Dimitropoulos <serapheim.dimitro@delphix.com> Reviewed by: Matthew Ahrens <mahrens@delphix.com> Reviewed by: John Kennedy <john.kennedy@delphix.com> Reviewed by: Dan Kimmel <dan.kimmel@delphix.com> Reviewed by: Brian Behlendorf <behlendorf1@llnl.gov> Approved by: Richard Lowe <richlowe@richlowe.net> Ported-by: Tim Chase <tim@chase2k.com> Signed-off-by: Tim Chase <tim@chase2k.com> OpenZFS-issue: https://illumos.org/issues/9166 OpenZFS-commit: https://github.com/openzfs/openzfs/commit/7159fdb8 Closes #7570
2016-12-17 01:11:29 +03:00
}
}
static void
ztest_spa_discard_checkpoint(spa_t *spa)
{
ASSERT(MUTEX_HELD(&ztest_checkpoint_lock));
int error = spa_checkpoint_discard(spa->spa_name);
switch (error) {
case 0:
case ZFS_ERR_DISCARDING_CHECKPOINT:
case ZFS_ERR_NO_CHECKPOINT:
break;
default:
fatal(B_FALSE, "spa_discard_checkpoint(%s) = %d",
OpenZFS 9166 - zfs storage pool checkpoint Details about the motivation of this feature and its usage can be found in this blogpost: https://sdimitro.github.io/post/zpool-checkpoint/ A lightning talk of this feature can be found here: https://www.youtube.com/watch?v=fPQA8K40jAM Implementation details can be found in big block comment of spa_checkpoint.c Side-changes that are relevant to this commit but not explained elsewhere: * renames members of "struct metaslab trees to be shorter without losing meaning * space_map_{alloc,truncate}() accept a block size as a parameter. The reason is that in the current state all space maps that we allocate through the DMU use a global tunable (space_map_blksz) which defauls to 4KB. This is ok for metaslab space maps in terms of bandwirdth since they are scattered all over the disk. But for other space maps this default is probably not what we want. Examples are device removal's vdev_obsolete_sm or vdev_chedkpoint_sm from this review. Both of these have a 1:1 relationship with each vdev and could benefit from a bigger block size. Porting notes: * The part of dsl_scan_sync() which handles async destroys has been moved into the new dsl_process_async_destroys() function. * Remove "VERIFY(!(flags & FWRITE))" in "kernel.c" so zhack can write to block device backed pools. * ZTS: * Fix get_txg() in zpool_sync_001_pos due to "checkpoint_txg". * Don't use large dd block sizes on /dev/urandom under Linux in checkpoint_capacity. * Adopt Delphix-OS's setting of 4 (spa_asize_inflation = SPA_DVAS_PER_BP + 1) for the checkpoint_capacity test to speed its attempts to fill the pool * Create the base and nested pools with sync=disabled to speed up the "setup" phase. * Clear labels in test pool between checkpoint tests to avoid duplicate pool issues. * The import_rewind_device_replaced test has been marked as "known to fail" for the reasons listed in its DISCLAIMER. * New module parameters: zfs_spa_discard_memory_limit, zfs_remove_max_bytes_pause (not documented - debugging only) vdev_max_ms_count (formerly metaslabs_per_vdev) vdev_min_ms_count Authored by: Serapheim Dimitropoulos <serapheim.dimitro@delphix.com> Reviewed by: Matthew Ahrens <mahrens@delphix.com> Reviewed by: John Kennedy <john.kennedy@delphix.com> Reviewed by: Dan Kimmel <dan.kimmel@delphix.com> Reviewed by: Brian Behlendorf <behlendorf1@llnl.gov> Approved by: Richard Lowe <richlowe@richlowe.net> Ported-by: Tim Chase <tim@chase2k.com> Signed-off-by: Tim Chase <tim@chase2k.com> OpenZFS-issue: https://illumos.org/issues/9166 OpenZFS-commit: https://github.com/openzfs/openzfs/commit/7159fdb8 Closes #7570
2016-12-17 01:11:29 +03:00
spa->spa_name, error);
}
}
void
ztest_spa_checkpoint_create_discard(ztest_ds_t *zd, uint64_t id)
{
(void) zd, (void) id;
OpenZFS 9166 - zfs storage pool checkpoint Details about the motivation of this feature and its usage can be found in this blogpost: https://sdimitro.github.io/post/zpool-checkpoint/ A lightning talk of this feature can be found here: https://www.youtube.com/watch?v=fPQA8K40jAM Implementation details can be found in big block comment of spa_checkpoint.c Side-changes that are relevant to this commit but not explained elsewhere: * renames members of "struct metaslab trees to be shorter without losing meaning * space_map_{alloc,truncate}() accept a block size as a parameter. The reason is that in the current state all space maps that we allocate through the DMU use a global tunable (space_map_blksz) which defauls to 4KB. This is ok for metaslab space maps in terms of bandwirdth since they are scattered all over the disk. But for other space maps this default is probably not what we want. Examples are device removal's vdev_obsolete_sm or vdev_chedkpoint_sm from this review. Both of these have a 1:1 relationship with each vdev and could benefit from a bigger block size. Porting notes: * The part of dsl_scan_sync() which handles async destroys has been moved into the new dsl_process_async_destroys() function. * Remove "VERIFY(!(flags & FWRITE))" in "kernel.c" so zhack can write to block device backed pools. * ZTS: * Fix get_txg() in zpool_sync_001_pos due to "checkpoint_txg". * Don't use large dd block sizes on /dev/urandom under Linux in checkpoint_capacity. * Adopt Delphix-OS's setting of 4 (spa_asize_inflation = SPA_DVAS_PER_BP + 1) for the checkpoint_capacity test to speed its attempts to fill the pool * Create the base and nested pools with sync=disabled to speed up the "setup" phase. * Clear labels in test pool between checkpoint tests to avoid duplicate pool issues. * The import_rewind_device_replaced test has been marked as "known to fail" for the reasons listed in its DISCLAIMER. * New module parameters: zfs_spa_discard_memory_limit, zfs_remove_max_bytes_pause (not documented - debugging only) vdev_max_ms_count (formerly metaslabs_per_vdev) vdev_min_ms_count Authored by: Serapheim Dimitropoulos <serapheim.dimitro@delphix.com> Reviewed by: Matthew Ahrens <mahrens@delphix.com> Reviewed by: John Kennedy <john.kennedy@delphix.com> Reviewed by: Dan Kimmel <dan.kimmel@delphix.com> Reviewed by: Brian Behlendorf <behlendorf1@llnl.gov> Approved by: Richard Lowe <richlowe@richlowe.net> Ported-by: Tim Chase <tim@chase2k.com> Signed-off-by: Tim Chase <tim@chase2k.com> OpenZFS-issue: https://illumos.org/issues/9166 OpenZFS-commit: https://github.com/openzfs/openzfs/commit/7159fdb8 Closes #7570
2016-12-17 01:11:29 +03:00
spa_t *spa = ztest_spa;
mutex_enter(&ztest_checkpoint_lock);
if (ztest_random(2) == 0) {
ztest_spa_checkpoint(spa);
} else {
ztest_spa_discard_checkpoint(spa);
}
mutex_exit(&ztest_checkpoint_lock);
}
static vdev_t *
vdev_lookup_by_path(vdev_t *vd, const char *path)
{
vdev_t *mvd;
int c;
if (vd->vdev_path != NULL && strcmp(path, vd->vdev_path) == 0)
return (vd);
for (c = 0; c < vd->vdev_children; c++)
if ((mvd = vdev_lookup_by_path(vd->vdev_child[c], path)) !=
NULL)
return (mvd);
return (NULL);
}
Log Spacemap Project = Motivation At Delphix we've seen a lot of customer systems where fragmentation is over 75% and random writes take a performance hit because a lot of time is spend on I/Os that update on-disk space accounting metadata. Specifically, we seen cases where 20% to 40% of sync time is spend after sync pass 1 and ~30% of the I/Os on the system is spent updating spacemaps. The problem is that these pools have existed long enough that we've touched almost every metaslab at least once, and random writes scatter frees across all metaslabs every TXG, thus appending to their spacemaps and resulting in many I/Os. To give an example, assuming that every VDEV has 200 metaslabs and our writes fit within a single spacemap block (generally 4K) we have 200 I/Os. Then if we assume 2 levels of indirection, we need 400 additional I/Os and since we are talking about metadata for which we keep 2 extra copies for redundancy we need to triple that number, leading to a total of 1800 I/Os per VDEV every TXG. We could try and decrease the number of metaslabs so we have less I/Os per TXG but then each metaslab would cover a wider range on disk and thus would take more time to be loaded in memory from disk. In addition, after it's loaded, it's range tree would consume more memory. Another idea would be to just increase the spacemap block size which would allow us to fit more entries within an I/O block resulting in fewer I/Os per metaslab and a speedup in loading time. The problem is still that we don't deal with the number of I/Os going up as the number of metaslabs is increasing and the fact is that we generally write a lot to a few metaslabs and a little to the rest of them. Thus, just increasing the block size would actually waste bandwidth because we won't be utilizing our bigger block size. = About this patch This patch introduces the Log Spacemap project which provides the solution to the above problem while taking into account all the aforementioned tradeoffs. The details on how it achieves that can be found in the references sections below and in the code (see Big Theory Statement in spa_log_spacemap.c). Even though the change is fairly constraint within the metaslab and lower-level SPA codepaths, there is a side-change that is user-facing. The change is that VDEV IDs from VDEV holes will no longer be reused. To give some background and reasoning for this, when a log device is removed and its VDEV structure was replaced with a hole (or was compacted; if at the end of the vdev array), its vdev_id could be reused by devices added after that. Now with the pool-wide space maps recording the vdev ID, this behavior can cause problems (e.g. is this entry referring to a segment in the new vdev or the removed log?). Thus, to simplify things the ID reuse behavior is gone and now vdev IDs for top-level vdevs are truly unique within a pool. = Testing The illumos implementation of this feature has been used internally for a year and has been in production for ~6 months. For this patch specifically there don't seem to be any regressions introduced to ZTS and I have been running zloop for a week without any related problems. = Performance Analysis (Linux Specific) All performance results and analysis for illumos can be found in the links of the references. Redoing the same experiments in Linux gave similar results. Below are the specifics of the Linux run. After the pool reached stable state the percentage of the time spent in pass 1 per TXG was 64% on average for the stock bits while the log spacemap bits stayed at 95% during the experiment (graph: sdimitro.github.io/img/linux-lsm/PercOfSyncInPassOne.png). Sync times per TXG were 37.6 seconds on average for the stock bits and 22.7 seconds for the log spacemap bits (related graph: sdimitro.github.io/img/linux-lsm/SyncTimePerTXG.png). As a result the log spacemap bits were able to push more TXGs, which is also the reason why all graphs quantified per TXG have more entries for the log spacemap bits. Another interesting aspect in terms of txg syncs is that the stock bits had 22% of their TXGs reach sync pass 7, 55% reach sync pass 8, and 20% reach 9. The log space map bits reached sync pass 4 in 79% of their TXGs, sync pass 7 in 19%, and sync pass 8 at 1%. This emphasizes the fact that not only we spend less time on metadata but we also iterate less times to convergence in spa_sync() dirtying objects. [related graphs: stock- sdimitro.github.io/img/linux-lsm/NumberOfPassesPerTXGStock.png lsm- sdimitro.github.io/img/linux-lsm/NumberOfPassesPerTXGLSM.png] Finally, the improvement in IOPs that the userland gains from the change is approximately 40%. There is a consistent win in IOPS as you can see from the graphs below but the absolute amount of improvement that the log spacemap gives varies within each minute interval. sdimitro.github.io/img/linux-lsm/StockVsLog3Days.png sdimitro.github.io/img/linux-lsm/StockVsLog10Hours.png = Porting to Other Platforms For people that want to port this commit to other platforms below is a list of ZoL commits that this patch depends on: Make zdb results for checkpoint tests consistent db587941c5ff6dea01932bb78f70db63cf7f38ba Update vdev_is_spacemap_addressable() for new spacemap encoding 419ba5914552c6185afbe1dd17b3ed4b0d526547 Simplify spa_sync by breaking it up to smaller functions 8dc2197b7b1e4d7ebc1420ea30e51c6541f1d834 Factor metaslab_load_wait() in metaslab_load() b194fab0fb6caad18711abccaff3c69ad8b3f6d3 Rename range_tree_verify to range_tree_verify_not_present df72b8bebe0ebac0b20e0750984bad182cb6564a Change target size of metaslabs from 256GB to 16GB c853f382db731e15a87512f4ef1101d14d778a55 zdb -L should skip leak detection altogether 21e7cf5da89f55ce98ec1115726b150e19eefe89 vs_alloc can underflow in L2ARC vdevs 7558997d2f808368867ca7e5234e5793446e8f3f Simplify log vdev removal code 6c926f426a26ffb6d7d8e563e33fc176164175cb Get rid of space_map_update() for ms_synced_length 425d3237ee88abc53d8522a7139c926d278b4b7f Introduce auxiliary metaslab histograms 928e8ad47d3478a3d5d01f0dd6ae74a9371af65e Error path in metaslab_load_impl() forgets to drop ms_sync_lock 8eef997679ba54547f7d361553d21b3291f41ae7 = References Background, Motivation, and Internals of the Feature - OpenZFS 2017 Presentation: youtu.be/jj2IxRkl5bQ - Slides: slideshare.net/SerapheimNikolaosDim/zfs-log-spacemaps-project Flushing Algorithm Internals & Performance Results (Illumos Specific) - Blogpost: sdimitro.github.io/post/zfs-lsm-flushing/ - OpenZFS 2018 Presentation: youtu.be/x6D2dHRjkxw - Slides: slideshare.net/SerapheimNikolaosDim/zfs-log-spacemap-flushing-algorithm Upstream Delphix Issues: DLPX-51539, DLPX-59659, DLPX-57783, DLPX-61438, DLPX-41227, DLPX-59320 DLPX-63385 Reviewed-by: Sean Eric Fagan <sef@ixsystems.com> Reviewed-by: Matt Ahrens <matt@delphix.com> Reviewed-by: George Wilson <gwilson@delphix.com> Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov> Signed-off-by: Serapheim Dimitropoulos <serapheim@delphix.com> Closes #8442
2019-07-16 20:11:49 +03:00
static int
spa_num_top_vdevs(spa_t *spa)
{
vdev_t *rvd = spa->spa_root_vdev;
Log Spacemap Project = Motivation At Delphix we've seen a lot of customer systems where fragmentation is over 75% and random writes take a performance hit because a lot of time is spend on I/Os that update on-disk space accounting metadata. Specifically, we seen cases where 20% to 40% of sync time is spend after sync pass 1 and ~30% of the I/Os on the system is spent updating spacemaps. The problem is that these pools have existed long enough that we've touched almost every metaslab at least once, and random writes scatter frees across all metaslabs every TXG, thus appending to their spacemaps and resulting in many I/Os. To give an example, assuming that every VDEV has 200 metaslabs and our writes fit within a single spacemap block (generally 4K) we have 200 I/Os. Then if we assume 2 levels of indirection, we need 400 additional I/Os and since we are talking about metadata for which we keep 2 extra copies for redundancy we need to triple that number, leading to a total of 1800 I/Os per VDEV every TXG. We could try and decrease the number of metaslabs so we have less I/Os per TXG but then each metaslab would cover a wider range on disk and thus would take more time to be loaded in memory from disk. In addition, after it's loaded, it's range tree would consume more memory. Another idea would be to just increase the spacemap block size which would allow us to fit more entries within an I/O block resulting in fewer I/Os per metaslab and a speedup in loading time. The problem is still that we don't deal with the number of I/Os going up as the number of metaslabs is increasing and the fact is that we generally write a lot to a few metaslabs and a little to the rest of them. Thus, just increasing the block size would actually waste bandwidth because we won't be utilizing our bigger block size. = About this patch This patch introduces the Log Spacemap project which provides the solution to the above problem while taking into account all the aforementioned tradeoffs. The details on how it achieves that can be found in the references sections below and in the code (see Big Theory Statement in spa_log_spacemap.c). Even though the change is fairly constraint within the metaslab and lower-level SPA codepaths, there is a side-change that is user-facing. The change is that VDEV IDs from VDEV holes will no longer be reused. To give some background and reasoning for this, when a log device is removed and its VDEV structure was replaced with a hole (or was compacted; if at the end of the vdev array), its vdev_id could be reused by devices added after that. Now with the pool-wide space maps recording the vdev ID, this behavior can cause problems (e.g. is this entry referring to a segment in the new vdev or the removed log?). Thus, to simplify things the ID reuse behavior is gone and now vdev IDs for top-level vdevs are truly unique within a pool. = Testing The illumos implementation of this feature has been used internally for a year and has been in production for ~6 months. For this patch specifically there don't seem to be any regressions introduced to ZTS and I have been running zloop for a week without any related problems. = Performance Analysis (Linux Specific) All performance results and analysis for illumos can be found in the links of the references. Redoing the same experiments in Linux gave similar results. Below are the specifics of the Linux run. After the pool reached stable state the percentage of the time spent in pass 1 per TXG was 64% on average for the stock bits while the log spacemap bits stayed at 95% during the experiment (graph: sdimitro.github.io/img/linux-lsm/PercOfSyncInPassOne.png). Sync times per TXG were 37.6 seconds on average for the stock bits and 22.7 seconds for the log spacemap bits (related graph: sdimitro.github.io/img/linux-lsm/SyncTimePerTXG.png). As a result the log spacemap bits were able to push more TXGs, which is also the reason why all graphs quantified per TXG have more entries for the log spacemap bits. Another interesting aspect in terms of txg syncs is that the stock bits had 22% of their TXGs reach sync pass 7, 55% reach sync pass 8, and 20% reach 9. The log space map bits reached sync pass 4 in 79% of their TXGs, sync pass 7 in 19%, and sync pass 8 at 1%. This emphasizes the fact that not only we spend less time on metadata but we also iterate less times to convergence in spa_sync() dirtying objects. [related graphs: stock- sdimitro.github.io/img/linux-lsm/NumberOfPassesPerTXGStock.png lsm- sdimitro.github.io/img/linux-lsm/NumberOfPassesPerTXGLSM.png] Finally, the improvement in IOPs that the userland gains from the change is approximately 40%. There is a consistent win in IOPS as you can see from the graphs below but the absolute amount of improvement that the log spacemap gives varies within each minute interval. sdimitro.github.io/img/linux-lsm/StockVsLog3Days.png sdimitro.github.io/img/linux-lsm/StockVsLog10Hours.png = Porting to Other Platforms For people that want to port this commit to other platforms below is a list of ZoL commits that this patch depends on: Make zdb results for checkpoint tests consistent db587941c5ff6dea01932bb78f70db63cf7f38ba Update vdev_is_spacemap_addressable() for new spacemap encoding 419ba5914552c6185afbe1dd17b3ed4b0d526547 Simplify spa_sync by breaking it up to smaller functions 8dc2197b7b1e4d7ebc1420ea30e51c6541f1d834 Factor metaslab_load_wait() in metaslab_load() b194fab0fb6caad18711abccaff3c69ad8b3f6d3 Rename range_tree_verify to range_tree_verify_not_present df72b8bebe0ebac0b20e0750984bad182cb6564a Change target size of metaslabs from 256GB to 16GB c853f382db731e15a87512f4ef1101d14d778a55 zdb -L should skip leak detection altogether 21e7cf5da89f55ce98ec1115726b150e19eefe89 vs_alloc can underflow in L2ARC vdevs 7558997d2f808368867ca7e5234e5793446e8f3f Simplify log vdev removal code 6c926f426a26ffb6d7d8e563e33fc176164175cb Get rid of space_map_update() for ms_synced_length 425d3237ee88abc53d8522a7139c926d278b4b7f Introduce auxiliary metaslab histograms 928e8ad47d3478a3d5d01f0dd6ae74a9371af65e Error path in metaslab_load_impl() forgets to drop ms_sync_lock 8eef997679ba54547f7d361553d21b3291f41ae7 = References Background, Motivation, and Internals of the Feature - OpenZFS 2017 Presentation: youtu.be/jj2IxRkl5bQ - Slides: slideshare.net/SerapheimNikolaosDim/zfs-log-spacemaps-project Flushing Algorithm Internals & Performance Results (Illumos Specific) - Blogpost: sdimitro.github.io/post/zfs-lsm-flushing/ - OpenZFS 2018 Presentation: youtu.be/x6D2dHRjkxw - Slides: slideshare.net/SerapheimNikolaosDim/zfs-log-spacemap-flushing-algorithm Upstream Delphix Issues: DLPX-51539, DLPX-59659, DLPX-57783, DLPX-61438, DLPX-41227, DLPX-59320 DLPX-63385 Reviewed-by: Sean Eric Fagan <sef@ixsystems.com> Reviewed-by: Matt Ahrens <matt@delphix.com> Reviewed-by: George Wilson <gwilson@delphix.com> Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov> Signed-off-by: Serapheim Dimitropoulos <serapheim@delphix.com> Closes #8442
2019-07-16 20:11:49 +03:00
ASSERT3U(spa_config_held(spa, SCL_VDEV, RW_READER), ==, SCL_VDEV);
return (rvd->vdev_children);
}
/*
* Verify that vdev_add() works as expected.
*/
void
ztest_vdev_add_remove(ztest_ds_t *zd, uint64_t id)
{
(void) zd, (void) id;
ztest_shared_t *zs = ztest_shared;
spa_t *spa = ztest_spa;
uint64_t leaves;
uint64_t guid;
RAID-Z expansion feature This feature allows disks to be added one at a time to a RAID-Z group, expanding its capacity incrementally. This feature is especially useful for small pools (typically with only one RAID-Z group), where there isn't sufficient hardware to add capacity by adding a whole new RAID-Z group (typically doubling the number of disks). == Initiating expansion == A new device (disk) can be attached to an existing RAIDZ vdev, by running `zpool attach POOL raidzP-N NEW_DEVICE`, e.g. `zpool attach tank raidz2-0 sda`. The new device will become part of the RAIDZ group. A "raidz expansion" will be initiated, and the new device will contribute additional space to the RAIDZ group once the expansion completes. The `feature@raidz_expansion` on-disk feature flag must be `enabled` to initiate an expansion, and it remains `active` for the life of the pool. In other words, pools with expanded RAIDZ vdevs can not be imported by older releases of the ZFS software. == During expansion == The expansion entails reading all allocated space from existing disks in the RAIDZ group, and rewriting it to the new disks in the RAIDZ group (including the newly added device). The expansion progress can be monitored with `zpool status`. Data redundancy is maintained during (and after) the expansion. If a disk fails while the expansion is in progress, the expansion pauses until the health of the RAIDZ vdev is restored (e.g. by replacing the failed disk and waiting for reconstruction to complete). The pool remains accessible during expansion. Following a reboot or export/import, the expansion resumes where it left off. == After expansion == When the expansion completes, the additional space is available for use, and is reflected in the `available` zfs property (as seen in `zfs list`, `df`, etc). Expansion does not change the number of failures that can be tolerated without data loss (e.g. a RAIDZ2 is still a RAIDZ2 even after expansion). A RAIDZ vdev can be expanded multiple times. After the expansion completes, old blocks remain with their old data-to-parity ratio (e.g. 5-wide RAIDZ2, has 3 data to 2 parity), but distributed among the larger set of disks. New blocks will be written with the new data-to-parity ratio (e.g. a 5-wide RAIDZ2 which has been expanded once to 6-wide, has 4 data to 2 parity). However, the RAIDZ vdev's "assumed parity ratio" does not change, so slightly less space than is expected may be reported for newly-written blocks, according to `zfs list`, `df`, `ls -s`, and similar tools. Sponsored-by: The FreeBSD Foundation Sponsored-by: iXsystems, Inc. Sponsored-by: vStack Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov> Reviewed-by: Mark Maybee <mark.maybee@delphix.com> Authored-by: Matthew Ahrens <mahrens@delphix.com> Contributions-by: Fedor Uporov <fuporov.vstack@gmail.com> Contributions-by: Stuart Maybee <stuart.maybee@comcast.net> Contributions-by: Thorsten Behrens <tbehrens@outlook.com> Contributions-by: Fmstrat <nospam@nowsci.com> Contributions-by: Don Brady <dev.fs.zfs@gmail.com> Signed-off-by: Don Brady <dev.fs.zfs@gmail.com> Closes #15022
2023-11-08 21:19:41 +03:00
uint64_t raidz_children;
nvlist_t *nvroot;
int error;
Multi-modifier protection (MMP) Add multihost=on|off pool property to control MMP. When enabled a new thread writes uberblocks to the last slot in each label, at a set frequency, to indicate to other hosts the pool is actively imported. These uberblocks are the last synced uberblock with an updated timestamp. Property defaults to off. During tryimport, find the "best" uberblock (newest txg and timestamp) repeatedly, checking for change in the found uberblock. Include the results of the activity test in the config returned by tryimport. These results are reported to user in "zpool import". Allow the user to control the period between MMP writes, and the duration of the activity test on import, via a new module parameter zfs_multihost_interval. The period is specified in milliseconds. The activity test duration is calculated from this value, and from the mmp_delay in the "best" uberblock found initially. Add a kstat interface to export statistics about Multiple Modifier Protection (MMP) updates. Include the last synced txg number, the timestamp, the delay since the last MMP update, the VDEV GUID, the VDEV label that received the last MMP update, and the VDEV path. Abbreviated output below. $ cat /proc/spl/kstat/zfs/mypool/multihost 31 0 0x01 10 880 105092382393521 105144180101111 txg timestamp mmp_delay vdev_guid vdev_label vdev_path 20468 261337 250274925 68396651780 3 /dev/sda 20468 261339 252023374 6267402363293 1 /dev/sdc 20468 261340 252000858 6698080955233 1 /dev/sdx 20468 261341 251980635 783892869810 2 /dev/sdy 20468 261342 253385953 8923255792467 3 /dev/sdd 20468 261344 253336622 042125143176 0 /dev/sdab 20468 261345 253310522 1200778101278 2 /dev/sde 20468 261346 253286429 0950576198362 2 /dev/sdt 20468 261347 253261545 96209817917 3 /dev/sds 20468 261349 253238188 8555725937673 3 /dev/sdb Add a new tunable zfs_multihost_history to specify the number of MMP updates to store history for. By default it is set to zero meaning that no MMP statistics are stored. When using ztest to generate activity, for automated tests of the MMP function, some test functions interfere with the test. For example, the pool is exported to run zdb and then imported again. Add a new ztest function, "-M", to alter ztest behavior to prevent this. Add new tests to verify the new functionality. Tests provided by Giuseppe Di Natale. Reviewed by: Matthew Ahrens <mahrens@delphix.com> Reviewed-by: Giuseppe Di Natale <dinatale2@llnl.gov> Reviewed-by: Ned Bass <bass6@llnl.gov> Reviewed-by: Andreas Dilger <andreas.dilger@intel.com> Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov> Signed-off-by: Olaf Faaland <faaland1@llnl.gov> Closes #745 Closes #6279
2017-07-08 06:20:35 +03:00
if (ztest_opts.zo_mmp_test)
return;
mutex_enter(&ztest_vdev_lock);
RAID-Z expansion feature This feature allows disks to be added one at a time to a RAID-Z group, expanding its capacity incrementally. This feature is especially useful for small pools (typically with only one RAID-Z group), where there isn't sufficient hardware to add capacity by adding a whole new RAID-Z group (typically doubling the number of disks). == Initiating expansion == A new device (disk) can be attached to an existing RAIDZ vdev, by running `zpool attach POOL raidzP-N NEW_DEVICE`, e.g. `zpool attach tank raidz2-0 sda`. The new device will become part of the RAIDZ group. A "raidz expansion" will be initiated, and the new device will contribute additional space to the RAIDZ group once the expansion completes. The `feature@raidz_expansion` on-disk feature flag must be `enabled` to initiate an expansion, and it remains `active` for the life of the pool. In other words, pools with expanded RAIDZ vdevs can not be imported by older releases of the ZFS software. == During expansion == The expansion entails reading all allocated space from existing disks in the RAIDZ group, and rewriting it to the new disks in the RAIDZ group (including the newly added device). The expansion progress can be monitored with `zpool status`. Data redundancy is maintained during (and after) the expansion. If a disk fails while the expansion is in progress, the expansion pauses until the health of the RAIDZ vdev is restored (e.g. by replacing the failed disk and waiting for reconstruction to complete). The pool remains accessible during expansion. Following a reboot or export/import, the expansion resumes where it left off. == After expansion == When the expansion completes, the additional space is available for use, and is reflected in the `available` zfs property (as seen in `zfs list`, `df`, etc). Expansion does not change the number of failures that can be tolerated without data loss (e.g. a RAIDZ2 is still a RAIDZ2 even after expansion). A RAIDZ vdev can be expanded multiple times. After the expansion completes, old blocks remain with their old data-to-parity ratio (e.g. 5-wide RAIDZ2, has 3 data to 2 parity), but distributed among the larger set of disks. New blocks will be written with the new data-to-parity ratio (e.g. a 5-wide RAIDZ2 which has been expanded once to 6-wide, has 4 data to 2 parity). However, the RAIDZ vdev's "assumed parity ratio" does not change, so slightly less space than is expected may be reported for newly-written blocks, according to `zfs list`, `df`, `ls -s`, and similar tools. Sponsored-by: The FreeBSD Foundation Sponsored-by: iXsystems, Inc. Sponsored-by: vStack Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov> Reviewed-by: Mark Maybee <mark.maybee@delphix.com> Authored-by: Matthew Ahrens <mahrens@delphix.com> Contributions-by: Fedor Uporov <fuporov.vstack@gmail.com> Contributions-by: Stuart Maybee <stuart.maybee@comcast.net> Contributions-by: Thorsten Behrens <tbehrens@outlook.com> Contributions-by: Fmstrat <nospam@nowsci.com> Contributions-by: Don Brady <dev.fs.zfs@gmail.com> Signed-off-by: Don Brady <dev.fs.zfs@gmail.com> Closes #15022
2023-11-08 21:19:41 +03:00
raidz_children = ztest_get_raidz_children(spa);
leaves = MAX(zs->zs_mirrors + zs->zs_splits, 1) * raidz_children;
spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER);
Log Spacemap Project = Motivation At Delphix we've seen a lot of customer systems where fragmentation is over 75% and random writes take a performance hit because a lot of time is spend on I/Os that update on-disk space accounting metadata. Specifically, we seen cases where 20% to 40% of sync time is spend after sync pass 1 and ~30% of the I/Os on the system is spent updating spacemaps. The problem is that these pools have existed long enough that we've touched almost every metaslab at least once, and random writes scatter frees across all metaslabs every TXG, thus appending to their spacemaps and resulting in many I/Os. To give an example, assuming that every VDEV has 200 metaslabs and our writes fit within a single spacemap block (generally 4K) we have 200 I/Os. Then if we assume 2 levels of indirection, we need 400 additional I/Os and since we are talking about metadata for which we keep 2 extra copies for redundancy we need to triple that number, leading to a total of 1800 I/Os per VDEV every TXG. We could try and decrease the number of metaslabs so we have less I/Os per TXG but then each metaslab would cover a wider range on disk and thus would take more time to be loaded in memory from disk. In addition, after it's loaded, it's range tree would consume more memory. Another idea would be to just increase the spacemap block size which would allow us to fit more entries within an I/O block resulting in fewer I/Os per metaslab and a speedup in loading time. The problem is still that we don't deal with the number of I/Os going up as the number of metaslabs is increasing and the fact is that we generally write a lot to a few metaslabs and a little to the rest of them. Thus, just increasing the block size would actually waste bandwidth because we won't be utilizing our bigger block size. = About this patch This patch introduces the Log Spacemap project which provides the solution to the above problem while taking into account all the aforementioned tradeoffs. The details on how it achieves that can be found in the references sections below and in the code (see Big Theory Statement in spa_log_spacemap.c). Even though the change is fairly constraint within the metaslab and lower-level SPA codepaths, there is a side-change that is user-facing. The change is that VDEV IDs from VDEV holes will no longer be reused. To give some background and reasoning for this, when a log device is removed and its VDEV structure was replaced with a hole (or was compacted; if at the end of the vdev array), its vdev_id could be reused by devices added after that. Now with the pool-wide space maps recording the vdev ID, this behavior can cause problems (e.g. is this entry referring to a segment in the new vdev or the removed log?). Thus, to simplify things the ID reuse behavior is gone and now vdev IDs for top-level vdevs are truly unique within a pool. = Testing The illumos implementation of this feature has been used internally for a year and has been in production for ~6 months. For this patch specifically there don't seem to be any regressions introduced to ZTS and I have been running zloop for a week without any related problems. = Performance Analysis (Linux Specific) All performance results and analysis for illumos can be found in the links of the references. Redoing the same experiments in Linux gave similar results. Below are the specifics of the Linux run. After the pool reached stable state the percentage of the time spent in pass 1 per TXG was 64% on average for the stock bits while the log spacemap bits stayed at 95% during the experiment (graph: sdimitro.github.io/img/linux-lsm/PercOfSyncInPassOne.png). Sync times per TXG were 37.6 seconds on average for the stock bits and 22.7 seconds for the log spacemap bits (related graph: sdimitro.github.io/img/linux-lsm/SyncTimePerTXG.png). As a result the log spacemap bits were able to push more TXGs, which is also the reason why all graphs quantified per TXG have more entries for the log spacemap bits. Another interesting aspect in terms of txg syncs is that the stock bits had 22% of their TXGs reach sync pass 7, 55% reach sync pass 8, and 20% reach 9. The log space map bits reached sync pass 4 in 79% of their TXGs, sync pass 7 in 19%, and sync pass 8 at 1%. This emphasizes the fact that not only we spend less time on metadata but we also iterate less times to convergence in spa_sync() dirtying objects. [related graphs: stock- sdimitro.github.io/img/linux-lsm/NumberOfPassesPerTXGStock.png lsm- sdimitro.github.io/img/linux-lsm/NumberOfPassesPerTXGLSM.png] Finally, the improvement in IOPs that the userland gains from the change is approximately 40%. There is a consistent win in IOPS as you can see from the graphs below but the absolute amount of improvement that the log spacemap gives varies within each minute interval. sdimitro.github.io/img/linux-lsm/StockVsLog3Days.png sdimitro.github.io/img/linux-lsm/StockVsLog10Hours.png = Porting to Other Platforms For people that want to port this commit to other platforms below is a list of ZoL commits that this patch depends on: Make zdb results for checkpoint tests consistent db587941c5ff6dea01932bb78f70db63cf7f38ba Update vdev_is_spacemap_addressable() for new spacemap encoding 419ba5914552c6185afbe1dd17b3ed4b0d526547 Simplify spa_sync by breaking it up to smaller functions 8dc2197b7b1e4d7ebc1420ea30e51c6541f1d834 Factor metaslab_load_wait() in metaslab_load() b194fab0fb6caad18711abccaff3c69ad8b3f6d3 Rename range_tree_verify to range_tree_verify_not_present df72b8bebe0ebac0b20e0750984bad182cb6564a Change target size of metaslabs from 256GB to 16GB c853f382db731e15a87512f4ef1101d14d778a55 zdb -L should skip leak detection altogether 21e7cf5da89f55ce98ec1115726b150e19eefe89 vs_alloc can underflow in L2ARC vdevs 7558997d2f808368867ca7e5234e5793446e8f3f Simplify log vdev removal code 6c926f426a26ffb6d7d8e563e33fc176164175cb Get rid of space_map_update() for ms_synced_length 425d3237ee88abc53d8522a7139c926d278b4b7f Introduce auxiliary metaslab histograms 928e8ad47d3478a3d5d01f0dd6ae74a9371af65e Error path in metaslab_load_impl() forgets to drop ms_sync_lock 8eef997679ba54547f7d361553d21b3291f41ae7 = References Background, Motivation, and Internals of the Feature - OpenZFS 2017 Presentation: youtu.be/jj2IxRkl5bQ - Slides: slideshare.net/SerapheimNikolaosDim/zfs-log-spacemaps-project Flushing Algorithm Internals & Performance Results (Illumos Specific) - Blogpost: sdimitro.github.io/post/zfs-lsm-flushing/ - OpenZFS 2018 Presentation: youtu.be/x6D2dHRjkxw - Slides: slideshare.net/SerapheimNikolaosDim/zfs-log-spacemap-flushing-algorithm Upstream Delphix Issues: DLPX-51539, DLPX-59659, DLPX-57783, DLPX-61438, DLPX-41227, DLPX-59320 DLPX-63385 Reviewed-by: Sean Eric Fagan <sef@ixsystems.com> Reviewed-by: Matt Ahrens <matt@delphix.com> Reviewed-by: George Wilson <gwilson@delphix.com> Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov> Signed-off-by: Serapheim Dimitropoulos <serapheim@delphix.com> Closes #8442
2019-07-16 20:11:49 +03:00
ztest_shared->zs_vdev_next_leaf = spa_num_top_vdevs(spa) * leaves;
/*
* If we have slogs then remove them 1/4 of the time.
*/
if (spa_has_slogs(spa) && ztest_random(4) == 0) {
metaslab_group_t *mg;
/*
* find the first real slog in log allocation class
*/
mg = spa_log_class(spa)->mc_allocator[0].mca_rotor;
while (!mg->mg_vd->vdev_islog)
mg = mg->mg_next;
guid = mg->mg_vd->vdev_guid;
spa_config_exit(spa, SCL_VDEV, FTAG);
/*
* We have to grab the zs_name_lock as writer to
* prevent a race between removing a slog (dmu_objset_find)
* and destroying a dataset. Removing the slog will
* grab a reference on the dataset which may cause
* dsl_destroy_head() to fail with EBUSY thus
* leaving the dataset in an inconsistent state.
*/
pthread_rwlock_wrlock(&ztest_name_lock);
error = spa_vdev_remove(spa, guid, B_FALSE);
pthread_rwlock_unlock(&ztest_name_lock);
switch (error) {
case 0:
case EEXIST: /* Generic zil_reset() error */
case EBUSY: /* Replay required */
case EACCES: /* Crypto key not loaded */
OpenZFS 9166 - zfs storage pool checkpoint Details about the motivation of this feature and its usage can be found in this blogpost: https://sdimitro.github.io/post/zpool-checkpoint/ A lightning talk of this feature can be found here: https://www.youtube.com/watch?v=fPQA8K40jAM Implementation details can be found in big block comment of spa_checkpoint.c Side-changes that are relevant to this commit but not explained elsewhere: * renames members of "struct metaslab trees to be shorter without losing meaning * space_map_{alloc,truncate}() accept a block size as a parameter. The reason is that in the current state all space maps that we allocate through the DMU use a global tunable (space_map_blksz) which defauls to 4KB. This is ok for metaslab space maps in terms of bandwirdth since they are scattered all over the disk. But for other space maps this default is probably not what we want. Examples are device removal's vdev_obsolete_sm or vdev_chedkpoint_sm from this review. Both of these have a 1:1 relationship with each vdev and could benefit from a bigger block size. Porting notes: * The part of dsl_scan_sync() which handles async destroys has been moved into the new dsl_process_async_destroys() function. * Remove "VERIFY(!(flags & FWRITE))" in "kernel.c" so zhack can write to block device backed pools. * ZTS: * Fix get_txg() in zpool_sync_001_pos due to "checkpoint_txg". * Don't use large dd block sizes on /dev/urandom under Linux in checkpoint_capacity. * Adopt Delphix-OS's setting of 4 (spa_asize_inflation = SPA_DVAS_PER_BP + 1) for the checkpoint_capacity test to speed its attempts to fill the pool * Create the base and nested pools with sync=disabled to speed up the "setup" phase. * Clear labels in test pool between checkpoint tests to avoid duplicate pool issues. * The import_rewind_device_replaced test has been marked as "known to fail" for the reasons listed in its DISCLAIMER. * New module parameters: zfs_spa_discard_memory_limit, zfs_remove_max_bytes_pause (not documented - debugging only) vdev_max_ms_count (formerly metaslabs_per_vdev) vdev_min_ms_count Authored by: Serapheim Dimitropoulos <serapheim.dimitro@delphix.com> Reviewed by: Matthew Ahrens <mahrens@delphix.com> Reviewed by: John Kennedy <john.kennedy@delphix.com> Reviewed by: Dan Kimmel <dan.kimmel@delphix.com> Reviewed by: Brian Behlendorf <behlendorf1@llnl.gov> Approved by: Richard Lowe <richlowe@richlowe.net> Ported-by: Tim Chase <tim@chase2k.com> Signed-off-by: Tim Chase <tim@chase2k.com> OpenZFS-issue: https://illumos.org/issues/9166 OpenZFS-commit: https://github.com/openzfs/openzfs/commit/7159fdb8 Closes #7570
2016-12-17 01:11:29 +03:00
case ZFS_ERR_CHECKPOINT_EXISTS:
case ZFS_ERR_DISCARDING_CHECKPOINT:
break;
default:
fatal(B_FALSE, "spa_vdev_remove() = %d", error);
}
} else {
spa_config_exit(spa, SCL_VDEV, FTAG);
/*
* Make 1/4 of the devices be log devices
*/
nvroot = make_vdev_root(NULL, NULL, NULL,
ztest_opts.zo_vdev_size, 0, (ztest_random(4) == 0) ?
RAID-Z expansion feature This feature allows disks to be added one at a time to a RAID-Z group, expanding its capacity incrementally. This feature is especially useful for small pools (typically with only one RAID-Z group), where there isn't sufficient hardware to add capacity by adding a whole new RAID-Z group (typically doubling the number of disks). == Initiating expansion == A new device (disk) can be attached to an existing RAIDZ vdev, by running `zpool attach POOL raidzP-N NEW_DEVICE`, e.g. `zpool attach tank raidz2-0 sda`. The new device will become part of the RAIDZ group. A "raidz expansion" will be initiated, and the new device will contribute additional space to the RAIDZ group once the expansion completes. The `feature@raidz_expansion` on-disk feature flag must be `enabled` to initiate an expansion, and it remains `active` for the life of the pool. In other words, pools with expanded RAIDZ vdevs can not be imported by older releases of the ZFS software. == During expansion == The expansion entails reading all allocated space from existing disks in the RAIDZ group, and rewriting it to the new disks in the RAIDZ group (including the newly added device). The expansion progress can be monitored with `zpool status`. Data redundancy is maintained during (and after) the expansion. If a disk fails while the expansion is in progress, the expansion pauses until the health of the RAIDZ vdev is restored (e.g. by replacing the failed disk and waiting for reconstruction to complete). The pool remains accessible during expansion. Following a reboot or export/import, the expansion resumes where it left off. == After expansion == When the expansion completes, the additional space is available for use, and is reflected in the `available` zfs property (as seen in `zfs list`, `df`, etc). Expansion does not change the number of failures that can be tolerated without data loss (e.g. a RAIDZ2 is still a RAIDZ2 even after expansion). A RAIDZ vdev can be expanded multiple times. After the expansion completes, old blocks remain with their old data-to-parity ratio (e.g. 5-wide RAIDZ2, has 3 data to 2 parity), but distributed among the larger set of disks. New blocks will be written with the new data-to-parity ratio (e.g. a 5-wide RAIDZ2 which has been expanded once to 6-wide, has 4 data to 2 parity). However, the RAIDZ vdev's "assumed parity ratio" does not change, so slightly less space than is expected may be reported for newly-written blocks, according to `zfs list`, `df`, `ls -s`, and similar tools. Sponsored-by: The FreeBSD Foundation Sponsored-by: iXsystems, Inc. Sponsored-by: vStack Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov> Reviewed-by: Mark Maybee <mark.maybee@delphix.com> Authored-by: Matthew Ahrens <mahrens@delphix.com> Contributions-by: Fedor Uporov <fuporov.vstack@gmail.com> Contributions-by: Stuart Maybee <stuart.maybee@comcast.net> Contributions-by: Thorsten Behrens <tbehrens@outlook.com> Contributions-by: Fmstrat <nospam@nowsci.com> Contributions-by: Don Brady <dev.fs.zfs@gmail.com> Signed-off-by: Don Brady <dev.fs.zfs@gmail.com> Closes #15022
2023-11-08 21:19:41 +03:00
"log" : NULL, raidz_children, zs->zs_mirrors,
Distributed Spare (dRAID) Feature This patch adds a new top-level vdev type called dRAID, which stands for Distributed parity RAID. This pool configuration allows all dRAID vdevs to participate when rebuilding to a distributed hot spare device. This can substantially reduce the total time required to restore full parity to pool with a failed device. A dRAID pool can be created using the new top-level `draid` type. Like `raidz`, the desired redundancy is specified after the type: `draid[1,2,3]`. No additional information is required to create the pool and reasonable default values will be chosen based on the number of child vdevs in the dRAID vdev. zpool create <pool> draid[1,2,3] <vdevs...> Unlike raidz, additional optional dRAID configuration values can be provided as part of the draid type as colon separated values. This allows administrators to fully specify a layout for either performance or capacity reasons. The supported options include: zpool create <pool> \ draid[<parity>][:<data>d][:<children>c][:<spares>s] \ <vdevs...> - draid[parity] - Parity level (default 1) - draid[:<data>d] - Data devices per group (default 8) - draid[:<children>c] - Expected number of child vdevs - draid[:<spares>s] - Distributed hot spares (default 0) Abbreviated example `zpool status` output for a 68 disk dRAID pool with two distributed spares using special allocation classes. ``` pool: tank state: ONLINE config: NAME STATE READ WRITE CKSUM slag7 ONLINE 0 0 0 draid2:8d:68c:2s-0 ONLINE 0 0 0 L0 ONLINE 0 0 0 L1 ONLINE 0 0 0 ... U25 ONLINE 0 0 0 U26 ONLINE 0 0 0 spare-53 ONLINE 0 0 0 U27 ONLINE 0 0 0 draid2-0-0 ONLINE 0 0 0 U28 ONLINE 0 0 0 U29 ONLINE 0 0 0 ... U42 ONLINE 0 0 0 U43 ONLINE 0 0 0 special mirror-1 ONLINE 0 0 0 L5 ONLINE 0 0 0 U5 ONLINE 0 0 0 mirror-2 ONLINE 0 0 0 L6 ONLINE 0 0 0 U6 ONLINE 0 0 0 spares draid2-0-0 INUSE currently in use draid2-0-1 AVAIL ``` When adding test coverage for the new dRAID vdev type the following options were added to the ztest command. These options are leverages by zloop.sh to test a wide range of dRAID configurations. -K draid|raidz|random - kind of RAID to test -D <value> - dRAID data drives per group -S <value> - dRAID distributed hot spares -R <value> - RAID parity (raidz or dRAID) The zpool_create, zpool_import, redundancy, replacement and fault test groups have all been updated provide test coverage for the dRAID feature. Co-authored-by: Isaac Huang <he.huang@intel.com> Co-authored-by: Mark Maybee <mmaybee@cray.com> Co-authored-by: Don Brady <don.brady@delphix.com> Co-authored-by: Matthew Ahrens <mahrens@delphix.com> Co-authored-by: Brian Behlendorf <behlendorf1@llnl.gov> Reviewed-by: Mark Maybee <mmaybee@cray.com> Reviewed-by: Matt Ahrens <matt@delphix.com> Reviewed-by: Tony Hutter <hutter2@llnl.gov> Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov> Closes #10102
2020-11-14 00:51:51 +03:00
1);
error = spa_vdev_add(spa, nvroot, B_FALSE);
fnvlist_free(nvroot);
OpenZFS 9166 - zfs storage pool checkpoint Details about the motivation of this feature and its usage can be found in this blogpost: https://sdimitro.github.io/post/zpool-checkpoint/ A lightning talk of this feature can be found here: https://www.youtube.com/watch?v=fPQA8K40jAM Implementation details can be found in big block comment of spa_checkpoint.c Side-changes that are relevant to this commit but not explained elsewhere: * renames members of "struct metaslab trees to be shorter without losing meaning * space_map_{alloc,truncate}() accept a block size as a parameter. The reason is that in the current state all space maps that we allocate through the DMU use a global tunable (space_map_blksz) which defauls to 4KB. This is ok for metaslab space maps in terms of bandwirdth since they are scattered all over the disk. But for other space maps this default is probably not what we want. Examples are device removal's vdev_obsolete_sm or vdev_chedkpoint_sm from this review. Both of these have a 1:1 relationship with each vdev and could benefit from a bigger block size. Porting notes: * The part of dsl_scan_sync() which handles async destroys has been moved into the new dsl_process_async_destroys() function. * Remove "VERIFY(!(flags & FWRITE))" in "kernel.c" so zhack can write to block device backed pools. * ZTS: * Fix get_txg() in zpool_sync_001_pos due to "checkpoint_txg". * Don't use large dd block sizes on /dev/urandom under Linux in checkpoint_capacity. * Adopt Delphix-OS's setting of 4 (spa_asize_inflation = SPA_DVAS_PER_BP + 1) for the checkpoint_capacity test to speed its attempts to fill the pool * Create the base and nested pools with sync=disabled to speed up the "setup" phase. * Clear labels in test pool between checkpoint tests to avoid duplicate pool issues. * The import_rewind_device_replaced test has been marked as "known to fail" for the reasons listed in its DISCLAIMER. * New module parameters: zfs_spa_discard_memory_limit, zfs_remove_max_bytes_pause (not documented - debugging only) vdev_max_ms_count (formerly metaslabs_per_vdev) vdev_min_ms_count Authored by: Serapheim Dimitropoulos <serapheim.dimitro@delphix.com> Reviewed by: Matthew Ahrens <mahrens@delphix.com> Reviewed by: John Kennedy <john.kennedy@delphix.com> Reviewed by: Dan Kimmel <dan.kimmel@delphix.com> Reviewed by: Brian Behlendorf <behlendorf1@llnl.gov> Approved by: Richard Lowe <richlowe@richlowe.net> Ported-by: Tim Chase <tim@chase2k.com> Signed-off-by: Tim Chase <tim@chase2k.com> OpenZFS-issue: https://illumos.org/issues/9166 OpenZFS-commit: https://github.com/openzfs/openzfs/commit/7159fdb8 Closes #7570
2016-12-17 01:11:29 +03:00
switch (error) {
case 0:
break;
case ENOSPC:
ztest_record_enospc("spa_vdev_add");
OpenZFS 9166 - zfs storage pool checkpoint Details about the motivation of this feature and its usage can be found in this blogpost: https://sdimitro.github.io/post/zpool-checkpoint/ A lightning talk of this feature can be found here: https://www.youtube.com/watch?v=fPQA8K40jAM Implementation details can be found in big block comment of spa_checkpoint.c Side-changes that are relevant to this commit but not explained elsewhere: * renames members of "struct metaslab trees to be shorter without losing meaning * space_map_{alloc,truncate}() accept a block size as a parameter. The reason is that in the current state all space maps that we allocate through the DMU use a global tunable (space_map_blksz) which defauls to 4KB. This is ok for metaslab space maps in terms of bandwirdth since they are scattered all over the disk. But for other space maps this default is probably not what we want. Examples are device removal's vdev_obsolete_sm or vdev_chedkpoint_sm from this review. Both of these have a 1:1 relationship with each vdev and could benefit from a bigger block size. Porting notes: * The part of dsl_scan_sync() which handles async destroys has been moved into the new dsl_process_async_destroys() function. * Remove "VERIFY(!(flags & FWRITE))" in "kernel.c" so zhack can write to block device backed pools. * ZTS: * Fix get_txg() in zpool_sync_001_pos due to "checkpoint_txg". * Don't use large dd block sizes on /dev/urandom under Linux in checkpoint_capacity. * Adopt Delphix-OS's setting of 4 (spa_asize_inflation = SPA_DVAS_PER_BP + 1) for the checkpoint_capacity test to speed its attempts to fill the pool * Create the base and nested pools with sync=disabled to speed up the "setup" phase. * Clear labels in test pool between checkpoint tests to avoid duplicate pool issues. * The import_rewind_device_replaced test has been marked as "known to fail" for the reasons listed in its DISCLAIMER. * New module parameters: zfs_spa_discard_memory_limit, zfs_remove_max_bytes_pause (not documented - debugging only) vdev_max_ms_count (formerly metaslabs_per_vdev) vdev_min_ms_count Authored by: Serapheim Dimitropoulos <serapheim.dimitro@delphix.com> Reviewed by: Matthew Ahrens <mahrens@delphix.com> Reviewed by: John Kennedy <john.kennedy@delphix.com> Reviewed by: Dan Kimmel <dan.kimmel@delphix.com> Reviewed by: Brian Behlendorf <behlendorf1@llnl.gov> Approved by: Richard Lowe <richlowe@richlowe.net> Ported-by: Tim Chase <tim@chase2k.com> Signed-off-by: Tim Chase <tim@chase2k.com> OpenZFS-issue: https://illumos.org/issues/9166 OpenZFS-commit: https://github.com/openzfs/openzfs/commit/7159fdb8 Closes #7570
2016-12-17 01:11:29 +03:00
break;
default:
fatal(B_FALSE, "spa_vdev_add() = %d", error);
OpenZFS 9166 - zfs storage pool checkpoint Details about the motivation of this feature and its usage can be found in this blogpost: https://sdimitro.github.io/post/zpool-checkpoint/ A lightning talk of this feature can be found here: https://www.youtube.com/watch?v=fPQA8K40jAM Implementation details can be found in big block comment of spa_checkpoint.c Side-changes that are relevant to this commit but not explained elsewhere: * renames members of "struct metaslab trees to be shorter without losing meaning * space_map_{alloc,truncate}() accept a block size as a parameter. The reason is that in the current state all space maps that we allocate through the DMU use a global tunable (space_map_blksz) which defauls to 4KB. This is ok for metaslab space maps in terms of bandwirdth since they are scattered all over the disk. But for other space maps this default is probably not what we want. Examples are device removal's vdev_obsolete_sm or vdev_chedkpoint_sm from this review. Both of these have a 1:1 relationship with each vdev and could benefit from a bigger block size. Porting notes: * The part of dsl_scan_sync() which handles async destroys has been moved into the new dsl_process_async_destroys() function. * Remove "VERIFY(!(flags & FWRITE))" in "kernel.c" so zhack can write to block device backed pools. * ZTS: * Fix get_txg() in zpool_sync_001_pos due to "checkpoint_txg". * Don't use large dd block sizes on /dev/urandom under Linux in checkpoint_capacity. * Adopt Delphix-OS's setting of 4 (spa_asize_inflation = SPA_DVAS_PER_BP + 1) for the checkpoint_capacity test to speed its attempts to fill the pool * Create the base and nested pools with sync=disabled to speed up the "setup" phase. * Clear labels in test pool between checkpoint tests to avoid duplicate pool issues. * The import_rewind_device_replaced test has been marked as "known to fail" for the reasons listed in its DISCLAIMER. * New module parameters: zfs_spa_discard_memory_limit, zfs_remove_max_bytes_pause (not documented - debugging only) vdev_max_ms_count (formerly metaslabs_per_vdev) vdev_min_ms_count Authored by: Serapheim Dimitropoulos <serapheim.dimitro@delphix.com> Reviewed by: Matthew Ahrens <mahrens@delphix.com> Reviewed by: John Kennedy <john.kennedy@delphix.com> Reviewed by: Dan Kimmel <dan.kimmel@delphix.com> Reviewed by: Brian Behlendorf <behlendorf1@llnl.gov> Approved by: Richard Lowe <richlowe@richlowe.net> Ported-by: Tim Chase <tim@chase2k.com> Signed-off-by: Tim Chase <tim@chase2k.com> OpenZFS-issue: https://illumos.org/issues/9166 OpenZFS-commit: https://github.com/openzfs/openzfs/commit/7159fdb8 Closes #7570
2016-12-17 01:11:29 +03:00
}
}
mutex_exit(&ztest_vdev_lock);
}
void
ztest_vdev_class_add(ztest_ds_t *zd, uint64_t id)
{
(void) zd, (void) id;
ztest_shared_t *zs = ztest_shared;
spa_t *spa = ztest_spa;
uint64_t leaves;
nvlist_t *nvroot;
RAID-Z expansion feature This feature allows disks to be added one at a time to a RAID-Z group, expanding its capacity incrementally. This feature is especially useful for small pools (typically with only one RAID-Z group), where there isn't sufficient hardware to add capacity by adding a whole new RAID-Z group (typically doubling the number of disks). == Initiating expansion == A new device (disk) can be attached to an existing RAIDZ vdev, by running `zpool attach POOL raidzP-N NEW_DEVICE`, e.g. `zpool attach tank raidz2-0 sda`. The new device will become part of the RAIDZ group. A "raidz expansion" will be initiated, and the new device will contribute additional space to the RAIDZ group once the expansion completes. The `feature@raidz_expansion` on-disk feature flag must be `enabled` to initiate an expansion, and it remains `active` for the life of the pool. In other words, pools with expanded RAIDZ vdevs can not be imported by older releases of the ZFS software. == During expansion == The expansion entails reading all allocated space from existing disks in the RAIDZ group, and rewriting it to the new disks in the RAIDZ group (including the newly added device). The expansion progress can be monitored with `zpool status`. Data redundancy is maintained during (and after) the expansion. If a disk fails while the expansion is in progress, the expansion pauses until the health of the RAIDZ vdev is restored (e.g. by replacing the failed disk and waiting for reconstruction to complete). The pool remains accessible during expansion. Following a reboot or export/import, the expansion resumes where it left off. == After expansion == When the expansion completes, the additional space is available for use, and is reflected in the `available` zfs property (as seen in `zfs list`, `df`, etc). Expansion does not change the number of failures that can be tolerated without data loss (e.g. a RAIDZ2 is still a RAIDZ2 even after expansion). A RAIDZ vdev can be expanded multiple times. After the expansion completes, old blocks remain with their old data-to-parity ratio (e.g. 5-wide RAIDZ2, has 3 data to 2 parity), but distributed among the larger set of disks. New blocks will be written with the new data-to-parity ratio (e.g. a 5-wide RAIDZ2 which has been expanded once to 6-wide, has 4 data to 2 parity). However, the RAIDZ vdev's "assumed parity ratio" does not change, so slightly less space than is expected may be reported for newly-written blocks, according to `zfs list`, `df`, `ls -s`, and similar tools. Sponsored-by: The FreeBSD Foundation Sponsored-by: iXsystems, Inc. Sponsored-by: vStack Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov> Reviewed-by: Mark Maybee <mark.maybee@delphix.com> Authored-by: Matthew Ahrens <mahrens@delphix.com> Contributions-by: Fedor Uporov <fuporov.vstack@gmail.com> Contributions-by: Stuart Maybee <stuart.maybee@comcast.net> Contributions-by: Thorsten Behrens <tbehrens@outlook.com> Contributions-by: Fmstrat <nospam@nowsci.com> Contributions-by: Don Brady <dev.fs.zfs@gmail.com> Signed-off-by: Don Brady <dev.fs.zfs@gmail.com> Closes #15022
2023-11-08 21:19:41 +03:00
uint64_t raidz_children;
const char *class = (ztest_random(2) == 0) ?
VDEV_ALLOC_BIAS_SPECIAL : VDEV_ALLOC_BIAS_DEDUP;
int error;
/*
* By default add a special vdev 50% of the time
*/
if ((ztest_opts.zo_special_vdevs == ZTEST_VDEV_CLASS_OFF) ||
(ztest_opts.zo_special_vdevs == ZTEST_VDEV_CLASS_RND &&
ztest_random(2) == 0)) {
return;
}
mutex_enter(&ztest_vdev_lock);
/* Only test with mirrors */
if (zs->zs_mirrors < 2) {
mutex_exit(&ztest_vdev_lock);
return;
}
/* requires feature@allocation_classes */
if (!spa_feature_is_enabled(spa, SPA_FEATURE_ALLOCATION_CLASSES)) {
mutex_exit(&ztest_vdev_lock);
return;
}
RAID-Z expansion feature This feature allows disks to be added one at a time to a RAID-Z group, expanding its capacity incrementally. This feature is especially useful for small pools (typically with only one RAID-Z group), where there isn't sufficient hardware to add capacity by adding a whole new RAID-Z group (typically doubling the number of disks). == Initiating expansion == A new device (disk) can be attached to an existing RAIDZ vdev, by running `zpool attach POOL raidzP-N NEW_DEVICE`, e.g. `zpool attach tank raidz2-0 sda`. The new device will become part of the RAIDZ group. A "raidz expansion" will be initiated, and the new device will contribute additional space to the RAIDZ group once the expansion completes. The `feature@raidz_expansion` on-disk feature flag must be `enabled` to initiate an expansion, and it remains `active` for the life of the pool. In other words, pools with expanded RAIDZ vdevs can not be imported by older releases of the ZFS software. == During expansion == The expansion entails reading all allocated space from existing disks in the RAIDZ group, and rewriting it to the new disks in the RAIDZ group (including the newly added device). The expansion progress can be monitored with `zpool status`. Data redundancy is maintained during (and after) the expansion. If a disk fails while the expansion is in progress, the expansion pauses until the health of the RAIDZ vdev is restored (e.g. by replacing the failed disk and waiting for reconstruction to complete). The pool remains accessible during expansion. Following a reboot or export/import, the expansion resumes where it left off. == After expansion == When the expansion completes, the additional space is available for use, and is reflected in the `available` zfs property (as seen in `zfs list`, `df`, etc). Expansion does not change the number of failures that can be tolerated without data loss (e.g. a RAIDZ2 is still a RAIDZ2 even after expansion). A RAIDZ vdev can be expanded multiple times. After the expansion completes, old blocks remain with their old data-to-parity ratio (e.g. 5-wide RAIDZ2, has 3 data to 2 parity), but distributed among the larger set of disks. New blocks will be written with the new data-to-parity ratio (e.g. a 5-wide RAIDZ2 which has been expanded once to 6-wide, has 4 data to 2 parity). However, the RAIDZ vdev's "assumed parity ratio" does not change, so slightly less space than is expected may be reported for newly-written blocks, according to `zfs list`, `df`, `ls -s`, and similar tools. Sponsored-by: The FreeBSD Foundation Sponsored-by: iXsystems, Inc. Sponsored-by: vStack Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov> Reviewed-by: Mark Maybee <mark.maybee@delphix.com> Authored-by: Matthew Ahrens <mahrens@delphix.com> Contributions-by: Fedor Uporov <fuporov.vstack@gmail.com> Contributions-by: Stuart Maybee <stuart.maybee@comcast.net> Contributions-by: Thorsten Behrens <tbehrens@outlook.com> Contributions-by: Fmstrat <nospam@nowsci.com> Contributions-by: Don Brady <dev.fs.zfs@gmail.com> Signed-off-by: Don Brady <dev.fs.zfs@gmail.com> Closes #15022
2023-11-08 21:19:41 +03:00
raidz_children = ztest_get_raidz_children(spa);
leaves = MAX(zs->zs_mirrors + zs->zs_splits, 1) * raidz_children;
spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER);
Log Spacemap Project = Motivation At Delphix we've seen a lot of customer systems where fragmentation is over 75% and random writes take a performance hit because a lot of time is spend on I/Os that update on-disk space accounting metadata. Specifically, we seen cases where 20% to 40% of sync time is spend after sync pass 1 and ~30% of the I/Os on the system is spent updating spacemaps. The problem is that these pools have existed long enough that we've touched almost every metaslab at least once, and random writes scatter frees across all metaslabs every TXG, thus appending to their spacemaps and resulting in many I/Os. To give an example, assuming that every VDEV has 200 metaslabs and our writes fit within a single spacemap block (generally 4K) we have 200 I/Os. Then if we assume 2 levels of indirection, we need 400 additional I/Os and since we are talking about metadata for which we keep 2 extra copies for redundancy we need to triple that number, leading to a total of 1800 I/Os per VDEV every TXG. We could try and decrease the number of metaslabs so we have less I/Os per TXG but then each metaslab would cover a wider range on disk and thus would take more time to be loaded in memory from disk. In addition, after it's loaded, it's range tree would consume more memory. Another idea would be to just increase the spacemap block size which would allow us to fit more entries within an I/O block resulting in fewer I/Os per metaslab and a speedup in loading time. The problem is still that we don't deal with the number of I/Os going up as the number of metaslabs is increasing and the fact is that we generally write a lot to a few metaslabs and a little to the rest of them. Thus, just increasing the block size would actually waste bandwidth because we won't be utilizing our bigger block size. = About this patch This patch introduces the Log Spacemap project which provides the solution to the above problem while taking into account all the aforementioned tradeoffs. The details on how it achieves that can be found in the references sections below and in the code (see Big Theory Statement in spa_log_spacemap.c). Even though the change is fairly constraint within the metaslab and lower-level SPA codepaths, there is a side-change that is user-facing. The change is that VDEV IDs from VDEV holes will no longer be reused. To give some background and reasoning for this, when a log device is removed and its VDEV structure was replaced with a hole (or was compacted; if at the end of the vdev array), its vdev_id could be reused by devices added after that. Now with the pool-wide space maps recording the vdev ID, this behavior can cause problems (e.g. is this entry referring to a segment in the new vdev or the removed log?). Thus, to simplify things the ID reuse behavior is gone and now vdev IDs for top-level vdevs are truly unique within a pool. = Testing The illumos implementation of this feature has been used internally for a year and has been in production for ~6 months. For this patch specifically there don't seem to be any regressions introduced to ZTS and I have been running zloop for a week without any related problems. = Performance Analysis (Linux Specific) All performance results and analysis for illumos can be found in the links of the references. Redoing the same experiments in Linux gave similar results. Below are the specifics of the Linux run. After the pool reached stable state the percentage of the time spent in pass 1 per TXG was 64% on average for the stock bits while the log spacemap bits stayed at 95% during the experiment (graph: sdimitro.github.io/img/linux-lsm/PercOfSyncInPassOne.png). Sync times per TXG were 37.6 seconds on average for the stock bits and 22.7 seconds for the log spacemap bits (related graph: sdimitro.github.io/img/linux-lsm/SyncTimePerTXG.png). As a result the log spacemap bits were able to push more TXGs, which is also the reason why all graphs quantified per TXG have more entries for the log spacemap bits. Another interesting aspect in terms of txg syncs is that the stock bits had 22% of their TXGs reach sync pass 7, 55% reach sync pass 8, and 20% reach 9. The log space map bits reached sync pass 4 in 79% of their TXGs, sync pass 7 in 19%, and sync pass 8 at 1%. This emphasizes the fact that not only we spend less time on metadata but we also iterate less times to convergence in spa_sync() dirtying objects. [related graphs: stock- sdimitro.github.io/img/linux-lsm/NumberOfPassesPerTXGStock.png lsm- sdimitro.github.io/img/linux-lsm/NumberOfPassesPerTXGLSM.png] Finally, the improvement in IOPs that the userland gains from the change is approximately 40%. There is a consistent win in IOPS as you can see from the graphs below but the absolute amount of improvement that the log spacemap gives varies within each minute interval. sdimitro.github.io/img/linux-lsm/StockVsLog3Days.png sdimitro.github.io/img/linux-lsm/StockVsLog10Hours.png = Porting to Other Platforms For people that want to port this commit to other platforms below is a list of ZoL commits that this patch depends on: Make zdb results for checkpoint tests consistent db587941c5ff6dea01932bb78f70db63cf7f38ba Update vdev_is_spacemap_addressable() for new spacemap encoding 419ba5914552c6185afbe1dd17b3ed4b0d526547 Simplify spa_sync by breaking it up to smaller functions 8dc2197b7b1e4d7ebc1420ea30e51c6541f1d834 Factor metaslab_load_wait() in metaslab_load() b194fab0fb6caad18711abccaff3c69ad8b3f6d3 Rename range_tree_verify to range_tree_verify_not_present df72b8bebe0ebac0b20e0750984bad182cb6564a Change target size of metaslabs from 256GB to 16GB c853f382db731e15a87512f4ef1101d14d778a55 zdb -L should skip leak detection altogether 21e7cf5da89f55ce98ec1115726b150e19eefe89 vs_alloc can underflow in L2ARC vdevs 7558997d2f808368867ca7e5234e5793446e8f3f Simplify log vdev removal code 6c926f426a26ffb6d7d8e563e33fc176164175cb Get rid of space_map_update() for ms_synced_length 425d3237ee88abc53d8522a7139c926d278b4b7f Introduce auxiliary metaslab histograms 928e8ad47d3478a3d5d01f0dd6ae74a9371af65e Error path in metaslab_load_impl() forgets to drop ms_sync_lock 8eef997679ba54547f7d361553d21b3291f41ae7 = References Background, Motivation, and Internals of the Feature - OpenZFS 2017 Presentation: youtu.be/jj2IxRkl5bQ - Slides: slideshare.net/SerapheimNikolaosDim/zfs-log-spacemaps-project Flushing Algorithm Internals & Performance Results (Illumos Specific) - Blogpost: sdimitro.github.io/post/zfs-lsm-flushing/ - OpenZFS 2018 Presentation: youtu.be/x6D2dHRjkxw - Slides: slideshare.net/SerapheimNikolaosDim/zfs-log-spacemap-flushing-algorithm Upstream Delphix Issues: DLPX-51539, DLPX-59659, DLPX-57783, DLPX-61438, DLPX-41227, DLPX-59320 DLPX-63385 Reviewed-by: Sean Eric Fagan <sef@ixsystems.com> Reviewed-by: Matt Ahrens <matt@delphix.com> Reviewed-by: George Wilson <gwilson@delphix.com> Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov> Signed-off-by: Serapheim Dimitropoulos <serapheim@delphix.com> Closes #8442
2019-07-16 20:11:49 +03:00
ztest_shared->zs_vdev_next_leaf = spa_num_top_vdevs(spa) * leaves;
spa_config_exit(spa, SCL_VDEV, FTAG);
nvroot = make_vdev_root(NULL, NULL, NULL, ztest_opts.zo_vdev_size, 0,
RAID-Z expansion feature This feature allows disks to be added one at a time to a RAID-Z group, expanding its capacity incrementally. This feature is especially useful for small pools (typically with only one RAID-Z group), where there isn't sufficient hardware to add capacity by adding a whole new RAID-Z group (typically doubling the number of disks). == Initiating expansion == A new device (disk) can be attached to an existing RAIDZ vdev, by running `zpool attach POOL raidzP-N NEW_DEVICE`, e.g. `zpool attach tank raidz2-0 sda`. The new device will become part of the RAIDZ group. A "raidz expansion" will be initiated, and the new device will contribute additional space to the RAIDZ group once the expansion completes. The `feature@raidz_expansion` on-disk feature flag must be `enabled` to initiate an expansion, and it remains `active` for the life of the pool. In other words, pools with expanded RAIDZ vdevs can not be imported by older releases of the ZFS software. == During expansion == The expansion entails reading all allocated space from existing disks in the RAIDZ group, and rewriting it to the new disks in the RAIDZ group (including the newly added device). The expansion progress can be monitored with `zpool status`. Data redundancy is maintained during (and after) the expansion. If a disk fails while the expansion is in progress, the expansion pauses until the health of the RAIDZ vdev is restored (e.g. by replacing the failed disk and waiting for reconstruction to complete). The pool remains accessible during expansion. Following a reboot or export/import, the expansion resumes where it left off. == After expansion == When the expansion completes, the additional space is available for use, and is reflected in the `available` zfs property (as seen in `zfs list`, `df`, etc). Expansion does not change the number of failures that can be tolerated without data loss (e.g. a RAIDZ2 is still a RAIDZ2 even after expansion). A RAIDZ vdev can be expanded multiple times. After the expansion completes, old blocks remain with their old data-to-parity ratio (e.g. 5-wide RAIDZ2, has 3 data to 2 parity), but distributed among the larger set of disks. New blocks will be written with the new data-to-parity ratio (e.g. a 5-wide RAIDZ2 which has been expanded once to 6-wide, has 4 data to 2 parity). However, the RAIDZ vdev's "assumed parity ratio" does not change, so slightly less space than is expected may be reported for newly-written blocks, according to `zfs list`, `df`, `ls -s`, and similar tools. Sponsored-by: The FreeBSD Foundation Sponsored-by: iXsystems, Inc. Sponsored-by: vStack Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov> Reviewed-by: Mark Maybee <mark.maybee@delphix.com> Authored-by: Matthew Ahrens <mahrens@delphix.com> Contributions-by: Fedor Uporov <fuporov.vstack@gmail.com> Contributions-by: Stuart Maybee <stuart.maybee@comcast.net> Contributions-by: Thorsten Behrens <tbehrens@outlook.com> Contributions-by: Fmstrat <nospam@nowsci.com> Contributions-by: Don Brady <dev.fs.zfs@gmail.com> Signed-off-by: Don Brady <dev.fs.zfs@gmail.com> Closes #15022
2023-11-08 21:19:41 +03:00
class, raidz_children, zs->zs_mirrors, 1);
error = spa_vdev_add(spa, nvroot, B_FALSE);
fnvlist_free(nvroot);
if (error == ENOSPC)
ztest_record_enospc("spa_vdev_add");
else if (error != 0)
fatal(B_FALSE, "spa_vdev_add() = %d", error);
/*
* 50% of the time allow small blocks in the special class
*/
if (error == 0 &&
spa_special_class(spa)->mc_groups == 1 && ztest_random(2) == 0) {
if (ztest_opts.zo_verbose >= 3)
(void) printf("Enabling special VDEV small blocks\n");
error = ztest_dsl_prop_set_uint64(zd->zd_name,
ZFS_PROP_SPECIAL_SMALL_BLOCKS, 32768, B_FALSE);
ASSERT(error == 0 || error == ENOSPC);
}
mutex_exit(&ztest_vdev_lock);
if (ztest_opts.zo_verbose >= 3) {
metaslab_class_t *mc;
if (strcmp(class, VDEV_ALLOC_BIAS_SPECIAL) == 0)
mc = spa_special_class(spa);
else
mc = spa_dedup_class(spa);
(void) printf("Added a %s mirrored vdev (of %d)\n",
class, (int)mc->mc_groups);
}
}
/*
* Verify that adding/removing aux devices (l2arc, hot spare) works as expected.
*/
void
ztest_vdev_aux_add_remove(ztest_ds_t *zd, uint64_t id)
{
(void) zd, (void) id;
ztest_shared_t *zs = ztest_shared;
spa_t *spa = ztest_spa;
vdev_t *rvd = spa->spa_root_vdev;
spa_aux_vdev_t *sav;
const char *aux;
char *path;
uint64_t guid = 0;
Distributed Spare (dRAID) Feature This patch adds a new top-level vdev type called dRAID, which stands for Distributed parity RAID. This pool configuration allows all dRAID vdevs to participate when rebuilding to a distributed hot spare device. This can substantially reduce the total time required to restore full parity to pool with a failed device. A dRAID pool can be created using the new top-level `draid` type. Like `raidz`, the desired redundancy is specified after the type: `draid[1,2,3]`. No additional information is required to create the pool and reasonable default values will be chosen based on the number of child vdevs in the dRAID vdev. zpool create <pool> draid[1,2,3] <vdevs...> Unlike raidz, additional optional dRAID configuration values can be provided as part of the draid type as colon separated values. This allows administrators to fully specify a layout for either performance or capacity reasons. The supported options include: zpool create <pool> \ draid[<parity>][:<data>d][:<children>c][:<spares>s] \ <vdevs...> - draid[parity] - Parity level (default 1) - draid[:<data>d] - Data devices per group (default 8) - draid[:<children>c] - Expected number of child vdevs - draid[:<spares>s] - Distributed hot spares (default 0) Abbreviated example `zpool status` output for a 68 disk dRAID pool with two distributed spares using special allocation classes. ``` pool: tank state: ONLINE config: NAME STATE READ WRITE CKSUM slag7 ONLINE 0 0 0 draid2:8d:68c:2s-0 ONLINE 0 0 0 L0 ONLINE 0 0 0 L1 ONLINE 0 0 0 ... U25 ONLINE 0 0 0 U26 ONLINE 0 0 0 spare-53 ONLINE 0 0 0 U27 ONLINE 0 0 0 draid2-0-0 ONLINE 0 0 0 U28 ONLINE 0 0 0 U29 ONLINE 0 0 0 ... U42 ONLINE 0 0 0 U43 ONLINE 0 0 0 special mirror-1 ONLINE 0 0 0 L5 ONLINE 0 0 0 U5 ONLINE 0 0 0 mirror-2 ONLINE 0 0 0 L6 ONLINE 0 0 0 U6 ONLINE 0 0 0 spares draid2-0-0 INUSE currently in use draid2-0-1 AVAIL ``` When adding test coverage for the new dRAID vdev type the following options were added to the ztest command. These options are leverages by zloop.sh to test a wide range of dRAID configurations. -K draid|raidz|random - kind of RAID to test -D <value> - dRAID data drives per group -S <value> - dRAID distributed hot spares -R <value> - RAID parity (raidz or dRAID) The zpool_create, zpool_import, redundancy, replacement and fault test groups have all been updated provide test coverage for the dRAID feature. Co-authored-by: Isaac Huang <he.huang@intel.com> Co-authored-by: Mark Maybee <mmaybee@cray.com> Co-authored-by: Don Brady <don.brady@delphix.com> Co-authored-by: Matthew Ahrens <mahrens@delphix.com> Co-authored-by: Brian Behlendorf <behlendorf1@llnl.gov> Reviewed-by: Mark Maybee <mmaybee@cray.com> Reviewed-by: Matt Ahrens <matt@delphix.com> Reviewed-by: Tony Hutter <hutter2@llnl.gov> Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov> Closes #10102
2020-11-14 00:51:51 +03:00
int error, ignore_err = 0;
Multi-modifier protection (MMP) Add multihost=on|off pool property to control MMP. When enabled a new thread writes uberblocks to the last slot in each label, at a set frequency, to indicate to other hosts the pool is actively imported. These uberblocks are the last synced uberblock with an updated timestamp. Property defaults to off. During tryimport, find the "best" uberblock (newest txg and timestamp) repeatedly, checking for change in the found uberblock. Include the results of the activity test in the config returned by tryimport. These results are reported to user in "zpool import". Allow the user to control the period between MMP writes, and the duration of the activity test on import, via a new module parameter zfs_multihost_interval. The period is specified in milliseconds. The activity test duration is calculated from this value, and from the mmp_delay in the "best" uberblock found initially. Add a kstat interface to export statistics about Multiple Modifier Protection (MMP) updates. Include the last synced txg number, the timestamp, the delay since the last MMP update, the VDEV GUID, the VDEV label that received the last MMP update, and the VDEV path. Abbreviated output below. $ cat /proc/spl/kstat/zfs/mypool/multihost 31 0 0x01 10 880 105092382393521 105144180101111 txg timestamp mmp_delay vdev_guid vdev_label vdev_path 20468 261337 250274925 68396651780 3 /dev/sda 20468 261339 252023374 6267402363293 1 /dev/sdc 20468 261340 252000858 6698080955233 1 /dev/sdx 20468 261341 251980635 783892869810 2 /dev/sdy 20468 261342 253385953 8923255792467 3 /dev/sdd 20468 261344 253336622 042125143176 0 /dev/sdab 20468 261345 253310522 1200778101278 2 /dev/sde 20468 261346 253286429 0950576198362 2 /dev/sdt 20468 261347 253261545 96209817917 3 /dev/sds 20468 261349 253238188 8555725937673 3 /dev/sdb Add a new tunable zfs_multihost_history to specify the number of MMP updates to store history for. By default it is set to zero meaning that no MMP statistics are stored. When using ztest to generate activity, for automated tests of the MMP function, some test functions interfere with the test. For example, the pool is exported to run zdb and then imported again. Add a new ztest function, "-M", to alter ztest behavior to prevent this. Add new tests to verify the new functionality. Tests provided by Giuseppe Di Natale. Reviewed by: Matthew Ahrens <mahrens@delphix.com> Reviewed-by: Giuseppe Di Natale <dinatale2@llnl.gov> Reviewed-by: Ned Bass <bass6@llnl.gov> Reviewed-by: Andreas Dilger <andreas.dilger@intel.com> Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov> Signed-off-by: Olaf Faaland <faaland1@llnl.gov> Closes #745 Closes #6279
2017-07-08 06:20:35 +03:00
if (ztest_opts.zo_mmp_test)
return;
path = umem_alloc(MAXPATHLEN, UMEM_NOFAIL);
if (ztest_random(2) == 0) {
sav = &spa->spa_spares;
aux = ZPOOL_CONFIG_SPARES;
} else {
sav = &spa->spa_l2cache;
aux = ZPOOL_CONFIG_L2CACHE;
}
mutex_enter(&ztest_vdev_lock);
spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER);
if (sav->sav_count != 0 && ztest_random(4) == 0) {
/*
* Pick a random device to remove.
*/
Distributed Spare (dRAID) Feature This patch adds a new top-level vdev type called dRAID, which stands for Distributed parity RAID. This pool configuration allows all dRAID vdevs to participate when rebuilding to a distributed hot spare device. This can substantially reduce the total time required to restore full parity to pool with a failed device. A dRAID pool can be created using the new top-level `draid` type. Like `raidz`, the desired redundancy is specified after the type: `draid[1,2,3]`. No additional information is required to create the pool and reasonable default values will be chosen based on the number of child vdevs in the dRAID vdev. zpool create <pool> draid[1,2,3] <vdevs...> Unlike raidz, additional optional dRAID configuration values can be provided as part of the draid type as colon separated values. This allows administrators to fully specify a layout for either performance or capacity reasons. The supported options include: zpool create <pool> \ draid[<parity>][:<data>d][:<children>c][:<spares>s] \ <vdevs...> - draid[parity] - Parity level (default 1) - draid[:<data>d] - Data devices per group (default 8) - draid[:<children>c] - Expected number of child vdevs - draid[:<spares>s] - Distributed hot spares (default 0) Abbreviated example `zpool status` output for a 68 disk dRAID pool with two distributed spares using special allocation classes. ``` pool: tank state: ONLINE config: NAME STATE READ WRITE CKSUM slag7 ONLINE 0 0 0 draid2:8d:68c:2s-0 ONLINE 0 0 0 L0 ONLINE 0 0 0 L1 ONLINE 0 0 0 ... U25 ONLINE 0 0 0 U26 ONLINE 0 0 0 spare-53 ONLINE 0 0 0 U27 ONLINE 0 0 0 draid2-0-0 ONLINE 0 0 0 U28 ONLINE 0 0 0 U29 ONLINE 0 0 0 ... U42 ONLINE 0 0 0 U43 ONLINE 0 0 0 special mirror-1 ONLINE 0 0 0 L5 ONLINE 0 0 0 U5 ONLINE 0 0 0 mirror-2 ONLINE 0 0 0 L6 ONLINE 0 0 0 U6 ONLINE 0 0 0 spares draid2-0-0 INUSE currently in use draid2-0-1 AVAIL ``` When adding test coverage for the new dRAID vdev type the following options were added to the ztest command. These options are leverages by zloop.sh to test a wide range of dRAID configurations. -K draid|raidz|random - kind of RAID to test -D <value> - dRAID data drives per group -S <value> - dRAID distributed hot spares -R <value> - RAID parity (raidz or dRAID) The zpool_create, zpool_import, redundancy, replacement and fault test groups have all been updated provide test coverage for the dRAID feature. Co-authored-by: Isaac Huang <he.huang@intel.com> Co-authored-by: Mark Maybee <mmaybee@cray.com> Co-authored-by: Don Brady <don.brady@delphix.com> Co-authored-by: Matthew Ahrens <mahrens@delphix.com> Co-authored-by: Brian Behlendorf <behlendorf1@llnl.gov> Reviewed-by: Mark Maybee <mmaybee@cray.com> Reviewed-by: Matt Ahrens <matt@delphix.com> Reviewed-by: Tony Hutter <hutter2@llnl.gov> Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov> Closes #10102
2020-11-14 00:51:51 +03:00
vdev_t *svd = sav->sav_vdevs[ztest_random(sav->sav_count)];
/* dRAID spares cannot be removed; try anyways to see ENOTSUP */
if (strstr(svd->vdev_path, VDEV_TYPE_DRAID) != NULL)
ignore_err = ENOTSUP;
guid = svd->vdev_guid;
} else {
/*
* Find an unused device we can add.
*/
zs->zs_vdev_aux = 0;
for (;;) {
int c;
(void) snprintf(path, MAXPATHLEN, ztest_aux_template,
ztest_opts.zo_dir, ztest_opts.zo_pool, aux,
zs->zs_vdev_aux);
for (c = 0; c < sav->sav_count; c++)
if (strcmp(sav->sav_vdevs[c]->vdev_path,
path) == 0)
break;
if (c == sav->sav_count &&
vdev_lookup_by_path(rvd, path) == NULL)
break;
zs->zs_vdev_aux++;
2008-11-20 23:01:55 +03:00
}
}
spa_config_exit(spa, SCL_VDEV, FTAG);
2008-11-20 23:01:55 +03:00
if (guid == 0) {
/*
* Add a new device.
*/
nvlist_t *nvroot = make_vdev_root(NULL, aux, NULL,
(ztest_opts.zo_vdev_size * 5) / 4, 0, NULL, 0, 0, 1);
error = spa_vdev_add(spa, nvroot, B_FALSE);
OpenZFS 9166 - zfs storage pool checkpoint Details about the motivation of this feature and its usage can be found in this blogpost: https://sdimitro.github.io/post/zpool-checkpoint/ A lightning talk of this feature can be found here: https://www.youtube.com/watch?v=fPQA8K40jAM Implementation details can be found in big block comment of spa_checkpoint.c Side-changes that are relevant to this commit but not explained elsewhere: * renames members of "struct metaslab trees to be shorter without losing meaning * space_map_{alloc,truncate}() accept a block size as a parameter. The reason is that in the current state all space maps that we allocate through the DMU use a global tunable (space_map_blksz) which defauls to 4KB. This is ok for metaslab space maps in terms of bandwirdth since they are scattered all over the disk. But for other space maps this default is probably not what we want. Examples are device removal's vdev_obsolete_sm or vdev_chedkpoint_sm from this review. Both of these have a 1:1 relationship with each vdev and could benefit from a bigger block size. Porting notes: * The part of dsl_scan_sync() which handles async destroys has been moved into the new dsl_process_async_destroys() function. * Remove "VERIFY(!(flags & FWRITE))" in "kernel.c" so zhack can write to block device backed pools. * ZTS: * Fix get_txg() in zpool_sync_001_pos due to "checkpoint_txg". * Don't use large dd block sizes on /dev/urandom under Linux in checkpoint_capacity. * Adopt Delphix-OS's setting of 4 (spa_asize_inflation = SPA_DVAS_PER_BP + 1) for the checkpoint_capacity test to speed its attempts to fill the pool * Create the base and nested pools with sync=disabled to speed up the "setup" phase. * Clear labels in test pool between checkpoint tests to avoid duplicate pool issues. * The import_rewind_device_replaced test has been marked as "known to fail" for the reasons listed in its DISCLAIMER. * New module parameters: zfs_spa_discard_memory_limit, zfs_remove_max_bytes_pause (not documented - debugging only) vdev_max_ms_count (formerly metaslabs_per_vdev) vdev_min_ms_count Authored by: Serapheim Dimitropoulos <serapheim.dimitro@delphix.com> Reviewed by: Matthew Ahrens <mahrens@delphix.com> Reviewed by: John Kennedy <john.kennedy@delphix.com> Reviewed by: Dan Kimmel <dan.kimmel@delphix.com> Reviewed by: Brian Behlendorf <behlendorf1@llnl.gov> Approved by: Richard Lowe <richlowe@richlowe.net> Ported-by: Tim Chase <tim@chase2k.com> Signed-off-by: Tim Chase <tim@chase2k.com> OpenZFS-issue: https://illumos.org/issues/9166 OpenZFS-commit: https://github.com/openzfs/openzfs/commit/7159fdb8 Closes #7570
2016-12-17 01:11:29 +03:00
switch (error) {
case 0:
break;
default:
fatal(B_FALSE, "spa_vdev_add(%p) = %d", nvroot, error);
OpenZFS 9166 - zfs storage pool checkpoint Details about the motivation of this feature and its usage can be found in this blogpost: https://sdimitro.github.io/post/zpool-checkpoint/ A lightning talk of this feature can be found here: https://www.youtube.com/watch?v=fPQA8K40jAM Implementation details can be found in big block comment of spa_checkpoint.c Side-changes that are relevant to this commit but not explained elsewhere: * renames members of "struct metaslab trees to be shorter without losing meaning * space_map_{alloc,truncate}() accept a block size as a parameter. The reason is that in the current state all space maps that we allocate through the DMU use a global tunable (space_map_blksz) which defauls to 4KB. This is ok for metaslab space maps in terms of bandwirdth since they are scattered all over the disk. But for other space maps this default is probably not what we want. Examples are device removal's vdev_obsolete_sm or vdev_chedkpoint_sm from this review. Both of these have a 1:1 relationship with each vdev and could benefit from a bigger block size. Porting notes: * The part of dsl_scan_sync() which handles async destroys has been moved into the new dsl_process_async_destroys() function. * Remove "VERIFY(!(flags & FWRITE))" in "kernel.c" so zhack can write to block device backed pools. * ZTS: * Fix get_txg() in zpool_sync_001_pos due to "checkpoint_txg". * Don't use large dd block sizes on /dev/urandom under Linux in checkpoint_capacity. * Adopt Delphix-OS's setting of 4 (spa_asize_inflation = SPA_DVAS_PER_BP + 1) for the checkpoint_capacity test to speed its attempts to fill the pool * Create the base and nested pools with sync=disabled to speed up the "setup" phase. * Clear labels in test pool between checkpoint tests to avoid duplicate pool issues. * The import_rewind_device_replaced test has been marked as "known to fail" for the reasons listed in its DISCLAIMER. * New module parameters: zfs_spa_discard_memory_limit, zfs_remove_max_bytes_pause (not documented - debugging only) vdev_max_ms_count (formerly metaslabs_per_vdev) vdev_min_ms_count Authored by: Serapheim Dimitropoulos <serapheim.dimitro@delphix.com> Reviewed by: Matthew Ahrens <mahrens@delphix.com> Reviewed by: John Kennedy <john.kennedy@delphix.com> Reviewed by: Dan Kimmel <dan.kimmel@delphix.com> Reviewed by: Brian Behlendorf <behlendorf1@llnl.gov> Approved by: Richard Lowe <richlowe@richlowe.net> Ported-by: Tim Chase <tim@chase2k.com> Signed-off-by: Tim Chase <tim@chase2k.com> OpenZFS-issue: https://illumos.org/issues/9166 OpenZFS-commit: https://github.com/openzfs/openzfs/commit/7159fdb8 Closes #7570
2016-12-17 01:11:29 +03:00
}
fnvlist_free(nvroot);
} else {
/*
* Remove an existing device. Sometimes, dirty its
* vdev state first to make sure we handle removal
* of devices that have pending state changes.
*/
if (ztest_random(2) == 0)
2009-07-03 02:44:48 +04:00
(void) vdev_online(spa, guid, 0, NULL);
error = spa_vdev_remove(spa, guid, B_FALSE);
OpenZFS 9166 - zfs storage pool checkpoint Details about the motivation of this feature and its usage can be found in this blogpost: https://sdimitro.github.io/post/zpool-checkpoint/ A lightning talk of this feature can be found here: https://www.youtube.com/watch?v=fPQA8K40jAM Implementation details can be found in big block comment of spa_checkpoint.c Side-changes that are relevant to this commit but not explained elsewhere: * renames members of "struct metaslab trees to be shorter without losing meaning * space_map_{alloc,truncate}() accept a block size as a parameter. The reason is that in the current state all space maps that we allocate through the DMU use a global tunable (space_map_blksz) which defauls to 4KB. This is ok for metaslab space maps in terms of bandwirdth since they are scattered all over the disk. But for other space maps this default is probably not what we want. Examples are device removal's vdev_obsolete_sm or vdev_chedkpoint_sm from this review. Both of these have a 1:1 relationship with each vdev and could benefit from a bigger block size. Porting notes: * The part of dsl_scan_sync() which handles async destroys has been moved into the new dsl_process_async_destroys() function. * Remove "VERIFY(!(flags & FWRITE))" in "kernel.c" so zhack can write to block device backed pools. * ZTS: * Fix get_txg() in zpool_sync_001_pos due to "checkpoint_txg". * Don't use large dd block sizes on /dev/urandom under Linux in checkpoint_capacity. * Adopt Delphix-OS's setting of 4 (spa_asize_inflation = SPA_DVAS_PER_BP + 1) for the checkpoint_capacity test to speed its attempts to fill the pool * Create the base and nested pools with sync=disabled to speed up the "setup" phase. * Clear labels in test pool between checkpoint tests to avoid duplicate pool issues. * The import_rewind_device_replaced test has been marked as "known to fail" for the reasons listed in its DISCLAIMER. * New module parameters: zfs_spa_discard_memory_limit, zfs_remove_max_bytes_pause (not documented - debugging only) vdev_max_ms_count (formerly metaslabs_per_vdev) vdev_min_ms_count Authored by: Serapheim Dimitropoulos <serapheim.dimitro@delphix.com> Reviewed by: Matthew Ahrens <mahrens@delphix.com> Reviewed by: John Kennedy <john.kennedy@delphix.com> Reviewed by: Dan Kimmel <dan.kimmel@delphix.com> Reviewed by: Brian Behlendorf <behlendorf1@llnl.gov> Approved by: Richard Lowe <richlowe@richlowe.net> Ported-by: Tim Chase <tim@chase2k.com> Signed-off-by: Tim Chase <tim@chase2k.com> OpenZFS-issue: https://illumos.org/issues/9166 OpenZFS-commit: https://github.com/openzfs/openzfs/commit/7159fdb8 Closes #7570
2016-12-17 01:11:29 +03:00
switch (error) {
case 0:
case EBUSY:
case ZFS_ERR_CHECKPOINT_EXISTS:
case ZFS_ERR_DISCARDING_CHECKPOINT:
break;
default:
Distributed Spare (dRAID) Feature This patch adds a new top-level vdev type called dRAID, which stands for Distributed parity RAID. This pool configuration allows all dRAID vdevs to participate when rebuilding to a distributed hot spare device. This can substantially reduce the total time required to restore full parity to pool with a failed device. A dRAID pool can be created using the new top-level `draid` type. Like `raidz`, the desired redundancy is specified after the type: `draid[1,2,3]`. No additional information is required to create the pool and reasonable default values will be chosen based on the number of child vdevs in the dRAID vdev. zpool create <pool> draid[1,2,3] <vdevs...> Unlike raidz, additional optional dRAID configuration values can be provided as part of the draid type as colon separated values. This allows administrators to fully specify a layout for either performance or capacity reasons. The supported options include: zpool create <pool> \ draid[<parity>][:<data>d][:<children>c][:<spares>s] \ <vdevs...> - draid[parity] - Parity level (default 1) - draid[:<data>d] - Data devices per group (default 8) - draid[:<children>c] - Expected number of child vdevs - draid[:<spares>s] - Distributed hot spares (default 0) Abbreviated example `zpool status` output for a 68 disk dRAID pool with two distributed spares using special allocation classes. ``` pool: tank state: ONLINE config: NAME STATE READ WRITE CKSUM slag7 ONLINE 0 0 0 draid2:8d:68c:2s-0 ONLINE 0 0 0 L0 ONLINE 0 0 0 L1 ONLINE 0 0 0 ... U25 ONLINE 0 0 0 U26 ONLINE 0 0 0 spare-53 ONLINE 0 0 0 U27 ONLINE 0 0 0 draid2-0-0 ONLINE 0 0 0 U28 ONLINE 0 0 0 U29 ONLINE 0 0 0 ... U42 ONLINE 0 0 0 U43 ONLINE 0 0 0 special mirror-1 ONLINE 0 0 0 L5 ONLINE 0 0 0 U5 ONLINE 0 0 0 mirror-2 ONLINE 0 0 0 L6 ONLINE 0 0 0 U6 ONLINE 0 0 0 spares draid2-0-0 INUSE currently in use draid2-0-1 AVAIL ``` When adding test coverage for the new dRAID vdev type the following options were added to the ztest command. These options are leverages by zloop.sh to test a wide range of dRAID configurations. -K draid|raidz|random - kind of RAID to test -D <value> - dRAID data drives per group -S <value> - dRAID distributed hot spares -R <value> - RAID parity (raidz or dRAID) The zpool_create, zpool_import, redundancy, replacement and fault test groups have all been updated provide test coverage for the dRAID feature. Co-authored-by: Isaac Huang <he.huang@intel.com> Co-authored-by: Mark Maybee <mmaybee@cray.com> Co-authored-by: Don Brady <don.brady@delphix.com> Co-authored-by: Matthew Ahrens <mahrens@delphix.com> Co-authored-by: Brian Behlendorf <behlendorf1@llnl.gov> Reviewed-by: Mark Maybee <mmaybee@cray.com> Reviewed-by: Matt Ahrens <matt@delphix.com> Reviewed-by: Tony Hutter <hutter2@llnl.gov> Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov> Closes #10102
2020-11-14 00:51:51 +03:00
if (error != ignore_err)
fatal(B_FALSE,
"spa_vdev_remove(%"PRIu64") = %d",
guid, error);
OpenZFS 9166 - zfs storage pool checkpoint Details about the motivation of this feature and its usage can be found in this blogpost: https://sdimitro.github.io/post/zpool-checkpoint/ A lightning talk of this feature can be found here: https://www.youtube.com/watch?v=fPQA8K40jAM Implementation details can be found in big block comment of spa_checkpoint.c Side-changes that are relevant to this commit but not explained elsewhere: * renames members of "struct metaslab trees to be shorter without losing meaning * space_map_{alloc,truncate}() accept a block size as a parameter. The reason is that in the current state all space maps that we allocate through the DMU use a global tunable (space_map_blksz) which defauls to 4KB. This is ok for metaslab space maps in terms of bandwirdth since they are scattered all over the disk. But for other space maps this default is probably not what we want. Examples are device removal's vdev_obsolete_sm or vdev_chedkpoint_sm from this review. Both of these have a 1:1 relationship with each vdev and could benefit from a bigger block size. Porting notes: * The part of dsl_scan_sync() which handles async destroys has been moved into the new dsl_process_async_destroys() function. * Remove "VERIFY(!(flags & FWRITE))" in "kernel.c" so zhack can write to block device backed pools. * ZTS: * Fix get_txg() in zpool_sync_001_pos due to "checkpoint_txg". * Don't use large dd block sizes on /dev/urandom under Linux in checkpoint_capacity. * Adopt Delphix-OS's setting of 4 (spa_asize_inflation = SPA_DVAS_PER_BP + 1) for the checkpoint_capacity test to speed its attempts to fill the pool * Create the base and nested pools with sync=disabled to speed up the "setup" phase. * Clear labels in test pool between checkpoint tests to avoid duplicate pool issues. * The import_rewind_device_replaced test has been marked as "known to fail" for the reasons listed in its DISCLAIMER. * New module parameters: zfs_spa_discard_memory_limit, zfs_remove_max_bytes_pause (not documented - debugging only) vdev_max_ms_count (formerly metaslabs_per_vdev) vdev_min_ms_count Authored by: Serapheim Dimitropoulos <serapheim.dimitro@delphix.com> Reviewed by: Matthew Ahrens <mahrens@delphix.com> Reviewed by: John Kennedy <john.kennedy@delphix.com> Reviewed by: Dan Kimmel <dan.kimmel@delphix.com> Reviewed by: Brian Behlendorf <behlendorf1@llnl.gov> Approved by: Richard Lowe <richlowe@richlowe.net> Ported-by: Tim Chase <tim@chase2k.com> Signed-off-by: Tim Chase <tim@chase2k.com> OpenZFS-issue: https://illumos.org/issues/9166 OpenZFS-commit: https://github.com/openzfs/openzfs/commit/7159fdb8 Closes #7570
2016-12-17 01:11:29 +03:00
}
}
mutex_exit(&ztest_vdev_lock);
umem_free(path, MAXPATHLEN);
}
/*
* split a pool if it has mirror tlvdevs
*/
void
ztest_split_pool(ztest_ds_t *zd, uint64_t id)
{
(void) zd, (void) id;
ztest_shared_t *zs = ztest_shared;
spa_t *spa = ztest_spa;
vdev_t *rvd = spa->spa_root_vdev;
nvlist_t *tree, **child, *config, *split, **schild;
uint_t c, children, schildren = 0, lastlogid = 0;
int error = 0;
Multi-modifier protection (MMP) Add multihost=on|off pool property to control MMP. When enabled a new thread writes uberblocks to the last slot in each label, at a set frequency, to indicate to other hosts the pool is actively imported. These uberblocks are the last synced uberblock with an updated timestamp. Property defaults to off. During tryimport, find the "best" uberblock (newest txg and timestamp) repeatedly, checking for change in the found uberblock. Include the results of the activity test in the config returned by tryimport. These results are reported to user in "zpool import". Allow the user to control the period between MMP writes, and the duration of the activity test on import, via a new module parameter zfs_multihost_interval. The period is specified in milliseconds. The activity test duration is calculated from this value, and from the mmp_delay in the "best" uberblock found initially. Add a kstat interface to export statistics about Multiple Modifier Protection (MMP) updates. Include the last synced txg number, the timestamp, the delay since the last MMP update, the VDEV GUID, the VDEV label that received the last MMP update, and the VDEV path. Abbreviated output below. $ cat /proc/spl/kstat/zfs/mypool/multihost 31 0 0x01 10 880 105092382393521 105144180101111 txg timestamp mmp_delay vdev_guid vdev_label vdev_path 20468 261337 250274925 68396651780 3 /dev/sda 20468 261339 252023374 6267402363293 1 /dev/sdc 20468 261340 252000858 6698080955233 1 /dev/sdx 20468 261341 251980635 783892869810 2 /dev/sdy 20468 261342 253385953 8923255792467 3 /dev/sdd 20468 261344 253336622 042125143176 0 /dev/sdab 20468 261345 253310522 1200778101278 2 /dev/sde 20468 261346 253286429 0950576198362 2 /dev/sdt 20468 261347 253261545 96209817917 3 /dev/sds 20468 261349 253238188 8555725937673 3 /dev/sdb Add a new tunable zfs_multihost_history to specify the number of MMP updates to store history for. By default it is set to zero meaning that no MMP statistics are stored. When using ztest to generate activity, for automated tests of the MMP function, some test functions interfere with the test. For example, the pool is exported to run zdb and then imported again. Add a new ztest function, "-M", to alter ztest behavior to prevent this. Add new tests to verify the new functionality. Tests provided by Giuseppe Di Natale. Reviewed by: Matthew Ahrens <mahrens@delphix.com> Reviewed-by: Giuseppe Di Natale <dinatale2@llnl.gov> Reviewed-by: Ned Bass <bass6@llnl.gov> Reviewed-by: Andreas Dilger <andreas.dilger@intel.com> Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov> Signed-off-by: Olaf Faaland <faaland1@llnl.gov> Closes #745 Closes #6279
2017-07-08 06:20:35 +03:00
if (ztest_opts.zo_mmp_test)
return;
mutex_enter(&ztest_vdev_lock);
/* ensure we have a usable config; mirrors of raidz aren't supported */
Distributed Spare (dRAID) Feature This patch adds a new top-level vdev type called dRAID, which stands for Distributed parity RAID. This pool configuration allows all dRAID vdevs to participate when rebuilding to a distributed hot spare device. This can substantially reduce the total time required to restore full parity to pool with a failed device. A dRAID pool can be created using the new top-level `draid` type. Like `raidz`, the desired redundancy is specified after the type: `draid[1,2,3]`. No additional information is required to create the pool and reasonable default values will be chosen based on the number of child vdevs in the dRAID vdev. zpool create <pool> draid[1,2,3] <vdevs...> Unlike raidz, additional optional dRAID configuration values can be provided as part of the draid type as colon separated values. This allows administrators to fully specify a layout for either performance or capacity reasons. The supported options include: zpool create <pool> \ draid[<parity>][:<data>d][:<children>c][:<spares>s] \ <vdevs...> - draid[parity] - Parity level (default 1) - draid[:<data>d] - Data devices per group (default 8) - draid[:<children>c] - Expected number of child vdevs - draid[:<spares>s] - Distributed hot spares (default 0) Abbreviated example `zpool status` output for a 68 disk dRAID pool with two distributed spares using special allocation classes. ``` pool: tank state: ONLINE config: NAME STATE READ WRITE CKSUM slag7 ONLINE 0 0 0 draid2:8d:68c:2s-0 ONLINE 0 0 0 L0 ONLINE 0 0 0 L1 ONLINE 0 0 0 ... U25 ONLINE 0 0 0 U26 ONLINE 0 0 0 spare-53 ONLINE 0 0 0 U27 ONLINE 0 0 0 draid2-0-0 ONLINE 0 0 0 U28 ONLINE 0 0 0 U29 ONLINE 0 0 0 ... U42 ONLINE 0 0 0 U43 ONLINE 0 0 0 special mirror-1 ONLINE 0 0 0 L5 ONLINE 0 0 0 U5 ONLINE 0 0 0 mirror-2 ONLINE 0 0 0 L6 ONLINE 0 0 0 U6 ONLINE 0 0 0 spares draid2-0-0 INUSE currently in use draid2-0-1 AVAIL ``` When adding test coverage for the new dRAID vdev type the following options were added to the ztest command. These options are leverages by zloop.sh to test a wide range of dRAID configurations. -K draid|raidz|random - kind of RAID to test -D <value> - dRAID data drives per group -S <value> - dRAID distributed hot spares -R <value> - RAID parity (raidz or dRAID) The zpool_create, zpool_import, redundancy, replacement and fault test groups have all been updated provide test coverage for the dRAID feature. Co-authored-by: Isaac Huang <he.huang@intel.com> Co-authored-by: Mark Maybee <mmaybee@cray.com> Co-authored-by: Don Brady <don.brady@delphix.com> Co-authored-by: Matthew Ahrens <mahrens@delphix.com> Co-authored-by: Brian Behlendorf <behlendorf1@llnl.gov> Reviewed-by: Mark Maybee <mmaybee@cray.com> Reviewed-by: Matt Ahrens <matt@delphix.com> Reviewed-by: Tony Hutter <hutter2@llnl.gov> Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov> Closes #10102
2020-11-14 00:51:51 +03:00
if (zs->zs_mirrors < 3 || ztest_opts.zo_raid_children > 1) {
mutex_exit(&ztest_vdev_lock);
return;
}
/* clean up the old pool, if any */
(void) spa_destroy("splitp");
spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER);
/* generate a config from the existing config */
mutex_enter(&spa->spa_props_lock);
tree = fnvlist_lookup_nvlist(spa->spa_config, ZPOOL_CONFIG_VDEV_TREE);
mutex_exit(&spa->spa_props_lock);
VERIFY0(nvlist_lookup_nvlist_array(tree, ZPOOL_CONFIG_CHILDREN,
&child, &children));
schild = umem_alloc(rvd->vdev_children * sizeof (nvlist_t *),
UMEM_NOFAIL);
for (c = 0; c < children; c++) {
vdev_t *tvd = rvd->vdev_child[c];
nvlist_t **mchild;
uint_t mchildren;
if (tvd->vdev_islog || tvd->vdev_ops == &vdev_hole_ops) {
schild[schildren] = fnvlist_alloc();
fnvlist_add_string(schild[schildren],
ZPOOL_CONFIG_TYPE, VDEV_TYPE_HOLE);
fnvlist_add_uint64(schild[schildren],
ZPOOL_CONFIG_IS_HOLE, 1);
if (lastlogid == 0)
lastlogid = schildren;
++schildren;
continue;
}
lastlogid = 0;
VERIFY0(nvlist_lookup_nvlist_array(child[c],
ZPOOL_CONFIG_CHILDREN, &mchild, &mchildren));
schild[schildren++] = fnvlist_dup(mchild[0]);
}
/* OK, create a config that can be used to split */
split = fnvlist_alloc();
fnvlist_add_string(split, ZPOOL_CONFIG_TYPE, VDEV_TYPE_ROOT);
fnvlist_add_nvlist_array(split, ZPOOL_CONFIG_CHILDREN,
(const nvlist_t **)schild, lastlogid != 0 ? lastlogid : schildren);
config = fnvlist_alloc();
fnvlist_add_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, split);
for (c = 0; c < schildren; c++)
fnvlist_free(schild[c]);
umem_free(schild, rvd->vdev_children * sizeof (nvlist_t *));
fnvlist_free(split);
spa_config_exit(spa, SCL_VDEV, FTAG);
(void) pthread_rwlock_wrlock(&ztest_name_lock);
error = spa_vdev_split_mirror(spa, "splitp", config, NULL, B_FALSE);
(void) pthread_rwlock_unlock(&ztest_name_lock);
fnvlist_free(config);
if (error == 0) {
(void) printf("successful split - results:\n");
mutex_enter(&spa_namespace_lock);
show_pool_stats(spa);
show_pool_stats(spa_lookup("splitp"));
mutex_exit(&spa_namespace_lock);
++zs->zs_splits;
--zs->zs_mirrors;
}
mutex_exit(&ztest_vdev_lock);
2008-11-20 23:01:55 +03:00
}
/*
* Verify that we can attach and detach devices.
*/
void
ztest_vdev_attach_detach(ztest_ds_t *zd, uint64_t id)
2008-11-20 23:01:55 +03:00
{
(void) zd, (void) id;
ztest_shared_t *zs = ztest_shared;
spa_t *spa = ztest_spa;
spa_aux_vdev_t *sav = &spa->spa_spares;
2008-11-20 23:01:55 +03:00
vdev_t *rvd = spa->spa_root_vdev;
vdev_t *oldvd, *newvd, *pvd;
nvlist_t *root;
uint64_t leaves;
2008-11-20 23:01:55 +03:00
uint64_t leaf, top;
uint64_t ashift = ztest_get_ashift();
2009-01-16 00:59:39 +03:00
uint64_t oldguid, pguid;
Illumos #3956, #3957, #3958, #3959, #3960, #3961, #3962 3956 ::vdev -r should work with pipelines 3957 ztest should update the cachefile before killing itself 3958 multiple scans can lead to partial resilvering 3959 ddt entries are not always resilvered 3960 dsl_scan can skip over dedup-ed blocks if physical birth != logical birth 3961 freed gang blocks are not resilvered and can cause pool to suspend 3962 ztest should print out zfs debug buffer before exiting Reviewed by: Matthew Ahrens <mahrens@delphix.com> Reviewed by: Adam Leventhal <ahl@delphix.com> Approved by: Richard Lowe <richlowe@richlowe.net> References: https://www.illumos.org/issues/3956 https://www.illumos.org/issues/3957 https://www.illumos.org/issues/3958 https://www.illumos.org/issues/3959 https://www.illumos.org/issues/3960 https://www.illumos.org/issues/3961 https://www.illumos.org/issues/3962 illumos/illumos-gate@b4952e17e8858d3225793b28788278de9fe6038d Ported-by: Richard Yao <ryao@gentoo.org> Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov> Porting notes: 1. zfs_dbgmsg_print() is only used in userland. Since we do not have mdb on Linux, it does not make sense to make it available in the kernel. This means that a build failure will occur if any future kernel patch depends on it. However, that is unlikely given that this functionality was added to support zdb. 2. zfs_dbgmsg_print() is only invoked for -VVV or greater log levels. This preserves the existing behavior of minimal noise when running with -V, and -VV. 3. In vdev_config_generate() the call to nvlist_alloc() was not changed to fnvlist_alloc() because we must pass KM_PUSHPAGE in the txg_sync context.
2013-08-08 00:16:22 +04:00
uint64_t oldsize, newsize;
RAID-Z expansion feature This feature allows disks to be added one at a time to a RAID-Z group, expanding its capacity incrementally. This feature is especially useful for small pools (typically with only one RAID-Z group), where there isn't sufficient hardware to add capacity by adding a whole new RAID-Z group (typically doubling the number of disks). == Initiating expansion == A new device (disk) can be attached to an existing RAIDZ vdev, by running `zpool attach POOL raidzP-N NEW_DEVICE`, e.g. `zpool attach tank raidz2-0 sda`. The new device will become part of the RAIDZ group. A "raidz expansion" will be initiated, and the new device will contribute additional space to the RAIDZ group once the expansion completes. The `feature@raidz_expansion` on-disk feature flag must be `enabled` to initiate an expansion, and it remains `active` for the life of the pool. In other words, pools with expanded RAIDZ vdevs can not be imported by older releases of the ZFS software. == During expansion == The expansion entails reading all allocated space from existing disks in the RAIDZ group, and rewriting it to the new disks in the RAIDZ group (including the newly added device). The expansion progress can be monitored with `zpool status`. Data redundancy is maintained during (and after) the expansion. If a disk fails while the expansion is in progress, the expansion pauses until the health of the RAIDZ vdev is restored (e.g. by replacing the failed disk and waiting for reconstruction to complete). The pool remains accessible during expansion. Following a reboot or export/import, the expansion resumes where it left off. == After expansion == When the expansion completes, the additional space is available for use, and is reflected in the `available` zfs property (as seen in `zfs list`, `df`, etc). Expansion does not change the number of failures that can be tolerated without data loss (e.g. a RAIDZ2 is still a RAIDZ2 even after expansion). A RAIDZ vdev can be expanded multiple times. After the expansion completes, old blocks remain with their old data-to-parity ratio (e.g. 5-wide RAIDZ2, has 3 data to 2 parity), but distributed among the larger set of disks. New blocks will be written with the new data-to-parity ratio (e.g. a 5-wide RAIDZ2 which has been expanded once to 6-wide, has 4 data to 2 parity). However, the RAIDZ vdev's "assumed parity ratio" does not change, so slightly less space than is expected may be reported for newly-written blocks, according to `zfs list`, `df`, `ls -s`, and similar tools. Sponsored-by: The FreeBSD Foundation Sponsored-by: iXsystems, Inc. Sponsored-by: vStack Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov> Reviewed-by: Mark Maybee <mark.maybee@delphix.com> Authored-by: Matthew Ahrens <mahrens@delphix.com> Contributions-by: Fedor Uporov <fuporov.vstack@gmail.com> Contributions-by: Stuart Maybee <stuart.maybee@comcast.net> Contributions-by: Thorsten Behrens <tbehrens@outlook.com> Contributions-by: Fmstrat <nospam@nowsci.com> Contributions-by: Don Brady <dev.fs.zfs@gmail.com> Signed-off-by: Don Brady <dev.fs.zfs@gmail.com> Closes #15022
2023-11-08 21:19:41 +03:00
uint64_t raidz_children;
char *oldpath, *newpath;
2008-11-20 23:01:55 +03:00
int replacing;
int oldvd_has_siblings = B_FALSE;
int newvd_is_spare = B_FALSE;
Distributed Spare (dRAID) Feature This patch adds a new top-level vdev type called dRAID, which stands for Distributed parity RAID. This pool configuration allows all dRAID vdevs to participate when rebuilding to a distributed hot spare device. This can substantially reduce the total time required to restore full parity to pool with a failed device. A dRAID pool can be created using the new top-level `draid` type. Like `raidz`, the desired redundancy is specified after the type: `draid[1,2,3]`. No additional information is required to create the pool and reasonable default values will be chosen based on the number of child vdevs in the dRAID vdev. zpool create <pool> draid[1,2,3] <vdevs...> Unlike raidz, additional optional dRAID configuration values can be provided as part of the draid type as colon separated values. This allows administrators to fully specify a layout for either performance or capacity reasons. The supported options include: zpool create <pool> \ draid[<parity>][:<data>d][:<children>c][:<spares>s] \ <vdevs...> - draid[parity] - Parity level (default 1) - draid[:<data>d] - Data devices per group (default 8) - draid[:<children>c] - Expected number of child vdevs - draid[:<spares>s] - Distributed hot spares (default 0) Abbreviated example `zpool status` output for a 68 disk dRAID pool with two distributed spares using special allocation classes. ``` pool: tank state: ONLINE config: NAME STATE READ WRITE CKSUM slag7 ONLINE 0 0 0 draid2:8d:68c:2s-0 ONLINE 0 0 0 L0 ONLINE 0 0 0 L1 ONLINE 0 0 0 ... U25 ONLINE 0 0 0 U26 ONLINE 0 0 0 spare-53 ONLINE 0 0 0 U27 ONLINE 0 0 0 draid2-0-0 ONLINE 0 0 0 U28 ONLINE 0 0 0 U29 ONLINE 0 0 0 ... U42 ONLINE 0 0 0 U43 ONLINE 0 0 0 special mirror-1 ONLINE 0 0 0 L5 ONLINE 0 0 0 U5 ONLINE 0 0 0 mirror-2 ONLINE 0 0 0 L6 ONLINE 0 0 0 U6 ONLINE 0 0 0 spares draid2-0-0 INUSE currently in use draid2-0-1 AVAIL ``` When adding test coverage for the new dRAID vdev type the following options were added to the ztest command. These options are leverages by zloop.sh to test a wide range of dRAID configurations. -K draid|raidz|random - kind of RAID to test -D <value> - dRAID data drives per group -S <value> - dRAID distributed hot spares -R <value> - RAID parity (raidz or dRAID) The zpool_create, zpool_import, redundancy, replacement and fault test groups have all been updated provide test coverage for the dRAID feature. Co-authored-by: Isaac Huang <he.huang@intel.com> Co-authored-by: Mark Maybee <mmaybee@cray.com> Co-authored-by: Don Brady <don.brady@delphix.com> Co-authored-by: Matthew Ahrens <mahrens@delphix.com> Co-authored-by: Brian Behlendorf <behlendorf1@llnl.gov> Reviewed-by: Mark Maybee <mmaybee@cray.com> Reviewed-by: Matt Ahrens <matt@delphix.com> Reviewed-by: Tony Hutter <hutter2@llnl.gov> Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov> Closes #10102
2020-11-14 00:51:51 +03:00
int newvd_is_dspare = B_FALSE;
int oldvd_is_log;
int oldvd_is_special;
2008-11-20 23:01:55 +03:00
int error, expected_error;
Multi-modifier protection (MMP) Add multihost=on|off pool property to control MMP. When enabled a new thread writes uberblocks to the last slot in each label, at a set frequency, to indicate to other hosts the pool is actively imported. These uberblocks are the last synced uberblock with an updated timestamp. Property defaults to off. During tryimport, find the "best" uberblock (newest txg and timestamp) repeatedly, checking for change in the found uberblock. Include the results of the activity test in the config returned by tryimport. These results are reported to user in "zpool import". Allow the user to control the period between MMP writes, and the duration of the activity test on import, via a new module parameter zfs_multihost_interval. The period is specified in milliseconds. The activity test duration is calculated from this value, and from the mmp_delay in the "best" uberblock found initially. Add a kstat interface to export statistics about Multiple Modifier Protection (MMP) updates. Include the last synced txg number, the timestamp, the delay since the last MMP update, the VDEV GUID, the VDEV label that received the last MMP update, and the VDEV path. Abbreviated output below. $ cat /proc/spl/kstat/zfs/mypool/multihost 31 0 0x01 10 880 105092382393521 105144180101111 txg timestamp mmp_delay vdev_guid vdev_label vdev_path 20468 261337 250274925 68396651780 3 /dev/sda 20468 261339 252023374 6267402363293 1 /dev/sdc 20468 261340 252000858 6698080955233 1 /dev/sdx 20468 261341 251980635 783892869810 2 /dev/sdy 20468 261342 253385953 8923255792467 3 /dev/sdd 20468 261344 253336622 042125143176 0 /dev/sdab 20468 261345 253310522 1200778101278 2 /dev/sde 20468 261346 253286429 0950576198362 2 /dev/sdt 20468 261347 253261545 96209817917 3 /dev/sds 20468 261349 253238188 8555725937673 3 /dev/sdb Add a new tunable zfs_multihost_history to specify the number of MMP updates to store history for. By default it is set to zero meaning that no MMP statistics are stored. When using ztest to generate activity, for automated tests of the MMP function, some test functions interfere with the test. For example, the pool is exported to run zdb and then imported again. Add a new ztest function, "-M", to alter ztest behavior to prevent this. Add new tests to verify the new functionality. Tests provided by Giuseppe Di Natale. Reviewed by: Matthew Ahrens <mahrens@delphix.com> Reviewed-by: Giuseppe Di Natale <dinatale2@llnl.gov> Reviewed-by: Ned Bass <bass6@llnl.gov> Reviewed-by: Andreas Dilger <andreas.dilger@intel.com> Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov> Signed-off-by: Olaf Faaland <faaland1@llnl.gov> Closes #745 Closes #6279
2017-07-08 06:20:35 +03:00
if (ztest_opts.zo_mmp_test)
return;
oldpath = umem_alloc(MAXPATHLEN, UMEM_NOFAIL);
newpath = umem_alloc(MAXPATHLEN, UMEM_NOFAIL);
mutex_enter(&ztest_vdev_lock);
RAID-Z expansion feature This feature allows disks to be added one at a time to a RAID-Z group, expanding its capacity incrementally. This feature is especially useful for small pools (typically with only one RAID-Z group), where there isn't sufficient hardware to add capacity by adding a whole new RAID-Z group (typically doubling the number of disks). == Initiating expansion == A new device (disk) can be attached to an existing RAIDZ vdev, by running `zpool attach POOL raidzP-N NEW_DEVICE`, e.g. `zpool attach tank raidz2-0 sda`. The new device will become part of the RAIDZ group. A "raidz expansion" will be initiated, and the new device will contribute additional space to the RAIDZ group once the expansion completes. The `feature@raidz_expansion` on-disk feature flag must be `enabled` to initiate an expansion, and it remains `active` for the life of the pool. In other words, pools with expanded RAIDZ vdevs can not be imported by older releases of the ZFS software. == During expansion == The expansion entails reading all allocated space from existing disks in the RAIDZ group, and rewriting it to the new disks in the RAIDZ group (including the newly added device). The expansion progress can be monitored with `zpool status`. Data redundancy is maintained during (and after) the expansion. If a disk fails while the expansion is in progress, the expansion pauses until the health of the RAIDZ vdev is restored (e.g. by replacing the failed disk and waiting for reconstruction to complete). The pool remains accessible during expansion. Following a reboot or export/import, the expansion resumes where it left off. == After expansion == When the expansion completes, the additional space is available for use, and is reflected in the `available` zfs property (as seen in `zfs list`, `df`, etc). Expansion does not change the number of failures that can be tolerated without data loss (e.g. a RAIDZ2 is still a RAIDZ2 even after expansion). A RAIDZ vdev can be expanded multiple times. After the expansion completes, old blocks remain with their old data-to-parity ratio (e.g. 5-wide RAIDZ2, has 3 data to 2 parity), but distributed among the larger set of disks. New blocks will be written with the new data-to-parity ratio (e.g. a 5-wide RAIDZ2 which has been expanded once to 6-wide, has 4 data to 2 parity). However, the RAIDZ vdev's "assumed parity ratio" does not change, so slightly less space than is expected may be reported for newly-written blocks, according to `zfs list`, `df`, `ls -s`, and similar tools. Sponsored-by: The FreeBSD Foundation Sponsored-by: iXsystems, Inc. Sponsored-by: vStack Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov> Reviewed-by: Mark Maybee <mark.maybee@delphix.com> Authored-by: Matthew Ahrens <mahrens@delphix.com> Contributions-by: Fedor Uporov <fuporov.vstack@gmail.com> Contributions-by: Stuart Maybee <stuart.maybee@comcast.net> Contributions-by: Thorsten Behrens <tbehrens@outlook.com> Contributions-by: Fmstrat <nospam@nowsci.com> Contributions-by: Don Brady <dev.fs.zfs@gmail.com> Signed-off-by: Don Brady <dev.fs.zfs@gmail.com> Closes #15022
2023-11-08 21:19:41 +03:00
raidz_children = ztest_get_raidz_children(spa);
leaves = MAX(zs->zs_mirrors, 1) * raidz_children;
2008-11-20 23:01:55 +03:00
OpenZFS 7614, 9064 - zfs device evacuation/removal OpenZFS 7614 - zfs device evacuation/removal OpenZFS 9064 - remove_mirror should wait for device removal to complete This project allows top-level vdevs to be removed from the storage pool with "zpool remove", reducing the total amount of storage in the pool. This operation copies all allocated regions of the device to be removed onto other devices, recording the mapping from old to new location. After the removal is complete, read and free operations to the removed (now "indirect") vdev must be remapped and performed at the new location on disk. The indirect mapping table is kept in memory whenever the pool is loaded, so there is minimal performance overhead when doing operations on the indirect vdev. The size of the in-memory mapping table will be reduced when its entries become "obsolete" because they are no longer used by any block pointers in the pool. An entry becomes obsolete when all the blocks that use it are freed. An entry can also become obsolete when all the snapshots that reference it are deleted, and the block pointers that reference it have been "remapped" in all filesystems/zvols (and clones). Whenever an indirect block is written, all the block pointers in it will be "remapped" to their new (concrete) locations if possible. This process can be accelerated by using the "zfs remap" command to proactively rewrite all indirect blocks that reference indirect (removed) vdevs. Note that when a device is removed, we do not verify the checksum of the data that is copied. This makes the process much faster, but if it were used on redundant vdevs (i.e. mirror or raidz vdevs), it would be possible to copy the wrong data, when we have the correct data on e.g. the other side of the mirror. At the moment, only mirrors and simple top-level vdevs can be removed and no removal is allowed if any of the top-level vdevs are raidz. Porting Notes: * Avoid zero-sized kmem_alloc() in vdev_compact_children(). The device evacuation code adds a dependency that vdev_compact_children() be able to properly empty the vdev_child array by setting it to NULL and zeroing vdev_children. Under Linux, kmem_alloc() and related functions return a sentinel pointer rather than NULL for zero-sized allocations. * Remove comment regarding "mpt" driver where zfs_remove_max_segment is initialized to SPA_MAXBLOCKSIZE. Change zfs_condense_indirect_commit_entry_delay_ticks to zfs_condense_indirect_commit_entry_delay_ms for consistency with most other tunables in which delays are specified in ms. * ZTS changes: Use set_tunable rather than mdb Use zpool sync as appropriate Use sync_pool instead of sync Kill jobs during test_removal_with_operation to allow unmount/export Don't add non-disk names such as "mirror" or "raidz" to $DISKS Use $TEST_BASE_DIR instead of /tmp Increase HZ from 100 to 1000 which is more common on Linux removal_multiple_indirection.ksh Reduce iterations in order to not time out on the code coverage builders. removal_resume_export: Functionally, the test case is correct but there exists a race where the kernel thread hasn't been fully started yet and is not visible. Wait for up to 1 second for the removal thread to be started before giving up on it. Also, increase the amount of data copied in order that the removal not finish before the export has a chance to fail. * MMP compatibility, the concept of concrete versus non-concrete devices has slightly changed the semantics of vdev_writeable(). Update mmp_random_leaf_impl() accordingly. * Updated dbuf_remap() to handle the org.zfsonlinux:large_dnode pool feature which is not supported by OpenZFS. * Added support for new vdev removal tracepoints. * Test cases removal_with_zdb and removal_condense_export have been intentionally disabled. When run manually they pass as intended, but when running in the automated test environment they produce unreliable results on the latest Fedora release. They may work better once the upstream pool import refectoring is merged into ZoL at which point they will be re-enabled. Authored by: Matthew Ahrens <mahrens@delphix.com> Reviewed-by: Alex Reece <alex@delphix.com> Reviewed-by: George Wilson <george.wilson@delphix.com> Reviewed-by: John Kennedy <john.kennedy@delphix.com> Reviewed-by: Prakash Surya <prakash.surya@delphix.com> Reviewed by: Richard Laager <rlaager@wiktel.com> Reviewed by: Tim Chase <tim@chase2k.com> Reviewed by: Brian Behlendorf <behlendorf1@llnl.gov> Approved by: Garrett D'Amore <garrett@damore.org> Ported-by: Tim Chase <tim@chase2k.com> Signed-off-by: Tim Chase <tim@chase2k.com> OpenZFS-issue: https://www.illumos.org/issues/7614 OpenZFS-commit: https://github.com/openzfs/openzfs/commit/f539f1eb Closes #6900
2016-09-22 19:30:13 +03:00
spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
/*
* If a vdev is in the process of being removed, its removal may
* finish while we are in progress, leading to an unexpected error
* value. Don't bother trying to attach while we are in the middle
* of removal.
*/
OpenZFS 9290 - device removal reduces redundancy of mirrors Mirrors are supposed to provide redundancy in the face of whole-disk failure and silent damage (e.g. some data on disk is not right, but ZFS hasn't detected the whole device as being broken). However, the current device removal implementation bypasses some of the mirror's redundancy. Note that in no case is incorrect data returned, but we might get a checksum error when we should have been able to find the right data. There are two underlying problems: 1. When we remove a mirror device, we only read one side of the mirror. Since we can't verify the checksum, this side may be silently bad, but the good data is on the other side of the mirror (which we didn't read). This can cause the removal to "bake in" the busted data – all copies of the data in the new location are the same, busted version, while we left the good version behind. The fix for this is to read and copy both sides of the mirror. If the old and new vdevs are mirrors, we will read both sides of the old mirror, and write each copy to the corresponding side of the new mirror. (If the old and new vdevs have a different number of children, we will do this as best as possible.) Even though we aren't verifying checksums, this ensures that as long as there's a good copy of the data, we'll have a good copy after the removal, even if there's silent damage to one side of the mirror. If we're removing a mirror that has some silent damage, we'll have exactly the same damage in the new location (assuming that the new location is also a mirror). 2. When we read from an indirect vdev that points to a mirror vdev, we only consider one copy of the data. This can lead to reduced effective redundancy, because we might read a bad copy of the data from one side of the mirror, and not retry the other, good side of the mirror. Note that the problem is not with the removal process, but rather after the removal has completed (having copied correct data to both sides of the mirror), if one side of the new mirror is silently damaged, we encounter the problem when reading the relocated data via the indirect vdev. Also note that the problem doesn't occur when ZFS knows that one side of the mirror is bad, e.g. when a disk entirely fails or is offlined. The impact is that reads (from indirect vdevs that point to mirrors) may return a checksum error even though the good data exists on one side of the mirror, and scrub doesn't repair all data on the mirror (if some of it is pointed to via an indirect vdev). The fix for this is complicated by "split blocks" - one logical block may be split into two (or more) pieces with each piece moved to a different new location. In this case we need to read all versions of each split (one from each side of the mirror), and figure out which combination of versions results in the correct checksum, and then repair the incorrect versions. This ensures that we supply the same redundancy whether you use device removal or not. For example, if a mirror has small silent errors on all of its children, we can still reconstruct the correct data, as long as those errors are at sufficiently-separated offsets (specifically, separated by the largest block size - default of 128KB, but up to 16MB). Porting notes: * A new indirect vdev check was moved from dsl_scan_needs_resilver_cb() to dsl_scan_needs_resilver(), which was added to ZoL as part of the sequential scrub work. * Passed NULL for zfs_ereport_post_checksum()'s zbookmark_phys_t parameter. The extra parameter is unique to ZoL. * When posting indirect checksum errors the ABD can be passed directly, zfs_ereport_post_checksum() is not yet ABD-aware in OpenZFS. Authored by: Matthew Ahrens <mahrens@delphix.com> Reviewed by: Tim Chase <tim@chase2k.com> Reviewed by: Brian Behlendorf <behlendorf1@llnl.gov> Ported-by: Tim Chase <tim@chase2k.com> OpenZFS-issue: https://illumos.org/issues/9290 OpenZFS-commit: https://github.com/openzfs/openzfs/pull/591 Closes #6900
2018-02-13 22:37:56 +03:00
if (ztest_device_removal_active) {
OpenZFS 7614, 9064 - zfs device evacuation/removal OpenZFS 7614 - zfs device evacuation/removal OpenZFS 9064 - remove_mirror should wait for device removal to complete This project allows top-level vdevs to be removed from the storage pool with "zpool remove", reducing the total amount of storage in the pool. This operation copies all allocated regions of the device to be removed onto other devices, recording the mapping from old to new location. After the removal is complete, read and free operations to the removed (now "indirect") vdev must be remapped and performed at the new location on disk. The indirect mapping table is kept in memory whenever the pool is loaded, so there is minimal performance overhead when doing operations on the indirect vdev. The size of the in-memory mapping table will be reduced when its entries become "obsolete" because they are no longer used by any block pointers in the pool. An entry becomes obsolete when all the blocks that use it are freed. An entry can also become obsolete when all the snapshots that reference it are deleted, and the block pointers that reference it have been "remapped" in all filesystems/zvols (and clones). Whenever an indirect block is written, all the block pointers in it will be "remapped" to their new (concrete) locations if possible. This process can be accelerated by using the "zfs remap" command to proactively rewrite all indirect blocks that reference indirect (removed) vdevs. Note that when a device is removed, we do not verify the checksum of the data that is copied. This makes the process much faster, but if it were used on redundant vdevs (i.e. mirror or raidz vdevs), it would be possible to copy the wrong data, when we have the correct data on e.g. the other side of the mirror. At the moment, only mirrors and simple top-level vdevs can be removed and no removal is allowed if any of the top-level vdevs are raidz. Porting Notes: * Avoid zero-sized kmem_alloc() in vdev_compact_children(). The device evacuation code adds a dependency that vdev_compact_children() be able to properly empty the vdev_child array by setting it to NULL and zeroing vdev_children. Under Linux, kmem_alloc() and related functions return a sentinel pointer rather than NULL for zero-sized allocations. * Remove comment regarding "mpt" driver where zfs_remove_max_segment is initialized to SPA_MAXBLOCKSIZE. Change zfs_condense_indirect_commit_entry_delay_ticks to zfs_condense_indirect_commit_entry_delay_ms for consistency with most other tunables in which delays are specified in ms. * ZTS changes: Use set_tunable rather than mdb Use zpool sync as appropriate Use sync_pool instead of sync Kill jobs during test_removal_with_operation to allow unmount/export Don't add non-disk names such as "mirror" or "raidz" to $DISKS Use $TEST_BASE_DIR instead of /tmp Increase HZ from 100 to 1000 which is more common on Linux removal_multiple_indirection.ksh Reduce iterations in order to not time out on the code coverage builders. removal_resume_export: Functionally, the test case is correct but there exists a race where the kernel thread hasn't been fully started yet and is not visible. Wait for up to 1 second for the removal thread to be started before giving up on it. Also, increase the amount of data copied in order that the removal not finish before the export has a chance to fail. * MMP compatibility, the concept of concrete versus non-concrete devices has slightly changed the semantics of vdev_writeable(). Update mmp_random_leaf_impl() accordingly. * Updated dbuf_remap() to handle the org.zfsonlinux:large_dnode pool feature which is not supported by OpenZFS. * Added support for new vdev removal tracepoints. * Test cases removal_with_zdb and removal_condense_export have been intentionally disabled. When run manually they pass as intended, but when running in the automated test environment they produce unreliable results on the latest Fedora release. They may work better once the upstream pool import refectoring is merged into ZoL at which point they will be re-enabled. Authored by: Matthew Ahrens <mahrens@delphix.com> Reviewed-by: Alex Reece <alex@delphix.com> Reviewed-by: George Wilson <george.wilson@delphix.com> Reviewed-by: John Kennedy <john.kennedy@delphix.com> Reviewed-by: Prakash Surya <prakash.surya@delphix.com> Reviewed by: Richard Laager <rlaager@wiktel.com> Reviewed by: Tim Chase <tim@chase2k.com> Reviewed by: Brian Behlendorf <behlendorf1@llnl.gov> Approved by: Garrett D'Amore <garrett@damore.org> Ported-by: Tim Chase <tim@chase2k.com> Signed-off-by: Tim Chase <tim@chase2k.com> OpenZFS-issue: https://www.illumos.org/issues/7614 OpenZFS-commit: https://github.com/openzfs/openzfs/commit/f539f1eb Closes #6900
2016-09-22 19:30:13 +03:00
spa_config_exit(spa, SCL_ALL, FTAG);
goto out;
OpenZFS 7614, 9064 - zfs device evacuation/removal OpenZFS 7614 - zfs device evacuation/removal OpenZFS 9064 - remove_mirror should wait for device removal to complete This project allows top-level vdevs to be removed from the storage pool with "zpool remove", reducing the total amount of storage in the pool. This operation copies all allocated regions of the device to be removed onto other devices, recording the mapping from old to new location. After the removal is complete, read and free operations to the removed (now "indirect") vdev must be remapped and performed at the new location on disk. The indirect mapping table is kept in memory whenever the pool is loaded, so there is minimal performance overhead when doing operations on the indirect vdev. The size of the in-memory mapping table will be reduced when its entries become "obsolete" because they are no longer used by any block pointers in the pool. An entry becomes obsolete when all the blocks that use it are freed. An entry can also become obsolete when all the snapshots that reference it are deleted, and the block pointers that reference it have been "remapped" in all filesystems/zvols (and clones). Whenever an indirect block is written, all the block pointers in it will be "remapped" to their new (concrete) locations if possible. This process can be accelerated by using the "zfs remap" command to proactively rewrite all indirect blocks that reference indirect (removed) vdevs. Note that when a device is removed, we do not verify the checksum of the data that is copied. This makes the process much faster, but if it were used on redundant vdevs (i.e. mirror or raidz vdevs), it would be possible to copy the wrong data, when we have the correct data on e.g. the other side of the mirror. At the moment, only mirrors and simple top-level vdevs can be removed and no removal is allowed if any of the top-level vdevs are raidz. Porting Notes: * Avoid zero-sized kmem_alloc() in vdev_compact_children(). The device evacuation code adds a dependency that vdev_compact_children() be able to properly empty the vdev_child array by setting it to NULL and zeroing vdev_children. Under Linux, kmem_alloc() and related functions return a sentinel pointer rather than NULL for zero-sized allocations. * Remove comment regarding "mpt" driver where zfs_remove_max_segment is initialized to SPA_MAXBLOCKSIZE. Change zfs_condense_indirect_commit_entry_delay_ticks to zfs_condense_indirect_commit_entry_delay_ms for consistency with most other tunables in which delays are specified in ms. * ZTS changes: Use set_tunable rather than mdb Use zpool sync as appropriate Use sync_pool instead of sync Kill jobs during test_removal_with_operation to allow unmount/export Don't add non-disk names such as "mirror" or "raidz" to $DISKS Use $TEST_BASE_DIR instead of /tmp Increase HZ from 100 to 1000 which is more common on Linux removal_multiple_indirection.ksh Reduce iterations in order to not time out on the code coverage builders. removal_resume_export: Functionally, the test case is correct but there exists a race where the kernel thread hasn't been fully started yet and is not visible. Wait for up to 1 second for the removal thread to be started before giving up on it. Also, increase the amount of data copied in order that the removal not finish before the export has a chance to fail. * MMP compatibility, the concept of concrete versus non-concrete devices has slightly changed the semantics of vdev_writeable(). Update mmp_random_leaf_impl() accordingly. * Updated dbuf_remap() to handle the org.zfsonlinux:large_dnode pool feature which is not supported by OpenZFS. * Added support for new vdev removal tracepoints. * Test cases removal_with_zdb and removal_condense_export have been intentionally disabled. When run manually they pass as intended, but when running in the automated test environment they produce unreliable results on the latest Fedora release. They may work better once the upstream pool import refectoring is merged into ZoL at which point they will be re-enabled. Authored by: Matthew Ahrens <mahrens@delphix.com> Reviewed-by: Alex Reece <alex@delphix.com> Reviewed-by: George Wilson <george.wilson@delphix.com> Reviewed-by: John Kennedy <john.kennedy@delphix.com> Reviewed-by: Prakash Surya <prakash.surya@delphix.com> Reviewed by: Richard Laager <rlaager@wiktel.com> Reviewed by: Tim Chase <tim@chase2k.com> Reviewed by: Brian Behlendorf <behlendorf1@llnl.gov> Approved by: Garrett D'Amore <garrett@damore.org> Ported-by: Tim Chase <tim@chase2k.com> Signed-off-by: Tim Chase <tim@chase2k.com> OpenZFS-issue: https://www.illumos.org/issues/7614 OpenZFS-commit: https://github.com/openzfs/openzfs/commit/f539f1eb Closes #6900
2016-09-22 19:30:13 +03:00
}
2008-11-20 23:01:55 +03:00
RAID-Z expansion feature This feature allows disks to be added one at a time to a RAID-Z group, expanding its capacity incrementally. This feature is especially useful for small pools (typically with only one RAID-Z group), where there isn't sufficient hardware to add capacity by adding a whole new RAID-Z group (typically doubling the number of disks). == Initiating expansion == A new device (disk) can be attached to an existing RAIDZ vdev, by running `zpool attach POOL raidzP-N NEW_DEVICE`, e.g. `zpool attach tank raidz2-0 sda`. The new device will become part of the RAIDZ group. A "raidz expansion" will be initiated, and the new device will contribute additional space to the RAIDZ group once the expansion completes. The `feature@raidz_expansion` on-disk feature flag must be `enabled` to initiate an expansion, and it remains `active` for the life of the pool. In other words, pools with expanded RAIDZ vdevs can not be imported by older releases of the ZFS software. == During expansion == The expansion entails reading all allocated space from existing disks in the RAIDZ group, and rewriting it to the new disks in the RAIDZ group (including the newly added device). The expansion progress can be monitored with `zpool status`. Data redundancy is maintained during (and after) the expansion. If a disk fails while the expansion is in progress, the expansion pauses until the health of the RAIDZ vdev is restored (e.g. by replacing the failed disk and waiting for reconstruction to complete). The pool remains accessible during expansion. Following a reboot or export/import, the expansion resumes where it left off. == After expansion == When the expansion completes, the additional space is available for use, and is reflected in the `available` zfs property (as seen in `zfs list`, `df`, etc). Expansion does not change the number of failures that can be tolerated without data loss (e.g. a RAIDZ2 is still a RAIDZ2 even after expansion). A RAIDZ vdev can be expanded multiple times. After the expansion completes, old blocks remain with their old data-to-parity ratio (e.g. 5-wide RAIDZ2, has 3 data to 2 parity), but distributed among the larger set of disks. New blocks will be written with the new data-to-parity ratio (e.g. a 5-wide RAIDZ2 which has been expanded once to 6-wide, has 4 data to 2 parity). However, the RAIDZ vdev's "assumed parity ratio" does not change, so slightly less space than is expected may be reported for newly-written blocks, according to `zfs list`, `df`, `ls -s`, and similar tools. Sponsored-by: The FreeBSD Foundation Sponsored-by: iXsystems, Inc. Sponsored-by: vStack Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov> Reviewed-by: Mark Maybee <mark.maybee@delphix.com> Authored-by: Matthew Ahrens <mahrens@delphix.com> Contributions-by: Fedor Uporov <fuporov.vstack@gmail.com> Contributions-by: Stuart Maybee <stuart.maybee@comcast.net> Contributions-by: Thorsten Behrens <tbehrens@outlook.com> Contributions-by: Fmstrat <nospam@nowsci.com> Contributions-by: Don Brady <dev.fs.zfs@gmail.com> Signed-off-by: Don Brady <dev.fs.zfs@gmail.com> Closes #15022
2023-11-08 21:19:41 +03:00
/*
* RAIDZ leaf VDEV mirrors are not currently supported while a
* RAIDZ expansion is in progress.
*/
if (ztest_opts.zo_raid_do_expand) {
spa_config_exit(spa, SCL_ALL, FTAG);
goto out;
}
2008-11-20 23:01:55 +03:00
/*
* Decide whether to do an attach or a replace.
*/
replacing = ztest_random(2);
/*
* Pick a random top-level vdev.
*/
top = ztest_random_vdev_top(spa, B_TRUE);
2008-11-20 23:01:55 +03:00
/*
* Pick a random leaf within it.
*/
leaf = ztest_random(leaves);
/*
* Locate this vdev.
2008-11-20 23:01:55 +03:00
*/
oldvd = rvd->vdev_child[top];
/* pick a child from the mirror */
if (zs->zs_mirrors >= 1) {
ASSERT3P(oldvd->vdev_ops, ==, &vdev_mirror_ops);
ASSERT3U(oldvd->vdev_children, >=, zs->zs_mirrors);
RAID-Z expansion feature This feature allows disks to be added one at a time to a RAID-Z group, expanding its capacity incrementally. This feature is especially useful for small pools (typically with only one RAID-Z group), where there isn't sufficient hardware to add capacity by adding a whole new RAID-Z group (typically doubling the number of disks). == Initiating expansion == A new device (disk) can be attached to an existing RAIDZ vdev, by running `zpool attach POOL raidzP-N NEW_DEVICE`, e.g. `zpool attach tank raidz2-0 sda`. The new device will become part of the RAIDZ group. A "raidz expansion" will be initiated, and the new device will contribute additional space to the RAIDZ group once the expansion completes. The `feature@raidz_expansion` on-disk feature flag must be `enabled` to initiate an expansion, and it remains `active` for the life of the pool. In other words, pools with expanded RAIDZ vdevs can not be imported by older releases of the ZFS software. == During expansion == The expansion entails reading all allocated space from existing disks in the RAIDZ group, and rewriting it to the new disks in the RAIDZ group (including the newly added device). The expansion progress can be monitored with `zpool status`. Data redundancy is maintained during (and after) the expansion. If a disk fails while the expansion is in progress, the expansion pauses until the health of the RAIDZ vdev is restored (e.g. by replacing the failed disk and waiting for reconstruction to complete). The pool remains accessible during expansion. Following a reboot or export/import, the expansion resumes where it left off. == After expansion == When the expansion completes, the additional space is available for use, and is reflected in the `available` zfs property (as seen in `zfs list`, `df`, etc). Expansion does not change the number of failures that can be tolerated without data loss (e.g. a RAIDZ2 is still a RAIDZ2 even after expansion). A RAIDZ vdev can be expanded multiple times. After the expansion completes, old blocks remain with their old data-to-parity ratio (e.g. 5-wide RAIDZ2, has 3 data to 2 parity), but distributed among the larger set of disks. New blocks will be written with the new data-to-parity ratio (e.g. a 5-wide RAIDZ2 which has been expanded once to 6-wide, has 4 data to 2 parity). However, the RAIDZ vdev's "assumed parity ratio" does not change, so slightly less space than is expected may be reported for newly-written blocks, according to `zfs list`, `df`, `ls -s`, and similar tools. Sponsored-by: The FreeBSD Foundation Sponsored-by: iXsystems, Inc. Sponsored-by: vStack Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov> Reviewed-by: Mark Maybee <mark.maybee@delphix.com> Authored-by: Matthew Ahrens <mahrens@delphix.com> Contributions-by: Fedor Uporov <fuporov.vstack@gmail.com> Contributions-by: Stuart Maybee <stuart.maybee@comcast.net> Contributions-by: Thorsten Behrens <tbehrens@outlook.com> Contributions-by: Fmstrat <nospam@nowsci.com> Contributions-by: Don Brady <dev.fs.zfs@gmail.com> Signed-off-by: Don Brady <dev.fs.zfs@gmail.com> Closes #15022
2023-11-08 21:19:41 +03:00
oldvd = oldvd->vdev_child[leaf / raidz_children];
2009-01-16 00:59:39 +03:00
}
/* pick a child out of the raidz group */
Distributed Spare (dRAID) Feature This patch adds a new top-level vdev type called dRAID, which stands for Distributed parity RAID. This pool configuration allows all dRAID vdevs to participate when rebuilding to a distributed hot spare device. This can substantially reduce the total time required to restore full parity to pool with a failed device. A dRAID pool can be created using the new top-level `draid` type. Like `raidz`, the desired redundancy is specified after the type: `draid[1,2,3]`. No additional information is required to create the pool and reasonable default values will be chosen based on the number of child vdevs in the dRAID vdev. zpool create <pool> draid[1,2,3] <vdevs...> Unlike raidz, additional optional dRAID configuration values can be provided as part of the draid type as colon separated values. This allows administrators to fully specify a layout for either performance or capacity reasons. The supported options include: zpool create <pool> \ draid[<parity>][:<data>d][:<children>c][:<spares>s] \ <vdevs...> - draid[parity] - Parity level (default 1) - draid[:<data>d] - Data devices per group (default 8) - draid[:<children>c] - Expected number of child vdevs - draid[:<spares>s] - Distributed hot spares (default 0) Abbreviated example `zpool status` output for a 68 disk dRAID pool with two distributed spares using special allocation classes. ``` pool: tank state: ONLINE config: NAME STATE READ WRITE CKSUM slag7 ONLINE 0 0 0 draid2:8d:68c:2s-0 ONLINE 0 0 0 L0 ONLINE 0 0 0 L1 ONLINE 0 0 0 ... U25 ONLINE 0 0 0 U26 ONLINE 0 0 0 spare-53 ONLINE 0 0 0 U27 ONLINE 0 0 0 draid2-0-0 ONLINE 0 0 0 U28 ONLINE 0 0 0 U29 ONLINE 0 0 0 ... U42 ONLINE 0 0 0 U43 ONLINE 0 0 0 special mirror-1 ONLINE 0 0 0 L5 ONLINE 0 0 0 U5 ONLINE 0 0 0 mirror-2 ONLINE 0 0 0 L6 ONLINE 0 0 0 U6 ONLINE 0 0 0 spares draid2-0-0 INUSE currently in use draid2-0-1 AVAIL ``` When adding test coverage for the new dRAID vdev type the following options were added to the ztest command. These options are leverages by zloop.sh to test a wide range of dRAID configurations. -K draid|raidz|random - kind of RAID to test -D <value> - dRAID data drives per group -S <value> - dRAID distributed hot spares -R <value> - RAID parity (raidz or dRAID) The zpool_create, zpool_import, redundancy, replacement and fault test groups have all been updated provide test coverage for the dRAID feature. Co-authored-by: Isaac Huang <he.huang@intel.com> Co-authored-by: Mark Maybee <mmaybee@cray.com> Co-authored-by: Don Brady <don.brady@delphix.com> Co-authored-by: Matthew Ahrens <mahrens@delphix.com> Co-authored-by: Brian Behlendorf <behlendorf1@llnl.gov> Reviewed-by: Mark Maybee <mmaybee@cray.com> Reviewed-by: Matt Ahrens <matt@delphix.com> Reviewed-by: Tony Hutter <hutter2@llnl.gov> Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov> Closes #10102
2020-11-14 00:51:51 +03:00
if (ztest_opts.zo_raid_children > 1) {
if (strcmp(oldvd->vdev_ops->vdev_op_type, "raidz") == 0)
ASSERT3P(oldvd->vdev_ops, ==, &vdev_raidz_ops);
Distributed Spare (dRAID) Feature This patch adds a new top-level vdev type called dRAID, which stands for Distributed parity RAID. This pool configuration allows all dRAID vdevs to participate when rebuilding to a distributed hot spare device. This can substantially reduce the total time required to restore full parity to pool with a failed device. A dRAID pool can be created using the new top-level `draid` type. Like `raidz`, the desired redundancy is specified after the type: `draid[1,2,3]`. No additional information is required to create the pool and reasonable default values will be chosen based on the number of child vdevs in the dRAID vdev. zpool create <pool> draid[1,2,3] <vdevs...> Unlike raidz, additional optional dRAID configuration values can be provided as part of the draid type as colon separated values. This allows administrators to fully specify a layout for either performance or capacity reasons. The supported options include: zpool create <pool> \ draid[<parity>][:<data>d][:<children>c][:<spares>s] \ <vdevs...> - draid[parity] - Parity level (default 1) - draid[:<data>d] - Data devices per group (default 8) - draid[:<children>c] - Expected number of child vdevs - draid[:<spares>s] - Distributed hot spares (default 0) Abbreviated example `zpool status` output for a 68 disk dRAID pool with two distributed spares using special allocation classes. ``` pool: tank state: ONLINE config: NAME STATE READ WRITE CKSUM slag7 ONLINE 0 0 0 draid2:8d:68c:2s-0 ONLINE 0 0 0 L0 ONLINE 0 0 0 L1 ONLINE 0 0 0 ... U25 ONLINE 0 0 0 U26 ONLINE 0 0 0 spare-53 ONLINE 0 0 0 U27 ONLINE 0 0 0 draid2-0-0 ONLINE 0 0 0 U28 ONLINE 0 0 0 U29 ONLINE 0 0 0 ... U42 ONLINE 0 0 0 U43 ONLINE 0 0 0 special mirror-1 ONLINE 0 0 0 L5 ONLINE 0 0 0 U5 ONLINE 0 0 0 mirror-2 ONLINE 0 0 0 L6 ONLINE 0 0 0 U6 ONLINE 0 0 0 spares draid2-0-0 INUSE currently in use draid2-0-1 AVAIL ``` When adding test coverage for the new dRAID vdev type the following options were added to the ztest command. These options are leverages by zloop.sh to test a wide range of dRAID configurations. -K draid|raidz|random - kind of RAID to test -D <value> - dRAID data drives per group -S <value> - dRAID distributed hot spares -R <value> - RAID parity (raidz or dRAID) The zpool_create, zpool_import, redundancy, replacement and fault test groups have all been updated provide test coverage for the dRAID feature. Co-authored-by: Isaac Huang <he.huang@intel.com> Co-authored-by: Mark Maybee <mmaybee@cray.com> Co-authored-by: Don Brady <don.brady@delphix.com> Co-authored-by: Matthew Ahrens <mahrens@delphix.com> Co-authored-by: Brian Behlendorf <behlendorf1@llnl.gov> Reviewed-by: Mark Maybee <mmaybee@cray.com> Reviewed-by: Matt Ahrens <matt@delphix.com> Reviewed-by: Tony Hutter <hutter2@llnl.gov> Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov> Closes #10102
2020-11-14 00:51:51 +03:00
else
ASSERT3P(oldvd->vdev_ops, ==, &vdev_draid_ops);
RAID-Z expansion feature This feature allows disks to be added one at a time to a RAID-Z group, expanding its capacity incrementally. This feature is especially useful for small pools (typically with only one RAID-Z group), where there isn't sufficient hardware to add capacity by adding a whole new RAID-Z group (typically doubling the number of disks). == Initiating expansion == A new device (disk) can be attached to an existing RAIDZ vdev, by running `zpool attach POOL raidzP-N NEW_DEVICE`, e.g. `zpool attach tank raidz2-0 sda`. The new device will become part of the RAIDZ group. A "raidz expansion" will be initiated, and the new device will contribute additional space to the RAIDZ group once the expansion completes. The `feature@raidz_expansion` on-disk feature flag must be `enabled` to initiate an expansion, and it remains `active` for the life of the pool. In other words, pools with expanded RAIDZ vdevs can not be imported by older releases of the ZFS software. == During expansion == The expansion entails reading all allocated space from existing disks in the RAIDZ group, and rewriting it to the new disks in the RAIDZ group (including the newly added device). The expansion progress can be monitored with `zpool status`. Data redundancy is maintained during (and after) the expansion. If a disk fails while the expansion is in progress, the expansion pauses until the health of the RAIDZ vdev is restored (e.g. by replacing the failed disk and waiting for reconstruction to complete). The pool remains accessible during expansion. Following a reboot or export/import, the expansion resumes where it left off. == After expansion == When the expansion completes, the additional space is available for use, and is reflected in the `available` zfs property (as seen in `zfs list`, `df`, etc). Expansion does not change the number of failures that can be tolerated without data loss (e.g. a RAIDZ2 is still a RAIDZ2 even after expansion). A RAIDZ vdev can be expanded multiple times. After the expansion completes, old blocks remain with their old data-to-parity ratio (e.g. 5-wide RAIDZ2, has 3 data to 2 parity), but distributed among the larger set of disks. New blocks will be written with the new data-to-parity ratio (e.g. a 5-wide RAIDZ2 which has been expanded once to 6-wide, has 4 data to 2 parity). However, the RAIDZ vdev's "assumed parity ratio" does not change, so slightly less space than is expected may be reported for newly-written blocks, according to `zfs list`, `df`, `ls -s`, and similar tools. Sponsored-by: The FreeBSD Foundation Sponsored-by: iXsystems, Inc. Sponsored-by: vStack Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov> Reviewed-by: Mark Maybee <mark.maybee@delphix.com> Authored-by: Matthew Ahrens <mahrens@delphix.com> Contributions-by: Fedor Uporov <fuporov.vstack@gmail.com> Contributions-by: Stuart Maybee <stuart.maybee@comcast.net> Contributions-by: Thorsten Behrens <tbehrens@outlook.com> Contributions-by: Fmstrat <nospam@nowsci.com> Contributions-by: Don Brady <dev.fs.zfs@gmail.com> Signed-off-by: Don Brady <dev.fs.zfs@gmail.com> Closes #15022
2023-11-08 21:19:41 +03:00
oldvd = oldvd->vdev_child[leaf % raidz_children];
2009-01-16 00:59:39 +03:00
}
2008-11-20 23:01:55 +03:00
/*
* If we're already doing an attach or replace, oldvd may be a
* mirror vdev -- in which case, pick a random child.
2008-11-20 23:01:55 +03:00
*/
while (oldvd->vdev_children != 0) {
oldvd_has_siblings = B_TRUE;
ASSERT3U(oldvd->vdev_children, >=, 2);
2009-01-16 00:59:39 +03:00
oldvd = oldvd->vdev_child[ztest_random(oldvd->vdev_children)];
}
oldguid = oldvd->vdev_guid;
2009-07-03 02:44:48 +04:00
oldsize = vdev_get_min_asize(oldvd);
oldvd_is_log = oldvd->vdev_top->vdev_islog;
oldvd_is_special =
oldvd->vdev_top->vdev_alloc_bias == VDEV_BIAS_SPECIAL ||
oldvd->vdev_top->vdev_alloc_bias == VDEV_BIAS_DEDUP;
Fix unsafe string operations Coverity caught unsafe use of `strcpy()` in `ztest_dmu_objset_own()`, `nfs_init_tmpfile()` and `dump_snapshot()`. It also caught an unsafe use of `strlcat()` in `nfs_init_tmpfile()`. Inspired by this, I did an audit of every single usage of `strcpy()` and `strcat()` in the code. If I could not prove that the usage was safe, I changed the code to use either `strlcpy()` or `strlcat()`, depending on which function was originally used. In some cases, `snprintf()` was used to replace multiple uses of `strcat` because it was cleaner. Whenever I changed a function, I preferred to use `sizeof(dst)` when the compiler is able to provide the string size via that. When it could not because the string was passed by a caller, I checked the entire call tree of the function to find out how big the buffer was and hard coded it. Hardcoding is less than ideal, but it is safe unless someone shrinks the buffer sizes being passed. Additionally, Coverity reported three more string related issues: * It caught a case where we do an overlapping memory copy in a call to `snprintf()`. We fix that via `kmem_strdup()` and `kmem_strfree()`. * It caught `sizeof (buf)` being used instead of `buflen` in `zdb_nicenum()`'s call to `zfs_nicenum()`, which is passed to `snprintf()`. We change that to pass `buflen`. * It caught a theoretical unterminated string passed to `strcmp()`. This one is likely a false positive, but we have the information needed to do this more safely, so we change this to silence the false positive not just in coverity, but potentially other static analysis tools too. We switch to `strncmp()`. * There was a false positive in tests/zfs-tests/cmd/dir_rd_update.c. We suppress it by switching to `snprintf()` since other static analysis tools might complain about it too. Interestingly, there is a possible real bug there too, since it assumes that the passed directory path ends with '/'. We add a '/' to fix that potential bug. Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov> Signed-off-by: Richard Yao <richard.yao@alumni.stonybrook.edu> Closes #13913
2022-09-28 02:47:24 +03:00
(void) strlcpy(oldpath, oldvd->vdev_path, MAXPATHLEN);
pvd = oldvd->vdev_parent;
2009-01-16 00:59:39 +03:00
pguid = pvd->vdev_guid;
2008-11-20 23:01:55 +03:00
/*
* If oldvd has siblings, then half of the time, detach it. Prior
* to the detach the pool is scrubbed in order to prevent creating
* unrepairable blocks as a result of the data corruption injection.
2008-11-20 23:01:55 +03:00
*/
if (oldvd_has_siblings && ztest_random(2) == 0) {
OpenZFS 7614, 9064 - zfs device evacuation/removal OpenZFS 7614 - zfs device evacuation/removal OpenZFS 9064 - remove_mirror should wait for device removal to complete This project allows top-level vdevs to be removed from the storage pool with "zpool remove", reducing the total amount of storage in the pool. This operation copies all allocated regions of the device to be removed onto other devices, recording the mapping from old to new location. After the removal is complete, read and free operations to the removed (now "indirect") vdev must be remapped and performed at the new location on disk. The indirect mapping table is kept in memory whenever the pool is loaded, so there is minimal performance overhead when doing operations on the indirect vdev. The size of the in-memory mapping table will be reduced when its entries become "obsolete" because they are no longer used by any block pointers in the pool. An entry becomes obsolete when all the blocks that use it are freed. An entry can also become obsolete when all the snapshots that reference it are deleted, and the block pointers that reference it have been "remapped" in all filesystems/zvols (and clones). Whenever an indirect block is written, all the block pointers in it will be "remapped" to their new (concrete) locations if possible. This process can be accelerated by using the "zfs remap" command to proactively rewrite all indirect blocks that reference indirect (removed) vdevs. Note that when a device is removed, we do not verify the checksum of the data that is copied. This makes the process much faster, but if it were used on redundant vdevs (i.e. mirror or raidz vdevs), it would be possible to copy the wrong data, when we have the correct data on e.g. the other side of the mirror. At the moment, only mirrors and simple top-level vdevs can be removed and no removal is allowed if any of the top-level vdevs are raidz. Porting Notes: * Avoid zero-sized kmem_alloc() in vdev_compact_children(). The device evacuation code adds a dependency that vdev_compact_children() be able to properly empty the vdev_child array by setting it to NULL and zeroing vdev_children. Under Linux, kmem_alloc() and related functions return a sentinel pointer rather than NULL for zero-sized allocations. * Remove comment regarding "mpt" driver where zfs_remove_max_segment is initialized to SPA_MAXBLOCKSIZE. Change zfs_condense_indirect_commit_entry_delay_ticks to zfs_condense_indirect_commit_entry_delay_ms for consistency with most other tunables in which delays are specified in ms. * ZTS changes: Use set_tunable rather than mdb Use zpool sync as appropriate Use sync_pool instead of sync Kill jobs during test_removal_with_operation to allow unmount/export Don't add non-disk names such as "mirror" or "raidz" to $DISKS Use $TEST_BASE_DIR instead of /tmp Increase HZ from 100 to 1000 which is more common on Linux removal_multiple_indirection.ksh Reduce iterations in order to not time out on the code coverage builders. removal_resume_export: Functionally, the test case is correct but there exists a race where the kernel thread hasn't been fully started yet and is not visible. Wait for up to 1 second for the removal thread to be started before giving up on it. Also, increase the amount of data copied in order that the removal not finish before the export has a chance to fail. * MMP compatibility, the concept of concrete versus non-concrete devices has slightly changed the semantics of vdev_writeable(). Update mmp_random_leaf_impl() accordingly. * Updated dbuf_remap() to handle the org.zfsonlinux:large_dnode pool feature which is not supported by OpenZFS. * Added support for new vdev removal tracepoints. * Test cases removal_with_zdb and removal_condense_export have been intentionally disabled. When run manually they pass as intended, but when running in the automated test environment they produce unreliable results on the latest Fedora release. They may work better once the upstream pool import refectoring is merged into ZoL at which point they will be re-enabled. Authored by: Matthew Ahrens <mahrens@delphix.com> Reviewed-by: Alex Reece <alex@delphix.com> Reviewed-by: George Wilson <george.wilson@delphix.com> Reviewed-by: John Kennedy <john.kennedy@delphix.com> Reviewed-by: Prakash Surya <prakash.surya@delphix.com> Reviewed by: Richard Laager <rlaager@wiktel.com> Reviewed by: Tim Chase <tim@chase2k.com> Reviewed by: Brian Behlendorf <behlendorf1@llnl.gov> Approved by: Garrett D'Amore <garrett@damore.org> Ported-by: Tim Chase <tim@chase2k.com> Signed-off-by: Tim Chase <tim@chase2k.com> OpenZFS-issue: https://www.illumos.org/issues/7614 OpenZFS-commit: https://github.com/openzfs/openzfs/commit/f539f1eb Closes #6900
2016-09-22 19:30:13 +03:00
spa_config_exit(spa, SCL_ALL, FTAG);
error = ztest_scrub_impl(spa);
if (error)
goto out;
2009-01-16 00:59:39 +03:00
error = spa_vdev_detach(spa, oldguid, pguid, B_FALSE);
if (error != 0 && error != ENODEV && error != EBUSY &&
OpenZFS 9166 - zfs storage pool checkpoint Details about the motivation of this feature and its usage can be found in this blogpost: https://sdimitro.github.io/post/zpool-checkpoint/ A lightning talk of this feature can be found here: https://www.youtube.com/watch?v=fPQA8K40jAM Implementation details can be found in big block comment of spa_checkpoint.c Side-changes that are relevant to this commit but not explained elsewhere: * renames members of "struct metaslab trees to be shorter without losing meaning * space_map_{alloc,truncate}() accept a block size as a parameter. The reason is that in the current state all space maps that we allocate through the DMU use a global tunable (space_map_blksz) which defauls to 4KB. This is ok for metaslab space maps in terms of bandwirdth since they are scattered all over the disk. But for other space maps this default is probably not what we want. Examples are device removal's vdev_obsolete_sm or vdev_chedkpoint_sm from this review. Both of these have a 1:1 relationship with each vdev and could benefit from a bigger block size. Porting notes: * The part of dsl_scan_sync() which handles async destroys has been moved into the new dsl_process_async_destroys() function. * Remove "VERIFY(!(flags & FWRITE))" in "kernel.c" so zhack can write to block device backed pools. * ZTS: * Fix get_txg() in zpool_sync_001_pos due to "checkpoint_txg". * Don't use large dd block sizes on /dev/urandom under Linux in checkpoint_capacity. * Adopt Delphix-OS's setting of 4 (spa_asize_inflation = SPA_DVAS_PER_BP + 1) for the checkpoint_capacity test to speed its attempts to fill the pool * Create the base and nested pools with sync=disabled to speed up the "setup" phase. * Clear labels in test pool between checkpoint tests to avoid duplicate pool issues. * The import_rewind_device_replaced test has been marked as "known to fail" for the reasons listed in its DISCLAIMER. * New module parameters: zfs_spa_discard_memory_limit, zfs_remove_max_bytes_pause (not documented - debugging only) vdev_max_ms_count (formerly metaslabs_per_vdev) vdev_min_ms_count Authored by: Serapheim Dimitropoulos <serapheim.dimitro@delphix.com> Reviewed by: Matthew Ahrens <mahrens@delphix.com> Reviewed by: John Kennedy <john.kennedy@delphix.com> Reviewed by: Dan Kimmel <dan.kimmel@delphix.com> Reviewed by: Brian Behlendorf <behlendorf1@llnl.gov> Approved by: Richard Lowe <richlowe@richlowe.net> Ported-by: Tim Chase <tim@chase2k.com> Signed-off-by: Tim Chase <tim@chase2k.com> OpenZFS-issue: https://illumos.org/issues/9166 OpenZFS-commit: https://github.com/openzfs/openzfs/commit/7159fdb8 Closes #7570
2016-12-17 01:11:29 +03:00
error != ENOTSUP && error != ZFS_ERR_CHECKPOINT_EXISTS &&
error != ZFS_ERR_DISCARDING_CHECKPOINT)
fatal(B_FALSE, "detach (%s) returned %d",
oldpath, error);
goto out;
}
2008-11-20 23:01:55 +03:00
/*
* For the new vdev, choose with equal probability between the two
* standard paths (ending in either 'a' or 'b') or a random hot spare.
2008-11-20 23:01:55 +03:00
*/
if (sav->sav_count != 0 && ztest_random(3) == 0) {
newvd = sav->sav_vdevs[ztest_random(sav->sav_count)];
newvd_is_spare = B_TRUE;
Distributed Spare (dRAID) Feature This patch adds a new top-level vdev type called dRAID, which stands for Distributed parity RAID. This pool configuration allows all dRAID vdevs to participate when rebuilding to a distributed hot spare device. This can substantially reduce the total time required to restore full parity to pool with a failed device. A dRAID pool can be created using the new top-level `draid` type. Like `raidz`, the desired redundancy is specified after the type: `draid[1,2,3]`. No additional information is required to create the pool and reasonable default values will be chosen based on the number of child vdevs in the dRAID vdev. zpool create <pool> draid[1,2,3] <vdevs...> Unlike raidz, additional optional dRAID configuration values can be provided as part of the draid type as colon separated values. This allows administrators to fully specify a layout for either performance or capacity reasons. The supported options include: zpool create <pool> \ draid[<parity>][:<data>d][:<children>c][:<spares>s] \ <vdevs...> - draid[parity] - Parity level (default 1) - draid[:<data>d] - Data devices per group (default 8) - draid[:<children>c] - Expected number of child vdevs - draid[:<spares>s] - Distributed hot spares (default 0) Abbreviated example `zpool status` output for a 68 disk dRAID pool with two distributed spares using special allocation classes. ``` pool: tank state: ONLINE config: NAME STATE READ WRITE CKSUM slag7 ONLINE 0 0 0 draid2:8d:68c:2s-0 ONLINE 0 0 0 L0 ONLINE 0 0 0 L1 ONLINE 0 0 0 ... U25 ONLINE 0 0 0 U26 ONLINE 0 0 0 spare-53 ONLINE 0 0 0 U27 ONLINE 0 0 0 draid2-0-0 ONLINE 0 0 0 U28 ONLINE 0 0 0 U29 ONLINE 0 0 0 ... U42 ONLINE 0 0 0 U43 ONLINE 0 0 0 special mirror-1 ONLINE 0 0 0 L5 ONLINE 0 0 0 U5 ONLINE 0 0 0 mirror-2 ONLINE 0 0 0 L6 ONLINE 0 0 0 U6 ONLINE 0 0 0 spares draid2-0-0 INUSE currently in use draid2-0-1 AVAIL ``` When adding test coverage for the new dRAID vdev type the following options were added to the ztest command. These options are leverages by zloop.sh to test a wide range of dRAID configurations. -K draid|raidz|random - kind of RAID to test -D <value> - dRAID data drives per group -S <value> - dRAID distributed hot spares -R <value> - RAID parity (raidz or dRAID) The zpool_create, zpool_import, redundancy, replacement and fault test groups have all been updated provide test coverage for the dRAID feature. Co-authored-by: Isaac Huang <he.huang@intel.com> Co-authored-by: Mark Maybee <mmaybee@cray.com> Co-authored-by: Don Brady <don.brady@delphix.com> Co-authored-by: Matthew Ahrens <mahrens@delphix.com> Co-authored-by: Brian Behlendorf <behlendorf1@llnl.gov> Reviewed-by: Mark Maybee <mmaybee@cray.com> Reviewed-by: Matt Ahrens <matt@delphix.com> Reviewed-by: Tony Hutter <hutter2@llnl.gov> Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov> Closes #10102
2020-11-14 00:51:51 +03:00
if (newvd->vdev_ops == &vdev_draid_spare_ops)
newvd_is_dspare = B_TRUE;
Fix unsafe string operations Coverity caught unsafe use of `strcpy()` in `ztest_dmu_objset_own()`, `nfs_init_tmpfile()` and `dump_snapshot()`. It also caught an unsafe use of `strlcat()` in `nfs_init_tmpfile()`. Inspired by this, I did an audit of every single usage of `strcpy()` and `strcat()` in the code. If I could not prove that the usage was safe, I changed the code to use either `strlcpy()` or `strlcat()`, depending on which function was originally used. In some cases, `snprintf()` was used to replace multiple uses of `strcat` because it was cleaner. Whenever I changed a function, I preferred to use `sizeof(dst)` when the compiler is able to provide the string size via that. When it could not because the string was passed by a caller, I checked the entire call tree of the function to find out how big the buffer was and hard coded it. Hardcoding is less than ideal, but it is safe unless someone shrinks the buffer sizes being passed. Additionally, Coverity reported three more string related issues: * It caught a case where we do an overlapping memory copy in a call to `snprintf()`. We fix that via `kmem_strdup()` and `kmem_strfree()`. * It caught `sizeof (buf)` being used instead of `buflen` in `zdb_nicenum()`'s call to `zfs_nicenum()`, which is passed to `snprintf()`. We change that to pass `buflen`. * It caught a theoretical unterminated string passed to `strcmp()`. This one is likely a false positive, but we have the information needed to do this more safely, so we change this to silence the false positive not just in coverity, but potentially other static analysis tools too. We switch to `strncmp()`. * There was a false positive in tests/zfs-tests/cmd/dir_rd_update.c. We suppress it by switching to `snprintf()` since other static analysis tools might complain about it too. Interestingly, there is a possible real bug there too, since it assumes that the passed directory path ends with '/'. We add a '/' to fix that potential bug. Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov> Signed-off-by: Richard Yao <richard.yao@alumni.stonybrook.edu> Closes #13913
2022-09-28 02:47:24 +03:00
(void) strlcpy(newpath, newvd->vdev_path, MAXPATHLEN);
} else {
(void) snprintf(newpath, MAXPATHLEN, ztest_dev_template,
ztest_opts.zo_dir, ztest_opts.zo_pool,
top * leaves + leaf);
if (ztest_random(2) == 0)
newpath[strlen(newpath) - 1] = 'b';
newvd = vdev_lookup_by_path(rvd, newpath);
}
if (newvd) {
OpenZFS 7614, 9064 - zfs device evacuation/removal OpenZFS 7614 - zfs device evacuation/removal OpenZFS 9064 - remove_mirror should wait for device removal to complete This project allows top-level vdevs to be removed from the storage pool with "zpool remove", reducing the total amount of storage in the pool. This operation copies all allocated regions of the device to be removed onto other devices, recording the mapping from old to new location. After the removal is complete, read and free operations to the removed (now "indirect") vdev must be remapped and performed at the new location on disk. The indirect mapping table is kept in memory whenever the pool is loaded, so there is minimal performance overhead when doing operations on the indirect vdev. The size of the in-memory mapping table will be reduced when its entries become "obsolete" because they are no longer used by any block pointers in the pool. An entry becomes obsolete when all the blocks that use it are freed. An entry can also become obsolete when all the snapshots that reference it are deleted, and the block pointers that reference it have been "remapped" in all filesystems/zvols (and clones). Whenever an indirect block is written, all the block pointers in it will be "remapped" to their new (concrete) locations if possible. This process can be accelerated by using the "zfs remap" command to proactively rewrite all indirect blocks that reference indirect (removed) vdevs. Note that when a device is removed, we do not verify the checksum of the data that is copied. This makes the process much faster, but if it were used on redundant vdevs (i.e. mirror or raidz vdevs), it would be possible to copy the wrong data, when we have the correct data on e.g. the other side of the mirror. At the moment, only mirrors and simple top-level vdevs can be removed and no removal is allowed if any of the top-level vdevs are raidz. Porting Notes: * Avoid zero-sized kmem_alloc() in vdev_compact_children(). The device evacuation code adds a dependency that vdev_compact_children() be able to properly empty the vdev_child array by setting it to NULL and zeroing vdev_children. Under Linux, kmem_alloc() and related functions return a sentinel pointer rather than NULL for zero-sized allocations. * Remove comment regarding "mpt" driver where zfs_remove_max_segment is initialized to SPA_MAXBLOCKSIZE. Change zfs_condense_indirect_commit_entry_delay_ticks to zfs_condense_indirect_commit_entry_delay_ms for consistency with most other tunables in which delays are specified in ms. * ZTS changes: Use set_tunable rather than mdb Use zpool sync as appropriate Use sync_pool instead of sync Kill jobs during test_removal_with_operation to allow unmount/export Don't add non-disk names such as "mirror" or "raidz" to $DISKS Use $TEST_BASE_DIR instead of /tmp Increase HZ from 100 to 1000 which is more common on Linux removal_multiple_indirection.ksh Reduce iterations in order to not time out on the code coverage builders. removal_resume_export: Functionally, the test case is correct but there exists a race where the kernel thread hasn't been fully started yet and is not visible. Wait for up to 1 second for the removal thread to be started before giving up on it. Also, increase the amount of data copied in order that the removal not finish before the export has a chance to fail. * MMP compatibility, the concept of concrete versus non-concrete devices has slightly changed the semantics of vdev_writeable(). Update mmp_random_leaf_impl() accordingly. * Updated dbuf_remap() to handle the org.zfsonlinux:large_dnode pool feature which is not supported by OpenZFS. * Added support for new vdev removal tracepoints. * Test cases removal_with_zdb and removal_condense_export have been intentionally disabled. When run manually they pass as intended, but when running in the automated test environment they produce unreliable results on the latest Fedora release. They may work better once the upstream pool import refectoring is merged into ZoL at which point they will be re-enabled. Authored by: Matthew Ahrens <mahrens@delphix.com> Reviewed-by: Alex Reece <alex@delphix.com> Reviewed-by: George Wilson <george.wilson@delphix.com> Reviewed-by: John Kennedy <john.kennedy@delphix.com> Reviewed-by: Prakash Surya <prakash.surya@delphix.com> Reviewed by: Richard Laager <rlaager@wiktel.com> Reviewed by: Tim Chase <tim@chase2k.com> Reviewed by: Brian Behlendorf <behlendorf1@llnl.gov> Approved by: Garrett D'Amore <garrett@damore.org> Ported-by: Tim Chase <tim@chase2k.com> Signed-off-by: Tim Chase <tim@chase2k.com> OpenZFS-issue: https://www.illumos.org/issues/7614 OpenZFS-commit: https://github.com/openzfs/openzfs/commit/f539f1eb Closes #6900
2016-09-22 19:30:13 +03:00
/*
* Reopen to ensure the vdev's asize field isn't stale.
*/
vdev_reopen(newvd);
2009-07-03 02:44:48 +04:00
newsize = vdev_get_min_asize(newvd);
} else {
/*
* Make newsize a little bigger or smaller than oldsize.
* If it's smaller, the attach should fail.
* If it's larger, and we're doing a replace,
* we should get dynamic LUN growth when we're done.
*/
newsize = 10 * oldsize / (9 + ztest_random(3));
}
2008-11-20 23:01:55 +03:00
/*
* If pvd is not a mirror or root, the attach should fail with ENOTSUP,
* unless it's a replace; in that case any non-replacing parent is OK.
*
* If newvd is already part of the pool, it should fail with EBUSY.
*
* If newvd is too small, it should fail with EOVERFLOW.
Distributed Spare (dRAID) Feature This patch adds a new top-level vdev type called dRAID, which stands for Distributed parity RAID. This pool configuration allows all dRAID vdevs to participate when rebuilding to a distributed hot spare device. This can substantially reduce the total time required to restore full parity to pool with a failed device. A dRAID pool can be created using the new top-level `draid` type. Like `raidz`, the desired redundancy is specified after the type: `draid[1,2,3]`. No additional information is required to create the pool and reasonable default values will be chosen based on the number of child vdevs in the dRAID vdev. zpool create <pool> draid[1,2,3] <vdevs...> Unlike raidz, additional optional dRAID configuration values can be provided as part of the draid type as colon separated values. This allows administrators to fully specify a layout for either performance or capacity reasons. The supported options include: zpool create <pool> \ draid[<parity>][:<data>d][:<children>c][:<spares>s] \ <vdevs...> - draid[parity] - Parity level (default 1) - draid[:<data>d] - Data devices per group (default 8) - draid[:<children>c] - Expected number of child vdevs - draid[:<spares>s] - Distributed hot spares (default 0) Abbreviated example `zpool status` output for a 68 disk dRAID pool with two distributed spares using special allocation classes. ``` pool: tank state: ONLINE config: NAME STATE READ WRITE CKSUM slag7 ONLINE 0 0 0 draid2:8d:68c:2s-0 ONLINE 0 0 0 L0 ONLINE 0 0 0 L1 ONLINE 0 0 0 ... U25 ONLINE 0 0 0 U26 ONLINE 0 0 0 spare-53 ONLINE 0 0 0 U27 ONLINE 0 0 0 draid2-0-0 ONLINE 0 0 0 U28 ONLINE 0 0 0 U29 ONLINE 0 0 0 ... U42 ONLINE 0 0 0 U43 ONLINE 0 0 0 special mirror-1 ONLINE 0 0 0 L5 ONLINE 0 0 0 U5 ONLINE 0 0 0 mirror-2 ONLINE 0 0 0 L6 ONLINE 0 0 0 U6 ONLINE 0 0 0 spares draid2-0-0 INUSE currently in use draid2-0-1 AVAIL ``` When adding test coverage for the new dRAID vdev type the following options were added to the ztest command. These options are leverages by zloop.sh to test a wide range of dRAID configurations. -K draid|raidz|random - kind of RAID to test -D <value> - dRAID data drives per group -S <value> - dRAID distributed hot spares -R <value> - RAID parity (raidz or dRAID) The zpool_create, zpool_import, redundancy, replacement and fault test groups have all been updated provide test coverage for the dRAID feature. Co-authored-by: Isaac Huang <he.huang@intel.com> Co-authored-by: Mark Maybee <mmaybee@cray.com> Co-authored-by: Don Brady <don.brady@delphix.com> Co-authored-by: Matthew Ahrens <mahrens@delphix.com> Co-authored-by: Brian Behlendorf <behlendorf1@llnl.gov> Reviewed-by: Mark Maybee <mmaybee@cray.com> Reviewed-by: Matt Ahrens <matt@delphix.com> Reviewed-by: Tony Hutter <hutter2@llnl.gov> Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov> Closes #10102
2020-11-14 00:51:51 +03:00
*
* If newvd is a distributed spare and it's being attached to a
* dRAID which is not its parent it should fail with EINVAL.
2008-11-20 23:01:55 +03:00
*/
if (pvd->vdev_ops != &vdev_mirror_ops &&
pvd->vdev_ops != &vdev_root_ops && (!replacing ||
pvd->vdev_ops == &vdev_replacing_ops ||
pvd->vdev_ops == &vdev_spare_ops))
2008-11-20 23:01:55 +03:00
expected_error = ENOTSUP;
else if (newvd_is_spare &&
(!replacing || oldvd_is_log || oldvd_is_special))
expected_error = ENOTSUP;
else if (newvd == oldvd)
expected_error = replacing ? 0 : EBUSY;
else if (vdev_lookup_by_path(rvd, newpath) != NULL)
expected_error = EBUSY;
Distributed Spare (dRAID) Feature This patch adds a new top-level vdev type called dRAID, which stands for Distributed parity RAID. This pool configuration allows all dRAID vdevs to participate when rebuilding to a distributed hot spare device. This can substantially reduce the total time required to restore full parity to pool with a failed device. A dRAID pool can be created using the new top-level `draid` type. Like `raidz`, the desired redundancy is specified after the type: `draid[1,2,3]`. No additional information is required to create the pool and reasonable default values will be chosen based on the number of child vdevs in the dRAID vdev. zpool create <pool> draid[1,2,3] <vdevs...> Unlike raidz, additional optional dRAID configuration values can be provided as part of the draid type as colon separated values. This allows administrators to fully specify a layout for either performance or capacity reasons. The supported options include: zpool create <pool> \ draid[<parity>][:<data>d][:<children>c][:<spares>s] \ <vdevs...> - draid[parity] - Parity level (default 1) - draid[:<data>d] - Data devices per group (default 8) - draid[:<children>c] - Expected number of child vdevs - draid[:<spares>s] - Distributed hot spares (default 0) Abbreviated example `zpool status` output for a 68 disk dRAID pool with two distributed spares using special allocation classes. ``` pool: tank state: ONLINE config: NAME STATE READ WRITE CKSUM slag7 ONLINE 0 0 0 draid2:8d:68c:2s-0 ONLINE 0 0 0 L0 ONLINE 0 0 0 L1 ONLINE 0 0 0 ... U25 ONLINE 0 0 0 U26 ONLINE 0 0 0 spare-53 ONLINE 0 0 0 U27 ONLINE 0 0 0 draid2-0-0 ONLINE 0 0 0 U28 ONLINE 0 0 0 U29 ONLINE 0 0 0 ... U42 ONLINE 0 0 0 U43 ONLINE 0 0 0 special mirror-1 ONLINE 0 0 0 L5 ONLINE 0 0 0 U5 ONLINE 0 0 0 mirror-2 ONLINE 0 0 0 L6 ONLINE 0 0 0 U6 ONLINE 0 0 0 spares draid2-0-0 INUSE currently in use draid2-0-1 AVAIL ``` When adding test coverage for the new dRAID vdev type the following options were added to the ztest command. These options are leverages by zloop.sh to test a wide range of dRAID configurations. -K draid|raidz|random - kind of RAID to test -D <value> - dRAID data drives per group -S <value> - dRAID distributed hot spares -R <value> - RAID parity (raidz or dRAID) The zpool_create, zpool_import, redundancy, replacement and fault test groups have all been updated provide test coverage for the dRAID feature. Co-authored-by: Isaac Huang <he.huang@intel.com> Co-authored-by: Mark Maybee <mmaybee@cray.com> Co-authored-by: Don Brady <don.brady@delphix.com> Co-authored-by: Matthew Ahrens <mahrens@delphix.com> Co-authored-by: Brian Behlendorf <behlendorf1@llnl.gov> Reviewed-by: Mark Maybee <mmaybee@cray.com> Reviewed-by: Matt Ahrens <matt@delphix.com> Reviewed-by: Tony Hutter <hutter2@llnl.gov> Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov> Closes #10102
2020-11-14 00:51:51 +03:00
else if (!newvd_is_dspare && newsize < oldsize)
2008-11-20 23:01:55 +03:00
expected_error = EOVERFLOW;
else if (ashift > oldvd->vdev_top->vdev_ashift)
expected_error = EDOM;
Distributed Spare (dRAID) Feature This patch adds a new top-level vdev type called dRAID, which stands for Distributed parity RAID. This pool configuration allows all dRAID vdevs to participate when rebuilding to a distributed hot spare device. This can substantially reduce the total time required to restore full parity to pool with a failed device. A dRAID pool can be created using the new top-level `draid` type. Like `raidz`, the desired redundancy is specified after the type: `draid[1,2,3]`. No additional information is required to create the pool and reasonable default values will be chosen based on the number of child vdevs in the dRAID vdev. zpool create <pool> draid[1,2,3] <vdevs...> Unlike raidz, additional optional dRAID configuration values can be provided as part of the draid type as colon separated values. This allows administrators to fully specify a layout for either performance or capacity reasons. The supported options include: zpool create <pool> \ draid[<parity>][:<data>d][:<children>c][:<spares>s] \ <vdevs...> - draid[parity] - Parity level (default 1) - draid[:<data>d] - Data devices per group (default 8) - draid[:<children>c] - Expected number of child vdevs - draid[:<spares>s] - Distributed hot spares (default 0) Abbreviated example `zpool status` output for a 68 disk dRAID pool with two distributed spares using special allocation classes. ``` pool: tank state: ONLINE config: NAME STATE READ WRITE CKSUM slag7 ONLINE 0 0 0 draid2:8d:68c:2s-0 ONLINE 0 0 0 L0 ONLINE 0 0 0 L1 ONLINE 0 0 0 ... U25 ONLINE 0 0 0 U26 ONLINE 0 0 0 spare-53 ONLINE 0 0 0 U27 ONLINE 0 0 0 draid2-0-0 ONLINE 0 0 0 U28 ONLINE 0 0 0 U29 ONLINE 0 0 0 ... U42 ONLINE 0 0 0 U43 ONLINE 0 0 0 special mirror-1 ONLINE 0 0 0 L5 ONLINE 0 0 0 U5 ONLINE 0 0 0 mirror-2 ONLINE 0 0 0 L6 ONLINE 0 0 0 U6 ONLINE 0 0 0 spares draid2-0-0 INUSE currently in use draid2-0-1 AVAIL ``` When adding test coverage for the new dRAID vdev type the following options were added to the ztest command. These options are leverages by zloop.sh to test a wide range of dRAID configurations. -K draid|raidz|random - kind of RAID to test -D <value> - dRAID data drives per group -S <value> - dRAID distributed hot spares -R <value> - RAID parity (raidz or dRAID) The zpool_create, zpool_import, redundancy, replacement and fault test groups have all been updated provide test coverage for the dRAID feature. Co-authored-by: Isaac Huang <he.huang@intel.com> Co-authored-by: Mark Maybee <mmaybee@cray.com> Co-authored-by: Don Brady <don.brady@delphix.com> Co-authored-by: Matthew Ahrens <mahrens@delphix.com> Co-authored-by: Brian Behlendorf <behlendorf1@llnl.gov> Reviewed-by: Mark Maybee <mmaybee@cray.com> Reviewed-by: Matt Ahrens <matt@delphix.com> Reviewed-by: Tony Hutter <hutter2@llnl.gov> Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov> Closes #10102
2020-11-14 00:51:51 +03:00
else if (newvd_is_dspare && pvd != vdev_draid_spare_get_parent(newvd))
expected_error = EINVAL;
2008-11-20 23:01:55 +03:00
else
expected_error = 0;
OpenZFS 7614, 9064 - zfs device evacuation/removal OpenZFS 7614 - zfs device evacuation/removal OpenZFS 9064 - remove_mirror should wait for device removal to complete This project allows top-level vdevs to be removed from the storage pool with "zpool remove", reducing the total amount of storage in the pool. This operation copies all allocated regions of the device to be removed onto other devices, recording the mapping from old to new location. After the removal is complete, read and free operations to the removed (now "indirect") vdev must be remapped and performed at the new location on disk. The indirect mapping table is kept in memory whenever the pool is loaded, so there is minimal performance overhead when doing operations on the indirect vdev. The size of the in-memory mapping table will be reduced when its entries become "obsolete" because they are no longer used by any block pointers in the pool. An entry becomes obsolete when all the blocks that use it are freed. An entry can also become obsolete when all the snapshots that reference it are deleted, and the block pointers that reference it have been "remapped" in all filesystems/zvols (and clones). Whenever an indirect block is written, all the block pointers in it will be "remapped" to their new (concrete) locations if possible. This process can be accelerated by using the "zfs remap" command to proactively rewrite all indirect blocks that reference indirect (removed) vdevs. Note that when a device is removed, we do not verify the checksum of the data that is copied. This makes the process much faster, but if it were used on redundant vdevs (i.e. mirror or raidz vdevs), it would be possible to copy the wrong data, when we have the correct data on e.g. the other side of the mirror. At the moment, only mirrors and simple top-level vdevs can be removed and no removal is allowed if any of the top-level vdevs are raidz. Porting Notes: * Avoid zero-sized kmem_alloc() in vdev_compact_children(). The device evacuation code adds a dependency that vdev_compact_children() be able to properly empty the vdev_child array by setting it to NULL and zeroing vdev_children. Under Linux, kmem_alloc() and related functions return a sentinel pointer rather than NULL for zero-sized allocations. * Remove comment regarding "mpt" driver where zfs_remove_max_segment is initialized to SPA_MAXBLOCKSIZE. Change zfs_condense_indirect_commit_entry_delay_ticks to zfs_condense_indirect_commit_entry_delay_ms for consistency with most other tunables in which delays are specified in ms. * ZTS changes: Use set_tunable rather than mdb Use zpool sync as appropriate Use sync_pool instead of sync Kill jobs during test_removal_with_operation to allow unmount/export Don't add non-disk names such as "mirror" or "raidz" to $DISKS Use $TEST_BASE_DIR instead of /tmp Increase HZ from 100 to 1000 which is more common on Linux removal_multiple_indirection.ksh Reduce iterations in order to not time out on the code coverage builders. removal_resume_export: Functionally, the test case is correct but there exists a race where the kernel thread hasn't been fully started yet and is not visible. Wait for up to 1 second for the removal thread to be started before giving up on it. Also, increase the amount of data copied in order that the removal not finish before the export has a chance to fail. * MMP compatibility, the concept of concrete versus non-concrete devices has slightly changed the semantics of vdev_writeable(). Update mmp_random_leaf_impl() accordingly. * Updated dbuf_remap() to handle the org.zfsonlinux:large_dnode pool feature which is not supported by OpenZFS. * Added support for new vdev removal tracepoints. * Test cases removal_with_zdb and removal_condense_export have been intentionally disabled. When run manually they pass as intended, but when running in the automated test environment they produce unreliable results on the latest Fedora release. They may work better once the upstream pool import refectoring is merged into ZoL at which point they will be re-enabled. Authored by: Matthew Ahrens <mahrens@delphix.com> Reviewed-by: Alex Reece <alex@delphix.com> Reviewed-by: George Wilson <george.wilson@delphix.com> Reviewed-by: John Kennedy <john.kennedy@delphix.com> Reviewed-by: Prakash Surya <prakash.surya@delphix.com> Reviewed by: Richard Laager <rlaager@wiktel.com> Reviewed by: Tim Chase <tim@chase2k.com> Reviewed by: Brian Behlendorf <behlendorf1@llnl.gov> Approved by: Garrett D'Amore <garrett@damore.org> Ported-by: Tim Chase <tim@chase2k.com> Signed-off-by: Tim Chase <tim@chase2k.com> OpenZFS-issue: https://www.illumos.org/issues/7614 OpenZFS-commit: https://github.com/openzfs/openzfs/commit/f539f1eb Closes #6900
2016-09-22 19:30:13 +03:00
spa_config_exit(spa, SCL_ALL, FTAG);
2008-11-20 23:01:55 +03:00
/*
* Build the nvlist describing newpath.
*/
root = make_vdev_root(newpath, NULL, NULL, newvd == NULL ? newsize : 0,
ashift, NULL, 0, 0, 1);
2008-11-20 23:01:55 +03:00
Add device rebuild feature The device_rebuild feature enables sequential reconstruction when resilvering. Mirror vdevs can be rebuilt in LBA order which may more quickly restore redundancy depending on the pools average block size, overall fragmentation and the performance characteristics of the devices. However, block checksums cannot be verified as part of the rebuild thus a scrub is automatically started after the sequential resilver completes. The new '-s' option has been added to the `zpool attach` and `zpool replace` command to request sequential reconstruction instead of healing reconstruction when resilvering. zpool attach -s <pool> <existing vdev> <new vdev> zpool replace -s <pool> <old vdev> <new vdev> The `zpool status` output has been updated to report the progress of sequential resilvering in the same way as healing resilvering. The one notable difference is that multiple sequential resilvers may be in progress as long as they're operating on different top-level vdevs. The `zpool wait -t resilver` command was extended to wait on sequential resilvers. From this perspective they are no different than healing resilvers. Sequential resilvers cannot be supported for RAIDZ, but are compatible with the dRAID feature being developed. As part of this change the resilver_restart_* tests were moved in to the functional/replacement directory. Additionally, the replacement tests were renamed and extended to verify both resilvering and rebuilding. Original-patch-by: Isaac Huang <he.huang@intel.com> Reviewed-by: Tony Hutter <hutter2@llnl.gov> Reviewed-by: John Poduska <jpoduska@datto.com> Co-authored-by: Mark Maybee <mmaybee@cray.com> Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov> Closes #10349
2020-07-03 21:05:50 +03:00
/*
* When supported select either a healing or sequential resilver.
*/
boolean_t rebuilding = B_FALSE;
if (pvd->vdev_ops == &vdev_mirror_ops ||
pvd->vdev_ops == &vdev_root_ops) {
rebuilding = !!ztest_random(2);
}
error = spa_vdev_attach(spa, oldguid, root, replacing, rebuilding);
2008-11-20 23:01:55 +03:00
fnvlist_free(root);
2008-11-20 23:01:55 +03:00
/*
* If our parent was the replacing vdev, but the replace completed,
* then instead of failing with ENOTSUP we may either succeed,
* fail with ENODEV, or fail with EOVERFLOW.
*/
if (expected_error == ENOTSUP &&
(error == 0 || error == ENODEV || error == EOVERFLOW))
expected_error = error;
/*
* If someone grew the LUN, the replacement may be too small.
*/
if (error == EOVERFLOW || error == EBUSY)
2008-11-20 23:01:55 +03:00
expected_error = error;
OpenZFS 9166 - zfs storage pool checkpoint Details about the motivation of this feature and its usage can be found in this blogpost: https://sdimitro.github.io/post/zpool-checkpoint/ A lightning talk of this feature can be found here: https://www.youtube.com/watch?v=fPQA8K40jAM Implementation details can be found in big block comment of spa_checkpoint.c Side-changes that are relevant to this commit but not explained elsewhere: * renames members of "struct metaslab trees to be shorter without losing meaning * space_map_{alloc,truncate}() accept a block size as a parameter. The reason is that in the current state all space maps that we allocate through the DMU use a global tunable (space_map_blksz) which defauls to 4KB. This is ok for metaslab space maps in terms of bandwirdth since they are scattered all over the disk. But for other space maps this default is probably not what we want. Examples are device removal's vdev_obsolete_sm or vdev_chedkpoint_sm from this review. Both of these have a 1:1 relationship with each vdev and could benefit from a bigger block size. Porting notes: * The part of dsl_scan_sync() which handles async destroys has been moved into the new dsl_process_async_destroys() function. * Remove "VERIFY(!(flags & FWRITE))" in "kernel.c" so zhack can write to block device backed pools. * ZTS: * Fix get_txg() in zpool_sync_001_pos due to "checkpoint_txg". * Don't use large dd block sizes on /dev/urandom under Linux in checkpoint_capacity. * Adopt Delphix-OS's setting of 4 (spa_asize_inflation = SPA_DVAS_PER_BP + 1) for the checkpoint_capacity test to speed its attempts to fill the pool * Create the base and nested pools with sync=disabled to speed up the "setup" phase. * Clear labels in test pool between checkpoint tests to avoid duplicate pool issues. * The import_rewind_device_replaced test has been marked as "known to fail" for the reasons listed in its DISCLAIMER. * New module parameters: zfs_spa_discard_memory_limit, zfs_remove_max_bytes_pause (not documented - debugging only) vdev_max_ms_count (formerly metaslabs_per_vdev) vdev_min_ms_count Authored by: Serapheim Dimitropoulos <serapheim.dimitro@delphix.com> Reviewed by: Matthew Ahrens <mahrens@delphix.com> Reviewed by: John Kennedy <john.kennedy@delphix.com> Reviewed by: Dan Kimmel <dan.kimmel@delphix.com> Reviewed by: Brian Behlendorf <behlendorf1@llnl.gov> Approved by: Richard Lowe <richlowe@richlowe.net> Ported-by: Tim Chase <tim@chase2k.com> Signed-off-by: Tim Chase <tim@chase2k.com> OpenZFS-issue: https://illumos.org/issues/9166 OpenZFS-commit: https://github.com/openzfs/openzfs/commit/7159fdb8 Closes #7570
2016-12-17 01:11:29 +03:00
if (error == ZFS_ERR_CHECKPOINT_EXISTS ||
Add device rebuild feature The device_rebuild feature enables sequential reconstruction when resilvering. Mirror vdevs can be rebuilt in LBA order which may more quickly restore redundancy depending on the pools average block size, overall fragmentation and the performance characteristics of the devices. However, block checksums cannot be verified as part of the rebuild thus a scrub is automatically started after the sequential resilver completes. The new '-s' option has been added to the `zpool attach` and `zpool replace` command to request sequential reconstruction instead of healing reconstruction when resilvering. zpool attach -s <pool> <existing vdev> <new vdev> zpool replace -s <pool> <old vdev> <new vdev> The `zpool status` output has been updated to report the progress of sequential resilvering in the same way as healing resilvering. The one notable difference is that multiple sequential resilvers may be in progress as long as they're operating on different top-level vdevs. The `zpool wait -t resilver` command was extended to wait on sequential resilvers. From this perspective they are no different than healing resilvers. Sequential resilvers cannot be supported for RAIDZ, but are compatible with the dRAID feature being developed. As part of this change the resilver_restart_* tests were moved in to the functional/replacement directory. Additionally, the replacement tests were renamed and extended to verify both resilvering and rebuilding. Original-patch-by: Isaac Huang <he.huang@intel.com> Reviewed-by: Tony Hutter <hutter2@llnl.gov> Reviewed-by: John Poduska <jpoduska@datto.com> Co-authored-by: Mark Maybee <mmaybee@cray.com> Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov> Closes #10349
2020-07-03 21:05:50 +03:00
error == ZFS_ERR_DISCARDING_CHECKPOINT ||
error == ZFS_ERR_RESILVER_IN_PROGRESS ||
error == ZFS_ERR_REBUILD_IN_PROGRESS)
OpenZFS 9166 - zfs storage pool checkpoint Details about the motivation of this feature and its usage can be found in this blogpost: https://sdimitro.github.io/post/zpool-checkpoint/ A lightning talk of this feature can be found here: https://www.youtube.com/watch?v=fPQA8K40jAM Implementation details can be found in big block comment of spa_checkpoint.c Side-changes that are relevant to this commit but not explained elsewhere: * renames members of "struct metaslab trees to be shorter without losing meaning * space_map_{alloc,truncate}() accept a block size as a parameter. The reason is that in the current state all space maps that we allocate through the DMU use a global tunable (space_map_blksz) which defauls to 4KB. This is ok for metaslab space maps in terms of bandwirdth since they are scattered all over the disk. But for other space maps this default is probably not what we want. Examples are device removal's vdev_obsolete_sm or vdev_chedkpoint_sm from this review. Both of these have a 1:1 relationship with each vdev and could benefit from a bigger block size. Porting notes: * The part of dsl_scan_sync() which handles async destroys has been moved into the new dsl_process_async_destroys() function. * Remove "VERIFY(!(flags & FWRITE))" in "kernel.c" so zhack can write to block device backed pools. * ZTS: * Fix get_txg() in zpool_sync_001_pos due to "checkpoint_txg". * Don't use large dd block sizes on /dev/urandom under Linux in checkpoint_capacity. * Adopt Delphix-OS's setting of 4 (spa_asize_inflation = SPA_DVAS_PER_BP + 1) for the checkpoint_capacity test to speed its attempts to fill the pool * Create the base and nested pools with sync=disabled to speed up the "setup" phase. * Clear labels in test pool between checkpoint tests to avoid duplicate pool issues. * The import_rewind_device_replaced test has been marked as "known to fail" for the reasons listed in its DISCLAIMER. * New module parameters: zfs_spa_discard_memory_limit, zfs_remove_max_bytes_pause (not documented - debugging only) vdev_max_ms_count (formerly metaslabs_per_vdev) vdev_min_ms_count Authored by: Serapheim Dimitropoulos <serapheim.dimitro@delphix.com> Reviewed by: Matthew Ahrens <mahrens@delphix.com> Reviewed by: John Kennedy <john.kennedy@delphix.com> Reviewed by: Dan Kimmel <dan.kimmel@delphix.com> Reviewed by: Brian Behlendorf <behlendorf1@llnl.gov> Approved by: Richard Lowe <richlowe@richlowe.net> Ported-by: Tim Chase <tim@chase2k.com> Signed-off-by: Tim Chase <tim@chase2k.com> OpenZFS-issue: https://illumos.org/issues/9166 OpenZFS-commit: https://github.com/openzfs/openzfs/commit/7159fdb8 Closes #7570
2016-12-17 01:11:29 +03:00
expected_error = error;
if (error != expected_error && expected_error != EBUSY) {
fatal(B_FALSE, "attach (%s %"PRIu64", %s %"PRIu64", %d) "
"returned %d, expected %d",
Illumos #3956, #3957, #3958, #3959, #3960, #3961, #3962 3956 ::vdev -r should work with pipelines 3957 ztest should update the cachefile before killing itself 3958 multiple scans can lead to partial resilvering 3959 ddt entries are not always resilvered 3960 dsl_scan can skip over dedup-ed blocks if physical birth != logical birth 3961 freed gang blocks are not resilvered and can cause pool to suspend 3962 ztest should print out zfs debug buffer before exiting Reviewed by: Matthew Ahrens <mahrens@delphix.com> Reviewed by: Adam Leventhal <ahl@delphix.com> Approved by: Richard Lowe <richlowe@richlowe.net> References: https://www.illumos.org/issues/3956 https://www.illumos.org/issues/3957 https://www.illumos.org/issues/3958 https://www.illumos.org/issues/3959 https://www.illumos.org/issues/3960 https://www.illumos.org/issues/3961 https://www.illumos.org/issues/3962 illumos/illumos-gate@b4952e17e8858d3225793b28788278de9fe6038d Ported-by: Richard Yao <ryao@gentoo.org> Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov> Porting notes: 1. zfs_dbgmsg_print() is only used in userland. Since we do not have mdb on Linux, it does not make sense to make it available in the kernel. This means that a build failure will occur if any future kernel patch depends on it. However, that is unlikely given that this functionality was added to support zdb. 2. zfs_dbgmsg_print() is only invoked for -VVV or greater log levels. This preserves the existing behavior of minimal noise when running with -V, and -VV. 3. In vdev_config_generate() the call to nvlist_alloc() was not changed to fnvlist_alloc() because we must pass KM_PUSHPAGE in the txg_sync context.
2013-08-08 00:16:22 +04:00
oldpath, oldsize, newpath,
newsize, replacing, error, expected_error);
2008-11-20 23:01:55 +03:00
}
out:
mutex_exit(&ztest_vdev_lock);
umem_free(oldpath, MAXPATHLEN);
umem_free(newpath, MAXPATHLEN);
2008-11-20 23:01:55 +03:00
}
RAID-Z expansion feature This feature allows disks to be added one at a time to a RAID-Z group, expanding its capacity incrementally. This feature is especially useful for small pools (typically with only one RAID-Z group), where there isn't sufficient hardware to add capacity by adding a whole new RAID-Z group (typically doubling the number of disks). == Initiating expansion == A new device (disk) can be attached to an existing RAIDZ vdev, by running `zpool attach POOL raidzP-N NEW_DEVICE`, e.g. `zpool attach tank raidz2-0 sda`. The new device will become part of the RAIDZ group. A "raidz expansion" will be initiated, and the new device will contribute additional space to the RAIDZ group once the expansion completes. The `feature@raidz_expansion` on-disk feature flag must be `enabled` to initiate an expansion, and it remains `active` for the life of the pool. In other words, pools with expanded RAIDZ vdevs can not be imported by older releases of the ZFS software. == During expansion == The expansion entails reading all allocated space from existing disks in the RAIDZ group, and rewriting it to the new disks in the RAIDZ group (including the newly added device). The expansion progress can be monitored with `zpool status`. Data redundancy is maintained during (and after) the expansion. If a disk fails while the expansion is in progress, the expansion pauses until the health of the RAIDZ vdev is restored (e.g. by replacing the failed disk and waiting for reconstruction to complete). The pool remains accessible during expansion. Following a reboot or export/import, the expansion resumes where it left off. == After expansion == When the expansion completes, the additional space is available for use, and is reflected in the `available` zfs property (as seen in `zfs list`, `df`, etc). Expansion does not change the number of failures that can be tolerated without data loss (e.g. a RAIDZ2 is still a RAIDZ2 even after expansion). A RAIDZ vdev can be expanded multiple times. After the expansion completes, old blocks remain with their old data-to-parity ratio (e.g. 5-wide RAIDZ2, has 3 data to 2 parity), but distributed among the larger set of disks. New blocks will be written with the new data-to-parity ratio (e.g. a 5-wide RAIDZ2 which has been expanded once to 6-wide, has 4 data to 2 parity). However, the RAIDZ vdev's "assumed parity ratio" does not change, so slightly less space than is expected may be reported for newly-written blocks, according to `zfs list`, `df`, `ls -s`, and similar tools. Sponsored-by: The FreeBSD Foundation Sponsored-by: iXsystems, Inc. Sponsored-by: vStack Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov> Reviewed-by: Mark Maybee <mark.maybee@delphix.com> Authored-by: Matthew Ahrens <mahrens@delphix.com> Contributions-by: Fedor Uporov <fuporov.vstack@gmail.com> Contributions-by: Stuart Maybee <stuart.maybee@comcast.net> Contributions-by: Thorsten Behrens <tbehrens@outlook.com> Contributions-by: Fmstrat <nospam@nowsci.com> Contributions-by: Don Brady <dev.fs.zfs@gmail.com> Signed-off-by: Don Brady <dev.fs.zfs@gmail.com> Closes #15022
2023-11-08 21:19:41 +03:00
static void
raidz_scratch_verify(void)
{
spa_t *spa;
uint64_t write_size, logical_size, offset;
raidz_reflow_scratch_state_t state;
vdev_raidz_expand_t *vre;
vdev_t *raidvd;
ASSERT(raidz_expand_pause_point == RAIDZ_EXPAND_PAUSE_NONE);
if (ztest_scratch_state->zs_raidz_scratch_verify_pause == 0)
return;
kernel_init(SPA_MODE_READ);
mutex_enter(&spa_namespace_lock);
spa = spa_lookup(ztest_opts.zo_pool);
ASSERT(spa);
spa->spa_import_flags |= ZFS_IMPORT_SKIP_MMP;
mutex_exit(&spa_namespace_lock);
VERIFY0(spa_open(ztest_opts.zo_pool, &spa, FTAG));
ASSERT3U(RRSS_GET_OFFSET(&spa->spa_uberblock), !=, UINT64_MAX);
mutex_enter(&ztest_vdev_lock);
spa_config_enter(spa, SCL_ALL, FTAG, RW_READER);
vre = spa->spa_raidz_expand;
if (vre == NULL)
goto out;
raidvd = vdev_lookup_top(spa, vre->vre_vdev_id);
offset = RRSS_GET_OFFSET(&spa->spa_uberblock);
state = RRSS_GET_STATE(&spa->spa_uberblock);
write_size = P2ALIGN_TYPED(VDEV_BOOT_SIZE, 1 << raidvd->vdev_ashift,
uint64_t);
RAID-Z expansion feature This feature allows disks to be added one at a time to a RAID-Z group, expanding its capacity incrementally. This feature is especially useful for small pools (typically with only one RAID-Z group), where there isn't sufficient hardware to add capacity by adding a whole new RAID-Z group (typically doubling the number of disks). == Initiating expansion == A new device (disk) can be attached to an existing RAIDZ vdev, by running `zpool attach POOL raidzP-N NEW_DEVICE`, e.g. `zpool attach tank raidz2-0 sda`. The new device will become part of the RAIDZ group. A "raidz expansion" will be initiated, and the new device will contribute additional space to the RAIDZ group once the expansion completes. The `feature@raidz_expansion` on-disk feature flag must be `enabled` to initiate an expansion, and it remains `active` for the life of the pool. In other words, pools with expanded RAIDZ vdevs can not be imported by older releases of the ZFS software. == During expansion == The expansion entails reading all allocated space from existing disks in the RAIDZ group, and rewriting it to the new disks in the RAIDZ group (including the newly added device). The expansion progress can be monitored with `zpool status`. Data redundancy is maintained during (and after) the expansion. If a disk fails while the expansion is in progress, the expansion pauses until the health of the RAIDZ vdev is restored (e.g. by replacing the failed disk and waiting for reconstruction to complete). The pool remains accessible during expansion. Following a reboot or export/import, the expansion resumes where it left off. == After expansion == When the expansion completes, the additional space is available for use, and is reflected in the `available` zfs property (as seen in `zfs list`, `df`, etc). Expansion does not change the number of failures that can be tolerated without data loss (e.g. a RAIDZ2 is still a RAIDZ2 even after expansion). A RAIDZ vdev can be expanded multiple times. After the expansion completes, old blocks remain with their old data-to-parity ratio (e.g. 5-wide RAIDZ2, has 3 data to 2 parity), but distributed among the larger set of disks. New blocks will be written with the new data-to-parity ratio (e.g. a 5-wide RAIDZ2 which has been expanded once to 6-wide, has 4 data to 2 parity). However, the RAIDZ vdev's "assumed parity ratio" does not change, so slightly less space than is expected may be reported for newly-written blocks, according to `zfs list`, `df`, `ls -s`, and similar tools. Sponsored-by: The FreeBSD Foundation Sponsored-by: iXsystems, Inc. Sponsored-by: vStack Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov> Reviewed-by: Mark Maybee <mark.maybee@delphix.com> Authored-by: Matthew Ahrens <mahrens@delphix.com> Contributions-by: Fedor Uporov <fuporov.vstack@gmail.com> Contributions-by: Stuart Maybee <stuart.maybee@comcast.net> Contributions-by: Thorsten Behrens <tbehrens@outlook.com> Contributions-by: Fmstrat <nospam@nowsci.com> Contributions-by: Don Brady <dev.fs.zfs@gmail.com> Signed-off-by: Don Brady <dev.fs.zfs@gmail.com> Closes #15022
2023-11-08 21:19:41 +03:00
logical_size = write_size * raidvd->vdev_children;
switch (state) {
/*
* Initial state of reflow process. RAIDZ expansion was
* requested by user, but scratch object was not created.
*/
case RRSS_SCRATCH_NOT_IN_USE:
ASSERT3U(offset, ==, 0);
break;
/*
* Scratch object was synced and stored in boot area.
*/
case RRSS_SCRATCH_VALID:
/*
* Scratch object was synced back to raidz start offset,
* raidz is ready for sector by sector reflow process.
*/
case RRSS_SCRATCH_INVALID_SYNCED:
/*
* Scratch object was synced back to raidz start offset
* on zpool importing, raidz is ready for sector by sector
* reflow process.
*/
case RRSS_SCRATCH_INVALID_SYNCED_ON_IMPORT:
ASSERT3U(offset, ==, logical_size);
break;
/*
* Sector by sector reflow process started.
*/
case RRSS_SCRATCH_INVALID_SYNCED_REFLOW:
ASSERT3U(offset, >=, logical_size);
break;
}
out:
spa_config_exit(spa, SCL_ALL, FTAG);
mutex_exit(&ztest_vdev_lock);
ztest_scratch_state->zs_raidz_scratch_verify_pause = 0;
spa_close(spa, FTAG);
kernel_fini();
}
static void
ztest_scratch_thread(void *arg)
{
(void) arg;
/* wait up to 10 seconds */
for (int t = 100; t > 0; t -= 1) {
if (raidz_expand_pause_point == RAIDZ_EXPAND_PAUSE_NONE)
thread_exit();
(void) poll(NULL, 0, 100);
}
/* killed when the scratch area progress reached a certain point */
ztest_kill(ztest_shared);
}
/*
* Verify that we can attach raidz device.
*/
void
ztest_vdev_raidz_attach(ztest_ds_t *zd, uint64_t id)
{
(void) zd, (void) id;
ztest_shared_t *zs = ztest_shared;
spa_t *spa = ztest_spa;
uint64_t leaves, raidz_children, newsize, ashift = ztest_get_ashift();
kthread_t *scratch_thread = NULL;
vdev_t *newvd, *pvd;
nvlist_t *root;
char *newpath = umem_alloc(MAXPATHLEN, UMEM_NOFAIL);
int error, expected_error = 0;
mutex_enter(&ztest_vdev_lock);
spa_config_enter(spa, SCL_ALL, FTAG, RW_READER);
/* Only allow attach when raid-kind = 'eraidz' */
if (!ztest_opts.zo_raid_do_expand) {
spa_config_exit(spa, SCL_ALL, FTAG);
goto out;
}
if (ztest_opts.zo_mmp_test) {
spa_config_exit(spa, SCL_ALL, FTAG);
goto out;
}
if (ztest_device_removal_active) {
spa_config_exit(spa, SCL_ALL, FTAG);
goto out;
}
pvd = vdev_lookup_top(spa, 0);
ASSERT(pvd->vdev_ops == &vdev_raidz_ops);
/*
* Get size of a child of the raidz group,
* make sure device is a bit bigger
*/
newvd = pvd->vdev_child[ztest_random(pvd->vdev_children)];
newsize = 10 * vdev_get_min_asize(newvd) / (9 + ztest_random(2));
/*
* Get next attached leaf id
*/
raidz_children = ztest_get_raidz_children(spa);
leaves = MAX(zs->zs_mirrors + zs->zs_splits, 1) * raidz_children;
zs->zs_vdev_next_leaf = spa_num_top_vdevs(spa) * leaves;
if (spa->spa_raidz_expand)
expected_error = ZFS_ERR_RAIDZ_EXPAND_IN_PROGRESS;
spa_config_exit(spa, SCL_ALL, FTAG);
/*
* Path to vdev to be attached
*/
(void) snprintf(newpath, MAXPATHLEN, ztest_dev_template,
ztest_opts.zo_dir, ztest_opts.zo_pool, zs->zs_vdev_next_leaf);
/*
* Build the nvlist describing newpath.
*/
root = make_vdev_root(newpath, NULL, NULL, newsize, ashift, NULL,
0, 0, 1);
/*
* 50% of the time, set raidz_expand_pause_point to cause
* raidz_reflow_scratch_sync() to pause at a certain point and
* then kill the test after 10 seconds so raidz_scratch_verify()
* can confirm consistency when the pool is imported.
*/
if (ztest_random(2) == 0 && expected_error == 0) {
raidz_expand_pause_point =
ztest_random(RAIDZ_EXPAND_PAUSE_SCRATCH_POST_REFLOW_2) + 1;
scratch_thread = thread_create(NULL, 0, ztest_scratch_thread,
ztest_shared, 0, NULL, TS_RUN | TS_JOINABLE, defclsyspri);
}
error = spa_vdev_attach(spa, pvd->vdev_guid, root, B_FALSE, B_FALSE);
nvlist_free(root);
if (error == EOVERFLOW || error == ENXIO ||
error == ZFS_ERR_CHECKPOINT_EXISTS ||
error == ZFS_ERR_DISCARDING_CHECKPOINT)
expected_error = error;
if (error != 0 && error != expected_error) {
fatal(0, "raidz attach (%s %"PRIu64") returned %d, expected %d",
newpath, newsize, error, expected_error);
}
if (raidz_expand_pause_point) {
if (error != 0) {
/*
* Do not verify scratch object in case of error
* returned by vdev attaching.
*/
raidz_expand_pause_point = RAIDZ_EXPAND_PAUSE_NONE;
}
VERIFY0(thread_join(scratch_thread));
}
out:
mutex_exit(&ztest_vdev_lock);
umem_free(newpath, MAXPATHLEN);
}
OpenZFS 7614, 9064 - zfs device evacuation/removal OpenZFS 7614 - zfs device evacuation/removal OpenZFS 9064 - remove_mirror should wait for device removal to complete This project allows top-level vdevs to be removed from the storage pool with "zpool remove", reducing the total amount of storage in the pool. This operation copies all allocated regions of the device to be removed onto other devices, recording the mapping from old to new location. After the removal is complete, read and free operations to the removed (now "indirect") vdev must be remapped and performed at the new location on disk. The indirect mapping table is kept in memory whenever the pool is loaded, so there is minimal performance overhead when doing operations on the indirect vdev. The size of the in-memory mapping table will be reduced when its entries become "obsolete" because they are no longer used by any block pointers in the pool. An entry becomes obsolete when all the blocks that use it are freed. An entry can also become obsolete when all the snapshots that reference it are deleted, and the block pointers that reference it have been "remapped" in all filesystems/zvols (and clones). Whenever an indirect block is written, all the block pointers in it will be "remapped" to their new (concrete) locations if possible. This process can be accelerated by using the "zfs remap" command to proactively rewrite all indirect blocks that reference indirect (removed) vdevs. Note that when a device is removed, we do not verify the checksum of the data that is copied. This makes the process much faster, but if it were used on redundant vdevs (i.e. mirror or raidz vdevs), it would be possible to copy the wrong data, when we have the correct data on e.g. the other side of the mirror. At the moment, only mirrors and simple top-level vdevs can be removed and no removal is allowed if any of the top-level vdevs are raidz. Porting Notes: * Avoid zero-sized kmem_alloc() in vdev_compact_children(). The device evacuation code adds a dependency that vdev_compact_children() be able to properly empty the vdev_child array by setting it to NULL and zeroing vdev_children. Under Linux, kmem_alloc() and related functions return a sentinel pointer rather than NULL for zero-sized allocations. * Remove comment regarding "mpt" driver where zfs_remove_max_segment is initialized to SPA_MAXBLOCKSIZE. Change zfs_condense_indirect_commit_entry_delay_ticks to zfs_condense_indirect_commit_entry_delay_ms for consistency with most other tunables in which delays are specified in ms. * ZTS changes: Use set_tunable rather than mdb Use zpool sync as appropriate Use sync_pool instead of sync Kill jobs during test_removal_with_operation to allow unmount/export Don't add non-disk names such as "mirror" or "raidz" to $DISKS Use $TEST_BASE_DIR instead of /tmp Increase HZ from 100 to 1000 which is more common on Linux removal_multiple_indirection.ksh Reduce iterations in order to not time out on the code coverage builders. removal_resume_export: Functionally, the test case is correct but there exists a race where the kernel thread hasn't been fully started yet and is not visible. Wait for up to 1 second for the removal thread to be started before giving up on it. Also, increase the amount of data copied in order that the removal not finish before the export has a chance to fail. * MMP compatibility, the concept of concrete versus non-concrete devices has slightly changed the semantics of vdev_writeable(). Update mmp_random_leaf_impl() accordingly. * Updated dbuf_remap() to handle the org.zfsonlinux:large_dnode pool feature which is not supported by OpenZFS. * Added support for new vdev removal tracepoints. * Test cases removal_with_zdb and removal_condense_export have been intentionally disabled. When run manually they pass as intended, but when running in the automated test environment they produce unreliable results on the latest Fedora release. They may work better once the upstream pool import refectoring is merged into ZoL at which point they will be re-enabled. Authored by: Matthew Ahrens <mahrens@delphix.com> Reviewed-by: Alex Reece <alex@delphix.com> Reviewed-by: George Wilson <george.wilson@delphix.com> Reviewed-by: John Kennedy <john.kennedy@delphix.com> Reviewed-by: Prakash Surya <prakash.surya@delphix.com> Reviewed by: Richard Laager <rlaager@wiktel.com> Reviewed by: Tim Chase <tim@chase2k.com> Reviewed by: Brian Behlendorf <behlendorf1@llnl.gov> Approved by: Garrett D'Amore <garrett@damore.org> Ported-by: Tim Chase <tim@chase2k.com> Signed-off-by: Tim Chase <tim@chase2k.com> OpenZFS-issue: https://www.illumos.org/issues/7614 OpenZFS-commit: https://github.com/openzfs/openzfs/commit/f539f1eb Closes #6900
2016-09-22 19:30:13 +03:00
void
ztest_device_removal(ztest_ds_t *zd, uint64_t id)
{
(void) zd, (void) id;
OpenZFS 7614, 9064 - zfs device evacuation/removal OpenZFS 7614 - zfs device evacuation/removal OpenZFS 9064 - remove_mirror should wait for device removal to complete This project allows top-level vdevs to be removed from the storage pool with "zpool remove", reducing the total amount of storage in the pool. This operation copies all allocated regions of the device to be removed onto other devices, recording the mapping from old to new location. After the removal is complete, read and free operations to the removed (now "indirect") vdev must be remapped and performed at the new location on disk. The indirect mapping table is kept in memory whenever the pool is loaded, so there is minimal performance overhead when doing operations on the indirect vdev. The size of the in-memory mapping table will be reduced when its entries become "obsolete" because they are no longer used by any block pointers in the pool. An entry becomes obsolete when all the blocks that use it are freed. An entry can also become obsolete when all the snapshots that reference it are deleted, and the block pointers that reference it have been "remapped" in all filesystems/zvols (and clones). Whenever an indirect block is written, all the block pointers in it will be "remapped" to their new (concrete) locations if possible. This process can be accelerated by using the "zfs remap" command to proactively rewrite all indirect blocks that reference indirect (removed) vdevs. Note that when a device is removed, we do not verify the checksum of the data that is copied. This makes the process much faster, but if it were used on redundant vdevs (i.e. mirror or raidz vdevs), it would be possible to copy the wrong data, when we have the correct data on e.g. the other side of the mirror. At the moment, only mirrors and simple top-level vdevs can be removed and no removal is allowed if any of the top-level vdevs are raidz. Porting Notes: * Avoid zero-sized kmem_alloc() in vdev_compact_children(). The device evacuation code adds a dependency that vdev_compact_children() be able to properly empty the vdev_child array by setting it to NULL and zeroing vdev_children. Under Linux, kmem_alloc() and related functions return a sentinel pointer rather than NULL for zero-sized allocations. * Remove comment regarding "mpt" driver where zfs_remove_max_segment is initialized to SPA_MAXBLOCKSIZE. Change zfs_condense_indirect_commit_entry_delay_ticks to zfs_condense_indirect_commit_entry_delay_ms for consistency with most other tunables in which delays are specified in ms. * ZTS changes: Use set_tunable rather than mdb Use zpool sync as appropriate Use sync_pool instead of sync Kill jobs during test_removal_with_operation to allow unmount/export Don't add non-disk names such as "mirror" or "raidz" to $DISKS Use $TEST_BASE_DIR instead of /tmp Increase HZ from 100 to 1000 which is more common on Linux removal_multiple_indirection.ksh Reduce iterations in order to not time out on the code coverage builders. removal_resume_export: Functionally, the test case is correct but there exists a race where the kernel thread hasn't been fully started yet and is not visible. Wait for up to 1 second for the removal thread to be started before giving up on it. Also, increase the amount of data copied in order that the removal not finish before the export has a chance to fail. * MMP compatibility, the concept of concrete versus non-concrete devices has slightly changed the semantics of vdev_writeable(). Update mmp_random_leaf_impl() accordingly. * Updated dbuf_remap() to handle the org.zfsonlinux:large_dnode pool feature which is not supported by OpenZFS. * Added support for new vdev removal tracepoints. * Test cases removal_with_zdb and removal_condense_export have been intentionally disabled. When run manually they pass as intended, but when running in the automated test environment they produce unreliable results on the latest Fedora release. They may work better once the upstream pool import refectoring is merged into ZoL at which point they will be re-enabled. Authored by: Matthew Ahrens <mahrens@delphix.com> Reviewed-by: Alex Reece <alex@delphix.com> Reviewed-by: George Wilson <george.wilson@delphix.com> Reviewed-by: John Kennedy <john.kennedy@delphix.com> Reviewed-by: Prakash Surya <prakash.surya@delphix.com> Reviewed by: Richard Laager <rlaager@wiktel.com> Reviewed by: Tim Chase <tim@chase2k.com> Reviewed by: Brian Behlendorf <behlendorf1@llnl.gov> Approved by: Garrett D'Amore <garrett@damore.org> Ported-by: Tim Chase <tim@chase2k.com> Signed-off-by: Tim Chase <tim@chase2k.com> OpenZFS-issue: https://www.illumos.org/issues/7614 OpenZFS-commit: https://github.com/openzfs/openzfs/commit/f539f1eb Closes #6900
2016-09-22 19:30:13 +03:00
spa_t *spa = ztest_spa;
vdev_t *vd;
uint64_t guid;
OpenZFS 9290 - device removal reduces redundancy of mirrors Mirrors are supposed to provide redundancy in the face of whole-disk failure and silent damage (e.g. some data on disk is not right, but ZFS hasn't detected the whole device as being broken). However, the current device removal implementation bypasses some of the mirror's redundancy. Note that in no case is incorrect data returned, but we might get a checksum error when we should have been able to find the right data. There are two underlying problems: 1. When we remove a mirror device, we only read one side of the mirror. Since we can't verify the checksum, this side may be silently bad, but the good data is on the other side of the mirror (which we didn't read). This can cause the removal to "bake in" the busted data – all copies of the data in the new location are the same, busted version, while we left the good version behind. The fix for this is to read and copy both sides of the mirror. If the old and new vdevs are mirrors, we will read both sides of the old mirror, and write each copy to the corresponding side of the new mirror. (If the old and new vdevs have a different number of children, we will do this as best as possible.) Even though we aren't verifying checksums, this ensures that as long as there's a good copy of the data, we'll have a good copy after the removal, even if there's silent damage to one side of the mirror. If we're removing a mirror that has some silent damage, we'll have exactly the same damage in the new location (assuming that the new location is also a mirror). 2. When we read from an indirect vdev that points to a mirror vdev, we only consider one copy of the data. This can lead to reduced effective redundancy, because we might read a bad copy of the data from one side of the mirror, and not retry the other, good side of the mirror. Note that the problem is not with the removal process, but rather after the removal has completed (having copied correct data to both sides of the mirror), if one side of the new mirror is silently damaged, we encounter the problem when reading the relocated data via the indirect vdev. Also note that the problem doesn't occur when ZFS knows that one side of the mirror is bad, e.g. when a disk entirely fails or is offlined. The impact is that reads (from indirect vdevs that point to mirrors) may return a checksum error even though the good data exists on one side of the mirror, and scrub doesn't repair all data on the mirror (if some of it is pointed to via an indirect vdev). The fix for this is complicated by "split blocks" - one logical block may be split into two (or more) pieces with each piece moved to a different new location. In this case we need to read all versions of each split (one from each side of the mirror), and figure out which combination of versions results in the correct checksum, and then repair the incorrect versions. This ensures that we supply the same redundancy whether you use device removal or not. For example, if a mirror has small silent errors on all of its children, we can still reconstruct the correct data, as long as those errors are at sufficiently-separated offsets (specifically, separated by the largest block size - default of 128KB, but up to 16MB). Porting notes: * A new indirect vdev check was moved from dsl_scan_needs_resilver_cb() to dsl_scan_needs_resilver(), which was added to ZoL as part of the sequential scrub work. * Passed NULL for zfs_ereport_post_checksum()'s zbookmark_phys_t parameter. The extra parameter is unique to ZoL. * When posting indirect checksum errors the ABD can be passed directly, zfs_ereport_post_checksum() is not yet ABD-aware in OpenZFS. Authored by: Matthew Ahrens <mahrens@delphix.com> Reviewed by: Tim Chase <tim@chase2k.com> Reviewed by: Brian Behlendorf <behlendorf1@llnl.gov> Ported-by: Tim Chase <tim@chase2k.com> OpenZFS-issue: https://illumos.org/issues/9290 OpenZFS-commit: https://github.com/openzfs/openzfs/pull/591 Closes #6900
2018-02-13 22:37:56 +03:00
int error;
OpenZFS 7614, 9064 - zfs device evacuation/removal OpenZFS 7614 - zfs device evacuation/removal OpenZFS 9064 - remove_mirror should wait for device removal to complete This project allows top-level vdevs to be removed from the storage pool with "zpool remove", reducing the total amount of storage in the pool. This operation copies all allocated regions of the device to be removed onto other devices, recording the mapping from old to new location. After the removal is complete, read and free operations to the removed (now "indirect") vdev must be remapped and performed at the new location on disk. The indirect mapping table is kept in memory whenever the pool is loaded, so there is minimal performance overhead when doing operations on the indirect vdev. The size of the in-memory mapping table will be reduced when its entries become "obsolete" because they are no longer used by any block pointers in the pool. An entry becomes obsolete when all the blocks that use it are freed. An entry can also become obsolete when all the snapshots that reference it are deleted, and the block pointers that reference it have been "remapped" in all filesystems/zvols (and clones). Whenever an indirect block is written, all the block pointers in it will be "remapped" to their new (concrete) locations if possible. This process can be accelerated by using the "zfs remap" command to proactively rewrite all indirect blocks that reference indirect (removed) vdevs. Note that when a device is removed, we do not verify the checksum of the data that is copied. This makes the process much faster, but if it were used on redundant vdevs (i.e. mirror or raidz vdevs), it would be possible to copy the wrong data, when we have the correct data on e.g. the other side of the mirror. At the moment, only mirrors and simple top-level vdevs can be removed and no removal is allowed if any of the top-level vdevs are raidz. Porting Notes: * Avoid zero-sized kmem_alloc() in vdev_compact_children(). The device evacuation code adds a dependency that vdev_compact_children() be able to properly empty the vdev_child array by setting it to NULL and zeroing vdev_children. Under Linux, kmem_alloc() and related functions return a sentinel pointer rather than NULL for zero-sized allocations. * Remove comment regarding "mpt" driver where zfs_remove_max_segment is initialized to SPA_MAXBLOCKSIZE. Change zfs_condense_indirect_commit_entry_delay_ticks to zfs_condense_indirect_commit_entry_delay_ms for consistency with most other tunables in which delays are specified in ms. * ZTS changes: Use set_tunable rather than mdb Use zpool sync as appropriate Use sync_pool instead of sync Kill jobs during test_removal_with_operation to allow unmount/export Don't add non-disk names such as "mirror" or "raidz" to $DISKS Use $TEST_BASE_DIR instead of /tmp Increase HZ from 100 to 1000 which is more common on Linux removal_multiple_indirection.ksh Reduce iterations in order to not time out on the code coverage builders. removal_resume_export: Functionally, the test case is correct but there exists a race where the kernel thread hasn't been fully started yet and is not visible. Wait for up to 1 second for the removal thread to be started before giving up on it. Also, increase the amount of data copied in order that the removal not finish before the export has a chance to fail. * MMP compatibility, the concept of concrete versus non-concrete devices has slightly changed the semantics of vdev_writeable(). Update mmp_random_leaf_impl() accordingly. * Updated dbuf_remap() to handle the org.zfsonlinux:large_dnode pool feature which is not supported by OpenZFS. * Added support for new vdev removal tracepoints. * Test cases removal_with_zdb and removal_condense_export have been intentionally disabled. When run manually they pass as intended, but when running in the automated test environment they produce unreliable results on the latest Fedora release. They may work better once the upstream pool import refectoring is merged into ZoL at which point they will be re-enabled. Authored by: Matthew Ahrens <mahrens@delphix.com> Reviewed-by: Alex Reece <alex@delphix.com> Reviewed-by: George Wilson <george.wilson@delphix.com> Reviewed-by: John Kennedy <john.kennedy@delphix.com> Reviewed-by: Prakash Surya <prakash.surya@delphix.com> Reviewed by: Richard Laager <rlaager@wiktel.com> Reviewed by: Tim Chase <tim@chase2k.com> Reviewed by: Brian Behlendorf <behlendorf1@llnl.gov> Approved by: Garrett D'Amore <garrett@damore.org> Ported-by: Tim Chase <tim@chase2k.com> Signed-off-by: Tim Chase <tim@chase2k.com> OpenZFS-issue: https://www.illumos.org/issues/7614 OpenZFS-commit: https://github.com/openzfs/openzfs/commit/f539f1eb Closes #6900
2016-09-22 19:30:13 +03:00
mutex_enter(&ztest_vdev_lock);
OpenZFS 9290 - device removal reduces redundancy of mirrors Mirrors are supposed to provide redundancy in the face of whole-disk failure and silent damage (e.g. some data on disk is not right, but ZFS hasn't detected the whole device as being broken). However, the current device removal implementation bypasses some of the mirror's redundancy. Note that in no case is incorrect data returned, but we might get a checksum error when we should have been able to find the right data. There are two underlying problems: 1. When we remove a mirror device, we only read one side of the mirror. Since we can't verify the checksum, this side may be silently bad, but the good data is on the other side of the mirror (which we didn't read). This can cause the removal to "bake in" the busted data – all copies of the data in the new location are the same, busted version, while we left the good version behind. The fix for this is to read and copy both sides of the mirror. If the old and new vdevs are mirrors, we will read both sides of the old mirror, and write each copy to the corresponding side of the new mirror. (If the old and new vdevs have a different number of children, we will do this as best as possible.) Even though we aren't verifying checksums, this ensures that as long as there's a good copy of the data, we'll have a good copy after the removal, even if there's silent damage to one side of the mirror. If we're removing a mirror that has some silent damage, we'll have exactly the same damage in the new location (assuming that the new location is also a mirror). 2. When we read from an indirect vdev that points to a mirror vdev, we only consider one copy of the data. This can lead to reduced effective redundancy, because we might read a bad copy of the data from one side of the mirror, and not retry the other, good side of the mirror. Note that the problem is not with the removal process, but rather after the removal has completed (having copied correct data to both sides of the mirror), if one side of the new mirror is silently damaged, we encounter the problem when reading the relocated data via the indirect vdev. Also note that the problem doesn't occur when ZFS knows that one side of the mirror is bad, e.g. when a disk entirely fails or is offlined. The impact is that reads (from indirect vdevs that point to mirrors) may return a checksum error even though the good data exists on one side of the mirror, and scrub doesn't repair all data on the mirror (if some of it is pointed to via an indirect vdev). The fix for this is complicated by "split blocks" - one logical block may be split into two (or more) pieces with each piece moved to a different new location. In this case we need to read all versions of each split (one from each side of the mirror), and figure out which combination of versions results in the correct checksum, and then repair the incorrect versions. This ensures that we supply the same redundancy whether you use device removal or not. For example, if a mirror has small silent errors on all of its children, we can still reconstruct the correct data, as long as those errors are at sufficiently-separated offsets (specifically, separated by the largest block size - default of 128KB, but up to 16MB). Porting notes: * A new indirect vdev check was moved from dsl_scan_needs_resilver_cb() to dsl_scan_needs_resilver(), which was added to ZoL as part of the sequential scrub work. * Passed NULL for zfs_ereport_post_checksum()'s zbookmark_phys_t parameter. The extra parameter is unique to ZoL. * When posting indirect checksum errors the ABD can be passed directly, zfs_ereport_post_checksum() is not yet ABD-aware in OpenZFS. Authored by: Matthew Ahrens <mahrens@delphix.com> Reviewed by: Tim Chase <tim@chase2k.com> Reviewed by: Brian Behlendorf <behlendorf1@llnl.gov> Ported-by: Tim Chase <tim@chase2k.com> OpenZFS-issue: https://illumos.org/issues/9290 OpenZFS-commit: https://github.com/openzfs/openzfs/pull/591 Closes #6900
2018-02-13 22:37:56 +03:00
if (ztest_device_removal_active) {
mutex_exit(&ztest_vdev_lock);
return;
}
/*
* Remove a random top-level vdev and wait for removal to finish.
*/
OpenZFS 7614, 9064 - zfs device evacuation/removal OpenZFS 7614 - zfs device evacuation/removal OpenZFS 9064 - remove_mirror should wait for device removal to complete This project allows top-level vdevs to be removed from the storage pool with "zpool remove", reducing the total amount of storage in the pool. This operation copies all allocated regions of the device to be removed onto other devices, recording the mapping from old to new location. After the removal is complete, read and free operations to the removed (now "indirect") vdev must be remapped and performed at the new location on disk. The indirect mapping table is kept in memory whenever the pool is loaded, so there is minimal performance overhead when doing operations on the indirect vdev. The size of the in-memory mapping table will be reduced when its entries become "obsolete" because they are no longer used by any block pointers in the pool. An entry becomes obsolete when all the blocks that use it are freed. An entry can also become obsolete when all the snapshots that reference it are deleted, and the block pointers that reference it have been "remapped" in all filesystems/zvols (and clones). Whenever an indirect block is written, all the block pointers in it will be "remapped" to their new (concrete) locations if possible. This process can be accelerated by using the "zfs remap" command to proactively rewrite all indirect blocks that reference indirect (removed) vdevs. Note that when a device is removed, we do not verify the checksum of the data that is copied. This makes the process much faster, but if it were used on redundant vdevs (i.e. mirror or raidz vdevs), it would be possible to copy the wrong data, when we have the correct data on e.g. the other side of the mirror. At the moment, only mirrors and simple top-level vdevs can be removed and no removal is allowed if any of the top-level vdevs are raidz. Porting Notes: * Avoid zero-sized kmem_alloc() in vdev_compact_children(). The device evacuation code adds a dependency that vdev_compact_children() be able to properly empty the vdev_child array by setting it to NULL and zeroing vdev_children. Under Linux, kmem_alloc() and related functions return a sentinel pointer rather than NULL for zero-sized allocations. * Remove comment regarding "mpt" driver where zfs_remove_max_segment is initialized to SPA_MAXBLOCKSIZE. Change zfs_condense_indirect_commit_entry_delay_ticks to zfs_condense_indirect_commit_entry_delay_ms for consistency with most other tunables in which delays are specified in ms. * ZTS changes: Use set_tunable rather than mdb Use zpool sync as appropriate Use sync_pool instead of sync Kill jobs during test_removal_with_operation to allow unmount/export Don't add non-disk names such as "mirror" or "raidz" to $DISKS Use $TEST_BASE_DIR instead of /tmp Increase HZ from 100 to 1000 which is more common on Linux removal_multiple_indirection.ksh Reduce iterations in order to not time out on the code coverage builders. removal_resume_export: Functionally, the test case is correct but there exists a race where the kernel thread hasn't been fully started yet and is not visible. Wait for up to 1 second for the removal thread to be started before giving up on it. Also, increase the amount of data copied in order that the removal not finish before the export has a chance to fail. * MMP compatibility, the concept of concrete versus non-concrete devices has slightly changed the semantics of vdev_writeable(). Update mmp_random_leaf_impl() accordingly. * Updated dbuf_remap() to handle the org.zfsonlinux:large_dnode pool feature which is not supported by OpenZFS. * Added support for new vdev removal tracepoints. * Test cases removal_with_zdb and removal_condense_export have been intentionally disabled. When run manually they pass as intended, but when running in the automated test environment they produce unreliable results on the latest Fedora release. They may work better once the upstream pool import refectoring is merged into ZoL at which point they will be re-enabled. Authored by: Matthew Ahrens <mahrens@delphix.com> Reviewed-by: Alex Reece <alex@delphix.com> Reviewed-by: George Wilson <george.wilson@delphix.com> Reviewed-by: John Kennedy <john.kennedy@delphix.com> Reviewed-by: Prakash Surya <prakash.surya@delphix.com> Reviewed by: Richard Laager <rlaager@wiktel.com> Reviewed by: Tim Chase <tim@chase2k.com> Reviewed by: Brian Behlendorf <behlendorf1@llnl.gov> Approved by: Garrett D'Amore <garrett@damore.org> Ported-by: Tim Chase <tim@chase2k.com> Signed-off-by: Tim Chase <tim@chase2k.com> OpenZFS-issue: https://www.illumos.org/issues/7614 OpenZFS-commit: https://github.com/openzfs/openzfs/commit/f539f1eb Closes #6900
2016-09-22 19:30:13 +03:00
spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER);
vd = vdev_lookup_top(spa, ztest_random_vdev_top(spa, B_FALSE));
guid = vd->vdev_guid;
spa_config_exit(spa, SCL_VDEV, FTAG);
OpenZFS 9290 - device removal reduces redundancy of mirrors Mirrors are supposed to provide redundancy in the face of whole-disk failure and silent damage (e.g. some data on disk is not right, but ZFS hasn't detected the whole device as being broken). However, the current device removal implementation bypasses some of the mirror's redundancy. Note that in no case is incorrect data returned, but we might get a checksum error when we should have been able to find the right data. There are two underlying problems: 1. When we remove a mirror device, we only read one side of the mirror. Since we can't verify the checksum, this side may be silently bad, but the good data is on the other side of the mirror (which we didn't read). This can cause the removal to "bake in" the busted data – all copies of the data in the new location are the same, busted version, while we left the good version behind. The fix for this is to read and copy both sides of the mirror. If the old and new vdevs are mirrors, we will read both sides of the old mirror, and write each copy to the corresponding side of the new mirror. (If the old and new vdevs have a different number of children, we will do this as best as possible.) Even though we aren't verifying checksums, this ensures that as long as there's a good copy of the data, we'll have a good copy after the removal, even if there's silent damage to one side of the mirror. If we're removing a mirror that has some silent damage, we'll have exactly the same damage in the new location (assuming that the new location is also a mirror). 2. When we read from an indirect vdev that points to a mirror vdev, we only consider one copy of the data. This can lead to reduced effective redundancy, because we might read a bad copy of the data from one side of the mirror, and not retry the other, good side of the mirror. Note that the problem is not with the removal process, but rather after the removal has completed (having copied correct data to both sides of the mirror), if one side of the new mirror is silently damaged, we encounter the problem when reading the relocated data via the indirect vdev. Also note that the problem doesn't occur when ZFS knows that one side of the mirror is bad, e.g. when a disk entirely fails or is offlined. The impact is that reads (from indirect vdevs that point to mirrors) may return a checksum error even though the good data exists on one side of the mirror, and scrub doesn't repair all data on the mirror (if some of it is pointed to via an indirect vdev). The fix for this is complicated by "split blocks" - one logical block may be split into two (or more) pieces with each piece moved to a different new location. In this case we need to read all versions of each split (one from each side of the mirror), and figure out which combination of versions results in the correct checksum, and then repair the incorrect versions. This ensures that we supply the same redundancy whether you use device removal or not. For example, if a mirror has small silent errors on all of its children, we can still reconstruct the correct data, as long as those errors are at sufficiently-separated offsets (specifically, separated by the largest block size - default of 128KB, but up to 16MB). Porting notes: * A new indirect vdev check was moved from dsl_scan_needs_resilver_cb() to dsl_scan_needs_resilver(), which was added to ZoL as part of the sequential scrub work. * Passed NULL for zfs_ereport_post_checksum()'s zbookmark_phys_t parameter. The extra parameter is unique to ZoL. * When posting indirect checksum errors the ABD can be passed directly, zfs_ereport_post_checksum() is not yet ABD-aware in OpenZFS. Authored by: Matthew Ahrens <mahrens@delphix.com> Reviewed by: Tim Chase <tim@chase2k.com> Reviewed by: Brian Behlendorf <behlendorf1@llnl.gov> Ported-by: Tim Chase <tim@chase2k.com> OpenZFS-issue: https://illumos.org/issues/9290 OpenZFS-commit: https://github.com/openzfs/openzfs/pull/591 Closes #6900
2018-02-13 22:37:56 +03:00
error = spa_vdev_remove(spa, guid, B_FALSE);
if (error == 0) {
ztest_device_removal_active = B_TRUE;
mutex_exit(&ztest_vdev_lock);
/*
* spa->spa_vdev_removal is created in a sync task that
* is initiated via dsl_sync_task_nowait(). Since the
* task may not run before spa_vdev_remove() returns, we
* must wait at least 1 txg to ensure that the removal
* struct has been created.
*/
txg_wait_synced(spa_get_dsl(spa), 0);
while (spa->spa_removing_phys.sr_state == DSS_SCANNING)
OpenZFS 9290 - device removal reduces redundancy of mirrors Mirrors are supposed to provide redundancy in the face of whole-disk failure and silent damage (e.g. some data on disk is not right, but ZFS hasn't detected the whole device as being broken). However, the current device removal implementation bypasses some of the mirror's redundancy. Note that in no case is incorrect data returned, but we might get a checksum error when we should have been able to find the right data. There are two underlying problems: 1. When we remove a mirror device, we only read one side of the mirror. Since we can't verify the checksum, this side may be silently bad, but the good data is on the other side of the mirror (which we didn't read). This can cause the removal to "bake in" the busted data – all copies of the data in the new location are the same, busted version, while we left the good version behind. The fix for this is to read and copy both sides of the mirror. If the old and new vdevs are mirrors, we will read both sides of the old mirror, and write each copy to the corresponding side of the new mirror. (If the old and new vdevs have a different number of children, we will do this as best as possible.) Even though we aren't verifying checksums, this ensures that as long as there's a good copy of the data, we'll have a good copy after the removal, even if there's silent damage to one side of the mirror. If we're removing a mirror that has some silent damage, we'll have exactly the same damage in the new location (assuming that the new location is also a mirror). 2. When we read from an indirect vdev that points to a mirror vdev, we only consider one copy of the data. This can lead to reduced effective redundancy, because we might read a bad copy of the data from one side of the mirror, and not retry the other, good side of the mirror. Note that the problem is not with the removal process, but rather after the removal has completed (having copied correct data to both sides of the mirror), if one side of the new mirror is silently damaged, we encounter the problem when reading the relocated data via the indirect vdev. Also note that the problem doesn't occur when ZFS knows that one side of the mirror is bad, e.g. when a disk entirely fails or is offlined. The impact is that reads (from indirect vdevs that point to mirrors) may return a checksum error even though the good data exists on one side of the mirror, and scrub doesn't repair all data on the mirror (if some of it is pointed to via an indirect vdev). The fix for this is complicated by "split blocks" - one logical block may be split into two (or more) pieces with each piece moved to a different new location. In this case we need to read all versions of each split (one from each side of the mirror), and figure out which combination of versions results in the correct checksum, and then repair the incorrect versions. This ensures that we supply the same redundancy whether you use device removal or not. For example, if a mirror has small silent errors on all of its children, we can still reconstruct the correct data, as long as those errors are at sufficiently-separated offsets (specifically, separated by the largest block size - default of 128KB, but up to 16MB). Porting notes: * A new indirect vdev check was moved from dsl_scan_needs_resilver_cb() to dsl_scan_needs_resilver(), which was added to ZoL as part of the sequential scrub work. * Passed NULL for zfs_ereport_post_checksum()'s zbookmark_phys_t parameter. The extra parameter is unique to ZoL. * When posting indirect checksum errors the ABD can be passed directly, zfs_ereport_post_checksum() is not yet ABD-aware in OpenZFS. Authored by: Matthew Ahrens <mahrens@delphix.com> Reviewed by: Tim Chase <tim@chase2k.com> Reviewed by: Brian Behlendorf <behlendorf1@llnl.gov> Ported-by: Tim Chase <tim@chase2k.com> OpenZFS-issue: https://illumos.org/issues/9290 OpenZFS-commit: https://github.com/openzfs/openzfs/pull/591 Closes #6900
2018-02-13 22:37:56 +03:00
txg_wait_synced(spa_get_dsl(spa), 0);
} else {
mutex_exit(&ztest_vdev_lock);
return;
}
OpenZFS 7614, 9064 - zfs device evacuation/removal OpenZFS 7614 - zfs device evacuation/removal OpenZFS 9064 - remove_mirror should wait for device removal to complete This project allows top-level vdevs to be removed from the storage pool with "zpool remove", reducing the total amount of storage in the pool. This operation copies all allocated regions of the device to be removed onto other devices, recording the mapping from old to new location. After the removal is complete, read and free operations to the removed (now "indirect") vdev must be remapped and performed at the new location on disk. The indirect mapping table is kept in memory whenever the pool is loaded, so there is minimal performance overhead when doing operations on the indirect vdev. The size of the in-memory mapping table will be reduced when its entries become "obsolete" because they are no longer used by any block pointers in the pool. An entry becomes obsolete when all the blocks that use it are freed. An entry can also become obsolete when all the snapshots that reference it are deleted, and the block pointers that reference it have been "remapped" in all filesystems/zvols (and clones). Whenever an indirect block is written, all the block pointers in it will be "remapped" to their new (concrete) locations if possible. This process can be accelerated by using the "zfs remap" command to proactively rewrite all indirect blocks that reference indirect (removed) vdevs. Note that when a device is removed, we do not verify the checksum of the data that is copied. This makes the process much faster, but if it were used on redundant vdevs (i.e. mirror or raidz vdevs), it would be possible to copy the wrong data, when we have the correct data on e.g. the other side of the mirror. At the moment, only mirrors and simple top-level vdevs can be removed and no removal is allowed if any of the top-level vdevs are raidz. Porting Notes: * Avoid zero-sized kmem_alloc() in vdev_compact_children(). The device evacuation code adds a dependency that vdev_compact_children() be able to properly empty the vdev_child array by setting it to NULL and zeroing vdev_children. Under Linux, kmem_alloc() and related functions return a sentinel pointer rather than NULL for zero-sized allocations. * Remove comment regarding "mpt" driver where zfs_remove_max_segment is initialized to SPA_MAXBLOCKSIZE. Change zfs_condense_indirect_commit_entry_delay_ticks to zfs_condense_indirect_commit_entry_delay_ms for consistency with most other tunables in which delays are specified in ms. * ZTS changes: Use set_tunable rather than mdb Use zpool sync as appropriate Use sync_pool instead of sync Kill jobs during test_removal_with_operation to allow unmount/export Don't add non-disk names such as "mirror" or "raidz" to $DISKS Use $TEST_BASE_DIR instead of /tmp Increase HZ from 100 to 1000 which is more common on Linux removal_multiple_indirection.ksh Reduce iterations in order to not time out on the code coverage builders. removal_resume_export: Functionally, the test case is correct but there exists a race where the kernel thread hasn't been fully started yet and is not visible. Wait for up to 1 second for the removal thread to be started before giving up on it. Also, increase the amount of data copied in order that the removal not finish before the export has a chance to fail. * MMP compatibility, the concept of concrete versus non-concrete devices has slightly changed the semantics of vdev_writeable(). Update mmp_random_leaf_impl() accordingly. * Updated dbuf_remap() to handle the org.zfsonlinux:large_dnode pool feature which is not supported by OpenZFS. * Added support for new vdev removal tracepoints. * Test cases removal_with_zdb and removal_condense_export have been intentionally disabled. When run manually they pass as intended, but when running in the automated test environment they produce unreliable results on the latest Fedora release. They may work better once the upstream pool import refectoring is merged into ZoL at which point they will be re-enabled. Authored by: Matthew Ahrens <mahrens@delphix.com> Reviewed-by: Alex Reece <alex@delphix.com> Reviewed-by: George Wilson <george.wilson@delphix.com> Reviewed-by: John Kennedy <john.kennedy@delphix.com> Reviewed-by: Prakash Surya <prakash.surya@delphix.com> Reviewed by: Richard Laager <rlaager@wiktel.com> Reviewed by: Tim Chase <tim@chase2k.com> Reviewed by: Brian Behlendorf <behlendorf1@llnl.gov> Approved by: Garrett D'Amore <garrett@damore.org> Ported-by: Tim Chase <tim@chase2k.com> Signed-off-by: Tim Chase <tim@chase2k.com> OpenZFS-issue: https://www.illumos.org/issues/7614 OpenZFS-commit: https://github.com/openzfs/openzfs/commit/f539f1eb Closes #6900
2016-09-22 19:30:13 +03:00
OpenZFS 9290 - device removal reduces redundancy of mirrors Mirrors are supposed to provide redundancy in the face of whole-disk failure and silent damage (e.g. some data on disk is not right, but ZFS hasn't detected the whole device as being broken). However, the current device removal implementation bypasses some of the mirror's redundancy. Note that in no case is incorrect data returned, but we might get a checksum error when we should have been able to find the right data. There are two underlying problems: 1. When we remove a mirror device, we only read one side of the mirror. Since we can't verify the checksum, this side may be silently bad, but the good data is on the other side of the mirror (which we didn't read). This can cause the removal to "bake in" the busted data – all copies of the data in the new location are the same, busted version, while we left the good version behind. The fix for this is to read and copy both sides of the mirror. If the old and new vdevs are mirrors, we will read both sides of the old mirror, and write each copy to the corresponding side of the new mirror. (If the old and new vdevs have a different number of children, we will do this as best as possible.) Even though we aren't verifying checksums, this ensures that as long as there's a good copy of the data, we'll have a good copy after the removal, even if there's silent damage to one side of the mirror. If we're removing a mirror that has some silent damage, we'll have exactly the same damage in the new location (assuming that the new location is also a mirror). 2. When we read from an indirect vdev that points to a mirror vdev, we only consider one copy of the data. This can lead to reduced effective redundancy, because we might read a bad copy of the data from one side of the mirror, and not retry the other, good side of the mirror. Note that the problem is not with the removal process, but rather after the removal has completed (having copied correct data to both sides of the mirror), if one side of the new mirror is silently damaged, we encounter the problem when reading the relocated data via the indirect vdev. Also note that the problem doesn't occur when ZFS knows that one side of the mirror is bad, e.g. when a disk entirely fails or is offlined. The impact is that reads (from indirect vdevs that point to mirrors) may return a checksum error even though the good data exists on one side of the mirror, and scrub doesn't repair all data on the mirror (if some of it is pointed to via an indirect vdev). The fix for this is complicated by "split blocks" - one logical block may be split into two (or more) pieces with each piece moved to a different new location. In this case we need to read all versions of each split (one from each side of the mirror), and figure out which combination of versions results in the correct checksum, and then repair the incorrect versions. This ensures that we supply the same redundancy whether you use device removal or not. For example, if a mirror has small silent errors on all of its children, we can still reconstruct the correct data, as long as those errors are at sufficiently-separated offsets (specifically, separated by the largest block size - default of 128KB, but up to 16MB). Porting notes: * A new indirect vdev check was moved from dsl_scan_needs_resilver_cb() to dsl_scan_needs_resilver(), which was added to ZoL as part of the sequential scrub work. * Passed NULL for zfs_ereport_post_checksum()'s zbookmark_phys_t parameter. The extra parameter is unique to ZoL. * When posting indirect checksum errors the ABD can be passed directly, zfs_ereport_post_checksum() is not yet ABD-aware in OpenZFS. Authored by: Matthew Ahrens <mahrens@delphix.com> Reviewed by: Tim Chase <tim@chase2k.com> Reviewed by: Brian Behlendorf <behlendorf1@llnl.gov> Ported-by: Tim Chase <tim@chase2k.com> OpenZFS-issue: https://illumos.org/issues/9290 OpenZFS-commit: https://github.com/openzfs/openzfs/pull/591 Closes #6900
2018-02-13 22:37:56 +03:00
/*
* The pool needs to be scrubbed after completing device removal.
* Failure to do so may result in checksum errors due to the
* strategy employed by ztest_fault_inject() when selecting which
* offset are redundant and can be damaged.
*/
error = spa_scan(spa, POOL_SCAN_SCRUB);
if (error == 0) {
while (dsl_scan_scrubbing(spa_get_dsl(spa)))
txg_wait_synced(spa_get_dsl(spa), 0);
}
mutex_enter(&ztest_vdev_lock);
ztest_device_removal_active = B_FALSE;
OpenZFS 7614, 9064 - zfs device evacuation/removal OpenZFS 7614 - zfs device evacuation/removal OpenZFS 9064 - remove_mirror should wait for device removal to complete This project allows top-level vdevs to be removed from the storage pool with "zpool remove", reducing the total amount of storage in the pool. This operation copies all allocated regions of the device to be removed onto other devices, recording the mapping from old to new location. After the removal is complete, read and free operations to the removed (now "indirect") vdev must be remapped and performed at the new location on disk. The indirect mapping table is kept in memory whenever the pool is loaded, so there is minimal performance overhead when doing operations on the indirect vdev. The size of the in-memory mapping table will be reduced when its entries become "obsolete" because they are no longer used by any block pointers in the pool. An entry becomes obsolete when all the blocks that use it are freed. An entry can also become obsolete when all the snapshots that reference it are deleted, and the block pointers that reference it have been "remapped" in all filesystems/zvols (and clones). Whenever an indirect block is written, all the block pointers in it will be "remapped" to their new (concrete) locations if possible. This process can be accelerated by using the "zfs remap" command to proactively rewrite all indirect blocks that reference indirect (removed) vdevs. Note that when a device is removed, we do not verify the checksum of the data that is copied. This makes the process much faster, but if it were used on redundant vdevs (i.e. mirror or raidz vdevs), it would be possible to copy the wrong data, when we have the correct data on e.g. the other side of the mirror. At the moment, only mirrors and simple top-level vdevs can be removed and no removal is allowed if any of the top-level vdevs are raidz. Porting Notes: * Avoid zero-sized kmem_alloc() in vdev_compact_children(). The device evacuation code adds a dependency that vdev_compact_children() be able to properly empty the vdev_child array by setting it to NULL and zeroing vdev_children. Under Linux, kmem_alloc() and related functions return a sentinel pointer rather than NULL for zero-sized allocations. * Remove comment regarding "mpt" driver where zfs_remove_max_segment is initialized to SPA_MAXBLOCKSIZE. Change zfs_condense_indirect_commit_entry_delay_ticks to zfs_condense_indirect_commit_entry_delay_ms for consistency with most other tunables in which delays are specified in ms. * ZTS changes: Use set_tunable rather than mdb Use zpool sync as appropriate Use sync_pool instead of sync Kill jobs during test_removal_with_operation to allow unmount/export Don't add non-disk names such as "mirror" or "raidz" to $DISKS Use $TEST_BASE_DIR instead of /tmp Increase HZ from 100 to 1000 which is more common on Linux removal_multiple_indirection.ksh Reduce iterations in order to not time out on the code coverage builders. removal_resume_export: Functionally, the test case is correct but there exists a race where the kernel thread hasn't been fully started yet and is not visible. Wait for up to 1 second for the removal thread to be started before giving up on it. Also, increase the amount of data copied in order that the removal not finish before the export has a chance to fail. * MMP compatibility, the concept of concrete versus non-concrete devices has slightly changed the semantics of vdev_writeable(). Update mmp_random_leaf_impl() accordingly. * Updated dbuf_remap() to handle the org.zfsonlinux:large_dnode pool feature which is not supported by OpenZFS. * Added support for new vdev removal tracepoints. * Test cases removal_with_zdb and removal_condense_export have been intentionally disabled. When run manually they pass as intended, but when running in the automated test environment they produce unreliable results on the latest Fedora release. They may work better once the upstream pool import refectoring is merged into ZoL at which point they will be re-enabled. Authored by: Matthew Ahrens <mahrens@delphix.com> Reviewed-by: Alex Reece <alex@delphix.com> Reviewed-by: George Wilson <george.wilson@delphix.com> Reviewed-by: John Kennedy <john.kennedy@delphix.com> Reviewed-by: Prakash Surya <prakash.surya@delphix.com> Reviewed by: Richard Laager <rlaager@wiktel.com> Reviewed by: Tim Chase <tim@chase2k.com> Reviewed by: Brian Behlendorf <behlendorf1@llnl.gov> Approved by: Garrett D'Amore <garrett@damore.org> Ported-by: Tim Chase <tim@chase2k.com> Signed-off-by: Tim Chase <tim@chase2k.com> OpenZFS-issue: https://www.illumos.org/issues/7614 OpenZFS-commit: https://github.com/openzfs/openzfs/commit/f539f1eb Closes #6900
2016-09-22 19:30:13 +03:00
mutex_exit(&ztest_vdev_lock);
}
2009-07-03 02:44:48 +04:00
/*
* Callback function which expands the physical size of the vdev.
*/
static vdev_t *
2009-07-03 02:44:48 +04:00
grow_vdev(vdev_t *vd, void *arg)
{
spa_t *spa __maybe_unused = vd->vdev_spa;
2009-07-03 02:44:48 +04:00
size_t *newsize = arg;
size_t fsize;
int fd;
ASSERT3S(spa_config_held(spa, SCL_STATE, RW_READER), ==, SCL_STATE);
2009-07-03 02:44:48 +04:00
ASSERT(vd->vdev_ops->vdev_op_leaf);
if ((fd = open(vd->vdev_path, O_RDWR)) == -1)
return (vd);
fsize = lseek(fd, 0, SEEK_END);
VERIFY0(ftruncate(fd, *newsize));
2009-07-03 02:44:48 +04:00
if (ztest_opts.zo_verbose >= 6) {
2009-07-03 02:44:48 +04:00
(void) printf("%s grew from %lu to %lu bytes\n",
vd->vdev_path, (ulong_t)fsize, (ulong_t)*newsize);
}
(void) close(fd);
return (NULL);
}
/*
* Callback function which expands a given vdev by calling vdev_online().
*/
static vdev_t *
2009-07-03 02:44:48 +04:00
online_vdev(vdev_t *vd, void *arg)
{
(void) arg;
2009-07-03 02:44:48 +04:00
spa_t *spa = vd->vdev_spa;
vdev_t *tvd = vd->vdev_top;
uint64_t guid = vd->vdev_guid;
uint64_t generation = spa->spa_config_generation + 1;
vdev_state_t newstate = VDEV_STATE_UNKNOWN;
int error;
2009-07-03 02:44:48 +04:00
ASSERT3S(spa_config_held(spa, SCL_STATE, RW_READER), ==, SCL_STATE);
2009-07-03 02:44:48 +04:00
ASSERT(vd->vdev_ops->vdev_op_leaf);
/* Calling vdev_online will initialize the new metaslabs */
spa_config_exit(spa, SCL_STATE, spa);
error = vdev_online(spa, guid, ZFS_ONLINE_EXPAND, &newstate);
2009-07-03 02:44:48 +04:00
spa_config_enter(spa, SCL_STATE, spa, RW_READER);
/*
* If vdev_online returned an error or the underlying vdev_open
* failed then we abort the expand. The only way to know that
* vdev_open fails is by checking the returned newstate.
*/
if (error || newstate != VDEV_STATE_HEALTHY) {
if (ztest_opts.zo_verbose >= 5) {
(void) printf("Unable to expand vdev, state %u, "
"error %d\n", newstate, error);
}
return (vd);
}
ASSERT3U(newstate, ==, VDEV_STATE_HEALTHY);
2009-07-03 02:44:48 +04:00
/*
* Since we dropped the lock we need to ensure that we're
* still talking to the original vdev. It's possible this
* vdev may have been detached/replaced while we were
* trying to online it.
*/
if (generation != spa->spa_config_generation) {
if (ztest_opts.zo_verbose >= 5) {
(void) printf("vdev configuration has changed, "
"guid %"PRIu64", state %"PRIu64", "
"expected gen %"PRIu64", got gen %"PRIu64"\n",
guid,
tvd->vdev_state,
generation,
spa->spa_config_generation);
2009-07-03 02:44:48 +04:00
}
return (vd);
}
return (NULL);
}
/*
* Traverse the vdev tree calling the supplied function.
* We continue to walk the tree until we either have walked all
* children or we receive a non-NULL return from the callback.
* If a NULL callback is passed, then we just return back the first
* leaf vdev we encounter.
*/
static vdev_t *
2009-07-03 02:44:48 +04:00
vdev_walk_tree(vdev_t *vd, vdev_t *(*func)(vdev_t *, void *), void *arg)
{
uint_t c;
2009-07-03 02:44:48 +04:00
if (vd->vdev_ops->vdev_op_leaf) {
if (func == NULL)
return (vd);
else
return (func(vd, arg));
}
for (c = 0; c < vd->vdev_children; c++) {
2009-07-03 02:44:48 +04:00
vdev_t *cvd = vd->vdev_child[c];
if ((cvd = vdev_walk_tree(cvd, func, arg)) != NULL)
return (cvd);
}
return (NULL);
}
2008-11-20 23:01:55 +03:00
/*
* Verify that dynamic LUN growth works as expected.
*/
void
ztest_vdev_LUN_growth(ztest_ds_t *zd, uint64_t id)
2008-11-20 23:01:55 +03:00
{
(void) zd, (void) id;
spa_t *spa = ztest_spa;
vdev_t *vd, *tvd;
metaslab_class_t *mc;
metaslab_group_t *mg;
2009-07-03 02:44:48 +04:00
size_t psize, newsize;
uint64_t top;
uint64_t old_class_space, new_class_space, old_ms_count, new_ms_count;
2008-11-20 23:01:55 +03:00
OpenZFS 9166 - zfs storage pool checkpoint Details about the motivation of this feature and its usage can be found in this blogpost: https://sdimitro.github.io/post/zpool-checkpoint/ A lightning talk of this feature can be found here: https://www.youtube.com/watch?v=fPQA8K40jAM Implementation details can be found in big block comment of spa_checkpoint.c Side-changes that are relevant to this commit but not explained elsewhere: * renames members of "struct metaslab trees to be shorter without losing meaning * space_map_{alloc,truncate}() accept a block size as a parameter. The reason is that in the current state all space maps that we allocate through the DMU use a global tunable (space_map_blksz) which defauls to 4KB. This is ok for metaslab space maps in terms of bandwirdth since they are scattered all over the disk. But for other space maps this default is probably not what we want. Examples are device removal's vdev_obsolete_sm or vdev_chedkpoint_sm from this review. Both of these have a 1:1 relationship with each vdev and could benefit from a bigger block size. Porting notes: * The part of dsl_scan_sync() which handles async destroys has been moved into the new dsl_process_async_destroys() function. * Remove "VERIFY(!(flags & FWRITE))" in "kernel.c" so zhack can write to block device backed pools. * ZTS: * Fix get_txg() in zpool_sync_001_pos due to "checkpoint_txg". * Don't use large dd block sizes on /dev/urandom under Linux in checkpoint_capacity. * Adopt Delphix-OS's setting of 4 (spa_asize_inflation = SPA_DVAS_PER_BP + 1) for the checkpoint_capacity test to speed its attempts to fill the pool * Create the base and nested pools with sync=disabled to speed up the "setup" phase. * Clear labels in test pool between checkpoint tests to avoid duplicate pool issues. * The import_rewind_device_replaced test has been marked as "known to fail" for the reasons listed in its DISCLAIMER. * New module parameters: zfs_spa_discard_memory_limit, zfs_remove_max_bytes_pause (not documented - debugging only) vdev_max_ms_count (formerly metaslabs_per_vdev) vdev_min_ms_count Authored by: Serapheim Dimitropoulos <serapheim.dimitro@delphix.com> Reviewed by: Matthew Ahrens <mahrens@delphix.com> Reviewed by: John Kennedy <john.kennedy@delphix.com> Reviewed by: Dan Kimmel <dan.kimmel@delphix.com> Reviewed by: Brian Behlendorf <behlendorf1@llnl.gov> Approved by: Richard Lowe <richlowe@richlowe.net> Ported-by: Tim Chase <tim@chase2k.com> Signed-off-by: Tim Chase <tim@chase2k.com> OpenZFS-issue: https://illumos.org/issues/9166 OpenZFS-commit: https://github.com/openzfs/openzfs/commit/7159fdb8 Closes #7570
2016-12-17 01:11:29 +03:00
mutex_enter(&ztest_checkpoint_lock);
mutex_enter(&ztest_vdev_lock);
2009-07-03 02:44:48 +04:00
spa_config_enter(spa, SCL_STATE, spa, RW_READER);
OpenZFS 7614, 9064 - zfs device evacuation/removal OpenZFS 7614 - zfs device evacuation/removal OpenZFS 9064 - remove_mirror should wait for device removal to complete This project allows top-level vdevs to be removed from the storage pool with "zpool remove", reducing the total amount of storage in the pool. This operation copies all allocated regions of the device to be removed onto other devices, recording the mapping from old to new location. After the removal is complete, read and free operations to the removed (now "indirect") vdev must be remapped and performed at the new location on disk. The indirect mapping table is kept in memory whenever the pool is loaded, so there is minimal performance overhead when doing operations on the indirect vdev. The size of the in-memory mapping table will be reduced when its entries become "obsolete" because they are no longer used by any block pointers in the pool. An entry becomes obsolete when all the blocks that use it are freed. An entry can also become obsolete when all the snapshots that reference it are deleted, and the block pointers that reference it have been "remapped" in all filesystems/zvols (and clones). Whenever an indirect block is written, all the block pointers in it will be "remapped" to their new (concrete) locations if possible. This process can be accelerated by using the "zfs remap" command to proactively rewrite all indirect blocks that reference indirect (removed) vdevs. Note that when a device is removed, we do not verify the checksum of the data that is copied. This makes the process much faster, but if it were used on redundant vdevs (i.e. mirror or raidz vdevs), it would be possible to copy the wrong data, when we have the correct data on e.g. the other side of the mirror. At the moment, only mirrors and simple top-level vdevs can be removed and no removal is allowed if any of the top-level vdevs are raidz. Porting Notes: * Avoid zero-sized kmem_alloc() in vdev_compact_children(). The device evacuation code adds a dependency that vdev_compact_children() be able to properly empty the vdev_child array by setting it to NULL and zeroing vdev_children. Under Linux, kmem_alloc() and related functions return a sentinel pointer rather than NULL for zero-sized allocations. * Remove comment regarding "mpt" driver where zfs_remove_max_segment is initialized to SPA_MAXBLOCKSIZE. Change zfs_condense_indirect_commit_entry_delay_ticks to zfs_condense_indirect_commit_entry_delay_ms for consistency with most other tunables in which delays are specified in ms. * ZTS changes: Use set_tunable rather than mdb Use zpool sync as appropriate Use sync_pool instead of sync Kill jobs during test_removal_with_operation to allow unmount/export Don't add non-disk names such as "mirror" or "raidz" to $DISKS Use $TEST_BASE_DIR instead of /tmp Increase HZ from 100 to 1000 which is more common on Linux removal_multiple_indirection.ksh Reduce iterations in order to not time out on the code coverage builders. removal_resume_export: Functionally, the test case is correct but there exists a race where the kernel thread hasn't been fully started yet and is not visible. Wait for up to 1 second for the removal thread to be started before giving up on it. Also, increase the amount of data copied in order that the removal not finish before the export has a chance to fail. * MMP compatibility, the concept of concrete versus non-concrete devices has slightly changed the semantics of vdev_writeable(). Update mmp_random_leaf_impl() accordingly. * Updated dbuf_remap() to handle the org.zfsonlinux:large_dnode pool feature which is not supported by OpenZFS. * Added support for new vdev removal tracepoints. * Test cases removal_with_zdb and removal_condense_export have been intentionally disabled. When run manually they pass as intended, but when running in the automated test environment they produce unreliable results on the latest Fedora release. They may work better once the upstream pool import refectoring is merged into ZoL at which point they will be re-enabled. Authored by: Matthew Ahrens <mahrens@delphix.com> Reviewed-by: Alex Reece <alex@delphix.com> Reviewed-by: George Wilson <george.wilson@delphix.com> Reviewed-by: John Kennedy <john.kennedy@delphix.com> Reviewed-by: Prakash Surya <prakash.surya@delphix.com> Reviewed by: Richard Laager <rlaager@wiktel.com> Reviewed by: Tim Chase <tim@chase2k.com> Reviewed by: Brian Behlendorf <behlendorf1@llnl.gov> Approved by: Garrett D'Amore <garrett@damore.org> Ported-by: Tim Chase <tim@chase2k.com> Signed-off-by: Tim Chase <tim@chase2k.com> OpenZFS-issue: https://www.illumos.org/issues/7614 OpenZFS-commit: https://github.com/openzfs/openzfs/commit/f539f1eb Closes #6900
2016-09-22 19:30:13 +03:00
/*
* If there is a vdev removal in progress, it could complete while
* we are running, in which case we would not be able to verify
* that the metaslab_class space increased (because it decreases
* when the device removal completes).
*/
OpenZFS 9290 - device removal reduces redundancy of mirrors Mirrors are supposed to provide redundancy in the face of whole-disk failure and silent damage (e.g. some data on disk is not right, but ZFS hasn't detected the whole device as being broken). However, the current device removal implementation bypasses some of the mirror's redundancy. Note that in no case is incorrect data returned, but we might get a checksum error when we should have been able to find the right data. There are two underlying problems: 1. When we remove a mirror device, we only read one side of the mirror. Since we can't verify the checksum, this side may be silently bad, but the good data is on the other side of the mirror (which we didn't read). This can cause the removal to "bake in" the busted data – all copies of the data in the new location are the same, busted version, while we left the good version behind. The fix for this is to read and copy both sides of the mirror. If the old and new vdevs are mirrors, we will read both sides of the old mirror, and write each copy to the corresponding side of the new mirror. (If the old and new vdevs have a different number of children, we will do this as best as possible.) Even though we aren't verifying checksums, this ensures that as long as there's a good copy of the data, we'll have a good copy after the removal, even if there's silent damage to one side of the mirror. If we're removing a mirror that has some silent damage, we'll have exactly the same damage in the new location (assuming that the new location is also a mirror). 2. When we read from an indirect vdev that points to a mirror vdev, we only consider one copy of the data. This can lead to reduced effective redundancy, because we might read a bad copy of the data from one side of the mirror, and not retry the other, good side of the mirror. Note that the problem is not with the removal process, but rather after the removal has completed (having copied correct data to both sides of the mirror), if one side of the new mirror is silently damaged, we encounter the problem when reading the relocated data via the indirect vdev. Also note that the problem doesn't occur when ZFS knows that one side of the mirror is bad, e.g. when a disk entirely fails or is offlined. The impact is that reads (from indirect vdevs that point to mirrors) may return a checksum error even though the good data exists on one side of the mirror, and scrub doesn't repair all data on the mirror (if some of it is pointed to via an indirect vdev). The fix for this is complicated by "split blocks" - one logical block may be split into two (or more) pieces with each piece moved to a different new location. In this case we need to read all versions of each split (one from each side of the mirror), and figure out which combination of versions results in the correct checksum, and then repair the incorrect versions. This ensures that we supply the same redundancy whether you use device removal or not. For example, if a mirror has small silent errors on all of its children, we can still reconstruct the correct data, as long as those errors are at sufficiently-separated offsets (specifically, separated by the largest block size - default of 128KB, but up to 16MB). Porting notes: * A new indirect vdev check was moved from dsl_scan_needs_resilver_cb() to dsl_scan_needs_resilver(), which was added to ZoL as part of the sequential scrub work. * Passed NULL for zfs_ereport_post_checksum()'s zbookmark_phys_t parameter. The extra parameter is unique to ZoL. * When posting indirect checksum errors the ABD can be passed directly, zfs_ereport_post_checksum() is not yet ABD-aware in OpenZFS. Authored by: Matthew Ahrens <mahrens@delphix.com> Reviewed by: Tim Chase <tim@chase2k.com> Reviewed by: Brian Behlendorf <behlendorf1@llnl.gov> Ported-by: Tim Chase <tim@chase2k.com> OpenZFS-issue: https://illumos.org/issues/9290 OpenZFS-commit: https://github.com/openzfs/openzfs/pull/591 Closes #6900
2018-02-13 22:37:56 +03:00
if (ztest_device_removal_active) {
OpenZFS 9166 - zfs storage pool checkpoint Details about the motivation of this feature and its usage can be found in this blogpost: https://sdimitro.github.io/post/zpool-checkpoint/ A lightning talk of this feature can be found here: https://www.youtube.com/watch?v=fPQA8K40jAM Implementation details can be found in big block comment of spa_checkpoint.c Side-changes that are relevant to this commit but not explained elsewhere: * renames members of "struct metaslab trees to be shorter without losing meaning * space_map_{alloc,truncate}() accept a block size as a parameter. The reason is that in the current state all space maps that we allocate through the DMU use a global tunable (space_map_blksz) which defauls to 4KB. This is ok for metaslab space maps in terms of bandwirdth since they are scattered all over the disk. But for other space maps this default is probably not what we want. Examples are device removal's vdev_obsolete_sm or vdev_chedkpoint_sm from this review. Both of these have a 1:1 relationship with each vdev and could benefit from a bigger block size. Porting notes: * The part of dsl_scan_sync() which handles async destroys has been moved into the new dsl_process_async_destroys() function. * Remove "VERIFY(!(flags & FWRITE))" in "kernel.c" so zhack can write to block device backed pools. * ZTS: * Fix get_txg() in zpool_sync_001_pos due to "checkpoint_txg". * Don't use large dd block sizes on /dev/urandom under Linux in checkpoint_capacity. * Adopt Delphix-OS's setting of 4 (spa_asize_inflation = SPA_DVAS_PER_BP + 1) for the checkpoint_capacity test to speed its attempts to fill the pool * Create the base and nested pools with sync=disabled to speed up the "setup" phase. * Clear labels in test pool between checkpoint tests to avoid duplicate pool issues. * The import_rewind_device_replaced test has been marked as "known to fail" for the reasons listed in its DISCLAIMER. * New module parameters: zfs_spa_discard_memory_limit, zfs_remove_max_bytes_pause (not documented - debugging only) vdev_max_ms_count (formerly metaslabs_per_vdev) vdev_min_ms_count Authored by: Serapheim Dimitropoulos <serapheim.dimitro@delphix.com> Reviewed by: Matthew Ahrens <mahrens@delphix.com> Reviewed by: John Kennedy <john.kennedy@delphix.com> Reviewed by: Dan Kimmel <dan.kimmel@delphix.com> Reviewed by: Brian Behlendorf <behlendorf1@llnl.gov> Approved by: Richard Lowe <richlowe@richlowe.net> Ported-by: Tim Chase <tim@chase2k.com> Signed-off-by: Tim Chase <tim@chase2k.com> OpenZFS-issue: https://illumos.org/issues/9166 OpenZFS-commit: https://github.com/openzfs/openzfs/commit/7159fdb8 Closes #7570
2016-12-17 01:11:29 +03:00
spa_config_exit(spa, SCL_STATE, spa);
OpenZFS 7614, 9064 - zfs device evacuation/removal OpenZFS 7614 - zfs device evacuation/removal OpenZFS 9064 - remove_mirror should wait for device removal to complete This project allows top-level vdevs to be removed from the storage pool with "zpool remove", reducing the total amount of storage in the pool. This operation copies all allocated regions of the device to be removed onto other devices, recording the mapping from old to new location. After the removal is complete, read and free operations to the removed (now "indirect") vdev must be remapped and performed at the new location on disk. The indirect mapping table is kept in memory whenever the pool is loaded, so there is minimal performance overhead when doing operations on the indirect vdev. The size of the in-memory mapping table will be reduced when its entries become "obsolete" because they are no longer used by any block pointers in the pool. An entry becomes obsolete when all the blocks that use it are freed. An entry can also become obsolete when all the snapshots that reference it are deleted, and the block pointers that reference it have been "remapped" in all filesystems/zvols (and clones). Whenever an indirect block is written, all the block pointers in it will be "remapped" to their new (concrete) locations if possible. This process can be accelerated by using the "zfs remap" command to proactively rewrite all indirect blocks that reference indirect (removed) vdevs. Note that when a device is removed, we do not verify the checksum of the data that is copied. This makes the process much faster, but if it were used on redundant vdevs (i.e. mirror or raidz vdevs), it would be possible to copy the wrong data, when we have the correct data on e.g. the other side of the mirror. At the moment, only mirrors and simple top-level vdevs can be removed and no removal is allowed if any of the top-level vdevs are raidz. Porting Notes: * Avoid zero-sized kmem_alloc() in vdev_compact_children(). The device evacuation code adds a dependency that vdev_compact_children() be able to properly empty the vdev_child array by setting it to NULL and zeroing vdev_children. Under Linux, kmem_alloc() and related functions return a sentinel pointer rather than NULL for zero-sized allocations. * Remove comment regarding "mpt" driver where zfs_remove_max_segment is initialized to SPA_MAXBLOCKSIZE. Change zfs_condense_indirect_commit_entry_delay_ticks to zfs_condense_indirect_commit_entry_delay_ms for consistency with most other tunables in which delays are specified in ms. * ZTS changes: Use set_tunable rather than mdb Use zpool sync as appropriate Use sync_pool instead of sync Kill jobs during test_removal_with_operation to allow unmount/export Don't add non-disk names such as "mirror" or "raidz" to $DISKS Use $TEST_BASE_DIR instead of /tmp Increase HZ from 100 to 1000 which is more common on Linux removal_multiple_indirection.ksh Reduce iterations in order to not time out on the code coverage builders. removal_resume_export: Functionally, the test case is correct but there exists a race where the kernel thread hasn't been fully started yet and is not visible. Wait for up to 1 second for the removal thread to be started before giving up on it. Also, increase the amount of data copied in order that the removal not finish before the export has a chance to fail. * MMP compatibility, the concept of concrete versus non-concrete devices has slightly changed the semantics of vdev_writeable(). Update mmp_random_leaf_impl() accordingly. * Updated dbuf_remap() to handle the org.zfsonlinux:large_dnode pool feature which is not supported by OpenZFS. * Added support for new vdev removal tracepoints. * Test cases removal_with_zdb and removal_condense_export have been intentionally disabled. When run manually they pass as intended, but when running in the automated test environment they produce unreliable results on the latest Fedora release. They may work better once the upstream pool import refectoring is merged into ZoL at which point they will be re-enabled. Authored by: Matthew Ahrens <mahrens@delphix.com> Reviewed-by: Alex Reece <alex@delphix.com> Reviewed-by: George Wilson <george.wilson@delphix.com> Reviewed-by: John Kennedy <john.kennedy@delphix.com> Reviewed-by: Prakash Surya <prakash.surya@delphix.com> Reviewed by: Richard Laager <rlaager@wiktel.com> Reviewed by: Tim Chase <tim@chase2k.com> Reviewed by: Brian Behlendorf <behlendorf1@llnl.gov> Approved by: Garrett D'Amore <garrett@damore.org> Ported-by: Tim Chase <tim@chase2k.com> Signed-off-by: Tim Chase <tim@chase2k.com> OpenZFS-issue: https://www.illumos.org/issues/7614 OpenZFS-commit: https://github.com/openzfs/openzfs/commit/f539f1eb Closes #6900
2016-09-22 19:30:13 +03:00
mutex_exit(&ztest_vdev_lock);
OpenZFS 9166 - zfs storage pool checkpoint Details about the motivation of this feature and its usage can be found in this blogpost: https://sdimitro.github.io/post/zpool-checkpoint/ A lightning talk of this feature can be found here: https://www.youtube.com/watch?v=fPQA8K40jAM Implementation details can be found in big block comment of spa_checkpoint.c Side-changes that are relevant to this commit but not explained elsewhere: * renames members of "struct metaslab trees to be shorter without losing meaning * space_map_{alloc,truncate}() accept a block size as a parameter. The reason is that in the current state all space maps that we allocate through the DMU use a global tunable (space_map_blksz) which defauls to 4KB. This is ok for metaslab space maps in terms of bandwirdth since they are scattered all over the disk. But for other space maps this default is probably not what we want. Examples are device removal's vdev_obsolete_sm or vdev_chedkpoint_sm from this review. Both of these have a 1:1 relationship with each vdev and could benefit from a bigger block size. Porting notes: * The part of dsl_scan_sync() which handles async destroys has been moved into the new dsl_process_async_destroys() function. * Remove "VERIFY(!(flags & FWRITE))" in "kernel.c" so zhack can write to block device backed pools. * ZTS: * Fix get_txg() in zpool_sync_001_pos due to "checkpoint_txg". * Don't use large dd block sizes on /dev/urandom under Linux in checkpoint_capacity. * Adopt Delphix-OS's setting of 4 (spa_asize_inflation = SPA_DVAS_PER_BP + 1) for the checkpoint_capacity test to speed its attempts to fill the pool * Create the base and nested pools with sync=disabled to speed up the "setup" phase. * Clear labels in test pool between checkpoint tests to avoid duplicate pool issues. * The import_rewind_device_replaced test has been marked as "known to fail" for the reasons listed in its DISCLAIMER. * New module parameters: zfs_spa_discard_memory_limit, zfs_remove_max_bytes_pause (not documented - debugging only) vdev_max_ms_count (formerly metaslabs_per_vdev) vdev_min_ms_count Authored by: Serapheim Dimitropoulos <serapheim.dimitro@delphix.com> Reviewed by: Matthew Ahrens <mahrens@delphix.com> Reviewed by: John Kennedy <john.kennedy@delphix.com> Reviewed by: Dan Kimmel <dan.kimmel@delphix.com> Reviewed by: Brian Behlendorf <behlendorf1@llnl.gov> Approved by: Richard Lowe <richlowe@richlowe.net> Ported-by: Tim Chase <tim@chase2k.com> Signed-off-by: Tim Chase <tim@chase2k.com> OpenZFS-issue: https://illumos.org/issues/9166 OpenZFS-commit: https://github.com/openzfs/openzfs/commit/7159fdb8 Closes #7570
2016-12-17 01:11:29 +03:00
mutex_exit(&ztest_checkpoint_lock);
OpenZFS 7614, 9064 - zfs device evacuation/removal OpenZFS 7614 - zfs device evacuation/removal OpenZFS 9064 - remove_mirror should wait for device removal to complete This project allows top-level vdevs to be removed from the storage pool with "zpool remove", reducing the total amount of storage in the pool. This operation copies all allocated regions of the device to be removed onto other devices, recording the mapping from old to new location. After the removal is complete, read and free operations to the removed (now "indirect") vdev must be remapped and performed at the new location on disk. The indirect mapping table is kept in memory whenever the pool is loaded, so there is minimal performance overhead when doing operations on the indirect vdev. The size of the in-memory mapping table will be reduced when its entries become "obsolete" because they are no longer used by any block pointers in the pool. An entry becomes obsolete when all the blocks that use it are freed. An entry can also become obsolete when all the snapshots that reference it are deleted, and the block pointers that reference it have been "remapped" in all filesystems/zvols (and clones). Whenever an indirect block is written, all the block pointers in it will be "remapped" to their new (concrete) locations if possible. This process can be accelerated by using the "zfs remap" command to proactively rewrite all indirect blocks that reference indirect (removed) vdevs. Note that when a device is removed, we do not verify the checksum of the data that is copied. This makes the process much faster, but if it were used on redundant vdevs (i.e. mirror or raidz vdevs), it would be possible to copy the wrong data, when we have the correct data on e.g. the other side of the mirror. At the moment, only mirrors and simple top-level vdevs can be removed and no removal is allowed if any of the top-level vdevs are raidz. Porting Notes: * Avoid zero-sized kmem_alloc() in vdev_compact_children(). The device evacuation code adds a dependency that vdev_compact_children() be able to properly empty the vdev_child array by setting it to NULL and zeroing vdev_children. Under Linux, kmem_alloc() and related functions return a sentinel pointer rather than NULL for zero-sized allocations. * Remove comment regarding "mpt" driver where zfs_remove_max_segment is initialized to SPA_MAXBLOCKSIZE. Change zfs_condense_indirect_commit_entry_delay_ticks to zfs_condense_indirect_commit_entry_delay_ms for consistency with most other tunables in which delays are specified in ms. * ZTS changes: Use set_tunable rather than mdb Use zpool sync as appropriate Use sync_pool instead of sync Kill jobs during test_removal_with_operation to allow unmount/export Don't add non-disk names such as "mirror" or "raidz" to $DISKS Use $TEST_BASE_DIR instead of /tmp Increase HZ from 100 to 1000 which is more common on Linux removal_multiple_indirection.ksh Reduce iterations in order to not time out on the code coverage builders. removal_resume_export: Functionally, the test case is correct but there exists a race where the kernel thread hasn't been fully started yet and is not visible. Wait for up to 1 second for the removal thread to be started before giving up on it. Also, increase the amount of data copied in order that the removal not finish before the export has a chance to fail. * MMP compatibility, the concept of concrete versus non-concrete devices has slightly changed the semantics of vdev_writeable(). Update mmp_random_leaf_impl() accordingly. * Updated dbuf_remap() to handle the org.zfsonlinux:large_dnode pool feature which is not supported by OpenZFS. * Added support for new vdev removal tracepoints. * Test cases removal_with_zdb and removal_condense_export have been intentionally disabled. When run manually they pass as intended, but when running in the automated test environment they produce unreliable results on the latest Fedora release. They may work better once the upstream pool import refectoring is merged into ZoL at which point they will be re-enabled. Authored by: Matthew Ahrens <mahrens@delphix.com> Reviewed-by: Alex Reece <alex@delphix.com> Reviewed-by: George Wilson <george.wilson@delphix.com> Reviewed-by: John Kennedy <john.kennedy@delphix.com> Reviewed-by: Prakash Surya <prakash.surya@delphix.com> Reviewed by: Richard Laager <rlaager@wiktel.com> Reviewed by: Tim Chase <tim@chase2k.com> Reviewed by: Brian Behlendorf <behlendorf1@llnl.gov> Approved by: Garrett D'Amore <garrett@damore.org> Ported-by: Tim Chase <tim@chase2k.com> Signed-off-by: Tim Chase <tim@chase2k.com> OpenZFS-issue: https://www.illumos.org/issues/7614 OpenZFS-commit: https://github.com/openzfs/openzfs/commit/f539f1eb Closes #6900
2016-09-22 19:30:13 +03:00
return;
}
RAID-Z expansion feature This feature allows disks to be added one at a time to a RAID-Z group, expanding its capacity incrementally. This feature is especially useful for small pools (typically with only one RAID-Z group), where there isn't sufficient hardware to add capacity by adding a whole new RAID-Z group (typically doubling the number of disks). == Initiating expansion == A new device (disk) can be attached to an existing RAIDZ vdev, by running `zpool attach POOL raidzP-N NEW_DEVICE`, e.g. `zpool attach tank raidz2-0 sda`. The new device will become part of the RAIDZ group. A "raidz expansion" will be initiated, and the new device will contribute additional space to the RAIDZ group once the expansion completes. The `feature@raidz_expansion` on-disk feature flag must be `enabled` to initiate an expansion, and it remains `active` for the life of the pool. In other words, pools with expanded RAIDZ vdevs can not be imported by older releases of the ZFS software. == During expansion == The expansion entails reading all allocated space from existing disks in the RAIDZ group, and rewriting it to the new disks in the RAIDZ group (including the newly added device). The expansion progress can be monitored with `zpool status`. Data redundancy is maintained during (and after) the expansion. If a disk fails while the expansion is in progress, the expansion pauses until the health of the RAIDZ vdev is restored (e.g. by replacing the failed disk and waiting for reconstruction to complete). The pool remains accessible during expansion. Following a reboot or export/import, the expansion resumes where it left off. == After expansion == When the expansion completes, the additional space is available for use, and is reflected in the `available` zfs property (as seen in `zfs list`, `df`, etc). Expansion does not change the number of failures that can be tolerated without data loss (e.g. a RAIDZ2 is still a RAIDZ2 even after expansion). A RAIDZ vdev can be expanded multiple times. After the expansion completes, old blocks remain with their old data-to-parity ratio (e.g. 5-wide RAIDZ2, has 3 data to 2 parity), but distributed among the larger set of disks. New blocks will be written with the new data-to-parity ratio (e.g. a 5-wide RAIDZ2 which has been expanded once to 6-wide, has 4 data to 2 parity). However, the RAIDZ vdev's "assumed parity ratio" does not change, so slightly less space than is expected may be reported for newly-written blocks, according to `zfs list`, `df`, `ls -s`, and similar tools. Sponsored-by: The FreeBSD Foundation Sponsored-by: iXsystems, Inc. Sponsored-by: vStack Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov> Reviewed-by: Mark Maybee <mark.maybee@delphix.com> Authored-by: Matthew Ahrens <mahrens@delphix.com> Contributions-by: Fedor Uporov <fuporov.vstack@gmail.com> Contributions-by: Stuart Maybee <stuart.maybee@comcast.net> Contributions-by: Thorsten Behrens <tbehrens@outlook.com> Contributions-by: Fmstrat <nospam@nowsci.com> Contributions-by: Don Brady <dev.fs.zfs@gmail.com> Signed-off-by: Don Brady <dev.fs.zfs@gmail.com> Closes #15022
2023-11-08 21:19:41 +03:00
/*
* If we are under raidz expansion, the test can failed because the
* metaslabs count will not increase immediately after the vdev is
* expanded. It will happen only after raidz expansion completion.
*/
if (spa->spa_raidz_expand) {
spa_config_exit(spa, SCL_STATE, spa);
mutex_exit(&ztest_vdev_lock);
mutex_exit(&ztest_checkpoint_lock);
return;
}
top = ztest_random_vdev_top(spa, B_TRUE);
2009-07-03 02:44:48 +04:00
tvd = spa->spa_root_vdev->vdev_child[top];
mg = tvd->vdev_mg;
mc = mg->mg_class;
old_ms_count = tvd->vdev_ms_count;
old_class_space = metaslab_class_get_space(mc);
2008-11-20 23:01:55 +03:00
/*
2009-07-03 02:44:48 +04:00
* Determine the size of the first leaf vdev associated with
* our top-level device.
2008-11-20 23:01:55 +03:00
*/
2009-07-03 02:44:48 +04:00
vd = vdev_walk_tree(tvd, NULL, NULL);
ASSERT3P(vd, !=, NULL);
ASSERT(vd->vdev_ops->vdev_op_leaf);
2008-11-20 23:01:55 +03:00
2009-07-03 02:44:48 +04:00
psize = vd->vdev_psize;
2008-11-20 23:01:55 +03:00
2009-07-03 02:44:48 +04:00
/*
* We only try to expand the vdev if it's healthy, less than 4x its
* original size, and it has a valid psize.
2009-07-03 02:44:48 +04:00
*/
if (tvd->vdev_state != VDEV_STATE_HEALTHY ||
psize == 0 || psize >= 4 * ztest_opts.zo_vdev_size) {
2009-07-03 02:44:48 +04:00
spa_config_exit(spa, SCL_STATE, spa);
mutex_exit(&ztest_vdev_lock);
OpenZFS 9166 - zfs storage pool checkpoint Details about the motivation of this feature and its usage can be found in this blogpost: https://sdimitro.github.io/post/zpool-checkpoint/ A lightning talk of this feature can be found here: https://www.youtube.com/watch?v=fPQA8K40jAM Implementation details can be found in big block comment of spa_checkpoint.c Side-changes that are relevant to this commit but not explained elsewhere: * renames members of "struct metaslab trees to be shorter without losing meaning * space_map_{alloc,truncate}() accept a block size as a parameter. The reason is that in the current state all space maps that we allocate through the DMU use a global tunable (space_map_blksz) which defauls to 4KB. This is ok for metaslab space maps in terms of bandwirdth since they are scattered all over the disk. But for other space maps this default is probably not what we want. Examples are device removal's vdev_obsolete_sm or vdev_chedkpoint_sm from this review. Both of these have a 1:1 relationship with each vdev and could benefit from a bigger block size. Porting notes: * The part of dsl_scan_sync() which handles async destroys has been moved into the new dsl_process_async_destroys() function. * Remove "VERIFY(!(flags & FWRITE))" in "kernel.c" so zhack can write to block device backed pools. * ZTS: * Fix get_txg() in zpool_sync_001_pos due to "checkpoint_txg". * Don't use large dd block sizes on /dev/urandom under Linux in checkpoint_capacity. * Adopt Delphix-OS's setting of 4 (spa_asize_inflation = SPA_DVAS_PER_BP + 1) for the checkpoint_capacity test to speed its attempts to fill the pool * Create the base and nested pools with sync=disabled to speed up the "setup" phase. * Clear labels in test pool between checkpoint tests to avoid duplicate pool issues. * The import_rewind_device_replaced test has been marked as "known to fail" for the reasons listed in its DISCLAIMER. * New module parameters: zfs_spa_discard_memory_limit, zfs_remove_max_bytes_pause (not documented - debugging only) vdev_max_ms_count (formerly metaslabs_per_vdev) vdev_min_ms_count Authored by: Serapheim Dimitropoulos <serapheim.dimitro@delphix.com> Reviewed by: Matthew Ahrens <mahrens@delphix.com> Reviewed by: John Kennedy <john.kennedy@delphix.com> Reviewed by: Dan Kimmel <dan.kimmel@delphix.com> Reviewed by: Brian Behlendorf <behlendorf1@llnl.gov> Approved by: Richard Lowe <richlowe@richlowe.net> Ported-by: Tim Chase <tim@chase2k.com> Signed-off-by: Tim Chase <tim@chase2k.com> OpenZFS-issue: https://illumos.org/issues/9166 OpenZFS-commit: https://github.com/openzfs/openzfs/commit/7159fdb8 Closes #7570
2016-12-17 01:11:29 +03:00
mutex_exit(&ztest_checkpoint_lock);
2009-07-03 02:44:48 +04:00
return;
}
ASSERT3U(psize, >, 0);
newsize = psize + MAX(psize / 8, SPA_MAXBLOCKSIZE);
2009-07-03 02:44:48 +04:00
ASSERT3U(newsize, >, psize);
2008-11-20 23:01:55 +03:00
if (ztest_opts.zo_verbose >= 6) {
(void) printf("Expanding LUN %s from %lu to %lu\n",
2009-07-03 02:44:48 +04:00
vd->vdev_path, (ulong_t)psize, (ulong_t)newsize);
}
/*
* Growing the vdev is a two step process:
* 1). expand the physical size (i.e. relabel)
* 2). online the vdev to create the new metaslabs
*/
if (vdev_walk_tree(tvd, grow_vdev, &newsize) != NULL ||
vdev_walk_tree(tvd, online_vdev, NULL) != NULL ||
tvd->vdev_state != VDEV_STATE_HEALTHY) {
if (ztest_opts.zo_verbose >= 5) {
2009-07-03 02:44:48 +04:00
(void) printf("Could not expand LUN because "
"the vdev configuration changed.\n");
2008-11-20 23:01:55 +03:00
}
spa_config_exit(spa, SCL_STATE, spa);
mutex_exit(&ztest_vdev_lock);
OpenZFS 9166 - zfs storage pool checkpoint Details about the motivation of this feature and its usage can be found in this blogpost: https://sdimitro.github.io/post/zpool-checkpoint/ A lightning talk of this feature can be found here: https://www.youtube.com/watch?v=fPQA8K40jAM Implementation details can be found in big block comment of spa_checkpoint.c Side-changes that are relevant to this commit but not explained elsewhere: * renames members of "struct metaslab trees to be shorter without losing meaning * space_map_{alloc,truncate}() accept a block size as a parameter. The reason is that in the current state all space maps that we allocate through the DMU use a global tunable (space_map_blksz) which defauls to 4KB. This is ok for metaslab space maps in terms of bandwirdth since they are scattered all over the disk. But for other space maps this default is probably not what we want. Examples are device removal's vdev_obsolete_sm or vdev_chedkpoint_sm from this review. Both of these have a 1:1 relationship with each vdev and could benefit from a bigger block size. Porting notes: * The part of dsl_scan_sync() which handles async destroys has been moved into the new dsl_process_async_destroys() function. * Remove "VERIFY(!(flags & FWRITE))" in "kernel.c" so zhack can write to block device backed pools. * ZTS: * Fix get_txg() in zpool_sync_001_pos due to "checkpoint_txg". * Don't use large dd block sizes on /dev/urandom under Linux in checkpoint_capacity. * Adopt Delphix-OS's setting of 4 (spa_asize_inflation = SPA_DVAS_PER_BP + 1) for the checkpoint_capacity test to speed its attempts to fill the pool * Create the base and nested pools with sync=disabled to speed up the "setup" phase. * Clear labels in test pool between checkpoint tests to avoid duplicate pool issues. * The import_rewind_device_replaced test has been marked as "known to fail" for the reasons listed in its DISCLAIMER. * New module parameters: zfs_spa_discard_memory_limit, zfs_remove_max_bytes_pause (not documented - debugging only) vdev_max_ms_count (formerly metaslabs_per_vdev) vdev_min_ms_count Authored by: Serapheim Dimitropoulos <serapheim.dimitro@delphix.com> Reviewed by: Matthew Ahrens <mahrens@delphix.com> Reviewed by: John Kennedy <john.kennedy@delphix.com> Reviewed by: Dan Kimmel <dan.kimmel@delphix.com> Reviewed by: Brian Behlendorf <behlendorf1@llnl.gov> Approved by: Richard Lowe <richlowe@richlowe.net> Ported-by: Tim Chase <tim@chase2k.com> Signed-off-by: Tim Chase <tim@chase2k.com> OpenZFS-issue: https://illumos.org/issues/9166 OpenZFS-commit: https://github.com/openzfs/openzfs/commit/7159fdb8 Closes #7570
2016-12-17 01:11:29 +03:00
mutex_exit(&ztest_checkpoint_lock);
2009-07-03 02:44:48 +04:00
return;
2008-11-20 23:01:55 +03:00
}
spa_config_exit(spa, SCL_STATE, spa);
2009-07-03 02:44:48 +04:00
/*
* Expanding the LUN will update the config asynchronously,
* thus we must wait for the async thread to complete any
* pending tasks before proceeding.
*/
for (;;) {
boolean_t done;
mutex_enter(&spa->spa_async_lock);
done = (spa->spa_async_thread == NULL && !spa->spa_async_tasks);
mutex_exit(&spa->spa_async_lock);
if (done)
break;
txg_wait_synced(spa_get_dsl(spa), 0);
(void) poll(NULL, 0, 100);
}
2009-07-03 02:44:48 +04:00
spa_config_enter(spa, SCL_STATE, spa, RW_READER);
tvd = spa->spa_root_vdev->vdev_child[top];
new_ms_count = tvd->vdev_ms_count;
new_class_space = metaslab_class_get_space(mc);
if (tvd->vdev_mg != mg || mg->mg_class != mc) {
if (ztest_opts.zo_verbose >= 5) {
(void) printf("Could not verify LUN expansion due to "
"intervening vdev offline or remove.\n");
}
spa_config_exit(spa, SCL_STATE, spa);
mutex_exit(&ztest_vdev_lock);
OpenZFS 9166 - zfs storage pool checkpoint Details about the motivation of this feature and its usage can be found in this blogpost: https://sdimitro.github.io/post/zpool-checkpoint/ A lightning talk of this feature can be found here: https://www.youtube.com/watch?v=fPQA8K40jAM Implementation details can be found in big block comment of spa_checkpoint.c Side-changes that are relevant to this commit but not explained elsewhere: * renames members of "struct metaslab trees to be shorter without losing meaning * space_map_{alloc,truncate}() accept a block size as a parameter. The reason is that in the current state all space maps that we allocate through the DMU use a global tunable (space_map_blksz) which defauls to 4KB. This is ok for metaslab space maps in terms of bandwirdth since they are scattered all over the disk. But for other space maps this default is probably not what we want. Examples are device removal's vdev_obsolete_sm or vdev_chedkpoint_sm from this review. Both of these have a 1:1 relationship with each vdev and could benefit from a bigger block size. Porting notes: * The part of dsl_scan_sync() which handles async destroys has been moved into the new dsl_process_async_destroys() function. * Remove "VERIFY(!(flags & FWRITE))" in "kernel.c" so zhack can write to block device backed pools. * ZTS: * Fix get_txg() in zpool_sync_001_pos due to "checkpoint_txg". * Don't use large dd block sizes on /dev/urandom under Linux in checkpoint_capacity. * Adopt Delphix-OS's setting of 4 (spa_asize_inflation = SPA_DVAS_PER_BP + 1) for the checkpoint_capacity test to speed its attempts to fill the pool * Create the base and nested pools with sync=disabled to speed up the "setup" phase. * Clear labels in test pool between checkpoint tests to avoid duplicate pool issues. * The import_rewind_device_replaced test has been marked as "known to fail" for the reasons listed in its DISCLAIMER. * New module parameters: zfs_spa_discard_memory_limit, zfs_remove_max_bytes_pause (not documented - debugging only) vdev_max_ms_count (formerly metaslabs_per_vdev) vdev_min_ms_count Authored by: Serapheim Dimitropoulos <serapheim.dimitro@delphix.com> Reviewed by: Matthew Ahrens <mahrens@delphix.com> Reviewed by: John Kennedy <john.kennedy@delphix.com> Reviewed by: Dan Kimmel <dan.kimmel@delphix.com> Reviewed by: Brian Behlendorf <behlendorf1@llnl.gov> Approved by: Richard Lowe <richlowe@richlowe.net> Ported-by: Tim Chase <tim@chase2k.com> Signed-off-by: Tim Chase <tim@chase2k.com> OpenZFS-issue: https://illumos.org/issues/9166 OpenZFS-commit: https://github.com/openzfs/openzfs/commit/7159fdb8 Closes #7570
2016-12-17 01:11:29 +03:00
mutex_exit(&ztest_checkpoint_lock);
return;
}
/*
* Make sure we were able to grow the vdev.
*/
OpenZFS 7614, 9064 - zfs device evacuation/removal OpenZFS 7614 - zfs device evacuation/removal OpenZFS 9064 - remove_mirror should wait for device removal to complete This project allows top-level vdevs to be removed from the storage pool with "zpool remove", reducing the total amount of storage in the pool. This operation copies all allocated regions of the device to be removed onto other devices, recording the mapping from old to new location. After the removal is complete, read and free operations to the removed (now "indirect") vdev must be remapped and performed at the new location on disk. The indirect mapping table is kept in memory whenever the pool is loaded, so there is minimal performance overhead when doing operations on the indirect vdev. The size of the in-memory mapping table will be reduced when its entries become "obsolete" because they are no longer used by any block pointers in the pool. An entry becomes obsolete when all the blocks that use it are freed. An entry can also become obsolete when all the snapshots that reference it are deleted, and the block pointers that reference it have been "remapped" in all filesystems/zvols (and clones). Whenever an indirect block is written, all the block pointers in it will be "remapped" to their new (concrete) locations if possible. This process can be accelerated by using the "zfs remap" command to proactively rewrite all indirect blocks that reference indirect (removed) vdevs. Note that when a device is removed, we do not verify the checksum of the data that is copied. This makes the process much faster, but if it were used on redundant vdevs (i.e. mirror or raidz vdevs), it would be possible to copy the wrong data, when we have the correct data on e.g. the other side of the mirror. At the moment, only mirrors and simple top-level vdevs can be removed and no removal is allowed if any of the top-level vdevs are raidz. Porting Notes: * Avoid zero-sized kmem_alloc() in vdev_compact_children(). The device evacuation code adds a dependency that vdev_compact_children() be able to properly empty the vdev_child array by setting it to NULL and zeroing vdev_children. Under Linux, kmem_alloc() and related functions return a sentinel pointer rather than NULL for zero-sized allocations. * Remove comment regarding "mpt" driver where zfs_remove_max_segment is initialized to SPA_MAXBLOCKSIZE. Change zfs_condense_indirect_commit_entry_delay_ticks to zfs_condense_indirect_commit_entry_delay_ms for consistency with most other tunables in which delays are specified in ms. * ZTS changes: Use set_tunable rather than mdb Use zpool sync as appropriate Use sync_pool instead of sync Kill jobs during test_removal_with_operation to allow unmount/export Don't add non-disk names such as "mirror" or "raidz" to $DISKS Use $TEST_BASE_DIR instead of /tmp Increase HZ from 100 to 1000 which is more common on Linux removal_multiple_indirection.ksh Reduce iterations in order to not time out on the code coverage builders. removal_resume_export: Functionally, the test case is correct but there exists a race where the kernel thread hasn't been fully started yet and is not visible. Wait for up to 1 second for the removal thread to be started before giving up on it. Also, increase the amount of data copied in order that the removal not finish before the export has a chance to fail. * MMP compatibility, the concept of concrete versus non-concrete devices has slightly changed the semantics of vdev_writeable(). Update mmp_random_leaf_impl() accordingly. * Updated dbuf_remap() to handle the org.zfsonlinux:large_dnode pool feature which is not supported by OpenZFS. * Added support for new vdev removal tracepoints. * Test cases removal_with_zdb and removal_condense_export have been intentionally disabled. When run manually they pass as intended, but when running in the automated test environment they produce unreliable results on the latest Fedora release. They may work better once the upstream pool import refectoring is merged into ZoL at which point they will be re-enabled. Authored by: Matthew Ahrens <mahrens@delphix.com> Reviewed-by: Alex Reece <alex@delphix.com> Reviewed-by: George Wilson <george.wilson@delphix.com> Reviewed-by: John Kennedy <john.kennedy@delphix.com> Reviewed-by: Prakash Surya <prakash.surya@delphix.com> Reviewed by: Richard Laager <rlaager@wiktel.com> Reviewed by: Tim Chase <tim@chase2k.com> Reviewed by: Brian Behlendorf <behlendorf1@llnl.gov> Approved by: Garrett D'Amore <garrett@damore.org> Ported-by: Tim Chase <tim@chase2k.com> Signed-off-by: Tim Chase <tim@chase2k.com> OpenZFS-issue: https://www.illumos.org/issues/7614 OpenZFS-commit: https://github.com/openzfs/openzfs/commit/f539f1eb Closes #6900
2016-09-22 19:30:13 +03:00
if (new_ms_count <= old_ms_count) {
fatal(B_FALSE,
"LUN expansion failed: ms_count %"PRIu64" < %"PRIu64"\n",
old_ms_count, new_ms_count);
OpenZFS 7614, 9064 - zfs device evacuation/removal OpenZFS 7614 - zfs device evacuation/removal OpenZFS 9064 - remove_mirror should wait for device removal to complete This project allows top-level vdevs to be removed from the storage pool with "zpool remove", reducing the total amount of storage in the pool. This operation copies all allocated regions of the device to be removed onto other devices, recording the mapping from old to new location. After the removal is complete, read and free operations to the removed (now "indirect") vdev must be remapped and performed at the new location on disk. The indirect mapping table is kept in memory whenever the pool is loaded, so there is minimal performance overhead when doing operations on the indirect vdev. The size of the in-memory mapping table will be reduced when its entries become "obsolete" because they are no longer used by any block pointers in the pool. An entry becomes obsolete when all the blocks that use it are freed. An entry can also become obsolete when all the snapshots that reference it are deleted, and the block pointers that reference it have been "remapped" in all filesystems/zvols (and clones). Whenever an indirect block is written, all the block pointers in it will be "remapped" to their new (concrete) locations if possible. This process can be accelerated by using the "zfs remap" command to proactively rewrite all indirect blocks that reference indirect (removed) vdevs. Note that when a device is removed, we do not verify the checksum of the data that is copied. This makes the process much faster, but if it were used on redundant vdevs (i.e. mirror or raidz vdevs), it would be possible to copy the wrong data, when we have the correct data on e.g. the other side of the mirror. At the moment, only mirrors and simple top-level vdevs can be removed and no removal is allowed if any of the top-level vdevs are raidz. Porting Notes: * Avoid zero-sized kmem_alloc() in vdev_compact_children(). The device evacuation code adds a dependency that vdev_compact_children() be able to properly empty the vdev_child array by setting it to NULL and zeroing vdev_children. Under Linux, kmem_alloc() and related functions return a sentinel pointer rather than NULL for zero-sized allocations. * Remove comment regarding "mpt" driver where zfs_remove_max_segment is initialized to SPA_MAXBLOCKSIZE. Change zfs_condense_indirect_commit_entry_delay_ticks to zfs_condense_indirect_commit_entry_delay_ms for consistency with most other tunables in which delays are specified in ms. * ZTS changes: Use set_tunable rather than mdb Use zpool sync as appropriate Use sync_pool instead of sync Kill jobs during test_removal_with_operation to allow unmount/export Don't add non-disk names such as "mirror" or "raidz" to $DISKS Use $TEST_BASE_DIR instead of /tmp Increase HZ from 100 to 1000 which is more common on Linux removal_multiple_indirection.ksh Reduce iterations in order to not time out on the code coverage builders. removal_resume_export: Functionally, the test case is correct but there exists a race where the kernel thread hasn't been fully started yet and is not visible. Wait for up to 1 second for the removal thread to be started before giving up on it. Also, increase the amount of data copied in order that the removal not finish before the export has a chance to fail. * MMP compatibility, the concept of concrete versus non-concrete devices has slightly changed the semantics of vdev_writeable(). Update mmp_random_leaf_impl() accordingly. * Updated dbuf_remap() to handle the org.zfsonlinux:large_dnode pool feature which is not supported by OpenZFS. * Added support for new vdev removal tracepoints. * Test cases removal_with_zdb and removal_condense_export have been intentionally disabled. When run manually they pass as intended, but when running in the automated test environment they produce unreliable results on the latest Fedora release. They may work better once the upstream pool import refectoring is merged into ZoL at which point they will be re-enabled. Authored by: Matthew Ahrens <mahrens@delphix.com> Reviewed-by: Alex Reece <alex@delphix.com> Reviewed-by: George Wilson <george.wilson@delphix.com> Reviewed-by: John Kennedy <john.kennedy@delphix.com> Reviewed-by: Prakash Surya <prakash.surya@delphix.com> Reviewed by: Richard Laager <rlaager@wiktel.com> Reviewed by: Tim Chase <tim@chase2k.com> Reviewed by: Brian Behlendorf <behlendorf1@llnl.gov> Approved by: Garrett D'Amore <garrett@damore.org> Ported-by: Tim Chase <tim@chase2k.com> Signed-off-by: Tim Chase <tim@chase2k.com> OpenZFS-issue: https://www.illumos.org/issues/7614 OpenZFS-commit: https://github.com/openzfs/openzfs/commit/f539f1eb Closes #6900
2016-09-22 19:30:13 +03:00
}
2009-07-03 02:44:48 +04:00
/*
* Make sure we were able to grow the pool.
*/
OpenZFS 7614, 9064 - zfs device evacuation/removal OpenZFS 7614 - zfs device evacuation/removal OpenZFS 9064 - remove_mirror should wait for device removal to complete This project allows top-level vdevs to be removed from the storage pool with "zpool remove", reducing the total amount of storage in the pool. This operation copies all allocated regions of the device to be removed onto other devices, recording the mapping from old to new location. After the removal is complete, read and free operations to the removed (now "indirect") vdev must be remapped and performed at the new location on disk. The indirect mapping table is kept in memory whenever the pool is loaded, so there is minimal performance overhead when doing operations on the indirect vdev. The size of the in-memory mapping table will be reduced when its entries become "obsolete" because they are no longer used by any block pointers in the pool. An entry becomes obsolete when all the blocks that use it are freed. An entry can also become obsolete when all the snapshots that reference it are deleted, and the block pointers that reference it have been "remapped" in all filesystems/zvols (and clones). Whenever an indirect block is written, all the block pointers in it will be "remapped" to their new (concrete) locations if possible. This process can be accelerated by using the "zfs remap" command to proactively rewrite all indirect blocks that reference indirect (removed) vdevs. Note that when a device is removed, we do not verify the checksum of the data that is copied. This makes the process much faster, but if it were used on redundant vdevs (i.e. mirror or raidz vdevs), it would be possible to copy the wrong data, when we have the correct data on e.g. the other side of the mirror. At the moment, only mirrors and simple top-level vdevs can be removed and no removal is allowed if any of the top-level vdevs are raidz. Porting Notes: * Avoid zero-sized kmem_alloc() in vdev_compact_children(). The device evacuation code adds a dependency that vdev_compact_children() be able to properly empty the vdev_child array by setting it to NULL and zeroing vdev_children. Under Linux, kmem_alloc() and related functions return a sentinel pointer rather than NULL for zero-sized allocations. * Remove comment regarding "mpt" driver where zfs_remove_max_segment is initialized to SPA_MAXBLOCKSIZE. Change zfs_condense_indirect_commit_entry_delay_ticks to zfs_condense_indirect_commit_entry_delay_ms for consistency with most other tunables in which delays are specified in ms. * ZTS changes: Use set_tunable rather than mdb Use zpool sync as appropriate Use sync_pool instead of sync Kill jobs during test_removal_with_operation to allow unmount/export Don't add non-disk names such as "mirror" or "raidz" to $DISKS Use $TEST_BASE_DIR instead of /tmp Increase HZ from 100 to 1000 which is more common on Linux removal_multiple_indirection.ksh Reduce iterations in order to not time out on the code coverage builders. removal_resume_export: Functionally, the test case is correct but there exists a race where the kernel thread hasn't been fully started yet and is not visible. Wait for up to 1 second for the removal thread to be started before giving up on it. Also, increase the amount of data copied in order that the removal not finish before the export has a chance to fail. * MMP compatibility, the concept of concrete versus non-concrete devices has slightly changed the semantics of vdev_writeable(). Update mmp_random_leaf_impl() accordingly. * Updated dbuf_remap() to handle the org.zfsonlinux:large_dnode pool feature which is not supported by OpenZFS. * Added support for new vdev removal tracepoints. * Test cases removal_with_zdb and removal_condense_export have been intentionally disabled. When run manually they pass as intended, but when running in the automated test environment they produce unreliable results on the latest Fedora release. They may work better once the upstream pool import refectoring is merged into ZoL at which point they will be re-enabled. Authored by: Matthew Ahrens <mahrens@delphix.com> Reviewed-by: Alex Reece <alex@delphix.com> Reviewed-by: George Wilson <george.wilson@delphix.com> Reviewed-by: John Kennedy <john.kennedy@delphix.com> Reviewed-by: Prakash Surya <prakash.surya@delphix.com> Reviewed by: Richard Laager <rlaager@wiktel.com> Reviewed by: Tim Chase <tim@chase2k.com> Reviewed by: Brian Behlendorf <behlendorf1@llnl.gov> Approved by: Garrett D'Amore <garrett@damore.org> Ported-by: Tim Chase <tim@chase2k.com> Signed-off-by: Tim Chase <tim@chase2k.com> OpenZFS-issue: https://www.illumos.org/issues/7614 OpenZFS-commit: https://github.com/openzfs/openzfs/commit/f539f1eb Closes #6900
2016-09-22 19:30:13 +03:00
if (new_class_space <= old_class_space) {
fatal(B_FALSE,
"LUN expansion failed: class_space %"PRIu64" < %"PRIu64"\n",
old_class_space, new_class_space);
OpenZFS 7614, 9064 - zfs device evacuation/removal OpenZFS 7614 - zfs device evacuation/removal OpenZFS 9064 - remove_mirror should wait for device removal to complete This project allows top-level vdevs to be removed from the storage pool with "zpool remove", reducing the total amount of storage in the pool. This operation copies all allocated regions of the device to be removed onto other devices, recording the mapping from old to new location. After the removal is complete, read and free operations to the removed (now "indirect") vdev must be remapped and performed at the new location on disk. The indirect mapping table is kept in memory whenever the pool is loaded, so there is minimal performance overhead when doing operations on the indirect vdev. The size of the in-memory mapping table will be reduced when its entries become "obsolete" because they are no longer used by any block pointers in the pool. An entry becomes obsolete when all the blocks that use it are freed. An entry can also become obsolete when all the snapshots that reference it are deleted, and the block pointers that reference it have been "remapped" in all filesystems/zvols (and clones). Whenever an indirect block is written, all the block pointers in it will be "remapped" to their new (concrete) locations if possible. This process can be accelerated by using the "zfs remap" command to proactively rewrite all indirect blocks that reference indirect (removed) vdevs. Note that when a device is removed, we do not verify the checksum of the data that is copied. This makes the process much faster, but if it were used on redundant vdevs (i.e. mirror or raidz vdevs), it would be possible to copy the wrong data, when we have the correct data on e.g. the other side of the mirror. At the moment, only mirrors and simple top-level vdevs can be removed and no removal is allowed if any of the top-level vdevs are raidz. Porting Notes: * Avoid zero-sized kmem_alloc() in vdev_compact_children(). The device evacuation code adds a dependency that vdev_compact_children() be able to properly empty the vdev_child array by setting it to NULL and zeroing vdev_children. Under Linux, kmem_alloc() and related functions return a sentinel pointer rather than NULL for zero-sized allocations. * Remove comment regarding "mpt" driver where zfs_remove_max_segment is initialized to SPA_MAXBLOCKSIZE. Change zfs_condense_indirect_commit_entry_delay_ticks to zfs_condense_indirect_commit_entry_delay_ms for consistency with most other tunables in which delays are specified in ms. * ZTS changes: Use set_tunable rather than mdb Use zpool sync as appropriate Use sync_pool instead of sync Kill jobs during test_removal_with_operation to allow unmount/export Don't add non-disk names such as "mirror" or "raidz" to $DISKS Use $TEST_BASE_DIR instead of /tmp Increase HZ from 100 to 1000 which is more common on Linux removal_multiple_indirection.ksh Reduce iterations in order to not time out on the code coverage builders. removal_resume_export: Functionally, the test case is correct but there exists a race where the kernel thread hasn't been fully started yet and is not visible. Wait for up to 1 second for the removal thread to be started before giving up on it. Also, increase the amount of data copied in order that the removal not finish before the export has a chance to fail. * MMP compatibility, the concept of concrete versus non-concrete devices has slightly changed the semantics of vdev_writeable(). Update mmp_random_leaf_impl() accordingly. * Updated dbuf_remap() to handle the org.zfsonlinux:large_dnode pool feature which is not supported by OpenZFS. * Added support for new vdev removal tracepoints. * Test cases removal_with_zdb and removal_condense_export have been intentionally disabled. When run manually they pass as intended, but when running in the automated test environment they produce unreliable results on the latest Fedora release. They may work better once the upstream pool import refectoring is merged into ZoL at which point they will be re-enabled. Authored by: Matthew Ahrens <mahrens@delphix.com> Reviewed-by: Alex Reece <alex@delphix.com> Reviewed-by: George Wilson <george.wilson@delphix.com> Reviewed-by: John Kennedy <john.kennedy@delphix.com> Reviewed-by: Prakash Surya <prakash.surya@delphix.com> Reviewed by: Richard Laager <rlaager@wiktel.com> Reviewed by: Tim Chase <tim@chase2k.com> Reviewed by: Brian Behlendorf <behlendorf1@llnl.gov> Approved by: Garrett D'Amore <garrett@damore.org> Ported-by: Tim Chase <tim@chase2k.com> Signed-off-by: Tim Chase <tim@chase2k.com> OpenZFS-issue: https://www.illumos.org/issues/7614 OpenZFS-commit: https://github.com/openzfs/openzfs/commit/f539f1eb Closes #6900
2016-09-22 19:30:13 +03:00
}
if (ztest_opts.zo_verbose >= 5) {
char oldnumbuf[NN_NUMBUF_SZ], newnumbuf[NN_NUMBUF_SZ];
2009-07-03 02:44:48 +04:00
nicenum(old_class_space, oldnumbuf, sizeof (oldnumbuf));
nicenum(new_class_space, newnumbuf, sizeof (newnumbuf));
2009-07-03 02:44:48 +04:00
(void) printf("%s grew from %s to %s\n",
spa->spa_name, oldnumbuf, newnumbuf);
}
2009-07-03 02:44:48 +04:00
spa_config_exit(spa, SCL_STATE, spa);
mutex_exit(&ztest_vdev_lock);
OpenZFS 9166 - zfs storage pool checkpoint Details about the motivation of this feature and its usage can be found in this blogpost: https://sdimitro.github.io/post/zpool-checkpoint/ A lightning talk of this feature can be found here: https://www.youtube.com/watch?v=fPQA8K40jAM Implementation details can be found in big block comment of spa_checkpoint.c Side-changes that are relevant to this commit but not explained elsewhere: * renames members of "struct metaslab trees to be shorter without losing meaning * space_map_{alloc,truncate}() accept a block size as a parameter. The reason is that in the current state all space maps that we allocate through the DMU use a global tunable (space_map_blksz) which defauls to 4KB. This is ok for metaslab space maps in terms of bandwirdth since they are scattered all over the disk. But for other space maps this default is probably not what we want. Examples are device removal's vdev_obsolete_sm or vdev_chedkpoint_sm from this review. Both of these have a 1:1 relationship with each vdev and could benefit from a bigger block size. Porting notes: * The part of dsl_scan_sync() which handles async destroys has been moved into the new dsl_process_async_destroys() function. * Remove "VERIFY(!(flags & FWRITE))" in "kernel.c" so zhack can write to block device backed pools. * ZTS: * Fix get_txg() in zpool_sync_001_pos due to "checkpoint_txg". * Don't use large dd block sizes on /dev/urandom under Linux in checkpoint_capacity. * Adopt Delphix-OS's setting of 4 (spa_asize_inflation = SPA_DVAS_PER_BP + 1) for the checkpoint_capacity test to speed its attempts to fill the pool * Create the base and nested pools with sync=disabled to speed up the "setup" phase. * Clear labels in test pool between checkpoint tests to avoid duplicate pool issues. * The import_rewind_device_replaced test has been marked as "known to fail" for the reasons listed in its DISCLAIMER. * New module parameters: zfs_spa_discard_memory_limit, zfs_remove_max_bytes_pause (not documented - debugging only) vdev_max_ms_count (formerly metaslabs_per_vdev) vdev_min_ms_count Authored by: Serapheim Dimitropoulos <serapheim.dimitro@delphix.com> Reviewed by: Matthew Ahrens <mahrens@delphix.com> Reviewed by: John Kennedy <john.kennedy@delphix.com> Reviewed by: Dan Kimmel <dan.kimmel@delphix.com> Reviewed by: Brian Behlendorf <behlendorf1@llnl.gov> Approved by: Richard Lowe <richlowe@richlowe.net> Ported-by: Tim Chase <tim@chase2k.com> Signed-off-by: Tim Chase <tim@chase2k.com> OpenZFS-issue: https://illumos.org/issues/9166 OpenZFS-commit: https://github.com/openzfs/openzfs/commit/7159fdb8 Closes #7570
2016-12-17 01:11:29 +03:00
mutex_exit(&ztest_checkpoint_lock);
2008-11-20 23:01:55 +03:00
}
/*
* Verify that dmu_objset_{create,destroy,open,close} work as expected.
*/
2008-11-20 23:01:55 +03:00
static void
ztest_objset_create_cb(objset_t *os, void *arg, cred_t *cr, dmu_tx_t *tx)
2008-11-20 23:01:55 +03:00
{
(void) arg, (void) cr;
2008-11-20 23:01:55 +03:00
/*
* Create the objects common to all ztest datasets.
2008-11-20 23:01:55 +03:00
*/
VERIFY0(zap_create_claim(os, ZTEST_DIROBJ,
DMU_OT_ZAP_OTHER, DMU_OT_NONE, 0, tx));
}
2008-11-20 23:01:55 +03:00
static int
ztest_dataset_create(char *dsname)
{
int err;
uint64_t rand;
dsl_crypto_params_t *dcp = NULL;
/*
* 50% of the time, we create encrypted datasets
* using a random cipher suite and a hard-coded
* wrapping key.
*/
rand = ztest_random(2);
if (rand != 0) {
nvlist_t *crypto_args = fnvlist_alloc();
nvlist_t *props = fnvlist_alloc();
/* slight bias towards the default cipher suite */
rand = ztest_random(ZIO_CRYPT_FUNCTIONS);
if (rand < ZIO_CRYPT_AES_128_CCM)
rand = ZIO_CRYPT_ON;
fnvlist_add_uint64(props,
zfs_prop_to_name(ZFS_PROP_ENCRYPTION), rand);
fnvlist_add_uint8_array(crypto_args, "wkeydata",
(uint8_t *)ztest_wkeydata, WRAPPING_KEY_LEN);
/*
* These parameters aren't really used by the kernel. They
* are simply stored so that userspace knows how to load
* the wrapping key.
*/
fnvlist_add_uint64(props,
zfs_prop_to_name(ZFS_PROP_KEYFORMAT), ZFS_KEYFORMAT_RAW);
fnvlist_add_string(props,
zfs_prop_to_name(ZFS_PROP_KEYLOCATION), "prompt");
fnvlist_add_uint64(props,
zfs_prop_to_name(ZFS_PROP_PBKDF2_SALT), 0ULL);
fnvlist_add_uint64(props,
zfs_prop_to_name(ZFS_PROP_PBKDF2_ITERS), 0ULL);
VERIFY0(dsl_crypto_params_create_nvlist(DCP_CMD_NONE, props,
crypto_args, &dcp));
/*
* Cycle through all available encryption implementations
* to verify interoperability.
*/
VERIFY0(gcm_impl_set("cycle"));
VERIFY0(aes_impl_set("cycle"));
fnvlist_free(crypto_args);
fnvlist_free(props);
}
err = dmu_objset_create(dsname, DMU_OST_OTHER, 0, dcp,
ztest_objset_create_cb, NULL);
dsl_crypto_params_free(dcp, !!err);
rand = ztest_random(100);
if (err || rand < 80)
return (err);
if (ztest_opts.zo_verbose >= 5)
(void) printf("Setting dataset %s to sync always\n", dsname);
return (ztest_dsl_prop_set_uint64(dsname, ZFS_PROP_SYNC,
ZFS_SYNC_ALWAYS, B_FALSE));
2008-11-20 23:01:55 +03:00
}
static int
ztest_objset_destroy_cb(const char *name, void *arg)
2008-11-20 23:01:55 +03:00
{
(void) arg;
2008-11-20 23:01:55 +03:00
objset_t *os;
dmu_object_info_t doi;
2008-11-20 23:01:55 +03:00
int error;
/*
* Verify that the dataset contains a directory object.
*/
VERIFY0(ztest_dmu_objset_own(name, DMU_OST_OTHER, B_TRUE,
B_TRUE, FTAG, &os));
error = dmu_object_info(os, ZTEST_DIROBJ, &doi);
2008-11-20 23:01:55 +03:00
if (error != ENOENT) {
/* We could have crashed in the middle of destroying it */
ASSERT0(error);
ASSERT3U(doi.doi_type, ==, DMU_OT_ZAP_OTHER);
ASSERT3S(doi.doi_physical_blocks_512, >=, 0);
2008-11-20 23:01:55 +03:00
}
Native Encryption for ZFS on Linux This change incorporates three major pieces: The first change is a keystore that manages wrapping and encryption keys for encrypted datasets. These commands mostly involve manipulating the new DSL Crypto Key ZAP Objects that live in the MOS. Each encrypted dataset has its own DSL Crypto Key that is protected with a user's key. This level of indirection allows users to change their keys without re-encrypting their entire datasets. The change implements the new subcommands "zfs load-key", "zfs unload-key" and "zfs change-key" which allow the user to manage their encryption keys and settings. In addition, several new flags and properties have been added to allow dataset creation and to make mounting and unmounting more convenient. The second piece of this patch provides the ability to encrypt, decyrpt, and authenticate protected datasets. Each object set maintains a Merkel tree of Message Authentication Codes that protect the lower layers, similarly to how checksums are maintained. This part impacts the zio layer, which handles the actual encryption and generation of MACs, as well as the ARC and DMU, which need to be able to handle encrypted buffers and protected data. The last addition is the ability to do raw, encrypted sends and receives. The idea here is to send raw encrypted and compressed data and receive it exactly as is on a backup system. This means that the dataset on the receiving system is protected using the same user key that is in use on the sending side. By doing so, datasets can be efficiently backed up to an untrusted system without fear of data being compromised. Reviewed by: Matthew Ahrens <mahrens@delphix.com> Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov> Reviewed-by: Jorgen Lundman <lundman@lundman.net> Signed-off-by: Tom Caputi <tcaputi@datto.com> Closes #494 Closes #5769
2017-08-14 20:36:48 +03:00
dmu_objset_disown(os, B_TRUE, FTAG);
2008-11-20 23:01:55 +03:00
/*
* Destroy the dataset.
*/
if (strchr(name, '@') != NULL) {
error = dsl_destroy_snapshot(name, B_TRUE);
if (error != ECHRNG) {
/*
* The program was executed, but encountered a runtime
* error, such as insufficient slop, or a hold on the
* dataset.
*/
ASSERT0(error);
}
} else {
error = dsl_destroy_head(name);
if (error == ENOSPC) {
/* There could be checkpoint or insufficient slop */
ztest_record_enospc(FTAG);
} else if (error != EBUSY) {
/* There could be a hold on this dataset */
ASSERT0(error);
}
}
2008-11-20 23:01:55 +03:00
return (0);
}
static boolean_t
ztest_snapshot_create(char *osname, uint64_t id)
2008-11-20 23:01:55 +03:00
{
char snapname[ZFS_MAX_DATASET_NAME_LEN];
int error;
(void) snprintf(snapname, sizeof (snapname), "%"PRIu64"", id);
error = dmu_objset_snapshot_one(osname, snapname);
if (error == ENOSPC) {
ztest_record_enospc(FTAG);
return (B_FALSE);
}
if (error != 0 && error != EEXIST && error != ECHRNG) {
fatal(B_FALSE, "ztest_snapshot_create(%s@%s) = %d", osname,
snapname, error);
}
return (B_TRUE);
}
static boolean_t
ztest_snapshot_destroy(char *osname, uint64_t id)
{
char snapname[ZFS_MAX_DATASET_NAME_LEN];
int error;
(void) snprintf(snapname, sizeof (snapname), "%s@%"PRIu64"",
osname, id);
error = dsl_destroy_snapshot(snapname, B_FALSE);
if (error != 0 && error != ENOENT && error != ECHRNG)
fatal(B_FALSE, "ztest_snapshot_destroy(%s) = %d",
snapname, error);
return (B_TRUE);
2008-11-20 23:01:55 +03:00
}
void
ztest_dmu_objset_create_destroy(ztest_ds_t *zd, uint64_t id)
2008-11-20 23:01:55 +03:00
{
(void) zd;
ztest_ds_t *zdtmp;
int iters;
2008-11-20 23:01:55 +03:00
int error;
objset_t *os, *os2;
char name[ZFS_MAX_DATASET_NAME_LEN];
2008-11-20 23:01:55 +03:00
zilog_t *zilog;
int i;
2008-11-20 23:01:55 +03:00
zdtmp = umem_alloc(sizeof (ztest_ds_t), UMEM_NOFAIL);
(void) pthread_rwlock_rdlock(&ztest_name_lock);
2008-11-20 23:01:55 +03:00
(void) snprintf(name, sizeof (name), "%s/temp_%"PRIu64"",
ztest_opts.zo_pool, id);
2008-11-20 23:01:55 +03:00
/*
* If this dataset exists from a previous run, process its replay log
* half of the time. If we don't replay it, then dsl_destroy_head()
* (invoked from ztest_objset_destroy_cb()) should just throw it away.
2008-11-20 23:01:55 +03:00
*/
if (ztest_random(2) == 0 &&
ztest_dmu_objset_own(name, DMU_OST_OTHER, B_FALSE,
Native Encryption for ZFS on Linux This change incorporates three major pieces: The first change is a keystore that manages wrapping and encryption keys for encrypted datasets. These commands mostly involve manipulating the new DSL Crypto Key ZAP Objects that live in the MOS. Each encrypted dataset has its own DSL Crypto Key that is protected with a user's key. This level of indirection allows users to change their keys without re-encrypting their entire datasets. The change implements the new subcommands "zfs load-key", "zfs unload-key" and "zfs change-key" which allow the user to manage their encryption keys and settings. In addition, several new flags and properties have been added to allow dataset creation and to make mounting and unmounting more convenient. The second piece of this patch provides the ability to encrypt, decyrpt, and authenticate protected datasets. Each object set maintains a Merkel tree of Message Authentication Codes that protect the lower layers, similarly to how checksums are maintained. This part impacts the zio layer, which handles the actual encryption and generation of MACs, as well as the ARC and DMU, which need to be able to handle encrypted buffers and protected data. The last addition is the ability to do raw, encrypted sends and receives. The idea here is to send raw encrypted and compressed data and receive it exactly as is on a backup system. This means that the dataset on the receiving system is protected using the same user key that is in use on the sending side. By doing so, datasets can be efficiently backed up to an untrusted system without fear of data being compromised. Reviewed by: Matthew Ahrens <mahrens@delphix.com> Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov> Reviewed-by: Jorgen Lundman <lundman@lundman.net> Signed-off-by: Tom Caputi <tcaputi@datto.com> Closes #494 Closes #5769
2017-08-14 20:36:48 +03:00
B_TRUE, FTAG, &os) == 0) {
ztest_zd_init(zdtmp, NULL, os);
zil_replay(os, zdtmp, ztest_replay_vector);
ztest_zd_fini(zdtmp);
Native Encryption for ZFS on Linux This change incorporates three major pieces: The first change is a keystore that manages wrapping and encryption keys for encrypted datasets. These commands mostly involve manipulating the new DSL Crypto Key ZAP Objects that live in the MOS. Each encrypted dataset has its own DSL Crypto Key that is protected with a user's key. This level of indirection allows users to change their keys without re-encrypting their entire datasets. The change implements the new subcommands "zfs load-key", "zfs unload-key" and "zfs change-key" which allow the user to manage their encryption keys and settings. In addition, several new flags and properties have been added to allow dataset creation and to make mounting and unmounting more convenient. The second piece of this patch provides the ability to encrypt, decyrpt, and authenticate protected datasets. Each object set maintains a Merkel tree of Message Authentication Codes that protect the lower layers, similarly to how checksums are maintained. This part impacts the zio layer, which handles the actual encryption and generation of MACs, as well as the ARC and DMU, which need to be able to handle encrypted buffers and protected data. The last addition is the ability to do raw, encrypted sends and receives. The idea here is to send raw encrypted and compressed data and receive it exactly as is on a backup system. This means that the dataset on the receiving system is protected using the same user key that is in use on the sending side. By doing so, datasets can be efficiently backed up to an untrusted system without fear of data being compromised. Reviewed by: Matthew Ahrens <mahrens@delphix.com> Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov> Reviewed-by: Jorgen Lundman <lundman@lundman.net> Signed-off-by: Tom Caputi <tcaputi@datto.com> Closes #494 Closes #5769
2017-08-14 20:36:48 +03:00
dmu_objset_disown(os, B_TRUE, FTAG);
2008-11-20 23:01:55 +03:00
}
/*
* There may be an old instance of the dataset we're about to
* create lying around from a previous run. If so, destroy it
* and all of its snapshots.
*/
(void) dmu_objset_find(name, ztest_objset_destroy_cb, NULL,
2008-11-20 23:01:55 +03:00
DS_FIND_CHILDREN | DS_FIND_SNAPSHOTS);
/*
* Verify that the destroyed dataset is no longer in the namespace.
* It may still be present if the destroy above fails with ENOSPC.
2008-11-20 23:01:55 +03:00
*/
error = ztest_dmu_objset_own(name, DMU_OST_OTHER, B_TRUE, B_TRUE,
FTAG, &os);
if (error == 0) {
dmu_objset_disown(os, B_TRUE, FTAG);
ztest_record_enospc(FTAG);
goto out;
}
VERIFY3U(ENOENT, ==, error);
2008-11-20 23:01:55 +03:00
/*
* Verify that we can create a new dataset.
*/
error = ztest_dataset_create(name);
2008-11-20 23:01:55 +03:00
if (error) {
if (error == ENOSPC) {
ztest_record_enospc(FTAG);
goto out;
2008-11-20 23:01:55 +03:00
}
fatal(B_FALSE, "dmu_objset_create(%s) = %d", name, error);
2008-11-20 23:01:55 +03:00
}
VERIFY0(ztest_dmu_objset_own(name, DMU_OST_OTHER, B_FALSE, B_TRUE,
Native Encryption for ZFS on Linux This change incorporates three major pieces: The first change is a keystore that manages wrapping and encryption keys for encrypted datasets. These commands mostly involve manipulating the new DSL Crypto Key ZAP Objects that live in the MOS. Each encrypted dataset has its own DSL Crypto Key that is protected with a user's key. This level of indirection allows users to change their keys without re-encrypting their entire datasets. The change implements the new subcommands "zfs load-key", "zfs unload-key" and "zfs change-key" which allow the user to manage their encryption keys and settings. In addition, several new flags and properties have been added to allow dataset creation and to make mounting and unmounting more convenient. The second piece of this patch provides the ability to encrypt, decyrpt, and authenticate protected datasets. Each object set maintains a Merkel tree of Message Authentication Codes that protect the lower layers, similarly to how checksums are maintained. This part impacts the zio layer, which handles the actual encryption and generation of MACs, as well as the ARC and DMU, which need to be able to handle encrypted buffers and protected data. The last addition is the ability to do raw, encrypted sends and receives. The idea here is to send raw encrypted and compressed data and receive it exactly as is on a backup system. This means that the dataset on the receiving system is protected using the same user key that is in use on the sending side. By doing so, datasets can be efficiently backed up to an untrusted system without fear of data being compromised. Reviewed by: Matthew Ahrens <mahrens@delphix.com> Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov> Reviewed-by: Jorgen Lundman <lundman@lundman.net> Signed-off-by: Tom Caputi <tcaputi@datto.com> Closes #494 Closes #5769
2017-08-14 20:36:48 +03:00
FTAG, &os));
ztest_zd_init(zdtmp, NULL, os);
2008-11-20 23:01:55 +03:00
/*
* Open the intent log for it.
*/
zilog = zil_open(os, ztest_get_data, NULL);
2008-11-20 23:01:55 +03:00
/*
* Put some objects in there, do a little I/O to them,
* and randomly take a couple of snapshots along the way.
2008-11-20 23:01:55 +03:00
*/
iters = ztest_random(5);
for (i = 0; i < iters; i++) {
ztest_dmu_object_alloc_free(zdtmp, id);
if (ztest_random(iters) == 0)
(void) ztest_snapshot_create(name, i);
2008-11-20 23:01:55 +03:00
}
/*
* Verify that we cannot create an existing dataset.
*/
VERIFY3U(EEXIST, ==,
Native Encryption for ZFS on Linux This change incorporates three major pieces: The first change is a keystore that manages wrapping and encryption keys for encrypted datasets. These commands mostly involve manipulating the new DSL Crypto Key ZAP Objects that live in the MOS. Each encrypted dataset has its own DSL Crypto Key that is protected with a user's key. This level of indirection allows users to change their keys without re-encrypting their entire datasets. The change implements the new subcommands "zfs load-key", "zfs unload-key" and "zfs change-key" which allow the user to manage their encryption keys and settings. In addition, several new flags and properties have been added to allow dataset creation and to make mounting and unmounting more convenient. The second piece of this patch provides the ability to encrypt, decyrpt, and authenticate protected datasets. Each object set maintains a Merkel tree of Message Authentication Codes that protect the lower layers, similarly to how checksums are maintained. This part impacts the zio layer, which handles the actual encryption and generation of MACs, as well as the ARC and DMU, which need to be able to handle encrypted buffers and protected data. The last addition is the ability to do raw, encrypted sends and receives. The idea here is to send raw encrypted and compressed data and receive it exactly as is on a backup system. This means that the dataset on the receiving system is protected using the same user key that is in use on the sending side. By doing so, datasets can be efficiently backed up to an untrusted system without fear of data being compromised. Reviewed by: Matthew Ahrens <mahrens@delphix.com> Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov> Reviewed-by: Jorgen Lundman <lundman@lundman.net> Signed-off-by: Tom Caputi <tcaputi@datto.com> Closes #494 Closes #5769
2017-08-14 20:36:48 +03:00
dmu_objset_create(name, DMU_OST_OTHER, 0, NULL, NULL, NULL));
2008-11-20 23:01:55 +03:00
/*
* Verify that we can hold an objset that is also owned.
*/
VERIFY0(dmu_objset_hold(name, FTAG, &os2));
dmu_objset_rele(os2, FTAG);
2008-11-20 23:01:55 +03:00
/*
* Verify that we cannot own an objset that is already owned.
*/
VERIFY3U(EBUSY, ==, ztest_dmu_objset_own(name, DMU_OST_OTHER,
B_FALSE, B_TRUE, FTAG, &os2));
2008-11-20 23:01:55 +03:00
zil_close(zilog);
Native Encryption for ZFS on Linux This change incorporates three major pieces: The first change is a keystore that manages wrapping and encryption keys for encrypted datasets. These commands mostly involve manipulating the new DSL Crypto Key ZAP Objects that live in the MOS. Each encrypted dataset has its own DSL Crypto Key that is protected with a user's key. This level of indirection allows users to change their keys without re-encrypting their entire datasets. The change implements the new subcommands "zfs load-key", "zfs unload-key" and "zfs change-key" which allow the user to manage their encryption keys and settings. In addition, several new flags and properties have been added to allow dataset creation and to make mounting and unmounting more convenient. The second piece of this patch provides the ability to encrypt, decyrpt, and authenticate protected datasets. Each object set maintains a Merkel tree of Message Authentication Codes that protect the lower layers, similarly to how checksums are maintained. This part impacts the zio layer, which handles the actual encryption and generation of MACs, as well as the ARC and DMU, which need to be able to handle encrypted buffers and protected data. The last addition is the ability to do raw, encrypted sends and receives. The idea here is to send raw encrypted and compressed data and receive it exactly as is on a backup system. This means that the dataset on the receiving system is protected using the same user key that is in use on the sending side. By doing so, datasets can be efficiently backed up to an untrusted system without fear of data being compromised. Reviewed by: Matthew Ahrens <mahrens@delphix.com> Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov> Reviewed-by: Jorgen Lundman <lundman@lundman.net> Signed-off-by: Tom Caputi <tcaputi@datto.com> Closes #494 Closes #5769
2017-08-14 20:36:48 +03:00
dmu_objset_disown(os, B_TRUE, FTAG);
ztest_zd_fini(zdtmp);
out:
(void) pthread_rwlock_unlock(&ztest_name_lock);
umem_free(zdtmp, sizeof (ztest_ds_t));
2008-11-20 23:01:55 +03:00
}
/*
* Verify that dmu_snapshot_{create,destroy,open,close} work as expected.
*/
void
ztest_dmu_snapshot_create_destroy(ztest_ds_t *zd, uint64_t id)
2008-11-20 23:01:55 +03:00
{
(void) pthread_rwlock_rdlock(&ztest_name_lock);
(void) ztest_snapshot_destroy(zd->zd_name, id);
(void) ztest_snapshot_create(zd->zd_name, id);
(void) pthread_rwlock_unlock(&ztest_name_lock);
2008-11-20 23:01:55 +03:00
}
2009-07-03 02:44:48 +04:00
/*
* Cleanup non-standard snapshots and clones.
*/
static void
ztest_dsl_dataset_cleanup(char *osname, uint64_t id)
2009-07-03 02:44:48 +04:00
{
char *snap1name;
char *clone1name;
char *snap2name;
char *clone2name;
char *snap3name;
2009-07-03 02:44:48 +04:00
int error;
snap1name = umem_alloc(ZFS_MAX_DATASET_NAME_LEN, UMEM_NOFAIL);
clone1name = umem_alloc(ZFS_MAX_DATASET_NAME_LEN, UMEM_NOFAIL);
snap2name = umem_alloc(ZFS_MAX_DATASET_NAME_LEN, UMEM_NOFAIL);
clone2name = umem_alloc(ZFS_MAX_DATASET_NAME_LEN, UMEM_NOFAIL);
snap3name = umem_alloc(ZFS_MAX_DATASET_NAME_LEN, UMEM_NOFAIL);
(void) snprintf(snap1name, ZFS_MAX_DATASET_NAME_LEN, "%s@s1_%"PRIu64"",
osname, id);
(void) snprintf(clone1name, ZFS_MAX_DATASET_NAME_LEN, "%s/c1_%"PRIu64"",
osname, id);
(void) snprintf(snap2name, ZFS_MAX_DATASET_NAME_LEN, "%s@s2_%"PRIu64"",
clone1name, id);
(void) snprintf(clone2name, ZFS_MAX_DATASET_NAME_LEN, "%s/c2_%"PRIu64"",
osname, id);
(void) snprintf(snap3name, ZFS_MAX_DATASET_NAME_LEN, "%s@s3_%"PRIu64"",
clone1name, id);
2009-07-03 02:44:48 +04:00
error = dsl_destroy_head(clone2name);
2009-07-03 02:44:48 +04:00
if (error && error != ENOENT)
fatal(B_FALSE, "dsl_destroy_head(%s) = %d", clone2name, error);
error = dsl_destroy_snapshot(snap3name, B_FALSE);
2009-07-03 02:44:48 +04:00
if (error && error != ENOENT)
fatal(B_FALSE, "dsl_destroy_snapshot(%s) = %d",
snap3name, error);
error = dsl_destroy_snapshot(snap2name, B_FALSE);
2009-07-03 02:44:48 +04:00
if (error && error != ENOENT)
fatal(B_FALSE, "dsl_destroy_snapshot(%s) = %d",
snap2name, error);
error = dsl_destroy_head(clone1name);
2009-07-03 02:44:48 +04:00
if (error && error != ENOENT)
fatal(B_FALSE, "dsl_destroy_head(%s) = %d", clone1name, error);
error = dsl_destroy_snapshot(snap1name, B_FALSE);
2009-07-03 02:44:48 +04:00
if (error && error != ENOENT)
fatal(B_FALSE, "dsl_destroy_snapshot(%s) = %d",
snap1name, error);
umem_free(snap1name, ZFS_MAX_DATASET_NAME_LEN);
umem_free(clone1name, ZFS_MAX_DATASET_NAME_LEN);
umem_free(snap2name, ZFS_MAX_DATASET_NAME_LEN);
umem_free(clone2name, ZFS_MAX_DATASET_NAME_LEN);
umem_free(snap3name, ZFS_MAX_DATASET_NAME_LEN);
2009-07-03 02:44:48 +04:00
}
/*
* Verify dsl_dataset_promote handles EBUSY
*/
void
ztest_dsl_dataset_promote_busy(ztest_ds_t *zd, uint64_t id)
2009-07-03 02:44:48 +04:00
{
objset_t *os;
char *snap1name;
char *clone1name;
char *snap2name;
char *clone2name;
char *snap3name;
char *osname = zd->zd_name;
int error;
2009-07-03 02:44:48 +04:00
snap1name = umem_alloc(ZFS_MAX_DATASET_NAME_LEN, UMEM_NOFAIL);
clone1name = umem_alloc(ZFS_MAX_DATASET_NAME_LEN, UMEM_NOFAIL);
snap2name = umem_alloc(ZFS_MAX_DATASET_NAME_LEN, UMEM_NOFAIL);
clone2name = umem_alloc(ZFS_MAX_DATASET_NAME_LEN, UMEM_NOFAIL);
snap3name = umem_alloc(ZFS_MAX_DATASET_NAME_LEN, UMEM_NOFAIL);
(void) pthread_rwlock_rdlock(&ztest_name_lock);
2009-07-03 02:44:48 +04:00
ztest_dsl_dataset_cleanup(osname, id);
2009-07-03 02:44:48 +04:00
(void) snprintf(snap1name, ZFS_MAX_DATASET_NAME_LEN, "%s@s1_%"PRIu64"",
osname, id);
(void) snprintf(clone1name, ZFS_MAX_DATASET_NAME_LEN, "%s/c1_%"PRIu64"",
osname, id);
(void) snprintf(snap2name, ZFS_MAX_DATASET_NAME_LEN, "%s@s2_%"PRIu64"",
clone1name, id);
(void) snprintf(clone2name, ZFS_MAX_DATASET_NAME_LEN, "%s/c2_%"PRIu64"",
osname, id);
(void) snprintf(snap3name, ZFS_MAX_DATASET_NAME_LEN, "%s@s3_%"PRIu64"",
clone1name, id);
2009-07-03 02:44:48 +04:00
Illumos #2882, #2883, #2900 2882 implement libzfs_core 2883 changing "canmount" property to "on" should not always remount dataset 2900 "zfs snapshot" should be able to create multiple, arbitrary snapshots at once Reviewed by: George Wilson <george.wilson@delphix.com> Reviewed by: Chris Siden <christopher.siden@delphix.com> Reviewed by: Garrett D'Amore <garrett@damore.org> Reviewed by: Bill Pijewski <wdp@joyent.com> Reviewed by: Dan Kruchinin <dan.kruchinin@gmail.com> Approved by: Eric Schrock <Eric.Schrock@delphix.com> References: https://www.illumos.org/issues/2882 https://www.illumos.org/issues/2883 https://www.illumos.org/issues/2900 illumos/illumos-gate@4445fffbbb1ea25fd0e9ea68b9380dd7a6709025 Ported-by: Tim Chase <tim@chase2k.com> Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov> Closes #1293 Porting notes: WARNING: This patch changes the user/kernel ABI. That means that the zfs/zpool utilities built from master are NOT compatible with the 0.6.2 kernel modules. Ensure you load the matching kernel modules from master after updating the utilities. Otherwise the zfs/zpool commands will be unable to interact with your pool and you will see errors similar to the following: $ zpool list failed to read pool configuration: bad address no pools available $ zfs list no datasets available Add zvol minor device creation to the new zfs_snapshot_nvl function. Remove the logging of the "release" operation in dsl_dataset_user_release_sync(). The logging caused a null dereference because ds->ds_dir is zeroed in dsl_dataset_destroy_sync() and the logging functions try to get the ds name via the dsl_dataset_name() function. I've got no idea why this particular code would have worked in Illumos. This code has subsequently been completely reworked in Illumos commit 3b2aab1 (3464 zfs synctask code needs restructuring). Squash some "may be used uninitialized" warning/erorrs. Fix some printf format warnings for %lld and %llu. Apply a few spa_writeable() changes that were made to Illumos in illumos/illumos-gate.git@cd1c8b8 as part of the 3112, 3113, 3114 and 3115 fixes. Add a missing call to fnvlist_free(nvl) in log_internal() that was added in Illumos to fix issue 3085 but couldn't be ported to ZoL at the time (zfsonlinux/zfs@9e11c73) because it depended on future work.
2013-08-28 15:45:09 +04:00
error = dmu_objset_snapshot_one(osname, strchr(snap1name, '@') + 1);
2009-07-03 02:44:48 +04:00
if (error && error != EEXIST) {
if (error == ENOSPC) {
ztest_record_enospc(FTAG);
2009-07-03 02:44:48 +04:00
goto out;
}
fatal(B_FALSE, "dmu_take_snapshot(%s) = %d", snap1name, error);
2009-07-03 02:44:48 +04:00
}
error = dmu_objset_clone(clone1name, snap1name);
2009-07-03 02:44:48 +04:00
if (error) {
if (error == ENOSPC) {
ztest_record_enospc(FTAG);
2009-07-03 02:44:48 +04:00
goto out;
}
fatal(B_FALSE, "dmu_objset_create(%s) = %d", clone1name, error);
2009-07-03 02:44:48 +04:00
}
Illumos #2882, #2883, #2900 2882 implement libzfs_core 2883 changing "canmount" property to "on" should not always remount dataset 2900 "zfs snapshot" should be able to create multiple, arbitrary snapshots at once Reviewed by: George Wilson <george.wilson@delphix.com> Reviewed by: Chris Siden <christopher.siden@delphix.com> Reviewed by: Garrett D'Amore <garrett@damore.org> Reviewed by: Bill Pijewski <wdp@joyent.com> Reviewed by: Dan Kruchinin <dan.kruchinin@gmail.com> Approved by: Eric Schrock <Eric.Schrock@delphix.com> References: https://www.illumos.org/issues/2882 https://www.illumos.org/issues/2883 https://www.illumos.org/issues/2900 illumos/illumos-gate@4445fffbbb1ea25fd0e9ea68b9380dd7a6709025 Ported-by: Tim Chase <tim@chase2k.com> Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov> Closes #1293 Porting notes: WARNING: This patch changes the user/kernel ABI. That means that the zfs/zpool utilities built from master are NOT compatible with the 0.6.2 kernel modules. Ensure you load the matching kernel modules from master after updating the utilities. Otherwise the zfs/zpool commands will be unable to interact with your pool and you will see errors similar to the following: $ zpool list failed to read pool configuration: bad address no pools available $ zfs list no datasets available Add zvol minor device creation to the new zfs_snapshot_nvl function. Remove the logging of the "release" operation in dsl_dataset_user_release_sync(). The logging caused a null dereference because ds->ds_dir is zeroed in dsl_dataset_destroy_sync() and the logging functions try to get the ds name via the dsl_dataset_name() function. I've got no idea why this particular code would have worked in Illumos. This code has subsequently been completely reworked in Illumos commit 3b2aab1 (3464 zfs synctask code needs restructuring). Squash some "may be used uninitialized" warning/erorrs. Fix some printf format warnings for %lld and %llu. Apply a few spa_writeable() changes that were made to Illumos in illumos/illumos-gate.git@cd1c8b8 as part of the 3112, 3113, 3114 and 3115 fixes. Add a missing call to fnvlist_free(nvl) in log_internal() that was added in Illumos to fix issue 3085 but couldn't be ported to ZoL at the time (zfsonlinux/zfs@9e11c73) because it depended on future work.
2013-08-28 15:45:09 +04:00
error = dmu_objset_snapshot_one(clone1name, strchr(snap2name, '@') + 1);
if (error && error != EEXIST) {
if (error == ENOSPC) {
ztest_record_enospc(FTAG);
goto out;
2008-11-20 23:01:55 +03:00
}
fatal(B_FALSE, "dmu_open_snapshot(%s) = %d", snap2name, error);
}
2008-11-20 23:01:55 +03:00
Illumos #2882, #2883, #2900 2882 implement libzfs_core 2883 changing "canmount" property to "on" should not always remount dataset 2900 "zfs snapshot" should be able to create multiple, arbitrary snapshots at once Reviewed by: George Wilson <george.wilson@delphix.com> Reviewed by: Chris Siden <christopher.siden@delphix.com> Reviewed by: Garrett D'Amore <garrett@damore.org> Reviewed by: Bill Pijewski <wdp@joyent.com> Reviewed by: Dan Kruchinin <dan.kruchinin@gmail.com> Approved by: Eric Schrock <Eric.Schrock@delphix.com> References: https://www.illumos.org/issues/2882 https://www.illumos.org/issues/2883 https://www.illumos.org/issues/2900 illumos/illumos-gate@4445fffbbb1ea25fd0e9ea68b9380dd7a6709025 Ported-by: Tim Chase <tim@chase2k.com> Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov> Closes #1293 Porting notes: WARNING: This patch changes the user/kernel ABI. That means that the zfs/zpool utilities built from master are NOT compatible with the 0.6.2 kernel modules. Ensure you load the matching kernel modules from master after updating the utilities. Otherwise the zfs/zpool commands will be unable to interact with your pool and you will see errors similar to the following: $ zpool list failed to read pool configuration: bad address no pools available $ zfs list no datasets available Add zvol minor device creation to the new zfs_snapshot_nvl function. Remove the logging of the "release" operation in dsl_dataset_user_release_sync(). The logging caused a null dereference because ds->ds_dir is zeroed in dsl_dataset_destroy_sync() and the logging functions try to get the ds name via the dsl_dataset_name() function. I've got no idea why this particular code would have worked in Illumos. This code has subsequently been completely reworked in Illumos commit 3b2aab1 (3464 zfs synctask code needs restructuring). Squash some "may be used uninitialized" warning/erorrs. Fix some printf format warnings for %lld and %llu. Apply a few spa_writeable() changes that were made to Illumos in illumos/illumos-gate.git@cd1c8b8 as part of the 3112, 3113, 3114 and 3115 fixes. Add a missing call to fnvlist_free(nvl) in log_internal() that was added in Illumos to fix issue 3085 but couldn't be ported to ZoL at the time (zfsonlinux/zfs@9e11c73) because it depended on future work.
2013-08-28 15:45:09 +04:00
error = dmu_objset_snapshot_one(clone1name, strchr(snap3name, '@') + 1);
if (error && error != EEXIST) {
if (error == ENOSPC) {
ztest_record_enospc(FTAG);
goto out;
}
fatal(B_FALSE, "dmu_open_snapshot(%s) = %d", snap3name, error);
}
2008-11-20 23:01:55 +03:00
error = dmu_objset_clone(clone2name, snap3name);
if (error) {
if (error == ENOSPC) {
ztest_record_enospc(FTAG);
goto out;
}
fatal(B_FALSE, "dmu_objset_create(%s) = %d", clone2name, error);
}
2008-11-20 23:01:55 +03:00
error = ztest_dmu_objset_own(snap2name, DMU_OST_ANY, B_TRUE, B_TRUE,
Native Encryption for ZFS on Linux This change incorporates three major pieces: The first change is a keystore that manages wrapping and encryption keys for encrypted datasets. These commands mostly involve manipulating the new DSL Crypto Key ZAP Objects that live in the MOS. Each encrypted dataset has its own DSL Crypto Key that is protected with a user's key. This level of indirection allows users to change their keys without re-encrypting their entire datasets. The change implements the new subcommands "zfs load-key", "zfs unload-key" and "zfs change-key" which allow the user to manage their encryption keys and settings. In addition, several new flags and properties have been added to allow dataset creation and to make mounting and unmounting more convenient. The second piece of this patch provides the ability to encrypt, decyrpt, and authenticate protected datasets. Each object set maintains a Merkel tree of Message Authentication Codes that protect the lower layers, similarly to how checksums are maintained. This part impacts the zio layer, which handles the actual encryption and generation of MACs, as well as the ARC and DMU, which need to be able to handle encrypted buffers and protected data. The last addition is the ability to do raw, encrypted sends and receives. The idea here is to send raw encrypted and compressed data and receive it exactly as is on a backup system. This means that the dataset on the receiving system is protected using the same user key that is in use on the sending side. By doing so, datasets can be efficiently backed up to an untrusted system without fear of data being compromised. Reviewed by: Matthew Ahrens <mahrens@delphix.com> Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov> Reviewed-by: Jorgen Lundman <lundman@lundman.net> Signed-off-by: Tom Caputi <tcaputi@datto.com> Closes #494 Closes #5769
2017-08-14 20:36:48 +03:00
FTAG, &os);
if (error)
fatal(B_FALSE, "dmu_objset_own(%s) = %d", snap2name, error);
error = dsl_dataset_promote(clone2name, NULL);
if (error == ENOSPC) {
Native Encryption for ZFS on Linux This change incorporates three major pieces: The first change is a keystore that manages wrapping and encryption keys for encrypted datasets. These commands mostly involve manipulating the new DSL Crypto Key ZAP Objects that live in the MOS. Each encrypted dataset has its own DSL Crypto Key that is protected with a user's key. This level of indirection allows users to change their keys without re-encrypting their entire datasets. The change implements the new subcommands "zfs load-key", "zfs unload-key" and "zfs change-key" which allow the user to manage their encryption keys and settings. In addition, several new flags and properties have been added to allow dataset creation and to make mounting and unmounting more convenient. The second piece of this patch provides the ability to encrypt, decyrpt, and authenticate protected datasets. Each object set maintains a Merkel tree of Message Authentication Codes that protect the lower layers, similarly to how checksums are maintained. This part impacts the zio layer, which handles the actual encryption and generation of MACs, as well as the ARC and DMU, which need to be able to handle encrypted buffers and protected data. The last addition is the ability to do raw, encrypted sends and receives. The idea here is to send raw encrypted and compressed data and receive it exactly as is on a backup system. This means that the dataset on the receiving system is protected using the same user key that is in use on the sending side. By doing so, datasets can be efficiently backed up to an untrusted system without fear of data being compromised. Reviewed by: Matthew Ahrens <mahrens@delphix.com> Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov> Reviewed-by: Jorgen Lundman <lundman@lundman.net> Signed-off-by: Tom Caputi <tcaputi@datto.com> Closes #494 Closes #5769
2017-08-14 20:36:48 +03:00
dmu_objset_disown(os, B_TRUE, FTAG);
ztest_record_enospc(FTAG);
goto out;
}
if (error != EBUSY)
fatal(B_FALSE, "dsl_dataset_promote(%s), %d, not EBUSY",
clone2name, error);
Native Encryption for ZFS on Linux This change incorporates three major pieces: The first change is a keystore that manages wrapping and encryption keys for encrypted datasets. These commands mostly involve manipulating the new DSL Crypto Key ZAP Objects that live in the MOS. Each encrypted dataset has its own DSL Crypto Key that is protected with a user's key. This level of indirection allows users to change their keys without re-encrypting their entire datasets. The change implements the new subcommands "zfs load-key", "zfs unload-key" and "zfs change-key" which allow the user to manage their encryption keys and settings. In addition, several new flags and properties have been added to allow dataset creation and to make mounting and unmounting more convenient. The second piece of this patch provides the ability to encrypt, decyrpt, and authenticate protected datasets. Each object set maintains a Merkel tree of Message Authentication Codes that protect the lower layers, similarly to how checksums are maintained. This part impacts the zio layer, which handles the actual encryption and generation of MACs, as well as the ARC and DMU, which need to be able to handle encrypted buffers and protected data. The last addition is the ability to do raw, encrypted sends and receives. The idea here is to send raw encrypted and compressed data and receive it exactly as is on a backup system. This means that the dataset on the receiving system is protected using the same user key that is in use on the sending side. By doing so, datasets can be efficiently backed up to an untrusted system without fear of data being compromised. Reviewed by: Matthew Ahrens <mahrens@delphix.com> Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov> Reviewed-by: Jorgen Lundman <lundman@lundman.net> Signed-off-by: Tom Caputi <tcaputi@datto.com> Closes #494 Closes #5769
2017-08-14 20:36:48 +03:00
dmu_objset_disown(os, B_TRUE, FTAG);
2008-11-20 23:01:55 +03:00
out:
ztest_dsl_dataset_cleanup(osname, id);
2008-11-20 23:01:55 +03:00
(void) pthread_rwlock_unlock(&ztest_name_lock);
umem_free(snap1name, ZFS_MAX_DATASET_NAME_LEN);
umem_free(clone1name, ZFS_MAX_DATASET_NAME_LEN);
umem_free(snap2name, ZFS_MAX_DATASET_NAME_LEN);
umem_free(clone2name, ZFS_MAX_DATASET_NAME_LEN);
umem_free(snap3name, ZFS_MAX_DATASET_NAME_LEN);
}
2008-11-20 23:01:55 +03:00
#undef OD_ARRAY_SIZE
#define OD_ARRAY_SIZE 4
/*
* Verify that dmu_object_{alloc,free} work as expected.
*/
void
ztest_dmu_object_alloc_free(ztest_ds_t *zd, uint64_t id)
{
ztest_od_t *od;
int batchsize;
int size;
int b;
2008-11-20 23:01:55 +03:00
size = sizeof (ztest_od_t) * OD_ARRAY_SIZE;
od = umem_alloc(size, UMEM_NOFAIL);
batchsize = OD_ARRAY_SIZE;
for (b = 0; b < batchsize; b++)
Implement large_dnode pool feature Justification ------------- This feature adds support for variable length dnodes. Our motivation is to eliminate the overhead associated with using spill blocks. Spill blocks are used to store system attribute data (i.e. file metadata) that does not fit in the dnode's bonus buffer. By allowing a larger bonus buffer area the use of a spill block can be avoided. Spill blocks potentially incur an additional read I/O for every dnode in a dnode block. As a worst case example, reading 32 dnodes from a 16k dnode block and all of the spill blocks could issue 33 separate reads. Now suppose those dnodes have size 1024 and therefore don't need spill blocks. Then the worst case number of blocks read is reduced to from 33 to two--one per dnode block. In practice spill blocks may tend to be co-located on disk with the dnode blocks so the reduction in I/O would not be this drastic. In a badly fragmented pool, however, the improvement could be significant. ZFS-on-Linux systems that make heavy use of extended attributes would benefit from this feature. In particular, ZFS-on-Linux supports the xattr=sa dataset property which allows file extended attribute data to be stored in the dnode bonus buffer as an alternative to the traditional directory-based format. Workloads such as SELinux and the Lustre distributed filesystem often store enough xattr data to force spill bocks when xattr=sa is in effect. Large dnodes may therefore provide a performance benefit to such systems. Other use cases that may benefit from this feature include files with large ACLs and symbolic links with long target names. Furthermore, this feature may be desirable on other platforms in case future applications or features are developed that could make use of a larger bonus buffer area. Implementation -------------- The size of a dnode may be a multiple of 512 bytes up to the size of a dnode block (currently 16384 bytes). A dn_extra_slots field was added to the current on-disk dnode_phys_t structure to describe the size of the physical dnode on disk. The 8 bits for this field were taken from the zero filled dn_pad2 field. The field represents how many "extra" dnode_phys_t slots a dnode consumes in its dnode block. This convention results in a value of 0 for 512 byte dnodes which preserves on-disk format compatibility with older software. Similarly, the in-memory dnode_t structure has a new dn_num_slots field to represent the total number of dnode_phys_t slots consumed on disk. Thus dn->dn_num_slots is 1 greater than the corresponding dnp->dn_extra_slots. This difference in convention was adopted because, unlike on-disk structures, backward compatibility is not a concern for in-memory objects, so we used a more natural way to represent size for a dnode_t. The default size for newly created dnodes is determined by the value of a new "dnodesize" dataset property. By default the property is set to "legacy" which is compatible with older software. Setting the property to "auto" will allow the filesystem to choose the most suitable dnode size. Currently this just sets the default dnode size to 1k, but future code improvements could dynamically choose a size based on observed workload patterns. Dnodes of varying sizes can coexist within the same dataset and even within the same dnode block. For example, to enable automatically-sized dnodes, run # zfs set dnodesize=auto tank/fish The user can also specify literal values for the dnodesize property. These are currently limited to powers of two from 1k to 16k. The power-of-2 limitation is only for simplicity of the user interface. Internally the implementation can handle any multiple of 512 up to 16k, and consumers of the DMU API can specify any legal dnode value. The size of a new dnode is determined at object allocation time and stored as a new field in the znode in-memory structure. New DMU interfaces are added to allow the consumer to specify the dnode size that a newly allocated object should use. Existing interfaces are unchanged to avoid having to update every call site and to preserve compatibility with external consumers such as Lustre. The new interfaces names are given below. The versions of these functions that don't take a dnodesize parameter now just call the _dnsize() versions with a dnodesize of 0, which means use the legacy dnode size. New DMU interfaces: dmu_object_alloc_dnsize() dmu_object_claim_dnsize() dmu_object_reclaim_dnsize() New ZAP interfaces: zap_create_dnsize() zap_create_norm_dnsize() zap_create_flags_dnsize() zap_create_claim_norm_dnsize() zap_create_link_dnsize() The constant DN_MAX_BONUSLEN is renamed to DN_OLD_MAX_BONUSLEN. The spa_maxdnodesize() function should be used to determine the maximum bonus length for a pool. These are a few noteworthy changes to key functions: * The prototype for dnode_hold_impl() now takes a "slots" parameter. When the DNODE_MUST_BE_FREE flag is set, this parameter is used to ensure the hole at the specified object offset is large enough to hold the dnode being created. The slots parameter is also used to ensure a dnode does not span multiple dnode blocks. In both of these cases, if a failure occurs, ENOSPC is returned. Keep in mind, these failure cases are only possible when using DNODE_MUST_BE_FREE. If the DNODE_MUST_BE_ALLOCATED flag is set, "slots" must be 0. dnode_hold_impl() will check if the requested dnode is already consumed as an extra dnode slot by an large dnode, in which case it returns ENOENT. * The function dmu_object_alloc() advances to the next dnode block if dnode_hold_impl() returns an error for a requested object. This is because the beginning of the next dnode block is the only location it can safely assume to either be a hole or a valid starting point for a dnode. * dnode_next_offset_level() and other functions that iterate through dnode blocks may no longer use a simple array indexing scheme. These now use the current dnode's dn_num_slots field to advance to the next dnode in the block. This is to ensure we properly skip the current dnode's bonus area and don't interpret it as a valid dnode. zdb --- The zdb command was updated to display a dnode's size under the "dnsize" column when the object is dumped. For ZIL create log records, zdb will now display the slot count for the object. ztest ----- Ztest chooses a random dnodesize for every newly created object. The random distribution is more heavily weighted toward small dnodes to better simulate real-world datasets. Unused bonus buffer space is filled with non-zero values computed from the object number, dataset id, offset, and generation number. This helps ensure that the dnode traversal code properly skips the interior regions of large dnodes, and that these interior regions are not overwritten by data belonging to other dnodes. A new test visits each object in a dataset. It verifies that the actual dnode size matches what was stored in the ztest block tag when it was created. It also verifies that the unused bonus buffer space is filled with the expected data patterns. ZFS Test Suite -------------- Added six new large dnode-specific tests, and integrated the dnodesize property into existing tests for zfs allow and send/recv. Send/Receive ------------ ZFS send streams for datasets containing large dnodes cannot be received on pools that don't support the large_dnode feature. A send stream with large dnodes sets a DMU_BACKUP_FEATURE_LARGE_DNODE flag which will be unrecognized by an incompatible receiving pool so that the zfs receive will fail gracefully. While not implemented here, it may be possible to generate a backward-compatible send stream from a dataset containing large dnodes. The implementation may be tricky, however, because the send object record for a large dnode would need to be resized to a 512 byte dnode, possibly kicking in a spill block in the process. This means we would need to construct a new SA layout and possibly register it in the SA layout object. The SA layout is normally just sent as an ordinary object record. But if we are constructing new layouts while generating the send stream we'd have to build the SA layout object dynamically and send it at the end of the stream. For sending and receiving between pools that do support large dnodes, the drr_object send record type is extended with a new field to store the dnode slot count. This field was repurposed from unused padding in the structure. ZIL Replay ---------- The dnode slot count is stored in the uppermost 8 bits of the lr_foid field. The bits were unused as the object id is currently capped at 48 bits. Resizing Dnodes --------------- It should be possible to resize a dnode when it is dirtied if the current dnodesize dataset property differs from the dnode's size, but this functionality is not currently implemented. Clearly a dnode can only grow if there are sufficient contiguous unused slots in the dnode block, but it should always be possible to shrink a dnode. Growing dnodes may be useful to reduce fragmentation in a pool with many spill blocks in use. Shrinking dnodes may be useful to allow sending a dataset to a pool that doesn't support the large_dnode feature. Feature Reference Counting -------------------------- The reference count for the large_dnode pool feature tracks the number of datasets that have ever contained a dnode of size larger than 512 bytes. The first time a large dnode is created in a dataset the dataset is converted to an extensible dataset. This is a one-way operation and the only way to decrement the feature count is to destroy the dataset, even if the dataset no longer contains any large dnodes. The complexity of reference counting on a per-dnode basis was too high, so we chose to track it on a per-dataset basis similarly to the large_block feature. Signed-off-by: Ned Bass <bass6@llnl.gov> Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov> Closes #3542
2016-03-17 04:25:34 +03:00
ztest_od_init(od + b, id, FTAG, b, DMU_OT_UINT64_OTHER,
0, 0, 0);
2008-11-20 23:01:55 +03:00
/*
* Destroy the previous batch of objects, create a new batch,
* and do some I/O on the new objects.
*/
if (ztest_object_init(zd, od, size, B_TRUE) != 0) {
zd->zd_od = NULL;
umem_free(od, size);
return;
}
2008-11-20 23:01:55 +03:00
while (ztest_random(4 * batchsize) != 0)
ztest_io(zd, od[ztest_random(batchsize)].od_object,
ztest_random(ZTEST_RANGE_LOCKS) << SPA_MAXBLOCKSHIFT);
umem_free(od, size);
2008-11-20 23:01:55 +03:00
}
/*
* Rewind the global allocator to verify object allocation backfilling.
*/
void
ztest_dmu_object_next_chunk(ztest_ds_t *zd, uint64_t id)
{
(void) id;
objset_t *os = zd->zd_os;
Cleanup: Specify unsignedness on things that should not be signed In #13871, zfs_vdev_aggregation_limit_non_rotating and zfs_vdev_aggregation_limit being signed was pointed out as a possible reason not to eliminate an unnecessary MAX(unsigned, 0) since the unsigned value was assigned from them. There is no reason for these module parameters to be signed and upon inspection, it was found that there are a number of other module parameters that are signed, but should not be, so we make them unsigned. Making them unsigned made it clear that some other variables in the code should also be unsigned, so we also make those unsigned. This prevents users from setting negative values that could potentially cause bad behaviors. It also makes the code slightly easier to understand. Mostly module parameters that deal with timeouts, limits, bitshifts and percentages are made unsigned by this. Any that are boolean are left signed, since whether booleans should be considered signed or unsigned does not matter. Making zfs_arc_lotsfree_percent unsigned caused a `zfs_arc_lotsfree_percent >= 0` check to become redundant, so it was removed. Removing the check was also necessary to prevent a compiler error from -Werror=type-limits. Several end of line comments had to be moved to their own lines because replacing int with uint_t caused us to exceed the 80 character limit enforced by cstyle.pl. The following were kept signed because they are passed to taskq_create(), which expects signed values and modifying the OpenSolaris/Illumos DDI is out of scope of this patch: * metaslab_load_pct * zfs_sync_taskq_batch_pct * zfs_zil_clean_taskq_nthr_pct * zfs_zil_clean_taskq_minalloc * zfs_zil_clean_taskq_maxalloc * zfs_arc_prune_task_threads Also, negative values in those parameters was found to be harmless. The following were left signed because either negative values make sense, or more analysis was needed to determine whether negative values should be disallowed: * zfs_metaslab_switch_threshold * zfs_pd_bytes_max * zfs_livelist_min_percent_shared zfs_multihost_history was made static to be consistent with other parameters. A number of module parameters were marked as signed, but in reality referenced unsigned variables. upgrade_errlog_limit is one of the numerous examples. In the case of zfs_vdev_async_read_max_active, it was already uint32_t, but zdb had an extern int declaration for it. Interestingly, the documentation in zfs.4 was right for upgrade_errlog_limit despite the module parameter being wrongly marked, while the documentation for zfs_vdev_async_read_max_active (and friends) was wrong. It was also wrong for zstd_abort_size, which was unsigned, but was documented as signed. Also, the documentation in zfs.4 incorrectly described the following parameters as ulong when they were int: * zfs_arc_meta_adjust_restarts * zfs_override_estimate_recordsize They are now uint_t as of this patch and thus the man page has been updated to describe them as uint. dbuf_state_index was left alone since it does nothing and perhaps should be removed in another patch. If any module parameters were missed, they were not found by `grep -r 'ZFS_MODULE_PARAM' | grep ', INT'`. I did find a few that grep missed, but only because they were in files that had hits. This patch intentionally did not attempt to address whether some of these module parameters should be elevated to 64-bit parameters, because the length of a long on 32-bit is 32-bit. Lastly, it was pointed out during review that uint_t is a better match for these variables than uint32_t because FreeBSD kernel parameter definitions are designed for uint_t, whose bit width can change in future memory models. As a result, we change the existing parameters that are uint32_t to use uint_t. Reviewed-by: Alexander Motin <mav@FreeBSD.org> Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov> Reviewed-by: Neal Gompa <ngompa@datto.com> Signed-off-by: Richard Yao <richard.yao@alumni.stonybrook.edu> Closes #13875
2022-09-28 02:42:41 +03:00
uint_t dnodes_per_chunk = 1 << dmu_object_alloc_chunk_shift;
uint64_t object;
/*
* Rewind the global allocator randomly back to a lower object number
* to force backfilling and reclamation of recently freed dnodes.
*/
mutex_enter(&os->os_obj_lock);
object = ztest_random(os->os_obj_next_chunk);
os->os_obj_next_chunk = P2ALIGN_TYPED(object, dnodes_per_chunk,
uint64_t);
mutex_exit(&os->os_obj_lock);
}
#undef OD_ARRAY_SIZE
#define OD_ARRAY_SIZE 2
2008-11-20 23:01:55 +03:00
/*
* Verify that dmu_{read,write} work as expected.
*/
void
ztest_dmu_read_write(ztest_ds_t *zd, uint64_t id)
2008-11-20 23:01:55 +03:00
{
int size;
ztest_od_t *od;
objset_t *os = zd->zd_os;
size = sizeof (ztest_od_t) * OD_ARRAY_SIZE;
od = umem_alloc(size, UMEM_NOFAIL);
2008-11-20 23:01:55 +03:00
dmu_tx_t *tx;
int freeit, error;
uint64_t i, n, s, txg;
2008-11-20 23:01:55 +03:00
bufwad_t *packbuf, *bigbuf, *pack, *bigH, *bigT;
uint64_t packobj, packoff, packsize, bigobj, bigoff, bigsize;
uint64_t chunksize = (1000 + ztest_random(1000)) * sizeof (uint64_t);
2008-11-20 23:01:55 +03:00
uint64_t regions = 997;
uint64_t stride = 123456789ULL;
uint64_t width = 40;
int free_percent = 5;
Adding Direct IO Support Adding O_DIRECT support to ZFS to bypass the ARC for writes/reads. O_DIRECT support in ZFS will always ensure there is coherency between buffered and O_DIRECT IO requests. This ensures that all IO requests, whether buffered or direct, will see the same file contents at all times. Just as in other FS's , O_DIRECT does not imply O_SYNC. While data is written directly to VDEV disks, metadata will not be synced until the associated TXG is synced. For both O_DIRECT read and write request the offset and request sizes, at a minimum, must be PAGE_SIZE aligned. In the event they are not, then EINVAL is returned unless the direct property is set to always (see below). For O_DIRECT writes: The request also must be block aligned (recordsize) or the write request will take the normal (buffered) write path. In the event that request is block aligned and a cached copy of the buffer in the ARC, then it will be discarded from the ARC forcing all further reads to retrieve the data from disk. For O_DIRECT reads: The only alignment restrictions are PAGE_SIZE alignment. In the event that the requested data is in buffered (in the ARC) it will just be copied from the ARC into the user buffer. For both O_DIRECT writes and reads the O_DIRECT flag will be ignored in the event that file contents are mmap'ed. In this case, all requests that are at least PAGE_SIZE aligned will just fall back to the buffered paths. If the request however is not PAGE_SIZE aligned, EINVAL will be returned as always regardless if the file's contents are mmap'ed. Since O_DIRECT writes go through the normal ZIO pipeline, the following operations are supported just as with normal buffered writes: Checksum Compression Encryption Erasure Coding There is one caveat for the data integrity of O_DIRECT writes that is distinct for each of the OS's supported by ZFS. FreeBSD - FreeBSD is able to place user pages under write protection so any data in the user buffers and written directly down to the VDEV disks is guaranteed to not change. There is no concern with data integrity and O_DIRECT writes. Linux - Linux is not able to place anonymous user pages under write protection. Because of this, if the user decides to manipulate the page contents while the write operation is occurring, data integrity can not be guaranteed. However, there is a module parameter `zfs_vdev_direct_write_verify` that controls the if a O_DIRECT writes that can occur to a top-level VDEV before a checksum verify is run before the contents of the I/O buffer are committed to disk. In the event of a checksum verification failure the write will return EIO. The number of O_DIRECT write checksum verification errors can be observed by doing `zpool status -d`, which will list all verification errors that have occurred on a top-level VDEV. Along with `zpool status`, a ZED event will be issues as `dio_verify` when a checksum verification error occurs. ZVOLs and dedup is not currently supported with Direct I/O. A new dataset property `direct` has been added with the following 3 allowable values: disabled - Accepts O_DIRECT flag, but silently ignores it and treats the request as a buffered IO request. standard - Follows the alignment restrictions outlined above for write/read IO requests when the O_DIRECT flag is used. always - Treats every write/read IO request as though it passed O_DIRECT and will do O_DIRECT if the alignment restrictions are met otherwise will redirect through the ARC. This property will not allow a request to fail. There is also a module parameter zfs_dio_enabled that can be used to force all reads and writes through the ARC. By setting this module parameter to 0, it mimics as if the direct dataset property is set to disabled. Reviewed-by: Brian Behlendorf <behlendorf@llnl.gov> Reviewed-by: Alexander Motin <mav@FreeBSD.org> Reviewed-by: Tony Hutter <hutter2@llnl.gov> Signed-off-by: Brian Atkinson <batkinson@lanl.gov> Co-authored-by: Mark Maybee <mark.maybee@delphix.com> Co-authored-by: Matt Macy <mmacy@FreeBSD.org> Co-authored-by: Brian Behlendorf <behlendorf@llnl.gov> Closes #10018
2024-09-14 23:47:59 +03:00
uint32_t dmu_read_flags = DMU_READ_PREFETCH;
/*
* We will randomly set when to do O_DIRECT on a read.
*/
if (ztest_random(4) == 0)
dmu_read_flags |= DMU_DIRECTIO;
2008-11-20 23:01:55 +03:00
/*
* This test uses two objects, packobj and bigobj, that are always
* updated together (i.e. in the same tx) so that their contents are
* in sync and can be compared. Their contents relate to each other
* in a simple way: packobj is a dense array of 'bufwad' structures,
* while bigobj is a sparse array of the same bufwads. Specifically,
* for any index n, there are three bufwads that should be identical:
*
* packobj, at offset n * sizeof (bufwad_t)
* bigobj, at the head of the nth chunk
* bigobj, at the tail of the nth chunk
*
* The chunk size is arbitrary. It doesn't have to be a power of two,
* and it doesn't have any relation to the object blocksize.
* The only requirement is that it can hold at least two bufwads.
*
* Normally, we write the bufwad to each of these locations.
* However, free_percent of the time we instead write zeroes to
* packobj and perform a dmu_free_range() on bigobj. By comparing
* bigobj to packobj, we can verify that the DMU is correctly
* tracking which parts of an object are allocated and free,
* and that the contents of the allocated blocks are correct.
*/
/*
* Read the directory info. If it's the first time, set things up.
*/
Implement large_dnode pool feature Justification ------------- This feature adds support for variable length dnodes. Our motivation is to eliminate the overhead associated with using spill blocks. Spill blocks are used to store system attribute data (i.e. file metadata) that does not fit in the dnode's bonus buffer. By allowing a larger bonus buffer area the use of a spill block can be avoided. Spill blocks potentially incur an additional read I/O for every dnode in a dnode block. As a worst case example, reading 32 dnodes from a 16k dnode block and all of the spill blocks could issue 33 separate reads. Now suppose those dnodes have size 1024 and therefore don't need spill blocks. Then the worst case number of blocks read is reduced to from 33 to two--one per dnode block. In practice spill blocks may tend to be co-located on disk with the dnode blocks so the reduction in I/O would not be this drastic. In a badly fragmented pool, however, the improvement could be significant. ZFS-on-Linux systems that make heavy use of extended attributes would benefit from this feature. In particular, ZFS-on-Linux supports the xattr=sa dataset property which allows file extended attribute data to be stored in the dnode bonus buffer as an alternative to the traditional directory-based format. Workloads such as SELinux and the Lustre distributed filesystem often store enough xattr data to force spill bocks when xattr=sa is in effect. Large dnodes may therefore provide a performance benefit to such systems. Other use cases that may benefit from this feature include files with large ACLs and symbolic links with long target names. Furthermore, this feature may be desirable on other platforms in case future applications or features are developed that could make use of a larger bonus buffer area. Implementation -------------- The size of a dnode may be a multiple of 512 bytes up to the size of a dnode block (currently 16384 bytes). A dn_extra_slots field was added to the current on-disk dnode_phys_t structure to describe the size of the physical dnode on disk. The 8 bits for this field were taken from the zero filled dn_pad2 field. The field represents how many "extra" dnode_phys_t slots a dnode consumes in its dnode block. This convention results in a value of 0 for 512 byte dnodes which preserves on-disk format compatibility with older software. Similarly, the in-memory dnode_t structure has a new dn_num_slots field to represent the total number of dnode_phys_t slots consumed on disk. Thus dn->dn_num_slots is 1 greater than the corresponding dnp->dn_extra_slots. This difference in convention was adopted because, unlike on-disk structures, backward compatibility is not a concern for in-memory objects, so we used a more natural way to represent size for a dnode_t. The default size for newly created dnodes is determined by the value of a new "dnodesize" dataset property. By default the property is set to "legacy" which is compatible with older software. Setting the property to "auto" will allow the filesystem to choose the most suitable dnode size. Currently this just sets the default dnode size to 1k, but future code improvements could dynamically choose a size based on observed workload patterns. Dnodes of varying sizes can coexist within the same dataset and even within the same dnode block. For example, to enable automatically-sized dnodes, run # zfs set dnodesize=auto tank/fish The user can also specify literal values for the dnodesize property. These are currently limited to powers of two from 1k to 16k. The power-of-2 limitation is only for simplicity of the user interface. Internally the implementation can handle any multiple of 512 up to 16k, and consumers of the DMU API can specify any legal dnode value. The size of a new dnode is determined at object allocation time and stored as a new field in the znode in-memory structure. New DMU interfaces are added to allow the consumer to specify the dnode size that a newly allocated object should use. Existing interfaces are unchanged to avoid having to update every call site and to preserve compatibility with external consumers such as Lustre. The new interfaces names are given below. The versions of these functions that don't take a dnodesize parameter now just call the _dnsize() versions with a dnodesize of 0, which means use the legacy dnode size. New DMU interfaces: dmu_object_alloc_dnsize() dmu_object_claim_dnsize() dmu_object_reclaim_dnsize() New ZAP interfaces: zap_create_dnsize() zap_create_norm_dnsize() zap_create_flags_dnsize() zap_create_claim_norm_dnsize() zap_create_link_dnsize() The constant DN_MAX_BONUSLEN is renamed to DN_OLD_MAX_BONUSLEN. The spa_maxdnodesize() function should be used to determine the maximum bonus length for a pool. These are a few noteworthy changes to key functions: * The prototype for dnode_hold_impl() now takes a "slots" parameter. When the DNODE_MUST_BE_FREE flag is set, this parameter is used to ensure the hole at the specified object offset is large enough to hold the dnode being created. The slots parameter is also used to ensure a dnode does not span multiple dnode blocks. In both of these cases, if a failure occurs, ENOSPC is returned. Keep in mind, these failure cases are only possible when using DNODE_MUST_BE_FREE. If the DNODE_MUST_BE_ALLOCATED flag is set, "slots" must be 0. dnode_hold_impl() will check if the requested dnode is already consumed as an extra dnode slot by an large dnode, in which case it returns ENOENT. * The function dmu_object_alloc() advances to the next dnode block if dnode_hold_impl() returns an error for a requested object. This is because the beginning of the next dnode block is the only location it can safely assume to either be a hole or a valid starting point for a dnode. * dnode_next_offset_level() and other functions that iterate through dnode blocks may no longer use a simple array indexing scheme. These now use the current dnode's dn_num_slots field to advance to the next dnode in the block. This is to ensure we properly skip the current dnode's bonus area and don't interpret it as a valid dnode. zdb --- The zdb command was updated to display a dnode's size under the "dnsize" column when the object is dumped. For ZIL create log records, zdb will now display the slot count for the object. ztest ----- Ztest chooses a random dnodesize for every newly created object. The random distribution is more heavily weighted toward small dnodes to better simulate real-world datasets. Unused bonus buffer space is filled with non-zero values computed from the object number, dataset id, offset, and generation number. This helps ensure that the dnode traversal code properly skips the interior regions of large dnodes, and that these interior regions are not overwritten by data belonging to other dnodes. A new test visits each object in a dataset. It verifies that the actual dnode size matches what was stored in the ztest block tag when it was created. It also verifies that the unused bonus buffer space is filled with the expected data patterns. ZFS Test Suite -------------- Added six new large dnode-specific tests, and integrated the dnodesize property into existing tests for zfs allow and send/recv. Send/Receive ------------ ZFS send streams for datasets containing large dnodes cannot be received on pools that don't support the large_dnode feature. A send stream with large dnodes sets a DMU_BACKUP_FEATURE_LARGE_DNODE flag which will be unrecognized by an incompatible receiving pool so that the zfs receive will fail gracefully. While not implemented here, it may be possible to generate a backward-compatible send stream from a dataset containing large dnodes. The implementation may be tricky, however, because the send object record for a large dnode would need to be resized to a 512 byte dnode, possibly kicking in a spill block in the process. This means we would need to construct a new SA layout and possibly register it in the SA layout object. The SA layout is normally just sent as an ordinary object record. But if we are constructing new layouts while generating the send stream we'd have to build the SA layout object dynamically and send it at the end of the stream. For sending and receiving between pools that do support large dnodes, the drr_object send record type is extended with a new field to store the dnode slot count. This field was repurposed from unused padding in the structure. ZIL Replay ---------- The dnode slot count is stored in the uppermost 8 bits of the lr_foid field. The bits were unused as the object id is currently capped at 48 bits. Resizing Dnodes --------------- It should be possible to resize a dnode when it is dirtied if the current dnodesize dataset property differs from the dnode's size, but this functionality is not currently implemented. Clearly a dnode can only grow if there are sufficient contiguous unused slots in the dnode block, but it should always be possible to shrink a dnode. Growing dnodes may be useful to reduce fragmentation in a pool with many spill blocks in use. Shrinking dnodes may be useful to allow sending a dataset to a pool that doesn't support the large_dnode feature. Feature Reference Counting -------------------------- The reference count for the large_dnode pool feature tracks the number of datasets that have ever contained a dnode of size larger than 512 bytes. The first time a large dnode is created in a dataset the dataset is converted to an extensible dataset. This is a one-way operation and the only way to decrement the feature count is to destroy the dataset, even if the dataset no longer contains any large dnodes. The complexity of reference counting on a per-dnode basis was too high, so we chose to track it on a per-dataset basis similarly to the large_block feature. Signed-off-by: Ned Bass <bass6@llnl.gov> Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov> Closes #3542
2016-03-17 04:25:34 +03:00
ztest_od_init(od, id, FTAG, 0, DMU_OT_UINT64_OTHER, 0, 0, chunksize);
ztest_od_init(od + 1, id, FTAG, 1, DMU_OT_UINT64_OTHER, 0, 0,
chunksize);
2008-11-20 23:01:55 +03:00
if (ztest_object_init(zd, od, size, B_FALSE) != 0) {
umem_free(od, size);
return;
}
2008-11-20 23:01:55 +03:00
bigobj = od[0].od_object;
packobj = od[1].od_object;
chunksize = od[0].od_gen;
ASSERT3U(chunksize, ==, od[1].od_gen);
2008-11-20 23:01:55 +03:00
/*
* Prefetch a random chunk of the big object.
* Our aim here is to get some async reads in flight
* for blocks that we may free below; the DMU should
* handle this race correctly.
*/
n = ztest_random(regions) * stride + ztest_random(width);
s = 1 + ztest_random(2 * width - 1);
dmu_prefetch(os, bigobj, 0, n * chunksize, s * chunksize,
ZIO_PRIORITY_SYNC_READ);
2008-11-20 23:01:55 +03:00
/*
* Pick a random index and compute the offsets into packobj and bigobj.
*/
n = ztest_random(regions) * stride + ztest_random(width);
s = 1 + ztest_random(width - 1);
packoff = n * sizeof (bufwad_t);
packsize = s * sizeof (bufwad_t);
bigoff = n * chunksize;
bigsize = s * chunksize;
2008-11-20 23:01:55 +03:00
packbuf = umem_alloc(packsize, UMEM_NOFAIL);
bigbuf = umem_alloc(bigsize, UMEM_NOFAIL);
/*
* free_percent of the time, free a range of bigobj rather than
* overwriting it.
*/
freeit = (ztest_random(100) < free_percent);
/*
* Read the current contents of our objects.
*/
error = dmu_read(os, packobj, packoff, packsize, packbuf,
Adding Direct IO Support Adding O_DIRECT support to ZFS to bypass the ARC for writes/reads. O_DIRECT support in ZFS will always ensure there is coherency between buffered and O_DIRECT IO requests. This ensures that all IO requests, whether buffered or direct, will see the same file contents at all times. Just as in other FS's , O_DIRECT does not imply O_SYNC. While data is written directly to VDEV disks, metadata will not be synced until the associated TXG is synced. For both O_DIRECT read and write request the offset and request sizes, at a minimum, must be PAGE_SIZE aligned. In the event they are not, then EINVAL is returned unless the direct property is set to always (see below). For O_DIRECT writes: The request also must be block aligned (recordsize) or the write request will take the normal (buffered) write path. In the event that request is block aligned and a cached copy of the buffer in the ARC, then it will be discarded from the ARC forcing all further reads to retrieve the data from disk. For O_DIRECT reads: The only alignment restrictions are PAGE_SIZE alignment. In the event that the requested data is in buffered (in the ARC) it will just be copied from the ARC into the user buffer. For both O_DIRECT writes and reads the O_DIRECT flag will be ignored in the event that file contents are mmap'ed. In this case, all requests that are at least PAGE_SIZE aligned will just fall back to the buffered paths. If the request however is not PAGE_SIZE aligned, EINVAL will be returned as always regardless if the file's contents are mmap'ed. Since O_DIRECT writes go through the normal ZIO pipeline, the following operations are supported just as with normal buffered writes: Checksum Compression Encryption Erasure Coding There is one caveat for the data integrity of O_DIRECT writes that is distinct for each of the OS's supported by ZFS. FreeBSD - FreeBSD is able to place user pages under write protection so any data in the user buffers and written directly down to the VDEV disks is guaranteed to not change. There is no concern with data integrity and O_DIRECT writes. Linux - Linux is not able to place anonymous user pages under write protection. Because of this, if the user decides to manipulate the page contents while the write operation is occurring, data integrity can not be guaranteed. However, there is a module parameter `zfs_vdev_direct_write_verify` that controls the if a O_DIRECT writes that can occur to a top-level VDEV before a checksum verify is run before the contents of the I/O buffer are committed to disk. In the event of a checksum verification failure the write will return EIO. The number of O_DIRECT write checksum verification errors can be observed by doing `zpool status -d`, which will list all verification errors that have occurred on a top-level VDEV. Along with `zpool status`, a ZED event will be issues as `dio_verify` when a checksum verification error occurs. ZVOLs and dedup is not currently supported with Direct I/O. A new dataset property `direct` has been added with the following 3 allowable values: disabled - Accepts O_DIRECT flag, but silently ignores it and treats the request as a buffered IO request. standard - Follows the alignment restrictions outlined above for write/read IO requests when the O_DIRECT flag is used. always - Treats every write/read IO request as though it passed O_DIRECT and will do O_DIRECT if the alignment restrictions are met otherwise will redirect through the ARC. This property will not allow a request to fail. There is also a module parameter zfs_dio_enabled that can be used to force all reads and writes through the ARC. By setting this module parameter to 0, it mimics as if the direct dataset property is set to disabled. Reviewed-by: Brian Behlendorf <behlendorf@llnl.gov> Reviewed-by: Alexander Motin <mav@FreeBSD.org> Reviewed-by: Tony Hutter <hutter2@llnl.gov> Signed-off-by: Brian Atkinson <batkinson@lanl.gov> Co-authored-by: Mark Maybee <mark.maybee@delphix.com> Co-authored-by: Matt Macy <mmacy@FreeBSD.org> Co-authored-by: Brian Behlendorf <behlendorf@llnl.gov> Closes #10018
2024-09-14 23:47:59 +03:00
dmu_read_flags);
ASSERT0(error);
error = dmu_read(os, bigobj, bigoff, bigsize, bigbuf,
Adding Direct IO Support Adding O_DIRECT support to ZFS to bypass the ARC for writes/reads. O_DIRECT support in ZFS will always ensure there is coherency between buffered and O_DIRECT IO requests. This ensures that all IO requests, whether buffered or direct, will see the same file contents at all times. Just as in other FS's , O_DIRECT does not imply O_SYNC. While data is written directly to VDEV disks, metadata will not be synced until the associated TXG is synced. For both O_DIRECT read and write request the offset and request sizes, at a minimum, must be PAGE_SIZE aligned. In the event they are not, then EINVAL is returned unless the direct property is set to always (see below). For O_DIRECT writes: The request also must be block aligned (recordsize) or the write request will take the normal (buffered) write path. In the event that request is block aligned and a cached copy of the buffer in the ARC, then it will be discarded from the ARC forcing all further reads to retrieve the data from disk. For O_DIRECT reads: The only alignment restrictions are PAGE_SIZE alignment. In the event that the requested data is in buffered (in the ARC) it will just be copied from the ARC into the user buffer. For both O_DIRECT writes and reads the O_DIRECT flag will be ignored in the event that file contents are mmap'ed. In this case, all requests that are at least PAGE_SIZE aligned will just fall back to the buffered paths. If the request however is not PAGE_SIZE aligned, EINVAL will be returned as always regardless if the file's contents are mmap'ed. Since O_DIRECT writes go through the normal ZIO pipeline, the following operations are supported just as with normal buffered writes: Checksum Compression Encryption Erasure Coding There is one caveat for the data integrity of O_DIRECT writes that is distinct for each of the OS's supported by ZFS. FreeBSD - FreeBSD is able to place user pages under write protection so any data in the user buffers and written directly down to the VDEV disks is guaranteed to not change. There is no concern with data integrity and O_DIRECT writes. Linux - Linux is not able to place anonymous user pages under write protection. Because of this, if the user decides to manipulate the page contents while the write operation is occurring, data integrity can not be guaranteed. However, there is a module parameter `zfs_vdev_direct_write_verify` that controls the if a O_DIRECT writes that can occur to a top-level VDEV before a checksum verify is run before the contents of the I/O buffer are committed to disk. In the event of a checksum verification failure the write will return EIO. The number of O_DIRECT write checksum verification errors can be observed by doing `zpool status -d`, which will list all verification errors that have occurred on a top-level VDEV. Along with `zpool status`, a ZED event will be issues as `dio_verify` when a checksum verification error occurs. ZVOLs and dedup is not currently supported with Direct I/O. A new dataset property `direct` has been added with the following 3 allowable values: disabled - Accepts O_DIRECT flag, but silently ignores it and treats the request as a buffered IO request. standard - Follows the alignment restrictions outlined above for write/read IO requests when the O_DIRECT flag is used. always - Treats every write/read IO request as though it passed O_DIRECT and will do O_DIRECT if the alignment restrictions are met otherwise will redirect through the ARC. This property will not allow a request to fail. There is also a module parameter zfs_dio_enabled that can be used to force all reads and writes through the ARC. By setting this module parameter to 0, it mimics as if the direct dataset property is set to disabled. Reviewed-by: Brian Behlendorf <behlendorf@llnl.gov> Reviewed-by: Alexander Motin <mav@FreeBSD.org> Reviewed-by: Tony Hutter <hutter2@llnl.gov> Signed-off-by: Brian Atkinson <batkinson@lanl.gov> Co-authored-by: Mark Maybee <mark.maybee@delphix.com> Co-authored-by: Matt Macy <mmacy@FreeBSD.org> Co-authored-by: Brian Behlendorf <behlendorf@llnl.gov> Closes #10018
2024-09-14 23:47:59 +03:00
dmu_read_flags);
ASSERT0(error);
2008-11-20 23:01:55 +03:00
/*
* Get a tx for the mods to both packobj and bigobj.
*/
tx = dmu_tx_create(os);
dmu_tx_hold_write(tx, packobj, packoff, packsize);
2008-11-20 23:01:55 +03:00
if (freeit)
dmu_tx_hold_free(tx, bigobj, bigoff, bigsize);
2008-11-20 23:01:55 +03:00
else
dmu_tx_hold_write(tx, bigobj, bigoff, bigsize);
2008-11-20 23:01:55 +03:00
/* This accounts for setting the checksum/compression. */
dmu_tx_hold_bonus(tx, bigobj);
txg = ztest_tx_assign(tx, TXG_MIGHTWAIT, FTAG);
if (txg == 0) {
2008-11-20 23:01:55 +03:00
umem_free(packbuf, packsize);
umem_free(bigbuf, bigsize);
umem_free(od, size);
2008-11-20 23:01:55 +03:00
return;
}
enum zio_checksum cksum;
do {
cksum = (enum zio_checksum)
ztest_random_dsl_prop(ZFS_PROP_CHECKSUM);
} while (cksum >= ZIO_CHECKSUM_LEGACY_FUNCTIONS);
dmu_object_set_checksum(os, bigobj, cksum, tx);
enum zio_compress comp;
do {
comp = (enum zio_compress)
ztest_random_dsl_prop(ZFS_PROP_COMPRESSION);
} while (comp >= ZIO_COMPRESS_LEGACY_FUNCTIONS);
dmu_object_set_compress(os, bigobj, comp, tx);
2008-11-20 23:01:55 +03:00
/*
* For each index from n to n + s, verify that the existing bufwad
* in packobj matches the bufwads at the head and tail of the
* corresponding chunk in bigobj. Then update all three bufwads
* with the new values we want to write out.
*/
for (i = 0; i < s; i++) {
/* LINTED */
pack = (bufwad_t *)((char *)packbuf + i * sizeof (bufwad_t));
/* LINTED */
bigH = (bufwad_t *)((char *)bigbuf + i * chunksize);
2008-11-20 23:01:55 +03:00
/* LINTED */
bigT = (bufwad_t *)((char *)bigH + chunksize) - 1;
2008-11-20 23:01:55 +03:00
ASSERT3U((uintptr_t)bigH - (uintptr_t)bigbuf, <, bigsize);
ASSERT3U((uintptr_t)bigT - (uintptr_t)bigbuf, <, bigsize);
2008-11-20 23:01:55 +03:00
if (pack->bw_txg > txg)
fatal(B_FALSE,
"future leak: got %"PRIx64", open txg is %"PRIx64"",
2008-11-20 23:01:55 +03:00
pack->bw_txg, txg);
if (pack->bw_data != 0 && pack->bw_index != n + i)
fatal(B_FALSE, "wrong index: "
"got %"PRIx64", wanted %"PRIx64"+%"PRIx64"",
2008-11-20 23:01:55 +03:00
pack->bw_index, n, i);
if (memcmp(pack, bigH, sizeof (bufwad_t)) != 0)
fatal(B_FALSE, "pack/bigH mismatch in %p/%p",
pack, bigH);
2008-11-20 23:01:55 +03:00
if (memcmp(pack, bigT, sizeof (bufwad_t)) != 0)
fatal(B_FALSE, "pack/bigT mismatch in %p/%p",
pack, bigT);
2008-11-20 23:01:55 +03:00
if (freeit) {
memset(pack, 0, sizeof (bufwad_t));
2008-11-20 23:01:55 +03:00
} else {
pack->bw_index = n + i;
pack->bw_txg = txg;
pack->bw_data = 1 + ztest_random(-2ULL);
}
*bigH = *pack;
*bigT = *pack;
}
/*
* We've verified all the old bufwads, and made new ones.
* Now write them out.
*/
dmu_write(os, packobj, packoff, packsize, packbuf, tx);
2008-11-20 23:01:55 +03:00
if (freeit) {
if (ztest_opts.zo_verbose >= 7) {
(void) printf("freeing offset %"PRIx64" size %"PRIx64""
" txg %"PRIx64"\n",
bigoff, bigsize, txg);
2008-11-20 23:01:55 +03:00
}
VERIFY0(dmu_free_range(os, bigobj, bigoff, bigsize, tx));
2008-11-20 23:01:55 +03:00
} else {
if (ztest_opts.zo_verbose >= 7) {
(void) printf("writing offset %"PRIx64" size %"PRIx64""
" txg %"PRIx64"\n",
bigoff, bigsize, txg);
2008-11-20 23:01:55 +03:00
}
dmu_write(os, bigobj, bigoff, bigsize, bigbuf, tx);
2008-11-20 23:01:55 +03:00
}
dmu_tx_commit(tx);
/*
* Sanity check the stuff we just wrote.
*/
{
void *packcheck = umem_alloc(packsize, UMEM_NOFAIL);
void *bigcheck = umem_alloc(bigsize, UMEM_NOFAIL);
VERIFY0(dmu_read(os, packobj, packoff,
Adding Direct IO Support Adding O_DIRECT support to ZFS to bypass the ARC for writes/reads. O_DIRECT support in ZFS will always ensure there is coherency between buffered and O_DIRECT IO requests. This ensures that all IO requests, whether buffered or direct, will see the same file contents at all times. Just as in other FS's , O_DIRECT does not imply O_SYNC. While data is written directly to VDEV disks, metadata will not be synced until the associated TXG is synced. For both O_DIRECT read and write request the offset and request sizes, at a minimum, must be PAGE_SIZE aligned. In the event they are not, then EINVAL is returned unless the direct property is set to always (see below). For O_DIRECT writes: The request also must be block aligned (recordsize) or the write request will take the normal (buffered) write path. In the event that request is block aligned and a cached copy of the buffer in the ARC, then it will be discarded from the ARC forcing all further reads to retrieve the data from disk. For O_DIRECT reads: The only alignment restrictions are PAGE_SIZE alignment. In the event that the requested data is in buffered (in the ARC) it will just be copied from the ARC into the user buffer. For both O_DIRECT writes and reads the O_DIRECT flag will be ignored in the event that file contents are mmap'ed. In this case, all requests that are at least PAGE_SIZE aligned will just fall back to the buffered paths. If the request however is not PAGE_SIZE aligned, EINVAL will be returned as always regardless if the file's contents are mmap'ed. Since O_DIRECT writes go through the normal ZIO pipeline, the following operations are supported just as with normal buffered writes: Checksum Compression Encryption Erasure Coding There is one caveat for the data integrity of O_DIRECT writes that is distinct for each of the OS's supported by ZFS. FreeBSD - FreeBSD is able to place user pages under write protection so any data in the user buffers and written directly down to the VDEV disks is guaranteed to not change. There is no concern with data integrity and O_DIRECT writes. Linux - Linux is not able to place anonymous user pages under write protection. Because of this, if the user decides to manipulate the page contents while the write operation is occurring, data integrity can not be guaranteed. However, there is a module parameter `zfs_vdev_direct_write_verify` that controls the if a O_DIRECT writes that can occur to a top-level VDEV before a checksum verify is run before the contents of the I/O buffer are committed to disk. In the event of a checksum verification failure the write will return EIO. The number of O_DIRECT write checksum verification errors can be observed by doing `zpool status -d`, which will list all verification errors that have occurred on a top-level VDEV. Along with `zpool status`, a ZED event will be issues as `dio_verify` when a checksum verification error occurs. ZVOLs and dedup is not currently supported with Direct I/O. A new dataset property `direct` has been added with the following 3 allowable values: disabled - Accepts O_DIRECT flag, but silently ignores it and treats the request as a buffered IO request. standard - Follows the alignment restrictions outlined above for write/read IO requests when the O_DIRECT flag is used. always - Treats every write/read IO request as though it passed O_DIRECT and will do O_DIRECT if the alignment restrictions are met otherwise will redirect through the ARC. This property will not allow a request to fail. There is also a module parameter zfs_dio_enabled that can be used to force all reads and writes through the ARC. By setting this module parameter to 0, it mimics as if the direct dataset property is set to disabled. Reviewed-by: Brian Behlendorf <behlendorf@llnl.gov> Reviewed-by: Alexander Motin <mav@FreeBSD.org> Reviewed-by: Tony Hutter <hutter2@llnl.gov> Signed-off-by: Brian Atkinson <batkinson@lanl.gov> Co-authored-by: Mark Maybee <mark.maybee@delphix.com> Co-authored-by: Matt Macy <mmacy@FreeBSD.org> Co-authored-by: Brian Behlendorf <behlendorf@llnl.gov> Closes #10018
2024-09-14 23:47:59 +03:00
packsize, packcheck, dmu_read_flags));
VERIFY0(dmu_read(os, bigobj, bigoff,
Adding Direct IO Support Adding O_DIRECT support to ZFS to bypass the ARC for writes/reads. O_DIRECT support in ZFS will always ensure there is coherency between buffered and O_DIRECT IO requests. This ensures that all IO requests, whether buffered or direct, will see the same file contents at all times. Just as in other FS's , O_DIRECT does not imply O_SYNC. While data is written directly to VDEV disks, metadata will not be synced until the associated TXG is synced. For both O_DIRECT read and write request the offset and request sizes, at a minimum, must be PAGE_SIZE aligned. In the event they are not, then EINVAL is returned unless the direct property is set to always (see below). For O_DIRECT writes: The request also must be block aligned (recordsize) or the write request will take the normal (buffered) write path. In the event that request is block aligned and a cached copy of the buffer in the ARC, then it will be discarded from the ARC forcing all further reads to retrieve the data from disk. For O_DIRECT reads: The only alignment restrictions are PAGE_SIZE alignment. In the event that the requested data is in buffered (in the ARC) it will just be copied from the ARC into the user buffer. For both O_DIRECT writes and reads the O_DIRECT flag will be ignored in the event that file contents are mmap'ed. In this case, all requests that are at least PAGE_SIZE aligned will just fall back to the buffered paths. If the request however is not PAGE_SIZE aligned, EINVAL will be returned as always regardless if the file's contents are mmap'ed. Since O_DIRECT writes go through the normal ZIO pipeline, the following operations are supported just as with normal buffered writes: Checksum Compression Encryption Erasure Coding There is one caveat for the data integrity of O_DIRECT writes that is distinct for each of the OS's supported by ZFS. FreeBSD - FreeBSD is able to place user pages under write protection so any data in the user buffers and written directly down to the VDEV disks is guaranteed to not change. There is no concern with data integrity and O_DIRECT writes. Linux - Linux is not able to place anonymous user pages under write protection. Because of this, if the user decides to manipulate the page contents while the write operation is occurring, data integrity can not be guaranteed. However, there is a module parameter `zfs_vdev_direct_write_verify` that controls the if a O_DIRECT writes that can occur to a top-level VDEV before a checksum verify is run before the contents of the I/O buffer are committed to disk. In the event of a checksum verification failure the write will return EIO. The number of O_DIRECT write checksum verification errors can be observed by doing `zpool status -d`, which will list all verification errors that have occurred on a top-level VDEV. Along with `zpool status`, a ZED event will be issues as `dio_verify` when a checksum verification error occurs. ZVOLs and dedup is not currently supported with Direct I/O. A new dataset property `direct` has been added with the following 3 allowable values: disabled - Accepts O_DIRECT flag, but silently ignores it and treats the request as a buffered IO request. standard - Follows the alignment restrictions outlined above for write/read IO requests when the O_DIRECT flag is used. always - Treats every write/read IO request as though it passed O_DIRECT and will do O_DIRECT if the alignment restrictions are met otherwise will redirect through the ARC. This property will not allow a request to fail. There is also a module parameter zfs_dio_enabled that can be used to force all reads and writes through the ARC. By setting this module parameter to 0, it mimics as if the direct dataset property is set to disabled. Reviewed-by: Brian Behlendorf <behlendorf@llnl.gov> Reviewed-by: Alexander Motin <mav@FreeBSD.org> Reviewed-by: Tony Hutter <hutter2@llnl.gov> Signed-off-by: Brian Atkinson <batkinson@lanl.gov> Co-authored-by: Mark Maybee <mark.maybee@delphix.com> Co-authored-by: Matt Macy <mmacy@FreeBSD.org> Co-authored-by: Brian Behlendorf <behlendorf@llnl.gov> Closes #10018
2024-09-14 23:47:59 +03:00
bigsize, bigcheck, dmu_read_flags));
2008-11-20 23:01:55 +03:00
ASSERT0(memcmp(packbuf, packcheck, packsize));
ASSERT0(memcmp(bigbuf, bigcheck, bigsize));
2008-11-20 23:01:55 +03:00
umem_free(packcheck, packsize);
umem_free(bigcheck, bigsize);
}
umem_free(packbuf, packsize);
umem_free(bigbuf, bigsize);
umem_free(od, size);
2008-11-20 23:01:55 +03:00
}
static void
2009-07-03 02:44:48 +04:00
compare_and_update_pbbufs(uint64_t s, bufwad_t *packbuf, bufwad_t *bigbuf,
uint64_t bigsize, uint64_t n, uint64_t chunksize, uint64_t txg)
2009-07-03 02:44:48 +04:00
{
uint64_t i;
bufwad_t *pack;
bufwad_t *bigH;
bufwad_t *bigT;
/*
* For each index from n to n + s, verify that the existing bufwad
* in packobj matches the bufwads at the head and tail of the
* corresponding chunk in bigobj. Then update all three bufwads
* with the new values we want to write out.
*/
for (i = 0; i < s; i++) {
/* LINTED */
pack = (bufwad_t *)((char *)packbuf + i * sizeof (bufwad_t));
/* LINTED */
bigH = (bufwad_t *)((char *)bigbuf + i * chunksize);
2009-07-03 02:44:48 +04:00
/* LINTED */
bigT = (bufwad_t *)((char *)bigH + chunksize) - 1;
2009-07-03 02:44:48 +04:00
ASSERT3U((uintptr_t)bigH - (uintptr_t)bigbuf, <, bigsize);
ASSERT3U((uintptr_t)bigT - (uintptr_t)bigbuf, <, bigsize);
2009-07-03 02:44:48 +04:00
if (pack->bw_txg > txg)
fatal(B_FALSE,
"future leak: got %"PRIx64", open txg is %"PRIx64"",
2009-07-03 02:44:48 +04:00
pack->bw_txg, txg);
if (pack->bw_data != 0 && pack->bw_index != n + i)
fatal(B_FALSE, "wrong index: "
"got %"PRIx64", wanted %"PRIx64"+%"PRIx64"",
2009-07-03 02:44:48 +04:00
pack->bw_index, n, i);
if (memcmp(pack, bigH, sizeof (bufwad_t)) != 0)
fatal(B_FALSE, "pack/bigH mismatch in %p/%p",
pack, bigH);
2009-07-03 02:44:48 +04:00
if (memcmp(pack, bigT, sizeof (bufwad_t)) != 0)
fatal(B_FALSE, "pack/bigT mismatch in %p/%p",
pack, bigT);
2009-07-03 02:44:48 +04:00
pack->bw_index = n + i;
pack->bw_txg = txg;
pack->bw_data = 1 + ztest_random(-2ULL);
*bigH = *pack;
*bigT = *pack;
}
}
#undef OD_ARRAY_SIZE
#define OD_ARRAY_SIZE 2
2009-07-03 02:44:48 +04:00
void
ztest_dmu_read_write_zcopy(ztest_ds_t *zd, uint64_t id)
2009-07-03 02:44:48 +04:00
{
objset_t *os = zd->zd_os;
ztest_od_t *od;
2009-07-03 02:44:48 +04:00
dmu_tx_t *tx;
uint64_t i;
int error;
int size;
2009-07-03 02:44:48 +04:00
uint64_t n, s, txg;
bufwad_t *packbuf, *bigbuf;
uint64_t packobj, packoff, packsize, bigobj, bigoff, bigsize;
uint64_t blocksize = ztest_random_blocksize();
uint64_t chunksize = blocksize;
2009-07-03 02:44:48 +04:00
uint64_t regions = 997;
uint64_t stride = 123456789ULL;
uint64_t width = 9;
dmu_buf_t *bonus_db;
arc_buf_t **bigbuf_arcbufs;
dmu_object_info_t doi;
Adding Direct IO Support Adding O_DIRECT support to ZFS to bypass the ARC for writes/reads. O_DIRECT support in ZFS will always ensure there is coherency between buffered and O_DIRECT IO requests. This ensures that all IO requests, whether buffered or direct, will see the same file contents at all times. Just as in other FS's , O_DIRECT does not imply O_SYNC. While data is written directly to VDEV disks, metadata will not be synced until the associated TXG is synced. For both O_DIRECT read and write request the offset and request sizes, at a minimum, must be PAGE_SIZE aligned. In the event they are not, then EINVAL is returned unless the direct property is set to always (see below). For O_DIRECT writes: The request also must be block aligned (recordsize) or the write request will take the normal (buffered) write path. In the event that request is block aligned and a cached copy of the buffer in the ARC, then it will be discarded from the ARC forcing all further reads to retrieve the data from disk. For O_DIRECT reads: The only alignment restrictions are PAGE_SIZE alignment. In the event that the requested data is in buffered (in the ARC) it will just be copied from the ARC into the user buffer. For both O_DIRECT writes and reads the O_DIRECT flag will be ignored in the event that file contents are mmap'ed. In this case, all requests that are at least PAGE_SIZE aligned will just fall back to the buffered paths. If the request however is not PAGE_SIZE aligned, EINVAL will be returned as always regardless if the file's contents are mmap'ed. Since O_DIRECT writes go through the normal ZIO pipeline, the following operations are supported just as with normal buffered writes: Checksum Compression Encryption Erasure Coding There is one caveat for the data integrity of O_DIRECT writes that is distinct for each of the OS's supported by ZFS. FreeBSD - FreeBSD is able to place user pages under write protection so any data in the user buffers and written directly down to the VDEV disks is guaranteed to not change. There is no concern with data integrity and O_DIRECT writes. Linux - Linux is not able to place anonymous user pages under write protection. Because of this, if the user decides to manipulate the page contents while the write operation is occurring, data integrity can not be guaranteed. However, there is a module parameter `zfs_vdev_direct_write_verify` that controls the if a O_DIRECT writes that can occur to a top-level VDEV before a checksum verify is run before the contents of the I/O buffer are committed to disk. In the event of a checksum verification failure the write will return EIO. The number of O_DIRECT write checksum verification errors can be observed by doing `zpool status -d`, which will list all verification errors that have occurred on a top-level VDEV. Along with `zpool status`, a ZED event will be issues as `dio_verify` when a checksum verification error occurs. ZVOLs and dedup is not currently supported with Direct I/O. A new dataset property `direct` has been added with the following 3 allowable values: disabled - Accepts O_DIRECT flag, but silently ignores it and treats the request as a buffered IO request. standard - Follows the alignment restrictions outlined above for write/read IO requests when the O_DIRECT flag is used. always - Treats every write/read IO request as though it passed O_DIRECT and will do O_DIRECT if the alignment restrictions are met otherwise will redirect through the ARC. This property will not allow a request to fail. There is also a module parameter zfs_dio_enabled that can be used to force all reads and writes through the ARC. By setting this module parameter to 0, it mimics as if the direct dataset property is set to disabled. Reviewed-by: Brian Behlendorf <behlendorf@llnl.gov> Reviewed-by: Alexander Motin <mav@FreeBSD.org> Reviewed-by: Tony Hutter <hutter2@llnl.gov> Signed-off-by: Brian Atkinson <batkinson@lanl.gov> Co-authored-by: Mark Maybee <mark.maybee@delphix.com> Co-authored-by: Matt Macy <mmacy@FreeBSD.org> Co-authored-by: Brian Behlendorf <behlendorf@llnl.gov> Closes #10018
2024-09-14 23:47:59 +03:00
uint32_t dmu_read_flags = DMU_READ_PREFETCH;
/*
* We will randomly set when to do O_DIRECT on a read.
*/
if (ztest_random(4) == 0)
dmu_read_flags |= DMU_DIRECTIO;
2009-07-03 02:44:48 +04:00
size = sizeof (ztest_od_t) * OD_ARRAY_SIZE;
od = umem_alloc(size, UMEM_NOFAIL);
2009-07-03 02:44:48 +04:00
/*
* This test uses two objects, packobj and bigobj, that are always
* updated together (i.e. in the same tx) so that their contents are
* in sync and can be compared. Their contents relate to each other
* in a simple way: packobj is a dense array of 'bufwad' structures,
* while bigobj is a sparse array of the same bufwads. Specifically,
* for any index n, there are three bufwads that should be identical:
*
* packobj, at offset n * sizeof (bufwad_t)
* bigobj, at the head of the nth chunk
* bigobj, at the tail of the nth chunk
*
* The chunk size is set equal to bigobj block size so that
* dmu_assign_arcbuf_by_dbuf() can be tested for object updates.
2009-07-03 02:44:48 +04:00
*/
/*
* Read the directory info. If it's the first time, set things up.
*/
Implement large_dnode pool feature Justification ------------- This feature adds support for variable length dnodes. Our motivation is to eliminate the overhead associated with using spill blocks. Spill blocks are used to store system attribute data (i.e. file metadata) that does not fit in the dnode's bonus buffer. By allowing a larger bonus buffer area the use of a spill block can be avoided. Spill blocks potentially incur an additional read I/O for every dnode in a dnode block. As a worst case example, reading 32 dnodes from a 16k dnode block and all of the spill blocks could issue 33 separate reads. Now suppose those dnodes have size 1024 and therefore don't need spill blocks. Then the worst case number of blocks read is reduced to from 33 to two--one per dnode block. In practice spill blocks may tend to be co-located on disk with the dnode blocks so the reduction in I/O would not be this drastic. In a badly fragmented pool, however, the improvement could be significant. ZFS-on-Linux systems that make heavy use of extended attributes would benefit from this feature. In particular, ZFS-on-Linux supports the xattr=sa dataset property which allows file extended attribute data to be stored in the dnode bonus buffer as an alternative to the traditional directory-based format. Workloads such as SELinux and the Lustre distributed filesystem often store enough xattr data to force spill bocks when xattr=sa is in effect. Large dnodes may therefore provide a performance benefit to such systems. Other use cases that may benefit from this feature include files with large ACLs and symbolic links with long target names. Furthermore, this feature may be desirable on other platforms in case future applications or features are developed that could make use of a larger bonus buffer area. Implementation -------------- The size of a dnode may be a multiple of 512 bytes up to the size of a dnode block (currently 16384 bytes). A dn_extra_slots field was added to the current on-disk dnode_phys_t structure to describe the size of the physical dnode on disk. The 8 bits for this field were taken from the zero filled dn_pad2 field. The field represents how many "extra" dnode_phys_t slots a dnode consumes in its dnode block. This convention results in a value of 0 for 512 byte dnodes which preserves on-disk format compatibility with older software. Similarly, the in-memory dnode_t structure has a new dn_num_slots field to represent the total number of dnode_phys_t slots consumed on disk. Thus dn->dn_num_slots is 1 greater than the corresponding dnp->dn_extra_slots. This difference in convention was adopted because, unlike on-disk structures, backward compatibility is not a concern for in-memory objects, so we used a more natural way to represent size for a dnode_t. The default size for newly created dnodes is determined by the value of a new "dnodesize" dataset property. By default the property is set to "legacy" which is compatible with older software. Setting the property to "auto" will allow the filesystem to choose the most suitable dnode size. Currently this just sets the default dnode size to 1k, but future code improvements could dynamically choose a size based on observed workload patterns. Dnodes of varying sizes can coexist within the same dataset and even within the same dnode block. For example, to enable automatically-sized dnodes, run # zfs set dnodesize=auto tank/fish The user can also specify literal values for the dnodesize property. These are currently limited to powers of two from 1k to 16k. The power-of-2 limitation is only for simplicity of the user interface. Internally the implementation can handle any multiple of 512 up to 16k, and consumers of the DMU API can specify any legal dnode value. The size of a new dnode is determined at object allocation time and stored as a new field in the znode in-memory structure. New DMU interfaces are added to allow the consumer to specify the dnode size that a newly allocated object should use. Existing interfaces are unchanged to avoid having to update every call site and to preserve compatibility with external consumers such as Lustre. The new interfaces names are given below. The versions of these functions that don't take a dnodesize parameter now just call the _dnsize() versions with a dnodesize of 0, which means use the legacy dnode size. New DMU interfaces: dmu_object_alloc_dnsize() dmu_object_claim_dnsize() dmu_object_reclaim_dnsize() New ZAP interfaces: zap_create_dnsize() zap_create_norm_dnsize() zap_create_flags_dnsize() zap_create_claim_norm_dnsize() zap_create_link_dnsize() The constant DN_MAX_BONUSLEN is renamed to DN_OLD_MAX_BONUSLEN. The spa_maxdnodesize() function should be used to determine the maximum bonus length for a pool. These are a few noteworthy changes to key functions: * The prototype for dnode_hold_impl() now takes a "slots" parameter. When the DNODE_MUST_BE_FREE flag is set, this parameter is used to ensure the hole at the specified object offset is large enough to hold the dnode being created. The slots parameter is also used to ensure a dnode does not span multiple dnode blocks. In both of these cases, if a failure occurs, ENOSPC is returned. Keep in mind, these failure cases are only possible when using DNODE_MUST_BE_FREE. If the DNODE_MUST_BE_ALLOCATED flag is set, "slots" must be 0. dnode_hold_impl() will check if the requested dnode is already consumed as an extra dnode slot by an large dnode, in which case it returns ENOENT. * The function dmu_object_alloc() advances to the next dnode block if dnode_hold_impl() returns an error for a requested object. This is because the beginning of the next dnode block is the only location it can safely assume to either be a hole or a valid starting point for a dnode. * dnode_next_offset_level() and other functions that iterate through dnode blocks may no longer use a simple array indexing scheme. These now use the current dnode's dn_num_slots field to advance to the next dnode in the block. This is to ensure we properly skip the current dnode's bonus area and don't interpret it as a valid dnode. zdb --- The zdb command was updated to display a dnode's size under the "dnsize" column when the object is dumped. For ZIL create log records, zdb will now display the slot count for the object. ztest ----- Ztest chooses a random dnodesize for every newly created object. The random distribution is more heavily weighted toward small dnodes to better simulate real-world datasets. Unused bonus buffer space is filled with non-zero values computed from the object number, dataset id, offset, and generation number. This helps ensure that the dnode traversal code properly skips the interior regions of large dnodes, and that these interior regions are not overwritten by data belonging to other dnodes. A new test visits each object in a dataset. It verifies that the actual dnode size matches what was stored in the ztest block tag when it was created. It also verifies that the unused bonus buffer space is filled with the expected data patterns. ZFS Test Suite -------------- Added six new large dnode-specific tests, and integrated the dnodesize property into existing tests for zfs allow and send/recv. Send/Receive ------------ ZFS send streams for datasets containing large dnodes cannot be received on pools that don't support the large_dnode feature. A send stream with large dnodes sets a DMU_BACKUP_FEATURE_LARGE_DNODE flag which will be unrecognized by an incompatible receiving pool so that the zfs receive will fail gracefully. While not implemented here, it may be possible to generate a backward-compatible send stream from a dataset containing large dnodes. The implementation may be tricky, however, because the send object record for a large dnode would need to be resized to a 512 byte dnode, possibly kicking in a spill block in the process. This means we would need to construct a new SA layout and possibly register it in the SA layout object. The SA layout is normally just sent as an ordinary object record. But if we are constructing new layouts while generating the send stream we'd have to build the SA layout object dynamically and send it at the end of the stream. For sending and receiving between pools that do support large dnodes, the drr_object send record type is extended with a new field to store the dnode slot count. This field was repurposed from unused padding in the structure. ZIL Replay ---------- The dnode slot count is stored in the uppermost 8 bits of the lr_foid field. The bits were unused as the object id is currently capped at 48 bits. Resizing Dnodes --------------- It should be possible to resize a dnode when it is dirtied if the current dnodesize dataset property differs from the dnode's size, but this functionality is not currently implemented. Clearly a dnode can only grow if there are sufficient contiguous unused slots in the dnode block, but it should always be possible to shrink a dnode. Growing dnodes may be useful to reduce fragmentation in a pool with many spill blocks in use. Shrinking dnodes may be useful to allow sending a dataset to a pool that doesn't support the large_dnode feature. Feature Reference Counting -------------------------- The reference count for the large_dnode pool feature tracks the number of datasets that have ever contained a dnode of size larger than 512 bytes. The first time a large dnode is created in a dataset the dataset is converted to an extensible dataset. This is a one-way operation and the only way to decrement the feature count is to destroy the dataset, even if the dataset no longer contains any large dnodes. The complexity of reference counting on a per-dnode basis was too high, so we chose to track it on a per-dataset basis similarly to the large_block feature. Signed-off-by: Ned Bass <bass6@llnl.gov> Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov> Closes #3542
2016-03-17 04:25:34 +03:00
ztest_od_init(od, id, FTAG, 0, DMU_OT_UINT64_OTHER, blocksize, 0, 0);
ztest_od_init(od + 1, id, FTAG, 1, DMU_OT_UINT64_OTHER, 0, 0,
chunksize);
2009-07-03 02:44:48 +04:00
if (ztest_object_init(zd, od, size, B_FALSE) != 0) {
umem_free(od, size);
return;
}
2009-07-03 02:44:48 +04:00
bigobj = od[0].od_object;
packobj = od[1].od_object;
blocksize = od[0].od_blocksize;
chunksize = blocksize;
ASSERT3U(chunksize, ==, od[1].od_gen);
2009-07-03 02:44:48 +04:00
VERIFY0(dmu_object_info(os, bigobj, &doi));
VERIFY(ISP2(doi.doi_data_block_size));
VERIFY3U(chunksize, ==, doi.doi_data_block_size);
VERIFY3U(chunksize, >=, 2 * sizeof (bufwad_t));
2009-07-03 02:44:48 +04:00
/*
* Pick a random index and compute the offsets into packobj and bigobj.
*/
n = ztest_random(regions) * stride + ztest_random(width);
s = 1 + ztest_random(width - 1);
packoff = n * sizeof (bufwad_t);
packsize = s * sizeof (bufwad_t);
bigoff = n * chunksize;
bigsize = s * chunksize;
2009-07-03 02:44:48 +04:00
packbuf = umem_zalloc(packsize, UMEM_NOFAIL);
bigbuf = umem_zalloc(bigsize, UMEM_NOFAIL);
VERIFY0(dmu_bonus_hold(os, bigobj, FTAG, &bonus_db));
2009-07-03 02:44:48 +04:00
bigbuf_arcbufs = umem_zalloc(2 * s * sizeof (arc_buf_t *), UMEM_NOFAIL);
/*
* Iteration 0 test zcopy for DB_UNCACHED dbufs.
* Iteration 1 test zcopy to already referenced dbufs.
* Iteration 2 test zcopy to dirty dbuf in the same txg.
* Iteration 3 test zcopy to dbuf dirty in previous txg.
* Iteration 4 test zcopy when dbuf is no longer dirty.
* Iteration 5 test zcopy when it can't be done.
* Iteration 6 one more zcopy write.
*/
for (i = 0; i < 7; i++) {
uint64_t j;
uint64_t off;
/*
* In iteration 5 (i == 5) use arcbufs
* that don't match bigobj blksz to test
* dmu_assign_arcbuf_by_dbuf() when it can't directly
2009-07-03 02:44:48 +04:00
* assign an arcbuf to a dbuf.
*/
for (j = 0; j < s; j++) {
if (i != 5 || chunksize < (SPA_MINBLOCKSIZE * 2)) {
2009-07-03 02:44:48 +04:00
bigbuf_arcbufs[j] =
dmu_request_arcbuf(bonus_db, chunksize);
2009-07-03 02:44:48 +04:00
} else {
bigbuf_arcbufs[2 * j] =
dmu_request_arcbuf(bonus_db, chunksize / 2);
2009-07-03 02:44:48 +04:00
bigbuf_arcbufs[2 * j + 1] =
dmu_request_arcbuf(bonus_db, chunksize / 2);
2009-07-03 02:44:48 +04:00
}
}
/*
* Get a tx for the mods to both packobj and bigobj.
*/
tx = dmu_tx_create(os);
dmu_tx_hold_write(tx, packobj, packoff, packsize);
dmu_tx_hold_write(tx, bigobj, bigoff, bigsize);
2009-07-03 02:44:48 +04:00
txg = ztest_tx_assign(tx, TXG_MIGHTWAIT, FTAG);
if (txg == 0) {
2009-07-03 02:44:48 +04:00
umem_free(packbuf, packsize);
umem_free(bigbuf, bigsize);
for (j = 0; j < s; j++) {
if (i != 5 ||
chunksize < (SPA_MINBLOCKSIZE * 2)) {
2009-07-03 02:44:48 +04:00
dmu_return_arcbuf(bigbuf_arcbufs[j]);
} else {
dmu_return_arcbuf(
bigbuf_arcbufs[2 * j]);
dmu_return_arcbuf(
bigbuf_arcbufs[2 * j + 1]);
}
}
umem_free(bigbuf_arcbufs, 2 * s * sizeof (arc_buf_t *));
umem_free(od, size);
2009-07-03 02:44:48 +04:00
dmu_buf_rele(bonus_db, FTAG);
return;
}
/*
* 50% of the time don't read objects in the 1st iteration to
* test dmu_assign_arcbuf_by_dbuf() for the case when there are
* no existing dbufs for the specified offsets.
2009-07-03 02:44:48 +04:00
*/
if (i != 0 || ztest_random(2) != 0) {
error = dmu_read(os, packobj, packoff,
Adding Direct IO Support Adding O_DIRECT support to ZFS to bypass the ARC for writes/reads. O_DIRECT support in ZFS will always ensure there is coherency between buffered and O_DIRECT IO requests. This ensures that all IO requests, whether buffered or direct, will see the same file contents at all times. Just as in other FS's , O_DIRECT does not imply O_SYNC. While data is written directly to VDEV disks, metadata will not be synced until the associated TXG is synced. For both O_DIRECT read and write request the offset and request sizes, at a minimum, must be PAGE_SIZE aligned. In the event they are not, then EINVAL is returned unless the direct property is set to always (see below). For O_DIRECT writes: The request also must be block aligned (recordsize) or the write request will take the normal (buffered) write path. In the event that request is block aligned and a cached copy of the buffer in the ARC, then it will be discarded from the ARC forcing all further reads to retrieve the data from disk. For O_DIRECT reads: The only alignment restrictions are PAGE_SIZE alignment. In the event that the requested data is in buffered (in the ARC) it will just be copied from the ARC into the user buffer. For both O_DIRECT writes and reads the O_DIRECT flag will be ignored in the event that file contents are mmap'ed. In this case, all requests that are at least PAGE_SIZE aligned will just fall back to the buffered paths. If the request however is not PAGE_SIZE aligned, EINVAL will be returned as always regardless if the file's contents are mmap'ed. Since O_DIRECT writes go through the normal ZIO pipeline, the following operations are supported just as with normal buffered writes: Checksum Compression Encryption Erasure Coding There is one caveat for the data integrity of O_DIRECT writes that is distinct for each of the OS's supported by ZFS. FreeBSD - FreeBSD is able to place user pages under write protection so any data in the user buffers and written directly down to the VDEV disks is guaranteed to not change. There is no concern with data integrity and O_DIRECT writes. Linux - Linux is not able to place anonymous user pages under write protection. Because of this, if the user decides to manipulate the page contents while the write operation is occurring, data integrity can not be guaranteed. However, there is a module parameter `zfs_vdev_direct_write_verify` that controls the if a O_DIRECT writes that can occur to a top-level VDEV before a checksum verify is run before the contents of the I/O buffer are committed to disk. In the event of a checksum verification failure the write will return EIO. The number of O_DIRECT write checksum verification errors can be observed by doing `zpool status -d`, which will list all verification errors that have occurred on a top-level VDEV. Along with `zpool status`, a ZED event will be issues as `dio_verify` when a checksum verification error occurs. ZVOLs and dedup is not currently supported with Direct I/O. A new dataset property `direct` has been added with the following 3 allowable values: disabled - Accepts O_DIRECT flag, but silently ignores it and treats the request as a buffered IO request. standard - Follows the alignment restrictions outlined above for write/read IO requests when the O_DIRECT flag is used. always - Treats every write/read IO request as though it passed O_DIRECT and will do O_DIRECT if the alignment restrictions are met otherwise will redirect through the ARC. This property will not allow a request to fail. There is also a module parameter zfs_dio_enabled that can be used to force all reads and writes through the ARC. By setting this module parameter to 0, it mimics as if the direct dataset property is set to disabled. Reviewed-by: Brian Behlendorf <behlendorf@llnl.gov> Reviewed-by: Alexander Motin <mav@FreeBSD.org> Reviewed-by: Tony Hutter <hutter2@llnl.gov> Signed-off-by: Brian Atkinson <batkinson@lanl.gov> Co-authored-by: Mark Maybee <mark.maybee@delphix.com> Co-authored-by: Matt Macy <mmacy@FreeBSD.org> Co-authored-by: Brian Behlendorf <behlendorf@llnl.gov> Closes #10018
2024-09-14 23:47:59 +03:00
packsize, packbuf, dmu_read_flags);
ASSERT0(error);
error = dmu_read(os, bigobj, bigoff, bigsize,
Adding Direct IO Support Adding O_DIRECT support to ZFS to bypass the ARC for writes/reads. O_DIRECT support in ZFS will always ensure there is coherency between buffered and O_DIRECT IO requests. This ensures that all IO requests, whether buffered or direct, will see the same file contents at all times. Just as in other FS's , O_DIRECT does not imply O_SYNC. While data is written directly to VDEV disks, metadata will not be synced until the associated TXG is synced. For both O_DIRECT read and write request the offset and request sizes, at a minimum, must be PAGE_SIZE aligned. In the event they are not, then EINVAL is returned unless the direct property is set to always (see below). For O_DIRECT writes: The request also must be block aligned (recordsize) or the write request will take the normal (buffered) write path. In the event that request is block aligned and a cached copy of the buffer in the ARC, then it will be discarded from the ARC forcing all further reads to retrieve the data from disk. For O_DIRECT reads: The only alignment restrictions are PAGE_SIZE alignment. In the event that the requested data is in buffered (in the ARC) it will just be copied from the ARC into the user buffer. For both O_DIRECT writes and reads the O_DIRECT flag will be ignored in the event that file contents are mmap'ed. In this case, all requests that are at least PAGE_SIZE aligned will just fall back to the buffered paths. If the request however is not PAGE_SIZE aligned, EINVAL will be returned as always regardless if the file's contents are mmap'ed. Since O_DIRECT writes go through the normal ZIO pipeline, the following operations are supported just as with normal buffered writes: Checksum Compression Encryption Erasure Coding There is one caveat for the data integrity of O_DIRECT writes that is distinct for each of the OS's supported by ZFS. FreeBSD - FreeBSD is able to place user pages under write protection so any data in the user buffers and written directly down to the VDEV disks is guaranteed to not change. There is no concern with data integrity and O_DIRECT writes. Linux - Linux is not able to place anonymous user pages under write protection. Because of this, if the user decides to manipulate the page contents while the write operation is occurring, data integrity can not be guaranteed. However, there is a module parameter `zfs_vdev_direct_write_verify` that controls the if a O_DIRECT writes that can occur to a top-level VDEV before a checksum verify is run before the contents of the I/O buffer are committed to disk. In the event of a checksum verification failure the write will return EIO. The number of O_DIRECT write checksum verification errors can be observed by doing `zpool status -d`, which will list all verification errors that have occurred on a top-level VDEV. Along with `zpool status`, a ZED event will be issues as `dio_verify` when a checksum verification error occurs. ZVOLs and dedup is not currently supported with Direct I/O. A new dataset property `direct` has been added with the following 3 allowable values: disabled - Accepts O_DIRECT flag, but silently ignores it and treats the request as a buffered IO request. standard - Follows the alignment restrictions outlined above for write/read IO requests when the O_DIRECT flag is used. always - Treats every write/read IO request as though it passed O_DIRECT and will do O_DIRECT if the alignment restrictions are met otherwise will redirect through the ARC. This property will not allow a request to fail. There is also a module parameter zfs_dio_enabled that can be used to force all reads and writes through the ARC. By setting this module parameter to 0, it mimics as if the direct dataset property is set to disabled. Reviewed-by: Brian Behlendorf <behlendorf@llnl.gov> Reviewed-by: Alexander Motin <mav@FreeBSD.org> Reviewed-by: Tony Hutter <hutter2@llnl.gov> Signed-off-by: Brian Atkinson <batkinson@lanl.gov> Co-authored-by: Mark Maybee <mark.maybee@delphix.com> Co-authored-by: Matt Macy <mmacy@FreeBSD.org> Co-authored-by: Brian Behlendorf <behlendorf@llnl.gov> Closes #10018
2024-09-14 23:47:59 +03:00
bigbuf, dmu_read_flags);
ASSERT0(error);
2009-07-03 02:44:48 +04:00
}
compare_and_update_pbbufs(s, packbuf, bigbuf, bigsize,
n, chunksize, txg);
2009-07-03 02:44:48 +04:00
/*
* We've verified all the old bufwads, and made new ones.
* Now write them out.
*/
dmu_write(os, packobj, packoff, packsize, packbuf, tx);
if (ztest_opts.zo_verbose >= 7) {
(void) printf("writing offset %"PRIx64" size %"PRIx64""
" txg %"PRIx64"\n",
bigoff, bigsize, txg);
2009-07-03 02:44:48 +04:00
}
for (off = bigoff, j = 0; j < s; j++, off += chunksize) {
2009-07-03 02:44:48 +04:00
dmu_buf_t *dbt;
if (i != 5 || chunksize < (SPA_MINBLOCKSIZE * 2)) {
memcpy(bigbuf_arcbufs[j]->b_data,
(caddr_t)bigbuf + (off - bigoff),
chunksize);
2009-07-03 02:44:48 +04:00
} else {
memcpy(bigbuf_arcbufs[2 * j]->b_data,
(caddr_t)bigbuf + (off - bigoff),
chunksize / 2);
memcpy(bigbuf_arcbufs[2 * j + 1]->b_data,
(caddr_t)bigbuf + (off - bigoff) +
chunksize / 2,
chunksize / 2);
2009-07-03 02:44:48 +04:00
}
if (i == 1) {
VERIFY(dmu_buf_hold(os, bigobj, off,
FTAG, &dbt, DMU_READ_NO_PREFETCH) == 0);
2009-07-03 02:44:48 +04:00
}
if (i != 5 || chunksize < (SPA_MINBLOCKSIZE * 2)) {
VERIFY0(dmu_assign_arcbuf_by_dbuf(bonus_db,
off, bigbuf_arcbufs[j], tx));
2009-07-03 02:44:48 +04:00
} else {
VERIFY0(dmu_assign_arcbuf_by_dbuf(bonus_db,
off, bigbuf_arcbufs[2 * j], tx));
VERIFY0(dmu_assign_arcbuf_by_dbuf(bonus_db,
off + chunksize / 2,
bigbuf_arcbufs[2 * j + 1], tx));
2009-07-03 02:44:48 +04:00
}
if (i == 1) {
dmu_buf_rele(dbt, FTAG);
}
}
dmu_tx_commit(tx);
/*
* Sanity check the stuff we just wrote.
*/
{
void *packcheck = umem_alloc(packsize, UMEM_NOFAIL);
void *bigcheck = umem_alloc(bigsize, UMEM_NOFAIL);
Distributed Spare (dRAID) Feature This patch adds a new top-level vdev type called dRAID, which stands for Distributed parity RAID. This pool configuration allows all dRAID vdevs to participate when rebuilding to a distributed hot spare device. This can substantially reduce the total time required to restore full parity to pool with a failed device. A dRAID pool can be created using the new top-level `draid` type. Like `raidz`, the desired redundancy is specified after the type: `draid[1,2,3]`. No additional information is required to create the pool and reasonable default values will be chosen based on the number of child vdevs in the dRAID vdev. zpool create <pool> draid[1,2,3] <vdevs...> Unlike raidz, additional optional dRAID configuration values can be provided as part of the draid type as colon separated values. This allows administrators to fully specify a layout for either performance or capacity reasons. The supported options include: zpool create <pool> \ draid[<parity>][:<data>d][:<children>c][:<spares>s] \ <vdevs...> - draid[parity] - Parity level (default 1) - draid[:<data>d] - Data devices per group (default 8) - draid[:<children>c] - Expected number of child vdevs - draid[:<spares>s] - Distributed hot spares (default 0) Abbreviated example `zpool status` output for a 68 disk dRAID pool with two distributed spares using special allocation classes. ``` pool: tank state: ONLINE config: NAME STATE READ WRITE CKSUM slag7 ONLINE 0 0 0 draid2:8d:68c:2s-0 ONLINE 0 0 0 L0 ONLINE 0 0 0 L1 ONLINE 0 0 0 ... U25 ONLINE 0 0 0 U26 ONLINE 0 0 0 spare-53 ONLINE 0 0 0 U27 ONLINE 0 0 0 draid2-0-0 ONLINE 0 0 0 U28 ONLINE 0 0 0 U29 ONLINE 0 0 0 ... U42 ONLINE 0 0 0 U43 ONLINE 0 0 0 special mirror-1 ONLINE 0 0 0 L5 ONLINE 0 0 0 U5 ONLINE 0 0 0 mirror-2 ONLINE 0 0 0 L6 ONLINE 0 0 0 U6 ONLINE 0 0 0 spares draid2-0-0 INUSE currently in use draid2-0-1 AVAIL ``` When adding test coverage for the new dRAID vdev type the following options were added to the ztest command. These options are leverages by zloop.sh to test a wide range of dRAID configurations. -K draid|raidz|random - kind of RAID to test -D <value> - dRAID data drives per group -S <value> - dRAID distributed hot spares -R <value> - RAID parity (raidz or dRAID) The zpool_create, zpool_import, redundancy, replacement and fault test groups have all been updated provide test coverage for the dRAID feature. Co-authored-by: Isaac Huang <he.huang@intel.com> Co-authored-by: Mark Maybee <mmaybee@cray.com> Co-authored-by: Don Brady <don.brady@delphix.com> Co-authored-by: Matthew Ahrens <mahrens@delphix.com> Co-authored-by: Brian Behlendorf <behlendorf1@llnl.gov> Reviewed-by: Mark Maybee <mmaybee@cray.com> Reviewed-by: Matt Ahrens <matt@delphix.com> Reviewed-by: Tony Hutter <hutter2@llnl.gov> Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov> Closes #10102
2020-11-14 00:51:51 +03:00
VERIFY0(dmu_read(os, packobj, packoff,
Adding Direct IO Support Adding O_DIRECT support to ZFS to bypass the ARC for writes/reads. O_DIRECT support in ZFS will always ensure there is coherency between buffered and O_DIRECT IO requests. This ensures that all IO requests, whether buffered or direct, will see the same file contents at all times. Just as in other FS's , O_DIRECT does not imply O_SYNC. While data is written directly to VDEV disks, metadata will not be synced until the associated TXG is synced. For both O_DIRECT read and write request the offset and request sizes, at a minimum, must be PAGE_SIZE aligned. In the event they are not, then EINVAL is returned unless the direct property is set to always (see below). For O_DIRECT writes: The request also must be block aligned (recordsize) or the write request will take the normal (buffered) write path. In the event that request is block aligned and a cached copy of the buffer in the ARC, then it will be discarded from the ARC forcing all further reads to retrieve the data from disk. For O_DIRECT reads: The only alignment restrictions are PAGE_SIZE alignment. In the event that the requested data is in buffered (in the ARC) it will just be copied from the ARC into the user buffer. For both O_DIRECT writes and reads the O_DIRECT flag will be ignored in the event that file contents are mmap'ed. In this case, all requests that are at least PAGE_SIZE aligned will just fall back to the buffered paths. If the request however is not PAGE_SIZE aligned, EINVAL will be returned as always regardless if the file's contents are mmap'ed. Since O_DIRECT writes go through the normal ZIO pipeline, the following operations are supported just as with normal buffered writes: Checksum Compression Encryption Erasure Coding There is one caveat for the data integrity of O_DIRECT writes that is distinct for each of the OS's supported by ZFS. FreeBSD - FreeBSD is able to place user pages under write protection so any data in the user buffers and written directly down to the VDEV disks is guaranteed to not change. There is no concern with data integrity and O_DIRECT writes. Linux - Linux is not able to place anonymous user pages under write protection. Because of this, if the user decides to manipulate the page contents while the write operation is occurring, data integrity can not be guaranteed. However, there is a module parameter `zfs_vdev_direct_write_verify` that controls the if a O_DIRECT writes that can occur to a top-level VDEV before a checksum verify is run before the contents of the I/O buffer are committed to disk. In the event of a checksum verification failure the write will return EIO. The number of O_DIRECT write checksum verification errors can be observed by doing `zpool status -d`, which will list all verification errors that have occurred on a top-level VDEV. Along with `zpool status`, a ZED event will be issues as `dio_verify` when a checksum verification error occurs. ZVOLs and dedup is not currently supported with Direct I/O. A new dataset property `direct` has been added with the following 3 allowable values: disabled - Accepts O_DIRECT flag, but silently ignores it and treats the request as a buffered IO request. standard - Follows the alignment restrictions outlined above for write/read IO requests when the O_DIRECT flag is used. always - Treats every write/read IO request as though it passed O_DIRECT and will do O_DIRECT if the alignment restrictions are met otherwise will redirect through the ARC. This property will not allow a request to fail. There is also a module parameter zfs_dio_enabled that can be used to force all reads and writes through the ARC. By setting this module parameter to 0, it mimics as if the direct dataset property is set to disabled. Reviewed-by: Brian Behlendorf <behlendorf@llnl.gov> Reviewed-by: Alexander Motin <mav@FreeBSD.org> Reviewed-by: Tony Hutter <hutter2@llnl.gov> Signed-off-by: Brian Atkinson <batkinson@lanl.gov> Co-authored-by: Mark Maybee <mark.maybee@delphix.com> Co-authored-by: Matt Macy <mmacy@FreeBSD.org> Co-authored-by: Brian Behlendorf <behlendorf@llnl.gov> Closes #10018
2024-09-14 23:47:59 +03:00
packsize, packcheck, dmu_read_flags));
Distributed Spare (dRAID) Feature This patch adds a new top-level vdev type called dRAID, which stands for Distributed parity RAID. This pool configuration allows all dRAID vdevs to participate when rebuilding to a distributed hot spare device. This can substantially reduce the total time required to restore full parity to pool with a failed device. A dRAID pool can be created using the new top-level `draid` type. Like `raidz`, the desired redundancy is specified after the type: `draid[1,2,3]`. No additional information is required to create the pool and reasonable default values will be chosen based on the number of child vdevs in the dRAID vdev. zpool create <pool> draid[1,2,3] <vdevs...> Unlike raidz, additional optional dRAID configuration values can be provided as part of the draid type as colon separated values. This allows administrators to fully specify a layout for either performance or capacity reasons. The supported options include: zpool create <pool> \ draid[<parity>][:<data>d][:<children>c][:<spares>s] \ <vdevs...> - draid[parity] - Parity level (default 1) - draid[:<data>d] - Data devices per group (default 8) - draid[:<children>c] - Expected number of child vdevs - draid[:<spares>s] - Distributed hot spares (default 0) Abbreviated example `zpool status` output for a 68 disk dRAID pool with two distributed spares using special allocation classes. ``` pool: tank state: ONLINE config: NAME STATE READ WRITE CKSUM slag7 ONLINE 0 0 0 draid2:8d:68c:2s-0 ONLINE 0 0 0 L0 ONLINE 0 0 0 L1 ONLINE 0 0 0 ... U25 ONLINE 0 0 0 U26 ONLINE 0 0 0 spare-53 ONLINE 0 0 0 U27 ONLINE 0 0 0 draid2-0-0 ONLINE 0 0 0 U28 ONLINE 0 0 0 U29 ONLINE 0 0 0 ... U42 ONLINE 0 0 0 U43 ONLINE 0 0 0 special mirror-1 ONLINE 0 0 0 L5 ONLINE 0 0 0 U5 ONLINE 0 0 0 mirror-2 ONLINE 0 0 0 L6 ONLINE 0 0 0 U6 ONLINE 0 0 0 spares draid2-0-0 INUSE currently in use draid2-0-1 AVAIL ``` When adding test coverage for the new dRAID vdev type the following options were added to the ztest command. These options are leverages by zloop.sh to test a wide range of dRAID configurations. -K draid|raidz|random - kind of RAID to test -D <value> - dRAID data drives per group -S <value> - dRAID distributed hot spares -R <value> - RAID parity (raidz or dRAID) The zpool_create, zpool_import, redundancy, replacement and fault test groups have all been updated provide test coverage for the dRAID feature. Co-authored-by: Isaac Huang <he.huang@intel.com> Co-authored-by: Mark Maybee <mmaybee@cray.com> Co-authored-by: Don Brady <don.brady@delphix.com> Co-authored-by: Matthew Ahrens <mahrens@delphix.com> Co-authored-by: Brian Behlendorf <behlendorf1@llnl.gov> Reviewed-by: Mark Maybee <mmaybee@cray.com> Reviewed-by: Matt Ahrens <matt@delphix.com> Reviewed-by: Tony Hutter <hutter2@llnl.gov> Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov> Closes #10102
2020-11-14 00:51:51 +03:00
VERIFY0(dmu_read(os, bigobj, bigoff,
Adding Direct IO Support Adding O_DIRECT support to ZFS to bypass the ARC for writes/reads. O_DIRECT support in ZFS will always ensure there is coherency between buffered and O_DIRECT IO requests. This ensures that all IO requests, whether buffered or direct, will see the same file contents at all times. Just as in other FS's , O_DIRECT does not imply O_SYNC. While data is written directly to VDEV disks, metadata will not be synced until the associated TXG is synced. For both O_DIRECT read and write request the offset and request sizes, at a minimum, must be PAGE_SIZE aligned. In the event they are not, then EINVAL is returned unless the direct property is set to always (see below). For O_DIRECT writes: The request also must be block aligned (recordsize) or the write request will take the normal (buffered) write path. In the event that request is block aligned and a cached copy of the buffer in the ARC, then it will be discarded from the ARC forcing all further reads to retrieve the data from disk. For O_DIRECT reads: The only alignment restrictions are PAGE_SIZE alignment. In the event that the requested data is in buffered (in the ARC) it will just be copied from the ARC into the user buffer. For both O_DIRECT writes and reads the O_DIRECT flag will be ignored in the event that file contents are mmap'ed. In this case, all requests that are at least PAGE_SIZE aligned will just fall back to the buffered paths. If the request however is not PAGE_SIZE aligned, EINVAL will be returned as always regardless if the file's contents are mmap'ed. Since O_DIRECT writes go through the normal ZIO pipeline, the following operations are supported just as with normal buffered writes: Checksum Compression Encryption Erasure Coding There is one caveat for the data integrity of O_DIRECT writes that is distinct for each of the OS's supported by ZFS. FreeBSD - FreeBSD is able to place user pages under write protection so any data in the user buffers and written directly down to the VDEV disks is guaranteed to not change. There is no concern with data integrity and O_DIRECT writes. Linux - Linux is not able to place anonymous user pages under write protection. Because of this, if the user decides to manipulate the page contents while the write operation is occurring, data integrity can not be guaranteed. However, there is a module parameter `zfs_vdev_direct_write_verify` that controls the if a O_DIRECT writes that can occur to a top-level VDEV before a checksum verify is run before the contents of the I/O buffer are committed to disk. In the event of a checksum verification failure the write will return EIO. The number of O_DIRECT write checksum verification errors can be observed by doing `zpool status -d`, which will list all verification errors that have occurred on a top-level VDEV. Along with `zpool status`, a ZED event will be issues as `dio_verify` when a checksum verification error occurs. ZVOLs and dedup is not currently supported with Direct I/O. A new dataset property `direct` has been added with the following 3 allowable values: disabled - Accepts O_DIRECT flag, but silently ignores it and treats the request as a buffered IO request. standard - Follows the alignment restrictions outlined above for write/read IO requests when the O_DIRECT flag is used. always - Treats every write/read IO request as though it passed O_DIRECT and will do O_DIRECT if the alignment restrictions are met otherwise will redirect through the ARC. This property will not allow a request to fail. There is also a module parameter zfs_dio_enabled that can be used to force all reads and writes through the ARC. By setting this module parameter to 0, it mimics as if the direct dataset property is set to disabled. Reviewed-by: Brian Behlendorf <behlendorf@llnl.gov> Reviewed-by: Alexander Motin <mav@FreeBSD.org> Reviewed-by: Tony Hutter <hutter2@llnl.gov> Signed-off-by: Brian Atkinson <batkinson@lanl.gov> Co-authored-by: Mark Maybee <mark.maybee@delphix.com> Co-authored-by: Matt Macy <mmacy@FreeBSD.org> Co-authored-by: Brian Behlendorf <behlendorf@llnl.gov> Closes #10018
2024-09-14 23:47:59 +03:00
bigsize, bigcheck, dmu_read_flags));
2009-07-03 02:44:48 +04:00
ASSERT0(memcmp(packbuf, packcheck, packsize));
ASSERT0(memcmp(bigbuf, bigcheck, bigsize));
2009-07-03 02:44:48 +04:00
umem_free(packcheck, packsize);
umem_free(bigcheck, bigsize);
}
if (i == 2) {
Add TRIM support UNMAP/TRIM support is a frequently-requested feature to help prevent performance from degrading on SSDs and on various other SAN-like storage back-ends. By issuing UNMAP/TRIM commands for sectors which are no longer allocated the underlying device can often more efficiently manage itself. This TRIM implementation is modeled on the `zpool initialize` feature which writes a pattern to all unallocated space in the pool. The new `zpool trim` command uses the same vdev_xlate() code to calculate what sectors are unallocated, the same per- vdev TRIM thread model and locking, and the same basic CLI for a consistent user experience. The core difference is that instead of writing a pattern it will issue UNMAP/TRIM commands for those extents. The zio pipeline was updated to accommodate this by adding a new ZIO_TYPE_TRIM type and associated spa taskq. This new type makes is straight forward to add the platform specific TRIM/UNMAP calls to vdev_disk.c and vdev_file.c. These new ZIO_TYPE_TRIM zios are handled largely the same way as ZIO_TYPE_READs or ZIO_TYPE_WRITEs. This makes it possible to largely avoid changing the pipieline, one exception is that TRIM zio's may exceed the 16M block size limit since they contain no data. In addition to the manual `zpool trim` command, a background automatic TRIM was added and is controlled by the 'autotrim' property. It relies on the exact same infrastructure as the manual TRIM. However, instead of relying on the extents in a metaslab's ms_allocatable range tree, a ms_trim tree is kept per metaslab. When 'autotrim=on', ranges added back to the ms_allocatable tree are also added to the ms_free tree. The ms_free tree is then periodically consumed by an autotrim thread which systematically walks a top level vdev's metaslabs. Since the automatic TRIM will skip ranges it considers too small there is value in occasionally running a full `zpool trim`. This may occur when the freed blocks are small and not enough time was allowed to aggregate them. An automatic TRIM and a manual `zpool trim` may be run concurrently, in which case the automatic TRIM will yield to the manual TRIM. Reviewed-by: Jorgen Lundman <lundman@lundman.net> Reviewed-by: Tim Chase <tim@chase2k.com> Reviewed-by: Matt Ahrens <mahrens@delphix.com> Reviewed-by: George Wilson <george.wilson@delphix.com> Reviewed-by: Serapheim Dimitropoulos <serapheim@delphix.com> Contributions-by: Saso Kiselkov <saso.kiselkov@nexenta.com> Contributions-by: Tim Chase <tim@chase2k.com> Contributions-by: Chunwei Chen <tuxoko@gmail.com> Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov> Closes #8419 Closes #598
2019-03-29 19:13:20 +03:00
txg_wait_open(dmu_objset_pool(os), 0, B_TRUE);
2009-07-03 02:44:48 +04:00
} else if (i == 3) {
txg_wait_synced(dmu_objset_pool(os), 0);
}
}
dmu_buf_rele(bonus_db, FTAG);
umem_free(packbuf, packsize);
umem_free(bigbuf, bigsize);
umem_free(bigbuf_arcbufs, 2 * s * sizeof (arc_buf_t *));
umem_free(od, size);
2009-07-03 02:44:48 +04:00
}
2008-11-20 23:01:55 +03:00
void
ztest_dmu_write_parallel(ztest_ds_t *zd, uint64_t id)
2008-11-20 23:01:55 +03:00
{
(void) id;
ztest_od_t *od;
od = umem_alloc(sizeof (ztest_od_t), UMEM_NOFAIL);
uint64_t offset = (1ULL << (ztest_random(20) + 43)) +
(ztest_random(ZTEST_RANGE_LOCKS) << SPA_MAXBLOCKSHIFT);
2008-11-20 23:01:55 +03:00
/*
* Have multiple threads write to large offsets in an object
* to verify that parallel writes to an object -- even to the
* same blocks within the object -- doesn't cause any trouble.
2008-11-20 23:01:55 +03:00
*/
Implement large_dnode pool feature Justification ------------- This feature adds support for variable length dnodes. Our motivation is to eliminate the overhead associated with using spill blocks. Spill blocks are used to store system attribute data (i.e. file metadata) that does not fit in the dnode's bonus buffer. By allowing a larger bonus buffer area the use of a spill block can be avoided. Spill blocks potentially incur an additional read I/O for every dnode in a dnode block. As a worst case example, reading 32 dnodes from a 16k dnode block and all of the spill blocks could issue 33 separate reads. Now suppose those dnodes have size 1024 and therefore don't need spill blocks. Then the worst case number of blocks read is reduced to from 33 to two--one per dnode block. In practice spill blocks may tend to be co-located on disk with the dnode blocks so the reduction in I/O would not be this drastic. In a badly fragmented pool, however, the improvement could be significant. ZFS-on-Linux systems that make heavy use of extended attributes would benefit from this feature. In particular, ZFS-on-Linux supports the xattr=sa dataset property which allows file extended attribute data to be stored in the dnode bonus buffer as an alternative to the traditional directory-based format. Workloads such as SELinux and the Lustre distributed filesystem often store enough xattr data to force spill bocks when xattr=sa is in effect. Large dnodes may therefore provide a performance benefit to such systems. Other use cases that may benefit from this feature include files with large ACLs and symbolic links with long target names. Furthermore, this feature may be desirable on other platforms in case future applications or features are developed that could make use of a larger bonus buffer area. Implementation -------------- The size of a dnode may be a multiple of 512 bytes up to the size of a dnode block (currently 16384 bytes). A dn_extra_slots field was added to the current on-disk dnode_phys_t structure to describe the size of the physical dnode on disk. The 8 bits for this field were taken from the zero filled dn_pad2 field. The field represents how many "extra" dnode_phys_t slots a dnode consumes in its dnode block. This convention results in a value of 0 for 512 byte dnodes which preserves on-disk format compatibility with older software. Similarly, the in-memory dnode_t structure has a new dn_num_slots field to represent the total number of dnode_phys_t slots consumed on disk. Thus dn->dn_num_slots is 1 greater than the corresponding dnp->dn_extra_slots. This difference in convention was adopted because, unlike on-disk structures, backward compatibility is not a concern for in-memory objects, so we used a more natural way to represent size for a dnode_t. The default size for newly created dnodes is determined by the value of a new "dnodesize" dataset property. By default the property is set to "legacy" which is compatible with older software. Setting the property to "auto" will allow the filesystem to choose the most suitable dnode size. Currently this just sets the default dnode size to 1k, but future code improvements could dynamically choose a size based on observed workload patterns. Dnodes of varying sizes can coexist within the same dataset and even within the same dnode block. For example, to enable automatically-sized dnodes, run # zfs set dnodesize=auto tank/fish The user can also specify literal values for the dnodesize property. These are currently limited to powers of two from 1k to 16k. The power-of-2 limitation is only for simplicity of the user interface. Internally the implementation can handle any multiple of 512 up to 16k, and consumers of the DMU API can specify any legal dnode value. The size of a new dnode is determined at object allocation time and stored as a new field in the znode in-memory structure. New DMU interfaces are added to allow the consumer to specify the dnode size that a newly allocated object should use. Existing interfaces are unchanged to avoid having to update every call site and to preserve compatibility with external consumers such as Lustre. The new interfaces names are given below. The versions of these functions that don't take a dnodesize parameter now just call the _dnsize() versions with a dnodesize of 0, which means use the legacy dnode size. New DMU interfaces: dmu_object_alloc_dnsize() dmu_object_claim_dnsize() dmu_object_reclaim_dnsize() New ZAP interfaces: zap_create_dnsize() zap_create_norm_dnsize() zap_create_flags_dnsize() zap_create_claim_norm_dnsize() zap_create_link_dnsize() The constant DN_MAX_BONUSLEN is renamed to DN_OLD_MAX_BONUSLEN. The spa_maxdnodesize() function should be used to determine the maximum bonus length for a pool. These are a few noteworthy changes to key functions: * The prototype for dnode_hold_impl() now takes a "slots" parameter. When the DNODE_MUST_BE_FREE flag is set, this parameter is used to ensure the hole at the specified object offset is large enough to hold the dnode being created. The slots parameter is also used to ensure a dnode does not span multiple dnode blocks. In both of these cases, if a failure occurs, ENOSPC is returned. Keep in mind, these failure cases are only possible when using DNODE_MUST_BE_FREE. If the DNODE_MUST_BE_ALLOCATED flag is set, "slots" must be 0. dnode_hold_impl() will check if the requested dnode is already consumed as an extra dnode slot by an large dnode, in which case it returns ENOENT. * The function dmu_object_alloc() advances to the next dnode block if dnode_hold_impl() returns an error for a requested object. This is because the beginning of the next dnode block is the only location it can safely assume to either be a hole or a valid starting point for a dnode. * dnode_next_offset_level() and other functions that iterate through dnode blocks may no longer use a simple array indexing scheme. These now use the current dnode's dn_num_slots field to advance to the next dnode in the block. This is to ensure we properly skip the current dnode's bonus area and don't interpret it as a valid dnode. zdb --- The zdb command was updated to display a dnode's size under the "dnsize" column when the object is dumped. For ZIL create log records, zdb will now display the slot count for the object. ztest ----- Ztest chooses a random dnodesize for every newly created object. The random distribution is more heavily weighted toward small dnodes to better simulate real-world datasets. Unused bonus buffer space is filled with non-zero values computed from the object number, dataset id, offset, and generation number. This helps ensure that the dnode traversal code properly skips the interior regions of large dnodes, and that these interior regions are not overwritten by data belonging to other dnodes. A new test visits each object in a dataset. It verifies that the actual dnode size matches what was stored in the ztest block tag when it was created. It also verifies that the unused bonus buffer space is filled with the expected data patterns. ZFS Test Suite -------------- Added six new large dnode-specific tests, and integrated the dnodesize property into existing tests for zfs allow and send/recv. Send/Receive ------------ ZFS send streams for datasets containing large dnodes cannot be received on pools that don't support the large_dnode feature. A send stream with large dnodes sets a DMU_BACKUP_FEATURE_LARGE_DNODE flag which will be unrecognized by an incompatible receiving pool so that the zfs receive will fail gracefully. While not implemented here, it may be possible to generate a backward-compatible send stream from a dataset containing large dnodes. The implementation may be tricky, however, because the send object record for a large dnode would need to be resized to a 512 byte dnode, possibly kicking in a spill block in the process. This means we would need to construct a new SA layout and possibly register it in the SA layout object. The SA layout is normally just sent as an ordinary object record. But if we are constructing new layouts while generating the send stream we'd have to build the SA layout object dynamically and send it at the end of the stream. For sending and receiving between pools that do support large dnodes, the drr_object send record type is extended with a new field to store the dnode slot count. This field was repurposed from unused padding in the structure. ZIL Replay ---------- The dnode slot count is stored in the uppermost 8 bits of the lr_foid field. The bits were unused as the object id is currently capped at 48 bits. Resizing Dnodes --------------- It should be possible to resize a dnode when it is dirtied if the current dnodesize dataset property differs from the dnode's size, but this functionality is not currently implemented. Clearly a dnode can only grow if there are sufficient contiguous unused slots in the dnode block, but it should always be possible to shrink a dnode. Growing dnodes may be useful to reduce fragmentation in a pool with many spill blocks in use. Shrinking dnodes may be useful to allow sending a dataset to a pool that doesn't support the large_dnode feature. Feature Reference Counting -------------------------- The reference count for the large_dnode pool feature tracks the number of datasets that have ever contained a dnode of size larger than 512 bytes. The first time a large dnode is created in a dataset the dataset is converted to an extensible dataset. This is a one-way operation and the only way to decrement the feature count is to destroy the dataset, even if the dataset no longer contains any large dnodes. The complexity of reference counting on a per-dnode basis was too high, so we chose to track it on a per-dataset basis similarly to the large_block feature. Signed-off-by: Ned Bass <bass6@llnl.gov> Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov> Closes #3542
2016-03-17 04:25:34 +03:00
ztest_od_init(od, ID_PARALLEL, FTAG, 0, DMU_OT_UINT64_OTHER, 0, 0, 0);
2009-07-03 02:44:48 +04:00
if (ztest_object_init(zd, od, sizeof (ztest_od_t), B_FALSE) != 0)
2008-11-20 23:01:55 +03:00
return;
while (ztest_random(10) != 0)
ztest_io(zd, od->od_object, offset);
umem_free(od, sizeof (ztest_od_t));
}
2008-11-20 23:01:55 +03:00
void
ztest_dmu_prealloc(ztest_ds_t *zd, uint64_t id)
{
ztest_od_t *od;
uint64_t offset = (1ULL << (ztest_random(4) + SPA_MAXBLOCKSHIFT)) +
(ztest_random(ZTEST_RANGE_LOCKS) << SPA_MAXBLOCKSHIFT);
uint64_t count = ztest_random(20) + 1;
uint64_t blocksize = ztest_random_blocksize();
void *data;
2008-11-20 23:01:55 +03:00
od = umem_alloc(sizeof (ztest_od_t), UMEM_NOFAIL);
2008-11-20 23:01:55 +03:00
Implement large_dnode pool feature Justification ------------- This feature adds support for variable length dnodes. Our motivation is to eliminate the overhead associated with using spill blocks. Spill blocks are used to store system attribute data (i.e. file metadata) that does not fit in the dnode's bonus buffer. By allowing a larger bonus buffer area the use of a spill block can be avoided. Spill blocks potentially incur an additional read I/O for every dnode in a dnode block. As a worst case example, reading 32 dnodes from a 16k dnode block and all of the spill blocks could issue 33 separate reads. Now suppose those dnodes have size 1024 and therefore don't need spill blocks. Then the worst case number of blocks read is reduced to from 33 to two--one per dnode block. In practice spill blocks may tend to be co-located on disk with the dnode blocks so the reduction in I/O would not be this drastic. In a badly fragmented pool, however, the improvement could be significant. ZFS-on-Linux systems that make heavy use of extended attributes would benefit from this feature. In particular, ZFS-on-Linux supports the xattr=sa dataset property which allows file extended attribute data to be stored in the dnode bonus buffer as an alternative to the traditional directory-based format. Workloads such as SELinux and the Lustre distributed filesystem often store enough xattr data to force spill bocks when xattr=sa is in effect. Large dnodes may therefore provide a performance benefit to such systems. Other use cases that may benefit from this feature include files with large ACLs and symbolic links with long target names. Furthermore, this feature may be desirable on other platforms in case future applications or features are developed that could make use of a larger bonus buffer area. Implementation -------------- The size of a dnode may be a multiple of 512 bytes up to the size of a dnode block (currently 16384 bytes). A dn_extra_slots field was added to the current on-disk dnode_phys_t structure to describe the size of the physical dnode on disk. The 8 bits for this field were taken from the zero filled dn_pad2 field. The field represents how many "extra" dnode_phys_t slots a dnode consumes in its dnode block. This convention results in a value of 0 for 512 byte dnodes which preserves on-disk format compatibility with older software. Similarly, the in-memory dnode_t structure has a new dn_num_slots field to represent the total number of dnode_phys_t slots consumed on disk. Thus dn->dn_num_slots is 1 greater than the corresponding dnp->dn_extra_slots. This difference in convention was adopted because, unlike on-disk structures, backward compatibility is not a concern for in-memory objects, so we used a more natural way to represent size for a dnode_t. The default size for newly created dnodes is determined by the value of a new "dnodesize" dataset property. By default the property is set to "legacy" which is compatible with older software. Setting the property to "auto" will allow the filesystem to choose the most suitable dnode size. Currently this just sets the default dnode size to 1k, but future code improvements could dynamically choose a size based on observed workload patterns. Dnodes of varying sizes can coexist within the same dataset and even within the same dnode block. For example, to enable automatically-sized dnodes, run # zfs set dnodesize=auto tank/fish The user can also specify literal values for the dnodesize property. These are currently limited to powers of two from 1k to 16k. The power-of-2 limitation is only for simplicity of the user interface. Internally the implementation can handle any multiple of 512 up to 16k, and consumers of the DMU API can specify any legal dnode value. The size of a new dnode is determined at object allocation time and stored as a new field in the znode in-memory structure. New DMU interfaces are added to allow the consumer to specify the dnode size that a newly allocated object should use. Existing interfaces are unchanged to avoid having to update every call site and to preserve compatibility with external consumers such as Lustre. The new interfaces names are given below. The versions of these functions that don't take a dnodesize parameter now just call the _dnsize() versions with a dnodesize of 0, which means use the legacy dnode size. New DMU interfaces: dmu_object_alloc_dnsize() dmu_object_claim_dnsize() dmu_object_reclaim_dnsize() New ZAP interfaces: zap_create_dnsize() zap_create_norm_dnsize() zap_create_flags_dnsize() zap_create_claim_norm_dnsize() zap_create_link_dnsize() The constant DN_MAX_BONUSLEN is renamed to DN_OLD_MAX_BONUSLEN. The spa_maxdnodesize() function should be used to determine the maximum bonus length for a pool. These are a few noteworthy changes to key functions: * The prototype for dnode_hold_impl() now takes a "slots" parameter. When the DNODE_MUST_BE_FREE flag is set, this parameter is used to ensure the hole at the specified object offset is large enough to hold the dnode being created. The slots parameter is also used to ensure a dnode does not span multiple dnode blocks. In both of these cases, if a failure occurs, ENOSPC is returned. Keep in mind, these failure cases are only possible when using DNODE_MUST_BE_FREE. If the DNODE_MUST_BE_ALLOCATED flag is set, "slots" must be 0. dnode_hold_impl() will check if the requested dnode is already consumed as an extra dnode slot by an large dnode, in which case it returns ENOENT. * The function dmu_object_alloc() advances to the next dnode block if dnode_hold_impl() returns an error for a requested object. This is because the beginning of the next dnode block is the only location it can safely assume to either be a hole or a valid starting point for a dnode. * dnode_next_offset_level() and other functions that iterate through dnode blocks may no longer use a simple array indexing scheme. These now use the current dnode's dn_num_slots field to advance to the next dnode in the block. This is to ensure we properly skip the current dnode's bonus area and don't interpret it as a valid dnode. zdb --- The zdb command was updated to display a dnode's size under the "dnsize" column when the object is dumped. For ZIL create log records, zdb will now display the slot count for the object. ztest ----- Ztest chooses a random dnodesize for every newly created object. The random distribution is more heavily weighted toward small dnodes to better simulate real-world datasets. Unused bonus buffer space is filled with non-zero values computed from the object number, dataset id, offset, and generation number. This helps ensure that the dnode traversal code properly skips the interior regions of large dnodes, and that these interior regions are not overwritten by data belonging to other dnodes. A new test visits each object in a dataset. It verifies that the actual dnode size matches what was stored in the ztest block tag when it was created. It also verifies that the unused bonus buffer space is filled with the expected data patterns. ZFS Test Suite -------------- Added six new large dnode-specific tests, and integrated the dnodesize property into existing tests for zfs allow and send/recv. Send/Receive ------------ ZFS send streams for datasets containing large dnodes cannot be received on pools that don't support the large_dnode feature. A send stream with large dnodes sets a DMU_BACKUP_FEATURE_LARGE_DNODE flag which will be unrecognized by an incompatible receiving pool so that the zfs receive will fail gracefully. While not implemented here, it may be possible to generate a backward-compatible send stream from a dataset containing large dnodes. The implementation may be tricky, however, because the send object record for a large dnode would need to be resized to a 512 byte dnode, possibly kicking in a spill block in the process. This means we would need to construct a new SA layout and possibly register it in the SA layout object. The SA layout is normally just sent as an ordinary object record. But if we are constructing new layouts while generating the send stream we'd have to build the SA layout object dynamically and send it at the end of the stream. For sending and receiving between pools that do support large dnodes, the drr_object send record type is extended with a new field to store the dnode slot count. This field was repurposed from unused padding in the structure. ZIL Replay ---------- The dnode slot count is stored in the uppermost 8 bits of the lr_foid field. The bits were unused as the object id is currently capped at 48 bits. Resizing Dnodes --------------- It should be possible to resize a dnode when it is dirtied if the current dnodesize dataset property differs from the dnode's size, but this functionality is not currently implemented. Clearly a dnode can only grow if there are sufficient contiguous unused slots in the dnode block, but it should always be possible to shrink a dnode. Growing dnodes may be useful to reduce fragmentation in a pool with many spill blocks in use. Shrinking dnodes may be useful to allow sending a dataset to a pool that doesn't support the large_dnode feature. Feature Reference Counting -------------------------- The reference count for the large_dnode pool feature tracks the number of datasets that have ever contained a dnode of size larger than 512 bytes. The first time a large dnode is created in a dataset the dataset is converted to an extensible dataset. This is a one-way operation and the only way to decrement the feature count is to destroy the dataset, even if the dataset no longer contains any large dnodes. The complexity of reference counting on a per-dnode basis was too high, so we chose to track it on a per-dataset basis similarly to the large_block feature. Signed-off-by: Ned Bass <bass6@llnl.gov> Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov> Closes #3542
2016-03-17 04:25:34 +03:00
ztest_od_init(od, id, FTAG, 0, DMU_OT_UINT64_OTHER, blocksize, 0, 0);
if (ztest_object_init(zd, od, sizeof (ztest_od_t),
!ztest_random(2)) != 0) {
umem_free(od, sizeof (ztest_od_t));
2008-11-20 23:01:55 +03:00
return;
}
2008-11-20 23:01:55 +03:00
if (ztest_truncate(zd, od->od_object, offset, count * blocksize) != 0) {
umem_free(od, sizeof (ztest_od_t));
2008-11-20 23:01:55 +03:00
return;
}
2008-11-20 23:01:55 +03:00
ztest_prealloc(zd, od->od_object, offset, count * blocksize);
2008-11-20 23:01:55 +03:00
data = umem_zalloc(blocksize, UMEM_NOFAIL);
2008-11-20 23:01:55 +03:00
while (ztest_random(count) != 0) {
uint64_t randoff = offset + (ztest_random(count) * blocksize);
if (ztest_write(zd, od->od_object, randoff, blocksize,
data) != 0)
break;
while (ztest_random(4) != 0)
ztest_io(zd, od->od_object, randoff);
2009-07-03 02:44:48 +04:00
}
2008-11-20 23:01:55 +03:00
umem_free(data, blocksize);
umem_free(od, sizeof (ztest_od_t));
2008-11-20 23:01:55 +03:00
}
/*
* Verify that zap_{create,destroy,add,remove,update} work as expected.
*/
#define ZTEST_ZAP_MIN_INTS 1
#define ZTEST_ZAP_MAX_INTS 4
#define ZTEST_ZAP_MAX_PROPS 1000
void
ztest_zap(ztest_ds_t *zd, uint64_t id)
2008-11-20 23:01:55 +03:00
{
objset_t *os = zd->zd_os;
ztest_od_t *od;
2008-11-20 23:01:55 +03:00
uint64_t object;
uint64_t txg, last_txg;
uint64_t value[ZTEST_ZAP_MAX_INTS];
uint64_t zl_ints, zl_intsize, prop;
int i, ints;
dmu_tx_t *tx;
char propname[100], txgname[100];
int error;
const char *const hc[2] = { "s.acl.h", ".s.open.h.hyLZlg" };
2008-11-20 23:01:55 +03:00
od = umem_alloc(sizeof (ztest_od_t), UMEM_NOFAIL);
Implement large_dnode pool feature Justification ------------- This feature adds support for variable length dnodes. Our motivation is to eliminate the overhead associated with using spill blocks. Spill blocks are used to store system attribute data (i.e. file metadata) that does not fit in the dnode's bonus buffer. By allowing a larger bonus buffer area the use of a spill block can be avoided. Spill blocks potentially incur an additional read I/O for every dnode in a dnode block. As a worst case example, reading 32 dnodes from a 16k dnode block and all of the spill blocks could issue 33 separate reads. Now suppose those dnodes have size 1024 and therefore don't need spill blocks. Then the worst case number of blocks read is reduced to from 33 to two--one per dnode block. In practice spill blocks may tend to be co-located on disk with the dnode blocks so the reduction in I/O would not be this drastic. In a badly fragmented pool, however, the improvement could be significant. ZFS-on-Linux systems that make heavy use of extended attributes would benefit from this feature. In particular, ZFS-on-Linux supports the xattr=sa dataset property which allows file extended attribute data to be stored in the dnode bonus buffer as an alternative to the traditional directory-based format. Workloads such as SELinux and the Lustre distributed filesystem often store enough xattr data to force spill bocks when xattr=sa is in effect. Large dnodes may therefore provide a performance benefit to such systems. Other use cases that may benefit from this feature include files with large ACLs and symbolic links with long target names. Furthermore, this feature may be desirable on other platforms in case future applications or features are developed that could make use of a larger bonus buffer area. Implementation -------------- The size of a dnode may be a multiple of 512 bytes up to the size of a dnode block (currently 16384 bytes). A dn_extra_slots field was added to the current on-disk dnode_phys_t structure to describe the size of the physical dnode on disk. The 8 bits for this field were taken from the zero filled dn_pad2 field. The field represents how many "extra" dnode_phys_t slots a dnode consumes in its dnode block. This convention results in a value of 0 for 512 byte dnodes which preserves on-disk format compatibility with older software. Similarly, the in-memory dnode_t structure has a new dn_num_slots field to represent the total number of dnode_phys_t slots consumed on disk. Thus dn->dn_num_slots is 1 greater than the corresponding dnp->dn_extra_slots. This difference in convention was adopted because, unlike on-disk structures, backward compatibility is not a concern for in-memory objects, so we used a more natural way to represent size for a dnode_t. The default size for newly created dnodes is determined by the value of a new "dnodesize" dataset property. By default the property is set to "legacy" which is compatible with older software. Setting the property to "auto" will allow the filesystem to choose the most suitable dnode size. Currently this just sets the default dnode size to 1k, but future code improvements could dynamically choose a size based on observed workload patterns. Dnodes of varying sizes can coexist within the same dataset and even within the same dnode block. For example, to enable automatically-sized dnodes, run # zfs set dnodesize=auto tank/fish The user can also specify literal values for the dnodesize property. These are currently limited to powers of two from 1k to 16k. The power-of-2 limitation is only for simplicity of the user interface. Internally the implementation can handle any multiple of 512 up to 16k, and consumers of the DMU API can specify any legal dnode value. The size of a new dnode is determined at object allocation time and stored as a new field in the znode in-memory structure. New DMU interfaces are added to allow the consumer to specify the dnode size that a newly allocated object should use. Existing interfaces are unchanged to avoid having to update every call site and to preserve compatibility with external consumers such as Lustre. The new interfaces names are given below. The versions of these functions that don't take a dnodesize parameter now just call the _dnsize() versions with a dnodesize of 0, which means use the legacy dnode size. New DMU interfaces: dmu_object_alloc_dnsize() dmu_object_claim_dnsize() dmu_object_reclaim_dnsize() New ZAP interfaces: zap_create_dnsize() zap_create_norm_dnsize() zap_create_flags_dnsize() zap_create_claim_norm_dnsize() zap_create_link_dnsize() The constant DN_MAX_BONUSLEN is renamed to DN_OLD_MAX_BONUSLEN. The spa_maxdnodesize() function should be used to determine the maximum bonus length for a pool. These are a few noteworthy changes to key functions: * The prototype for dnode_hold_impl() now takes a "slots" parameter. When the DNODE_MUST_BE_FREE flag is set, this parameter is used to ensure the hole at the specified object offset is large enough to hold the dnode being created. The slots parameter is also used to ensure a dnode does not span multiple dnode blocks. In both of these cases, if a failure occurs, ENOSPC is returned. Keep in mind, these failure cases are only possible when using DNODE_MUST_BE_FREE. If the DNODE_MUST_BE_ALLOCATED flag is set, "slots" must be 0. dnode_hold_impl() will check if the requested dnode is already consumed as an extra dnode slot by an large dnode, in which case it returns ENOENT. * The function dmu_object_alloc() advances to the next dnode block if dnode_hold_impl() returns an error for a requested object. This is because the beginning of the next dnode block is the only location it can safely assume to either be a hole or a valid starting point for a dnode. * dnode_next_offset_level() and other functions that iterate through dnode blocks may no longer use a simple array indexing scheme. These now use the current dnode's dn_num_slots field to advance to the next dnode in the block. This is to ensure we properly skip the current dnode's bonus area and don't interpret it as a valid dnode. zdb --- The zdb command was updated to display a dnode's size under the "dnsize" column when the object is dumped. For ZIL create log records, zdb will now display the slot count for the object. ztest ----- Ztest chooses a random dnodesize for every newly created object. The random distribution is more heavily weighted toward small dnodes to better simulate real-world datasets. Unused bonus buffer space is filled with non-zero values computed from the object number, dataset id, offset, and generation number. This helps ensure that the dnode traversal code properly skips the interior regions of large dnodes, and that these interior regions are not overwritten by data belonging to other dnodes. A new test visits each object in a dataset. It verifies that the actual dnode size matches what was stored in the ztest block tag when it was created. It also verifies that the unused bonus buffer space is filled with the expected data patterns. ZFS Test Suite -------------- Added six new large dnode-specific tests, and integrated the dnodesize property into existing tests for zfs allow and send/recv. Send/Receive ------------ ZFS send streams for datasets containing large dnodes cannot be received on pools that don't support the large_dnode feature. A send stream with large dnodes sets a DMU_BACKUP_FEATURE_LARGE_DNODE flag which will be unrecognized by an incompatible receiving pool so that the zfs receive will fail gracefully. While not implemented here, it may be possible to generate a backward-compatible send stream from a dataset containing large dnodes. The implementation may be tricky, however, because the send object record for a large dnode would need to be resized to a 512 byte dnode, possibly kicking in a spill block in the process. This means we would need to construct a new SA layout and possibly register it in the SA layout object. The SA layout is normally just sent as an ordinary object record. But if we are constructing new layouts while generating the send stream we'd have to build the SA layout object dynamically and send it at the end of the stream. For sending and receiving between pools that do support large dnodes, the drr_object send record type is extended with a new field to store the dnode slot count. This field was repurposed from unused padding in the structure. ZIL Replay ---------- The dnode slot count is stored in the uppermost 8 bits of the lr_foid field. The bits were unused as the object id is currently capped at 48 bits. Resizing Dnodes --------------- It should be possible to resize a dnode when it is dirtied if the current dnodesize dataset property differs from the dnode's size, but this functionality is not currently implemented. Clearly a dnode can only grow if there are sufficient contiguous unused slots in the dnode block, but it should always be possible to shrink a dnode. Growing dnodes may be useful to reduce fragmentation in a pool with many spill blocks in use. Shrinking dnodes may be useful to allow sending a dataset to a pool that doesn't support the large_dnode feature. Feature Reference Counting -------------------------- The reference count for the large_dnode pool feature tracks the number of datasets that have ever contained a dnode of size larger than 512 bytes. The first time a large dnode is created in a dataset the dataset is converted to an extensible dataset. This is a one-way operation and the only way to decrement the feature count is to destroy the dataset, even if the dataset no longer contains any large dnodes. The complexity of reference counting on a per-dnode basis was too high, so we chose to track it on a per-dataset basis similarly to the large_block feature. Signed-off-by: Ned Bass <bass6@llnl.gov> Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov> Closes #3542
2016-03-17 04:25:34 +03:00
ztest_od_init(od, id, FTAG, 0, DMU_OT_ZAP_OTHER, 0, 0, 0);
2008-11-20 23:01:55 +03:00
if (ztest_object_init(zd, od, sizeof (ztest_od_t),
!ztest_random(2)) != 0)
goto out;
2008-11-20 23:01:55 +03:00
object = od->od_object;
2008-11-20 23:01:55 +03:00
/*
* Generate a known hash collision, and verify that
* we can lookup and remove both entries.
*/
tx = dmu_tx_create(os);
dmu_tx_hold_zap(tx, object, B_TRUE, NULL);
txg = ztest_tx_assign(tx, TXG_MIGHTWAIT, FTAG);
if (txg == 0)
goto out;
for (i = 0; i < 2; i++) {
value[i] = i;
VERIFY0(zap_add(os, object, hc[i], sizeof (uint64_t),
1, &value[i], tx));
}
for (i = 0; i < 2; i++) {
VERIFY3U(EEXIST, ==, zap_add(os, object, hc[i],
sizeof (uint64_t), 1, &value[i], tx));
VERIFY0(
zap_length(os, object, hc[i], &zl_intsize, &zl_ints));
ASSERT3U(zl_intsize, ==, sizeof (uint64_t));
ASSERT3U(zl_ints, ==, 1);
}
for (i = 0; i < 2; i++) {
VERIFY0(zap_remove(os, object, hc[i], tx));
2008-11-20 23:01:55 +03:00
}
dmu_tx_commit(tx);
2008-11-20 23:01:55 +03:00
/*
* Generate a bunch of random entries.
*/
2008-11-20 23:01:55 +03:00
ints = MAX(ZTEST_ZAP_MIN_INTS, object % ZTEST_ZAP_MAX_INTS);
prop = ztest_random(ZTEST_ZAP_MAX_PROPS);
(void) sprintf(propname, "prop_%"PRIu64"", prop);
(void) sprintf(txgname, "txg_%"PRIu64"", prop);
memset(value, 0, sizeof (value));
2008-11-20 23:01:55 +03:00
last_txg = 0;
/*
* If these zap entries already exist, validate their contents.
*/
error = zap_length(os, object, txgname, &zl_intsize, &zl_ints);
if (error == 0) {
ASSERT3U(zl_intsize, ==, sizeof (uint64_t));
ASSERT3U(zl_ints, ==, 1);
VERIFY0(zap_lookup(os, object, txgname, zl_intsize,
zl_ints, &last_txg));
2008-11-20 23:01:55 +03:00
VERIFY0(zap_length(os, object, propname, &zl_intsize,
&zl_ints));
2008-11-20 23:01:55 +03:00
ASSERT3U(zl_intsize, ==, sizeof (uint64_t));
ASSERT3U(zl_ints, ==, ints);
VERIFY0(zap_lookup(os, object, propname, zl_intsize,
zl_ints, value));
2008-11-20 23:01:55 +03:00
for (i = 0; i < ints; i++) {
ASSERT3U(value[i], ==, last_txg + object + i);
}
} else {
ASSERT3U(error, ==, ENOENT);
}
/*
* Atomically update two entries in our zap object.
* The first is named txg_%llu, and contains the txg
* in which the property was last updated. The second
* is named prop_%llu, and the nth element of its value
* should be txg + object + n.
*/
tx = dmu_tx_create(os);
dmu_tx_hold_zap(tx, object, B_TRUE, NULL);
txg = ztest_tx_assign(tx, TXG_MIGHTWAIT, FTAG);
if (txg == 0)
goto out;
2008-11-20 23:01:55 +03:00
if (last_txg > txg)
fatal(B_FALSE, "zap future leak: old %"PRIu64" new %"PRIu64"",
last_txg, txg);
2008-11-20 23:01:55 +03:00
for (i = 0; i < ints; i++)
value[i] = txg + object + i;
VERIFY0(zap_update(os, object, txgname, sizeof (uint64_t),
1, &txg, tx));
VERIFY0(zap_update(os, object, propname, sizeof (uint64_t),
ints, value, tx));
2008-11-20 23:01:55 +03:00
dmu_tx_commit(tx);
/*
* Remove a random pair of entries.
*/
prop = ztest_random(ZTEST_ZAP_MAX_PROPS);
(void) sprintf(propname, "prop_%"PRIu64"", prop);
(void) sprintf(txgname, "txg_%"PRIu64"", prop);
2008-11-20 23:01:55 +03:00
error = zap_length(os, object, txgname, &zl_intsize, &zl_ints);
if (error == ENOENT)
goto out;
2008-11-20 23:01:55 +03:00
ASSERT0(error);
2008-11-20 23:01:55 +03:00
tx = dmu_tx_create(os);
dmu_tx_hold_zap(tx, object, B_TRUE, NULL);
txg = ztest_tx_assign(tx, TXG_MIGHTWAIT, FTAG);
if (txg == 0)
goto out;
VERIFY0(zap_remove(os, object, txgname, tx));
VERIFY0(zap_remove(os, object, propname, tx));
dmu_tx_commit(tx);
out:
umem_free(od, sizeof (ztest_od_t));
}
2008-11-20 23:01:55 +03:00
/*
* Test case to test the upgrading of a microzap to fatzap.
*/
void
ztest_fzap(ztest_ds_t *zd, uint64_t id)
{
objset_t *os = zd->zd_os;
ztest_od_t *od;
uint64_t object, txg, value;
2008-11-20 23:01:55 +03:00
od = umem_alloc(sizeof (ztest_od_t), UMEM_NOFAIL);
Implement large_dnode pool feature Justification ------------- This feature adds support for variable length dnodes. Our motivation is to eliminate the overhead associated with using spill blocks. Spill blocks are used to store system attribute data (i.e. file metadata) that does not fit in the dnode's bonus buffer. By allowing a larger bonus buffer area the use of a spill block can be avoided. Spill blocks potentially incur an additional read I/O for every dnode in a dnode block. As a worst case example, reading 32 dnodes from a 16k dnode block and all of the spill blocks could issue 33 separate reads. Now suppose those dnodes have size 1024 and therefore don't need spill blocks. Then the worst case number of blocks read is reduced to from 33 to two--one per dnode block. In practice spill blocks may tend to be co-located on disk with the dnode blocks so the reduction in I/O would not be this drastic. In a badly fragmented pool, however, the improvement could be significant. ZFS-on-Linux systems that make heavy use of extended attributes would benefit from this feature. In particular, ZFS-on-Linux supports the xattr=sa dataset property which allows file extended attribute data to be stored in the dnode bonus buffer as an alternative to the traditional directory-based format. Workloads such as SELinux and the Lustre distributed filesystem often store enough xattr data to force spill bocks when xattr=sa is in effect. Large dnodes may therefore provide a performance benefit to such systems. Other use cases that may benefit from this feature include files with large ACLs and symbolic links with long target names. Furthermore, this feature may be desirable on other platforms in case future applications or features are developed that could make use of a larger bonus buffer area. Implementation -------------- The size of a dnode may be a multiple of 512 bytes up to the size of a dnode block (currently 16384 bytes). A dn_extra_slots field was added to the current on-disk dnode_phys_t structure to describe the size of the physical dnode on disk. The 8 bits for this field were taken from the zero filled dn_pad2 field. The field represents how many "extra" dnode_phys_t slots a dnode consumes in its dnode block. This convention results in a value of 0 for 512 byte dnodes which preserves on-disk format compatibility with older software. Similarly, the in-memory dnode_t structure has a new dn_num_slots field to represent the total number of dnode_phys_t slots consumed on disk. Thus dn->dn_num_slots is 1 greater than the corresponding dnp->dn_extra_slots. This difference in convention was adopted because, unlike on-disk structures, backward compatibility is not a concern for in-memory objects, so we used a more natural way to represent size for a dnode_t. The default size for newly created dnodes is determined by the value of a new "dnodesize" dataset property. By default the property is set to "legacy" which is compatible with older software. Setting the property to "auto" will allow the filesystem to choose the most suitable dnode size. Currently this just sets the default dnode size to 1k, but future code improvements could dynamically choose a size based on observed workload patterns. Dnodes of varying sizes can coexist within the same dataset and even within the same dnode block. For example, to enable automatically-sized dnodes, run # zfs set dnodesize=auto tank/fish The user can also specify literal values for the dnodesize property. These are currently limited to powers of two from 1k to 16k. The power-of-2 limitation is only for simplicity of the user interface. Internally the implementation can handle any multiple of 512 up to 16k, and consumers of the DMU API can specify any legal dnode value. The size of a new dnode is determined at object allocation time and stored as a new field in the znode in-memory structure. New DMU interfaces are added to allow the consumer to specify the dnode size that a newly allocated object should use. Existing interfaces are unchanged to avoid having to update every call site and to preserve compatibility with external consumers such as Lustre. The new interfaces names are given below. The versions of these functions that don't take a dnodesize parameter now just call the _dnsize() versions with a dnodesize of 0, which means use the legacy dnode size. New DMU interfaces: dmu_object_alloc_dnsize() dmu_object_claim_dnsize() dmu_object_reclaim_dnsize() New ZAP interfaces: zap_create_dnsize() zap_create_norm_dnsize() zap_create_flags_dnsize() zap_create_claim_norm_dnsize() zap_create_link_dnsize() The constant DN_MAX_BONUSLEN is renamed to DN_OLD_MAX_BONUSLEN. The spa_maxdnodesize() function should be used to determine the maximum bonus length for a pool. These are a few noteworthy changes to key functions: * The prototype for dnode_hold_impl() now takes a "slots" parameter. When the DNODE_MUST_BE_FREE flag is set, this parameter is used to ensure the hole at the specified object offset is large enough to hold the dnode being created. The slots parameter is also used to ensure a dnode does not span multiple dnode blocks. In both of these cases, if a failure occurs, ENOSPC is returned. Keep in mind, these failure cases are only possible when using DNODE_MUST_BE_FREE. If the DNODE_MUST_BE_ALLOCATED flag is set, "slots" must be 0. dnode_hold_impl() will check if the requested dnode is already consumed as an extra dnode slot by an large dnode, in which case it returns ENOENT. * The function dmu_object_alloc() advances to the next dnode block if dnode_hold_impl() returns an error for a requested object. This is because the beginning of the next dnode block is the only location it can safely assume to either be a hole or a valid starting point for a dnode. * dnode_next_offset_level() and other functions that iterate through dnode blocks may no longer use a simple array indexing scheme. These now use the current dnode's dn_num_slots field to advance to the next dnode in the block. This is to ensure we properly skip the current dnode's bonus area and don't interpret it as a valid dnode. zdb --- The zdb command was updated to display a dnode's size under the "dnsize" column when the object is dumped. For ZIL create log records, zdb will now display the slot count for the object. ztest ----- Ztest chooses a random dnodesize for every newly created object. The random distribution is more heavily weighted toward small dnodes to better simulate real-world datasets. Unused bonus buffer space is filled with non-zero values computed from the object number, dataset id, offset, and generation number. This helps ensure that the dnode traversal code properly skips the interior regions of large dnodes, and that these interior regions are not overwritten by data belonging to other dnodes. A new test visits each object in a dataset. It verifies that the actual dnode size matches what was stored in the ztest block tag when it was created. It also verifies that the unused bonus buffer space is filled with the expected data patterns. ZFS Test Suite -------------- Added six new large dnode-specific tests, and integrated the dnodesize property into existing tests for zfs allow and send/recv. Send/Receive ------------ ZFS send streams for datasets containing large dnodes cannot be received on pools that don't support the large_dnode feature. A send stream with large dnodes sets a DMU_BACKUP_FEATURE_LARGE_DNODE flag which will be unrecognized by an incompatible receiving pool so that the zfs receive will fail gracefully. While not implemented here, it may be possible to generate a backward-compatible send stream from a dataset containing large dnodes. The implementation may be tricky, however, because the send object record for a large dnode would need to be resized to a 512 byte dnode, possibly kicking in a spill block in the process. This means we would need to construct a new SA layout and possibly register it in the SA layout object. The SA layout is normally just sent as an ordinary object record. But if we are constructing new layouts while generating the send stream we'd have to build the SA layout object dynamically and send it at the end of the stream. For sending and receiving between pools that do support large dnodes, the drr_object send record type is extended with a new field to store the dnode slot count. This field was repurposed from unused padding in the structure. ZIL Replay ---------- The dnode slot count is stored in the uppermost 8 bits of the lr_foid field. The bits were unused as the object id is currently capped at 48 bits. Resizing Dnodes --------------- It should be possible to resize a dnode when it is dirtied if the current dnodesize dataset property differs from the dnode's size, but this functionality is not currently implemented. Clearly a dnode can only grow if there are sufficient contiguous unused slots in the dnode block, but it should always be possible to shrink a dnode. Growing dnodes may be useful to reduce fragmentation in a pool with many spill blocks in use. Shrinking dnodes may be useful to allow sending a dataset to a pool that doesn't support the large_dnode feature. Feature Reference Counting -------------------------- The reference count for the large_dnode pool feature tracks the number of datasets that have ever contained a dnode of size larger than 512 bytes. The first time a large dnode is created in a dataset the dataset is converted to an extensible dataset. This is a one-way operation and the only way to decrement the feature count is to destroy the dataset, even if the dataset no longer contains any large dnodes. The complexity of reference counting on a per-dnode basis was too high, so we chose to track it on a per-dataset basis similarly to the large_block feature. Signed-off-by: Ned Bass <bass6@llnl.gov> Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov> Closes #3542
2016-03-17 04:25:34 +03:00
ztest_od_init(od, id, FTAG, 0, DMU_OT_ZAP_OTHER, 0, 0, 0);
if (ztest_object_init(zd, od, sizeof (ztest_od_t),
!ztest_random(2)) != 0)
goto out;
object = od->od_object;
2008-11-20 23:01:55 +03:00
/*
* Add entries to this ZAP and make sure it spills over
* and gets upgraded to a fatzap. Also, since we are adding
* 2050 entries we should see ptrtbl growth and leaf-block split.
2008-11-20 23:01:55 +03:00
*/
for (value = 0; value < 2050; value++) {
char name[ZFS_MAX_DATASET_NAME_LEN];
dmu_tx_t *tx;
int error;
2008-11-20 23:01:55 +03:00
(void) snprintf(name, sizeof (name), "fzap-%"PRIu64"-%"PRIu64"",
id, value);
tx = dmu_tx_create(os);
dmu_tx_hold_zap(tx, object, B_TRUE, name);
txg = ztest_tx_assign(tx, TXG_MIGHTWAIT, FTAG);
if (txg == 0)
goto out;
error = zap_add(os, object, name, sizeof (uint64_t), 1,
&value, tx);
ASSERT(error == 0 || error == EEXIST);
dmu_tx_commit(tx);
2008-11-20 23:01:55 +03:00
}
out:
umem_free(od, sizeof (ztest_od_t));
2008-11-20 23:01:55 +03:00
}
void
ztest_zap_parallel(ztest_ds_t *zd, uint64_t id)
2008-11-20 23:01:55 +03:00
{
(void) id;
objset_t *os = zd->zd_os;
ztest_od_t *od;
2008-11-20 23:01:55 +03:00
uint64_t txg, object, count, wsize, wc, zl_wsize, zl_wc;
dmu_tx_t *tx;
int i, namelen, error;
int micro = ztest_random(2);
2008-11-20 23:01:55 +03:00
char name[20], string_value[20];
void *data;
od = umem_alloc(sizeof (ztest_od_t), UMEM_NOFAIL);
Implement large_dnode pool feature Justification ------------- This feature adds support for variable length dnodes. Our motivation is to eliminate the overhead associated with using spill blocks. Spill blocks are used to store system attribute data (i.e. file metadata) that does not fit in the dnode's bonus buffer. By allowing a larger bonus buffer area the use of a spill block can be avoided. Spill blocks potentially incur an additional read I/O for every dnode in a dnode block. As a worst case example, reading 32 dnodes from a 16k dnode block and all of the spill blocks could issue 33 separate reads. Now suppose those dnodes have size 1024 and therefore don't need spill blocks. Then the worst case number of blocks read is reduced to from 33 to two--one per dnode block. In practice spill blocks may tend to be co-located on disk with the dnode blocks so the reduction in I/O would not be this drastic. In a badly fragmented pool, however, the improvement could be significant. ZFS-on-Linux systems that make heavy use of extended attributes would benefit from this feature. In particular, ZFS-on-Linux supports the xattr=sa dataset property which allows file extended attribute data to be stored in the dnode bonus buffer as an alternative to the traditional directory-based format. Workloads such as SELinux and the Lustre distributed filesystem often store enough xattr data to force spill bocks when xattr=sa is in effect. Large dnodes may therefore provide a performance benefit to such systems. Other use cases that may benefit from this feature include files with large ACLs and symbolic links with long target names. Furthermore, this feature may be desirable on other platforms in case future applications or features are developed that could make use of a larger bonus buffer area. Implementation -------------- The size of a dnode may be a multiple of 512 bytes up to the size of a dnode block (currently 16384 bytes). A dn_extra_slots field was added to the current on-disk dnode_phys_t structure to describe the size of the physical dnode on disk. The 8 bits for this field were taken from the zero filled dn_pad2 field. The field represents how many "extra" dnode_phys_t slots a dnode consumes in its dnode block. This convention results in a value of 0 for 512 byte dnodes which preserves on-disk format compatibility with older software. Similarly, the in-memory dnode_t structure has a new dn_num_slots field to represent the total number of dnode_phys_t slots consumed on disk. Thus dn->dn_num_slots is 1 greater than the corresponding dnp->dn_extra_slots. This difference in convention was adopted because, unlike on-disk structures, backward compatibility is not a concern for in-memory objects, so we used a more natural way to represent size for a dnode_t. The default size for newly created dnodes is determined by the value of a new "dnodesize" dataset property. By default the property is set to "legacy" which is compatible with older software. Setting the property to "auto" will allow the filesystem to choose the most suitable dnode size. Currently this just sets the default dnode size to 1k, but future code improvements could dynamically choose a size based on observed workload patterns. Dnodes of varying sizes can coexist within the same dataset and even within the same dnode block. For example, to enable automatically-sized dnodes, run # zfs set dnodesize=auto tank/fish The user can also specify literal values for the dnodesize property. These are currently limited to powers of two from 1k to 16k. The power-of-2 limitation is only for simplicity of the user interface. Internally the implementation can handle any multiple of 512 up to 16k, and consumers of the DMU API can specify any legal dnode value. The size of a new dnode is determined at object allocation time and stored as a new field in the znode in-memory structure. New DMU interfaces are added to allow the consumer to specify the dnode size that a newly allocated object should use. Existing interfaces are unchanged to avoid having to update every call site and to preserve compatibility with external consumers such as Lustre. The new interfaces names are given below. The versions of these functions that don't take a dnodesize parameter now just call the _dnsize() versions with a dnodesize of 0, which means use the legacy dnode size. New DMU interfaces: dmu_object_alloc_dnsize() dmu_object_claim_dnsize() dmu_object_reclaim_dnsize() New ZAP interfaces: zap_create_dnsize() zap_create_norm_dnsize() zap_create_flags_dnsize() zap_create_claim_norm_dnsize() zap_create_link_dnsize() The constant DN_MAX_BONUSLEN is renamed to DN_OLD_MAX_BONUSLEN. The spa_maxdnodesize() function should be used to determine the maximum bonus length for a pool. These are a few noteworthy changes to key functions: * The prototype for dnode_hold_impl() now takes a "slots" parameter. When the DNODE_MUST_BE_FREE flag is set, this parameter is used to ensure the hole at the specified object offset is large enough to hold the dnode being created. The slots parameter is also used to ensure a dnode does not span multiple dnode blocks. In both of these cases, if a failure occurs, ENOSPC is returned. Keep in mind, these failure cases are only possible when using DNODE_MUST_BE_FREE. If the DNODE_MUST_BE_ALLOCATED flag is set, "slots" must be 0. dnode_hold_impl() will check if the requested dnode is already consumed as an extra dnode slot by an large dnode, in which case it returns ENOENT. * The function dmu_object_alloc() advances to the next dnode block if dnode_hold_impl() returns an error for a requested object. This is because the beginning of the next dnode block is the only location it can safely assume to either be a hole or a valid starting point for a dnode. * dnode_next_offset_level() and other functions that iterate through dnode blocks may no longer use a simple array indexing scheme. These now use the current dnode's dn_num_slots field to advance to the next dnode in the block. This is to ensure we properly skip the current dnode's bonus area and don't interpret it as a valid dnode. zdb --- The zdb command was updated to display a dnode's size under the "dnsize" column when the object is dumped. For ZIL create log records, zdb will now display the slot count for the object. ztest ----- Ztest chooses a random dnodesize for every newly created object. The random distribution is more heavily weighted toward small dnodes to better simulate real-world datasets. Unused bonus buffer space is filled with non-zero values computed from the object number, dataset id, offset, and generation number. This helps ensure that the dnode traversal code properly skips the interior regions of large dnodes, and that these interior regions are not overwritten by data belonging to other dnodes. A new test visits each object in a dataset. It verifies that the actual dnode size matches what was stored in the ztest block tag when it was created. It also verifies that the unused bonus buffer space is filled with the expected data patterns. ZFS Test Suite -------------- Added six new large dnode-specific tests, and integrated the dnodesize property into existing tests for zfs allow and send/recv. Send/Receive ------------ ZFS send streams for datasets containing large dnodes cannot be received on pools that don't support the large_dnode feature. A send stream with large dnodes sets a DMU_BACKUP_FEATURE_LARGE_DNODE flag which will be unrecognized by an incompatible receiving pool so that the zfs receive will fail gracefully. While not implemented here, it may be possible to generate a backward-compatible send stream from a dataset containing large dnodes. The implementation may be tricky, however, because the send object record for a large dnode would need to be resized to a 512 byte dnode, possibly kicking in a spill block in the process. This means we would need to construct a new SA layout and possibly register it in the SA layout object. The SA layout is normally just sent as an ordinary object record. But if we are constructing new layouts while generating the send stream we'd have to build the SA layout object dynamically and send it at the end of the stream. For sending and receiving between pools that do support large dnodes, the drr_object send record type is extended with a new field to store the dnode slot count. This field was repurposed from unused padding in the structure. ZIL Replay ---------- The dnode slot count is stored in the uppermost 8 bits of the lr_foid field. The bits were unused as the object id is currently capped at 48 bits. Resizing Dnodes --------------- It should be possible to resize a dnode when it is dirtied if the current dnodesize dataset property differs from the dnode's size, but this functionality is not currently implemented. Clearly a dnode can only grow if there are sufficient contiguous unused slots in the dnode block, but it should always be possible to shrink a dnode. Growing dnodes may be useful to reduce fragmentation in a pool with many spill blocks in use. Shrinking dnodes may be useful to allow sending a dataset to a pool that doesn't support the large_dnode feature. Feature Reference Counting -------------------------- The reference count for the large_dnode pool feature tracks the number of datasets that have ever contained a dnode of size larger than 512 bytes. The first time a large dnode is created in a dataset the dataset is converted to an extensible dataset. This is a one-way operation and the only way to decrement the feature count is to destroy the dataset, even if the dataset no longer contains any large dnodes. The complexity of reference counting on a per-dnode basis was too high, so we chose to track it on a per-dataset basis similarly to the large_block feature. Signed-off-by: Ned Bass <bass6@llnl.gov> Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov> Closes #3542
2016-03-17 04:25:34 +03:00
ztest_od_init(od, ID_PARALLEL, FTAG, micro, DMU_OT_ZAP_OTHER, 0, 0, 0);
if (ztest_object_init(zd, od, sizeof (ztest_od_t), B_FALSE) != 0) {
umem_free(od, sizeof (ztest_od_t));
return;
}
object = od->od_object;
2008-11-20 23:01:55 +03:00
/*
* Generate a random name of the form 'xxx.....' where each
* x is a random printable character and the dots are dots.
* There are 94 such characters, and the name length goes from
* 6 to 20, so there are 94^3 * 15 = 12,458,760 possible names.
*/
namelen = ztest_random(sizeof (name) - 5) + 5 + 1;
for (i = 0; i < 3; i++)
name[i] = '!' + ztest_random('~' - '!' + 1);
for (; i < namelen - 1; i++)
name[i] = '.';
name[i] = '\0';
if ((namelen & 1) || micro) {
2008-11-20 23:01:55 +03:00
wsize = sizeof (txg);
wc = 1;
data = &txg;
} else {
wsize = 1;
wc = namelen;
data = string_value;
}
count = -1ULL;
VERIFY0(zap_count(os, object, &count));
ASSERT3S(count, !=, -1ULL);
2008-11-20 23:01:55 +03:00
/*
* Select an operation: length, lookup, add, update, remove.
*/
i = ztest_random(5);
if (i >= 2) {
tx = dmu_tx_create(os);
dmu_tx_hold_zap(tx, object, B_TRUE, NULL);
txg = ztest_tx_assign(tx, TXG_MIGHTWAIT, FTAG);
if (txg == 0) {
umem_free(od, sizeof (ztest_od_t));
2008-11-20 23:01:55 +03:00
return;
}
memcpy(string_value, name, namelen);
2008-11-20 23:01:55 +03:00
} else {
tx = NULL;
txg = 0;
memset(string_value, 0, namelen);
2008-11-20 23:01:55 +03:00
}
switch (i) {
case 0:
error = zap_length(os, object, name, &zl_wsize, &zl_wc);
if (error == 0) {
ASSERT3U(wsize, ==, zl_wsize);
ASSERT3U(wc, ==, zl_wc);
} else {
ASSERT3U(error, ==, ENOENT);
}
break;
case 1:
error = zap_lookup(os, object, name, wsize, wc, data);
if (error == 0) {
if (data == string_value &&
memcmp(name, data, namelen) != 0)
fatal(B_FALSE, "name '%s' != val '%s' len %d",
name, (char *)data, namelen);
2008-11-20 23:01:55 +03:00
} else {
ASSERT3U(error, ==, ENOENT);
}
break;
case 2:
error = zap_add(os, object, name, wsize, wc, data, tx);
ASSERT(error == 0 || error == EEXIST);
break;
case 3:
VERIFY0(zap_update(os, object, name, wsize, wc, data, tx));
2008-11-20 23:01:55 +03:00
break;
case 4:
error = zap_remove(os, object, name, tx);
ASSERT(error == 0 || error == ENOENT);
break;
}
if (tx != NULL)
dmu_tx_commit(tx);
umem_free(od, sizeof (ztest_od_t));
2008-11-20 23:01:55 +03:00
}
/*
* Commit callback data.
*/
typedef struct ztest_cb_data {
list_node_t zcd_node;
uint64_t zcd_txg;
int zcd_expected_err;
boolean_t zcd_added;
boolean_t zcd_called;
spa_t *zcd_spa;
} ztest_cb_data_t;
/* This is the actual commit callback function */
static void
ztest_commit_callback(void *arg, int error)
{
ztest_cb_data_t *data = arg;
uint64_t synced_txg;
VERIFY3P(data, !=, NULL);
VERIFY3S(data->zcd_expected_err, ==, error);
VERIFY(!data->zcd_called);
synced_txg = spa_last_synced_txg(data->zcd_spa);
if (data->zcd_txg > synced_txg)
fatal(B_FALSE,
"commit callback of txg %"PRIu64" called prematurely, "
"last synced txg = %"PRIu64"\n",
data->zcd_txg, synced_txg);
data->zcd_called = B_TRUE;
if (error == ECANCELED) {
ASSERT0(data->zcd_txg);
ASSERT(!data->zcd_added);
/*
* The private callback data should be destroyed here, but
* since we are going to check the zcd_called field after
* dmu_tx_abort(), we will destroy it there.
*/
return;
}
ASSERT(data->zcd_added);
ASSERT3U(data->zcd_txg, !=, 0);
(void) mutex_enter(&zcl.zcl_callbacks_lock);
/* See if this cb was called more quickly */
if ((synced_txg - data->zcd_txg) < zc_min_txg_delay)
zc_min_txg_delay = synced_txg - data->zcd_txg;
/* Remove our callback from the list */
list_remove(&zcl.zcl_callbacks, data);
(void) mutex_exit(&zcl.zcl_callbacks_lock);
umem_free(data, sizeof (ztest_cb_data_t));
}
/* Allocate and initialize callback data structure */
static ztest_cb_data_t *
ztest_create_cb_data(objset_t *os, uint64_t txg)
{
ztest_cb_data_t *cb_data;
cb_data = umem_zalloc(sizeof (ztest_cb_data_t), UMEM_NOFAIL);
cb_data->zcd_txg = txg;
cb_data->zcd_spa = dmu_objset_spa(os);
list_link_init(&cb_data->zcd_node);
return (cb_data);
}
/*
* Commit callback test.
*/
2008-11-20 23:01:55 +03:00
void
ztest_dmu_commit_callbacks(ztest_ds_t *zd, uint64_t id)
{
objset_t *os = zd->zd_os;
ztest_od_t *od;
dmu_tx_t *tx;
ztest_cb_data_t *cb_data[3], *tmp_cb;
uint64_t old_txg, txg;
int i, error = 0;
od = umem_alloc(sizeof (ztest_od_t), UMEM_NOFAIL);
Implement large_dnode pool feature Justification ------------- This feature adds support for variable length dnodes. Our motivation is to eliminate the overhead associated with using spill blocks. Spill blocks are used to store system attribute data (i.e. file metadata) that does not fit in the dnode's bonus buffer. By allowing a larger bonus buffer area the use of a spill block can be avoided. Spill blocks potentially incur an additional read I/O for every dnode in a dnode block. As a worst case example, reading 32 dnodes from a 16k dnode block and all of the spill blocks could issue 33 separate reads. Now suppose those dnodes have size 1024 and therefore don't need spill blocks. Then the worst case number of blocks read is reduced to from 33 to two--one per dnode block. In practice spill blocks may tend to be co-located on disk with the dnode blocks so the reduction in I/O would not be this drastic. In a badly fragmented pool, however, the improvement could be significant. ZFS-on-Linux systems that make heavy use of extended attributes would benefit from this feature. In particular, ZFS-on-Linux supports the xattr=sa dataset property which allows file extended attribute data to be stored in the dnode bonus buffer as an alternative to the traditional directory-based format. Workloads such as SELinux and the Lustre distributed filesystem often store enough xattr data to force spill bocks when xattr=sa is in effect. Large dnodes may therefore provide a performance benefit to such systems. Other use cases that may benefit from this feature include files with large ACLs and symbolic links with long target names. Furthermore, this feature may be desirable on other platforms in case future applications or features are developed that could make use of a larger bonus buffer area. Implementation -------------- The size of a dnode may be a multiple of 512 bytes up to the size of a dnode block (currently 16384 bytes). A dn_extra_slots field was added to the current on-disk dnode_phys_t structure to describe the size of the physical dnode on disk. The 8 bits for this field were taken from the zero filled dn_pad2 field. The field represents how many "extra" dnode_phys_t slots a dnode consumes in its dnode block. This convention results in a value of 0 for 512 byte dnodes which preserves on-disk format compatibility with older software. Similarly, the in-memory dnode_t structure has a new dn_num_slots field to represent the total number of dnode_phys_t slots consumed on disk. Thus dn->dn_num_slots is 1 greater than the corresponding dnp->dn_extra_slots. This difference in convention was adopted because, unlike on-disk structures, backward compatibility is not a concern for in-memory objects, so we used a more natural way to represent size for a dnode_t. The default size for newly created dnodes is determined by the value of a new "dnodesize" dataset property. By default the property is set to "legacy" which is compatible with older software. Setting the property to "auto" will allow the filesystem to choose the most suitable dnode size. Currently this just sets the default dnode size to 1k, but future code improvements could dynamically choose a size based on observed workload patterns. Dnodes of varying sizes can coexist within the same dataset and even within the same dnode block. For example, to enable automatically-sized dnodes, run # zfs set dnodesize=auto tank/fish The user can also specify literal values for the dnodesize property. These are currently limited to powers of two from 1k to 16k. The power-of-2 limitation is only for simplicity of the user interface. Internally the implementation can handle any multiple of 512 up to 16k, and consumers of the DMU API can specify any legal dnode value. The size of a new dnode is determined at object allocation time and stored as a new field in the znode in-memory structure. New DMU interfaces are added to allow the consumer to specify the dnode size that a newly allocated object should use. Existing interfaces are unchanged to avoid having to update every call site and to preserve compatibility with external consumers such as Lustre. The new interfaces names are given below. The versions of these functions that don't take a dnodesize parameter now just call the _dnsize() versions with a dnodesize of 0, which means use the legacy dnode size. New DMU interfaces: dmu_object_alloc_dnsize() dmu_object_claim_dnsize() dmu_object_reclaim_dnsize() New ZAP interfaces: zap_create_dnsize() zap_create_norm_dnsize() zap_create_flags_dnsize() zap_create_claim_norm_dnsize() zap_create_link_dnsize() The constant DN_MAX_BONUSLEN is renamed to DN_OLD_MAX_BONUSLEN. The spa_maxdnodesize() function should be used to determine the maximum bonus length for a pool. These are a few noteworthy changes to key functions: * The prototype for dnode_hold_impl() now takes a "slots" parameter. When the DNODE_MUST_BE_FREE flag is set, this parameter is used to ensure the hole at the specified object offset is large enough to hold the dnode being created. The slots parameter is also used to ensure a dnode does not span multiple dnode blocks. In both of these cases, if a failure occurs, ENOSPC is returned. Keep in mind, these failure cases are only possible when using DNODE_MUST_BE_FREE. If the DNODE_MUST_BE_ALLOCATED flag is set, "slots" must be 0. dnode_hold_impl() will check if the requested dnode is already consumed as an extra dnode slot by an large dnode, in which case it returns ENOENT. * The function dmu_object_alloc() advances to the next dnode block if dnode_hold_impl() returns an error for a requested object. This is because the beginning of the next dnode block is the only location it can safely assume to either be a hole or a valid starting point for a dnode. * dnode_next_offset_level() and other functions that iterate through dnode blocks may no longer use a simple array indexing scheme. These now use the current dnode's dn_num_slots field to advance to the next dnode in the block. This is to ensure we properly skip the current dnode's bonus area and don't interpret it as a valid dnode. zdb --- The zdb command was updated to display a dnode's size under the "dnsize" column when the object is dumped. For ZIL create log records, zdb will now display the slot count for the object. ztest ----- Ztest chooses a random dnodesize for every newly created object. The random distribution is more heavily weighted toward small dnodes to better simulate real-world datasets. Unused bonus buffer space is filled with non-zero values computed from the object number, dataset id, offset, and generation number. This helps ensure that the dnode traversal code properly skips the interior regions of large dnodes, and that these interior regions are not overwritten by data belonging to other dnodes. A new test visits each object in a dataset. It verifies that the actual dnode size matches what was stored in the ztest block tag when it was created. It also verifies that the unused bonus buffer space is filled with the expected data patterns. ZFS Test Suite -------------- Added six new large dnode-specific tests, and integrated the dnodesize property into existing tests for zfs allow and send/recv. Send/Receive ------------ ZFS send streams for datasets containing large dnodes cannot be received on pools that don't support the large_dnode feature. A send stream with large dnodes sets a DMU_BACKUP_FEATURE_LARGE_DNODE flag which will be unrecognized by an incompatible receiving pool so that the zfs receive will fail gracefully. While not implemented here, it may be possible to generate a backward-compatible send stream from a dataset containing large dnodes. The implementation may be tricky, however, because the send object record for a large dnode would need to be resized to a 512 byte dnode, possibly kicking in a spill block in the process. This means we would need to construct a new SA layout and possibly register it in the SA layout object. The SA layout is normally just sent as an ordinary object record. But if we are constructing new layouts while generating the send stream we'd have to build the SA layout object dynamically and send it at the end of the stream. For sending and receiving between pools that do support large dnodes, the drr_object send record type is extended with a new field to store the dnode slot count. This field was repurposed from unused padding in the structure. ZIL Replay ---------- The dnode slot count is stored in the uppermost 8 bits of the lr_foid field. The bits were unused as the object id is currently capped at 48 bits. Resizing Dnodes --------------- It should be possible to resize a dnode when it is dirtied if the current dnodesize dataset property differs from the dnode's size, but this functionality is not currently implemented. Clearly a dnode can only grow if there are sufficient contiguous unused slots in the dnode block, but it should always be possible to shrink a dnode. Growing dnodes may be useful to reduce fragmentation in a pool with many spill blocks in use. Shrinking dnodes may be useful to allow sending a dataset to a pool that doesn't support the large_dnode feature. Feature Reference Counting -------------------------- The reference count for the large_dnode pool feature tracks the number of datasets that have ever contained a dnode of size larger than 512 bytes. The first time a large dnode is created in a dataset the dataset is converted to an extensible dataset. This is a one-way operation and the only way to decrement the feature count is to destroy the dataset, even if the dataset no longer contains any large dnodes. The complexity of reference counting on a per-dnode basis was too high, so we chose to track it on a per-dataset basis similarly to the large_block feature. Signed-off-by: Ned Bass <bass6@llnl.gov> Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov> Closes #3542
2016-03-17 04:25:34 +03:00
ztest_od_init(od, id, FTAG, 0, DMU_OT_UINT64_OTHER, 0, 0, 0);
if (ztest_object_init(zd, od, sizeof (ztest_od_t), B_FALSE) != 0) {
umem_free(od, sizeof (ztest_od_t));
return;
}
tx = dmu_tx_create(os);
cb_data[0] = ztest_create_cb_data(os, 0);
dmu_tx_callback_register(tx, ztest_commit_callback, cb_data[0]);
dmu_tx_hold_write(tx, od->od_object, 0, sizeof (uint64_t));
/* Every once in a while, abort the transaction on purpose */
if (ztest_random(100) == 0)
error = -1;
if (!error)
error = dmu_tx_assign(tx, TXG_NOWAIT);
txg = error ? 0 : dmu_tx_get_txg(tx);
cb_data[0]->zcd_txg = txg;
cb_data[1] = ztest_create_cb_data(os, txg);
dmu_tx_callback_register(tx, ztest_commit_callback, cb_data[1]);
if (error) {
/*
* It's not a strict requirement to call the registered
* callbacks from inside dmu_tx_abort(), but that's what
* it's supposed to happen in the current implementation
* so we will check for that.
*/
for (i = 0; i < 2; i++) {
cb_data[i]->zcd_expected_err = ECANCELED;
VERIFY(!cb_data[i]->zcd_called);
}
dmu_tx_abort(tx);
for (i = 0; i < 2; i++) {
VERIFY(cb_data[i]->zcd_called);
umem_free(cb_data[i], sizeof (ztest_cb_data_t));
}
umem_free(od, sizeof (ztest_od_t));
return;
}
cb_data[2] = ztest_create_cb_data(os, txg);
dmu_tx_callback_register(tx, ztest_commit_callback, cb_data[2]);
/*
* Read existing data to make sure there isn't a future leak.
*/
VERIFY0(dmu_read(os, od->od_object, 0, sizeof (uint64_t),
&old_txg, DMU_READ_PREFETCH));
if (old_txg > txg)
fatal(B_FALSE,
"future leak: got %"PRIu64", open txg is %"PRIu64"",
old_txg, txg);
dmu_write(os, od->od_object, 0, sizeof (uint64_t), &txg, tx);
(void) mutex_enter(&zcl.zcl_callbacks_lock);
/*
* Since commit callbacks don't have any ordering requirement and since
* it is theoretically possible for a commit callback to be called
* after an arbitrary amount of time has elapsed since its txg has been
* synced, it is difficult to reliably determine whether a commit
* callback hasn't been called due to high load or due to a flawed
* implementation.
*
* In practice, we will assume that if after a certain number of txgs a
* commit callback hasn't been called, then most likely there's an
* implementation bug..
*/
tmp_cb = list_head(&zcl.zcl_callbacks);
if (tmp_cb != NULL &&
tmp_cb->zcd_txg + ZTEST_COMMIT_CB_THRESH < txg) {
fatal(B_FALSE,
"Commit callback threshold exceeded, "
"oldest txg: %"PRIu64", open txg: %"PRIu64"\n",
tmp_cb->zcd_txg, txg);
}
/*
* Let's find the place to insert our callbacks.
*
* Even though the list is ordered by txg, it is possible for the
* insertion point to not be the end because our txg may already be
* quiescing at this point and other callbacks in the open txg
* (from other objsets) may have sneaked in.
*/
tmp_cb = list_tail(&zcl.zcl_callbacks);
while (tmp_cb != NULL && tmp_cb->zcd_txg > txg)
tmp_cb = list_prev(&zcl.zcl_callbacks, tmp_cb);
/* Add the 3 callbacks to the list */
for (i = 0; i < 3; i++) {
if (tmp_cb == NULL)
list_insert_head(&zcl.zcl_callbacks, cb_data[i]);
else
list_insert_after(&zcl.zcl_callbacks, tmp_cb,
cb_data[i]);
cb_data[i]->zcd_added = B_TRUE;
VERIFY(!cb_data[i]->zcd_called);
tmp_cb = cb_data[i];
}
zc_cb_counter += 3;
(void) mutex_exit(&zcl.zcl_callbacks_lock);
dmu_tx_commit(tx);
umem_free(od, sizeof (ztest_od_t));
}
Implement large_dnode pool feature Justification ------------- This feature adds support for variable length dnodes. Our motivation is to eliminate the overhead associated with using spill blocks. Spill blocks are used to store system attribute data (i.e. file metadata) that does not fit in the dnode's bonus buffer. By allowing a larger bonus buffer area the use of a spill block can be avoided. Spill blocks potentially incur an additional read I/O for every dnode in a dnode block. As a worst case example, reading 32 dnodes from a 16k dnode block and all of the spill blocks could issue 33 separate reads. Now suppose those dnodes have size 1024 and therefore don't need spill blocks. Then the worst case number of blocks read is reduced to from 33 to two--one per dnode block. In practice spill blocks may tend to be co-located on disk with the dnode blocks so the reduction in I/O would not be this drastic. In a badly fragmented pool, however, the improvement could be significant. ZFS-on-Linux systems that make heavy use of extended attributes would benefit from this feature. In particular, ZFS-on-Linux supports the xattr=sa dataset property which allows file extended attribute data to be stored in the dnode bonus buffer as an alternative to the traditional directory-based format. Workloads such as SELinux and the Lustre distributed filesystem often store enough xattr data to force spill bocks when xattr=sa is in effect. Large dnodes may therefore provide a performance benefit to such systems. Other use cases that may benefit from this feature include files with large ACLs and symbolic links with long target names. Furthermore, this feature may be desirable on other platforms in case future applications or features are developed that could make use of a larger bonus buffer area. Implementation -------------- The size of a dnode may be a multiple of 512 bytes up to the size of a dnode block (currently 16384 bytes). A dn_extra_slots field was added to the current on-disk dnode_phys_t structure to describe the size of the physical dnode on disk. The 8 bits for this field were taken from the zero filled dn_pad2 field. The field represents how many "extra" dnode_phys_t slots a dnode consumes in its dnode block. This convention results in a value of 0 for 512 byte dnodes which preserves on-disk format compatibility with older software. Similarly, the in-memory dnode_t structure has a new dn_num_slots field to represent the total number of dnode_phys_t slots consumed on disk. Thus dn->dn_num_slots is 1 greater than the corresponding dnp->dn_extra_slots. This difference in convention was adopted because, unlike on-disk structures, backward compatibility is not a concern for in-memory objects, so we used a more natural way to represent size for a dnode_t. The default size for newly created dnodes is determined by the value of a new "dnodesize" dataset property. By default the property is set to "legacy" which is compatible with older software. Setting the property to "auto" will allow the filesystem to choose the most suitable dnode size. Currently this just sets the default dnode size to 1k, but future code improvements could dynamically choose a size based on observed workload patterns. Dnodes of varying sizes can coexist within the same dataset and even within the same dnode block. For example, to enable automatically-sized dnodes, run # zfs set dnodesize=auto tank/fish The user can also specify literal values for the dnodesize property. These are currently limited to powers of two from 1k to 16k. The power-of-2 limitation is only for simplicity of the user interface. Internally the implementation can handle any multiple of 512 up to 16k, and consumers of the DMU API can specify any legal dnode value. The size of a new dnode is determined at object allocation time and stored as a new field in the znode in-memory structure. New DMU interfaces are added to allow the consumer to specify the dnode size that a newly allocated object should use. Existing interfaces are unchanged to avoid having to update every call site and to preserve compatibility with external consumers such as Lustre. The new interfaces names are given below. The versions of these functions that don't take a dnodesize parameter now just call the _dnsize() versions with a dnodesize of 0, which means use the legacy dnode size. New DMU interfaces: dmu_object_alloc_dnsize() dmu_object_claim_dnsize() dmu_object_reclaim_dnsize() New ZAP interfaces: zap_create_dnsize() zap_create_norm_dnsize() zap_create_flags_dnsize() zap_create_claim_norm_dnsize() zap_create_link_dnsize() The constant DN_MAX_BONUSLEN is renamed to DN_OLD_MAX_BONUSLEN. The spa_maxdnodesize() function should be used to determine the maximum bonus length for a pool. These are a few noteworthy changes to key functions: * The prototype for dnode_hold_impl() now takes a "slots" parameter. When the DNODE_MUST_BE_FREE flag is set, this parameter is used to ensure the hole at the specified object offset is large enough to hold the dnode being created. The slots parameter is also used to ensure a dnode does not span multiple dnode blocks. In both of these cases, if a failure occurs, ENOSPC is returned. Keep in mind, these failure cases are only possible when using DNODE_MUST_BE_FREE. If the DNODE_MUST_BE_ALLOCATED flag is set, "slots" must be 0. dnode_hold_impl() will check if the requested dnode is already consumed as an extra dnode slot by an large dnode, in which case it returns ENOENT. * The function dmu_object_alloc() advances to the next dnode block if dnode_hold_impl() returns an error for a requested object. This is because the beginning of the next dnode block is the only location it can safely assume to either be a hole or a valid starting point for a dnode. * dnode_next_offset_level() and other functions that iterate through dnode blocks may no longer use a simple array indexing scheme. These now use the current dnode's dn_num_slots field to advance to the next dnode in the block. This is to ensure we properly skip the current dnode's bonus area and don't interpret it as a valid dnode. zdb --- The zdb command was updated to display a dnode's size under the "dnsize" column when the object is dumped. For ZIL create log records, zdb will now display the slot count for the object. ztest ----- Ztest chooses a random dnodesize for every newly created object. The random distribution is more heavily weighted toward small dnodes to better simulate real-world datasets. Unused bonus buffer space is filled with non-zero values computed from the object number, dataset id, offset, and generation number. This helps ensure that the dnode traversal code properly skips the interior regions of large dnodes, and that these interior regions are not overwritten by data belonging to other dnodes. A new test visits each object in a dataset. It verifies that the actual dnode size matches what was stored in the ztest block tag when it was created. It also verifies that the unused bonus buffer space is filled with the expected data patterns. ZFS Test Suite -------------- Added six new large dnode-specific tests, and integrated the dnodesize property into existing tests for zfs allow and send/recv. Send/Receive ------------ ZFS send streams for datasets containing large dnodes cannot be received on pools that don't support the large_dnode feature. A send stream with large dnodes sets a DMU_BACKUP_FEATURE_LARGE_DNODE flag which will be unrecognized by an incompatible receiving pool so that the zfs receive will fail gracefully. While not implemented here, it may be possible to generate a backward-compatible send stream from a dataset containing large dnodes. The implementation may be tricky, however, because the send object record for a large dnode would need to be resized to a 512 byte dnode, possibly kicking in a spill block in the process. This means we would need to construct a new SA layout and possibly register it in the SA layout object. The SA layout is normally just sent as an ordinary object record. But if we are constructing new layouts while generating the send stream we'd have to build the SA layout object dynamically and send it at the end of the stream. For sending and receiving between pools that do support large dnodes, the drr_object send record type is extended with a new field to store the dnode slot count. This field was repurposed from unused padding in the structure. ZIL Replay ---------- The dnode slot count is stored in the uppermost 8 bits of the lr_foid field. The bits were unused as the object id is currently capped at 48 bits. Resizing Dnodes --------------- It should be possible to resize a dnode when it is dirtied if the current dnodesize dataset property differs from the dnode's size, but this functionality is not currently implemented. Clearly a dnode can only grow if there are sufficient contiguous unused slots in the dnode block, but it should always be possible to shrink a dnode. Growing dnodes may be useful to reduce fragmentation in a pool with many spill blocks in use. Shrinking dnodes may be useful to allow sending a dataset to a pool that doesn't support the large_dnode feature. Feature Reference Counting -------------------------- The reference count for the large_dnode pool feature tracks the number of datasets that have ever contained a dnode of size larger than 512 bytes. The first time a large dnode is created in a dataset the dataset is converted to an extensible dataset. This is a one-way operation and the only way to decrement the feature count is to destroy the dataset, even if the dataset no longer contains any large dnodes. The complexity of reference counting on a per-dnode basis was too high, so we chose to track it on a per-dataset basis similarly to the large_block feature. Signed-off-by: Ned Bass <bass6@llnl.gov> Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov> Closes #3542
2016-03-17 04:25:34 +03:00
/*
* Visit each object in the dataset. Verify that its properties
* are consistent what was stored in the block tag when it was created,
* and that its unused bonus buffer space has not been overwritten.
*/
void
ztest_verify_dnode_bt(ztest_ds_t *zd, uint64_t id)
{
(void) id;
Implement large_dnode pool feature Justification ------------- This feature adds support for variable length dnodes. Our motivation is to eliminate the overhead associated with using spill blocks. Spill blocks are used to store system attribute data (i.e. file metadata) that does not fit in the dnode's bonus buffer. By allowing a larger bonus buffer area the use of a spill block can be avoided. Spill blocks potentially incur an additional read I/O for every dnode in a dnode block. As a worst case example, reading 32 dnodes from a 16k dnode block and all of the spill blocks could issue 33 separate reads. Now suppose those dnodes have size 1024 and therefore don't need spill blocks. Then the worst case number of blocks read is reduced to from 33 to two--one per dnode block. In practice spill blocks may tend to be co-located on disk with the dnode blocks so the reduction in I/O would not be this drastic. In a badly fragmented pool, however, the improvement could be significant. ZFS-on-Linux systems that make heavy use of extended attributes would benefit from this feature. In particular, ZFS-on-Linux supports the xattr=sa dataset property which allows file extended attribute data to be stored in the dnode bonus buffer as an alternative to the traditional directory-based format. Workloads such as SELinux and the Lustre distributed filesystem often store enough xattr data to force spill bocks when xattr=sa is in effect. Large dnodes may therefore provide a performance benefit to such systems. Other use cases that may benefit from this feature include files with large ACLs and symbolic links with long target names. Furthermore, this feature may be desirable on other platforms in case future applications or features are developed that could make use of a larger bonus buffer area. Implementation -------------- The size of a dnode may be a multiple of 512 bytes up to the size of a dnode block (currently 16384 bytes). A dn_extra_slots field was added to the current on-disk dnode_phys_t structure to describe the size of the physical dnode on disk. The 8 bits for this field were taken from the zero filled dn_pad2 field. The field represents how many "extra" dnode_phys_t slots a dnode consumes in its dnode block. This convention results in a value of 0 for 512 byte dnodes which preserves on-disk format compatibility with older software. Similarly, the in-memory dnode_t structure has a new dn_num_slots field to represent the total number of dnode_phys_t slots consumed on disk. Thus dn->dn_num_slots is 1 greater than the corresponding dnp->dn_extra_slots. This difference in convention was adopted because, unlike on-disk structures, backward compatibility is not a concern for in-memory objects, so we used a more natural way to represent size for a dnode_t. The default size for newly created dnodes is determined by the value of a new "dnodesize" dataset property. By default the property is set to "legacy" which is compatible with older software. Setting the property to "auto" will allow the filesystem to choose the most suitable dnode size. Currently this just sets the default dnode size to 1k, but future code improvements could dynamically choose a size based on observed workload patterns. Dnodes of varying sizes can coexist within the same dataset and even within the same dnode block. For example, to enable automatically-sized dnodes, run # zfs set dnodesize=auto tank/fish The user can also specify literal values for the dnodesize property. These are currently limited to powers of two from 1k to 16k. The power-of-2 limitation is only for simplicity of the user interface. Internally the implementation can handle any multiple of 512 up to 16k, and consumers of the DMU API can specify any legal dnode value. The size of a new dnode is determined at object allocation time and stored as a new field in the znode in-memory structure. New DMU interfaces are added to allow the consumer to specify the dnode size that a newly allocated object should use. Existing interfaces are unchanged to avoid having to update every call site and to preserve compatibility with external consumers such as Lustre. The new interfaces names are given below. The versions of these functions that don't take a dnodesize parameter now just call the _dnsize() versions with a dnodesize of 0, which means use the legacy dnode size. New DMU interfaces: dmu_object_alloc_dnsize() dmu_object_claim_dnsize() dmu_object_reclaim_dnsize() New ZAP interfaces: zap_create_dnsize() zap_create_norm_dnsize() zap_create_flags_dnsize() zap_create_claim_norm_dnsize() zap_create_link_dnsize() The constant DN_MAX_BONUSLEN is renamed to DN_OLD_MAX_BONUSLEN. The spa_maxdnodesize() function should be used to determine the maximum bonus length for a pool. These are a few noteworthy changes to key functions: * The prototype for dnode_hold_impl() now takes a "slots" parameter. When the DNODE_MUST_BE_FREE flag is set, this parameter is used to ensure the hole at the specified object offset is large enough to hold the dnode being created. The slots parameter is also used to ensure a dnode does not span multiple dnode blocks. In both of these cases, if a failure occurs, ENOSPC is returned. Keep in mind, these failure cases are only possible when using DNODE_MUST_BE_FREE. If the DNODE_MUST_BE_ALLOCATED flag is set, "slots" must be 0. dnode_hold_impl() will check if the requested dnode is already consumed as an extra dnode slot by an large dnode, in which case it returns ENOENT. * The function dmu_object_alloc() advances to the next dnode block if dnode_hold_impl() returns an error for a requested object. This is because the beginning of the next dnode block is the only location it can safely assume to either be a hole or a valid starting point for a dnode. * dnode_next_offset_level() and other functions that iterate through dnode blocks may no longer use a simple array indexing scheme. These now use the current dnode's dn_num_slots field to advance to the next dnode in the block. This is to ensure we properly skip the current dnode's bonus area and don't interpret it as a valid dnode. zdb --- The zdb command was updated to display a dnode's size under the "dnsize" column when the object is dumped. For ZIL create log records, zdb will now display the slot count for the object. ztest ----- Ztest chooses a random dnodesize for every newly created object. The random distribution is more heavily weighted toward small dnodes to better simulate real-world datasets. Unused bonus buffer space is filled with non-zero values computed from the object number, dataset id, offset, and generation number. This helps ensure that the dnode traversal code properly skips the interior regions of large dnodes, and that these interior regions are not overwritten by data belonging to other dnodes. A new test visits each object in a dataset. It verifies that the actual dnode size matches what was stored in the ztest block tag when it was created. It also verifies that the unused bonus buffer space is filled with the expected data patterns. ZFS Test Suite -------------- Added six new large dnode-specific tests, and integrated the dnodesize property into existing tests for zfs allow and send/recv. Send/Receive ------------ ZFS send streams for datasets containing large dnodes cannot be received on pools that don't support the large_dnode feature. A send stream with large dnodes sets a DMU_BACKUP_FEATURE_LARGE_DNODE flag which will be unrecognized by an incompatible receiving pool so that the zfs receive will fail gracefully. While not implemented here, it may be possible to generate a backward-compatible send stream from a dataset containing large dnodes. The implementation may be tricky, however, because the send object record for a large dnode would need to be resized to a 512 byte dnode, possibly kicking in a spill block in the process. This means we would need to construct a new SA layout and possibly register it in the SA layout object. The SA layout is normally just sent as an ordinary object record. But if we are constructing new layouts while generating the send stream we'd have to build the SA layout object dynamically and send it at the end of the stream. For sending and receiving between pools that do support large dnodes, the drr_object send record type is extended with a new field to store the dnode slot count. This field was repurposed from unused padding in the structure. ZIL Replay ---------- The dnode slot count is stored in the uppermost 8 bits of the lr_foid field. The bits were unused as the object id is currently capped at 48 bits. Resizing Dnodes --------------- It should be possible to resize a dnode when it is dirtied if the current dnodesize dataset property differs from the dnode's size, but this functionality is not currently implemented. Clearly a dnode can only grow if there are sufficient contiguous unused slots in the dnode block, but it should always be possible to shrink a dnode. Growing dnodes may be useful to reduce fragmentation in a pool with many spill blocks in use. Shrinking dnodes may be useful to allow sending a dataset to a pool that doesn't support the large_dnode feature. Feature Reference Counting -------------------------- The reference count for the large_dnode pool feature tracks the number of datasets that have ever contained a dnode of size larger than 512 bytes. The first time a large dnode is created in a dataset the dataset is converted to an extensible dataset. This is a one-way operation and the only way to decrement the feature count is to destroy the dataset, even if the dataset no longer contains any large dnodes. The complexity of reference counting on a per-dnode basis was too high, so we chose to track it on a per-dataset basis similarly to the large_block feature. Signed-off-by: Ned Bass <bass6@llnl.gov> Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov> Closes #3542
2016-03-17 04:25:34 +03:00
objset_t *os = zd->zd_os;
uint64_t obj;
int err = 0;
for (obj = 0; err == 0; err = dmu_object_next(os, &obj, FALSE, 0)) {
ztest_block_tag_t *bt = NULL;
dmu_object_info_t doi;
dmu_buf_t *db;
RAID-Z expansion feature This feature allows disks to be added one at a time to a RAID-Z group, expanding its capacity incrementally. This feature is especially useful for small pools (typically with only one RAID-Z group), where there isn't sufficient hardware to add capacity by adding a whole new RAID-Z group (typically doubling the number of disks). == Initiating expansion == A new device (disk) can be attached to an existing RAIDZ vdev, by running `zpool attach POOL raidzP-N NEW_DEVICE`, e.g. `zpool attach tank raidz2-0 sda`. The new device will become part of the RAIDZ group. A "raidz expansion" will be initiated, and the new device will contribute additional space to the RAIDZ group once the expansion completes. The `feature@raidz_expansion` on-disk feature flag must be `enabled` to initiate an expansion, and it remains `active` for the life of the pool. In other words, pools with expanded RAIDZ vdevs can not be imported by older releases of the ZFS software. == During expansion == The expansion entails reading all allocated space from existing disks in the RAIDZ group, and rewriting it to the new disks in the RAIDZ group (including the newly added device). The expansion progress can be monitored with `zpool status`. Data redundancy is maintained during (and after) the expansion. If a disk fails while the expansion is in progress, the expansion pauses until the health of the RAIDZ vdev is restored (e.g. by replacing the failed disk and waiting for reconstruction to complete). The pool remains accessible during expansion. Following a reboot or export/import, the expansion resumes where it left off. == After expansion == When the expansion completes, the additional space is available for use, and is reflected in the `available` zfs property (as seen in `zfs list`, `df`, etc). Expansion does not change the number of failures that can be tolerated without data loss (e.g. a RAIDZ2 is still a RAIDZ2 even after expansion). A RAIDZ vdev can be expanded multiple times. After the expansion completes, old blocks remain with their old data-to-parity ratio (e.g. 5-wide RAIDZ2, has 3 data to 2 parity), but distributed among the larger set of disks. New blocks will be written with the new data-to-parity ratio (e.g. a 5-wide RAIDZ2 which has been expanded once to 6-wide, has 4 data to 2 parity). However, the RAIDZ vdev's "assumed parity ratio" does not change, so slightly less space than is expected may be reported for newly-written blocks, according to `zfs list`, `df`, `ls -s`, and similar tools. Sponsored-by: The FreeBSD Foundation Sponsored-by: iXsystems, Inc. Sponsored-by: vStack Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov> Reviewed-by: Mark Maybee <mark.maybee@delphix.com> Authored-by: Matthew Ahrens <mahrens@delphix.com> Contributions-by: Fedor Uporov <fuporov.vstack@gmail.com> Contributions-by: Stuart Maybee <stuart.maybee@comcast.net> Contributions-by: Thorsten Behrens <tbehrens@outlook.com> Contributions-by: Fmstrat <nospam@nowsci.com> Contributions-by: Don Brady <dev.fs.zfs@gmail.com> Signed-off-by: Don Brady <dev.fs.zfs@gmail.com> Closes #15022
2023-11-08 21:19:41 +03:00
ztest_object_lock(zd, obj, ZTRL_READER);
if (dmu_bonus_hold(os, obj, FTAG, &db) != 0) {
ztest_object_unlock(zd, obj);
Implement large_dnode pool feature Justification ------------- This feature adds support for variable length dnodes. Our motivation is to eliminate the overhead associated with using spill blocks. Spill blocks are used to store system attribute data (i.e. file metadata) that does not fit in the dnode's bonus buffer. By allowing a larger bonus buffer area the use of a spill block can be avoided. Spill blocks potentially incur an additional read I/O for every dnode in a dnode block. As a worst case example, reading 32 dnodes from a 16k dnode block and all of the spill blocks could issue 33 separate reads. Now suppose those dnodes have size 1024 and therefore don't need spill blocks. Then the worst case number of blocks read is reduced to from 33 to two--one per dnode block. In practice spill blocks may tend to be co-located on disk with the dnode blocks so the reduction in I/O would not be this drastic. In a badly fragmented pool, however, the improvement could be significant. ZFS-on-Linux systems that make heavy use of extended attributes would benefit from this feature. In particular, ZFS-on-Linux supports the xattr=sa dataset property which allows file extended attribute data to be stored in the dnode bonus buffer as an alternative to the traditional directory-based format. Workloads such as SELinux and the Lustre distributed filesystem often store enough xattr data to force spill bocks when xattr=sa is in effect. Large dnodes may therefore provide a performance benefit to such systems. Other use cases that may benefit from this feature include files with large ACLs and symbolic links with long target names. Furthermore, this feature may be desirable on other platforms in case future applications or features are developed that could make use of a larger bonus buffer area. Implementation -------------- The size of a dnode may be a multiple of 512 bytes up to the size of a dnode block (currently 16384 bytes). A dn_extra_slots field was added to the current on-disk dnode_phys_t structure to describe the size of the physical dnode on disk. The 8 bits for this field were taken from the zero filled dn_pad2 field. The field represents how many "extra" dnode_phys_t slots a dnode consumes in its dnode block. This convention results in a value of 0 for 512 byte dnodes which preserves on-disk format compatibility with older software. Similarly, the in-memory dnode_t structure has a new dn_num_slots field to represent the total number of dnode_phys_t slots consumed on disk. Thus dn->dn_num_slots is 1 greater than the corresponding dnp->dn_extra_slots. This difference in convention was adopted because, unlike on-disk structures, backward compatibility is not a concern for in-memory objects, so we used a more natural way to represent size for a dnode_t. The default size for newly created dnodes is determined by the value of a new "dnodesize" dataset property. By default the property is set to "legacy" which is compatible with older software. Setting the property to "auto" will allow the filesystem to choose the most suitable dnode size. Currently this just sets the default dnode size to 1k, but future code improvements could dynamically choose a size based on observed workload patterns. Dnodes of varying sizes can coexist within the same dataset and even within the same dnode block. For example, to enable automatically-sized dnodes, run # zfs set dnodesize=auto tank/fish The user can also specify literal values for the dnodesize property. These are currently limited to powers of two from 1k to 16k. The power-of-2 limitation is only for simplicity of the user interface. Internally the implementation can handle any multiple of 512 up to 16k, and consumers of the DMU API can specify any legal dnode value. The size of a new dnode is determined at object allocation time and stored as a new field in the znode in-memory structure. New DMU interfaces are added to allow the consumer to specify the dnode size that a newly allocated object should use. Existing interfaces are unchanged to avoid having to update every call site and to preserve compatibility with external consumers such as Lustre. The new interfaces names are given below. The versions of these functions that don't take a dnodesize parameter now just call the _dnsize() versions with a dnodesize of 0, which means use the legacy dnode size. New DMU interfaces: dmu_object_alloc_dnsize() dmu_object_claim_dnsize() dmu_object_reclaim_dnsize() New ZAP interfaces: zap_create_dnsize() zap_create_norm_dnsize() zap_create_flags_dnsize() zap_create_claim_norm_dnsize() zap_create_link_dnsize() The constant DN_MAX_BONUSLEN is renamed to DN_OLD_MAX_BONUSLEN. The spa_maxdnodesize() function should be used to determine the maximum bonus length for a pool. These are a few noteworthy changes to key functions: * The prototype for dnode_hold_impl() now takes a "slots" parameter. When the DNODE_MUST_BE_FREE flag is set, this parameter is used to ensure the hole at the specified object offset is large enough to hold the dnode being created. The slots parameter is also used to ensure a dnode does not span multiple dnode blocks. In both of these cases, if a failure occurs, ENOSPC is returned. Keep in mind, these failure cases are only possible when using DNODE_MUST_BE_FREE. If the DNODE_MUST_BE_ALLOCATED flag is set, "slots" must be 0. dnode_hold_impl() will check if the requested dnode is already consumed as an extra dnode slot by an large dnode, in which case it returns ENOENT. * The function dmu_object_alloc() advances to the next dnode block if dnode_hold_impl() returns an error for a requested object. This is because the beginning of the next dnode block is the only location it can safely assume to either be a hole or a valid starting point for a dnode. * dnode_next_offset_level() and other functions that iterate through dnode blocks may no longer use a simple array indexing scheme. These now use the current dnode's dn_num_slots field to advance to the next dnode in the block. This is to ensure we properly skip the current dnode's bonus area and don't interpret it as a valid dnode. zdb --- The zdb command was updated to display a dnode's size under the "dnsize" column when the object is dumped. For ZIL create log records, zdb will now display the slot count for the object. ztest ----- Ztest chooses a random dnodesize for every newly created object. The random distribution is more heavily weighted toward small dnodes to better simulate real-world datasets. Unused bonus buffer space is filled with non-zero values computed from the object number, dataset id, offset, and generation number. This helps ensure that the dnode traversal code properly skips the interior regions of large dnodes, and that these interior regions are not overwritten by data belonging to other dnodes. A new test visits each object in a dataset. It verifies that the actual dnode size matches what was stored in the ztest block tag when it was created. It also verifies that the unused bonus buffer space is filled with the expected data patterns. ZFS Test Suite -------------- Added six new large dnode-specific tests, and integrated the dnodesize property into existing tests for zfs allow and send/recv. Send/Receive ------------ ZFS send streams for datasets containing large dnodes cannot be received on pools that don't support the large_dnode feature. A send stream with large dnodes sets a DMU_BACKUP_FEATURE_LARGE_DNODE flag which will be unrecognized by an incompatible receiving pool so that the zfs receive will fail gracefully. While not implemented here, it may be possible to generate a backward-compatible send stream from a dataset containing large dnodes. The implementation may be tricky, however, because the send object record for a large dnode would need to be resized to a 512 byte dnode, possibly kicking in a spill block in the process. This means we would need to construct a new SA layout and possibly register it in the SA layout object. The SA layout is normally just sent as an ordinary object record. But if we are constructing new layouts while generating the send stream we'd have to build the SA layout object dynamically and send it at the end of the stream. For sending and receiving between pools that do support large dnodes, the drr_object send record type is extended with a new field to store the dnode slot count. This field was repurposed from unused padding in the structure. ZIL Replay ---------- The dnode slot count is stored in the uppermost 8 bits of the lr_foid field. The bits were unused as the object id is currently capped at 48 bits. Resizing Dnodes --------------- It should be possible to resize a dnode when it is dirtied if the current dnodesize dataset property differs from the dnode's size, but this functionality is not currently implemented. Clearly a dnode can only grow if there are sufficient contiguous unused slots in the dnode block, but it should always be possible to shrink a dnode. Growing dnodes may be useful to reduce fragmentation in a pool with many spill blocks in use. Shrinking dnodes may be useful to allow sending a dataset to a pool that doesn't support the large_dnode feature. Feature Reference Counting -------------------------- The reference count for the large_dnode pool feature tracks the number of datasets that have ever contained a dnode of size larger than 512 bytes. The first time a large dnode is created in a dataset the dataset is converted to an extensible dataset. This is a one-way operation and the only way to decrement the feature count is to destroy the dataset, even if the dataset no longer contains any large dnodes. The complexity of reference counting on a per-dnode basis was too high, so we chose to track it on a per-dataset basis similarly to the large_block feature. Signed-off-by: Ned Bass <bass6@llnl.gov> Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov> Closes #3542
2016-03-17 04:25:34 +03:00
continue;
}
Implement large_dnode pool feature Justification ------------- This feature adds support for variable length dnodes. Our motivation is to eliminate the overhead associated with using spill blocks. Spill blocks are used to store system attribute data (i.e. file metadata) that does not fit in the dnode's bonus buffer. By allowing a larger bonus buffer area the use of a spill block can be avoided. Spill blocks potentially incur an additional read I/O for every dnode in a dnode block. As a worst case example, reading 32 dnodes from a 16k dnode block and all of the spill blocks could issue 33 separate reads. Now suppose those dnodes have size 1024 and therefore don't need spill blocks. Then the worst case number of blocks read is reduced to from 33 to two--one per dnode block. In practice spill blocks may tend to be co-located on disk with the dnode blocks so the reduction in I/O would not be this drastic. In a badly fragmented pool, however, the improvement could be significant. ZFS-on-Linux systems that make heavy use of extended attributes would benefit from this feature. In particular, ZFS-on-Linux supports the xattr=sa dataset property which allows file extended attribute data to be stored in the dnode bonus buffer as an alternative to the traditional directory-based format. Workloads such as SELinux and the Lustre distributed filesystem often store enough xattr data to force spill bocks when xattr=sa is in effect. Large dnodes may therefore provide a performance benefit to such systems. Other use cases that may benefit from this feature include files with large ACLs and symbolic links with long target names. Furthermore, this feature may be desirable on other platforms in case future applications or features are developed that could make use of a larger bonus buffer area. Implementation -------------- The size of a dnode may be a multiple of 512 bytes up to the size of a dnode block (currently 16384 bytes). A dn_extra_slots field was added to the current on-disk dnode_phys_t structure to describe the size of the physical dnode on disk. The 8 bits for this field were taken from the zero filled dn_pad2 field. The field represents how many "extra" dnode_phys_t slots a dnode consumes in its dnode block. This convention results in a value of 0 for 512 byte dnodes which preserves on-disk format compatibility with older software. Similarly, the in-memory dnode_t structure has a new dn_num_slots field to represent the total number of dnode_phys_t slots consumed on disk. Thus dn->dn_num_slots is 1 greater than the corresponding dnp->dn_extra_slots. This difference in convention was adopted because, unlike on-disk structures, backward compatibility is not a concern for in-memory objects, so we used a more natural way to represent size for a dnode_t. The default size for newly created dnodes is determined by the value of a new "dnodesize" dataset property. By default the property is set to "legacy" which is compatible with older software. Setting the property to "auto" will allow the filesystem to choose the most suitable dnode size. Currently this just sets the default dnode size to 1k, but future code improvements could dynamically choose a size based on observed workload patterns. Dnodes of varying sizes can coexist within the same dataset and even within the same dnode block. For example, to enable automatically-sized dnodes, run # zfs set dnodesize=auto tank/fish The user can also specify literal values for the dnodesize property. These are currently limited to powers of two from 1k to 16k. The power-of-2 limitation is only for simplicity of the user interface. Internally the implementation can handle any multiple of 512 up to 16k, and consumers of the DMU API can specify any legal dnode value. The size of a new dnode is determined at object allocation time and stored as a new field in the znode in-memory structure. New DMU interfaces are added to allow the consumer to specify the dnode size that a newly allocated object should use. Existing interfaces are unchanged to avoid having to update every call site and to preserve compatibility with external consumers such as Lustre. The new interfaces names are given below. The versions of these functions that don't take a dnodesize parameter now just call the _dnsize() versions with a dnodesize of 0, which means use the legacy dnode size. New DMU interfaces: dmu_object_alloc_dnsize() dmu_object_claim_dnsize() dmu_object_reclaim_dnsize() New ZAP interfaces: zap_create_dnsize() zap_create_norm_dnsize() zap_create_flags_dnsize() zap_create_claim_norm_dnsize() zap_create_link_dnsize() The constant DN_MAX_BONUSLEN is renamed to DN_OLD_MAX_BONUSLEN. The spa_maxdnodesize() function should be used to determine the maximum bonus length for a pool. These are a few noteworthy changes to key functions: * The prototype for dnode_hold_impl() now takes a "slots" parameter. When the DNODE_MUST_BE_FREE flag is set, this parameter is used to ensure the hole at the specified object offset is large enough to hold the dnode being created. The slots parameter is also used to ensure a dnode does not span multiple dnode blocks. In both of these cases, if a failure occurs, ENOSPC is returned. Keep in mind, these failure cases are only possible when using DNODE_MUST_BE_FREE. If the DNODE_MUST_BE_ALLOCATED flag is set, "slots" must be 0. dnode_hold_impl() will check if the requested dnode is already consumed as an extra dnode slot by an large dnode, in which case it returns ENOENT. * The function dmu_object_alloc() advances to the next dnode block if dnode_hold_impl() returns an error for a requested object. This is because the beginning of the next dnode block is the only location it can safely assume to either be a hole or a valid starting point for a dnode. * dnode_next_offset_level() and other functions that iterate through dnode blocks may no longer use a simple array indexing scheme. These now use the current dnode's dn_num_slots field to advance to the next dnode in the block. This is to ensure we properly skip the current dnode's bonus area and don't interpret it as a valid dnode. zdb --- The zdb command was updated to display a dnode's size under the "dnsize" column when the object is dumped. For ZIL create log records, zdb will now display the slot count for the object. ztest ----- Ztest chooses a random dnodesize for every newly created object. The random distribution is more heavily weighted toward small dnodes to better simulate real-world datasets. Unused bonus buffer space is filled with non-zero values computed from the object number, dataset id, offset, and generation number. This helps ensure that the dnode traversal code properly skips the interior regions of large dnodes, and that these interior regions are not overwritten by data belonging to other dnodes. A new test visits each object in a dataset. It verifies that the actual dnode size matches what was stored in the ztest block tag when it was created. It also verifies that the unused bonus buffer space is filled with the expected data patterns. ZFS Test Suite -------------- Added six new large dnode-specific tests, and integrated the dnodesize property into existing tests for zfs allow and send/recv. Send/Receive ------------ ZFS send streams for datasets containing large dnodes cannot be received on pools that don't support the large_dnode feature. A send stream with large dnodes sets a DMU_BACKUP_FEATURE_LARGE_DNODE flag which will be unrecognized by an incompatible receiving pool so that the zfs receive will fail gracefully. While not implemented here, it may be possible to generate a backward-compatible send stream from a dataset containing large dnodes. The implementation may be tricky, however, because the send object record for a large dnode would need to be resized to a 512 byte dnode, possibly kicking in a spill block in the process. This means we would need to construct a new SA layout and possibly register it in the SA layout object. The SA layout is normally just sent as an ordinary object record. But if we are constructing new layouts while generating the send stream we'd have to build the SA layout object dynamically and send it at the end of the stream. For sending and receiving between pools that do support large dnodes, the drr_object send record type is extended with a new field to store the dnode slot count. This field was repurposed from unused padding in the structure. ZIL Replay ---------- The dnode slot count is stored in the uppermost 8 bits of the lr_foid field. The bits were unused as the object id is currently capped at 48 bits. Resizing Dnodes --------------- It should be possible to resize a dnode when it is dirtied if the current dnodesize dataset property differs from the dnode's size, but this functionality is not currently implemented. Clearly a dnode can only grow if there are sufficient contiguous unused slots in the dnode block, but it should always be possible to shrink a dnode. Growing dnodes may be useful to reduce fragmentation in a pool with many spill blocks in use. Shrinking dnodes may be useful to allow sending a dataset to a pool that doesn't support the large_dnode feature. Feature Reference Counting -------------------------- The reference count for the large_dnode pool feature tracks the number of datasets that have ever contained a dnode of size larger than 512 bytes. The first time a large dnode is created in a dataset the dataset is converted to an extensible dataset. This is a one-way operation and the only way to decrement the feature count is to destroy the dataset, even if the dataset no longer contains any large dnodes. The complexity of reference counting on a per-dnode basis was too high, so we chose to track it on a per-dataset basis similarly to the large_block feature. Signed-off-by: Ned Bass <bass6@llnl.gov> Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov> Closes #3542
2016-03-17 04:25:34 +03:00
dmu_object_info_from_db(db, &doi);
if (doi.doi_bonus_size >= sizeof (*bt))
bt = ztest_bt_bonus(db);
if (bt && bt->bt_magic == BT_MAGIC) {
ztest_bt_verify(bt, os, obj, doi.doi_dnodesize,
bt->bt_offset, bt->bt_gen, bt->bt_txg,
bt->bt_crtxg);
ztest_verify_unused_bonus(db, bt, obj, os, bt->bt_gen);
}
dmu_buf_rele(db, FTAG);
ztest_object_unlock(zd, obj);
Implement large_dnode pool feature Justification ------------- This feature adds support for variable length dnodes. Our motivation is to eliminate the overhead associated with using spill blocks. Spill blocks are used to store system attribute data (i.e. file metadata) that does not fit in the dnode's bonus buffer. By allowing a larger bonus buffer area the use of a spill block can be avoided. Spill blocks potentially incur an additional read I/O for every dnode in a dnode block. As a worst case example, reading 32 dnodes from a 16k dnode block and all of the spill blocks could issue 33 separate reads. Now suppose those dnodes have size 1024 and therefore don't need spill blocks. Then the worst case number of blocks read is reduced to from 33 to two--one per dnode block. In practice spill blocks may tend to be co-located on disk with the dnode blocks so the reduction in I/O would not be this drastic. In a badly fragmented pool, however, the improvement could be significant. ZFS-on-Linux systems that make heavy use of extended attributes would benefit from this feature. In particular, ZFS-on-Linux supports the xattr=sa dataset property which allows file extended attribute data to be stored in the dnode bonus buffer as an alternative to the traditional directory-based format. Workloads such as SELinux and the Lustre distributed filesystem often store enough xattr data to force spill bocks when xattr=sa is in effect. Large dnodes may therefore provide a performance benefit to such systems. Other use cases that may benefit from this feature include files with large ACLs and symbolic links with long target names. Furthermore, this feature may be desirable on other platforms in case future applications or features are developed that could make use of a larger bonus buffer area. Implementation -------------- The size of a dnode may be a multiple of 512 bytes up to the size of a dnode block (currently 16384 bytes). A dn_extra_slots field was added to the current on-disk dnode_phys_t structure to describe the size of the physical dnode on disk. The 8 bits for this field were taken from the zero filled dn_pad2 field. The field represents how many "extra" dnode_phys_t slots a dnode consumes in its dnode block. This convention results in a value of 0 for 512 byte dnodes which preserves on-disk format compatibility with older software. Similarly, the in-memory dnode_t structure has a new dn_num_slots field to represent the total number of dnode_phys_t slots consumed on disk. Thus dn->dn_num_slots is 1 greater than the corresponding dnp->dn_extra_slots. This difference in convention was adopted because, unlike on-disk structures, backward compatibility is not a concern for in-memory objects, so we used a more natural way to represent size for a dnode_t. The default size for newly created dnodes is determined by the value of a new "dnodesize" dataset property. By default the property is set to "legacy" which is compatible with older software. Setting the property to "auto" will allow the filesystem to choose the most suitable dnode size. Currently this just sets the default dnode size to 1k, but future code improvements could dynamically choose a size based on observed workload patterns. Dnodes of varying sizes can coexist within the same dataset and even within the same dnode block. For example, to enable automatically-sized dnodes, run # zfs set dnodesize=auto tank/fish The user can also specify literal values for the dnodesize property. These are currently limited to powers of two from 1k to 16k. The power-of-2 limitation is only for simplicity of the user interface. Internally the implementation can handle any multiple of 512 up to 16k, and consumers of the DMU API can specify any legal dnode value. The size of a new dnode is determined at object allocation time and stored as a new field in the znode in-memory structure. New DMU interfaces are added to allow the consumer to specify the dnode size that a newly allocated object should use. Existing interfaces are unchanged to avoid having to update every call site and to preserve compatibility with external consumers such as Lustre. The new interfaces names are given below. The versions of these functions that don't take a dnodesize parameter now just call the _dnsize() versions with a dnodesize of 0, which means use the legacy dnode size. New DMU interfaces: dmu_object_alloc_dnsize() dmu_object_claim_dnsize() dmu_object_reclaim_dnsize() New ZAP interfaces: zap_create_dnsize() zap_create_norm_dnsize() zap_create_flags_dnsize() zap_create_claim_norm_dnsize() zap_create_link_dnsize() The constant DN_MAX_BONUSLEN is renamed to DN_OLD_MAX_BONUSLEN. The spa_maxdnodesize() function should be used to determine the maximum bonus length for a pool. These are a few noteworthy changes to key functions: * The prototype for dnode_hold_impl() now takes a "slots" parameter. When the DNODE_MUST_BE_FREE flag is set, this parameter is used to ensure the hole at the specified object offset is large enough to hold the dnode being created. The slots parameter is also used to ensure a dnode does not span multiple dnode blocks. In both of these cases, if a failure occurs, ENOSPC is returned. Keep in mind, these failure cases are only possible when using DNODE_MUST_BE_FREE. If the DNODE_MUST_BE_ALLOCATED flag is set, "slots" must be 0. dnode_hold_impl() will check if the requested dnode is already consumed as an extra dnode slot by an large dnode, in which case it returns ENOENT. * The function dmu_object_alloc() advances to the next dnode block if dnode_hold_impl() returns an error for a requested object. This is because the beginning of the next dnode block is the only location it can safely assume to either be a hole or a valid starting point for a dnode. * dnode_next_offset_level() and other functions that iterate through dnode blocks may no longer use a simple array indexing scheme. These now use the current dnode's dn_num_slots field to advance to the next dnode in the block. This is to ensure we properly skip the current dnode's bonus area and don't interpret it as a valid dnode. zdb --- The zdb command was updated to display a dnode's size under the "dnsize" column when the object is dumped. For ZIL create log records, zdb will now display the slot count for the object. ztest ----- Ztest chooses a random dnodesize for every newly created object. The random distribution is more heavily weighted toward small dnodes to better simulate real-world datasets. Unused bonus buffer space is filled with non-zero values computed from the object number, dataset id, offset, and generation number. This helps ensure that the dnode traversal code properly skips the interior regions of large dnodes, and that these interior regions are not overwritten by data belonging to other dnodes. A new test visits each object in a dataset. It verifies that the actual dnode size matches what was stored in the ztest block tag when it was created. It also verifies that the unused bonus buffer space is filled with the expected data patterns. ZFS Test Suite -------------- Added six new large dnode-specific tests, and integrated the dnodesize property into existing tests for zfs allow and send/recv. Send/Receive ------------ ZFS send streams for datasets containing large dnodes cannot be received on pools that don't support the large_dnode feature. A send stream with large dnodes sets a DMU_BACKUP_FEATURE_LARGE_DNODE flag which will be unrecognized by an incompatible receiving pool so that the zfs receive will fail gracefully. While not implemented here, it may be possible to generate a backward-compatible send stream from a dataset containing large dnodes. The implementation may be tricky, however, because the send object record for a large dnode would need to be resized to a 512 byte dnode, possibly kicking in a spill block in the process. This means we would need to construct a new SA layout and possibly register it in the SA layout object. The SA layout is normally just sent as an ordinary object record. But if we are constructing new layouts while generating the send stream we'd have to build the SA layout object dynamically and send it at the end of the stream. For sending and receiving between pools that do support large dnodes, the drr_object send record type is extended with a new field to store the dnode slot count. This field was repurposed from unused padding in the structure. ZIL Replay ---------- The dnode slot count is stored in the uppermost 8 bits of the lr_foid field. The bits were unused as the object id is currently capped at 48 bits. Resizing Dnodes --------------- It should be possible to resize a dnode when it is dirtied if the current dnodesize dataset property differs from the dnode's size, but this functionality is not currently implemented. Clearly a dnode can only grow if there are sufficient contiguous unused slots in the dnode block, but it should always be possible to shrink a dnode. Growing dnodes may be useful to reduce fragmentation in a pool with many spill blocks in use. Shrinking dnodes may be useful to allow sending a dataset to a pool that doesn't support the large_dnode feature. Feature Reference Counting -------------------------- The reference count for the large_dnode pool feature tracks the number of datasets that have ever contained a dnode of size larger than 512 bytes. The first time a large dnode is created in a dataset the dataset is converted to an extensible dataset. This is a one-way operation and the only way to decrement the feature count is to destroy the dataset, even if the dataset no longer contains any large dnodes. The complexity of reference counting on a per-dnode basis was too high, so we chose to track it on a per-dataset basis similarly to the large_block feature. Signed-off-by: Ned Bass <bass6@llnl.gov> Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov> Closes #3542
2016-03-17 04:25:34 +03:00
}
}
void
ztest_dsl_prop_get_set(ztest_ds_t *zd, uint64_t id)
{
(void) id;
zfs_prop_t proplist[] = {
ZFS_PROP_CHECKSUM,
ZFS_PROP_COMPRESSION,
ZFS_PROP_COPIES,
ZFS_PROP_DEDUP
};
(void) pthread_rwlock_rdlock(&ztest_name_lock);
for (int p = 0; p < sizeof (proplist) / sizeof (proplist[0]); p++) {
int error = ztest_dsl_prop_set_uint64(zd->zd_name, proplist[p],
ztest_random_dsl_prop(proplist[p]), (int)ztest_random(2));
ASSERT(error == 0 || error == ENOSPC);
}
int error = ztest_dsl_prop_set_uint64(zd->zd_name, ZFS_PROP_RECORDSIZE,
ztest_random_blocksize(), (int)ztest_random(2));
ASSERT(error == 0 || error == ENOSPC);
(void) pthread_rwlock_unlock(&ztest_name_lock);
}
void
ztest_spa_prop_get_set(ztest_ds_t *zd, uint64_t id)
{
(void) zd, (void) id;
(void) pthread_rwlock_rdlock(&ztest_name_lock);
Add TRIM support UNMAP/TRIM support is a frequently-requested feature to help prevent performance from degrading on SSDs and on various other SAN-like storage back-ends. By issuing UNMAP/TRIM commands for sectors which are no longer allocated the underlying device can often more efficiently manage itself. This TRIM implementation is modeled on the `zpool initialize` feature which writes a pattern to all unallocated space in the pool. The new `zpool trim` command uses the same vdev_xlate() code to calculate what sectors are unallocated, the same per- vdev TRIM thread model and locking, and the same basic CLI for a consistent user experience. The core difference is that instead of writing a pattern it will issue UNMAP/TRIM commands for those extents. The zio pipeline was updated to accommodate this by adding a new ZIO_TYPE_TRIM type and associated spa taskq. This new type makes is straight forward to add the platform specific TRIM/UNMAP calls to vdev_disk.c and vdev_file.c. These new ZIO_TYPE_TRIM zios are handled largely the same way as ZIO_TYPE_READs or ZIO_TYPE_WRITEs. This makes it possible to largely avoid changing the pipieline, one exception is that TRIM zio's may exceed the 16M block size limit since they contain no data. In addition to the manual `zpool trim` command, a background automatic TRIM was added and is controlled by the 'autotrim' property. It relies on the exact same infrastructure as the manual TRIM. However, instead of relying on the extents in a metaslab's ms_allocatable range tree, a ms_trim tree is kept per metaslab. When 'autotrim=on', ranges added back to the ms_allocatable tree are also added to the ms_free tree. The ms_free tree is then periodically consumed by an autotrim thread which systematically walks a top level vdev's metaslabs. Since the automatic TRIM will skip ranges it considers too small there is value in occasionally running a full `zpool trim`. This may occur when the freed blocks are small and not enough time was allowed to aggregate them. An automatic TRIM and a manual `zpool trim` may be run concurrently, in which case the automatic TRIM will yield to the manual TRIM. Reviewed-by: Jorgen Lundman <lundman@lundman.net> Reviewed-by: Tim Chase <tim@chase2k.com> Reviewed-by: Matt Ahrens <mahrens@delphix.com> Reviewed-by: George Wilson <george.wilson@delphix.com> Reviewed-by: Serapheim Dimitropoulos <serapheim@delphix.com> Contributions-by: Saso Kiselkov <saso.kiselkov@nexenta.com> Contributions-by: Tim Chase <tim@chase2k.com> Contributions-by: Chunwei Chen <tuxoko@gmail.com> Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov> Closes #8419 Closes #598
2019-03-29 19:13:20 +03:00
(void) ztest_spa_prop_set_uint64(ZPOOL_PROP_AUTOTRIM, ztest_random(2));
nvlist_t *props = fnvlist_alloc();
VERIFY0(spa_prop_get(ztest_spa, props));
if (ztest_opts.zo_verbose >= 6)
dump_nvlist(props, 4);
fnvlist_free(props);
(void) pthread_rwlock_unlock(&ztest_name_lock);
}
static int
user_release_one(const char *snapname, const char *holdname)
{
nvlist_t *snaps, *holds;
int error;
snaps = fnvlist_alloc();
holds = fnvlist_alloc();
fnvlist_add_boolean(holds, holdname);
fnvlist_add_nvlist(snaps, snapname, holds);
fnvlist_free(holds);
error = dsl_dataset_user_release(snaps, NULL);
fnvlist_free(snaps);
return (error);
}
/*
* Test snapshot hold/release and deferred destroy.
*/
void
ztest_dmu_snapshot_hold(ztest_ds_t *zd, uint64_t id)
2008-11-20 23:01:55 +03:00
{
int error;
objset_t *os = zd->zd_os;
objset_t *origin;
char snapname[100];
char fullname[100];
char clonename[100];
char tag[100];
char osname[ZFS_MAX_DATASET_NAME_LEN];
nvlist_t *holds;
2008-11-20 23:01:55 +03:00
(void) pthread_rwlock_rdlock(&ztest_name_lock);
2008-11-20 23:01:55 +03:00
dmu_objset_name(os, osname);
(void) snprintf(snapname, sizeof (snapname), "sh1_%"PRIu64"", id);
(void) snprintf(fullname, sizeof (fullname), "%s@%s", osname, snapname);
(void) snprintf(clonename, sizeof (clonename), "%s/ch1_%"PRIu64"",
osname, id);
(void) snprintf(tag, sizeof (tag), "tag_%"PRIu64"", id);
/*
* Clean up from any previous run.
*/
error = dsl_destroy_head(clonename);
if (error != ENOENT)
ASSERT0(error);
error = user_release_one(fullname, tag);
if (error != ESRCH && error != ENOENT)
ASSERT0(error);
error = dsl_destroy_snapshot(fullname, B_FALSE);
if (error != ENOENT)
ASSERT0(error);
/*
* Create snapshot, clone it, mark snap for deferred destroy,
* destroy clone, verify snap was also destroyed.
*/
Illumos #2882, #2883, #2900 2882 implement libzfs_core 2883 changing "canmount" property to "on" should not always remount dataset 2900 "zfs snapshot" should be able to create multiple, arbitrary snapshots at once Reviewed by: George Wilson <george.wilson@delphix.com> Reviewed by: Chris Siden <christopher.siden@delphix.com> Reviewed by: Garrett D'Amore <garrett@damore.org> Reviewed by: Bill Pijewski <wdp@joyent.com> Reviewed by: Dan Kruchinin <dan.kruchinin@gmail.com> Approved by: Eric Schrock <Eric.Schrock@delphix.com> References: https://www.illumos.org/issues/2882 https://www.illumos.org/issues/2883 https://www.illumos.org/issues/2900 illumos/illumos-gate@4445fffbbb1ea25fd0e9ea68b9380dd7a6709025 Ported-by: Tim Chase <tim@chase2k.com> Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov> Closes #1293 Porting notes: WARNING: This patch changes the user/kernel ABI. That means that the zfs/zpool utilities built from master are NOT compatible with the 0.6.2 kernel modules. Ensure you load the matching kernel modules from master after updating the utilities. Otherwise the zfs/zpool commands will be unable to interact with your pool and you will see errors similar to the following: $ zpool list failed to read pool configuration: bad address no pools available $ zfs list no datasets available Add zvol minor device creation to the new zfs_snapshot_nvl function. Remove the logging of the "release" operation in dsl_dataset_user_release_sync(). The logging caused a null dereference because ds->ds_dir is zeroed in dsl_dataset_destroy_sync() and the logging functions try to get the ds name via the dsl_dataset_name() function. I've got no idea why this particular code would have worked in Illumos. This code has subsequently been completely reworked in Illumos commit 3b2aab1 (3464 zfs synctask code needs restructuring). Squash some "may be used uninitialized" warning/erorrs. Fix some printf format warnings for %lld and %llu. Apply a few spa_writeable() changes that were made to Illumos in illumos/illumos-gate.git@cd1c8b8 as part of the 3112, 3113, 3114 and 3115 fixes. Add a missing call to fnvlist_free(nvl) in log_internal() that was added in Illumos to fix issue 3085 but couldn't be ported to ZoL at the time (zfsonlinux/zfs@9e11c73) because it depended on future work.
2013-08-28 15:45:09 +04:00
error = dmu_objset_snapshot_one(osname, snapname);
if (error) {
if (error == ENOSPC) {
ztest_record_enospc("dmu_objset_snapshot");
goto out;
2008-11-20 23:01:55 +03:00
}
fatal(B_FALSE, "dmu_objset_snapshot(%s) = %d", fullname, error);
}
2008-11-20 23:01:55 +03:00
error = dmu_objset_clone(clonename, fullname);
if (error) {
2008-11-20 23:01:55 +03:00
if (error == ENOSPC) {
ztest_record_enospc("dmu_objset_clone");
goto out;
2008-11-20 23:01:55 +03:00
}
fatal(B_FALSE, "dmu_objset_clone(%s) = %d", clonename, error);
}
2008-11-20 23:01:55 +03:00
error = dsl_destroy_snapshot(fullname, B_TRUE);
if (error) {
fatal(B_FALSE, "dsl_destroy_snapshot(%s, B_TRUE) = %d",
fullname, error);
}
2008-11-20 23:01:55 +03:00
error = dsl_destroy_head(clonename);
if (error)
fatal(B_FALSE, "dsl_destroy_head(%s) = %d", clonename, error);
2008-11-20 23:01:55 +03:00
error = dmu_objset_hold(fullname, FTAG, &origin);
if (error != ENOENT)
fatal(B_FALSE, "dmu_objset_hold(%s) = %d", fullname, error);
2008-11-20 23:01:55 +03:00
/*
* Create snapshot, add temporary hold, verify that we can't
* destroy a held snapshot, mark for deferred destroy,
* release hold, verify snapshot was destroyed.
*/
Illumos #2882, #2883, #2900 2882 implement libzfs_core 2883 changing "canmount" property to "on" should not always remount dataset 2900 "zfs snapshot" should be able to create multiple, arbitrary snapshots at once Reviewed by: George Wilson <george.wilson@delphix.com> Reviewed by: Chris Siden <christopher.siden@delphix.com> Reviewed by: Garrett D'Amore <garrett@damore.org> Reviewed by: Bill Pijewski <wdp@joyent.com> Reviewed by: Dan Kruchinin <dan.kruchinin@gmail.com> Approved by: Eric Schrock <Eric.Schrock@delphix.com> References: https://www.illumos.org/issues/2882 https://www.illumos.org/issues/2883 https://www.illumos.org/issues/2900 illumos/illumos-gate@4445fffbbb1ea25fd0e9ea68b9380dd7a6709025 Ported-by: Tim Chase <tim@chase2k.com> Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov> Closes #1293 Porting notes: WARNING: This patch changes the user/kernel ABI. That means that the zfs/zpool utilities built from master are NOT compatible with the 0.6.2 kernel modules. Ensure you load the matching kernel modules from master after updating the utilities. Otherwise the zfs/zpool commands will be unable to interact with your pool and you will see errors similar to the following: $ zpool list failed to read pool configuration: bad address no pools available $ zfs list no datasets available Add zvol minor device creation to the new zfs_snapshot_nvl function. Remove the logging of the "release" operation in dsl_dataset_user_release_sync(). The logging caused a null dereference because ds->ds_dir is zeroed in dsl_dataset_destroy_sync() and the logging functions try to get the ds name via the dsl_dataset_name() function. I've got no idea why this particular code would have worked in Illumos. This code has subsequently been completely reworked in Illumos commit 3b2aab1 (3464 zfs synctask code needs restructuring). Squash some "may be used uninitialized" warning/erorrs. Fix some printf format warnings for %lld and %llu. Apply a few spa_writeable() changes that were made to Illumos in illumos/illumos-gate.git@cd1c8b8 as part of the 3112, 3113, 3114 and 3115 fixes. Add a missing call to fnvlist_free(nvl) in log_internal() that was added in Illumos to fix issue 3085 but couldn't be ported to ZoL at the time (zfsonlinux/zfs@9e11c73) because it depended on future work.
2013-08-28 15:45:09 +04:00
error = dmu_objset_snapshot_one(osname, snapname);
if (error) {
if (error == ENOSPC) {
ztest_record_enospc("dmu_objset_snapshot");
goto out;
2008-11-20 23:01:55 +03:00
}
fatal(B_FALSE, "dmu_objset_snapshot(%s) = %d", fullname, error);
}
holds = fnvlist_alloc();
fnvlist_add_string(holds, fullname, tag);
error = dsl_dataset_user_hold(holds, 0, NULL);
fnvlist_free(holds);
if (error == ENOSPC) {
ztest_record_enospc("dsl_dataset_user_hold");
goto out;
} else if (error) {
fatal(B_FALSE, "dsl_dataset_user_hold(%s, %s) = %u",
fullname, tag, error);
}
error = dsl_destroy_snapshot(fullname, B_FALSE);
if (error != EBUSY) {
fatal(B_FALSE, "dsl_destroy_snapshot(%s, B_FALSE) = %d",
fullname, error);
}
error = dsl_destroy_snapshot(fullname, B_TRUE);
if (error) {
fatal(B_FALSE, "dsl_destroy_snapshot(%s, B_TRUE) = %d",
fullname, error);
2008-11-20 23:01:55 +03:00
}
error = user_release_one(fullname, tag);
if (error)
fatal(B_FALSE, "user_release_one(%s, %s) = %d",
fullname, tag, error);
VERIFY3U(dmu_objset_hold(fullname, FTAG, &origin), ==, ENOENT);
out:
(void) pthread_rwlock_unlock(&ztest_name_lock);
2008-11-20 23:01:55 +03:00
}
/*
* Inject random faults into the on-disk data.
*/
void
ztest_fault_inject(ztest_ds_t *zd, uint64_t id)
2008-11-20 23:01:55 +03:00
{
(void) zd, (void) id;
ztest_shared_t *zs = ztest_shared;
spa_t *spa = ztest_spa;
2008-11-20 23:01:55 +03:00
int fd;
uint64_t offset;
uint64_t leaves;
uint64_t bad = 0x1990c0ffeedecadeull;
2008-11-20 23:01:55 +03:00
uint64_t top, leaf;
RAID-Z expansion feature This feature allows disks to be added one at a time to a RAID-Z group, expanding its capacity incrementally. This feature is especially useful for small pools (typically with only one RAID-Z group), where there isn't sufficient hardware to add capacity by adding a whole new RAID-Z group (typically doubling the number of disks). == Initiating expansion == A new device (disk) can be attached to an existing RAIDZ vdev, by running `zpool attach POOL raidzP-N NEW_DEVICE`, e.g. `zpool attach tank raidz2-0 sda`. The new device will become part of the RAIDZ group. A "raidz expansion" will be initiated, and the new device will contribute additional space to the RAIDZ group once the expansion completes. The `feature@raidz_expansion` on-disk feature flag must be `enabled` to initiate an expansion, and it remains `active` for the life of the pool. In other words, pools with expanded RAIDZ vdevs can not be imported by older releases of the ZFS software. == During expansion == The expansion entails reading all allocated space from existing disks in the RAIDZ group, and rewriting it to the new disks in the RAIDZ group (including the newly added device). The expansion progress can be monitored with `zpool status`. Data redundancy is maintained during (and after) the expansion. If a disk fails while the expansion is in progress, the expansion pauses until the health of the RAIDZ vdev is restored (e.g. by replacing the failed disk and waiting for reconstruction to complete). The pool remains accessible during expansion. Following a reboot or export/import, the expansion resumes where it left off. == After expansion == When the expansion completes, the additional space is available for use, and is reflected in the `available` zfs property (as seen in `zfs list`, `df`, etc). Expansion does not change the number of failures that can be tolerated without data loss (e.g. a RAIDZ2 is still a RAIDZ2 even after expansion). A RAIDZ vdev can be expanded multiple times. After the expansion completes, old blocks remain with their old data-to-parity ratio (e.g. 5-wide RAIDZ2, has 3 data to 2 parity), but distributed among the larger set of disks. New blocks will be written with the new data-to-parity ratio (e.g. a 5-wide RAIDZ2 which has been expanded once to 6-wide, has 4 data to 2 parity). However, the RAIDZ vdev's "assumed parity ratio" does not change, so slightly less space than is expected may be reported for newly-written blocks, according to `zfs list`, `df`, `ls -s`, and similar tools. Sponsored-by: The FreeBSD Foundation Sponsored-by: iXsystems, Inc. Sponsored-by: vStack Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov> Reviewed-by: Mark Maybee <mark.maybee@delphix.com> Authored-by: Matthew Ahrens <mahrens@delphix.com> Contributions-by: Fedor Uporov <fuporov.vstack@gmail.com> Contributions-by: Stuart Maybee <stuart.maybee@comcast.net> Contributions-by: Thorsten Behrens <tbehrens@outlook.com> Contributions-by: Fmstrat <nospam@nowsci.com> Contributions-by: Don Brady <dev.fs.zfs@gmail.com> Signed-off-by: Don Brady <dev.fs.zfs@gmail.com> Closes #15022
2023-11-08 21:19:41 +03:00
uint64_t raidz_children;
char *path0;
char *pathrand;
2008-11-20 23:01:55 +03:00
size_t fsize;
int bshift = SPA_MAXBLOCKSHIFT + 2;
2008-11-20 23:01:55 +03:00
int iters = 1000;
int maxfaults;
int mirror_save;
vdev_t *vd0 = NULL;
2008-11-20 23:01:55 +03:00
uint64_t guid0 = 0;
boolean_t islog = B_FALSE;
RAID-Z expansion feature This feature allows disks to be added one at a time to a RAID-Z group, expanding its capacity incrementally. This feature is especially useful for small pools (typically with only one RAID-Z group), where there isn't sufficient hardware to add capacity by adding a whole new RAID-Z group (typically doubling the number of disks). == Initiating expansion == A new device (disk) can be attached to an existing RAIDZ vdev, by running `zpool attach POOL raidzP-N NEW_DEVICE`, e.g. `zpool attach tank raidz2-0 sda`. The new device will become part of the RAIDZ group. A "raidz expansion" will be initiated, and the new device will contribute additional space to the RAIDZ group once the expansion completes. The `feature@raidz_expansion` on-disk feature flag must be `enabled` to initiate an expansion, and it remains `active` for the life of the pool. In other words, pools with expanded RAIDZ vdevs can not be imported by older releases of the ZFS software. == During expansion == The expansion entails reading all allocated space from existing disks in the RAIDZ group, and rewriting it to the new disks in the RAIDZ group (including the newly added device). The expansion progress can be monitored with `zpool status`. Data redundancy is maintained during (and after) the expansion. If a disk fails while the expansion is in progress, the expansion pauses until the health of the RAIDZ vdev is restored (e.g. by replacing the failed disk and waiting for reconstruction to complete). The pool remains accessible during expansion. Following a reboot or export/import, the expansion resumes where it left off. == After expansion == When the expansion completes, the additional space is available for use, and is reflected in the `available` zfs property (as seen in `zfs list`, `df`, etc). Expansion does not change the number of failures that can be tolerated without data loss (e.g. a RAIDZ2 is still a RAIDZ2 even after expansion). A RAIDZ vdev can be expanded multiple times. After the expansion completes, old blocks remain with their old data-to-parity ratio (e.g. 5-wide RAIDZ2, has 3 data to 2 parity), but distributed among the larger set of disks. New blocks will be written with the new data-to-parity ratio (e.g. a 5-wide RAIDZ2 which has been expanded once to 6-wide, has 4 data to 2 parity). However, the RAIDZ vdev's "assumed parity ratio" does not change, so slightly less space than is expected may be reported for newly-written blocks, according to `zfs list`, `df`, `ls -s`, and similar tools. Sponsored-by: The FreeBSD Foundation Sponsored-by: iXsystems, Inc. Sponsored-by: vStack Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov> Reviewed-by: Mark Maybee <mark.maybee@delphix.com> Authored-by: Matthew Ahrens <mahrens@delphix.com> Contributions-by: Fedor Uporov <fuporov.vstack@gmail.com> Contributions-by: Stuart Maybee <stuart.maybee@comcast.net> Contributions-by: Thorsten Behrens <tbehrens@outlook.com> Contributions-by: Fmstrat <nospam@nowsci.com> Contributions-by: Don Brady <dev.fs.zfs@gmail.com> Signed-off-by: Don Brady <dev.fs.zfs@gmail.com> Closes #15022
2023-11-08 21:19:41 +03:00
boolean_t injected = B_FALSE;
path0 = umem_alloc(MAXPATHLEN, UMEM_NOFAIL);
pathrand = umem_alloc(MAXPATHLEN, UMEM_NOFAIL);
mutex_enter(&ztest_vdev_lock);
OpenZFS 9290 - device removal reduces redundancy of mirrors Mirrors are supposed to provide redundancy in the face of whole-disk failure and silent damage (e.g. some data on disk is not right, but ZFS hasn't detected the whole device as being broken). However, the current device removal implementation bypasses some of the mirror's redundancy. Note that in no case is incorrect data returned, but we might get a checksum error when we should have been able to find the right data. There are two underlying problems: 1. When we remove a mirror device, we only read one side of the mirror. Since we can't verify the checksum, this side may be silently bad, but the good data is on the other side of the mirror (which we didn't read). This can cause the removal to "bake in" the busted data – all copies of the data in the new location are the same, busted version, while we left the good version behind. The fix for this is to read and copy both sides of the mirror. If the old and new vdevs are mirrors, we will read both sides of the old mirror, and write each copy to the corresponding side of the new mirror. (If the old and new vdevs have a different number of children, we will do this as best as possible.) Even though we aren't verifying checksums, this ensures that as long as there's a good copy of the data, we'll have a good copy after the removal, even if there's silent damage to one side of the mirror. If we're removing a mirror that has some silent damage, we'll have exactly the same damage in the new location (assuming that the new location is also a mirror). 2. When we read from an indirect vdev that points to a mirror vdev, we only consider one copy of the data. This can lead to reduced effective redundancy, because we might read a bad copy of the data from one side of the mirror, and not retry the other, good side of the mirror. Note that the problem is not with the removal process, but rather after the removal has completed (having copied correct data to both sides of the mirror), if one side of the new mirror is silently damaged, we encounter the problem when reading the relocated data via the indirect vdev. Also note that the problem doesn't occur when ZFS knows that one side of the mirror is bad, e.g. when a disk entirely fails or is offlined. The impact is that reads (from indirect vdevs that point to mirrors) may return a checksum error even though the good data exists on one side of the mirror, and scrub doesn't repair all data on the mirror (if some of it is pointed to via an indirect vdev). The fix for this is complicated by "split blocks" - one logical block may be split into two (or more) pieces with each piece moved to a different new location. In this case we need to read all versions of each split (one from each side of the mirror), and figure out which combination of versions results in the correct checksum, and then repair the incorrect versions. This ensures that we supply the same redundancy whether you use device removal or not. For example, if a mirror has small silent errors on all of its children, we can still reconstruct the correct data, as long as those errors are at sufficiently-separated offsets (specifically, separated by the largest block size - default of 128KB, but up to 16MB). Porting notes: * A new indirect vdev check was moved from dsl_scan_needs_resilver_cb() to dsl_scan_needs_resilver(), which was added to ZoL as part of the sequential scrub work. * Passed NULL for zfs_ereport_post_checksum()'s zbookmark_phys_t parameter. The extra parameter is unique to ZoL. * When posting indirect checksum errors the ABD can be passed directly, zfs_ereport_post_checksum() is not yet ABD-aware in OpenZFS. Authored by: Matthew Ahrens <mahrens@delphix.com> Reviewed by: Tim Chase <tim@chase2k.com> Reviewed by: Brian Behlendorf <behlendorf1@llnl.gov> Ported-by: Tim Chase <tim@chase2k.com> OpenZFS-issue: https://illumos.org/issues/9290 OpenZFS-commit: https://github.com/openzfs/openzfs/pull/591 Closes #6900
2018-02-13 22:37:56 +03:00
/*
* Device removal is in progress, fault injection must be disabled
* until it completes and the pool is scrubbed. The fault injection
* strategy for damaging blocks does not take in to account evacuated
* blocks which may have already been damaged.
*/
RAID-Z expansion feature This feature allows disks to be added one at a time to a RAID-Z group, expanding its capacity incrementally. This feature is especially useful for small pools (typically with only one RAID-Z group), where there isn't sufficient hardware to add capacity by adding a whole new RAID-Z group (typically doubling the number of disks). == Initiating expansion == A new device (disk) can be attached to an existing RAIDZ vdev, by running `zpool attach POOL raidzP-N NEW_DEVICE`, e.g. `zpool attach tank raidz2-0 sda`. The new device will become part of the RAIDZ group. A "raidz expansion" will be initiated, and the new device will contribute additional space to the RAIDZ group once the expansion completes. The `feature@raidz_expansion` on-disk feature flag must be `enabled` to initiate an expansion, and it remains `active` for the life of the pool. In other words, pools with expanded RAIDZ vdevs can not be imported by older releases of the ZFS software. == During expansion == The expansion entails reading all allocated space from existing disks in the RAIDZ group, and rewriting it to the new disks in the RAIDZ group (including the newly added device). The expansion progress can be monitored with `zpool status`. Data redundancy is maintained during (and after) the expansion. If a disk fails while the expansion is in progress, the expansion pauses until the health of the RAIDZ vdev is restored (e.g. by replacing the failed disk and waiting for reconstruction to complete). The pool remains accessible during expansion. Following a reboot or export/import, the expansion resumes where it left off. == After expansion == When the expansion completes, the additional space is available for use, and is reflected in the `available` zfs property (as seen in `zfs list`, `df`, etc). Expansion does not change the number of failures that can be tolerated without data loss (e.g. a RAIDZ2 is still a RAIDZ2 even after expansion). A RAIDZ vdev can be expanded multiple times. After the expansion completes, old blocks remain with their old data-to-parity ratio (e.g. 5-wide RAIDZ2, has 3 data to 2 parity), but distributed among the larger set of disks. New blocks will be written with the new data-to-parity ratio (e.g. a 5-wide RAIDZ2 which has been expanded once to 6-wide, has 4 data to 2 parity). However, the RAIDZ vdev's "assumed parity ratio" does not change, so slightly less space than is expected may be reported for newly-written blocks, according to `zfs list`, `df`, `ls -s`, and similar tools. Sponsored-by: The FreeBSD Foundation Sponsored-by: iXsystems, Inc. Sponsored-by: vStack Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov> Reviewed-by: Mark Maybee <mark.maybee@delphix.com> Authored-by: Matthew Ahrens <mahrens@delphix.com> Contributions-by: Fedor Uporov <fuporov.vstack@gmail.com> Contributions-by: Stuart Maybee <stuart.maybee@comcast.net> Contributions-by: Thorsten Behrens <tbehrens@outlook.com> Contributions-by: Fmstrat <nospam@nowsci.com> Contributions-by: Don Brady <dev.fs.zfs@gmail.com> Signed-off-by: Don Brady <dev.fs.zfs@gmail.com> Closes #15022
2023-11-08 21:19:41 +03:00
if (ztest_device_removal_active)
goto out;
/*
* The fault injection strategy for damaging blocks cannot be used
* if raidz expansion is in progress. The leaves value
* (attached raidz children) is variable and strategy for damaging
* blocks will corrupt same data blocks on different child vdevs
* because of the reflow process.
*/
if (spa->spa_raidz_expand != NULL)
OpenZFS 9290 - device removal reduces redundancy of mirrors Mirrors are supposed to provide redundancy in the face of whole-disk failure and silent damage (e.g. some data on disk is not right, but ZFS hasn't detected the whole device as being broken). However, the current device removal implementation bypasses some of the mirror's redundancy. Note that in no case is incorrect data returned, but we might get a checksum error when we should have been able to find the right data. There are two underlying problems: 1. When we remove a mirror device, we only read one side of the mirror. Since we can't verify the checksum, this side may be silently bad, but the good data is on the other side of the mirror (which we didn't read). This can cause the removal to "bake in" the busted data – all copies of the data in the new location are the same, busted version, while we left the good version behind. The fix for this is to read and copy both sides of the mirror. If the old and new vdevs are mirrors, we will read both sides of the old mirror, and write each copy to the corresponding side of the new mirror. (If the old and new vdevs have a different number of children, we will do this as best as possible.) Even though we aren't verifying checksums, this ensures that as long as there's a good copy of the data, we'll have a good copy after the removal, even if there's silent damage to one side of the mirror. If we're removing a mirror that has some silent damage, we'll have exactly the same damage in the new location (assuming that the new location is also a mirror). 2. When we read from an indirect vdev that points to a mirror vdev, we only consider one copy of the data. This can lead to reduced effective redundancy, because we might read a bad copy of the data from one side of the mirror, and not retry the other, good side of the mirror. Note that the problem is not with the removal process, but rather after the removal has completed (having copied correct data to both sides of the mirror), if one side of the new mirror is silently damaged, we encounter the problem when reading the relocated data via the indirect vdev. Also note that the problem doesn't occur when ZFS knows that one side of the mirror is bad, e.g. when a disk entirely fails or is offlined. The impact is that reads (from indirect vdevs that point to mirrors) may return a checksum error even though the good data exists on one side of the mirror, and scrub doesn't repair all data on the mirror (if some of it is pointed to via an indirect vdev). The fix for this is complicated by "split blocks" - one logical block may be split into two (or more) pieces with each piece moved to a different new location. In this case we need to read all versions of each split (one from each side of the mirror), and figure out which combination of versions results in the correct checksum, and then repair the incorrect versions. This ensures that we supply the same redundancy whether you use device removal or not. For example, if a mirror has small silent errors on all of its children, we can still reconstruct the correct data, as long as those errors are at sufficiently-separated offsets (specifically, separated by the largest block size - default of 128KB, but up to 16MB). Porting notes: * A new indirect vdev check was moved from dsl_scan_needs_resilver_cb() to dsl_scan_needs_resilver(), which was added to ZoL as part of the sequential scrub work. * Passed NULL for zfs_ereport_post_checksum()'s zbookmark_phys_t parameter. The extra parameter is unique to ZoL. * When posting indirect checksum errors the ABD can be passed directly, zfs_ereport_post_checksum() is not yet ABD-aware in OpenZFS. Authored by: Matthew Ahrens <mahrens@delphix.com> Reviewed by: Tim Chase <tim@chase2k.com> Reviewed by: Brian Behlendorf <behlendorf1@llnl.gov> Ported-by: Tim Chase <tim@chase2k.com> OpenZFS-issue: https://illumos.org/issues/9290 OpenZFS-commit: https://github.com/openzfs/openzfs/pull/591 Closes #6900
2018-02-13 22:37:56 +03:00
goto out;
maxfaults = MAXFAULTS(zs);
RAID-Z expansion feature This feature allows disks to be added one at a time to a RAID-Z group, expanding its capacity incrementally. This feature is especially useful for small pools (typically with only one RAID-Z group), where there isn't sufficient hardware to add capacity by adding a whole new RAID-Z group (typically doubling the number of disks). == Initiating expansion == A new device (disk) can be attached to an existing RAIDZ vdev, by running `zpool attach POOL raidzP-N NEW_DEVICE`, e.g. `zpool attach tank raidz2-0 sda`. The new device will become part of the RAIDZ group. A "raidz expansion" will be initiated, and the new device will contribute additional space to the RAIDZ group once the expansion completes. The `feature@raidz_expansion` on-disk feature flag must be `enabled` to initiate an expansion, and it remains `active` for the life of the pool. In other words, pools with expanded RAIDZ vdevs can not be imported by older releases of the ZFS software. == During expansion == The expansion entails reading all allocated space from existing disks in the RAIDZ group, and rewriting it to the new disks in the RAIDZ group (including the newly added device). The expansion progress can be monitored with `zpool status`. Data redundancy is maintained during (and after) the expansion. If a disk fails while the expansion is in progress, the expansion pauses until the health of the RAIDZ vdev is restored (e.g. by replacing the failed disk and waiting for reconstruction to complete). The pool remains accessible during expansion. Following a reboot or export/import, the expansion resumes where it left off. == After expansion == When the expansion completes, the additional space is available for use, and is reflected in the `available` zfs property (as seen in `zfs list`, `df`, etc). Expansion does not change the number of failures that can be tolerated without data loss (e.g. a RAIDZ2 is still a RAIDZ2 even after expansion). A RAIDZ vdev can be expanded multiple times. After the expansion completes, old blocks remain with their old data-to-parity ratio (e.g. 5-wide RAIDZ2, has 3 data to 2 parity), but distributed among the larger set of disks. New blocks will be written with the new data-to-parity ratio (e.g. a 5-wide RAIDZ2 which has been expanded once to 6-wide, has 4 data to 2 parity). However, the RAIDZ vdev's "assumed parity ratio" does not change, so slightly less space than is expected may be reported for newly-written blocks, according to `zfs list`, `df`, `ls -s`, and similar tools. Sponsored-by: The FreeBSD Foundation Sponsored-by: iXsystems, Inc. Sponsored-by: vStack Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov> Reviewed-by: Mark Maybee <mark.maybee@delphix.com> Authored-by: Matthew Ahrens <mahrens@delphix.com> Contributions-by: Fedor Uporov <fuporov.vstack@gmail.com> Contributions-by: Stuart Maybee <stuart.maybee@comcast.net> Contributions-by: Thorsten Behrens <tbehrens@outlook.com> Contributions-by: Fmstrat <nospam@nowsci.com> Contributions-by: Don Brady <dev.fs.zfs@gmail.com> Signed-off-by: Don Brady <dev.fs.zfs@gmail.com> Closes #15022
2023-11-08 21:19:41 +03:00
raidz_children = ztest_get_raidz_children(spa);
leaves = MAX(zs->zs_mirrors, 1) * raidz_children;
mirror_save = zs->zs_mirrors;
2008-11-20 23:01:55 +03:00
ASSERT3U(leaves, >=, 1);
2008-11-20 23:01:55 +03:00
/*
* While ztest is running the number of leaves will not change. This
* is critical for the fault injection logic as it determines where
* errors can be safely injected such that they are always repairable.
*
* When restarting ztest a different number of leaves may be requested
* which will shift the regions to be damaged. This is fine as long
* as the pool has been scrubbed prior to using the new mapping.
* Failure to do can result in non-repairable damage being injected.
*/
if (ztest_pool_scrubbed == B_FALSE)
goto out;
/*
* Grab the name lock as reader. There are some operations
* which don't like to have their vdevs changed while
* they are in progress (i.e. spa_change_guid). Those
* operations will have grabbed the name lock as writer.
*/
(void) pthread_rwlock_rdlock(&ztest_name_lock);
2008-11-20 23:01:55 +03:00
/*
* We need SCL_STATE here because we're going to look at vd0->vdev_tsd.
2008-11-20 23:01:55 +03:00
*/
spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
2008-11-20 23:01:55 +03:00
if (ztest_random(2) == 0) {
/*
* Inject errors on a normal data device or slog device.
*/
top = ztest_random_vdev_top(spa, B_TRUE);
leaf = ztest_random(leaves) + zs->zs_splits;
2008-11-20 23:01:55 +03:00
/*
* Generate paths to the first leaf in this top-level vdev,
* and to the random leaf we selected. We'll induce transient
* write failures and random online/offline activity on leaf 0,
* and we'll write random garbage to the randomly chosen leaf.
*/
(void) snprintf(path0, MAXPATHLEN, ztest_dev_template,
ztest_opts.zo_dir, ztest_opts.zo_pool,
top * leaves + zs->zs_splits);
(void) snprintf(pathrand, MAXPATHLEN, ztest_dev_template,
ztest_opts.zo_dir, ztest_opts.zo_pool,
top * leaves + leaf);
2008-11-20 23:01:55 +03:00
vd0 = vdev_lookup_by_path(spa->spa_root_vdev, path0);
if (vd0 != NULL && vd0->vdev_top->vdev_islog)
islog = B_TRUE;
/*
* If the top-level vdev needs to be resilvered
* then we only allow faults on the device that is
* resilvering.
*/
if (vd0 != NULL && maxfaults != 1 &&
(!vdev_resilver_needed(vd0->vdev_top, NULL, NULL) ||
Illumos #3956, #3957, #3958, #3959, #3960, #3961, #3962 3956 ::vdev -r should work with pipelines 3957 ztest should update the cachefile before killing itself 3958 multiple scans can lead to partial resilvering 3959 ddt entries are not always resilvered 3960 dsl_scan can skip over dedup-ed blocks if physical birth != logical birth 3961 freed gang blocks are not resilvered and can cause pool to suspend 3962 ztest should print out zfs debug buffer before exiting Reviewed by: Matthew Ahrens <mahrens@delphix.com> Reviewed by: Adam Leventhal <ahl@delphix.com> Approved by: Richard Lowe <richlowe@richlowe.net> References: https://www.illumos.org/issues/3956 https://www.illumos.org/issues/3957 https://www.illumos.org/issues/3958 https://www.illumos.org/issues/3959 https://www.illumos.org/issues/3960 https://www.illumos.org/issues/3961 https://www.illumos.org/issues/3962 illumos/illumos-gate@b4952e17e8858d3225793b28788278de9fe6038d Ported-by: Richard Yao <ryao@gentoo.org> Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov> Porting notes: 1. zfs_dbgmsg_print() is only used in userland. Since we do not have mdb on Linux, it does not make sense to make it available in the kernel. This means that a build failure will occur if any future kernel patch depends on it. However, that is unlikely given that this functionality was added to support zdb. 2. zfs_dbgmsg_print() is only invoked for -VVV or greater log levels. This preserves the existing behavior of minimal noise when running with -V, and -VV. 3. In vdev_config_generate() the call to nvlist_alloc() was not changed to fnvlist_alloc() because we must pass KM_PUSHPAGE in the txg_sync context.
2013-08-08 00:16:22 +04:00
vd0->vdev_resilver_txg != 0)) {
/*
* Make vd0 explicitly claim to be unreadable,
* or unwritable, or reach behind its back
* and close the underlying fd. We can do this if
* maxfaults == 0 because we'll fail and reexecute,
* and we can do it if maxfaults >= 2 because we'll
* have enough redundancy. If maxfaults == 1, the
* combination of this with injection of random data
* corruption below exceeds the pool's fault tolerance.
*/
vdev_file_t *vf = vd0->vdev_tsd;
OpenZFS 7614, 9064 - zfs device evacuation/removal OpenZFS 7614 - zfs device evacuation/removal OpenZFS 9064 - remove_mirror should wait for device removal to complete This project allows top-level vdevs to be removed from the storage pool with "zpool remove", reducing the total amount of storage in the pool. This operation copies all allocated regions of the device to be removed onto other devices, recording the mapping from old to new location. After the removal is complete, read and free operations to the removed (now "indirect") vdev must be remapped and performed at the new location on disk. The indirect mapping table is kept in memory whenever the pool is loaded, so there is minimal performance overhead when doing operations on the indirect vdev. The size of the in-memory mapping table will be reduced when its entries become "obsolete" because they are no longer used by any block pointers in the pool. An entry becomes obsolete when all the blocks that use it are freed. An entry can also become obsolete when all the snapshots that reference it are deleted, and the block pointers that reference it have been "remapped" in all filesystems/zvols (and clones). Whenever an indirect block is written, all the block pointers in it will be "remapped" to their new (concrete) locations if possible. This process can be accelerated by using the "zfs remap" command to proactively rewrite all indirect blocks that reference indirect (removed) vdevs. Note that when a device is removed, we do not verify the checksum of the data that is copied. This makes the process much faster, but if it were used on redundant vdevs (i.e. mirror or raidz vdevs), it would be possible to copy the wrong data, when we have the correct data on e.g. the other side of the mirror. At the moment, only mirrors and simple top-level vdevs can be removed and no removal is allowed if any of the top-level vdevs are raidz. Porting Notes: * Avoid zero-sized kmem_alloc() in vdev_compact_children(). The device evacuation code adds a dependency that vdev_compact_children() be able to properly empty the vdev_child array by setting it to NULL and zeroing vdev_children. Under Linux, kmem_alloc() and related functions return a sentinel pointer rather than NULL for zero-sized allocations. * Remove comment regarding "mpt" driver where zfs_remove_max_segment is initialized to SPA_MAXBLOCKSIZE. Change zfs_condense_indirect_commit_entry_delay_ticks to zfs_condense_indirect_commit_entry_delay_ms for consistency with most other tunables in which delays are specified in ms. * ZTS changes: Use set_tunable rather than mdb Use zpool sync as appropriate Use sync_pool instead of sync Kill jobs during test_removal_with_operation to allow unmount/export Don't add non-disk names such as "mirror" or "raidz" to $DISKS Use $TEST_BASE_DIR instead of /tmp Increase HZ from 100 to 1000 which is more common on Linux removal_multiple_indirection.ksh Reduce iterations in order to not time out on the code coverage builders. removal_resume_export: Functionally, the test case is correct but there exists a race where the kernel thread hasn't been fully started yet and is not visible. Wait for up to 1 second for the removal thread to be started before giving up on it. Also, increase the amount of data copied in order that the removal not finish before the export has a chance to fail. * MMP compatibility, the concept of concrete versus non-concrete devices has slightly changed the semantics of vdev_writeable(). Update mmp_random_leaf_impl() accordingly. * Updated dbuf_remap() to handle the org.zfsonlinux:large_dnode pool feature which is not supported by OpenZFS. * Added support for new vdev removal tracepoints. * Test cases removal_with_zdb and removal_condense_export have been intentionally disabled. When run manually they pass as intended, but when running in the automated test environment they produce unreliable results on the latest Fedora release. They may work better once the upstream pool import refectoring is merged into ZoL at which point they will be re-enabled. Authored by: Matthew Ahrens <mahrens@delphix.com> Reviewed-by: Alex Reece <alex@delphix.com> Reviewed-by: George Wilson <george.wilson@delphix.com> Reviewed-by: John Kennedy <john.kennedy@delphix.com> Reviewed-by: Prakash Surya <prakash.surya@delphix.com> Reviewed by: Richard Laager <rlaager@wiktel.com> Reviewed by: Tim Chase <tim@chase2k.com> Reviewed by: Brian Behlendorf <behlendorf1@llnl.gov> Approved by: Garrett D'Amore <garrett@damore.org> Ported-by: Tim Chase <tim@chase2k.com> Signed-off-by: Tim Chase <tim@chase2k.com> OpenZFS-issue: https://www.illumos.org/issues/7614 OpenZFS-commit: https://github.com/openzfs/openzfs/commit/f539f1eb Closes #6900
2016-09-22 19:30:13 +03:00
zfs_dbgmsg("injecting fault to vdev %llu; maxfaults=%d",
(long long)vd0->vdev_id, (int)maxfaults);
if (vf != NULL && ztest_random(3) == 0) {
(void) close(vf->vf_file->f_fd);
vf->vf_file->f_fd = -1;
} else if (ztest_random(2) == 0) {
vd0->vdev_cant_read = B_TRUE;
} else {
vd0->vdev_cant_write = B_TRUE;
}
guid0 = vd0->vdev_guid;
}
} else {
/*
* Inject errors on an l2cache device.
*/
spa_aux_vdev_t *sav = &spa->spa_l2cache;
2008-11-20 23:01:55 +03:00
if (sav->sav_count == 0) {
spa_config_exit(spa, SCL_STATE, FTAG);
(void) pthread_rwlock_unlock(&ztest_name_lock);
goto out;
}
vd0 = sav->sav_vdevs[ztest_random(sav->sav_count)];
2008-11-20 23:01:55 +03:00
guid0 = vd0->vdev_guid;
Fix unsafe string operations Coverity caught unsafe use of `strcpy()` in `ztest_dmu_objset_own()`, `nfs_init_tmpfile()` and `dump_snapshot()`. It also caught an unsafe use of `strlcat()` in `nfs_init_tmpfile()`. Inspired by this, I did an audit of every single usage of `strcpy()` and `strcat()` in the code. If I could not prove that the usage was safe, I changed the code to use either `strlcpy()` or `strlcat()`, depending on which function was originally used. In some cases, `snprintf()` was used to replace multiple uses of `strcat` because it was cleaner. Whenever I changed a function, I preferred to use `sizeof(dst)` when the compiler is able to provide the string size via that. When it could not because the string was passed by a caller, I checked the entire call tree of the function to find out how big the buffer was and hard coded it. Hardcoding is less than ideal, but it is safe unless someone shrinks the buffer sizes being passed. Additionally, Coverity reported three more string related issues: * It caught a case where we do an overlapping memory copy in a call to `snprintf()`. We fix that via `kmem_strdup()` and `kmem_strfree()`. * It caught `sizeof (buf)` being used instead of `buflen` in `zdb_nicenum()`'s call to `zfs_nicenum()`, which is passed to `snprintf()`. We change that to pass `buflen`. * It caught a theoretical unterminated string passed to `strcmp()`. This one is likely a false positive, but we have the information needed to do this more safely, so we change this to silence the false positive not just in coverity, but potentially other static analysis tools too. We switch to `strncmp()`. * There was a false positive in tests/zfs-tests/cmd/dir_rd_update.c. We suppress it by switching to `snprintf()` since other static analysis tools might complain about it too. Interestingly, there is a possible real bug there too, since it assumes that the passed directory path ends with '/'. We add a '/' to fix that potential bug. Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov> Signed-off-by: Richard Yao <richard.yao@alumni.stonybrook.edu> Closes #13913
2022-09-28 02:47:24 +03:00
(void) strlcpy(path0, vd0->vdev_path, MAXPATHLEN);
(void) strlcpy(pathrand, vd0->vdev_path, MAXPATHLEN);
leaf = 0;
leaves = 1;
maxfaults = INT_MAX; /* no limit on cache devices */
2008-11-20 23:01:55 +03:00
}
spa_config_exit(spa, SCL_STATE, FTAG);
(void) pthread_rwlock_unlock(&ztest_name_lock);
2008-11-20 23:01:55 +03:00
/*
* If we can tolerate two or more faults, or we're dealing
* with a slog, randomly online/offline vd0.
2008-11-20 23:01:55 +03:00
*/
if ((maxfaults >= 2 || islog) && guid0 != 0) {
2009-01-16 00:59:39 +03:00
if (ztest_random(10) < 6) {
int flags = (ztest_random(2) == 0 ?
ZFS_OFFLINE_TEMPORARY : 0);
/*
* We have to grab the zs_name_lock as writer to
* prevent a race between offlining a slog and
* destroying a dataset. Offlining the slog will
* grab a reference on the dataset which may cause
* dsl_destroy_head() to fail with EBUSY thus
* leaving the dataset in an inconsistent state.
*/
if (islog)
(void) pthread_rwlock_wrlock(&ztest_name_lock);
VERIFY3U(vdev_offline(spa, guid0, flags), !=, EBUSY);
if (islog)
(void) pthread_rwlock_unlock(&ztest_name_lock);
2009-01-16 00:59:39 +03:00
} else {
/*
* Ideally we would like to be able to randomly
* call vdev_[on|off]line without holding locks
* to force unpredictable failures but the side
* effects of vdev_[on|off]line prevent us from
RAID-Z expansion feature This feature allows disks to be added one at a time to a RAID-Z group, expanding its capacity incrementally. This feature is especially useful for small pools (typically with only one RAID-Z group), where there isn't sufficient hardware to add capacity by adding a whole new RAID-Z group (typically doubling the number of disks). == Initiating expansion == A new device (disk) can be attached to an existing RAIDZ vdev, by running `zpool attach POOL raidzP-N NEW_DEVICE`, e.g. `zpool attach tank raidz2-0 sda`. The new device will become part of the RAIDZ group. A "raidz expansion" will be initiated, and the new device will contribute additional space to the RAIDZ group once the expansion completes. The `feature@raidz_expansion` on-disk feature flag must be `enabled` to initiate an expansion, and it remains `active` for the life of the pool. In other words, pools with expanded RAIDZ vdevs can not be imported by older releases of the ZFS software. == During expansion == The expansion entails reading all allocated space from existing disks in the RAIDZ group, and rewriting it to the new disks in the RAIDZ group (including the newly added device). The expansion progress can be monitored with `zpool status`. Data redundancy is maintained during (and after) the expansion. If a disk fails while the expansion is in progress, the expansion pauses until the health of the RAIDZ vdev is restored (e.g. by replacing the failed disk and waiting for reconstruction to complete). The pool remains accessible during expansion. Following a reboot or export/import, the expansion resumes where it left off. == After expansion == When the expansion completes, the additional space is available for use, and is reflected in the `available` zfs property (as seen in `zfs list`, `df`, etc). Expansion does not change the number of failures that can be tolerated without data loss (e.g. a RAIDZ2 is still a RAIDZ2 even after expansion). A RAIDZ vdev can be expanded multiple times. After the expansion completes, old blocks remain with their old data-to-parity ratio (e.g. 5-wide RAIDZ2, has 3 data to 2 parity), but distributed among the larger set of disks. New blocks will be written with the new data-to-parity ratio (e.g. a 5-wide RAIDZ2 which has been expanded once to 6-wide, has 4 data to 2 parity). However, the RAIDZ vdev's "assumed parity ratio" does not change, so slightly less space than is expected may be reported for newly-written blocks, according to `zfs list`, `df`, `ls -s`, and similar tools. Sponsored-by: The FreeBSD Foundation Sponsored-by: iXsystems, Inc. Sponsored-by: vStack Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov> Reviewed-by: Mark Maybee <mark.maybee@delphix.com> Authored-by: Matthew Ahrens <mahrens@delphix.com> Contributions-by: Fedor Uporov <fuporov.vstack@gmail.com> Contributions-by: Stuart Maybee <stuart.maybee@comcast.net> Contributions-by: Thorsten Behrens <tbehrens@outlook.com> Contributions-by: Fmstrat <nospam@nowsci.com> Contributions-by: Don Brady <dev.fs.zfs@gmail.com> Signed-off-by: Don Brady <dev.fs.zfs@gmail.com> Closes #15022
2023-11-08 21:19:41 +03:00
* doing so.
*/
2009-01-16 00:59:39 +03:00
(void) vdev_online(spa, guid0, 0, NULL);
}
2008-11-20 23:01:55 +03:00
}
if (maxfaults == 0)
goto out;
2008-11-20 23:01:55 +03:00
/*
* We have at least single-fault tolerance, so inject data corruption.
*/
fd = open(pathrand, O_RDWR);
OpenZFS 9166 - zfs storage pool checkpoint Details about the motivation of this feature and its usage can be found in this blogpost: https://sdimitro.github.io/post/zpool-checkpoint/ A lightning talk of this feature can be found here: https://www.youtube.com/watch?v=fPQA8K40jAM Implementation details can be found in big block comment of spa_checkpoint.c Side-changes that are relevant to this commit but not explained elsewhere: * renames members of "struct metaslab trees to be shorter without losing meaning * space_map_{alloc,truncate}() accept a block size as a parameter. The reason is that in the current state all space maps that we allocate through the DMU use a global tunable (space_map_blksz) which defauls to 4KB. This is ok for metaslab space maps in terms of bandwirdth since they are scattered all over the disk. But for other space maps this default is probably not what we want. Examples are device removal's vdev_obsolete_sm or vdev_chedkpoint_sm from this review. Both of these have a 1:1 relationship with each vdev and could benefit from a bigger block size. Porting notes: * The part of dsl_scan_sync() which handles async destroys has been moved into the new dsl_process_async_destroys() function. * Remove "VERIFY(!(flags & FWRITE))" in "kernel.c" so zhack can write to block device backed pools. * ZTS: * Fix get_txg() in zpool_sync_001_pos due to "checkpoint_txg". * Don't use large dd block sizes on /dev/urandom under Linux in checkpoint_capacity. * Adopt Delphix-OS's setting of 4 (spa_asize_inflation = SPA_DVAS_PER_BP + 1) for the checkpoint_capacity test to speed its attempts to fill the pool * Create the base and nested pools with sync=disabled to speed up the "setup" phase. * Clear labels in test pool between checkpoint tests to avoid duplicate pool issues. * The import_rewind_device_replaced test has been marked as "known to fail" for the reasons listed in its DISCLAIMER. * New module parameters: zfs_spa_discard_memory_limit, zfs_remove_max_bytes_pause (not documented - debugging only) vdev_max_ms_count (formerly metaslabs_per_vdev) vdev_min_ms_count Authored by: Serapheim Dimitropoulos <serapheim.dimitro@delphix.com> Reviewed by: Matthew Ahrens <mahrens@delphix.com> Reviewed by: John Kennedy <john.kennedy@delphix.com> Reviewed by: Dan Kimmel <dan.kimmel@delphix.com> Reviewed by: Brian Behlendorf <behlendorf1@llnl.gov> Approved by: Richard Lowe <richlowe@richlowe.net> Ported-by: Tim Chase <tim@chase2k.com> Signed-off-by: Tim Chase <tim@chase2k.com> OpenZFS-issue: https://illumos.org/issues/9166 OpenZFS-commit: https://github.com/openzfs/openzfs/commit/7159fdb8 Closes #7570
2016-12-17 01:11:29 +03:00
if (fd == -1) /* we hit a gap in the device namespace */
goto out;
2008-11-20 23:01:55 +03:00
fsize = lseek(fd, 0, SEEK_END);
while (--iters != 0) {
/*
* The offset must be chosen carefully to ensure that
* we do not inject a given logical block with errors
* on two different leaf devices, because ZFS can not
* tolerate that (if maxfaults==1).
*
* To achieve this we divide each leaf device into
* chunks of size (# leaves * SPA_MAXBLOCKSIZE * 4).
* Each chunk is further divided into error-injection
* ranges (can accept errors) and clear ranges (we do
* not inject errors in those). Each error-injection
* range can accept errors only for a single leaf vdev.
* Error-injection ranges are separated by clear ranges.
*
* For example, with 3 leaves, each chunk looks like:
* 0 to 32M: injection range for leaf 0
* 32M to 64M: clear range - no injection allowed
* 64M to 96M: injection range for leaf 1
* 96M to 128M: clear range - no injection allowed
* 128M to 160M: injection range for leaf 2
* 160M to 192M: clear range - no injection allowed
*
* Each clear range must be large enough such that a
* single block cannot straddle it. This way a block
* can't be a target in two different injection ranges
* (on different leaf vdevs).
*/
2008-11-20 23:01:55 +03:00
offset = ztest_random(fsize / (leaves << bshift)) *
(leaves << bshift) + (leaf << bshift) +
(ztest_random(1ULL << (bshift - 1)) & -8ULL);
/*
* Only allow damage to the labels at one end of the vdev.
*
* If all labels are damaged, the device will be totally
* inaccessible, which will result in loss of data,
* because we also damage (parts of) the other side of
* the mirror/raidz.
*
* Additionally, we will always have both an even and an
* odd label, so that we can handle crashes in the
* middle of vdev_config_sync().
*/
if ((leaf & 1) == 0 && offset < VDEV_LABEL_START_SIZE)
continue;
/*
* The two end labels are stored at the "end" of the disk, but
* the end of the disk (vdev_psize) is aligned to
* sizeof (vdev_label_t).
*/
uint64_t psize = P2ALIGN_TYPED(fsize, sizeof (vdev_label_t),
uint64_t);
if ((leaf & 1) == 1 &&
offset + sizeof (bad) > psize - VDEV_LABEL_END_SIZE)
2008-11-20 23:01:55 +03:00
continue;
if (mirror_save != zs->zs_mirrors) {
(void) close(fd);
goto out;
}
2008-11-20 23:01:55 +03:00
if (pwrite(fd, &bad, sizeof (bad), offset) != sizeof (bad))
fatal(B_TRUE,
"can't inject bad word at 0x%"PRIx64" in %s",
2008-11-20 23:01:55 +03:00
offset, pathrand);
if (ztest_opts.zo_verbose >= 7)
(void) printf("injected bad word into %s,"
" offset 0x%"PRIx64"\n", pathrand, offset);
RAID-Z expansion feature This feature allows disks to be added one at a time to a RAID-Z group, expanding its capacity incrementally. This feature is especially useful for small pools (typically with only one RAID-Z group), where there isn't sufficient hardware to add capacity by adding a whole new RAID-Z group (typically doubling the number of disks). == Initiating expansion == A new device (disk) can be attached to an existing RAIDZ vdev, by running `zpool attach POOL raidzP-N NEW_DEVICE`, e.g. `zpool attach tank raidz2-0 sda`. The new device will become part of the RAIDZ group. A "raidz expansion" will be initiated, and the new device will contribute additional space to the RAIDZ group once the expansion completes. The `feature@raidz_expansion` on-disk feature flag must be `enabled` to initiate an expansion, and it remains `active` for the life of the pool. In other words, pools with expanded RAIDZ vdevs can not be imported by older releases of the ZFS software. == During expansion == The expansion entails reading all allocated space from existing disks in the RAIDZ group, and rewriting it to the new disks in the RAIDZ group (including the newly added device). The expansion progress can be monitored with `zpool status`. Data redundancy is maintained during (and after) the expansion. If a disk fails while the expansion is in progress, the expansion pauses until the health of the RAIDZ vdev is restored (e.g. by replacing the failed disk and waiting for reconstruction to complete). The pool remains accessible during expansion. Following a reboot or export/import, the expansion resumes where it left off. == After expansion == When the expansion completes, the additional space is available for use, and is reflected in the `available` zfs property (as seen in `zfs list`, `df`, etc). Expansion does not change the number of failures that can be tolerated without data loss (e.g. a RAIDZ2 is still a RAIDZ2 even after expansion). A RAIDZ vdev can be expanded multiple times. After the expansion completes, old blocks remain with their old data-to-parity ratio (e.g. 5-wide RAIDZ2, has 3 data to 2 parity), but distributed among the larger set of disks. New blocks will be written with the new data-to-parity ratio (e.g. a 5-wide RAIDZ2 which has been expanded once to 6-wide, has 4 data to 2 parity). However, the RAIDZ vdev's "assumed parity ratio" does not change, so slightly less space than is expected may be reported for newly-written blocks, according to `zfs list`, `df`, `ls -s`, and similar tools. Sponsored-by: The FreeBSD Foundation Sponsored-by: iXsystems, Inc. Sponsored-by: vStack Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov> Reviewed-by: Mark Maybee <mark.maybee@delphix.com> Authored-by: Matthew Ahrens <mahrens@delphix.com> Contributions-by: Fedor Uporov <fuporov.vstack@gmail.com> Contributions-by: Stuart Maybee <stuart.maybee@comcast.net> Contributions-by: Thorsten Behrens <tbehrens@outlook.com> Contributions-by: Fmstrat <nospam@nowsci.com> Contributions-by: Don Brady <dev.fs.zfs@gmail.com> Signed-off-by: Don Brady <dev.fs.zfs@gmail.com> Closes #15022
2023-11-08 21:19:41 +03:00
injected = B_TRUE;
2008-11-20 23:01:55 +03:00
}
(void) close(fd);
out:
RAID-Z expansion feature This feature allows disks to be added one at a time to a RAID-Z group, expanding its capacity incrementally. This feature is especially useful for small pools (typically with only one RAID-Z group), where there isn't sufficient hardware to add capacity by adding a whole new RAID-Z group (typically doubling the number of disks). == Initiating expansion == A new device (disk) can be attached to an existing RAIDZ vdev, by running `zpool attach POOL raidzP-N NEW_DEVICE`, e.g. `zpool attach tank raidz2-0 sda`. The new device will become part of the RAIDZ group. A "raidz expansion" will be initiated, and the new device will contribute additional space to the RAIDZ group once the expansion completes. The `feature@raidz_expansion` on-disk feature flag must be `enabled` to initiate an expansion, and it remains `active` for the life of the pool. In other words, pools with expanded RAIDZ vdevs can not be imported by older releases of the ZFS software. == During expansion == The expansion entails reading all allocated space from existing disks in the RAIDZ group, and rewriting it to the new disks in the RAIDZ group (including the newly added device). The expansion progress can be monitored with `zpool status`. Data redundancy is maintained during (and after) the expansion. If a disk fails while the expansion is in progress, the expansion pauses until the health of the RAIDZ vdev is restored (e.g. by replacing the failed disk and waiting for reconstruction to complete). The pool remains accessible during expansion. Following a reboot or export/import, the expansion resumes where it left off. == After expansion == When the expansion completes, the additional space is available for use, and is reflected in the `available` zfs property (as seen in `zfs list`, `df`, etc). Expansion does not change the number of failures that can be tolerated without data loss (e.g. a RAIDZ2 is still a RAIDZ2 even after expansion). A RAIDZ vdev can be expanded multiple times. After the expansion completes, old blocks remain with their old data-to-parity ratio (e.g. 5-wide RAIDZ2, has 3 data to 2 parity), but distributed among the larger set of disks. New blocks will be written with the new data-to-parity ratio (e.g. a 5-wide RAIDZ2 which has been expanded once to 6-wide, has 4 data to 2 parity). However, the RAIDZ vdev's "assumed parity ratio" does not change, so slightly less space than is expected may be reported for newly-written blocks, according to `zfs list`, `df`, `ls -s`, and similar tools. Sponsored-by: The FreeBSD Foundation Sponsored-by: iXsystems, Inc. Sponsored-by: vStack Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov> Reviewed-by: Mark Maybee <mark.maybee@delphix.com> Authored-by: Matthew Ahrens <mahrens@delphix.com> Contributions-by: Fedor Uporov <fuporov.vstack@gmail.com> Contributions-by: Stuart Maybee <stuart.maybee@comcast.net> Contributions-by: Thorsten Behrens <tbehrens@outlook.com> Contributions-by: Fmstrat <nospam@nowsci.com> Contributions-by: Don Brady <dev.fs.zfs@gmail.com> Signed-off-by: Don Brady <dev.fs.zfs@gmail.com> Closes #15022
2023-11-08 21:19:41 +03:00
mutex_exit(&ztest_vdev_lock);
if (injected && ztest_opts.zo_raid_do_expand) {
int error = spa_scan(spa, POOL_SCAN_SCRUB);
if (error == 0) {
while (dsl_scan_scrubbing(spa_get_dsl(spa)))
txg_wait_synced(spa_get_dsl(spa), 0);
}
}
umem_free(path0, MAXPATHLEN);
umem_free(pathrand, MAXPATHLEN);
2008-11-20 23:01:55 +03:00
}
/*
* By design ztest will never inject uncorrectable damage in to the pool.
* Issue a scrub, wait for it to complete, and verify there is never any
Distributed Spare (dRAID) Feature This patch adds a new top-level vdev type called dRAID, which stands for Distributed parity RAID. This pool configuration allows all dRAID vdevs to participate when rebuilding to a distributed hot spare device. This can substantially reduce the total time required to restore full parity to pool with a failed device. A dRAID pool can be created using the new top-level `draid` type. Like `raidz`, the desired redundancy is specified after the type: `draid[1,2,3]`. No additional information is required to create the pool and reasonable default values will be chosen based on the number of child vdevs in the dRAID vdev. zpool create <pool> draid[1,2,3] <vdevs...> Unlike raidz, additional optional dRAID configuration values can be provided as part of the draid type as colon separated values. This allows administrators to fully specify a layout for either performance or capacity reasons. The supported options include: zpool create <pool> \ draid[<parity>][:<data>d][:<children>c][:<spares>s] \ <vdevs...> - draid[parity] - Parity level (default 1) - draid[:<data>d] - Data devices per group (default 8) - draid[:<children>c] - Expected number of child vdevs - draid[:<spares>s] - Distributed hot spares (default 0) Abbreviated example `zpool status` output for a 68 disk dRAID pool with two distributed spares using special allocation classes. ``` pool: tank state: ONLINE config: NAME STATE READ WRITE CKSUM slag7 ONLINE 0 0 0 draid2:8d:68c:2s-0 ONLINE 0 0 0 L0 ONLINE 0 0 0 L1 ONLINE 0 0 0 ... U25 ONLINE 0 0 0 U26 ONLINE 0 0 0 spare-53 ONLINE 0 0 0 U27 ONLINE 0 0 0 draid2-0-0 ONLINE 0 0 0 U28 ONLINE 0 0 0 U29 ONLINE 0 0 0 ... U42 ONLINE 0 0 0 U43 ONLINE 0 0 0 special mirror-1 ONLINE 0 0 0 L5 ONLINE 0 0 0 U5 ONLINE 0 0 0 mirror-2 ONLINE 0 0 0 L6 ONLINE 0 0 0 U6 ONLINE 0 0 0 spares draid2-0-0 INUSE currently in use draid2-0-1 AVAIL ``` When adding test coverage for the new dRAID vdev type the following options were added to the ztest command. These options are leverages by zloop.sh to test a wide range of dRAID configurations. -K draid|raidz|random - kind of RAID to test -D <value> - dRAID data drives per group -S <value> - dRAID distributed hot spares -R <value> - RAID parity (raidz or dRAID) The zpool_create, zpool_import, redundancy, replacement and fault test groups have all been updated provide test coverage for the dRAID feature. Co-authored-by: Isaac Huang <he.huang@intel.com> Co-authored-by: Mark Maybee <mmaybee@cray.com> Co-authored-by: Don Brady <don.brady@delphix.com> Co-authored-by: Matthew Ahrens <mahrens@delphix.com> Co-authored-by: Brian Behlendorf <behlendorf1@llnl.gov> Reviewed-by: Mark Maybee <mmaybee@cray.com> Reviewed-by: Matt Ahrens <matt@delphix.com> Reviewed-by: Tony Hutter <hutter2@llnl.gov> Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov> Closes #10102
2020-11-14 00:51:51 +03:00
* persistent damage.
*
* Only after a full scrub has been completed is it safe to start injecting
* data corruption. See the comment in zfs_fault_inject().
*/
static int
ztest_scrub_impl(spa_t *spa)
{
int error = spa_scan(spa, POOL_SCAN_SCRUB);
if (error)
return (error);
while (dsl_scan_scrubbing(spa_get_dsl(spa)))
txg_wait_synced(spa_get_dsl(spa), 0);
deadlock between spa_errlog_lock and dp_config_rwlock There is a lock order inversion deadlock between `spa_errlog_lock` and `dp_config_rwlock`: A thread in `spa_delete_dataset_errlog()` is running from a sync task. It is holding the `dp_config_rwlock` for writer (see `dsl_sync_task_sync()`), and waiting for the `spa_errlog_lock`. A thread in `dsl_pool_config_enter()` is holding the `spa_errlog_lock` (see `spa_get_errlog_size()`) and waiting for the `dp_config_rwlock` (as reader). Note that this was introduced by #12812. This commit address this by defining the lock ordering to be dp_config_rwlock first, then spa_errlog_lock / spa_errlist_lock. spa_get_errlog() and spa_get_errlog_size() can acquire the locks in this order, and then process_error_block() and get_head_and_birth_txg() can verify that the dp_config_rwlock is already held. Additionally, a buffer overrun in `spa_get_errlog()` is corrected. Many code paths didn't check if `*count` got to zero, instead continuing to overwrite past the beginning of the userspace buffer at `uaddr`. Tested by having some errors in the pool (via `zinject -t data /path/to/file`), one thread running `zpool iostat 0.001`, and another thread runs `zfs destroy` (in a loop, although it hits the first time). This reproduces the problem easily without the fix, and works with the fix. Reviewed-by: Mark Maybee <mark.maybee@delphix.com> Reviewed-by: George Amanakis <gamanakis@gmail.com> Reviewed-by: George Wilson <gwilson@delphix.com> Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov> Signed-off-by: Matthew Ahrens <mahrens@delphix.com> Closes #14239 Closes #14289
2022-12-22 22:48:49 +03:00
if (spa_approx_errlog_size(spa) > 0)
return (ECKSUM);
ztest_pool_scrubbed = B_TRUE;
return (0);
}
2008-11-20 23:01:55 +03:00
/*
* Scrub the pool.
2008-11-20 23:01:55 +03:00
*/
void
ztest_scrub(ztest_ds_t *zd, uint64_t id)
2008-11-20 23:01:55 +03:00
{
(void) zd, (void) id;
spa_t *spa = ztest_spa;
int error;
2008-11-20 23:01:55 +03:00
OpenZFS 9290 - device removal reduces redundancy of mirrors Mirrors are supposed to provide redundancy in the face of whole-disk failure and silent damage (e.g. some data on disk is not right, but ZFS hasn't detected the whole device as being broken). However, the current device removal implementation bypasses some of the mirror's redundancy. Note that in no case is incorrect data returned, but we might get a checksum error when we should have been able to find the right data. There are two underlying problems: 1. When we remove a mirror device, we only read one side of the mirror. Since we can't verify the checksum, this side may be silently bad, but the good data is on the other side of the mirror (which we didn't read). This can cause the removal to "bake in" the busted data – all copies of the data in the new location are the same, busted version, while we left the good version behind. The fix for this is to read and copy both sides of the mirror. If the old and new vdevs are mirrors, we will read both sides of the old mirror, and write each copy to the corresponding side of the new mirror. (If the old and new vdevs have a different number of children, we will do this as best as possible.) Even though we aren't verifying checksums, this ensures that as long as there's a good copy of the data, we'll have a good copy after the removal, even if there's silent damage to one side of the mirror. If we're removing a mirror that has some silent damage, we'll have exactly the same damage in the new location (assuming that the new location is also a mirror). 2. When we read from an indirect vdev that points to a mirror vdev, we only consider one copy of the data. This can lead to reduced effective redundancy, because we might read a bad copy of the data from one side of the mirror, and not retry the other, good side of the mirror. Note that the problem is not with the removal process, but rather after the removal has completed (having copied correct data to both sides of the mirror), if one side of the new mirror is silently damaged, we encounter the problem when reading the relocated data via the indirect vdev. Also note that the problem doesn't occur when ZFS knows that one side of the mirror is bad, e.g. when a disk entirely fails or is offlined. The impact is that reads (from indirect vdevs that point to mirrors) may return a checksum error even though the good data exists on one side of the mirror, and scrub doesn't repair all data on the mirror (if some of it is pointed to via an indirect vdev). The fix for this is complicated by "split blocks" - one logical block may be split into two (or more) pieces with each piece moved to a different new location. In this case we need to read all versions of each split (one from each side of the mirror), and figure out which combination of versions results in the correct checksum, and then repair the incorrect versions. This ensures that we supply the same redundancy whether you use device removal or not. For example, if a mirror has small silent errors on all of its children, we can still reconstruct the correct data, as long as those errors are at sufficiently-separated offsets (specifically, separated by the largest block size - default of 128KB, but up to 16MB). Porting notes: * A new indirect vdev check was moved from dsl_scan_needs_resilver_cb() to dsl_scan_needs_resilver(), which was added to ZoL as part of the sequential scrub work. * Passed NULL for zfs_ereport_post_checksum()'s zbookmark_phys_t parameter. The extra parameter is unique to ZoL. * When posting indirect checksum errors the ABD can be passed directly, zfs_ereport_post_checksum() is not yet ABD-aware in OpenZFS. Authored by: Matthew Ahrens <mahrens@delphix.com> Reviewed by: Tim Chase <tim@chase2k.com> Reviewed by: Brian Behlendorf <behlendorf1@llnl.gov> Ported-by: Tim Chase <tim@chase2k.com> OpenZFS-issue: https://illumos.org/issues/9290 OpenZFS-commit: https://github.com/openzfs/openzfs/pull/591 Closes #6900
2018-02-13 22:37:56 +03:00
/*
* Scrub in progress by device removal.
*/
if (ztest_device_removal_active)
return;
/*
* Start a scrub, wait a moment, then force a restart.
*/
(void) spa_scan(spa, POOL_SCAN_SCRUB);
(void) poll(NULL, 0, 100);
error = ztest_scrub_impl(spa);
if (error == EBUSY)
error = 0;
ASSERT0(error);
}
2008-11-20 23:01:55 +03:00
/*
* Change the guid for the pool.
*/
void
ztest_reguid(ztest_ds_t *zd, uint64_t id)
{
(void) zd, (void) id;
spa_t *spa = ztest_spa;
uint64_t orig, load;
int error;
ztest_shared_t *zs = ztest_shared;
if (ztest_opts.zo_mmp_test)
return;
orig = spa_guid(spa);
load = spa_load_guid(spa);
(void) pthread_rwlock_wrlock(&ztest_name_lock);
error = spa_change_guid(spa, NULL);
zs->zs_guid = spa_guid(spa);
(void) pthread_rwlock_unlock(&ztest_name_lock);
if (error != 0)
return;
if (ztest_opts.zo_verbose >= 4) {
(void) printf("Changed guid old %"PRIu64" -> %"PRIu64"\n",
orig, spa_guid(spa));
}
VERIFY3U(orig, !=, spa_guid(spa));
VERIFY3U(load, ==, spa_load_guid(spa));
}
Introduce BLAKE3 checksums as an OpenZFS feature This commit adds BLAKE3 checksums to OpenZFS, it has similar performance to Edon-R, but without the caveats around the latter. Homepage of BLAKE3: https://github.com/BLAKE3-team/BLAKE3 Wikipedia: https://en.wikipedia.org/wiki/BLAKE_(hash_function)#BLAKE3 Short description of Wikipedia: BLAKE3 is a cryptographic hash function based on Bao and BLAKE2, created by Jack O'Connor, Jean-Philippe Aumasson, Samuel Neves, and Zooko Wilcox-O'Hearn. It was announced on January 9, 2020, at Real World Crypto. BLAKE3 is a single algorithm with many desirable features (parallelism, XOF, KDF, PRF and MAC), in contrast to BLAKE and BLAKE2, which are algorithm families with multiple variants. BLAKE3 has a binary tree structure, so it supports a practically unlimited degree of parallelism (both SIMD and multithreading) given enough input. The official Rust and C implementations are dual-licensed as public domain (CC0) and the Apache License. Along with adding the BLAKE3 hash into the OpenZFS infrastructure a new benchmarking file called chksum_bench was introduced. When read it reports the speed of the available checksum functions. On Linux: cat /proc/spl/kstat/zfs/chksum_bench On FreeBSD: sysctl kstat.zfs.misc.chksum_bench This is an example output of an i3-1005G1 test system with Debian 11: implementation 1k 4k 16k 64k 256k 1m 4m edonr-generic 1196 1602 1761 1749 1762 1759 1751 skein-generic 546 591 608 615 619 612 616 sha256-generic 240 300 316 314 304 285 276 sha512-generic 353 441 467 476 472 467 426 blake3-generic 308 313 313 313 312 313 312 blake3-sse2 402 1289 1423 1446 1432 1458 1413 blake3-sse41 427 1470 1625 1704 1679 1607 1629 blake3-avx2 428 1920 3095 3343 3356 3318 3204 blake3-avx512 473 2687 4905 5836 5844 5643 5374 Output on Debian 5.10.0-10-amd64 system: (Ryzen 7 5800X) implementation 1k 4k 16k 64k 256k 1m 4m edonr-generic 1840 2458 2665 2719 2711 2723 2693 skein-generic 870 966 996 992 1003 1005 1009 sha256-generic 415 442 453 455 457 457 457 sha512-generic 608 690 711 718 719 720 721 blake3-generic 301 313 311 309 309 310 310 blake3-sse2 343 1865 2124 2188 2180 2181 2186 blake3-sse41 364 2091 2396 2509 2463 2482 2488 blake3-avx2 365 2590 4399 4971 4915 4802 4764 Output on Debian 5.10.0-9-powerpc64le system: (POWER 9) implementation 1k 4k 16k 64k 256k 1m 4m edonr-generic 1213 1703 1889 1918 1957 1902 1907 skein-generic 434 492 520 522 511 525 525 sha256-generic 167 183 187 188 188 187 188 sha512-generic 186 216 222 221 225 224 224 blake3-generic 153 152 154 153 151 153 153 blake3-sse2 391 1170 1366 1406 1428 1426 1414 blake3-sse41 352 1049 1212 1174 1262 1258 1259 Output on Debian 5.10.0-11-arm64 system: (Pi400) implementation 1k 4k 16k 64k 256k 1m 4m edonr-generic 487 603 629 639 643 641 641 skein-generic 271 299 303 308 309 309 307 sha256-generic 117 127 128 130 130 129 130 sha512-generic 145 165 170 172 173 174 175 blake3-generic 81 29 71 89 89 89 89 blake3-sse2 112 323 368 379 380 371 374 blake3-sse41 101 315 357 368 369 364 360 Structurally, the new code is mainly split into these parts: - 1x cross platform generic c variant: blake3_generic.c - 4x assembly for X86-64 (SSE2, SSE4.1, AVX2, AVX512) - 2x assembly for ARMv8 (NEON converted from SSE2) - 2x assembly for PPC64-LE (POWER8 converted from SSE2) - one file for switching between the implementations Note the PPC64 assembly requires the VSX instruction set and the kfpu_begin() / kfpu_end() calls on PowerPC were updated accordingly. Reviewed-by: Felix Dörre <felix@dogcraft.de> Reviewed-by: Ahelenia Ziemiańska <nabijaczleweli@nabijaczleweli.xyz> Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov> Signed-off-by: Tino Reichardt <milky-zfs@mcmilk.de> Co-authored-by: Rich Ercolani <rincebrain@gmail.com> Closes #10058 Closes #12918
2022-06-09 01:55:57 +03:00
void
ztest_blake3(ztest_ds_t *zd, uint64_t id)
{
(void) zd, (void) id;
hrtime_t end = gethrtime() + NANOSEC;
zio_cksum_salt_t salt;
void *salt_ptr = &salt.zcs_bytes;
struct abd *abd_data, *abd_meta;
void *buf, *templ;
int i, *ptr;
uint32_t size;
BLAKE3_CTX ctx;
const zfs_impl_t *blake3 = zfs_impl_get_ops("blake3");
Introduce BLAKE3 checksums as an OpenZFS feature This commit adds BLAKE3 checksums to OpenZFS, it has similar performance to Edon-R, but without the caveats around the latter. Homepage of BLAKE3: https://github.com/BLAKE3-team/BLAKE3 Wikipedia: https://en.wikipedia.org/wiki/BLAKE_(hash_function)#BLAKE3 Short description of Wikipedia: BLAKE3 is a cryptographic hash function based on Bao and BLAKE2, created by Jack O'Connor, Jean-Philippe Aumasson, Samuel Neves, and Zooko Wilcox-O'Hearn. It was announced on January 9, 2020, at Real World Crypto. BLAKE3 is a single algorithm with many desirable features (parallelism, XOF, KDF, PRF and MAC), in contrast to BLAKE and BLAKE2, which are algorithm families with multiple variants. BLAKE3 has a binary tree structure, so it supports a practically unlimited degree of parallelism (both SIMD and multithreading) given enough input. The official Rust and C implementations are dual-licensed as public domain (CC0) and the Apache License. Along with adding the BLAKE3 hash into the OpenZFS infrastructure a new benchmarking file called chksum_bench was introduced. When read it reports the speed of the available checksum functions. On Linux: cat /proc/spl/kstat/zfs/chksum_bench On FreeBSD: sysctl kstat.zfs.misc.chksum_bench This is an example output of an i3-1005G1 test system with Debian 11: implementation 1k 4k 16k 64k 256k 1m 4m edonr-generic 1196 1602 1761 1749 1762 1759 1751 skein-generic 546 591 608 615 619 612 616 sha256-generic 240 300 316 314 304 285 276 sha512-generic 353 441 467 476 472 467 426 blake3-generic 308 313 313 313 312 313 312 blake3-sse2 402 1289 1423 1446 1432 1458 1413 blake3-sse41 427 1470 1625 1704 1679 1607 1629 blake3-avx2 428 1920 3095 3343 3356 3318 3204 blake3-avx512 473 2687 4905 5836 5844 5643 5374 Output on Debian 5.10.0-10-amd64 system: (Ryzen 7 5800X) implementation 1k 4k 16k 64k 256k 1m 4m edonr-generic 1840 2458 2665 2719 2711 2723 2693 skein-generic 870 966 996 992 1003 1005 1009 sha256-generic 415 442 453 455 457 457 457 sha512-generic 608 690 711 718 719 720 721 blake3-generic 301 313 311 309 309 310 310 blake3-sse2 343 1865 2124 2188 2180 2181 2186 blake3-sse41 364 2091 2396 2509 2463 2482 2488 blake3-avx2 365 2590 4399 4971 4915 4802 4764 Output on Debian 5.10.0-9-powerpc64le system: (POWER 9) implementation 1k 4k 16k 64k 256k 1m 4m edonr-generic 1213 1703 1889 1918 1957 1902 1907 skein-generic 434 492 520 522 511 525 525 sha256-generic 167 183 187 188 188 187 188 sha512-generic 186 216 222 221 225 224 224 blake3-generic 153 152 154 153 151 153 153 blake3-sse2 391 1170 1366 1406 1428 1426 1414 blake3-sse41 352 1049 1212 1174 1262 1258 1259 Output on Debian 5.10.0-11-arm64 system: (Pi400) implementation 1k 4k 16k 64k 256k 1m 4m edonr-generic 487 603 629 639 643 641 641 skein-generic 271 299 303 308 309 309 307 sha256-generic 117 127 128 130 130 129 130 sha512-generic 145 165 170 172 173 174 175 blake3-generic 81 29 71 89 89 89 89 blake3-sse2 112 323 368 379 380 371 374 blake3-sse41 101 315 357 368 369 364 360 Structurally, the new code is mainly split into these parts: - 1x cross platform generic c variant: blake3_generic.c - 4x assembly for X86-64 (SSE2, SSE4.1, AVX2, AVX512) - 2x assembly for ARMv8 (NEON converted from SSE2) - 2x assembly for PPC64-LE (POWER8 converted from SSE2) - one file for switching between the implementations Note the PPC64 assembly requires the VSX instruction set and the kfpu_begin() / kfpu_end() calls on PowerPC were updated accordingly. Reviewed-by: Felix Dörre <felix@dogcraft.de> Reviewed-by: Ahelenia Ziemiańska <nabijaczleweli@nabijaczleweli.xyz> Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov> Signed-off-by: Tino Reichardt <milky-zfs@mcmilk.de> Co-authored-by: Rich Ercolani <rincebrain@gmail.com> Closes #10058 Closes #12918
2022-06-09 01:55:57 +03:00
size = ztest_random_blocksize();
buf = umem_alloc(size, UMEM_NOFAIL);
abd_data = abd_alloc(size, B_FALSE);
abd_meta = abd_alloc(size, B_TRUE);
for (i = 0, ptr = buf; i < size / sizeof (*ptr); i++, ptr++)
*ptr = ztest_random(UINT_MAX);
memset(salt_ptr, 'A', 32);
abd_copy_from_buf_off(abd_data, buf, 0, size);
abd_copy_from_buf_off(abd_meta, buf, 0, size);
while (gethrtime() <= end) {
int run_count = 100;
zio_cksum_t zc_ref1, zc_ref2;
zio_cksum_t zc_res1, zc_res2;
void *ref1 = &zc_ref1;
void *ref2 = &zc_ref2;
void *res1 = &zc_res1;
void *res2 = &zc_res2;
/* BLAKE3_KEY_LEN = 32 */
VERIFY0(blake3->setname("generic"));
Introduce BLAKE3 checksums as an OpenZFS feature This commit adds BLAKE3 checksums to OpenZFS, it has similar performance to Edon-R, but without the caveats around the latter. Homepage of BLAKE3: https://github.com/BLAKE3-team/BLAKE3 Wikipedia: https://en.wikipedia.org/wiki/BLAKE_(hash_function)#BLAKE3 Short description of Wikipedia: BLAKE3 is a cryptographic hash function based on Bao and BLAKE2, created by Jack O'Connor, Jean-Philippe Aumasson, Samuel Neves, and Zooko Wilcox-O'Hearn. It was announced on January 9, 2020, at Real World Crypto. BLAKE3 is a single algorithm with many desirable features (parallelism, XOF, KDF, PRF and MAC), in contrast to BLAKE and BLAKE2, which are algorithm families with multiple variants. BLAKE3 has a binary tree structure, so it supports a practically unlimited degree of parallelism (both SIMD and multithreading) given enough input. The official Rust and C implementations are dual-licensed as public domain (CC0) and the Apache License. Along with adding the BLAKE3 hash into the OpenZFS infrastructure a new benchmarking file called chksum_bench was introduced. When read it reports the speed of the available checksum functions. On Linux: cat /proc/spl/kstat/zfs/chksum_bench On FreeBSD: sysctl kstat.zfs.misc.chksum_bench This is an example output of an i3-1005G1 test system with Debian 11: implementation 1k 4k 16k 64k 256k 1m 4m edonr-generic 1196 1602 1761 1749 1762 1759 1751 skein-generic 546 591 608 615 619 612 616 sha256-generic 240 300 316 314 304 285 276 sha512-generic 353 441 467 476 472 467 426 blake3-generic 308 313 313 313 312 313 312 blake3-sse2 402 1289 1423 1446 1432 1458 1413 blake3-sse41 427 1470 1625 1704 1679 1607 1629 blake3-avx2 428 1920 3095 3343 3356 3318 3204 blake3-avx512 473 2687 4905 5836 5844 5643 5374 Output on Debian 5.10.0-10-amd64 system: (Ryzen 7 5800X) implementation 1k 4k 16k 64k 256k 1m 4m edonr-generic 1840 2458 2665 2719 2711 2723 2693 skein-generic 870 966 996 992 1003 1005 1009 sha256-generic 415 442 453 455 457 457 457 sha512-generic 608 690 711 718 719 720 721 blake3-generic 301 313 311 309 309 310 310 blake3-sse2 343 1865 2124 2188 2180 2181 2186 blake3-sse41 364 2091 2396 2509 2463 2482 2488 blake3-avx2 365 2590 4399 4971 4915 4802 4764 Output on Debian 5.10.0-9-powerpc64le system: (POWER 9) implementation 1k 4k 16k 64k 256k 1m 4m edonr-generic 1213 1703 1889 1918 1957 1902 1907 skein-generic 434 492 520 522 511 525 525 sha256-generic 167 183 187 188 188 187 188 sha512-generic 186 216 222 221 225 224 224 blake3-generic 153 152 154 153 151 153 153 blake3-sse2 391 1170 1366 1406 1428 1426 1414 blake3-sse41 352 1049 1212 1174 1262 1258 1259 Output on Debian 5.10.0-11-arm64 system: (Pi400) implementation 1k 4k 16k 64k 256k 1m 4m edonr-generic 487 603 629 639 643 641 641 skein-generic 271 299 303 308 309 309 307 sha256-generic 117 127 128 130 130 129 130 sha512-generic 145 165 170 172 173 174 175 blake3-generic 81 29 71 89 89 89 89 blake3-sse2 112 323 368 379 380 371 374 blake3-sse41 101 315 357 368 369 364 360 Structurally, the new code is mainly split into these parts: - 1x cross platform generic c variant: blake3_generic.c - 4x assembly for X86-64 (SSE2, SSE4.1, AVX2, AVX512) - 2x assembly for ARMv8 (NEON converted from SSE2) - 2x assembly for PPC64-LE (POWER8 converted from SSE2) - one file for switching between the implementations Note the PPC64 assembly requires the VSX instruction set and the kfpu_begin() / kfpu_end() calls on PowerPC were updated accordingly. Reviewed-by: Felix Dörre <felix@dogcraft.de> Reviewed-by: Ahelenia Ziemiańska <nabijaczleweli@nabijaczleweli.xyz> Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov> Signed-off-by: Tino Reichardt <milky-zfs@mcmilk.de> Co-authored-by: Rich Ercolani <rincebrain@gmail.com> Closes #10058 Closes #12918
2022-06-09 01:55:57 +03:00
templ = abd_checksum_blake3_tmpl_init(&salt);
Blake3_InitKeyed(&ctx, salt_ptr);
Blake3_Update(&ctx, buf, size);
Blake3_Final(&ctx, ref1);
zc_ref2 = zc_ref1;
ZIO_CHECKSUM_BSWAP(&zc_ref2);
abd_checksum_blake3_tmpl_free(templ);
VERIFY0(blake3->setname("cycle"));
Introduce BLAKE3 checksums as an OpenZFS feature This commit adds BLAKE3 checksums to OpenZFS, it has similar performance to Edon-R, but without the caveats around the latter. Homepage of BLAKE3: https://github.com/BLAKE3-team/BLAKE3 Wikipedia: https://en.wikipedia.org/wiki/BLAKE_(hash_function)#BLAKE3 Short description of Wikipedia: BLAKE3 is a cryptographic hash function based on Bao and BLAKE2, created by Jack O'Connor, Jean-Philippe Aumasson, Samuel Neves, and Zooko Wilcox-O'Hearn. It was announced on January 9, 2020, at Real World Crypto. BLAKE3 is a single algorithm with many desirable features (parallelism, XOF, KDF, PRF and MAC), in contrast to BLAKE and BLAKE2, which are algorithm families with multiple variants. BLAKE3 has a binary tree structure, so it supports a practically unlimited degree of parallelism (both SIMD and multithreading) given enough input. The official Rust and C implementations are dual-licensed as public domain (CC0) and the Apache License. Along with adding the BLAKE3 hash into the OpenZFS infrastructure a new benchmarking file called chksum_bench was introduced. When read it reports the speed of the available checksum functions. On Linux: cat /proc/spl/kstat/zfs/chksum_bench On FreeBSD: sysctl kstat.zfs.misc.chksum_bench This is an example output of an i3-1005G1 test system with Debian 11: implementation 1k 4k 16k 64k 256k 1m 4m edonr-generic 1196 1602 1761 1749 1762 1759 1751 skein-generic 546 591 608 615 619 612 616 sha256-generic 240 300 316 314 304 285 276 sha512-generic 353 441 467 476 472 467 426 blake3-generic 308 313 313 313 312 313 312 blake3-sse2 402 1289 1423 1446 1432 1458 1413 blake3-sse41 427 1470 1625 1704 1679 1607 1629 blake3-avx2 428 1920 3095 3343 3356 3318 3204 blake3-avx512 473 2687 4905 5836 5844 5643 5374 Output on Debian 5.10.0-10-amd64 system: (Ryzen 7 5800X) implementation 1k 4k 16k 64k 256k 1m 4m edonr-generic 1840 2458 2665 2719 2711 2723 2693 skein-generic 870 966 996 992 1003 1005 1009 sha256-generic 415 442 453 455 457 457 457 sha512-generic 608 690 711 718 719 720 721 blake3-generic 301 313 311 309 309 310 310 blake3-sse2 343 1865 2124 2188 2180 2181 2186 blake3-sse41 364 2091 2396 2509 2463 2482 2488 blake3-avx2 365 2590 4399 4971 4915 4802 4764 Output on Debian 5.10.0-9-powerpc64le system: (POWER 9) implementation 1k 4k 16k 64k 256k 1m 4m edonr-generic 1213 1703 1889 1918 1957 1902 1907 skein-generic 434 492 520 522 511 525 525 sha256-generic 167 183 187 188 188 187 188 sha512-generic 186 216 222 221 225 224 224 blake3-generic 153 152 154 153 151 153 153 blake3-sse2 391 1170 1366 1406 1428 1426 1414 blake3-sse41 352 1049 1212 1174 1262 1258 1259 Output on Debian 5.10.0-11-arm64 system: (Pi400) implementation 1k 4k 16k 64k 256k 1m 4m edonr-generic 487 603 629 639 643 641 641 skein-generic 271 299 303 308 309 309 307 sha256-generic 117 127 128 130 130 129 130 sha512-generic 145 165 170 172 173 174 175 blake3-generic 81 29 71 89 89 89 89 blake3-sse2 112 323 368 379 380 371 374 blake3-sse41 101 315 357 368 369 364 360 Structurally, the new code is mainly split into these parts: - 1x cross platform generic c variant: blake3_generic.c - 4x assembly for X86-64 (SSE2, SSE4.1, AVX2, AVX512) - 2x assembly for ARMv8 (NEON converted from SSE2) - 2x assembly for PPC64-LE (POWER8 converted from SSE2) - one file for switching between the implementations Note the PPC64 assembly requires the VSX instruction set and the kfpu_begin() / kfpu_end() calls on PowerPC were updated accordingly. Reviewed-by: Felix Dörre <felix@dogcraft.de> Reviewed-by: Ahelenia Ziemiańska <nabijaczleweli@nabijaczleweli.xyz> Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov> Signed-off-by: Tino Reichardt <milky-zfs@mcmilk.de> Co-authored-by: Rich Ercolani <rincebrain@gmail.com> Closes #10058 Closes #12918
2022-06-09 01:55:57 +03:00
while (run_count-- > 0) {
/* Test current implementation */
Blake3_InitKeyed(&ctx, salt_ptr);
Blake3_Update(&ctx, buf, size);
Blake3_Final(&ctx, res1);
zc_res2 = zc_res1;
ZIO_CHECKSUM_BSWAP(&zc_res2);
VERIFY0(memcmp(ref1, res1, 32));
VERIFY0(memcmp(ref2, res2, 32));
/* Test ABD - data */
templ = abd_checksum_blake3_tmpl_init(&salt);
abd_checksum_blake3_native(abd_data, size,
templ, &zc_res1);
abd_checksum_blake3_byteswap(abd_data, size,
templ, &zc_res2);
VERIFY0(memcmp(ref1, res1, 32));
VERIFY0(memcmp(ref2, res2, 32));
/* Test ABD - metadata */
abd_checksum_blake3_native(abd_meta, size,
templ, &zc_res1);
abd_checksum_blake3_byteswap(abd_meta, size,
templ, &zc_res2);
abd_checksum_blake3_tmpl_free(templ);
VERIFY0(memcmp(ref1, res1, 32));
VERIFY0(memcmp(ref2, res2, 32));
}
}
abd_free(abd_data);
abd_free(abd_meta);
umem_free(buf, size);
}
void
ztest_fletcher(ztest_ds_t *zd, uint64_t id)
{
(void) zd, (void) id;
hrtime_t end = gethrtime() + NANOSEC;
while (gethrtime() <= end) {
int run_count = 100;
void *buf;
struct abd *abd_data, *abd_meta;
uint32_t size;
int *ptr;
int i;
zio_cksum_t zc_ref;
zio_cksum_t zc_ref_byteswap;
size = ztest_random_blocksize();
buf = umem_alloc(size, UMEM_NOFAIL);
abd_data = abd_alloc(size, B_FALSE);
abd_meta = abd_alloc(size, B_TRUE);
for (i = 0, ptr = buf; i < size / sizeof (*ptr); i++, ptr++)
*ptr = ztest_random(UINT_MAX);
abd_copy_from_buf_off(abd_data, buf, 0, size);
abd_copy_from_buf_off(abd_meta, buf, 0, size);
VERIFY0(fletcher_4_impl_set("scalar"));
OpenZFS 4185 - add new cryptographic checksums to ZFS: SHA-512, Skein, Edon-R Reviewed by: George Wilson <george.wilson@delphix.com> Reviewed by: Prakash Surya <prakash.surya@delphix.com> Reviewed by: Saso Kiselkov <saso.kiselkov@nexenta.com> Reviewed by: Richard Lowe <richlowe@richlowe.net> Approved by: Garrett D'Amore <garrett@damore.org> Ported by: Tony Hutter <hutter2@llnl.gov> OpenZFS-issue: https://www.illumos.org/issues/4185 OpenZFS-commit: https://github.com/openzfs/openzfs/commit/45818ee Porting Notes: This code is ported on top of the Illumos Crypto Framework code: https://github.com/zfsonlinux/zfs/pull/4329/commits/b5e030c8dbb9cd393d313571dee4756fbba8c22d The list of porting changes includes: - Copied module/icp/include/sha2/sha2.h directly from illumos - Removed from module/icp/algs/sha2/sha2.c: #pragma inline(SHA256Init, SHA384Init, SHA512Init) - Added 'ctx' to lib/libzfs/libzfs_sendrecv.c:zio_checksum_SHA256() since it now takes in an extra parameter. - Added CTASSERT() to assert.h from for module/zfs/edonr_zfs.c - Added skein & edonr to libicp/Makefile.am - Added sha512.S. It was generated from sha512-x86_64.pl in Illumos. - Updated ztest.c with new fletcher_4_*() args; used NULL for new CTX argument. - In icp/algs/edonr/edonr_byteorder.h, Removed the #if defined(__linux) section to not #include the non-existant endian.h. - In skein_test.c, renane NULL to 0 in "no test vector" array entries to get around a compiler warning. - Fixup test files: - Rename <sys/varargs.h> -> <varargs.h>, <strings.h> -> <string.h>, - Remove <note.h> and define NOTE() as NOP. - Define u_longlong_t - Rename "#!/usr/bin/ksh" -> "#!/bin/ksh -p" - Rename NULL to 0 in "no test vector" array entries to get around a compiler warning. - Remove "for isa in $($ISAINFO); do" stuff - Add/update Makefiles - Add some userspace headers like stdio.h/stdlib.h in places of sys/types.h. - EXPORT_SYMBOL *_Init/*_Update/*_Final... routines in ICP modules. - Update scripts/zfs2zol-patch.sed - include <sys/sha2.h> in sha2_impl.h - Add sha2.h to include/sys/Makefile.am - Add skein and edonr dirs to icp Makefile - Add new checksums to zpool_get.cfg - Move checksum switch block from zfs_secpolicy_setprop() to zfs_check_settable() - Fix -Wuninitialized error in edonr_byteorder.h on PPC - Fix stack frame size errors on ARM32 - Don't unroll loops in Skein on 32-bit to save stack space - Add memory barriers in sha2.c on 32-bit to save stack space - Add filetest_001_pos.ksh checksum sanity test - Add option to write psudorandom data in file_write utility
2016-06-16 01:47:05 +03:00
fletcher_4_native(buf, size, NULL, &zc_ref);
fletcher_4_byteswap(buf, size, NULL, &zc_ref_byteswap);
VERIFY0(fletcher_4_impl_set("cycle"));
while (run_count-- > 0) {
zio_cksum_t zc;
zio_cksum_t zc_byteswap;
OpenZFS 4185 - add new cryptographic checksums to ZFS: SHA-512, Skein, Edon-R Reviewed by: George Wilson <george.wilson@delphix.com> Reviewed by: Prakash Surya <prakash.surya@delphix.com> Reviewed by: Saso Kiselkov <saso.kiselkov@nexenta.com> Reviewed by: Richard Lowe <richlowe@richlowe.net> Approved by: Garrett D'Amore <garrett@damore.org> Ported by: Tony Hutter <hutter2@llnl.gov> OpenZFS-issue: https://www.illumos.org/issues/4185 OpenZFS-commit: https://github.com/openzfs/openzfs/commit/45818ee Porting Notes: This code is ported on top of the Illumos Crypto Framework code: https://github.com/zfsonlinux/zfs/pull/4329/commits/b5e030c8dbb9cd393d313571dee4756fbba8c22d The list of porting changes includes: - Copied module/icp/include/sha2/sha2.h directly from illumos - Removed from module/icp/algs/sha2/sha2.c: #pragma inline(SHA256Init, SHA384Init, SHA512Init) - Added 'ctx' to lib/libzfs/libzfs_sendrecv.c:zio_checksum_SHA256() since it now takes in an extra parameter. - Added CTASSERT() to assert.h from for module/zfs/edonr_zfs.c - Added skein & edonr to libicp/Makefile.am - Added sha512.S. It was generated from sha512-x86_64.pl in Illumos. - Updated ztest.c with new fletcher_4_*() args; used NULL for new CTX argument. - In icp/algs/edonr/edonr_byteorder.h, Removed the #if defined(__linux) section to not #include the non-existant endian.h. - In skein_test.c, renane NULL to 0 in "no test vector" array entries to get around a compiler warning. - Fixup test files: - Rename <sys/varargs.h> -> <varargs.h>, <strings.h> -> <string.h>, - Remove <note.h> and define NOTE() as NOP. - Define u_longlong_t - Rename "#!/usr/bin/ksh" -> "#!/bin/ksh -p" - Rename NULL to 0 in "no test vector" array entries to get around a compiler warning. - Remove "for isa in $($ISAINFO); do" stuff - Add/update Makefiles - Add some userspace headers like stdio.h/stdlib.h in places of sys/types.h. - EXPORT_SYMBOL *_Init/*_Update/*_Final... routines in ICP modules. - Update scripts/zfs2zol-patch.sed - include <sys/sha2.h> in sha2_impl.h - Add sha2.h to include/sys/Makefile.am - Add skein and edonr dirs to icp Makefile - Add new checksums to zpool_get.cfg - Move checksum switch block from zfs_secpolicy_setprop() to zfs_check_settable() - Fix -Wuninitialized error in edonr_byteorder.h on PPC - Fix stack frame size errors on ARM32 - Don't unroll loops in Skein on 32-bit to save stack space - Add memory barriers in sha2.c on 32-bit to save stack space - Add filetest_001_pos.ksh checksum sanity test - Add option to write psudorandom data in file_write utility
2016-06-16 01:47:05 +03:00
fletcher_4_byteswap(buf, size, NULL, &zc_byteswap);
fletcher_4_native(buf, size, NULL, &zc);
VERIFY0(memcmp(&zc, &zc_ref, sizeof (zc)));
VERIFY0(memcmp(&zc_byteswap, &zc_ref_byteswap,
sizeof (zc_byteswap)));
/* Test ABD - data */
abd_fletcher_4_byteswap(abd_data, size, NULL,
&zc_byteswap);
abd_fletcher_4_native(abd_data, size, NULL, &zc);
VERIFY0(memcmp(&zc, &zc_ref, sizeof (zc)));
VERIFY0(memcmp(&zc_byteswap, &zc_ref_byteswap,
sizeof (zc_byteswap)));
/* Test ABD - metadata */
abd_fletcher_4_byteswap(abd_meta, size, NULL,
&zc_byteswap);
abd_fletcher_4_native(abd_meta, size, NULL, &zc);
VERIFY0(memcmp(&zc, &zc_ref, sizeof (zc)));
VERIFY0(memcmp(&zc_byteswap, &zc_ref_byteswap,
sizeof (zc_byteswap)));
}
umem_free(buf, size);
abd_free(abd_data);
abd_free(abd_meta);
}
}
void
ztest_fletcher_incr(ztest_ds_t *zd, uint64_t id)
{
(void) zd, (void) id;
void *buf;
size_t size;
int *ptr;
int i;
zio_cksum_t zc_ref;
zio_cksum_t zc_ref_bswap;
hrtime_t end = gethrtime() + NANOSEC;
while (gethrtime() <= end) {
int run_count = 100;
size = ztest_random_blocksize();
buf = umem_alloc(size, UMEM_NOFAIL);
for (i = 0, ptr = buf; i < size / sizeof (*ptr); i++, ptr++)
*ptr = ztest_random(UINT_MAX);
VERIFY0(fletcher_4_impl_set("scalar"));
fletcher_4_native(buf, size, NULL, &zc_ref);
fletcher_4_byteswap(buf, size, NULL, &zc_ref_bswap);
VERIFY0(fletcher_4_impl_set("cycle"));
while (run_count-- > 0) {
zio_cksum_t zc;
zio_cksum_t zc_bswap;
size_t pos = 0;
ZIO_SET_CHECKSUM(&zc, 0, 0, 0, 0);
ZIO_SET_CHECKSUM(&zc_bswap, 0, 0, 0, 0);
while (pos < size) {
size_t inc = 64 * ztest_random(size / 67);
/* sometimes add few bytes to test non-simd */
if (ztest_random(100) < 10)
inc += P2ALIGN_TYPED(ztest_random(64),
sizeof (uint32_t), uint64_t);
if (inc > (size - pos))
inc = size - pos;
fletcher_4_incremental_native(buf + pos, inc,
&zc);
fletcher_4_incremental_byteswap(buf + pos, inc,
&zc_bswap);
pos += inc;
}
VERIFY3U(pos, ==, size);
VERIFY(ZIO_CHECKSUM_EQUAL(zc, zc_ref));
VERIFY(ZIO_CHECKSUM_EQUAL(zc_bswap, zc_ref_bswap));
/*
* verify if incremental on the whole buffer is
* equivalent to non-incremental version
*/
ZIO_SET_CHECKSUM(&zc, 0, 0, 0, 0);
ZIO_SET_CHECKSUM(&zc_bswap, 0, 0, 0, 0);
fletcher_4_incremental_native(buf, size, &zc);
fletcher_4_incremental_byteswap(buf, size, &zc_bswap);
VERIFY(ZIO_CHECKSUM_EQUAL(zc, zc_ref));
VERIFY(ZIO_CHECKSUM_EQUAL(zc_bswap, zc_ref_bswap));
}
umem_free(buf, size);
}
}
void
ztest_pool_prefetch_ddt(ztest_ds_t *zd, uint64_t id)
{
(void) zd, (void) id;
spa_t *spa;
(void) pthread_rwlock_rdlock(&ztest_name_lock);
VERIFY0(spa_open(ztest_opts.zo_pool, &spa, FTAG));
ddt_prefetch_all(spa);
spa_close(spa, FTAG);
(void) pthread_rwlock_unlock(&ztest_name_lock);
}
static int
ztest_set_global_vars(void)
{
for (size_t i = 0; i < ztest_opts.zo_gvars_count; i++) {
char *kv = ztest_opts.zo_gvars[i];
VERIFY3U(strlen(kv), <=, ZO_GVARS_MAX_ARGLEN);
VERIFY3U(strlen(kv), >, 0);
int err = set_global_var(kv);
if (ztest_opts.zo_verbose > 0) {
(void) printf("setting global var %s ... %s\n", kv,
err ? "failed" : "ok");
}
if (err != 0) {
(void) fprintf(stderr,
"failed to set global var '%s'\n", kv);
return (err);
}
}
return (0);
}
static char **
ztest_global_vars_to_zdb_args(void)
{
char **args = calloc(2*ztest_opts.zo_gvars_count + 1, sizeof (char *));
char **cur = args;
if (args == NULL)
return (NULL);
for (size_t i = 0; i < ztest_opts.zo_gvars_count; i++) {
*cur++ = (char *)"-o";
*cur++ = ztest_opts.zo_gvars[i];
}
ASSERT3P(cur, ==, &args[2*ztest_opts.zo_gvars_count]);
*cur = NULL;
return (args);
}
/* The end of strings is indicated by a NULL element */
static char *
join_strings(char **strings, const char *sep)
{
size_t totallen = 0;
for (char **sp = strings; *sp != NULL; sp++) {
totallen += strlen(*sp);
totallen += strlen(sep);
}
if (totallen > 0) {
ASSERT(totallen >= strlen(sep));
totallen -= strlen(sep);
}
size_t buflen = totallen + 1;
char *o = umem_alloc(buflen, UMEM_NOFAIL); /* trailing 0 byte */
o[0] = '\0';
for (char **sp = strings; *sp != NULL; sp++) {
size_t would;
would = strlcat(o, *sp, buflen);
VERIFY3U(would, <, buflen);
if (*(sp+1) == NULL) {
break;
}
would = strlcat(o, sep, buflen);
VERIFY3U(would, <, buflen);
}
ASSERT3S(strlen(o), ==, totallen);
return (o);
}
static int
ztest_check_path(char *path)
{
struct stat s;
/* return true on success */
return (!stat(path, &s));
}
static void
ztest_get_zdb_bin(char *bin, int len)
{
char *zdb_path;
/*
* Try to use $ZDB and in-tree zdb path. If not successful, just
* let popen to search through PATH.
*/
if ((zdb_path = getenv("ZDB"))) {
strlcpy(bin, zdb_path, len); /* In env */
if (!ztest_check_path(bin)) {
ztest_dump_core = 0;
fatal(B_TRUE, "invalid ZDB '%s'", bin);
}
return;
}
VERIFY3P(realpath(getexecname(), bin), !=, NULL);
if (strstr(bin, ".libs/ztest")) {
strstr(bin, ".libs/ztest")[0] = '\0'; /* In-tree */
strcat(bin, "zdb");
if (ztest_check_path(bin))
return;
}
strcpy(bin, "zdb");
}
OpenZFS 9102 - zfs should be able to initialize storage devices PROBLEM ======== The first access to a block incurs a performance penalty on some platforms (e.g. AWS's EBS, VMware VMDKs). Therefore we recommend that volumes are "thick provisioned", where supported by the platform (VMware). This can create a large delay in getting a new virtual machines up and running (or adding storage to an existing Engine). If the thick provision step is omitted, write performance will be suboptimal until all blocks on the LUN have been written. SOLUTION ========= This feature introduces a way to 'initialize' the disks at install or in the background to make sure we don't incur this first read penalty. When an entire LUN is added to ZFS, we make all space available immediately, and allow ZFS to find unallocated space and zero it out. This works with concurrent writes to arbitrary offsets, ensuring that we don't zero out something that has been (or is in the middle of being) written. This scheme can also be applied to existing pools (affecting only free regions on the vdev). Detailed design: - new subcommand:zpool initialize [-cs] <pool> [<vdev> ...] - start, suspend, or cancel initialization - Creates new open-context thread for each vdev - Thread iterates through all metaslabs in this vdev - Each metaslab: - select a metaslab - load the metaslab - mark the metaslab as being zeroed - walk all free ranges within that metaslab and translate them to ranges on the leaf vdev - issue a "zeroing" I/O on the leaf vdev that corresponds to a free range on the metaslab we're working on - continue until all free ranges for this metaslab have been "zeroed" - reset/unmark the metaslab being zeroed - if more metaslabs exist, then repeat above tasks. - if no more metaslabs, then we're done. - progress for the initialization is stored on-disk in the vdev’s leaf zap object. The following information is stored: - the last offset that has been initialized - the state of the initialization process (i.e. active, suspended, or canceled) - the start time for the initialization - progress is reported via the zpool status command and shows information for each of the vdevs that are initializing Porting notes: - Added zfs_initialize_value module parameter to set the pattern written by "zpool initialize". - Added zfs_vdev_{initializing,removal}_{min,max}_active module options. Authored by: George Wilson <george.wilson@delphix.com> Reviewed by: John Wren Kennedy <john.kennedy@delphix.com> Reviewed by: Matthew Ahrens <mahrens@delphix.com> Reviewed by: Pavel Zakharov <pavel.zakharov@delphix.com> Reviewed by: Prakash Surya <prakash.surya@delphix.com> Reviewed by: loli10K <ezomori.nozomu@gmail.com> Reviewed by: Brian Behlendorf <behlendorf1@llnl.gov> Approved by: Richard Lowe <richlowe@richlowe.net> Signed-off-by: Tim Chase <tim@chase2k.com> Ported-by: Tim Chase <tim@chase2k.com> OpenZFS-issue: https://www.illumos.org/issues/9102 OpenZFS-commit: https://github.com/openzfs/openzfs/commit/c3963210eb Closes #8230
2018-12-19 17:54:59 +03:00
static vdev_t *
ztest_random_concrete_vdev_leaf(vdev_t *vd)
{
if (vd == NULL)
return (NULL);
if (vd->vdev_children == 0)
return (vd);
vdev_t *eligible[vd->vdev_children];
int eligible_idx = 0, i;
for (i = 0; i < vd->vdev_children; i++) {
vdev_t *cvd = vd->vdev_child[i];
if (cvd->vdev_top->vdev_removing)
continue;
if (cvd->vdev_children > 0 ||
(vdev_is_concrete(cvd) && !cvd->vdev_detached)) {
eligible[eligible_idx++] = cvd;
}
}
VERIFY3S(eligible_idx, >, 0);
OpenZFS 9102 - zfs should be able to initialize storage devices PROBLEM ======== The first access to a block incurs a performance penalty on some platforms (e.g. AWS's EBS, VMware VMDKs). Therefore we recommend that volumes are "thick provisioned", where supported by the platform (VMware). This can create a large delay in getting a new virtual machines up and running (or adding storage to an existing Engine). If the thick provision step is omitted, write performance will be suboptimal until all blocks on the LUN have been written. SOLUTION ========= This feature introduces a way to 'initialize' the disks at install or in the background to make sure we don't incur this first read penalty. When an entire LUN is added to ZFS, we make all space available immediately, and allow ZFS to find unallocated space and zero it out. This works with concurrent writes to arbitrary offsets, ensuring that we don't zero out something that has been (or is in the middle of being) written. This scheme can also be applied to existing pools (affecting only free regions on the vdev). Detailed design: - new subcommand:zpool initialize [-cs] <pool> [<vdev> ...] - start, suspend, or cancel initialization - Creates new open-context thread for each vdev - Thread iterates through all metaslabs in this vdev - Each metaslab: - select a metaslab - load the metaslab - mark the metaslab as being zeroed - walk all free ranges within that metaslab and translate them to ranges on the leaf vdev - issue a "zeroing" I/O on the leaf vdev that corresponds to a free range on the metaslab we're working on - continue until all free ranges for this metaslab have been "zeroed" - reset/unmark the metaslab being zeroed - if more metaslabs exist, then repeat above tasks. - if no more metaslabs, then we're done. - progress for the initialization is stored on-disk in the vdev’s leaf zap object. The following information is stored: - the last offset that has been initialized - the state of the initialization process (i.e. active, suspended, or canceled) - the start time for the initialization - progress is reported via the zpool status command and shows information for each of the vdevs that are initializing Porting notes: - Added zfs_initialize_value module parameter to set the pattern written by "zpool initialize". - Added zfs_vdev_{initializing,removal}_{min,max}_active module options. Authored by: George Wilson <george.wilson@delphix.com> Reviewed by: John Wren Kennedy <john.kennedy@delphix.com> Reviewed by: Matthew Ahrens <mahrens@delphix.com> Reviewed by: Pavel Zakharov <pavel.zakharov@delphix.com> Reviewed by: Prakash Surya <prakash.surya@delphix.com> Reviewed by: loli10K <ezomori.nozomu@gmail.com> Reviewed by: Brian Behlendorf <behlendorf1@llnl.gov> Approved by: Richard Lowe <richlowe@richlowe.net> Signed-off-by: Tim Chase <tim@chase2k.com> Ported-by: Tim Chase <tim@chase2k.com> OpenZFS-issue: https://www.illumos.org/issues/9102 OpenZFS-commit: https://github.com/openzfs/openzfs/commit/c3963210eb Closes #8230
2018-12-19 17:54:59 +03:00
uint64_t child_no = ztest_random(eligible_idx);
return (ztest_random_concrete_vdev_leaf(eligible[child_no]));
}
void
ztest_initialize(ztest_ds_t *zd, uint64_t id)
{
(void) zd, (void) id;
OpenZFS 9102 - zfs should be able to initialize storage devices PROBLEM ======== The first access to a block incurs a performance penalty on some platforms (e.g. AWS's EBS, VMware VMDKs). Therefore we recommend that volumes are "thick provisioned", where supported by the platform (VMware). This can create a large delay in getting a new virtual machines up and running (or adding storage to an existing Engine). If the thick provision step is omitted, write performance will be suboptimal until all blocks on the LUN have been written. SOLUTION ========= This feature introduces a way to 'initialize' the disks at install or in the background to make sure we don't incur this first read penalty. When an entire LUN is added to ZFS, we make all space available immediately, and allow ZFS to find unallocated space and zero it out. This works with concurrent writes to arbitrary offsets, ensuring that we don't zero out something that has been (or is in the middle of being) written. This scheme can also be applied to existing pools (affecting only free regions on the vdev). Detailed design: - new subcommand:zpool initialize [-cs] <pool> [<vdev> ...] - start, suspend, or cancel initialization - Creates new open-context thread for each vdev - Thread iterates through all metaslabs in this vdev - Each metaslab: - select a metaslab - load the metaslab - mark the metaslab as being zeroed - walk all free ranges within that metaslab and translate them to ranges on the leaf vdev - issue a "zeroing" I/O on the leaf vdev that corresponds to a free range on the metaslab we're working on - continue until all free ranges for this metaslab have been "zeroed" - reset/unmark the metaslab being zeroed - if more metaslabs exist, then repeat above tasks. - if no more metaslabs, then we're done. - progress for the initialization is stored on-disk in the vdev’s leaf zap object. The following information is stored: - the last offset that has been initialized - the state of the initialization process (i.e. active, suspended, or canceled) - the start time for the initialization - progress is reported via the zpool status command and shows information for each of the vdevs that are initializing Porting notes: - Added zfs_initialize_value module parameter to set the pattern written by "zpool initialize". - Added zfs_vdev_{initializing,removal}_{min,max}_active module options. Authored by: George Wilson <george.wilson@delphix.com> Reviewed by: John Wren Kennedy <john.kennedy@delphix.com> Reviewed by: Matthew Ahrens <mahrens@delphix.com> Reviewed by: Pavel Zakharov <pavel.zakharov@delphix.com> Reviewed by: Prakash Surya <prakash.surya@delphix.com> Reviewed by: loli10K <ezomori.nozomu@gmail.com> Reviewed by: Brian Behlendorf <behlendorf1@llnl.gov> Approved by: Richard Lowe <richlowe@richlowe.net> Signed-off-by: Tim Chase <tim@chase2k.com> Ported-by: Tim Chase <tim@chase2k.com> OpenZFS-issue: https://www.illumos.org/issues/9102 OpenZFS-commit: https://github.com/openzfs/openzfs/commit/c3963210eb Closes #8230
2018-12-19 17:54:59 +03:00
spa_t *spa = ztest_spa;
int error = 0;
mutex_enter(&ztest_vdev_lock);
spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER);
/* Random leaf vdev */
vdev_t *rand_vd = ztest_random_concrete_vdev_leaf(spa->spa_root_vdev);
if (rand_vd == NULL) {
spa_config_exit(spa, SCL_VDEV, FTAG);
mutex_exit(&ztest_vdev_lock);
return;
}
/*
* The random vdev we've selected may change as soon as we
* drop the spa_config_lock. We create local copies of things
* we're interested in.
*/
uint64_t guid = rand_vd->vdev_guid;
char *path = strdup(rand_vd->vdev_path);
boolean_t active = rand_vd->vdev_initialize_thread != NULL;
zfs_dbgmsg("vd %px, guid %llu", rand_vd, (u_longlong_t)guid);
OpenZFS 9102 - zfs should be able to initialize storage devices PROBLEM ======== The first access to a block incurs a performance penalty on some platforms (e.g. AWS's EBS, VMware VMDKs). Therefore we recommend that volumes are "thick provisioned", where supported by the platform (VMware). This can create a large delay in getting a new virtual machines up and running (or adding storage to an existing Engine). If the thick provision step is omitted, write performance will be suboptimal until all blocks on the LUN have been written. SOLUTION ========= This feature introduces a way to 'initialize' the disks at install or in the background to make sure we don't incur this first read penalty. When an entire LUN is added to ZFS, we make all space available immediately, and allow ZFS to find unallocated space and zero it out. This works with concurrent writes to arbitrary offsets, ensuring that we don't zero out something that has been (or is in the middle of being) written. This scheme can also be applied to existing pools (affecting only free regions on the vdev). Detailed design: - new subcommand:zpool initialize [-cs] <pool> [<vdev> ...] - start, suspend, or cancel initialization - Creates new open-context thread for each vdev - Thread iterates through all metaslabs in this vdev - Each metaslab: - select a metaslab - load the metaslab - mark the metaslab as being zeroed - walk all free ranges within that metaslab and translate them to ranges on the leaf vdev - issue a "zeroing" I/O on the leaf vdev that corresponds to a free range on the metaslab we're working on - continue until all free ranges for this metaslab have been "zeroed" - reset/unmark the metaslab being zeroed - if more metaslabs exist, then repeat above tasks. - if no more metaslabs, then we're done. - progress for the initialization is stored on-disk in the vdev’s leaf zap object. The following information is stored: - the last offset that has been initialized - the state of the initialization process (i.e. active, suspended, or canceled) - the start time for the initialization - progress is reported via the zpool status command and shows information for each of the vdevs that are initializing Porting notes: - Added zfs_initialize_value module parameter to set the pattern written by "zpool initialize". - Added zfs_vdev_{initializing,removal}_{min,max}_active module options. Authored by: George Wilson <george.wilson@delphix.com> Reviewed by: John Wren Kennedy <john.kennedy@delphix.com> Reviewed by: Matthew Ahrens <mahrens@delphix.com> Reviewed by: Pavel Zakharov <pavel.zakharov@delphix.com> Reviewed by: Prakash Surya <prakash.surya@delphix.com> Reviewed by: loli10K <ezomori.nozomu@gmail.com> Reviewed by: Brian Behlendorf <behlendorf1@llnl.gov> Approved by: Richard Lowe <richlowe@richlowe.net> Signed-off-by: Tim Chase <tim@chase2k.com> Ported-by: Tim Chase <tim@chase2k.com> OpenZFS-issue: https://www.illumos.org/issues/9102 OpenZFS-commit: https://github.com/openzfs/openzfs/commit/c3963210eb Closes #8230
2018-12-19 17:54:59 +03:00
spa_config_exit(spa, SCL_VDEV, FTAG);
uint64_t cmd = ztest_random(POOL_INITIALIZE_FUNCS);
zfs initialize performance enhancements PROBLEM ======== When invoking "zpool initialize" on a pool the command will create a thread to initialize each disk. Unfortunately, it does this serially across many transaction groups which can result in commands taking a long time to return to the user and may appear hung. The same thing is true when trying to suspend/cancel the operation. SOLUTION ========= This change refactors the way we invoke the initialize interface to ensure we can start or stop the intialization in just a few transaction groups. When stopping or cancelling a vdev initialization perform it in two phases. First signal each vdev initialization thread that it should exit, then after all threads have been signaled wait for them to exit. On a pool with 40 leaf vdevs this reduces the vdev initialize stop/cancel time from ~10 minutes to under a second. The reason for this is spa_vdev_initialize() no longer needs to wait on multiple full TXGs per leaf vdev being stopped. This commit additionally adds some missing checks for the passed "initialize_vdevs" input nvlist. The contents of the user provided input "initialize_vdevs" nvlist must be validated to ensure all values are uint64s. This is done in zfs_ioc_pool_initialize() in order to keep all of these checks in a single location. Updated the innvl and outnvl comments to match the formatting used for all other new sytle ioctls. Reviewed by: Matt Ahrens <mahrens@delphix.com> Reviewed-by: loli10K <ezomori.nozomu@gmail.com> Reviewed-by: Tim Chase <tim@chase2k.com> Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov> Signed-off-by: George Wilson <george.wilson@delphix.com> Closes #8230
2018-12-19 19:20:39 +03:00
nvlist_t *vdev_guids = fnvlist_alloc();
nvlist_t *vdev_errlist = fnvlist_alloc();
fnvlist_add_uint64(vdev_guids, path, guid);
error = spa_vdev_initialize(spa, vdev_guids, cmd, vdev_errlist);
fnvlist_free(vdev_guids);
fnvlist_free(vdev_errlist);
OpenZFS 9102 - zfs should be able to initialize storage devices PROBLEM ======== The first access to a block incurs a performance penalty on some platforms (e.g. AWS's EBS, VMware VMDKs). Therefore we recommend that volumes are "thick provisioned", where supported by the platform (VMware). This can create a large delay in getting a new virtual machines up and running (or adding storage to an existing Engine). If the thick provision step is omitted, write performance will be suboptimal until all blocks on the LUN have been written. SOLUTION ========= This feature introduces a way to 'initialize' the disks at install or in the background to make sure we don't incur this first read penalty. When an entire LUN is added to ZFS, we make all space available immediately, and allow ZFS to find unallocated space and zero it out. This works with concurrent writes to arbitrary offsets, ensuring that we don't zero out something that has been (or is in the middle of being) written. This scheme can also be applied to existing pools (affecting only free regions on the vdev). Detailed design: - new subcommand:zpool initialize [-cs] <pool> [<vdev> ...] - start, suspend, or cancel initialization - Creates new open-context thread for each vdev - Thread iterates through all metaslabs in this vdev - Each metaslab: - select a metaslab - load the metaslab - mark the metaslab as being zeroed - walk all free ranges within that metaslab and translate them to ranges on the leaf vdev - issue a "zeroing" I/O on the leaf vdev that corresponds to a free range on the metaslab we're working on - continue until all free ranges for this metaslab have been "zeroed" - reset/unmark the metaslab being zeroed - if more metaslabs exist, then repeat above tasks. - if no more metaslabs, then we're done. - progress for the initialization is stored on-disk in the vdev’s leaf zap object. The following information is stored: - the last offset that has been initialized - the state of the initialization process (i.e. active, suspended, or canceled) - the start time for the initialization - progress is reported via the zpool status command and shows information for each of the vdevs that are initializing Porting notes: - Added zfs_initialize_value module parameter to set the pattern written by "zpool initialize". - Added zfs_vdev_{initializing,removal}_{min,max}_active module options. Authored by: George Wilson <george.wilson@delphix.com> Reviewed by: John Wren Kennedy <john.kennedy@delphix.com> Reviewed by: Matthew Ahrens <mahrens@delphix.com> Reviewed by: Pavel Zakharov <pavel.zakharov@delphix.com> Reviewed by: Prakash Surya <prakash.surya@delphix.com> Reviewed by: loli10K <ezomori.nozomu@gmail.com> Reviewed by: Brian Behlendorf <behlendorf1@llnl.gov> Approved by: Richard Lowe <richlowe@richlowe.net> Signed-off-by: Tim Chase <tim@chase2k.com> Ported-by: Tim Chase <tim@chase2k.com> OpenZFS-issue: https://www.illumos.org/issues/9102 OpenZFS-commit: https://github.com/openzfs/openzfs/commit/c3963210eb Closes #8230
2018-12-19 17:54:59 +03:00
switch (cmd) {
case POOL_INITIALIZE_CANCEL:
if (ztest_opts.zo_verbose >= 4) {
(void) printf("Cancel initialize %s", path);
if (!active)
(void) printf(" failed (no initialize active)");
(void) printf("\n");
}
break;
Add TRIM support UNMAP/TRIM support is a frequently-requested feature to help prevent performance from degrading on SSDs and on various other SAN-like storage back-ends. By issuing UNMAP/TRIM commands for sectors which are no longer allocated the underlying device can often more efficiently manage itself. This TRIM implementation is modeled on the `zpool initialize` feature which writes a pattern to all unallocated space in the pool. The new `zpool trim` command uses the same vdev_xlate() code to calculate what sectors are unallocated, the same per- vdev TRIM thread model and locking, and the same basic CLI for a consistent user experience. The core difference is that instead of writing a pattern it will issue UNMAP/TRIM commands for those extents. The zio pipeline was updated to accommodate this by adding a new ZIO_TYPE_TRIM type and associated spa taskq. This new type makes is straight forward to add the platform specific TRIM/UNMAP calls to vdev_disk.c and vdev_file.c. These new ZIO_TYPE_TRIM zios are handled largely the same way as ZIO_TYPE_READs or ZIO_TYPE_WRITEs. This makes it possible to largely avoid changing the pipieline, one exception is that TRIM zio's may exceed the 16M block size limit since they contain no data. In addition to the manual `zpool trim` command, a background automatic TRIM was added and is controlled by the 'autotrim' property. It relies on the exact same infrastructure as the manual TRIM. However, instead of relying on the extents in a metaslab's ms_allocatable range tree, a ms_trim tree is kept per metaslab. When 'autotrim=on', ranges added back to the ms_allocatable tree are also added to the ms_free tree. The ms_free tree is then periodically consumed by an autotrim thread which systematically walks a top level vdev's metaslabs. Since the automatic TRIM will skip ranges it considers too small there is value in occasionally running a full `zpool trim`. This may occur when the freed blocks are small and not enough time was allowed to aggregate them. An automatic TRIM and a manual `zpool trim` may be run concurrently, in which case the automatic TRIM will yield to the manual TRIM. Reviewed-by: Jorgen Lundman <lundman@lundman.net> Reviewed-by: Tim Chase <tim@chase2k.com> Reviewed-by: Matt Ahrens <mahrens@delphix.com> Reviewed-by: George Wilson <george.wilson@delphix.com> Reviewed-by: Serapheim Dimitropoulos <serapheim@delphix.com> Contributions-by: Saso Kiselkov <saso.kiselkov@nexenta.com> Contributions-by: Tim Chase <tim@chase2k.com> Contributions-by: Chunwei Chen <tuxoko@gmail.com> Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov> Closes #8419 Closes #598
2019-03-29 19:13:20 +03:00
case POOL_INITIALIZE_START:
OpenZFS 9102 - zfs should be able to initialize storage devices PROBLEM ======== The first access to a block incurs a performance penalty on some platforms (e.g. AWS's EBS, VMware VMDKs). Therefore we recommend that volumes are "thick provisioned", where supported by the platform (VMware). This can create a large delay in getting a new virtual machines up and running (or adding storage to an existing Engine). If the thick provision step is omitted, write performance will be suboptimal until all blocks on the LUN have been written. SOLUTION ========= This feature introduces a way to 'initialize' the disks at install or in the background to make sure we don't incur this first read penalty. When an entire LUN is added to ZFS, we make all space available immediately, and allow ZFS to find unallocated space and zero it out. This works with concurrent writes to arbitrary offsets, ensuring that we don't zero out something that has been (or is in the middle of being) written. This scheme can also be applied to existing pools (affecting only free regions on the vdev). Detailed design: - new subcommand:zpool initialize [-cs] <pool> [<vdev> ...] - start, suspend, or cancel initialization - Creates new open-context thread for each vdev - Thread iterates through all metaslabs in this vdev - Each metaslab: - select a metaslab - load the metaslab - mark the metaslab as being zeroed - walk all free ranges within that metaslab and translate them to ranges on the leaf vdev - issue a "zeroing" I/O on the leaf vdev that corresponds to a free range on the metaslab we're working on - continue until all free ranges for this metaslab have been "zeroed" - reset/unmark the metaslab being zeroed - if more metaslabs exist, then repeat above tasks. - if no more metaslabs, then we're done. - progress for the initialization is stored on-disk in the vdev’s leaf zap object. The following information is stored: - the last offset that has been initialized - the state of the initialization process (i.e. active, suspended, or canceled) - the start time for the initialization - progress is reported via the zpool status command and shows information for each of the vdevs that are initializing Porting notes: - Added zfs_initialize_value module parameter to set the pattern written by "zpool initialize". - Added zfs_vdev_{initializing,removal}_{min,max}_active module options. Authored by: George Wilson <george.wilson@delphix.com> Reviewed by: John Wren Kennedy <john.kennedy@delphix.com> Reviewed by: Matthew Ahrens <mahrens@delphix.com> Reviewed by: Pavel Zakharov <pavel.zakharov@delphix.com> Reviewed by: Prakash Surya <prakash.surya@delphix.com> Reviewed by: loli10K <ezomori.nozomu@gmail.com> Reviewed by: Brian Behlendorf <behlendorf1@llnl.gov> Approved by: Richard Lowe <richlowe@richlowe.net> Signed-off-by: Tim Chase <tim@chase2k.com> Ported-by: Tim Chase <tim@chase2k.com> OpenZFS-issue: https://www.illumos.org/issues/9102 OpenZFS-commit: https://github.com/openzfs/openzfs/commit/c3963210eb Closes #8230
2018-12-19 17:54:59 +03:00
if (ztest_opts.zo_verbose >= 4) {
(void) printf("Start initialize %s", path);
if (active && error == 0)
(void) printf(" failed (already active)");
else if (error != 0)
(void) printf(" failed (error %d)", error);
(void) printf("\n");
}
break;
case POOL_INITIALIZE_SUSPEND:
if (ztest_opts.zo_verbose >= 4) {
(void) printf("Suspend initialize %s", path);
if (!active)
(void) printf(" failed (no initialize active)");
(void) printf("\n");
}
break;
}
free(path);
mutex_exit(&ztest_vdev_lock);
}
Add TRIM support UNMAP/TRIM support is a frequently-requested feature to help prevent performance from degrading on SSDs and on various other SAN-like storage back-ends. By issuing UNMAP/TRIM commands for sectors which are no longer allocated the underlying device can often more efficiently manage itself. This TRIM implementation is modeled on the `zpool initialize` feature which writes a pattern to all unallocated space in the pool. The new `zpool trim` command uses the same vdev_xlate() code to calculate what sectors are unallocated, the same per- vdev TRIM thread model and locking, and the same basic CLI for a consistent user experience. The core difference is that instead of writing a pattern it will issue UNMAP/TRIM commands for those extents. The zio pipeline was updated to accommodate this by adding a new ZIO_TYPE_TRIM type and associated spa taskq. This new type makes is straight forward to add the platform specific TRIM/UNMAP calls to vdev_disk.c and vdev_file.c. These new ZIO_TYPE_TRIM zios are handled largely the same way as ZIO_TYPE_READs or ZIO_TYPE_WRITEs. This makes it possible to largely avoid changing the pipieline, one exception is that TRIM zio's may exceed the 16M block size limit since they contain no data. In addition to the manual `zpool trim` command, a background automatic TRIM was added and is controlled by the 'autotrim' property. It relies on the exact same infrastructure as the manual TRIM. However, instead of relying on the extents in a metaslab's ms_allocatable range tree, a ms_trim tree is kept per metaslab. When 'autotrim=on', ranges added back to the ms_allocatable tree are also added to the ms_free tree. The ms_free tree is then periodically consumed by an autotrim thread which systematically walks a top level vdev's metaslabs. Since the automatic TRIM will skip ranges it considers too small there is value in occasionally running a full `zpool trim`. This may occur when the freed blocks are small and not enough time was allowed to aggregate them. An automatic TRIM and a manual `zpool trim` may be run concurrently, in which case the automatic TRIM will yield to the manual TRIM. Reviewed-by: Jorgen Lundman <lundman@lundman.net> Reviewed-by: Tim Chase <tim@chase2k.com> Reviewed-by: Matt Ahrens <mahrens@delphix.com> Reviewed-by: George Wilson <george.wilson@delphix.com> Reviewed-by: Serapheim Dimitropoulos <serapheim@delphix.com> Contributions-by: Saso Kiselkov <saso.kiselkov@nexenta.com> Contributions-by: Tim Chase <tim@chase2k.com> Contributions-by: Chunwei Chen <tuxoko@gmail.com> Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov> Closes #8419 Closes #598
2019-03-29 19:13:20 +03:00
void
ztest_trim(ztest_ds_t *zd, uint64_t id)
{
(void) zd, (void) id;
Add TRIM support UNMAP/TRIM support is a frequently-requested feature to help prevent performance from degrading on SSDs and on various other SAN-like storage back-ends. By issuing UNMAP/TRIM commands for sectors which are no longer allocated the underlying device can often more efficiently manage itself. This TRIM implementation is modeled on the `zpool initialize` feature which writes a pattern to all unallocated space in the pool. The new `zpool trim` command uses the same vdev_xlate() code to calculate what sectors are unallocated, the same per- vdev TRIM thread model and locking, and the same basic CLI for a consistent user experience. The core difference is that instead of writing a pattern it will issue UNMAP/TRIM commands for those extents. The zio pipeline was updated to accommodate this by adding a new ZIO_TYPE_TRIM type and associated spa taskq. This new type makes is straight forward to add the platform specific TRIM/UNMAP calls to vdev_disk.c and vdev_file.c. These new ZIO_TYPE_TRIM zios are handled largely the same way as ZIO_TYPE_READs or ZIO_TYPE_WRITEs. This makes it possible to largely avoid changing the pipieline, one exception is that TRIM zio's may exceed the 16M block size limit since they contain no data. In addition to the manual `zpool trim` command, a background automatic TRIM was added and is controlled by the 'autotrim' property. It relies on the exact same infrastructure as the manual TRIM. However, instead of relying on the extents in a metaslab's ms_allocatable range tree, a ms_trim tree is kept per metaslab. When 'autotrim=on', ranges added back to the ms_allocatable tree are also added to the ms_free tree. The ms_free tree is then periodically consumed by an autotrim thread which systematically walks a top level vdev's metaslabs. Since the automatic TRIM will skip ranges it considers too small there is value in occasionally running a full `zpool trim`. This may occur when the freed blocks are small and not enough time was allowed to aggregate them. An automatic TRIM and a manual `zpool trim` may be run concurrently, in which case the automatic TRIM will yield to the manual TRIM. Reviewed-by: Jorgen Lundman <lundman@lundman.net> Reviewed-by: Tim Chase <tim@chase2k.com> Reviewed-by: Matt Ahrens <mahrens@delphix.com> Reviewed-by: George Wilson <george.wilson@delphix.com> Reviewed-by: Serapheim Dimitropoulos <serapheim@delphix.com> Contributions-by: Saso Kiselkov <saso.kiselkov@nexenta.com> Contributions-by: Tim Chase <tim@chase2k.com> Contributions-by: Chunwei Chen <tuxoko@gmail.com> Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov> Closes #8419 Closes #598
2019-03-29 19:13:20 +03:00
spa_t *spa = ztest_spa;
int error = 0;
mutex_enter(&ztest_vdev_lock);
spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER);
/* Random leaf vdev */
vdev_t *rand_vd = ztest_random_concrete_vdev_leaf(spa->spa_root_vdev);
if (rand_vd == NULL) {
spa_config_exit(spa, SCL_VDEV, FTAG);
mutex_exit(&ztest_vdev_lock);
return;
}
/*
* The random vdev we've selected may change as soon as we
* drop the spa_config_lock. We create local copies of things
* we're interested in.
*/
uint64_t guid = rand_vd->vdev_guid;
char *path = strdup(rand_vd->vdev_path);
boolean_t active = rand_vd->vdev_trim_thread != NULL;
zfs_dbgmsg("vd %p, guid %llu", rand_vd, (u_longlong_t)guid);
Add TRIM support UNMAP/TRIM support is a frequently-requested feature to help prevent performance from degrading on SSDs and on various other SAN-like storage back-ends. By issuing UNMAP/TRIM commands for sectors which are no longer allocated the underlying device can often more efficiently manage itself. This TRIM implementation is modeled on the `zpool initialize` feature which writes a pattern to all unallocated space in the pool. The new `zpool trim` command uses the same vdev_xlate() code to calculate what sectors are unallocated, the same per- vdev TRIM thread model and locking, and the same basic CLI for a consistent user experience. The core difference is that instead of writing a pattern it will issue UNMAP/TRIM commands for those extents. The zio pipeline was updated to accommodate this by adding a new ZIO_TYPE_TRIM type and associated spa taskq. This new type makes is straight forward to add the platform specific TRIM/UNMAP calls to vdev_disk.c and vdev_file.c. These new ZIO_TYPE_TRIM zios are handled largely the same way as ZIO_TYPE_READs or ZIO_TYPE_WRITEs. This makes it possible to largely avoid changing the pipieline, one exception is that TRIM zio's may exceed the 16M block size limit since they contain no data. In addition to the manual `zpool trim` command, a background automatic TRIM was added and is controlled by the 'autotrim' property. It relies on the exact same infrastructure as the manual TRIM. However, instead of relying on the extents in a metaslab's ms_allocatable range tree, a ms_trim tree is kept per metaslab. When 'autotrim=on', ranges added back to the ms_allocatable tree are also added to the ms_free tree. The ms_free tree is then periodically consumed by an autotrim thread which systematically walks a top level vdev's metaslabs. Since the automatic TRIM will skip ranges it considers too small there is value in occasionally running a full `zpool trim`. This may occur when the freed blocks are small and not enough time was allowed to aggregate them. An automatic TRIM and a manual `zpool trim` may be run concurrently, in which case the automatic TRIM will yield to the manual TRIM. Reviewed-by: Jorgen Lundman <lundman@lundman.net> Reviewed-by: Tim Chase <tim@chase2k.com> Reviewed-by: Matt Ahrens <mahrens@delphix.com> Reviewed-by: George Wilson <george.wilson@delphix.com> Reviewed-by: Serapheim Dimitropoulos <serapheim@delphix.com> Contributions-by: Saso Kiselkov <saso.kiselkov@nexenta.com> Contributions-by: Tim Chase <tim@chase2k.com> Contributions-by: Chunwei Chen <tuxoko@gmail.com> Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov> Closes #8419 Closes #598
2019-03-29 19:13:20 +03:00
spa_config_exit(spa, SCL_VDEV, FTAG);
uint64_t cmd = ztest_random(POOL_TRIM_FUNCS);
uint64_t rate = 1 << ztest_random(30);
boolean_t partial = (ztest_random(5) > 0);
boolean_t secure = (ztest_random(5) > 0);
nvlist_t *vdev_guids = fnvlist_alloc();
nvlist_t *vdev_errlist = fnvlist_alloc();
fnvlist_add_uint64(vdev_guids, path, guid);
error = spa_vdev_trim(spa, vdev_guids, cmd, rate, partial,
secure, vdev_errlist);
fnvlist_free(vdev_guids);
fnvlist_free(vdev_errlist);
switch (cmd) {
case POOL_TRIM_CANCEL:
if (ztest_opts.zo_verbose >= 4) {
(void) printf("Cancel TRIM %s", path);
if (!active)
(void) printf(" failed (no TRIM active)");
(void) printf("\n");
}
break;
case POOL_TRIM_START:
if (ztest_opts.zo_verbose >= 4) {
(void) printf("Start TRIM %s", path);
if (active && error == 0)
(void) printf(" failed (already active)");
else if (error != 0)
(void) printf(" failed (error %d)", error);
(void) printf("\n");
}
break;
case POOL_TRIM_SUSPEND:
if (ztest_opts.zo_verbose >= 4) {
(void) printf("Suspend TRIM %s", path);
if (!active)
(void) printf(" failed (no TRIM active)");
(void) printf("\n");
}
break;
}
free(path);
mutex_exit(&ztest_vdev_lock);
}
void
ztest_ddt_prune(ztest_ds_t *zd, uint64_t id)
{
(void) zd, (void) id;
spa_t *spa = ztest_spa;
uint64_t pct = ztest_random(15) + 1;
(void) ddt_prune_unique_entries(spa, ZPOOL_DDT_PRUNE_PERCENTAGE, pct);
}
/*
* Verify pool integrity by running zdb.
*/
2008-11-20 23:01:55 +03:00
static void
ztest_run_zdb(uint64_t guid)
2008-11-20 23:01:55 +03:00
{
int status;
char *bin;
char *zdb;
char *zbuf;
const int len = MAXPATHLEN + MAXNAMELEN + 20;
2008-11-20 23:01:55 +03:00
FILE *fp;
bin = umem_alloc(len, UMEM_NOFAIL);
zdb = umem_alloc(len, UMEM_NOFAIL);
zbuf = umem_alloc(1024, UMEM_NOFAIL);
2008-11-20 23:01:55 +03:00
ztest_get_zdb_bin(bin, len);
char **set_gvars_args = ztest_global_vars_to_zdb_args();
if (set_gvars_args == NULL) {
fatal(B_FALSE, "Failed to allocate memory in "
"ztest_global_vars_to_zdb_args(). Cannot run zdb.\n");
}
char *set_gvars_args_joined = join_strings(set_gvars_args, " ");
free(set_gvars_args);
size_t would = snprintf(zdb, len,
"%s -bcc%s%s -G -d -Y -e -y %s -p %s %"PRIu64,
bin,
ztest_opts.zo_verbose >= 3 ? "s" : "",
ztest_opts.zo_verbose >= 4 ? "v" : "",
set_gvars_args_joined,
ztest_opts.zo_dir,
guid);
ASSERT3U(would, <, len);
umem_free(set_gvars_args_joined, strlen(set_gvars_args_joined) + 1);
2008-11-20 23:01:55 +03:00
if (ztest_opts.zo_verbose >= 5)
(void) printf("Executing %s\n", zdb);
2008-11-20 23:01:55 +03:00
fp = popen(zdb, "r");
while (fgets(zbuf, 1024, fp) != NULL)
if (ztest_opts.zo_verbose >= 3)
2008-11-20 23:01:55 +03:00
(void) printf("%s", zbuf);
status = pclose(fp);
if (status == 0)
goto out;
2008-11-20 23:01:55 +03:00
ztest_dump_core = 0;
if (WIFEXITED(status))
fatal(B_FALSE, "'%s' exit code %d", zdb, WEXITSTATUS(status));
2008-11-20 23:01:55 +03:00
else
fatal(B_FALSE, "'%s' died with signal %d",
zdb, WTERMSIG(status));
out:
umem_free(bin, len);
umem_free(zdb, len);
umem_free(zbuf, 1024);
2008-11-20 23:01:55 +03:00
}
static void
ztest_walk_pool_directory(const char *header)
2008-11-20 23:01:55 +03:00
{
spa_t *spa = NULL;
if (ztest_opts.zo_verbose >= 6)
(void) puts(header);
2008-11-20 23:01:55 +03:00
mutex_enter(&spa_namespace_lock);
while ((spa = spa_next(spa)) != NULL)
if (ztest_opts.zo_verbose >= 6)
2008-11-20 23:01:55 +03:00
(void) printf("\t%s\n", spa_name(spa));
mutex_exit(&spa_namespace_lock);
}
static void
ztest_spa_import_export(char *oldname, char *newname)
{
2009-01-16 00:59:39 +03:00
nvlist_t *config, *newconfig;
2008-11-20 23:01:55 +03:00
uint64_t pool_guid;
spa_t *spa;
int error;
2008-11-20 23:01:55 +03:00
if (ztest_opts.zo_verbose >= 4) {
2008-11-20 23:01:55 +03:00
(void) printf("import/export: old = %s, new = %s\n",
oldname, newname);
}
/*
* Clean up from previous runs.
*/
(void) spa_destroy(newname);
/*
* Get the pool's configuration and guid.
*/
VERIFY0(spa_open(oldname, &spa, FTAG));
2008-11-20 23:01:55 +03:00
2009-01-16 00:59:39 +03:00
/*
* Kick off a scrub to tickle scrub/export races.
*/
if (ztest_random(2) == 0)
(void) spa_scan(spa, POOL_SCAN_SCRUB);
2009-01-16 00:59:39 +03:00
2008-11-20 23:01:55 +03:00
pool_guid = spa_guid(spa);
spa_close(spa, FTAG);
ztest_walk_pool_directory("pools before export");
/*
* Export it.
*/
VERIFY0(spa_export(oldname, &config, B_FALSE, B_FALSE));
2008-11-20 23:01:55 +03:00
ztest_walk_pool_directory("pools after export");
2009-01-16 00:59:39 +03:00
/*
* Try to import it.
*/
newconfig = spa_tryimport(config);
ASSERT3P(newconfig, !=, NULL);
fnvlist_free(newconfig);
2009-01-16 00:59:39 +03:00
2008-11-20 23:01:55 +03:00
/*
* Import it under the new name.
*/
error = spa_import(newname, config, NULL, 0);
if (error != 0) {
dump_nvlist(config, 0);
fatal(B_FALSE, "couldn't import pool %s as %s: error %u",
oldname, newname, error);
}
2008-11-20 23:01:55 +03:00
ztest_walk_pool_directory("pools after import");
/*
* Try to import it again -- should fail with EEXIST.
*/
VERIFY3U(EEXIST, ==, spa_import(newname, config, NULL, 0));
2008-11-20 23:01:55 +03:00
/*
* Try to import it under a different name -- should fail with EEXIST.
*/
VERIFY3U(EEXIST, ==, spa_import(oldname, config, NULL, 0));
2008-11-20 23:01:55 +03:00
/*
* Verify that the pool is no longer visible under the old name.
*/
VERIFY3U(ENOENT, ==, spa_open(oldname, &spa, FTAG));
2008-11-20 23:01:55 +03:00
/*
* Verify that we can open and close the pool using the new name.
*/
VERIFY0(spa_open(newname, &spa, FTAG));
ASSERT3U(pool_guid, ==, spa_guid(spa));
2008-11-20 23:01:55 +03:00
spa_close(spa, FTAG);
fnvlist_free(config);
2008-11-20 23:01:55 +03:00
}
2009-01-16 00:59:39 +03:00
static void
ztest_resume(spa_t *spa)
{
if (spa_suspended(spa) && ztest_opts.zo_verbose >= 6)
(void) printf("resuming from suspended state\n");
spa_vdev_state_enter(spa, SCL_NONE);
vdev_clear(spa, NULL);
(void) spa_vdev_state_exit(spa, NULL, 0);
(void) zio_resume(spa);
2009-01-16 00:59:39 +03:00
}
static __attribute__((noreturn)) void
2009-01-16 00:59:39 +03:00
ztest_resume_thread(void *arg)
2008-11-20 23:01:55 +03:00
{
spa_t *spa = arg;
2008-11-20 23:01:55 +03:00
/*
* Synthesize aged DDT entries for ddt prune testing
*/
ddt_prune_artificial_age = B_TRUE;
if (ztest_opts.zo_verbose >= 3)
ddt_dump_prune_histogram = B_TRUE;
2008-11-20 23:01:55 +03:00
while (!ztest_exiting) {
if (spa_suspended(spa))
ztest_resume(spa);
(void) poll(NULL, 0, 100);
OpenZFS 6950 - ARC should cache compressed data Authored by: George Wilson <george.wilson@delphix.com> Reviewed by: Prakash Surya <prakash.surya@delphix.com> Reviewed by: Dan Kimmel <dan.kimmel@delphix.com> Reviewed by: Matt Ahrens <mahrens@delphix.com> Reviewed by: Paul Dagnelie <pcd@delphix.com> Reviewed by: Tom Caputi <tcaputi@datto.com> Reviewed by: Brian Behlendorf <behlendorf1@llnl.gov> Ported by: David Quigley <david.quigley@intel.com> This review covers the reading and writing of compressed arc headers, sharing data between the arc_hdr_t and the arc_buf_t, and the implementation of a new dbuf cache to keep frequently access data uncompressed. I've added a new member to l1 arc hdr called b_pdata. The b_pdata always hangs off the arc_buf_hdr_t (if an L1 hdr is in use) and points to the physical block for that DVA. The physical block may or may not be compressed. If compressed arc is enabled and the block on-disk is compressed, then the b_pdata will match the block on-disk and remain compressed in memory. If the block on disk is not compressed, then neither will the b_pdata. Lastly, if compressed arc is disabled, then b_pdata will always be an uncompressed version of the on-disk block. Typically the arc will cache only the arc_buf_hdr_t and will aggressively evict any arc_buf_t's that are no longer referenced. This means that the arc will primarily have compressed blocks as the arc_buf_t's are considered overhead and are always uncompressed. When a consumer reads a block we first look to see if the arc_buf_hdr_t is cached. If the hdr is cached then we allocate a new arc_buf_t and decompress the b_pdata contents into the arc_buf_t's b_data. If the hdr already has a arc_buf_t, then we will allocate an additional arc_buf_t and bcopy the uncompressed contents from the first arc_buf_t to the new one. Writing to the compressed arc requires that we first discard the b_pdata since the physical block is about to be rewritten. The new data contents will be passed in via an arc_buf_t (uncompressed) and during the I/O pipeline stages we will copy the physical block contents to a newly allocated b_pdata. When an l2arc is inuse it will also take advantage of the b_pdata. Now the l2arc will always write the contents of b_pdata to the l2arc. This means that when compressed arc is enabled that the l2arc blocks are identical to those stored in the main data pool. This provides a significant advantage since we can leverage the bp's checksum when reading from the l2arc to determine if the contents are valid. If the compressed arc is disabled, then we must first transform the read block to look like the physical block in the main data pool before comparing the checksum and determining it's valid. OpenZFS-issue: https://www.illumos.org/issues/6950 OpenZFS-commit: https://github.com/openzfs/openzfs/commit/7fc10f0 Issue #5078
2016-06-02 07:04:53 +03:00
/*
* Periodically change the zfs_compressed_arc_enabled setting.
*/
if (ztest_random(10) == 0)
zfs_compressed_arc_enabled = ztest_random(2);
/*
* Periodically change the zfs_abd_scatter_enabled setting.
*/
if (ztest_random(10) == 0)
zfs_abd_scatter_enabled = ztest_random(2);
2008-11-20 23:01:55 +03:00
}
thread_exit();
}
static __attribute__((noreturn)) void
Extend deadman logic The intent of this patch is extend the existing deadman code such that it's flexible enough to be used by both ztest and on production systems. The proposed changes include: * Added a new `zfs_deadman_failmode` module option which is used to dynamically control the behavior of the deadman. It's loosely modeled after, but independant from, the pool failmode property. It can be set to wait, continue, or panic. * wait - Wait for the "hung" I/O (default) * continue - Attempt to recover from a "hung" I/O * panic - Panic the system * Added a new `zfs_deadman_ziotime_ms` module option which is analogous to `zfs_deadman_synctime_ms` except instead of applying to a pool TXG sync it applies to zio_wait(). A default value of 300s is used to define a "hung" zio. * The ztest deadman thread has been re-enabled by default, aligned with the upstream OpenZFS code, and then extended to terminate the process when it takes significantly longer to complete than expected. * The -G option was added to ztest to print the internal debug log when a fatal error is encountered. This same option was previously added to zdb in commit fa603f82. Update zloop.sh to unconditionally pass -G to obtain additional debugging. * The FM_EREPORT_ZFS_DELAY event which was previously posted when the deadman detect a "hung" pool has been replaced by a new dedicated FM_EREPORT_ZFS_DEADMAN event. * The proposed recovery logic attempts to restart a "hung" zio by calling zio_interrupt() on any outstanding leaf zios. We may want to further restrict this to zios in either the ZIO_STAGE_VDEV_IO_START or ZIO_STAGE_VDEV_IO_DONE stages. Calling zio_interrupt() is expected to only be useful for cases when an IO has been submitted to the physical device but for some reasonable the completion callback hasn't been called by the lower layers. This shouldn't be possible but has been observed and may be caused by kernel/driver bugs. * The 'zfs_deadman_synctime_ms' default value was reduced from 1000s to 600s. * Depending on how ztest fails there may be no cache file to move. This should not be considered fatal, collect the logs which are available and carry on. * Add deadman test cases for spa_deadman() and zio_wait(). * Increase default zfs_deadman_checktime_ms to 60s. Reviewed-by: Tim Chase <tim@chase2k.com> Reviewed by: Thomas Caputi <tcaputi@datto.com> Reviewed-by: Giuseppe Di Natale <dinatale2@llnl.gov> Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov> Closes #6999
2017-12-19 01:06:07 +03:00
ztest_deadman_thread(void *arg)
{
Extend deadman logic The intent of this patch is extend the existing deadman code such that it's flexible enough to be used by both ztest and on production systems. The proposed changes include: * Added a new `zfs_deadman_failmode` module option which is used to dynamically control the behavior of the deadman. It's loosely modeled after, but independant from, the pool failmode property. It can be set to wait, continue, or panic. * wait - Wait for the "hung" I/O (default) * continue - Attempt to recover from a "hung" I/O * panic - Panic the system * Added a new `zfs_deadman_ziotime_ms` module option which is analogous to `zfs_deadman_synctime_ms` except instead of applying to a pool TXG sync it applies to zio_wait(). A default value of 300s is used to define a "hung" zio. * The ztest deadman thread has been re-enabled by default, aligned with the upstream OpenZFS code, and then extended to terminate the process when it takes significantly longer to complete than expected. * The -G option was added to ztest to print the internal debug log when a fatal error is encountered. This same option was previously added to zdb in commit fa603f82. Update zloop.sh to unconditionally pass -G to obtain additional debugging. * The FM_EREPORT_ZFS_DELAY event which was previously posted when the deadman detect a "hung" pool has been replaced by a new dedicated FM_EREPORT_ZFS_DEADMAN event. * The proposed recovery logic attempts to restart a "hung" zio by calling zio_interrupt() on any outstanding leaf zios. We may want to further restrict this to zios in either the ZIO_STAGE_VDEV_IO_START or ZIO_STAGE_VDEV_IO_DONE stages. Calling zio_interrupt() is expected to only be useful for cases when an IO has been submitted to the physical device but for some reasonable the completion callback hasn't been called by the lower layers. This shouldn't be possible but has been observed and may be caused by kernel/driver bugs. * The 'zfs_deadman_synctime_ms' default value was reduced from 1000s to 600s. * Depending on how ztest fails there may be no cache file to move. This should not be considered fatal, collect the logs which are available and carry on. * Add deadman test cases for spa_deadman() and zio_wait(). * Increase default zfs_deadman_checktime_ms to 60s. Reviewed-by: Tim Chase <tim@chase2k.com> Reviewed by: Thomas Caputi <tcaputi@datto.com> Reviewed-by: Giuseppe Di Natale <dinatale2@llnl.gov> Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov> Closes #6999
2017-12-19 01:06:07 +03:00
ztest_shared_t *zs = arg;
spa_t *spa = ztest_spa;
hrtime_t delay, overdue, last_run = gethrtime();
Extend deadman logic The intent of this patch is extend the existing deadman code such that it's flexible enough to be used by both ztest and on production systems. The proposed changes include: * Added a new `zfs_deadman_failmode` module option which is used to dynamically control the behavior of the deadman. It's loosely modeled after, but independant from, the pool failmode property. It can be set to wait, continue, or panic. * wait - Wait for the "hung" I/O (default) * continue - Attempt to recover from a "hung" I/O * panic - Panic the system * Added a new `zfs_deadman_ziotime_ms` module option which is analogous to `zfs_deadman_synctime_ms` except instead of applying to a pool TXG sync it applies to zio_wait(). A default value of 300s is used to define a "hung" zio. * The ztest deadman thread has been re-enabled by default, aligned with the upstream OpenZFS code, and then extended to terminate the process when it takes significantly longer to complete than expected. * The -G option was added to ztest to print the internal debug log when a fatal error is encountered. This same option was previously added to zdb in commit fa603f82. Update zloop.sh to unconditionally pass -G to obtain additional debugging. * The FM_EREPORT_ZFS_DELAY event which was previously posted when the deadman detect a "hung" pool has been replaced by a new dedicated FM_EREPORT_ZFS_DEADMAN event. * The proposed recovery logic attempts to restart a "hung" zio by calling zio_interrupt() on any outstanding leaf zios. We may want to further restrict this to zios in either the ZIO_STAGE_VDEV_IO_START or ZIO_STAGE_VDEV_IO_DONE stages. Calling zio_interrupt() is expected to only be useful for cases when an IO has been submitted to the physical device but for some reasonable the completion callback hasn't been called by the lower layers. This shouldn't be possible but has been observed and may be caused by kernel/driver bugs. * The 'zfs_deadman_synctime_ms' default value was reduced from 1000s to 600s. * Depending on how ztest fails there may be no cache file to move. This should not be considered fatal, collect the logs which are available and carry on. * Add deadman test cases for spa_deadman() and zio_wait(). * Increase default zfs_deadman_checktime_ms to 60s. Reviewed-by: Tim Chase <tim@chase2k.com> Reviewed by: Thomas Caputi <tcaputi@datto.com> Reviewed-by: Giuseppe Di Natale <dinatale2@llnl.gov> Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov> Closes #6999
2017-12-19 01:06:07 +03:00
delay = (zs->zs_thread_stop - zs->zs_thread_start) +
MSEC2NSEC(zfs_deadman_synctime_ms);
Extend deadman logic The intent of this patch is extend the existing deadman code such that it's flexible enough to be used by both ztest and on production systems. The proposed changes include: * Added a new `zfs_deadman_failmode` module option which is used to dynamically control the behavior of the deadman. It's loosely modeled after, but independant from, the pool failmode property. It can be set to wait, continue, or panic. * wait - Wait for the "hung" I/O (default) * continue - Attempt to recover from a "hung" I/O * panic - Panic the system * Added a new `zfs_deadman_ziotime_ms` module option which is analogous to `zfs_deadman_synctime_ms` except instead of applying to a pool TXG sync it applies to zio_wait(). A default value of 300s is used to define a "hung" zio. * The ztest deadman thread has been re-enabled by default, aligned with the upstream OpenZFS code, and then extended to terminate the process when it takes significantly longer to complete than expected. * The -G option was added to ztest to print the internal debug log when a fatal error is encountered. This same option was previously added to zdb in commit fa603f82. Update zloop.sh to unconditionally pass -G to obtain additional debugging. * The FM_EREPORT_ZFS_DELAY event which was previously posted when the deadman detect a "hung" pool has been replaced by a new dedicated FM_EREPORT_ZFS_DEADMAN event. * The proposed recovery logic attempts to restart a "hung" zio by calling zio_interrupt() on any outstanding leaf zios. We may want to further restrict this to zios in either the ZIO_STAGE_VDEV_IO_START or ZIO_STAGE_VDEV_IO_DONE stages. Calling zio_interrupt() is expected to only be useful for cases when an IO has been submitted to the physical device but for some reasonable the completion callback hasn't been called by the lower layers. This shouldn't be possible but has been observed and may be caused by kernel/driver bugs. * The 'zfs_deadman_synctime_ms' default value was reduced from 1000s to 600s. * Depending on how ztest fails there may be no cache file to move. This should not be considered fatal, collect the logs which are available and carry on. * Add deadman test cases for spa_deadman() and zio_wait(). * Increase default zfs_deadman_checktime_ms to 60s. Reviewed-by: Tim Chase <tim@chase2k.com> Reviewed by: Thomas Caputi <tcaputi@datto.com> Reviewed-by: Giuseppe Di Natale <dinatale2@llnl.gov> Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov> Closes #6999
2017-12-19 01:06:07 +03:00
while (!ztest_exiting) {
/*
* Wait for the delay timer while checking occasionally
* if we should stop.
*/
if (gethrtime() < last_run + delay) {
(void) poll(NULL, 0, 1000);
continue;
}
Extend deadman logic The intent of this patch is extend the existing deadman code such that it's flexible enough to be used by both ztest and on production systems. The proposed changes include: * Added a new `zfs_deadman_failmode` module option which is used to dynamically control the behavior of the deadman. It's loosely modeled after, but independant from, the pool failmode property. It can be set to wait, continue, or panic. * wait - Wait for the "hung" I/O (default) * continue - Attempt to recover from a "hung" I/O * panic - Panic the system * Added a new `zfs_deadman_ziotime_ms` module option which is analogous to `zfs_deadman_synctime_ms` except instead of applying to a pool TXG sync it applies to zio_wait(). A default value of 300s is used to define a "hung" zio. * The ztest deadman thread has been re-enabled by default, aligned with the upstream OpenZFS code, and then extended to terminate the process when it takes significantly longer to complete than expected. * The -G option was added to ztest to print the internal debug log when a fatal error is encountered. This same option was previously added to zdb in commit fa603f82. Update zloop.sh to unconditionally pass -G to obtain additional debugging. * The FM_EREPORT_ZFS_DELAY event which was previously posted when the deadman detect a "hung" pool has been replaced by a new dedicated FM_EREPORT_ZFS_DEADMAN event. * The proposed recovery logic attempts to restart a "hung" zio by calling zio_interrupt() on any outstanding leaf zios. We may want to further restrict this to zios in either the ZIO_STAGE_VDEV_IO_START or ZIO_STAGE_VDEV_IO_DONE stages. Calling zio_interrupt() is expected to only be useful for cases when an IO has been submitted to the physical device but for some reasonable the completion callback hasn't been called by the lower layers. This shouldn't be possible but has been observed and may be caused by kernel/driver bugs. * The 'zfs_deadman_synctime_ms' default value was reduced from 1000s to 600s. * Depending on how ztest fails there may be no cache file to move. This should not be considered fatal, collect the logs which are available and carry on. * Add deadman test cases for spa_deadman() and zio_wait(). * Increase default zfs_deadman_checktime_ms to 60s. Reviewed-by: Tim Chase <tim@chase2k.com> Reviewed by: Thomas Caputi <tcaputi@datto.com> Reviewed-by: Giuseppe Di Natale <dinatale2@llnl.gov> Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov> Closes #6999
2017-12-19 01:06:07 +03:00
/*
* If the pool is suspended then fail immediately. Otherwise,
* check to see if the pool is making any progress. If
* vdev_deadman() discovers that there hasn't been any recent
* I/Os then it will end up aborting the tests.
*/
if (spa_suspended(spa) || spa->spa_root_vdev == NULL) {
fatal(B_FALSE,
Cleanup: 64-bit kernel module parameters should use fixed width types Various module parameters such as `zfs_arc_max` were originally `uint64_t` on OpenSolaris/Illumos, but were changed to `unsigned long` for Linux compatibility because Linux's kernel default module parameter implementation did not support 64-bit types on 32-bit platforms. This caused problems when porting OpenZFS to Windows because its LLP64 memory model made `unsigned long` a 32-bit type on 64-bit, which created the undesireable situation that parameters that should accept 64-bit values could not on 64-bit Windows. Upon inspection, it turns out that the Linux kernel module parameter interface is extensible, such that we are allowed to define our own types. Rather than maintaining the original type change via hacks to to continue shrinking module parameters on 32-bit Linux, we implement support for 64-bit module parameters on Linux. After doing a review of all 64-bit kernel parameters (found via the man page and also proposed changes by Andrew Innes), the kernel module parameters fell into a few groups: Parameters that were originally 64-bit on Illumos: * dbuf_cache_max_bytes * dbuf_metadata_cache_max_bytes * l2arc_feed_min_ms * l2arc_feed_secs * l2arc_headroom * l2arc_headroom_boost * l2arc_write_boost * l2arc_write_max * metaslab_aliquot * metaslab_force_ganging * zfetch_array_rd_sz * zfs_arc_max * zfs_arc_meta_limit * zfs_arc_meta_min * zfs_arc_min * zfs_async_block_max_blocks * zfs_condense_max_obsolete_bytes * zfs_condense_min_mapping_bytes * zfs_deadman_checktime_ms * zfs_deadman_synctime_ms * zfs_initialize_chunk_size * zfs_initialize_value * zfs_lua_max_instrlimit * zfs_lua_max_memlimit * zil_slog_bulk Parameters that were originally 32-bit on Illumos: * zfs_per_txg_dirty_frees_percent Parameters that were originally `ssize_t` on Illumos: * zfs_immediate_write_sz Note that `ssize_t` is `int32_t` on 32-bit and `int64_t` on 64-bit. It has been upgraded to 64-bit. Parameters that were `long`/`unsigned long` because of Linux/FreeBSD influence: * l2arc_rebuild_blocks_min_l2size * zfs_key_max_salt_uses * zfs_max_log_walking * zfs_max_logsm_summary_length * zfs_metaslab_max_size_cache_sec * zfs_min_metaslabs_to_flush * zfs_multihost_interval * zfs_unflushed_log_block_max * zfs_unflushed_log_block_min * zfs_unflushed_log_block_pct * zfs_unflushed_max_mem_amt * zfs_unflushed_max_mem_ppm New parameters that do not exist in Illumos: * l2arc_trim_ahead * vdev_file_logical_ashift * vdev_file_physical_ashift * zfs_arc_dnode_limit * zfs_arc_dnode_limit_percent * zfs_arc_dnode_reduce_percent * zfs_arc_meta_limit_percent * zfs_arc_sys_free * zfs_deadman_ziotime_ms * zfs_delete_blocks * zfs_history_output_max * zfs_livelist_max_entries * zfs_max_async_dedup_frees * zfs_max_nvlist_src_size * zfs_rebuild_max_segment * zfs_rebuild_vdev_limit * zfs_unflushed_log_txg_max * zfs_vdev_max_auto_ashift * zfs_vdev_min_auto_ashift * zfs_vnops_read_chunk_size * zvol_max_discard_blocks Rather than clutter the lists with commentary, the module parameters that need comments are repeated below. A few parameters were defined in Linux/FreeBSD specific code, where the use of ulong/long is not an issue for portability, so we leave them alone: * zfs_delete_blocks * zfs_key_max_salt_uses * zvol_max_discard_blocks The documentation for a few parameters was found to be incorrect: * zfs_deadman_checktime_ms - incorrectly documented as int * zfs_delete_blocks - not documented as Linux only * zfs_history_output_max - incorrectly documented as int * zfs_vnops_read_chunk_size - incorrectly documented as long * zvol_max_discard_blocks - incorrectly documented as ulong The documentation for these has been fixed, alongside the changes to document the switch to fixed width types. In addition, several kernel module parameters were percentages or held ashift values, so being 64-bit never made sense for them. They have been downgraded to 32-bit: * vdev_file_logical_ashift * vdev_file_physical_ashift * zfs_arc_dnode_limit_percent * zfs_arc_dnode_reduce_percent * zfs_arc_meta_limit_percent * zfs_per_txg_dirty_frees_percent * zfs_unflushed_log_block_pct * zfs_vdev_max_auto_ashift * zfs_vdev_min_auto_ashift Of special note are `zfs_vdev_max_auto_ashift` and `zfs_vdev_min_auto_ashift`, which were already defined as `uint64_t`, and passed to the kernel as `ulong`. This is inherently buggy on big endian 32-bit Linux, since the values would not be written to the correct locations. 32-bit FreeBSD was unaffected because its sysctl code correctly treated this as a `uint64_t`. Lastly, a code comment suggests that `zfs_arc_sys_free` is Linux-specific, but there is nothing to indicate to me that it is Linux-specific. Nothing was done about that. Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov> Reviewed-by: Jorgen Lundman <lundman@lundman.net> Reviewed-by: Ryan Moeller <ryan@iXsystems.com> Reviewed-by: Alexander Motin <mav@FreeBSD.org> Original-patch-by: Andrew Innes <andrew.c12@gmail.com> Original-patch-by: Jorgen Lundman <lundman@lundman.net> Signed-off-by: Richard Yao <richard.yao@alumni.stonybrook.edu> Closes #13984 Closes #14004
2022-10-03 22:06:54 +03:00
"aborting test after %llu seconds because "
Extend deadman logic The intent of this patch is extend the existing deadman code such that it's flexible enough to be used by both ztest and on production systems. The proposed changes include: * Added a new `zfs_deadman_failmode` module option which is used to dynamically control the behavior of the deadman. It's loosely modeled after, but independant from, the pool failmode property. It can be set to wait, continue, or panic. * wait - Wait for the "hung" I/O (default) * continue - Attempt to recover from a "hung" I/O * panic - Panic the system * Added a new `zfs_deadman_ziotime_ms` module option which is analogous to `zfs_deadman_synctime_ms` except instead of applying to a pool TXG sync it applies to zio_wait(). A default value of 300s is used to define a "hung" zio. * The ztest deadman thread has been re-enabled by default, aligned with the upstream OpenZFS code, and then extended to terminate the process when it takes significantly longer to complete than expected. * The -G option was added to ztest to print the internal debug log when a fatal error is encountered. This same option was previously added to zdb in commit fa603f82. Update zloop.sh to unconditionally pass -G to obtain additional debugging. * The FM_EREPORT_ZFS_DELAY event which was previously posted when the deadman detect a "hung" pool has been replaced by a new dedicated FM_EREPORT_ZFS_DEADMAN event. * The proposed recovery logic attempts to restart a "hung" zio by calling zio_interrupt() on any outstanding leaf zios. We may want to further restrict this to zios in either the ZIO_STAGE_VDEV_IO_START or ZIO_STAGE_VDEV_IO_DONE stages. Calling zio_interrupt() is expected to only be useful for cases when an IO has been submitted to the physical device but for some reasonable the completion callback hasn't been called by the lower layers. This shouldn't be possible but has been observed and may be caused by kernel/driver bugs. * The 'zfs_deadman_synctime_ms' default value was reduced from 1000s to 600s. * Depending on how ztest fails there may be no cache file to move. This should not be considered fatal, collect the logs which are available and carry on. * Add deadman test cases for spa_deadman() and zio_wait(). * Increase default zfs_deadman_checktime_ms to 60s. Reviewed-by: Tim Chase <tim@chase2k.com> Reviewed by: Thomas Caputi <tcaputi@datto.com> Reviewed-by: Giuseppe Di Natale <dinatale2@llnl.gov> Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov> Closes #6999
2017-12-19 01:06:07 +03:00
"pool has transitioned to a suspended state.",
Cleanup: 64-bit kernel module parameters should use fixed width types Various module parameters such as `zfs_arc_max` were originally `uint64_t` on OpenSolaris/Illumos, but were changed to `unsigned long` for Linux compatibility because Linux's kernel default module parameter implementation did not support 64-bit types on 32-bit platforms. This caused problems when porting OpenZFS to Windows because its LLP64 memory model made `unsigned long` a 32-bit type on 64-bit, which created the undesireable situation that parameters that should accept 64-bit values could not on 64-bit Windows. Upon inspection, it turns out that the Linux kernel module parameter interface is extensible, such that we are allowed to define our own types. Rather than maintaining the original type change via hacks to to continue shrinking module parameters on 32-bit Linux, we implement support for 64-bit module parameters on Linux. After doing a review of all 64-bit kernel parameters (found via the man page and also proposed changes by Andrew Innes), the kernel module parameters fell into a few groups: Parameters that were originally 64-bit on Illumos: * dbuf_cache_max_bytes * dbuf_metadata_cache_max_bytes * l2arc_feed_min_ms * l2arc_feed_secs * l2arc_headroom * l2arc_headroom_boost * l2arc_write_boost * l2arc_write_max * metaslab_aliquot * metaslab_force_ganging * zfetch_array_rd_sz * zfs_arc_max * zfs_arc_meta_limit * zfs_arc_meta_min * zfs_arc_min * zfs_async_block_max_blocks * zfs_condense_max_obsolete_bytes * zfs_condense_min_mapping_bytes * zfs_deadman_checktime_ms * zfs_deadman_synctime_ms * zfs_initialize_chunk_size * zfs_initialize_value * zfs_lua_max_instrlimit * zfs_lua_max_memlimit * zil_slog_bulk Parameters that were originally 32-bit on Illumos: * zfs_per_txg_dirty_frees_percent Parameters that were originally `ssize_t` on Illumos: * zfs_immediate_write_sz Note that `ssize_t` is `int32_t` on 32-bit and `int64_t` on 64-bit. It has been upgraded to 64-bit. Parameters that were `long`/`unsigned long` because of Linux/FreeBSD influence: * l2arc_rebuild_blocks_min_l2size * zfs_key_max_salt_uses * zfs_max_log_walking * zfs_max_logsm_summary_length * zfs_metaslab_max_size_cache_sec * zfs_min_metaslabs_to_flush * zfs_multihost_interval * zfs_unflushed_log_block_max * zfs_unflushed_log_block_min * zfs_unflushed_log_block_pct * zfs_unflushed_max_mem_amt * zfs_unflushed_max_mem_ppm New parameters that do not exist in Illumos: * l2arc_trim_ahead * vdev_file_logical_ashift * vdev_file_physical_ashift * zfs_arc_dnode_limit * zfs_arc_dnode_limit_percent * zfs_arc_dnode_reduce_percent * zfs_arc_meta_limit_percent * zfs_arc_sys_free * zfs_deadman_ziotime_ms * zfs_delete_blocks * zfs_history_output_max * zfs_livelist_max_entries * zfs_max_async_dedup_frees * zfs_max_nvlist_src_size * zfs_rebuild_max_segment * zfs_rebuild_vdev_limit * zfs_unflushed_log_txg_max * zfs_vdev_max_auto_ashift * zfs_vdev_min_auto_ashift * zfs_vnops_read_chunk_size * zvol_max_discard_blocks Rather than clutter the lists with commentary, the module parameters that need comments are repeated below. A few parameters were defined in Linux/FreeBSD specific code, where the use of ulong/long is not an issue for portability, so we leave them alone: * zfs_delete_blocks * zfs_key_max_salt_uses * zvol_max_discard_blocks The documentation for a few parameters was found to be incorrect: * zfs_deadman_checktime_ms - incorrectly documented as int * zfs_delete_blocks - not documented as Linux only * zfs_history_output_max - incorrectly documented as int * zfs_vnops_read_chunk_size - incorrectly documented as long * zvol_max_discard_blocks - incorrectly documented as ulong The documentation for these has been fixed, alongside the changes to document the switch to fixed width types. In addition, several kernel module parameters were percentages or held ashift values, so being 64-bit never made sense for them. They have been downgraded to 32-bit: * vdev_file_logical_ashift * vdev_file_physical_ashift * zfs_arc_dnode_limit_percent * zfs_arc_dnode_reduce_percent * zfs_arc_meta_limit_percent * zfs_per_txg_dirty_frees_percent * zfs_unflushed_log_block_pct * zfs_vdev_max_auto_ashift * zfs_vdev_min_auto_ashift Of special note are `zfs_vdev_max_auto_ashift` and `zfs_vdev_min_auto_ashift`, which were already defined as `uint64_t`, and passed to the kernel as `ulong`. This is inherently buggy on big endian 32-bit Linux, since the values would not be written to the correct locations. 32-bit FreeBSD was unaffected because its sysctl code correctly treated this as a `uint64_t`. Lastly, a code comment suggests that `zfs_arc_sys_free` is Linux-specific, but there is nothing to indicate to me that it is Linux-specific. Nothing was done about that. Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov> Reviewed-by: Jorgen Lundman <lundman@lundman.net> Reviewed-by: Ryan Moeller <ryan@iXsystems.com> Reviewed-by: Alexander Motin <mav@FreeBSD.org> Original-patch-by: Andrew Innes <andrew.c12@gmail.com> Original-patch-by: Jorgen Lundman <lundman@lundman.net> Signed-off-by: Richard Yao <richard.yao@alumni.stonybrook.edu> Closes #13984 Closes #14004
2022-10-03 22:06:54 +03:00
(u_longlong_t)zfs_deadman_synctime_ms / 1000);
Extend deadman logic The intent of this patch is extend the existing deadman code such that it's flexible enough to be used by both ztest and on production systems. The proposed changes include: * Added a new `zfs_deadman_failmode` module option which is used to dynamically control the behavior of the deadman. It's loosely modeled after, but independant from, the pool failmode property. It can be set to wait, continue, or panic. * wait - Wait for the "hung" I/O (default) * continue - Attempt to recover from a "hung" I/O * panic - Panic the system * Added a new `zfs_deadman_ziotime_ms` module option which is analogous to `zfs_deadman_synctime_ms` except instead of applying to a pool TXG sync it applies to zio_wait(). A default value of 300s is used to define a "hung" zio. * The ztest deadman thread has been re-enabled by default, aligned with the upstream OpenZFS code, and then extended to terminate the process when it takes significantly longer to complete than expected. * The -G option was added to ztest to print the internal debug log when a fatal error is encountered. This same option was previously added to zdb in commit fa603f82. Update zloop.sh to unconditionally pass -G to obtain additional debugging. * The FM_EREPORT_ZFS_DELAY event which was previously posted when the deadman detect a "hung" pool has been replaced by a new dedicated FM_EREPORT_ZFS_DEADMAN event. * The proposed recovery logic attempts to restart a "hung" zio by calling zio_interrupt() on any outstanding leaf zios. We may want to further restrict this to zios in either the ZIO_STAGE_VDEV_IO_START or ZIO_STAGE_VDEV_IO_DONE stages. Calling zio_interrupt() is expected to only be useful for cases when an IO has been submitted to the physical device but for some reasonable the completion callback hasn't been called by the lower layers. This shouldn't be possible but has been observed and may be caused by kernel/driver bugs. * The 'zfs_deadman_synctime_ms' default value was reduced from 1000s to 600s. * Depending on how ztest fails there may be no cache file to move. This should not be considered fatal, collect the logs which are available and carry on. * Add deadman test cases for spa_deadman() and zio_wait(). * Increase default zfs_deadman_checktime_ms to 60s. Reviewed-by: Tim Chase <tim@chase2k.com> Reviewed by: Thomas Caputi <tcaputi@datto.com> Reviewed-by: Giuseppe Di Natale <dinatale2@llnl.gov> Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov> Closes #6999
2017-12-19 01:06:07 +03:00
}
vdev_deadman(spa->spa_root_vdev, FTAG);
/*
* If the process doesn't complete within a grace period of
* zfs_deadman_synctime_ms over the expected finish time,
* then it may be hung and is terminated.
*/
overdue = zs->zs_proc_stop + MSEC2NSEC(zfs_deadman_synctime_ms);
if (gethrtime() > overdue) {
fatal(B_FALSE,
"aborting test after %llu seconds because "
"the process is overdue for termination.",
(gethrtime() - zs->zs_proc_start) / NANOSEC);
Extend deadman logic The intent of this patch is extend the existing deadman code such that it's flexible enough to be used by both ztest and on production systems. The proposed changes include: * Added a new `zfs_deadman_failmode` module option which is used to dynamically control the behavior of the deadman. It's loosely modeled after, but independant from, the pool failmode property. It can be set to wait, continue, or panic. * wait - Wait for the "hung" I/O (default) * continue - Attempt to recover from a "hung" I/O * panic - Panic the system * Added a new `zfs_deadman_ziotime_ms` module option which is analogous to `zfs_deadman_synctime_ms` except instead of applying to a pool TXG sync it applies to zio_wait(). A default value of 300s is used to define a "hung" zio. * The ztest deadman thread has been re-enabled by default, aligned with the upstream OpenZFS code, and then extended to terminate the process when it takes significantly longer to complete than expected. * The -G option was added to ztest to print the internal debug log when a fatal error is encountered. This same option was previously added to zdb in commit fa603f82. Update zloop.sh to unconditionally pass -G to obtain additional debugging. * The FM_EREPORT_ZFS_DELAY event which was previously posted when the deadman detect a "hung" pool has been replaced by a new dedicated FM_EREPORT_ZFS_DEADMAN event. * The proposed recovery logic attempts to restart a "hung" zio by calling zio_interrupt() on any outstanding leaf zios. We may want to further restrict this to zios in either the ZIO_STAGE_VDEV_IO_START or ZIO_STAGE_VDEV_IO_DONE stages. Calling zio_interrupt() is expected to only be useful for cases when an IO has been submitted to the physical device but for some reasonable the completion callback hasn't been called by the lower layers. This shouldn't be possible but has been observed and may be caused by kernel/driver bugs. * The 'zfs_deadman_synctime_ms' default value was reduced from 1000s to 600s. * Depending on how ztest fails there may be no cache file to move. This should not be considered fatal, collect the logs which are available and carry on. * Add deadman test cases for spa_deadman() and zio_wait(). * Increase default zfs_deadman_checktime_ms to 60s. Reviewed-by: Tim Chase <tim@chase2k.com> Reviewed by: Thomas Caputi <tcaputi@datto.com> Reviewed-by: Giuseppe Di Natale <dinatale2@llnl.gov> Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov> Closes #6999
2017-12-19 01:06:07 +03:00
}
(void) printf("ztest has been running for %lld seconds\n",
(gethrtime() - zs->zs_proc_start) / NANOSEC);
last_run = gethrtime();
delay = MSEC2NSEC(zfs_deadman_checktime_ms);
Extend deadman logic The intent of this patch is extend the existing deadman code such that it's flexible enough to be used by both ztest and on production systems. The proposed changes include: * Added a new `zfs_deadman_failmode` module option which is used to dynamically control the behavior of the deadman. It's loosely modeled after, but independant from, the pool failmode property. It can be set to wait, continue, or panic. * wait - Wait for the "hung" I/O (default) * continue - Attempt to recover from a "hung" I/O * panic - Panic the system * Added a new `zfs_deadman_ziotime_ms` module option which is analogous to `zfs_deadman_synctime_ms` except instead of applying to a pool TXG sync it applies to zio_wait(). A default value of 300s is used to define a "hung" zio. * The ztest deadman thread has been re-enabled by default, aligned with the upstream OpenZFS code, and then extended to terminate the process when it takes significantly longer to complete than expected. * The -G option was added to ztest to print the internal debug log when a fatal error is encountered. This same option was previously added to zdb in commit fa603f82. Update zloop.sh to unconditionally pass -G to obtain additional debugging. * The FM_EREPORT_ZFS_DELAY event which was previously posted when the deadman detect a "hung" pool has been replaced by a new dedicated FM_EREPORT_ZFS_DEADMAN event. * The proposed recovery logic attempts to restart a "hung" zio by calling zio_interrupt() on any outstanding leaf zios. We may want to further restrict this to zios in either the ZIO_STAGE_VDEV_IO_START or ZIO_STAGE_VDEV_IO_DONE stages. Calling zio_interrupt() is expected to only be useful for cases when an IO has been submitted to the physical device but for some reasonable the completion callback hasn't been called by the lower layers. This shouldn't be possible but has been observed and may be caused by kernel/driver bugs. * The 'zfs_deadman_synctime_ms' default value was reduced from 1000s to 600s. * Depending on how ztest fails there may be no cache file to move. This should not be considered fatal, collect the logs which are available and carry on. * Add deadman test cases for spa_deadman() and zio_wait(). * Increase default zfs_deadman_checktime_ms to 60s. Reviewed-by: Tim Chase <tim@chase2k.com> Reviewed by: Thomas Caputi <tcaputi@datto.com> Reviewed-by: Giuseppe Di Natale <dinatale2@llnl.gov> Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov> Closes #6999
2017-12-19 01:06:07 +03:00
}
thread_exit();
}
static void
ztest_execute(int test, ztest_info_t *zi, uint64_t id)
{
ztest_ds_t *zd = &ztest_ds[id % ztest_opts.zo_datasets];
ztest_shared_callstate_t *zc = ZTEST_GET_SHARED_CALLSTATE(test);
hrtime_t functime = gethrtime();
int i;
for (i = 0; i < zi->zi_iters; i++)
zi->zi_func(zd, id);
functime = gethrtime() - functime;
atomic_add_64(&zc->zc_count, 1);
atomic_add_64(&zc->zc_time, functime);
if (ztest_opts.zo_verbose >= 4)
(void) printf("%6.2f sec in %s\n",
(double)functime / NANOSEC, zi->zi_funcname);
}
RAID-Z expansion feature This feature allows disks to be added one at a time to a RAID-Z group, expanding its capacity incrementally. This feature is especially useful for small pools (typically with only one RAID-Z group), where there isn't sufficient hardware to add capacity by adding a whole new RAID-Z group (typically doubling the number of disks). == Initiating expansion == A new device (disk) can be attached to an existing RAIDZ vdev, by running `zpool attach POOL raidzP-N NEW_DEVICE`, e.g. `zpool attach tank raidz2-0 sda`. The new device will become part of the RAIDZ group. A "raidz expansion" will be initiated, and the new device will contribute additional space to the RAIDZ group once the expansion completes. The `feature@raidz_expansion` on-disk feature flag must be `enabled` to initiate an expansion, and it remains `active` for the life of the pool. In other words, pools with expanded RAIDZ vdevs can not be imported by older releases of the ZFS software. == During expansion == The expansion entails reading all allocated space from existing disks in the RAIDZ group, and rewriting it to the new disks in the RAIDZ group (including the newly added device). The expansion progress can be monitored with `zpool status`. Data redundancy is maintained during (and after) the expansion. If a disk fails while the expansion is in progress, the expansion pauses until the health of the RAIDZ vdev is restored (e.g. by replacing the failed disk and waiting for reconstruction to complete). The pool remains accessible during expansion. Following a reboot or export/import, the expansion resumes where it left off. == After expansion == When the expansion completes, the additional space is available for use, and is reflected in the `available` zfs property (as seen in `zfs list`, `df`, etc). Expansion does not change the number of failures that can be tolerated without data loss (e.g. a RAIDZ2 is still a RAIDZ2 even after expansion). A RAIDZ vdev can be expanded multiple times. After the expansion completes, old blocks remain with their old data-to-parity ratio (e.g. 5-wide RAIDZ2, has 3 data to 2 parity), but distributed among the larger set of disks. New blocks will be written with the new data-to-parity ratio (e.g. a 5-wide RAIDZ2 which has been expanded once to 6-wide, has 4 data to 2 parity). However, the RAIDZ vdev's "assumed parity ratio" does not change, so slightly less space than is expected may be reported for newly-written blocks, according to `zfs list`, `df`, `ls -s`, and similar tools. Sponsored-by: The FreeBSD Foundation Sponsored-by: iXsystems, Inc. Sponsored-by: vStack Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov> Reviewed-by: Mark Maybee <mark.maybee@delphix.com> Authored-by: Matthew Ahrens <mahrens@delphix.com> Contributions-by: Fedor Uporov <fuporov.vstack@gmail.com> Contributions-by: Stuart Maybee <stuart.maybee@comcast.net> Contributions-by: Thorsten Behrens <tbehrens@outlook.com> Contributions-by: Fmstrat <nospam@nowsci.com> Contributions-by: Don Brady <dev.fs.zfs@gmail.com> Signed-off-by: Don Brady <dev.fs.zfs@gmail.com> Closes #15022
2023-11-08 21:19:41 +03:00
typedef struct ztest_raidz_expand_io {
uint64_t rzx_id;
uint64_t rzx_amount;
uint64_t rzx_bufsize;
const void *rzx_buffer;
uint64_t rzx_alloc_max;
spa_t *rzx_spa;
} ztest_expand_io_t;
#undef OD_ARRAY_SIZE
#define OD_ARRAY_SIZE 10
/*
* Write a request amount of data to some dataset objects.
* There will be ztest_opts.zo_threads count of these running in parallel.
*/
static __attribute__((noreturn)) void
ztest_rzx_thread(void *arg)
{
ztest_expand_io_t *info = (ztest_expand_io_t *)arg;
ztest_od_t *od;
int batchsize;
int od_size;
ztest_ds_t *zd = &ztest_ds[info->rzx_id % ztest_opts.zo_datasets];
spa_t *spa = info->rzx_spa;
od_size = sizeof (ztest_od_t) * OD_ARRAY_SIZE;
od = umem_alloc(od_size, UMEM_NOFAIL);
batchsize = OD_ARRAY_SIZE;
/* Create objects to write to */
for (int b = 0; b < batchsize; b++) {
ztest_od_init(od + b, info->rzx_id, FTAG, b,
DMU_OT_UINT64_OTHER, 0, 0, 0);
}
if (ztest_object_init(zd, od, od_size, B_FALSE) != 0) {
umem_free(od, od_size);
thread_exit();
}
for (uint64_t offset = 0, written = 0; written < info->rzx_amount;
offset += info->rzx_bufsize) {
/* write to 10 objects */
for (int i = 0; i < batchsize && written < info->rzx_amount;
i++) {
(void) pthread_rwlock_rdlock(&zd->zd_zilog_lock);
ztest_write(zd, od[i].od_object, offset,
info->rzx_bufsize, info->rzx_buffer);
(void) pthread_rwlock_unlock(&zd->zd_zilog_lock);
written += info->rzx_bufsize;
}
txg_wait_synced(spa_get_dsl(spa), 0);
/* due to inflation, we'll typically bail here */
if (metaslab_class_get_alloc(spa_normal_class(spa)) >
info->rzx_alloc_max) {
break;
}
}
/* Remove a few objects to leave some holes in allocation space */
mutex_enter(&zd->zd_dirobj_lock);
(void) ztest_remove(zd, od, 2);
mutex_exit(&zd->zd_dirobj_lock);
umem_free(od, od_size);
thread_exit();
}
static __attribute__((noreturn)) void
2008-11-20 23:01:55 +03:00
ztest_thread(void *arg)
{
int rand;
uint64_t id = (uintptr_t)arg;
2008-11-20 23:01:55 +03:00
ztest_shared_t *zs = ztest_shared;
uint64_t call_next;
hrtime_t now;
2008-11-20 23:01:55 +03:00
ztest_info_t *zi;
ztest_shared_callstate_t *zc;
2008-11-20 23:01:55 +03:00
while ((now = gethrtime()) < zs->zs_thread_stop) {
2008-11-20 23:01:55 +03:00
/*
* See if it's time to force a crash.
*/
RAID-Z expansion feature This feature allows disks to be added one at a time to a RAID-Z group, expanding its capacity incrementally. This feature is especially useful for small pools (typically with only one RAID-Z group), where there isn't sufficient hardware to add capacity by adding a whole new RAID-Z group (typically doubling the number of disks). == Initiating expansion == A new device (disk) can be attached to an existing RAIDZ vdev, by running `zpool attach POOL raidzP-N NEW_DEVICE`, e.g. `zpool attach tank raidz2-0 sda`. The new device will become part of the RAIDZ group. A "raidz expansion" will be initiated, and the new device will contribute additional space to the RAIDZ group once the expansion completes. The `feature@raidz_expansion` on-disk feature flag must be `enabled` to initiate an expansion, and it remains `active` for the life of the pool. In other words, pools with expanded RAIDZ vdevs can not be imported by older releases of the ZFS software. == During expansion == The expansion entails reading all allocated space from existing disks in the RAIDZ group, and rewriting it to the new disks in the RAIDZ group (including the newly added device). The expansion progress can be monitored with `zpool status`. Data redundancy is maintained during (and after) the expansion. If a disk fails while the expansion is in progress, the expansion pauses until the health of the RAIDZ vdev is restored (e.g. by replacing the failed disk and waiting for reconstruction to complete). The pool remains accessible during expansion. Following a reboot or export/import, the expansion resumes where it left off. == After expansion == When the expansion completes, the additional space is available for use, and is reflected in the `available` zfs property (as seen in `zfs list`, `df`, etc). Expansion does not change the number of failures that can be tolerated without data loss (e.g. a RAIDZ2 is still a RAIDZ2 even after expansion). A RAIDZ vdev can be expanded multiple times. After the expansion completes, old blocks remain with their old data-to-parity ratio (e.g. 5-wide RAIDZ2, has 3 data to 2 parity), but distributed among the larger set of disks. New blocks will be written with the new data-to-parity ratio (e.g. a 5-wide RAIDZ2 which has been expanded once to 6-wide, has 4 data to 2 parity). However, the RAIDZ vdev's "assumed parity ratio" does not change, so slightly less space than is expected may be reported for newly-written blocks, according to `zfs list`, `df`, `ls -s`, and similar tools. Sponsored-by: The FreeBSD Foundation Sponsored-by: iXsystems, Inc. Sponsored-by: vStack Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov> Reviewed-by: Mark Maybee <mark.maybee@delphix.com> Authored-by: Matthew Ahrens <mahrens@delphix.com> Contributions-by: Fedor Uporov <fuporov.vstack@gmail.com> Contributions-by: Stuart Maybee <stuart.maybee@comcast.net> Contributions-by: Thorsten Behrens <tbehrens@outlook.com> Contributions-by: Fmstrat <nospam@nowsci.com> Contributions-by: Don Brady <dev.fs.zfs@gmail.com> Signed-off-by: Don Brady <dev.fs.zfs@gmail.com> Closes #15022
2023-11-08 21:19:41 +03:00
if (now > zs->zs_thread_kill &&
raidz_expand_pause_point == RAIDZ_EXPAND_PAUSE_NONE) {
ztest_kill(zs);
RAID-Z expansion feature This feature allows disks to be added one at a time to a RAID-Z group, expanding its capacity incrementally. This feature is especially useful for small pools (typically with only one RAID-Z group), where there isn't sufficient hardware to add capacity by adding a whole new RAID-Z group (typically doubling the number of disks). == Initiating expansion == A new device (disk) can be attached to an existing RAIDZ vdev, by running `zpool attach POOL raidzP-N NEW_DEVICE`, e.g. `zpool attach tank raidz2-0 sda`. The new device will become part of the RAIDZ group. A "raidz expansion" will be initiated, and the new device will contribute additional space to the RAIDZ group once the expansion completes. The `feature@raidz_expansion` on-disk feature flag must be `enabled` to initiate an expansion, and it remains `active` for the life of the pool. In other words, pools with expanded RAIDZ vdevs can not be imported by older releases of the ZFS software. == During expansion == The expansion entails reading all allocated space from existing disks in the RAIDZ group, and rewriting it to the new disks in the RAIDZ group (including the newly added device). The expansion progress can be monitored with `zpool status`. Data redundancy is maintained during (and after) the expansion. If a disk fails while the expansion is in progress, the expansion pauses until the health of the RAIDZ vdev is restored (e.g. by replacing the failed disk and waiting for reconstruction to complete). The pool remains accessible during expansion. Following a reboot or export/import, the expansion resumes where it left off. == After expansion == When the expansion completes, the additional space is available for use, and is reflected in the `available` zfs property (as seen in `zfs list`, `df`, etc). Expansion does not change the number of failures that can be tolerated without data loss (e.g. a RAIDZ2 is still a RAIDZ2 even after expansion). A RAIDZ vdev can be expanded multiple times. After the expansion completes, old blocks remain with their old data-to-parity ratio (e.g. 5-wide RAIDZ2, has 3 data to 2 parity), but distributed among the larger set of disks. New blocks will be written with the new data-to-parity ratio (e.g. a 5-wide RAIDZ2 which has been expanded once to 6-wide, has 4 data to 2 parity). However, the RAIDZ vdev's "assumed parity ratio" does not change, so slightly less space than is expected may be reported for newly-written blocks, according to `zfs list`, `df`, `ls -s`, and similar tools. Sponsored-by: The FreeBSD Foundation Sponsored-by: iXsystems, Inc. Sponsored-by: vStack Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov> Reviewed-by: Mark Maybee <mark.maybee@delphix.com> Authored-by: Matthew Ahrens <mahrens@delphix.com> Contributions-by: Fedor Uporov <fuporov.vstack@gmail.com> Contributions-by: Stuart Maybee <stuart.maybee@comcast.net> Contributions-by: Thorsten Behrens <tbehrens@outlook.com> Contributions-by: Fmstrat <nospam@nowsci.com> Contributions-by: Don Brady <dev.fs.zfs@gmail.com> Signed-off-by: Don Brady <dev.fs.zfs@gmail.com> Closes #15022
2023-11-08 21:19:41 +03:00
}
2008-11-20 23:01:55 +03:00
/*
* If we're getting ENOSPC with some regularity, stop.
2008-11-20 23:01:55 +03:00
*/
if (zs->zs_enospc_count > 10)
break;
2008-11-20 23:01:55 +03:00
/*
* Pick a random function to execute.
2008-11-20 23:01:55 +03:00
*/
rand = ztest_random(ZTEST_FUNCS);
zi = &ztest_info[rand];
zc = ZTEST_GET_SHARED_CALLSTATE(rand);
call_next = zc->zc_next;
2008-11-20 23:01:55 +03:00
if (now >= call_next &&
atomic_cas_64(&zc->zc_next, call_next, call_next +
ztest_random(2 * zi->zi_interval[0] + 1)) == call_next) {
ztest_execute(rand, zi, id);
}
}
2008-11-20 23:01:55 +03:00
thread_exit();
}
2008-11-20 23:01:55 +03:00
static void
ztest_dataset_name(char *dsname, const char *pool, int d)
{
(void) snprintf(dsname, ZFS_MAX_DATASET_NAME_LEN, "%s/ds_%d", pool, d);
}
2008-11-20 23:01:55 +03:00
static void
ztest_dataset_destroy(int d)
{
char name[ZFS_MAX_DATASET_NAME_LEN];
int t;
2008-11-20 23:01:55 +03:00
ztest_dataset_name(name, ztest_opts.zo_pool, d);
2008-11-20 23:01:55 +03:00
if (ztest_opts.zo_verbose >= 3)
(void) printf("Destroying %s to free up space\n", name);
2008-11-20 23:01:55 +03:00
/*
* Cleanup any non-standard clones and snapshots. In general,
* ztest thread t operates on dataset (t % zopt_datasets),
* so there may be more than one thing to clean up.
*/
for (t = d; t < ztest_opts.zo_threads;
t += ztest_opts.zo_datasets)
ztest_dsl_dataset_cleanup(name, t);
(void) dmu_objset_find(name, ztest_objset_destroy_cb, NULL,
DS_FIND_SNAPSHOTS | DS_FIND_CHILDREN);
}
static void
ztest_dataset_dirobj_verify(ztest_ds_t *zd)
{
uint64_t usedobjs, dirobjs, scratch;
/*
* ZTEST_DIROBJ is the object directory for the entire dataset.
* Therefore, the number of objects in use should equal the
* number of ZTEST_DIROBJ entries, +1 for ZTEST_DIROBJ itself.
* If not, we have an object leak.
*
* Note that we can only check this in ztest_dataset_open(),
* when the open-context and syncing-context values agree.
* That's because zap_count() returns the open-context value,
* while dmu_objset_space() returns the rootbp fill count.
*/
VERIFY0(zap_count(zd->zd_os, ZTEST_DIROBJ, &dirobjs));
dmu_objset_space(zd->zd_os, &scratch, &scratch, &usedobjs, &scratch);
ASSERT3U(dirobjs + 1, ==, usedobjs);
}
static int
ztest_dataset_open(int d)
{
ztest_ds_t *zd = &ztest_ds[d];
uint64_t committed_seq = ZTEST_GET_SHARED_DS(d)->zd_seq;
objset_t *os;
zilog_t *zilog;
char name[ZFS_MAX_DATASET_NAME_LEN];
int error;
ztest_dataset_name(name, ztest_opts.zo_pool, d);
(void) pthread_rwlock_rdlock(&ztest_name_lock);
error = ztest_dataset_create(name);
if (error == ENOSPC) {
(void) pthread_rwlock_unlock(&ztest_name_lock);
ztest_record_enospc(FTAG);
return (error);
2008-11-20 23:01:55 +03:00
}
ASSERT(error == 0 || error == EEXIST);
2008-11-20 23:01:55 +03:00
VERIFY0(ztest_dmu_objset_own(name, DMU_OST_OTHER, B_FALSE,
B_TRUE, zd, &os));
(void) pthread_rwlock_unlock(&ztest_name_lock);
ztest_zd_init(zd, ZTEST_GET_SHARED_DS(d), os);
zilog = zd->zd_zilog;
if (zilog->zl_header->zh_claim_lr_seq != 0 &&
zilog->zl_header->zh_claim_lr_seq < committed_seq)
fatal(B_FALSE, "missing log records: "
"claimed %"PRIu64" < committed %"PRIu64"",
zilog->zl_header->zh_claim_lr_seq, committed_seq);
ztest_dataset_dirobj_verify(zd);
zil_replay(os, zd, ztest_replay_vector);
ztest_dataset_dirobj_verify(zd);
if (ztest_opts.zo_verbose >= 6)
(void) printf("%s replay %"PRIu64" blocks, "
"%"PRIu64" records, seq %"PRIu64"\n",
zd->zd_name,
zilog->zl_parse_blk_count,
zilog->zl_parse_lr_count,
zilog->zl_replaying_seq);
zilog = zil_open(os, ztest_get_data, NULL);
if (zilog->zl_replaying_seq != 0 &&
zilog->zl_replaying_seq < committed_seq)
fatal(B_FALSE, "missing log records: "
"replayed %"PRIu64" < committed %"PRIu64"",
zilog->zl_replaying_seq, committed_seq);
return (0);
}
static void
ztest_dataset_close(int d)
{
ztest_ds_t *zd = &ztest_ds[d];
zil_close(zd->zd_zilog);
Native Encryption for ZFS on Linux This change incorporates three major pieces: The first change is a keystore that manages wrapping and encryption keys for encrypted datasets. These commands mostly involve manipulating the new DSL Crypto Key ZAP Objects that live in the MOS. Each encrypted dataset has its own DSL Crypto Key that is protected with a user's key. This level of indirection allows users to change their keys without re-encrypting their entire datasets. The change implements the new subcommands "zfs load-key", "zfs unload-key" and "zfs change-key" which allow the user to manage their encryption keys and settings. In addition, several new flags and properties have been added to allow dataset creation and to make mounting and unmounting more convenient. The second piece of this patch provides the ability to encrypt, decyrpt, and authenticate protected datasets. Each object set maintains a Merkel tree of Message Authentication Codes that protect the lower layers, similarly to how checksums are maintained. This part impacts the zio layer, which handles the actual encryption and generation of MACs, as well as the ARC and DMU, which need to be able to handle encrypted buffers and protected data. The last addition is the ability to do raw, encrypted sends and receives. The idea here is to send raw encrypted and compressed data and receive it exactly as is on a backup system. This means that the dataset on the receiving system is protected using the same user key that is in use on the sending side. By doing so, datasets can be efficiently backed up to an untrusted system without fear of data being compromised. Reviewed by: Matthew Ahrens <mahrens@delphix.com> Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov> Reviewed-by: Jorgen Lundman <lundman@lundman.net> Signed-off-by: Tom Caputi <tcaputi@datto.com> Closes #494 Closes #5769
2017-08-14 20:36:48 +03:00
dmu_objset_disown(zd->zd_os, B_TRUE, zd);
ztest_zd_fini(zd);
2008-11-20 23:01:55 +03:00
}
static int
ztest_replay_zil_cb(const char *name, void *arg)
{
(void) arg;
objset_t *os;
ztest_ds_t *zdtmp;
VERIFY0(ztest_dmu_objset_own(name, DMU_OST_ANY, B_TRUE,
B_TRUE, FTAG, &os));
zdtmp = umem_alloc(sizeof (ztest_ds_t), UMEM_NOFAIL);
ztest_zd_init(zdtmp, NULL, os);
zil_replay(os, zdtmp, ztest_replay_vector);
ztest_zd_fini(zdtmp);
if (dmu_objset_zil(os)->zl_parse_lr_count != 0 &&
ztest_opts.zo_verbose >= 6) {
zilog_t *zilog = dmu_objset_zil(os);
(void) printf("%s replay %"PRIu64" blocks, "
"%"PRIu64" records, seq %"PRIu64"\n",
name,
zilog->zl_parse_blk_count,
zilog->zl_parse_lr_count,
zilog->zl_replaying_seq);
}
umem_free(zdtmp, sizeof (ztest_ds_t));
dmu_objset_disown(os, B_TRUE, FTAG);
return (0);
}
static void
ztest_freeze(void)
{
ztest_ds_t *zd = &ztest_ds[0];
spa_t *spa;
int numloops = 0;
RAID-Z expansion feature This feature allows disks to be added one at a time to a RAID-Z group, expanding its capacity incrementally. This feature is especially useful for small pools (typically with only one RAID-Z group), where there isn't sufficient hardware to add capacity by adding a whole new RAID-Z group (typically doubling the number of disks). == Initiating expansion == A new device (disk) can be attached to an existing RAIDZ vdev, by running `zpool attach POOL raidzP-N NEW_DEVICE`, e.g. `zpool attach tank raidz2-0 sda`. The new device will become part of the RAIDZ group. A "raidz expansion" will be initiated, and the new device will contribute additional space to the RAIDZ group once the expansion completes. The `feature@raidz_expansion` on-disk feature flag must be `enabled` to initiate an expansion, and it remains `active` for the life of the pool. In other words, pools with expanded RAIDZ vdevs can not be imported by older releases of the ZFS software. == During expansion == The expansion entails reading all allocated space from existing disks in the RAIDZ group, and rewriting it to the new disks in the RAIDZ group (including the newly added device). The expansion progress can be monitored with `zpool status`. Data redundancy is maintained during (and after) the expansion. If a disk fails while the expansion is in progress, the expansion pauses until the health of the RAIDZ vdev is restored (e.g. by replacing the failed disk and waiting for reconstruction to complete). The pool remains accessible during expansion. Following a reboot or export/import, the expansion resumes where it left off. == After expansion == When the expansion completes, the additional space is available for use, and is reflected in the `available` zfs property (as seen in `zfs list`, `df`, etc). Expansion does not change the number of failures that can be tolerated without data loss (e.g. a RAIDZ2 is still a RAIDZ2 even after expansion). A RAIDZ vdev can be expanded multiple times. After the expansion completes, old blocks remain with their old data-to-parity ratio (e.g. 5-wide RAIDZ2, has 3 data to 2 parity), but distributed among the larger set of disks. New blocks will be written with the new data-to-parity ratio (e.g. a 5-wide RAIDZ2 which has been expanded once to 6-wide, has 4 data to 2 parity). However, the RAIDZ vdev's "assumed parity ratio" does not change, so slightly less space than is expected may be reported for newly-written blocks, according to `zfs list`, `df`, `ls -s`, and similar tools. Sponsored-by: The FreeBSD Foundation Sponsored-by: iXsystems, Inc. Sponsored-by: vStack Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov> Reviewed-by: Mark Maybee <mark.maybee@delphix.com> Authored-by: Matthew Ahrens <mahrens@delphix.com> Contributions-by: Fedor Uporov <fuporov.vstack@gmail.com> Contributions-by: Stuart Maybee <stuart.maybee@comcast.net> Contributions-by: Thorsten Behrens <tbehrens@outlook.com> Contributions-by: Fmstrat <nospam@nowsci.com> Contributions-by: Don Brady <dev.fs.zfs@gmail.com> Signed-off-by: Don Brady <dev.fs.zfs@gmail.com> Closes #15022
2023-11-08 21:19:41 +03:00
/* freeze not supported during RAIDZ expansion */
if (ztest_opts.zo_raid_do_expand)
return;
if (ztest_opts.zo_verbose >= 3)
(void) printf("testing spa_freeze()...\n");
RAID-Z expansion feature This feature allows disks to be added one at a time to a RAID-Z group, expanding its capacity incrementally. This feature is especially useful for small pools (typically with only one RAID-Z group), where there isn't sufficient hardware to add capacity by adding a whole new RAID-Z group (typically doubling the number of disks). == Initiating expansion == A new device (disk) can be attached to an existing RAIDZ vdev, by running `zpool attach POOL raidzP-N NEW_DEVICE`, e.g. `zpool attach tank raidz2-0 sda`. The new device will become part of the RAIDZ group. A "raidz expansion" will be initiated, and the new device will contribute additional space to the RAIDZ group once the expansion completes. The `feature@raidz_expansion` on-disk feature flag must be `enabled` to initiate an expansion, and it remains `active` for the life of the pool. In other words, pools with expanded RAIDZ vdevs can not be imported by older releases of the ZFS software. == During expansion == The expansion entails reading all allocated space from existing disks in the RAIDZ group, and rewriting it to the new disks in the RAIDZ group (including the newly added device). The expansion progress can be monitored with `zpool status`. Data redundancy is maintained during (and after) the expansion. If a disk fails while the expansion is in progress, the expansion pauses until the health of the RAIDZ vdev is restored (e.g. by replacing the failed disk and waiting for reconstruction to complete). The pool remains accessible during expansion. Following a reboot or export/import, the expansion resumes where it left off. == After expansion == When the expansion completes, the additional space is available for use, and is reflected in the `available` zfs property (as seen in `zfs list`, `df`, etc). Expansion does not change the number of failures that can be tolerated without data loss (e.g. a RAIDZ2 is still a RAIDZ2 even after expansion). A RAIDZ vdev can be expanded multiple times. After the expansion completes, old blocks remain with their old data-to-parity ratio (e.g. 5-wide RAIDZ2, has 3 data to 2 parity), but distributed among the larger set of disks. New blocks will be written with the new data-to-parity ratio (e.g. a 5-wide RAIDZ2 which has been expanded once to 6-wide, has 4 data to 2 parity). However, the RAIDZ vdev's "assumed parity ratio" does not change, so slightly less space than is expected may be reported for newly-written blocks, according to `zfs list`, `df`, `ls -s`, and similar tools. Sponsored-by: The FreeBSD Foundation Sponsored-by: iXsystems, Inc. Sponsored-by: vStack Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov> Reviewed-by: Mark Maybee <mark.maybee@delphix.com> Authored-by: Matthew Ahrens <mahrens@delphix.com> Contributions-by: Fedor Uporov <fuporov.vstack@gmail.com> Contributions-by: Stuart Maybee <stuart.maybee@comcast.net> Contributions-by: Thorsten Behrens <tbehrens@outlook.com> Contributions-by: Fmstrat <nospam@nowsci.com> Contributions-by: Don Brady <dev.fs.zfs@gmail.com> Signed-off-by: Don Brady <dev.fs.zfs@gmail.com> Closes #15022
2023-11-08 21:19:41 +03:00
raidz_scratch_verify();
kernel_init(SPA_MODE_READ | SPA_MODE_WRITE);
VERIFY0(spa_open(ztest_opts.zo_pool, &spa, FTAG));
VERIFY0(ztest_dataset_open(0));
ztest_spa = spa;
/*
* Force the first log block to be transactionally allocated.
* We have to do this before we freeze the pool -- otherwise
* the log chain won't be anchored.
*/
while (BP_IS_HOLE(&zd->zd_zilog->zl_header->zh_log)) {
ztest_dmu_object_alloc_free(zd, 0);
zil_commit(zd->zd_zilog, 0);
}
txg_wait_synced(spa_get_dsl(spa), 0);
/*
* Freeze the pool. This stops spa_sync() from doing anything,
* so that the only way to record changes from now on is the ZIL.
*/
spa_freeze(spa);
/*
* Because it is hard to predict how much space a write will actually
* require beforehand, we leave ourselves some fudge space to write over
* capacity.
*/
uint64_t capacity = metaslab_class_get_space(spa_normal_class(spa)) / 2;
/*
* Run tests that generate log records but don't alter the pool config
* or depend on DSL sync tasks (snapshots, objset create/destroy, etc).
* We do a txg_wait_synced() after each iteration to force the txg
* to increase well beyond the last synced value in the uberblock.
* The ZIL should be OK with that.
*
* Run a random number of times less than zo_maxloops and ensure we do
* not run out of space on the pool.
*/
while (ztest_random(10) != 0 &&
numloops++ < ztest_opts.zo_maxloops &&
metaslab_class_get_alloc(spa_normal_class(spa)) < capacity) {
ztest_od_t od;
ztest_od_init(&od, 0, FTAG, 0, DMU_OT_UINT64_OTHER, 0, 0, 0);
VERIFY0(ztest_object_init(zd, &od, sizeof (od), B_FALSE));
ztest_io(zd, od.od_object,
ztest_random(ZTEST_RANGE_LOCKS) << SPA_MAXBLOCKSHIFT);
txg_wait_synced(spa_get_dsl(spa), 0);
}
/*
* Commit all of the changes we just generated.
*/
zil_commit(zd->zd_zilog, 0);
txg_wait_synced(spa_get_dsl(spa), 0);
/*
* Close our dataset and close the pool.
*/
ztest_dataset_close(0);
spa_close(spa, FTAG);
kernel_fini();
/*
* Open and close the pool and dataset to induce log replay.
*/
RAID-Z expansion feature This feature allows disks to be added one at a time to a RAID-Z group, expanding its capacity incrementally. This feature is especially useful for small pools (typically with only one RAID-Z group), where there isn't sufficient hardware to add capacity by adding a whole new RAID-Z group (typically doubling the number of disks). == Initiating expansion == A new device (disk) can be attached to an existing RAIDZ vdev, by running `zpool attach POOL raidzP-N NEW_DEVICE`, e.g. `zpool attach tank raidz2-0 sda`. The new device will become part of the RAIDZ group. A "raidz expansion" will be initiated, and the new device will contribute additional space to the RAIDZ group once the expansion completes. The `feature@raidz_expansion` on-disk feature flag must be `enabled` to initiate an expansion, and it remains `active` for the life of the pool. In other words, pools with expanded RAIDZ vdevs can not be imported by older releases of the ZFS software. == During expansion == The expansion entails reading all allocated space from existing disks in the RAIDZ group, and rewriting it to the new disks in the RAIDZ group (including the newly added device). The expansion progress can be monitored with `zpool status`. Data redundancy is maintained during (and after) the expansion. If a disk fails while the expansion is in progress, the expansion pauses until the health of the RAIDZ vdev is restored (e.g. by replacing the failed disk and waiting for reconstruction to complete). The pool remains accessible during expansion. Following a reboot or export/import, the expansion resumes where it left off. == After expansion == When the expansion completes, the additional space is available for use, and is reflected in the `available` zfs property (as seen in `zfs list`, `df`, etc). Expansion does not change the number of failures that can be tolerated without data loss (e.g. a RAIDZ2 is still a RAIDZ2 even after expansion). A RAIDZ vdev can be expanded multiple times. After the expansion completes, old blocks remain with their old data-to-parity ratio (e.g. 5-wide RAIDZ2, has 3 data to 2 parity), but distributed among the larger set of disks. New blocks will be written with the new data-to-parity ratio (e.g. a 5-wide RAIDZ2 which has been expanded once to 6-wide, has 4 data to 2 parity). However, the RAIDZ vdev's "assumed parity ratio" does not change, so slightly less space than is expected may be reported for newly-written blocks, according to `zfs list`, `df`, `ls -s`, and similar tools. Sponsored-by: The FreeBSD Foundation Sponsored-by: iXsystems, Inc. Sponsored-by: vStack Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov> Reviewed-by: Mark Maybee <mark.maybee@delphix.com> Authored-by: Matthew Ahrens <mahrens@delphix.com> Contributions-by: Fedor Uporov <fuporov.vstack@gmail.com> Contributions-by: Stuart Maybee <stuart.maybee@comcast.net> Contributions-by: Thorsten Behrens <tbehrens@outlook.com> Contributions-by: Fmstrat <nospam@nowsci.com> Contributions-by: Don Brady <dev.fs.zfs@gmail.com> Signed-off-by: Don Brady <dev.fs.zfs@gmail.com> Closes #15022
2023-11-08 21:19:41 +03:00
raidz_scratch_verify();
kernel_init(SPA_MODE_READ | SPA_MODE_WRITE);
VERIFY0(spa_open(ztest_opts.zo_pool, &spa, FTAG));
ASSERT3U(spa_freeze_txg(spa), ==, UINT64_MAX);
VERIFY0(ztest_dataset_open(0));
ztest_spa = spa;
txg_wait_synced(spa_get_dsl(spa), 0);
ztest_dataset_close(0);
ztest_reguid(NULL, 0);
spa_close(spa, FTAG);
kernel_fini();
}
static void
ztest_import_impl(void)
{
importargs_t args = { 0 };
nvlist_t *cfg = NULL;
int nsearch = 1;
char *searchdirs[nsearch];
int flags = ZFS_IMPORT_MISSING_LOG;
searchdirs[0] = ztest_opts.zo_dir;
args.paths = nsearch;
args.path = searchdirs;
args.can_be_active = B_FALSE;
libpc_handle_t lpch = {
.lpc_lib_handle = NULL,
.lpc_ops = &libzpool_config_ops,
.lpc_printerr = B_TRUE
};
VERIFY0(zpool_find_config(&lpch, ztest_opts.zo_pool, &cfg, &args));
VERIFY0(spa_import(ztest_opts.zo_pool, cfg, NULL, flags));
fnvlist_free(cfg);
}
/*
* Import a storage pool with the given name.
*/
static void
ztest_import(ztest_shared_t *zs)
{
spa_t *spa;
mutex_init(&ztest_vdev_lock, NULL, MUTEX_DEFAULT, NULL);
mutex_init(&ztest_checkpoint_lock, NULL, MUTEX_DEFAULT, NULL);
VERIFY0(pthread_rwlock_init(&ztest_name_lock, NULL));
RAID-Z expansion feature This feature allows disks to be added one at a time to a RAID-Z group, expanding its capacity incrementally. This feature is especially useful for small pools (typically with only one RAID-Z group), where there isn't sufficient hardware to add capacity by adding a whole new RAID-Z group (typically doubling the number of disks). == Initiating expansion == A new device (disk) can be attached to an existing RAIDZ vdev, by running `zpool attach POOL raidzP-N NEW_DEVICE`, e.g. `zpool attach tank raidz2-0 sda`. The new device will become part of the RAIDZ group. A "raidz expansion" will be initiated, and the new device will contribute additional space to the RAIDZ group once the expansion completes. The `feature@raidz_expansion` on-disk feature flag must be `enabled` to initiate an expansion, and it remains `active` for the life of the pool. In other words, pools with expanded RAIDZ vdevs can not be imported by older releases of the ZFS software. == During expansion == The expansion entails reading all allocated space from existing disks in the RAIDZ group, and rewriting it to the new disks in the RAIDZ group (including the newly added device). The expansion progress can be monitored with `zpool status`. Data redundancy is maintained during (and after) the expansion. If a disk fails while the expansion is in progress, the expansion pauses until the health of the RAIDZ vdev is restored (e.g. by replacing the failed disk and waiting for reconstruction to complete). The pool remains accessible during expansion. Following a reboot or export/import, the expansion resumes where it left off. == After expansion == When the expansion completes, the additional space is available for use, and is reflected in the `available` zfs property (as seen in `zfs list`, `df`, etc). Expansion does not change the number of failures that can be tolerated without data loss (e.g. a RAIDZ2 is still a RAIDZ2 even after expansion). A RAIDZ vdev can be expanded multiple times. After the expansion completes, old blocks remain with their old data-to-parity ratio (e.g. 5-wide RAIDZ2, has 3 data to 2 parity), but distributed among the larger set of disks. New blocks will be written with the new data-to-parity ratio (e.g. a 5-wide RAIDZ2 which has been expanded once to 6-wide, has 4 data to 2 parity). However, the RAIDZ vdev's "assumed parity ratio" does not change, so slightly less space than is expected may be reported for newly-written blocks, according to `zfs list`, `df`, `ls -s`, and similar tools. Sponsored-by: The FreeBSD Foundation Sponsored-by: iXsystems, Inc. Sponsored-by: vStack Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov> Reviewed-by: Mark Maybee <mark.maybee@delphix.com> Authored-by: Matthew Ahrens <mahrens@delphix.com> Contributions-by: Fedor Uporov <fuporov.vstack@gmail.com> Contributions-by: Stuart Maybee <stuart.maybee@comcast.net> Contributions-by: Thorsten Behrens <tbehrens@outlook.com> Contributions-by: Fmstrat <nospam@nowsci.com> Contributions-by: Don Brady <dev.fs.zfs@gmail.com> Signed-off-by: Don Brady <dev.fs.zfs@gmail.com> Closes #15022
2023-11-08 21:19:41 +03:00
raidz_scratch_verify();
kernel_init(SPA_MODE_READ | SPA_MODE_WRITE);
ztest_import_impl();
VERIFY0(spa_open(ztest_opts.zo_pool, &spa, FTAG));
zs->zs_metaslab_sz =
1ULL << spa->spa_root_vdev->vdev_child[0]->vdev_ms_shift;
zs->zs_guid = spa_guid(spa);
spa_close(spa, FTAG);
kernel_fini();
if (!ztest_opts.zo_mmp_test) {
ztest_run_zdb(zs->zs_guid);
ztest_freeze();
ztest_run_zdb(zs->zs_guid);
}
(void) pthread_rwlock_destroy(&ztest_name_lock);
mutex_destroy(&ztest_vdev_lock);
mutex_destroy(&ztest_checkpoint_lock);
}
2008-11-20 23:01:55 +03:00
/*
RAID-Z expansion feature This feature allows disks to be added one at a time to a RAID-Z group, expanding its capacity incrementally. This feature is especially useful for small pools (typically with only one RAID-Z group), where there isn't sufficient hardware to add capacity by adding a whole new RAID-Z group (typically doubling the number of disks). == Initiating expansion == A new device (disk) can be attached to an existing RAIDZ vdev, by running `zpool attach POOL raidzP-N NEW_DEVICE`, e.g. `zpool attach tank raidz2-0 sda`. The new device will become part of the RAIDZ group. A "raidz expansion" will be initiated, and the new device will contribute additional space to the RAIDZ group once the expansion completes. The `feature@raidz_expansion` on-disk feature flag must be `enabled` to initiate an expansion, and it remains `active` for the life of the pool. In other words, pools with expanded RAIDZ vdevs can not be imported by older releases of the ZFS software. == During expansion == The expansion entails reading all allocated space from existing disks in the RAIDZ group, and rewriting it to the new disks in the RAIDZ group (including the newly added device). The expansion progress can be monitored with `zpool status`. Data redundancy is maintained during (and after) the expansion. If a disk fails while the expansion is in progress, the expansion pauses until the health of the RAIDZ vdev is restored (e.g. by replacing the failed disk and waiting for reconstruction to complete). The pool remains accessible during expansion. Following a reboot or export/import, the expansion resumes where it left off. == After expansion == When the expansion completes, the additional space is available for use, and is reflected in the `available` zfs property (as seen in `zfs list`, `df`, etc). Expansion does not change the number of failures that can be tolerated without data loss (e.g. a RAIDZ2 is still a RAIDZ2 even after expansion). A RAIDZ vdev can be expanded multiple times. After the expansion completes, old blocks remain with their old data-to-parity ratio (e.g. 5-wide RAIDZ2, has 3 data to 2 parity), but distributed among the larger set of disks. New blocks will be written with the new data-to-parity ratio (e.g. a 5-wide RAIDZ2 which has been expanded once to 6-wide, has 4 data to 2 parity). However, the RAIDZ vdev's "assumed parity ratio" does not change, so slightly less space than is expected may be reported for newly-written blocks, according to `zfs list`, `df`, `ls -s`, and similar tools. Sponsored-by: The FreeBSD Foundation Sponsored-by: iXsystems, Inc. Sponsored-by: vStack Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov> Reviewed-by: Mark Maybee <mark.maybee@delphix.com> Authored-by: Matthew Ahrens <mahrens@delphix.com> Contributions-by: Fedor Uporov <fuporov.vstack@gmail.com> Contributions-by: Stuart Maybee <stuart.maybee@comcast.net> Contributions-by: Thorsten Behrens <tbehrens@outlook.com> Contributions-by: Fmstrat <nospam@nowsci.com> Contributions-by: Don Brady <dev.fs.zfs@gmail.com> Signed-off-by: Don Brady <dev.fs.zfs@gmail.com> Closes #15022
2023-11-08 21:19:41 +03:00
* After the expansion was killed, check that the pool is healthy
*/
static void
ztest_raidz_expand_check(spa_t *spa)
{
ASSERT3U(ztest_opts.zo_raidz_expand_test, ==, RAIDZ_EXPAND_KILLED);
/*
* Set pool check done flag, main program will run a zdb check
* of the pool when we exit.
*/
ztest_shared_opts->zo_raidz_expand_test = RAIDZ_EXPAND_CHECKED;
/* Wait for reflow to finish */
if (ztest_opts.zo_verbose >= 1) {
(void) printf("\nwaiting for reflow to finish ...\n");
}
pool_raidz_expand_stat_t rzx_stats;
pool_raidz_expand_stat_t *pres = &rzx_stats;
do {
txg_wait_synced(spa_get_dsl(spa), 0);
(void) poll(NULL, 0, 500); /* wait 1/2 second */
spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
(void) spa_raidz_expand_get_stats(spa, pres);
spa_config_exit(spa, SCL_CONFIG, FTAG);
} while (pres->pres_state != DSS_FINISHED &&
pres->pres_reflowed < pres->pres_to_reflow);
if (ztest_opts.zo_verbose >= 1) {
(void) printf("verifying an interrupted raidz "
"expansion using a pool scrub ...\n");
}
/* Will fail here if there is non-recoverable corruption detected */
VERIFY0(ztest_scrub_impl(spa));
if (ztest_opts.zo_verbose >= 1) {
(void) printf("raidz expansion scrub check complete\n");
}
}
/*
* Start a raidz expansion test. We run some I/O on the pool for a while
* to get some data in the pool. Then we grow the raidz and
* kill the test at the requested offset into the reflow, verifying that
* doing such does not lead to pool corruption.
*/
static void
ztest_raidz_expand_run(ztest_shared_t *zs, spa_t *spa)
{
nvlist_t *root;
pool_raidz_expand_stat_t rzx_stats;
pool_raidz_expand_stat_t *pres = &rzx_stats;
kthread_t **run_threads;
vdev_t *cvd, *rzvd = spa->spa_root_vdev->vdev_child[0];
int total_disks = rzvd->vdev_children;
int data_disks = total_disks - vdev_get_nparity(rzvd);
uint64_t alloc_goal;
uint64_t csize;
int error, t;
int threads = ztest_opts.zo_threads;
ztest_expand_io_t *thread_args;
ASSERT3U(ztest_opts.zo_raidz_expand_test, !=, RAIDZ_EXPAND_NONE);
ASSERT3P(rzvd->vdev_ops, ==, &vdev_raidz_ops);
RAID-Z expansion feature This feature allows disks to be added one at a time to a RAID-Z group, expanding its capacity incrementally. This feature is especially useful for small pools (typically with only one RAID-Z group), where there isn't sufficient hardware to add capacity by adding a whole new RAID-Z group (typically doubling the number of disks). == Initiating expansion == A new device (disk) can be attached to an existing RAIDZ vdev, by running `zpool attach POOL raidzP-N NEW_DEVICE`, e.g. `zpool attach tank raidz2-0 sda`. The new device will become part of the RAIDZ group. A "raidz expansion" will be initiated, and the new device will contribute additional space to the RAIDZ group once the expansion completes. The `feature@raidz_expansion` on-disk feature flag must be `enabled` to initiate an expansion, and it remains `active` for the life of the pool. In other words, pools with expanded RAIDZ vdevs can not be imported by older releases of the ZFS software. == During expansion == The expansion entails reading all allocated space from existing disks in the RAIDZ group, and rewriting it to the new disks in the RAIDZ group (including the newly added device). The expansion progress can be monitored with `zpool status`. Data redundancy is maintained during (and after) the expansion. If a disk fails while the expansion is in progress, the expansion pauses until the health of the RAIDZ vdev is restored (e.g. by replacing the failed disk and waiting for reconstruction to complete). The pool remains accessible during expansion. Following a reboot or export/import, the expansion resumes where it left off. == After expansion == When the expansion completes, the additional space is available for use, and is reflected in the `available` zfs property (as seen in `zfs list`, `df`, etc). Expansion does not change the number of failures that can be tolerated without data loss (e.g. a RAIDZ2 is still a RAIDZ2 even after expansion). A RAIDZ vdev can be expanded multiple times. After the expansion completes, old blocks remain with their old data-to-parity ratio (e.g. 5-wide RAIDZ2, has 3 data to 2 parity), but distributed among the larger set of disks. New blocks will be written with the new data-to-parity ratio (e.g. a 5-wide RAIDZ2 which has been expanded once to 6-wide, has 4 data to 2 parity). However, the RAIDZ vdev's "assumed parity ratio" does not change, so slightly less space than is expected may be reported for newly-written blocks, according to `zfs list`, `df`, `ls -s`, and similar tools. Sponsored-by: The FreeBSD Foundation Sponsored-by: iXsystems, Inc. Sponsored-by: vStack Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov> Reviewed-by: Mark Maybee <mark.maybee@delphix.com> Authored-by: Matthew Ahrens <mahrens@delphix.com> Contributions-by: Fedor Uporov <fuporov.vstack@gmail.com> Contributions-by: Stuart Maybee <stuart.maybee@comcast.net> Contributions-by: Thorsten Behrens <tbehrens@outlook.com> Contributions-by: Fmstrat <nospam@nowsci.com> Contributions-by: Don Brady <dev.fs.zfs@gmail.com> Signed-off-by: Don Brady <dev.fs.zfs@gmail.com> Closes #15022
2023-11-08 21:19:41 +03:00
ztest_opts.zo_raidz_expand_test = RAIDZ_EXPAND_STARTED;
/* Setup a 1 MiB buffer of random data */
uint64_t bufsize = 1024 * 1024;
void *buffer = umem_alloc(bufsize, UMEM_NOFAIL);
if (read(ztest_fd_rand, buffer, bufsize) != bufsize) {
fatal(B_TRUE, "short read from /dev/urandom");
}
/*
* Put some data in the pool and then attach a vdev to initiate
* reflow.
*/
run_threads = umem_zalloc(threads * sizeof (kthread_t *), UMEM_NOFAIL);
thread_args = umem_zalloc(threads * sizeof (ztest_expand_io_t),
UMEM_NOFAIL);
/* Aim for roughly 25% of allocatable space up to 1GB */
alloc_goal = (vdev_get_min_asize(rzvd) * data_disks) / total_disks;
alloc_goal = MIN(alloc_goal >> 2, 1024*1024*1024);
if (ztest_opts.zo_verbose >= 1) {
(void) printf("adding data to pool '%s', goal %llu bytes\n",
ztest_opts.zo_pool, (u_longlong_t)alloc_goal);
}
/*
* Kick off all the I/O generators that run in parallel.
*/
for (t = 0; t < threads; t++) {
if (t < ztest_opts.zo_datasets && ztest_dataset_open(t) != 0) {
umem_free(run_threads, threads * sizeof (kthread_t *));
umem_free(buffer, bufsize);
return;
}
thread_args[t].rzx_id = t;
thread_args[t].rzx_amount = alloc_goal / threads;
thread_args[t].rzx_bufsize = bufsize;
thread_args[t].rzx_buffer = buffer;
thread_args[t].rzx_alloc_max = alloc_goal;
thread_args[t].rzx_spa = spa;
run_threads[t] = thread_create(NULL, 0, ztest_rzx_thread,
&thread_args[t], 0, NULL, TS_RUN | TS_JOINABLE,
defclsyspri);
}
/*
* Wait for all of the writers to complete.
*/
for (t = 0; t < threads; t++)
VERIFY0(thread_join(run_threads[t]));
/*
* Close all datasets. This must be done after all the threads
* are joined so we can be sure none of the datasets are in-use
* by any of the threads.
*/
for (t = 0; t < ztest_opts.zo_threads; t++) {
if (t < ztest_opts.zo_datasets)
ztest_dataset_close(t);
}
txg_wait_synced(spa_get_dsl(spa), 0);
zs->zs_alloc = metaslab_class_get_alloc(spa_normal_class(spa));
zs->zs_space = metaslab_class_get_space(spa_normal_class(spa));
umem_free(buffer, bufsize);
umem_free(run_threads, threads * sizeof (kthread_t *));
umem_free(thread_args, threads * sizeof (ztest_expand_io_t));
/* Set our reflow target to 25%, 50% or 75% of allocated size */
uint_t multiple = ztest_random(3) + 1;
uint64_t reflow_max = (rzvd->vdev_stat.vs_alloc * multiple) / 4;
raidz_expand_max_reflow_bytes = reflow_max;
if (ztest_opts.zo_verbose >= 1) {
(void) printf("running raidz expansion test, killing when "
"reflow reaches %llu bytes (%u/4 of allocated space)\n",
(u_longlong_t)reflow_max, multiple);
}
/* XXX - do we want some I/O load during the reflow? */
/*
* Use a disk size that is larger than existing ones
*/
cvd = rzvd->vdev_child[0];
csize = vdev_get_min_asize(cvd);
csize += csize / 10;
/*
* Path to vdev to be attached
*/
char *newpath = umem_alloc(MAXPATHLEN, UMEM_NOFAIL);
(void) snprintf(newpath, MAXPATHLEN, ztest_dev_template,
ztest_opts.zo_dir, ztest_opts.zo_pool, rzvd->vdev_children);
/*
* Build the nvlist describing newpath.
*/
root = make_vdev_root(newpath, NULL, NULL, csize, ztest_get_ashift(),
NULL, 0, 0, 1);
/*
* Expand the raidz vdev by attaching the new disk
*/
if (ztest_opts.zo_verbose >= 1) {
(void) printf("expanding raidz: %d wide to %d wide with '%s'\n",
(int)rzvd->vdev_children, (int)rzvd->vdev_children + 1,
newpath);
}
error = spa_vdev_attach(spa, rzvd->vdev_guid, root, B_FALSE, B_FALSE);
nvlist_free(root);
if (error != 0) {
fatal(0, "raidz expand: attach (%s %llu) returned %d",
newpath, (long long)csize, error);
}
/*
* Wait for reflow to begin
*/
while (spa->spa_raidz_expand == NULL) {
txg_wait_synced(spa_get_dsl(spa), 0);
(void) poll(NULL, 0, 100); /* wait 1/10 second */
}
spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
(void) spa_raidz_expand_get_stats(spa, pres);
spa_config_exit(spa, SCL_CONFIG, FTAG);
while (pres->pres_state != DSS_SCANNING) {
txg_wait_synced(spa_get_dsl(spa), 0);
(void) poll(NULL, 0, 100); /* wait 1/10 second */
spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
(void) spa_raidz_expand_get_stats(spa, pres);
spa_config_exit(spa, SCL_CONFIG, FTAG);
}
ASSERT3U(pres->pres_state, ==, DSS_SCANNING);
ASSERT3U(pres->pres_to_reflow, !=, 0);
/*
* Set so when we are killed we go to raidz checking rather than
* restarting test.
*/
ztest_shared_opts->zo_raidz_expand_test = RAIDZ_EXPAND_KILLED;
if (ztest_opts.zo_verbose >= 1) {
(void) printf("raidz expansion reflow started, waiting for "
"%llu bytes to be copied\n", (u_longlong_t)reflow_max);
}
/*
* Wait for reflow maximum to be reached and then kill the test
*/
while (pres->pres_reflowed < reflow_max) {
txg_wait_synced(spa_get_dsl(spa), 0);
(void) poll(NULL, 0, 100); /* wait 1/10 second */
spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
(void) spa_raidz_expand_get_stats(spa, pres);
spa_config_exit(spa, SCL_CONFIG, FTAG);
}
/* Reset the reflow pause before killing */
raidz_expand_max_reflow_bytes = 0;
if (ztest_opts.zo_verbose >= 1) {
(void) printf("killing raidz expansion test after reflow "
"reached %llu bytes\n", (u_longlong_t)pres->pres_reflowed);
}
/*
* Kill ourself to simulate a panic during a reflow. Our parent will
* restart the test and the changed flag value will drive the test
* through the scrub/check code to verify the pool is not corrupted.
*/
ztest_kill(zs);
}
static void
ztest_generic_run(ztest_shared_t *zs, spa_t *spa)
{
kthread_t **run_threads;
int t;
run_threads = umem_zalloc(ztest_opts.zo_threads * sizeof (kthread_t *),
UMEM_NOFAIL);
/*
* Kick off all the tests that run in parallel.
*/
for (t = 0; t < ztest_opts.zo_threads; t++) {
if (t < ztest_opts.zo_datasets && ztest_dataset_open(t) != 0) {
umem_free(run_threads, ztest_opts.zo_threads *
sizeof (kthread_t *));
return;
}
run_threads[t] = thread_create(NULL, 0, ztest_thread,
(void *)(uintptr_t)t, 0, NULL, TS_RUN | TS_JOINABLE,
defclsyspri);
}
/*
* Wait for all of the tests to complete.
*/
for (t = 0; t < ztest_opts.zo_threads; t++)
VERIFY0(thread_join(run_threads[t]));
/*
* Close all datasets. This must be done after all the threads
* are joined so we can be sure none of the datasets are in-use
* by any of the threads.
*/
for (t = 0; t < ztest_opts.zo_threads; t++) {
if (t < ztest_opts.zo_datasets)
ztest_dataset_close(t);
}
txg_wait_synced(spa_get_dsl(spa), 0);
zs->zs_alloc = metaslab_class_get_alloc(spa_normal_class(spa));
zs->zs_space = metaslab_class_get_space(spa_normal_class(spa));
umem_free(run_threads, ztest_opts.zo_threads * sizeof (kthread_t *));
}
/*
* Setup our test context and kick off threads to run tests on all datasets
* in parallel.
2008-11-20 23:01:55 +03:00
*/
static void
ztest_run(ztest_shared_t *zs)
2008-11-20 23:01:55 +03:00
{
spa_t *spa;
objset_t *os;
kthread_t *resume_thread, *deadman_thread;
uint64_t object;
int error;
int t, d;
ztest_exiting = B_FALSE;
2008-11-20 23:01:55 +03:00
/*
* Initialize parent/child shared state.
2008-11-20 23:01:55 +03:00
*/
mutex_init(&ztest_vdev_lock, NULL, MUTEX_DEFAULT, NULL);
OpenZFS 9166 - zfs storage pool checkpoint Details about the motivation of this feature and its usage can be found in this blogpost: https://sdimitro.github.io/post/zpool-checkpoint/ A lightning talk of this feature can be found here: https://www.youtube.com/watch?v=fPQA8K40jAM Implementation details can be found in big block comment of spa_checkpoint.c Side-changes that are relevant to this commit but not explained elsewhere: * renames members of "struct metaslab trees to be shorter without losing meaning * space_map_{alloc,truncate}() accept a block size as a parameter. The reason is that in the current state all space maps that we allocate through the DMU use a global tunable (space_map_blksz) which defauls to 4KB. This is ok for metaslab space maps in terms of bandwirdth since they are scattered all over the disk. But for other space maps this default is probably not what we want. Examples are device removal's vdev_obsolete_sm or vdev_chedkpoint_sm from this review. Both of these have a 1:1 relationship with each vdev and could benefit from a bigger block size. Porting notes: * The part of dsl_scan_sync() which handles async destroys has been moved into the new dsl_process_async_destroys() function. * Remove "VERIFY(!(flags & FWRITE))" in "kernel.c" so zhack can write to block device backed pools. * ZTS: * Fix get_txg() in zpool_sync_001_pos due to "checkpoint_txg". * Don't use large dd block sizes on /dev/urandom under Linux in checkpoint_capacity. * Adopt Delphix-OS's setting of 4 (spa_asize_inflation = SPA_DVAS_PER_BP + 1) for the checkpoint_capacity test to speed its attempts to fill the pool * Create the base and nested pools with sync=disabled to speed up the "setup" phase. * Clear labels in test pool between checkpoint tests to avoid duplicate pool issues. * The import_rewind_device_replaced test has been marked as "known to fail" for the reasons listed in its DISCLAIMER. * New module parameters: zfs_spa_discard_memory_limit, zfs_remove_max_bytes_pause (not documented - debugging only) vdev_max_ms_count (formerly metaslabs_per_vdev) vdev_min_ms_count Authored by: Serapheim Dimitropoulos <serapheim.dimitro@delphix.com> Reviewed by: Matthew Ahrens <mahrens@delphix.com> Reviewed by: John Kennedy <john.kennedy@delphix.com> Reviewed by: Dan Kimmel <dan.kimmel@delphix.com> Reviewed by: Brian Behlendorf <behlendorf1@llnl.gov> Approved by: Richard Lowe <richlowe@richlowe.net> Ported-by: Tim Chase <tim@chase2k.com> Signed-off-by: Tim Chase <tim@chase2k.com> OpenZFS-issue: https://illumos.org/issues/9166 OpenZFS-commit: https://github.com/openzfs/openzfs/commit/7159fdb8 Closes #7570
2016-12-17 01:11:29 +03:00
mutex_init(&ztest_checkpoint_lock, NULL, MUTEX_DEFAULT, NULL);
VERIFY0(pthread_rwlock_init(&ztest_name_lock, NULL));
2008-11-20 23:01:55 +03:00
zs->zs_thread_start = gethrtime();
zs->zs_thread_stop =
zs->zs_thread_start + ztest_opts.zo_passtime * NANOSEC;
zs->zs_thread_stop = MIN(zs->zs_thread_stop, zs->zs_proc_stop);
zs->zs_thread_kill = zs->zs_thread_stop;
if (ztest_random(100) < ztest_opts.zo_killrate) {
zs->zs_thread_kill -=
ztest_random(ztest_opts.zo_passtime * NANOSEC);
}
2008-11-20 23:01:55 +03:00
mutex_init(&zcl.zcl_callbacks_lock, NULL, MUTEX_DEFAULT, NULL);
2008-11-20 23:01:55 +03:00
list_create(&zcl.zcl_callbacks, sizeof (ztest_cb_data_t),
offsetof(ztest_cb_data_t, zcd_node));
2008-11-20 23:01:55 +03:00
/*
* Open our pool. It may need to be imported first depending on
* what tests were running when the previous pass was terminated.
2008-11-20 23:01:55 +03:00
*/
RAID-Z expansion feature This feature allows disks to be added one at a time to a RAID-Z group, expanding its capacity incrementally. This feature is especially useful for small pools (typically with only one RAID-Z group), where there isn't sufficient hardware to add capacity by adding a whole new RAID-Z group (typically doubling the number of disks). == Initiating expansion == A new device (disk) can be attached to an existing RAIDZ vdev, by running `zpool attach POOL raidzP-N NEW_DEVICE`, e.g. `zpool attach tank raidz2-0 sda`. The new device will become part of the RAIDZ group. A "raidz expansion" will be initiated, and the new device will contribute additional space to the RAIDZ group once the expansion completes. The `feature@raidz_expansion` on-disk feature flag must be `enabled` to initiate an expansion, and it remains `active` for the life of the pool. In other words, pools with expanded RAIDZ vdevs can not be imported by older releases of the ZFS software. == During expansion == The expansion entails reading all allocated space from existing disks in the RAIDZ group, and rewriting it to the new disks in the RAIDZ group (including the newly added device). The expansion progress can be monitored with `zpool status`. Data redundancy is maintained during (and after) the expansion. If a disk fails while the expansion is in progress, the expansion pauses until the health of the RAIDZ vdev is restored (e.g. by replacing the failed disk and waiting for reconstruction to complete). The pool remains accessible during expansion. Following a reboot or export/import, the expansion resumes where it left off. == After expansion == When the expansion completes, the additional space is available for use, and is reflected in the `available` zfs property (as seen in `zfs list`, `df`, etc). Expansion does not change the number of failures that can be tolerated without data loss (e.g. a RAIDZ2 is still a RAIDZ2 even after expansion). A RAIDZ vdev can be expanded multiple times. After the expansion completes, old blocks remain with their old data-to-parity ratio (e.g. 5-wide RAIDZ2, has 3 data to 2 parity), but distributed among the larger set of disks. New blocks will be written with the new data-to-parity ratio (e.g. a 5-wide RAIDZ2 which has been expanded once to 6-wide, has 4 data to 2 parity). However, the RAIDZ vdev's "assumed parity ratio" does not change, so slightly less space than is expected may be reported for newly-written blocks, according to `zfs list`, `df`, `ls -s`, and similar tools. Sponsored-by: The FreeBSD Foundation Sponsored-by: iXsystems, Inc. Sponsored-by: vStack Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov> Reviewed-by: Mark Maybee <mark.maybee@delphix.com> Authored-by: Matthew Ahrens <mahrens@delphix.com> Contributions-by: Fedor Uporov <fuporov.vstack@gmail.com> Contributions-by: Stuart Maybee <stuart.maybee@comcast.net> Contributions-by: Thorsten Behrens <tbehrens@outlook.com> Contributions-by: Fmstrat <nospam@nowsci.com> Contributions-by: Don Brady <dev.fs.zfs@gmail.com> Signed-off-by: Don Brady <dev.fs.zfs@gmail.com> Closes #15022
2023-11-08 21:19:41 +03:00
raidz_scratch_verify();
kernel_init(SPA_MODE_READ | SPA_MODE_WRITE);
error = spa_open(ztest_opts.zo_pool, &spa, FTAG);
if (error) {
VERIFY3S(error, ==, ENOENT);
ztest_import_impl();
VERIFY0(spa_open(ztest_opts.zo_pool, &spa, FTAG));
zs->zs_metaslab_sz =
1ULL << spa->spa_root_vdev->vdev_child[0]->vdev_ms_shift;
}
metaslab_preload_limit = ztest_random(20) + 1;
ztest_spa = spa;
RAID-Z expansion feature This feature allows disks to be added one at a time to a RAID-Z group, expanding its capacity incrementally. This feature is especially useful for small pools (typically with only one RAID-Z group), where there isn't sufficient hardware to add capacity by adding a whole new RAID-Z group (typically doubling the number of disks). == Initiating expansion == A new device (disk) can be attached to an existing RAIDZ vdev, by running `zpool attach POOL raidzP-N NEW_DEVICE`, e.g. `zpool attach tank raidz2-0 sda`. The new device will become part of the RAIDZ group. A "raidz expansion" will be initiated, and the new device will contribute additional space to the RAIDZ group once the expansion completes. The `feature@raidz_expansion` on-disk feature flag must be `enabled` to initiate an expansion, and it remains `active` for the life of the pool. In other words, pools with expanded RAIDZ vdevs can not be imported by older releases of the ZFS software. == During expansion == The expansion entails reading all allocated space from existing disks in the RAIDZ group, and rewriting it to the new disks in the RAIDZ group (including the newly added device). The expansion progress can be monitored with `zpool status`. Data redundancy is maintained during (and after) the expansion. If a disk fails while the expansion is in progress, the expansion pauses until the health of the RAIDZ vdev is restored (e.g. by replacing the failed disk and waiting for reconstruction to complete). The pool remains accessible during expansion. Following a reboot or export/import, the expansion resumes where it left off. == After expansion == When the expansion completes, the additional space is available for use, and is reflected in the `available` zfs property (as seen in `zfs list`, `df`, etc). Expansion does not change the number of failures that can be tolerated without data loss (e.g. a RAIDZ2 is still a RAIDZ2 even after expansion). A RAIDZ vdev can be expanded multiple times. After the expansion completes, old blocks remain with their old data-to-parity ratio (e.g. 5-wide RAIDZ2, has 3 data to 2 parity), but distributed among the larger set of disks. New blocks will be written with the new data-to-parity ratio (e.g. a 5-wide RAIDZ2 which has been expanded once to 6-wide, has 4 data to 2 parity). However, the RAIDZ vdev's "assumed parity ratio" does not change, so slightly less space than is expected may be reported for newly-written blocks, according to `zfs list`, `df`, `ls -s`, and similar tools. Sponsored-by: The FreeBSD Foundation Sponsored-by: iXsystems, Inc. Sponsored-by: vStack Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov> Reviewed-by: Mark Maybee <mark.maybee@delphix.com> Authored-by: Matthew Ahrens <mahrens@delphix.com> Contributions-by: Fedor Uporov <fuporov.vstack@gmail.com> Contributions-by: Stuart Maybee <stuart.maybee@comcast.net> Contributions-by: Thorsten Behrens <tbehrens@outlook.com> Contributions-by: Fmstrat <nospam@nowsci.com> Contributions-by: Don Brady <dev.fs.zfs@gmail.com> Signed-off-by: Don Brady <dev.fs.zfs@gmail.com> Closes #15022
2023-11-08 21:19:41 +03:00
/*
* XXX - BUGBUG raidz expansion do not run this for generic for now
*/
if (ztest_opts.zo_raidz_expand_test != RAIDZ_EXPAND_NONE)
VERIFY0(vdev_raidz_impl_set("cycle"));
Linux 5.0 compat: SIMD compatibility Restore the SIMD optimization for 4.19.38 LTS, 4.14.120 LTS, and 5.0 and newer kernels. This is accomplished by leveraging the fact that by definition dedicated kernel threads never need to concern themselves with saving and restoring the user FPU state. Therefore, they may use the FPU as long as we can guarantee user tasks always restore their FPU state before context switching back to user space. For the 5.0 and 5.1 kernels disabling preemption and local interrupts is sufficient to allow the FPU to be used. All non-kernel threads will restore the preserved user FPU state. For 5.2 and latter kernels the user FPU state restoration will be skipped if the kernel determines the registers have not changed. Therefore, for these kernels we need to perform the additional step of saving and restoring the FPU registers. Invalidating the per-cpu global tracking the FPU state would force a restore but that functionality is private to the core x86 FPU implementation and unavailable. In practice, restricting SIMD to kernel threads is not a major restriction for ZFS. The vast majority of SIMD operations are already performed by the IO pipeline. The remaining cases are relatively infrequent and can be handled by the generic code without significant impact. The two most noteworthy cases are: 1) Decrypting the wrapping key for an encrypted dataset, i.e. `zfs load-key`. All other encryption and decryption operations will use the SIMD optimized implementations. 2) Generating the payload checksums for a `zfs send` stream. In order to avoid making any changes to the higher layers of ZFS all of the `*_get_ops()` functions were updated to take in to consideration the calling context. This allows for the fastest implementation to be used as appropriate (see kfpu_allowed()). The only other notable instance of SIMD operations being used outside a kernel thread was at module load time. This code was moved in to a taskq in order to accommodate the new kernel thread restriction. Finally, a few other modifications were made in order to further harden this code and facilitate testing. They include updating each implementations operations structure to be declared as a constant. And allowing "cycle" to be set when selecting the preferred ops in the kernel as well as user space. Reviewed-by: Tony Hutter <hutter2@llnl.gov> Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov> Closes #8754 Closes #8793 Closes #8965
2019-07-12 19:31:20 +03:00
dmu_objset_stats_t dds;
VERIFY0(ztest_dmu_objset_own(ztest_opts.zo_pool,
Native Encryption for ZFS on Linux This change incorporates three major pieces: The first change is a keystore that manages wrapping and encryption keys for encrypted datasets. These commands mostly involve manipulating the new DSL Crypto Key ZAP Objects that live in the MOS. Each encrypted dataset has its own DSL Crypto Key that is protected with a user's key. This level of indirection allows users to change their keys without re-encrypting their entire datasets. The change implements the new subcommands "zfs load-key", "zfs unload-key" and "zfs change-key" which allow the user to manage their encryption keys and settings. In addition, several new flags and properties have been added to allow dataset creation and to make mounting and unmounting more convenient. The second piece of this patch provides the ability to encrypt, decyrpt, and authenticate protected datasets. Each object set maintains a Merkel tree of Message Authentication Codes that protect the lower layers, similarly to how checksums are maintained. This part impacts the zio layer, which handles the actual encryption and generation of MACs, as well as the ARC and DMU, which need to be able to handle encrypted buffers and protected data. The last addition is the ability to do raw, encrypted sends and receives. The idea here is to send raw encrypted and compressed data and receive it exactly as is on a backup system. This means that the dataset on the receiving system is protected using the same user key that is in use on the sending side. By doing so, datasets can be efficiently backed up to an untrusted system without fear of data being compromised. Reviewed by: Matthew Ahrens <mahrens@delphix.com> Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov> Reviewed-by: Jorgen Lundman <lundman@lundman.net> Signed-off-by: Tom Caputi <tcaputi@datto.com> Closes #494 Closes #5769
2017-08-14 20:36:48 +03:00
DMU_OST_ANY, B_TRUE, B_TRUE, FTAG, &os));
dsl_pool_config_enter(dmu_objset_pool(os), FTAG);
dmu_objset_fast_stat(os, &dds);
dsl_pool_config_exit(dmu_objset_pool(os), FTAG);
Native Encryption for ZFS on Linux This change incorporates three major pieces: The first change is a keystore that manages wrapping and encryption keys for encrypted datasets. These commands mostly involve manipulating the new DSL Crypto Key ZAP Objects that live in the MOS. Each encrypted dataset has its own DSL Crypto Key that is protected with a user's key. This level of indirection allows users to change their keys without re-encrypting their entire datasets. The change implements the new subcommands "zfs load-key", "zfs unload-key" and "zfs change-key" which allow the user to manage their encryption keys and settings. In addition, several new flags and properties have been added to allow dataset creation and to make mounting and unmounting more convenient. The second piece of this patch provides the ability to encrypt, decyrpt, and authenticate protected datasets. Each object set maintains a Merkel tree of Message Authentication Codes that protect the lower layers, similarly to how checksums are maintained. This part impacts the zio layer, which handles the actual encryption and generation of MACs, as well as the ARC and DMU, which need to be able to handle encrypted buffers and protected data. The last addition is the ability to do raw, encrypted sends and receives. The idea here is to send raw encrypted and compressed data and receive it exactly as is on a backup system. This means that the dataset on the receiving system is protected using the same user key that is in use on the sending side. By doing so, datasets can be efficiently backed up to an untrusted system without fear of data being compromised. Reviewed by: Matthew Ahrens <mahrens@delphix.com> Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov> Reviewed-by: Jorgen Lundman <lundman@lundman.net> Signed-off-by: Tom Caputi <tcaputi@datto.com> Closes #494 Closes #5769
2017-08-14 20:36:48 +03:00
dmu_objset_disown(os, B_TRUE, FTAG);
RAID-Z expansion feature This feature allows disks to be added one at a time to a RAID-Z group, expanding its capacity incrementally. This feature is especially useful for small pools (typically with only one RAID-Z group), where there isn't sufficient hardware to add capacity by adding a whole new RAID-Z group (typically doubling the number of disks). == Initiating expansion == A new device (disk) can be attached to an existing RAIDZ vdev, by running `zpool attach POOL raidzP-N NEW_DEVICE`, e.g. `zpool attach tank raidz2-0 sda`. The new device will become part of the RAIDZ group. A "raidz expansion" will be initiated, and the new device will contribute additional space to the RAIDZ group once the expansion completes. The `feature@raidz_expansion` on-disk feature flag must be `enabled` to initiate an expansion, and it remains `active` for the life of the pool. In other words, pools with expanded RAIDZ vdevs can not be imported by older releases of the ZFS software. == During expansion == The expansion entails reading all allocated space from existing disks in the RAIDZ group, and rewriting it to the new disks in the RAIDZ group (including the newly added device). The expansion progress can be monitored with `zpool status`. Data redundancy is maintained during (and after) the expansion. If a disk fails while the expansion is in progress, the expansion pauses until the health of the RAIDZ vdev is restored (e.g. by replacing the failed disk and waiting for reconstruction to complete). The pool remains accessible during expansion. Following a reboot or export/import, the expansion resumes where it left off. == After expansion == When the expansion completes, the additional space is available for use, and is reflected in the `available` zfs property (as seen in `zfs list`, `df`, etc). Expansion does not change the number of failures that can be tolerated without data loss (e.g. a RAIDZ2 is still a RAIDZ2 even after expansion). A RAIDZ vdev can be expanded multiple times. After the expansion completes, old blocks remain with their old data-to-parity ratio (e.g. 5-wide RAIDZ2, has 3 data to 2 parity), but distributed among the larger set of disks. New blocks will be written with the new data-to-parity ratio (e.g. a 5-wide RAIDZ2 which has been expanded once to 6-wide, has 4 data to 2 parity). However, the RAIDZ vdev's "assumed parity ratio" does not change, so slightly less space than is expected may be reported for newly-written blocks, according to `zfs list`, `df`, `ls -s`, and similar tools. Sponsored-by: The FreeBSD Foundation Sponsored-by: iXsystems, Inc. Sponsored-by: vStack Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov> Reviewed-by: Mark Maybee <mark.maybee@delphix.com> Authored-by: Matthew Ahrens <mahrens@delphix.com> Contributions-by: Fedor Uporov <fuporov.vstack@gmail.com> Contributions-by: Stuart Maybee <stuart.maybee@comcast.net> Contributions-by: Thorsten Behrens <tbehrens@outlook.com> Contributions-by: Fmstrat <nospam@nowsci.com> Contributions-by: Don Brady <dev.fs.zfs@gmail.com> Signed-off-by: Don Brady <dev.fs.zfs@gmail.com> Closes #15022
2023-11-08 21:19:41 +03:00
/* Give the dedicated raidz expansion test more grace time */
if (ztest_opts.zo_raidz_expand_test != RAIDZ_EXPAND_NONE)
zfs_deadman_synctime_ms *= 2;
2008-11-20 23:01:55 +03:00
/*
* Create a thread to periodically resume suspended I/O.
2008-11-20 23:01:55 +03:00
*/
Simplify threads, mutexs, cvs and rwlocks * Simplify threads, mutexs, cvs and rwlocks * Update the zk_thread_create() function to use the same trick as Illumos. Specifically, cast the new pthread_t to a void pointer and return that as the kthread_t *. This avoids the issues associated with managing a wrapper structure and is safe as long as the callers never attempt to dereference it. * Update all function prototypes passed to pthread_create() to match the expected prototype. We were getting away this with before since the function were explicitly cast. * Replaced direct zk_thread_create() calls with thread_create() for code consistency. All consumers of libzpool now use the proper wrappers. * The mutex_held() calls were converted to MUTEX_HELD(). * Removed all mutex_owner() calls and retired the interface. Instead use MUTEX_HELD() which provides the same information and allows the implementation details to be hidden. In this case the use of the pthread_equals() function. * The kthread_t, kmutex_t, krwlock_t, and krwlock_t types had any non essential fields removed. In the case of kthread_t and kcondvar_t they could be directly typedef'd to pthread_t and pthread_cond_t respectively. * Removed all extra ASSERTS from the thread, mutex, rwlock, and cv wrapper functions. In practice, pthreads already provides the vast majority of checks as long as we check the return code. Removing this code from our wrappers help readability. * Added TS_JOINABLE state flag to pass to request a joinable rather than detached thread. This isn't a standard thread_create() state but it's the least invasive way to pass this information and is only used by ztest. TEST_ZTEST_TIMEOUT=3600 Chunwei Chen <tuxoko@gmail.com> Reviewed-by: Tom Caputi <tcaputi@datto.com> Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov> Closes #4547 Closes #5503 Closes #5523 Closes #6377 Closes #6495
2017-08-11 18:51:44 +03:00
resume_thread = thread_create(NULL, 0, ztest_resume_thread,
spa, 0, NULL, TS_RUN | TS_JOINABLE, defclsyspri);
2008-11-20 23:01:55 +03:00
/*
Extend deadman logic The intent of this patch is extend the existing deadman code such that it's flexible enough to be used by both ztest and on production systems. The proposed changes include: * Added a new `zfs_deadman_failmode` module option which is used to dynamically control the behavior of the deadman. It's loosely modeled after, but independant from, the pool failmode property. It can be set to wait, continue, or panic. * wait - Wait for the "hung" I/O (default) * continue - Attempt to recover from a "hung" I/O * panic - Panic the system * Added a new `zfs_deadman_ziotime_ms` module option which is analogous to `zfs_deadman_synctime_ms` except instead of applying to a pool TXG sync it applies to zio_wait(). A default value of 300s is used to define a "hung" zio. * The ztest deadman thread has been re-enabled by default, aligned with the upstream OpenZFS code, and then extended to terminate the process when it takes significantly longer to complete than expected. * The -G option was added to ztest to print the internal debug log when a fatal error is encountered. This same option was previously added to zdb in commit fa603f82. Update zloop.sh to unconditionally pass -G to obtain additional debugging. * The FM_EREPORT_ZFS_DELAY event which was previously posted when the deadman detect a "hung" pool has been replaced by a new dedicated FM_EREPORT_ZFS_DEADMAN event. * The proposed recovery logic attempts to restart a "hung" zio by calling zio_interrupt() on any outstanding leaf zios. We may want to further restrict this to zios in either the ZIO_STAGE_VDEV_IO_START or ZIO_STAGE_VDEV_IO_DONE stages. Calling zio_interrupt() is expected to only be useful for cases when an IO has been submitted to the physical device but for some reasonable the completion callback hasn't been called by the lower layers. This shouldn't be possible but has been observed and may be caused by kernel/driver bugs. * The 'zfs_deadman_synctime_ms' default value was reduced from 1000s to 600s. * Depending on how ztest fails there may be no cache file to move. This should not be considered fatal, collect the logs which are available and carry on. * Add deadman test cases for spa_deadman() and zio_wait(). * Increase default zfs_deadman_checktime_ms to 60s. Reviewed-by: Tim Chase <tim@chase2k.com> Reviewed by: Thomas Caputi <tcaputi@datto.com> Reviewed-by: Giuseppe Di Natale <dinatale2@llnl.gov> Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov> Closes #6999
2017-12-19 01:06:07 +03:00
* Create a deadman thread and set to panic if we hang.
*/
deadman_thread = thread_create(NULL, 0, ztest_deadman_thread,
Extend deadman logic The intent of this patch is extend the existing deadman code such that it's flexible enough to be used by both ztest and on production systems. The proposed changes include: * Added a new `zfs_deadman_failmode` module option which is used to dynamically control the behavior of the deadman. It's loosely modeled after, but independant from, the pool failmode property. It can be set to wait, continue, or panic. * wait - Wait for the "hung" I/O (default) * continue - Attempt to recover from a "hung" I/O * panic - Panic the system * Added a new `zfs_deadman_ziotime_ms` module option which is analogous to `zfs_deadman_synctime_ms` except instead of applying to a pool TXG sync it applies to zio_wait(). A default value of 300s is used to define a "hung" zio. * The ztest deadman thread has been re-enabled by default, aligned with the upstream OpenZFS code, and then extended to terminate the process when it takes significantly longer to complete than expected. * The -G option was added to ztest to print the internal debug log when a fatal error is encountered. This same option was previously added to zdb in commit fa603f82. Update zloop.sh to unconditionally pass -G to obtain additional debugging. * The FM_EREPORT_ZFS_DELAY event which was previously posted when the deadman detect a "hung" pool has been replaced by a new dedicated FM_EREPORT_ZFS_DEADMAN event. * The proposed recovery logic attempts to restart a "hung" zio by calling zio_interrupt() on any outstanding leaf zios. We may want to further restrict this to zios in either the ZIO_STAGE_VDEV_IO_START or ZIO_STAGE_VDEV_IO_DONE stages. Calling zio_interrupt() is expected to only be useful for cases when an IO has been submitted to the physical device but for some reasonable the completion callback hasn't been called by the lower layers. This shouldn't be possible but has been observed and may be caused by kernel/driver bugs. * The 'zfs_deadman_synctime_ms' default value was reduced from 1000s to 600s. * Depending on how ztest fails there may be no cache file to move. This should not be considered fatal, collect the logs which are available and carry on. * Add deadman test cases for spa_deadman() and zio_wait(). * Increase default zfs_deadman_checktime_ms to 60s. Reviewed-by: Tim Chase <tim@chase2k.com> Reviewed by: Thomas Caputi <tcaputi@datto.com> Reviewed-by: Giuseppe Di Natale <dinatale2@llnl.gov> Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov> Closes #6999
2017-12-19 01:06:07 +03:00
zs, 0, NULL, TS_RUN | TS_JOINABLE, defclsyspri);
spa->spa_deadman_failmode = ZIO_FAILURE_MODE_PANIC;
2008-11-20 23:01:55 +03:00
/*
OpenZFS 9166 - zfs storage pool checkpoint Details about the motivation of this feature and its usage can be found in this blogpost: https://sdimitro.github.io/post/zpool-checkpoint/ A lightning talk of this feature can be found here: https://www.youtube.com/watch?v=fPQA8K40jAM Implementation details can be found in big block comment of spa_checkpoint.c Side-changes that are relevant to this commit but not explained elsewhere: * renames members of "struct metaslab trees to be shorter without losing meaning * space_map_{alloc,truncate}() accept a block size as a parameter. The reason is that in the current state all space maps that we allocate through the DMU use a global tunable (space_map_blksz) which defauls to 4KB. This is ok for metaslab space maps in terms of bandwirdth since they are scattered all over the disk. But for other space maps this default is probably not what we want. Examples are device removal's vdev_obsolete_sm or vdev_chedkpoint_sm from this review. Both of these have a 1:1 relationship with each vdev and could benefit from a bigger block size. Porting notes: * The part of dsl_scan_sync() which handles async destroys has been moved into the new dsl_process_async_destroys() function. * Remove "VERIFY(!(flags & FWRITE))" in "kernel.c" so zhack can write to block device backed pools. * ZTS: * Fix get_txg() in zpool_sync_001_pos due to "checkpoint_txg". * Don't use large dd block sizes on /dev/urandom under Linux in checkpoint_capacity. * Adopt Delphix-OS's setting of 4 (spa_asize_inflation = SPA_DVAS_PER_BP + 1) for the checkpoint_capacity test to speed its attempts to fill the pool * Create the base and nested pools with sync=disabled to speed up the "setup" phase. * Clear labels in test pool between checkpoint tests to avoid duplicate pool issues. * The import_rewind_device_replaced test has been marked as "known to fail" for the reasons listed in its DISCLAIMER. * New module parameters: zfs_spa_discard_memory_limit, zfs_remove_max_bytes_pause (not documented - debugging only) vdev_max_ms_count (formerly metaslabs_per_vdev) vdev_min_ms_count Authored by: Serapheim Dimitropoulos <serapheim.dimitro@delphix.com> Reviewed by: Matthew Ahrens <mahrens@delphix.com> Reviewed by: John Kennedy <john.kennedy@delphix.com> Reviewed by: Dan Kimmel <dan.kimmel@delphix.com> Reviewed by: Brian Behlendorf <behlendorf1@llnl.gov> Approved by: Richard Lowe <richlowe@richlowe.net> Ported-by: Tim Chase <tim@chase2k.com> Signed-off-by: Tim Chase <tim@chase2k.com> OpenZFS-issue: https://illumos.org/issues/9166 OpenZFS-commit: https://github.com/openzfs/openzfs/commit/7159fdb8 Closes #7570
2016-12-17 01:11:29 +03:00
* Verify that we can safely inquire about any object,
2008-11-20 23:01:55 +03:00
* whether it's allocated or not. To make it interesting,
* we probe a 5-wide window around each power of two.
* This hits all edge cases, including zero and the max.
*/
for (t = 0; t < 64; t++) {
for (d = -5; d <= 5; d++) {
2008-11-20 23:01:55 +03:00
error = dmu_object_info(spa->spa_meta_objset,
(1ULL << t) + d, NULL);
ASSERT(error == 0 || error == ENOENT ||
error == EINVAL);
}
}
/*
* If we got any ENOSPC errors on the previous run, destroy something.
2008-11-20 23:01:55 +03:00
*/
if (zs->zs_enospc_count != 0) {
RAID-Z expansion feature This feature allows disks to be added one at a time to a RAID-Z group, expanding its capacity incrementally. This feature is especially useful for small pools (typically with only one RAID-Z group), where there isn't sufficient hardware to add capacity by adding a whole new RAID-Z group (typically doubling the number of disks). == Initiating expansion == A new device (disk) can be attached to an existing RAIDZ vdev, by running `zpool attach POOL raidzP-N NEW_DEVICE`, e.g. `zpool attach tank raidz2-0 sda`. The new device will become part of the RAIDZ group. A "raidz expansion" will be initiated, and the new device will contribute additional space to the RAIDZ group once the expansion completes. The `feature@raidz_expansion` on-disk feature flag must be `enabled` to initiate an expansion, and it remains `active` for the life of the pool. In other words, pools with expanded RAIDZ vdevs can not be imported by older releases of the ZFS software. == During expansion == The expansion entails reading all allocated space from existing disks in the RAIDZ group, and rewriting it to the new disks in the RAIDZ group (including the newly added device). The expansion progress can be monitored with `zpool status`. Data redundancy is maintained during (and after) the expansion. If a disk fails while the expansion is in progress, the expansion pauses until the health of the RAIDZ vdev is restored (e.g. by replacing the failed disk and waiting for reconstruction to complete). The pool remains accessible during expansion. Following a reboot or export/import, the expansion resumes where it left off. == After expansion == When the expansion completes, the additional space is available for use, and is reflected in the `available` zfs property (as seen in `zfs list`, `df`, etc). Expansion does not change the number of failures that can be tolerated without data loss (e.g. a RAIDZ2 is still a RAIDZ2 even after expansion). A RAIDZ vdev can be expanded multiple times. After the expansion completes, old blocks remain with their old data-to-parity ratio (e.g. 5-wide RAIDZ2, has 3 data to 2 parity), but distributed among the larger set of disks. New blocks will be written with the new data-to-parity ratio (e.g. a 5-wide RAIDZ2 which has been expanded once to 6-wide, has 4 data to 2 parity). However, the RAIDZ vdev's "assumed parity ratio" does not change, so slightly less space than is expected may be reported for newly-written blocks, according to `zfs list`, `df`, `ls -s`, and similar tools. Sponsored-by: The FreeBSD Foundation Sponsored-by: iXsystems, Inc. Sponsored-by: vStack Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov> Reviewed-by: Mark Maybee <mark.maybee@delphix.com> Authored-by: Matthew Ahrens <mahrens@delphix.com> Contributions-by: Fedor Uporov <fuporov.vstack@gmail.com> Contributions-by: Stuart Maybee <stuart.maybee@comcast.net> Contributions-by: Thorsten Behrens <tbehrens@outlook.com> Contributions-by: Fmstrat <nospam@nowsci.com> Contributions-by: Don Brady <dev.fs.zfs@gmail.com> Signed-off-by: Don Brady <dev.fs.zfs@gmail.com> Closes #15022
2023-11-08 21:19:41 +03:00
/* Not expecting ENOSPC errors during raidz expansion tests */
ASSERT3U(ztest_opts.zo_raidz_expand_test, ==,
RAIDZ_EXPAND_NONE);
int d = ztest_random(ztest_opts.zo_datasets);
ztest_dataset_destroy(d);
}
2008-11-20 23:01:55 +03:00
zs->zs_enospc_count = 0;
/*
* If we were in the middle of ztest_device_removal() and were killed
* we need to ensure the removal and scrub complete before running
* any tests that check ztest_device_removal_active. The removal will
* be restarted automatically when the spa is opened, but we need to
* initiate the scrub manually if it is not already in progress. Note
* that we always run the scrub whenever an indirect vdev exists
* because we have no way of knowing for sure if ztest_device_removal()
* fully completed its scrub before the pool was reimported.
RAID-Z expansion feature This feature allows disks to be added one at a time to a RAID-Z group, expanding its capacity incrementally. This feature is especially useful for small pools (typically with only one RAID-Z group), where there isn't sufficient hardware to add capacity by adding a whole new RAID-Z group (typically doubling the number of disks). == Initiating expansion == A new device (disk) can be attached to an existing RAIDZ vdev, by running `zpool attach POOL raidzP-N NEW_DEVICE`, e.g. `zpool attach tank raidz2-0 sda`. The new device will become part of the RAIDZ group. A "raidz expansion" will be initiated, and the new device will contribute additional space to the RAIDZ group once the expansion completes. The `feature@raidz_expansion` on-disk feature flag must be `enabled` to initiate an expansion, and it remains `active` for the life of the pool. In other words, pools with expanded RAIDZ vdevs can not be imported by older releases of the ZFS software. == During expansion == The expansion entails reading all allocated space from existing disks in the RAIDZ group, and rewriting it to the new disks in the RAIDZ group (including the newly added device). The expansion progress can be monitored with `zpool status`. Data redundancy is maintained during (and after) the expansion. If a disk fails while the expansion is in progress, the expansion pauses until the health of the RAIDZ vdev is restored (e.g. by replacing the failed disk and waiting for reconstruction to complete). The pool remains accessible during expansion. Following a reboot or export/import, the expansion resumes where it left off. == After expansion == When the expansion completes, the additional space is available for use, and is reflected in the `available` zfs property (as seen in `zfs list`, `df`, etc). Expansion does not change the number of failures that can be tolerated without data loss (e.g. a RAIDZ2 is still a RAIDZ2 even after expansion). A RAIDZ vdev can be expanded multiple times. After the expansion completes, old blocks remain with their old data-to-parity ratio (e.g. 5-wide RAIDZ2, has 3 data to 2 parity), but distributed among the larger set of disks. New blocks will be written with the new data-to-parity ratio (e.g. a 5-wide RAIDZ2 which has been expanded once to 6-wide, has 4 data to 2 parity). However, the RAIDZ vdev's "assumed parity ratio" does not change, so slightly less space than is expected may be reported for newly-written blocks, according to `zfs list`, `df`, `ls -s`, and similar tools. Sponsored-by: The FreeBSD Foundation Sponsored-by: iXsystems, Inc. Sponsored-by: vStack Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov> Reviewed-by: Mark Maybee <mark.maybee@delphix.com> Authored-by: Matthew Ahrens <mahrens@delphix.com> Contributions-by: Fedor Uporov <fuporov.vstack@gmail.com> Contributions-by: Stuart Maybee <stuart.maybee@comcast.net> Contributions-by: Thorsten Behrens <tbehrens@outlook.com> Contributions-by: Fmstrat <nospam@nowsci.com> Contributions-by: Don Brady <dev.fs.zfs@gmail.com> Signed-off-by: Don Brady <dev.fs.zfs@gmail.com> Closes #15022
2023-11-08 21:19:41 +03:00
*
* Does not apply for the RAIDZ expansion specific test runs
*/
RAID-Z expansion feature This feature allows disks to be added one at a time to a RAID-Z group, expanding its capacity incrementally. This feature is especially useful for small pools (typically with only one RAID-Z group), where there isn't sufficient hardware to add capacity by adding a whole new RAID-Z group (typically doubling the number of disks). == Initiating expansion == A new device (disk) can be attached to an existing RAIDZ vdev, by running `zpool attach POOL raidzP-N NEW_DEVICE`, e.g. `zpool attach tank raidz2-0 sda`. The new device will become part of the RAIDZ group. A "raidz expansion" will be initiated, and the new device will contribute additional space to the RAIDZ group once the expansion completes. The `feature@raidz_expansion` on-disk feature flag must be `enabled` to initiate an expansion, and it remains `active` for the life of the pool. In other words, pools with expanded RAIDZ vdevs can not be imported by older releases of the ZFS software. == During expansion == The expansion entails reading all allocated space from existing disks in the RAIDZ group, and rewriting it to the new disks in the RAIDZ group (including the newly added device). The expansion progress can be monitored with `zpool status`. Data redundancy is maintained during (and after) the expansion. If a disk fails while the expansion is in progress, the expansion pauses until the health of the RAIDZ vdev is restored (e.g. by replacing the failed disk and waiting for reconstruction to complete). The pool remains accessible during expansion. Following a reboot or export/import, the expansion resumes where it left off. == After expansion == When the expansion completes, the additional space is available for use, and is reflected in the `available` zfs property (as seen in `zfs list`, `df`, etc). Expansion does not change the number of failures that can be tolerated without data loss (e.g. a RAIDZ2 is still a RAIDZ2 even after expansion). A RAIDZ vdev can be expanded multiple times. After the expansion completes, old blocks remain with their old data-to-parity ratio (e.g. 5-wide RAIDZ2, has 3 data to 2 parity), but distributed among the larger set of disks. New blocks will be written with the new data-to-parity ratio (e.g. a 5-wide RAIDZ2 which has been expanded once to 6-wide, has 4 data to 2 parity). However, the RAIDZ vdev's "assumed parity ratio" does not change, so slightly less space than is expected may be reported for newly-written blocks, according to `zfs list`, `df`, `ls -s`, and similar tools. Sponsored-by: The FreeBSD Foundation Sponsored-by: iXsystems, Inc. Sponsored-by: vStack Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov> Reviewed-by: Mark Maybee <mark.maybee@delphix.com> Authored-by: Matthew Ahrens <mahrens@delphix.com> Contributions-by: Fedor Uporov <fuporov.vstack@gmail.com> Contributions-by: Stuart Maybee <stuart.maybee@comcast.net> Contributions-by: Thorsten Behrens <tbehrens@outlook.com> Contributions-by: Fmstrat <nospam@nowsci.com> Contributions-by: Don Brady <dev.fs.zfs@gmail.com> Signed-off-by: Don Brady <dev.fs.zfs@gmail.com> Closes #15022
2023-11-08 21:19:41 +03:00
if (ztest_opts.zo_raidz_expand_test == RAIDZ_EXPAND_NONE &&
(spa->spa_removing_phys.sr_state == DSS_SCANNING ||
spa->spa_removing_phys.sr_prev_indirect_vdev != -1)) {
while (spa->spa_removing_phys.sr_state == DSS_SCANNING)
txg_wait_synced(spa_get_dsl(spa), 0);
error = ztest_scrub_impl(spa);
if (error == EBUSY)
error = 0;
ASSERT0(error);
}
if (ztest_opts.zo_verbose >= 4)
2008-11-20 23:01:55 +03:00
(void) printf("starting main threads...\n");
/*
* Replay all logs of all datasets in the pool. This is primarily for
* temporary datasets which wouldn't otherwise get replayed, which
* can trigger failures when attempting to offline a SLOG in
* ztest_fault_inject().
*/
(void) dmu_objset_find(ztest_opts.zo_pool, ztest_replay_zil_cb,
NULL, DS_FIND_CHILDREN);
RAID-Z expansion feature This feature allows disks to be added one at a time to a RAID-Z group, expanding its capacity incrementally. This feature is especially useful for small pools (typically with only one RAID-Z group), where there isn't sufficient hardware to add capacity by adding a whole new RAID-Z group (typically doubling the number of disks). == Initiating expansion == A new device (disk) can be attached to an existing RAIDZ vdev, by running `zpool attach POOL raidzP-N NEW_DEVICE`, e.g. `zpool attach tank raidz2-0 sda`. The new device will become part of the RAIDZ group. A "raidz expansion" will be initiated, and the new device will contribute additional space to the RAIDZ group once the expansion completes. The `feature@raidz_expansion` on-disk feature flag must be `enabled` to initiate an expansion, and it remains `active` for the life of the pool. In other words, pools with expanded RAIDZ vdevs can not be imported by older releases of the ZFS software. == During expansion == The expansion entails reading all allocated space from existing disks in the RAIDZ group, and rewriting it to the new disks in the RAIDZ group (including the newly added device). The expansion progress can be monitored with `zpool status`. Data redundancy is maintained during (and after) the expansion. If a disk fails while the expansion is in progress, the expansion pauses until the health of the RAIDZ vdev is restored (e.g. by replacing the failed disk and waiting for reconstruction to complete). The pool remains accessible during expansion. Following a reboot or export/import, the expansion resumes where it left off. == After expansion == When the expansion completes, the additional space is available for use, and is reflected in the `available` zfs property (as seen in `zfs list`, `df`, etc). Expansion does not change the number of failures that can be tolerated without data loss (e.g. a RAIDZ2 is still a RAIDZ2 even after expansion). A RAIDZ vdev can be expanded multiple times. After the expansion completes, old blocks remain with their old data-to-parity ratio (e.g. 5-wide RAIDZ2, has 3 data to 2 parity), but distributed among the larger set of disks. New blocks will be written with the new data-to-parity ratio (e.g. a 5-wide RAIDZ2 which has been expanded once to 6-wide, has 4 data to 2 parity). However, the RAIDZ vdev's "assumed parity ratio" does not change, so slightly less space than is expected may be reported for newly-written blocks, according to `zfs list`, `df`, `ls -s`, and similar tools. Sponsored-by: The FreeBSD Foundation Sponsored-by: iXsystems, Inc. Sponsored-by: vStack Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov> Reviewed-by: Mark Maybee <mark.maybee@delphix.com> Authored-by: Matthew Ahrens <mahrens@delphix.com> Contributions-by: Fedor Uporov <fuporov.vstack@gmail.com> Contributions-by: Stuart Maybee <stuart.maybee@comcast.net> Contributions-by: Thorsten Behrens <tbehrens@outlook.com> Contributions-by: Fmstrat <nospam@nowsci.com> Contributions-by: Don Brady <dev.fs.zfs@gmail.com> Signed-off-by: Don Brady <dev.fs.zfs@gmail.com> Closes #15022
2023-11-08 21:19:41 +03:00
if (ztest_opts.zo_raidz_expand_test == RAIDZ_EXPAND_REQUESTED)
ztest_raidz_expand_run(zs, spa);
else if (ztest_opts.zo_raidz_expand_test == RAIDZ_EXPAND_KILLED)
ztest_raidz_expand_check(spa);
else
ztest_generic_run(zs, spa);
/* Kill the resume and deadman threads */
ztest_exiting = B_TRUE;
Simplify threads, mutexs, cvs and rwlocks * Simplify threads, mutexs, cvs and rwlocks * Update the zk_thread_create() function to use the same trick as Illumos. Specifically, cast the new pthread_t to a void pointer and return that as the kthread_t *. This avoids the issues associated with managing a wrapper structure and is safe as long as the callers never attempt to dereference it. * Update all function prototypes passed to pthread_create() to match the expected prototype. We were getting away this with before since the function were explicitly cast. * Replaced direct zk_thread_create() calls with thread_create() for code consistency. All consumers of libzpool now use the proper wrappers. * The mutex_held() calls were converted to MUTEX_HELD(). * Removed all mutex_owner() calls and retired the interface. Instead use MUTEX_HELD() which provides the same information and allows the implementation details to be hidden. In this case the use of the pthread_equals() function. * The kthread_t, kmutex_t, krwlock_t, and krwlock_t types had any non essential fields removed. In the case of kthread_t and kcondvar_t they could be directly typedef'd to pthread_t and pthread_cond_t respectively. * Removed all extra ASSERTS from the thread, mutex, rwlock, and cv wrapper functions. In practice, pthreads already provides the vast majority of checks as long as we check the return code. Removing this code from our wrappers help readability. * Added TS_JOINABLE state flag to pass to request a joinable rather than detached thread. This isn't a standard thread_create() state but it's the least invasive way to pass this information and is only used by ztest. TEST_ZTEST_TIMEOUT=3600 Chunwei Chen <tuxoko@gmail.com> Reviewed-by: Tom Caputi <tcaputi@datto.com> Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov> Closes #4547 Closes #5503 Closes #5523 Closes #6377 Closes #6495
2017-08-11 18:51:44 +03:00
VERIFY0(thread_join(resume_thread));
VERIFY0(thread_join(deadman_thread));
ztest_resume(spa);
2008-11-20 23:01:55 +03:00
/*
* Right before closing the pool, kick off a bunch of async I/O;
* spa_close() should wait for it to complete.
2008-11-20 23:01:55 +03:00
*/
for (object = 1; object < 50; object++) {
dmu_prefetch(spa->spa_meta_objset, object, 0, 0, 1ULL << 20,
ZIO_PRIORITY_SYNC_READ);
}
/* Verify that at least one commit cb was called in a timely fashion */
if (zc_cb_counter >= ZTEST_COMMIT_CB_MIN_REG)
VERIFY0(zc_min_txg_delay);
spa_close(spa, FTAG);
/*
* Verify that we can loop over all pools.
*/
mutex_enter(&spa_namespace_lock);
for (spa = spa_next(NULL); spa != NULL; spa = spa_next(spa))
if (ztest_opts.zo_verbose > 3)
(void) printf("spa_next: found %s\n", spa_name(spa));
mutex_exit(&spa_namespace_lock);
/*
* Verify that we can export the pool and reimport it under a
* different name.
*/
Multi-modifier protection (MMP) Add multihost=on|off pool property to control MMP. When enabled a new thread writes uberblocks to the last slot in each label, at a set frequency, to indicate to other hosts the pool is actively imported. These uberblocks are the last synced uberblock with an updated timestamp. Property defaults to off. During tryimport, find the "best" uberblock (newest txg and timestamp) repeatedly, checking for change in the found uberblock. Include the results of the activity test in the config returned by tryimport. These results are reported to user in "zpool import". Allow the user to control the period between MMP writes, and the duration of the activity test on import, via a new module parameter zfs_multihost_interval. The period is specified in milliseconds. The activity test duration is calculated from this value, and from the mmp_delay in the "best" uberblock found initially. Add a kstat interface to export statistics about Multiple Modifier Protection (MMP) updates. Include the last synced txg number, the timestamp, the delay since the last MMP update, the VDEV GUID, the VDEV label that received the last MMP update, and the VDEV path. Abbreviated output below. $ cat /proc/spl/kstat/zfs/mypool/multihost 31 0 0x01 10 880 105092382393521 105144180101111 txg timestamp mmp_delay vdev_guid vdev_label vdev_path 20468 261337 250274925 68396651780 3 /dev/sda 20468 261339 252023374 6267402363293 1 /dev/sdc 20468 261340 252000858 6698080955233 1 /dev/sdx 20468 261341 251980635 783892869810 2 /dev/sdy 20468 261342 253385953 8923255792467 3 /dev/sdd 20468 261344 253336622 042125143176 0 /dev/sdab 20468 261345 253310522 1200778101278 2 /dev/sde 20468 261346 253286429 0950576198362 2 /dev/sdt 20468 261347 253261545 96209817917 3 /dev/sds 20468 261349 253238188 8555725937673 3 /dev/sdb Add a new tunable zfs_multihost_history to specify the number of MMP updates to store history for. By default it is set to zero meaning that no MMP statistics are stored. When using ztest to generate activity, for automated tests of the MMP function, some test functions interfere with the test. For example, the pool is exported to run zdb and then imported again. Add a new ztest function, "-M", to alter ztest behavior to prevent this. Add new tests to verify the new functionality. Tests provided by Giuseppe Di Natale. Reviewed by: Matthew Ahrens <mahrens@delphix.com> Reviewed-by: Giuseppe Di Natale <dinatale2@llnl.gov> Reviewed-by: Ned Bass <bass6@llnl.gov> Reviewed-by: Andreas Dilger <andreas.dilger@intel.com> Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov> Signed-off-by: Olaf Faaland <faaland1@llnl.gov> Closes #745 Closes #6279
2017-07-08 06:20:35 +03:00
if ((ztest_random(2) == 0) && !ztest_opts.zo_mmp_test) {
char name[ZFS_MAX_DATASET_NAME_LEN];
(void) snprintf(name, sizeof (name), "%s_import",
ztest_opts.zo_pool);
ztest_spa_import_export(ztest_opts.zo_pool, name);
ztest_spa_import_export(name, ztest_opts.zo_pool);
}
kernel_fini();
list_destroy(&zcl.zcl_callbacks);
mutex_destroy(&zcl.zcl_callbacks_lock);
(void) pthread_rwlock_destroy(&ztest_name_lock);
mutex_destroy(&ztest_vdev_lock);
OpenZFS 9166 - zfs storage pool checkpoint Details about the motivation of this feature and its usage can be found in this blogpost: https://sdimitro.github.io/post/zpool-checkpoint/ A lightning talk of this feature can be found here: https://www.youtube.com/watch?v=fPQA8K40jAM Implementation details can be found in big block comment of spa_checkpoint.c Side-changes that are relevant to this commit but not explained elsewhere: * renames members of "struct metaslab trees to be shorter without losing meaning * space_map_{alloc,truncate}() accept a block size as a parameter. The reason is that in the current state all space maps that we allocate through the DMU use a global tunable (space_map_blksz) which defauls to 4KB. This is ok for metaslab space maps in terms of bandwirdth since they are scattered all over the disk. But for other space maps this default is probably not what we want. Examples are device removal's vdev_obsolete_sm or vdev_chedkpoint_sm from this review. Both of these have a 1:1 relationship with each vdev and could benefit from a bigger block size. Porting notes: * The part of dsl_scan_sync() which handles async destroys has been moved into the new dsl_process_async_destroys() function. * Remove "VERIFY(!(flags & FWRITE))" in "kernel.c" so zhack can write to block device backed pools. * ZTS: * Fix get_txg() in zpool_sync_001_pos due to "checkpoint_txg". * Don't use large dd block sizes on /dev/urandom under Linux in checkpoint_capacity. * Adopt Delphix-OS's setting of 4 (spa_asize_inflation = SPA_DVAS_PER_BP + 1) for the checkpoint_capacity test to speed its attempts to fill the pool * Create the base and nested pools with sync=disabled to speed up the "setup" phase. * Clear labels in test pool between checkpoint tests to avoid duplicate pool issues. * The import_rewind_device_replaced test has been marked as "known to fail" for the reasons listed in its DISCLAIMER. * New module parameters: zfs_spa_discard_memory_limit, zfs_remove_max_bytes_pause (not documented - debugging only) vdev_max_ms_count (formerly metaslabs_per_vdev) vdev_min_ms_count Authored by: Serapheim Dimitropoulos <serapheim.dimitro@delphix.com> Reviewed by: Matthew Ahrens <mahrens@delphix.com> Reviewed by: John Kennedy <john.kennedy@delphix.com> Reviewed by: Dan Kimmel <dan.kimmel@delphix.com> Reviewed by: Brian Behlendorf <behlendorf1@llnl.gov> Approved by: Richard Lowe <richlowe@richlowe.net> Ported-by: Tim Chase <tim@chase2k.com> Signed-off-by: Tim Chase <tim@chase2k.com> OpenZFS-issue: https://illumos.org/issues/9166 OpenZFS-commit: https://github.com/openzfs/openzfs/commit/7159fdb8 Closes #7570
2016-12-17 01:11:29 +03:00
mutex_destroy(&ztest_checkpoint_lock);
}
static void
2008-11-20 23:01:55 +03:00
print_time(hrtime_t t, char *timebuf)
{
hrtime_t s = t / NANOSEC;
hrtime_t m = s / 60;
hrtime_t h = m / 60;
hrtime_t d = h / 24;
s -= m * 60;
m -= h * 60;
h -= d * 24;
timebuf[0] = '\0';
if (d)
(void) sprintf(timebuf,
"%llud%02lluh%02llum%02llus", d, h, m, s);
else if (h)
(void) sprintf(timebuf, "%lluh%02llum%02llus", h, m, s);
else if (m)
(void) sprintf(timebuf, "%llum%02llus", m, s);
else
(void) sprintf(timebuf, "%llus", s);
}
static nvlist_t *
make_random_pool_props(void)
{
nvlist_t *props;
props = fnvlist_alloc();
/* Twenty percent of the time enable ZPOOL_PROP_DEDUP_TABLE_QUOTA */
if (ztest_random(5) == 0) {
fnvlist_add_uint64(props,
zpool_prop_to_name(ZPOOL_PROP_DEDUP_TABLE_QUOTA),
2 * 1024 * 1024);
}
/* Fifty percent of the time enable ZPOOL_PROP_AUTOREPLACE */
if (ztest_random(2) == 0) {
fnvlist_add_uint64(props,
zpool_prop_to_name(ZPOOL_PROP_AUTOREPLACE), 1);
}
return (props);
}
2008-11-20 23:01:55 +03:00
/*
* Create a storage pool with the given name and initial vdev size.
* Then test spa_freeze() functionality.
2008-11-20 23:01:55 +03:00
*/
static void
ztest_init(ztest_shared_t *zs)
2008-11-20 23:01:55 +03:00
{
spa_t *spa;
nvlist_t *nvroot, *props;
int i;
mutex_init(&ztest_vdev_lock, NULL, MUTEX_DEFAULT, NULL);
OpenZFS 9166 - zfs storage pool checkpoint Details about the motivation of this feature and its usage can be found in this blogpost: https://sdimitro.github.io/post/zpool-checkpoint/ A lightning talk of this feature can be found here: https://www.youtube.com/watch?v=fPQA8K40jAM Implementation details can be found in big block comment of spa_checkpoint.c Side-changes that are relevant to this commit but not explained elsewhere: * renames members of "struct metaslab trees to be shorter without losing meaning * space_map_{alloc,truncate}() accept a block size as a parameter. The reason is that in the current state all space maps that we allocate through the DMU use a global tunable (space_map_blksz) which defauls to 4KB. This is ok for metaslab space maps in terms of bandwirdth since they are scattered all over the disk. But for other space maps this default is probably not what we want. Examples are device removal's vdev_obsolete_sm or vdev_chedkpoint_sm from this review. Both of these have a 1:1 relationship with each vdev and could benefit from a bigger block size. Porting notes: * The part of dsl_scan_sync() which handles async destroys has been moved into the new dsl_process_async_destroys() function. * Remove "VERIFY(!(flags & FWRITE))" in "kernel.c" so zhack can write to block device backed pools. * ZTS: * Fix get_txg() in zpool_sync_001_pos due to "checkpoint_txg". * Don't use large dd block sizes on /dev/urandom under Linux in checkpoint_capacity. * Adopt Delphix-OS's setting of 4 (spa_asize_inflation = SPA_DVAS_PER_BP + 1) for the checkpoint_capacity test to speed its attempts to fill the pool * Create the base and nested pools with sync=disabled to speed up the "setup" phase. * Clear labels in test pool between checkpoint tests to avoid duplicate pool issues. * The import_rewind_device_replaced test has been marked as "known to fail" for the reasons listed in its DISCLAIMER. * New module parameters: zfs_spa_discard_memory_limit, zfs_remove_max_bytes_pause (not documented - debugging only) vdev_max_ms_count (formerly metaslabs_per_vdev) vdev_min_ms_count Authored by: Serapheim Dimitropoulos <serapheim.dimitro@delphix.com> Reviewed by: Matthew Ahrens <mahrens@delphix.com> Reviewed by: John Kennedy <john.kennedy@delphix.com> Reviewed by: Dan Kimmel <dan.kimmel@delphix.com> Reviewed by: Brian Behlendorf <behlendorf1@llnl.gov> Approved by: Richard Lowe <richlowe@richlowe.net> Ported-by: Tim Chase <tim@chase2k.com> Signed-off-by: Tim Chase <tim@chase2k.com> OpenZFS-issue: https://illumos.org/issues/9166 OpenZFS-commit: https://github.com/openzfs/openzfs/commit/7159fdb8 Closes #7570
2016-12-17 01:11:29 +03:00
mutex_init(&ztest_checkpoint_lock, NULL, MUTEX_DEFAULT, NULL);
VERIFY0(pthread_rwlock_init(&ztest_name_lock, NULL));
2008-11-20 23:01:55 +03:00
RAID-Z expansion feature This feature allows disks to be added one at a time to a RAID-Z group, expanding its capacity incrementally. This feature is especially useful for small pools (typically with only one RAID-Z group), where there isn't sufficient hardware to add capacity by adding a whole new RAID-Z group (typically doubling the number of disks). == Initiating expansion == A new device (disk) can be attached to an existing RAIDZ vdev, by running `zpool attach POOL raidzP-N NEW_DEVICE`, e.g. `zpool attach tank raidz2-0 sda`. The new device will become part of the RAIDZ group. A "raidz expansion" will be initiated, and the new device will contribute additional space to the RAIDZ group once the expansion completes. The `feature@raidz_expansion` on-disk feature flag must be `enabled` to initiate an expansion, and it remains `active` for the life of the pool. In other words, pools with expanded RAIDZ vdevs can not be imported by older releases of the ZFS software. == During expansion == The expansion entails reading all allocated space from existing disks in the RAIDZ group, and rewriting it to the new disks in the RAIDZ group (including the newly added device). The expansion progress can be monitored with `zpool status`. Data redundancy is maintained during (and after) the expansion. If a disk fails while the expansion is in progress, the expansion pauses until the health of the RAIDZ vdev is restored (e.g. by replacing the failed disk and waiting for reconstruction to complete). The pool remains accessible during expansion. Following a reboot or export/import, the expansion resumes where it left off. == After expansion == When the expansion completes, the additional space is available for use, and is reflected in the `available` zfs property (as seen in `zfs list`, `df`, etc). Expansion does not change the number of failures that can be tolerated without data loss (e.g. a RAIDZ2 is still a RAIDZ2 even after expansion). A RAIDZ vdev can be expanded multiple times. After the expansion completes, old blocks remain with their old data-to-parity ratio (e.g. 5-wide RAIDZ2, has 3 data to 2 parity), but distributed among the larger set of disks. New blocks will be written with the new data-to-parity ratio (e.g. a 5-wide RAIDZ2 which has been expanded once to 6-wide, has 4 data to 2 parity). However, the RAIDZ vdev's "assumed parity ratio" does not change, so slightly less space than is expected may be reported for newly-written blocks, according to `zfs list`, `df`, `ls -s`, and similar tools. Sponsored-by: The FreeBSD Foundation Sponsored-by: iXsystems, Inc. Sponsored-by: vStack Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov> Reviewed-by: Mark Maybee <mark.maybee@delphix.com> Authored-by: Matthew Ahrens <mahrens@delphix.com> Contributions-by: Fedor Uporov <fuporov.vstack@gmail.com> Contributions-by: Stuart Maybee <stuart.maybee@comcast.net> Contributions-by: Thorsten Behrens <tbehrens@outlook.com> Contributions-by: Fmstrat <nospam@nowsci.com> Contributions-by: Don Brady <dev.fs.zfs@gmail.com> Signed-off-by: Don Brady <dev.fs.zfs@gmail.com> Closes #15022
2023-11-08 21:19:41 +03:00
raidz_scratch_verify();
kernel_init(SPA_MODE_READ | SPA_MODE_WRITE);
2008-11-20 23:01:55 +03:00
/*
* Create the storage pool.
*/
(void) spa_destroy(ztest_opts.zo_pool);
ztest_shared->zs_vdev_next_leaf = 0;
zs->zs_splits = 0;
zs->zs_mirrors = ztest_opts.zo_mirrors;
nvroot = make_vdev_root(NULL, NULL, NULL, ztest_opts.zo_vdev_size, 0,
Distributed Spare (dRAID) Feature This patch adds a new top-level vdev type called dRAID, which stands for Distributed parity RAID. This pool configuration allows all dRAID vdevs to participate when rebuilding to a distributed hot spare device. This can substantially reduce the total time required to restore full parity to pool with a failed device. A dRAID pool can be created using the new top-level `draid` type. Like `raidz`, the desired redundancy is specified after the type: `draid[1,2,3]`. No additional information is required to create the pool and reasonable default values will be chosen based on the number of child vdevs in the dRAID vdev. zpool create <pool> draid[1,2,3] <vdevs...> Unlike raidz, additional optional dRAID configuration values can be provided as part of the draid type as colon separated values. This allows administrators to fully specify a layout for either performance or capacity reasons. The supported options include: zpool create <pool> \ draid[<parity>][:<data>d][:<children>c][:<spares>s] \ <vdevs...> - draid[parity] - Parity level (default 1) - draid[:<data>d] - Data devices per group (default 8) - draid[:<children>c] - Expected number of child vdevs - draid[:<spares>s] - Distributed hot spares (default 0) Abbreviated example `zpool status` output for a 68 disk dRAID pool with two distributed spares using special allocation classes. ``` pool: tank state: ONLINE config: NAME STATE READ WRITE CKSUM slag7 ONLINE 0 0 0 draid2:8d:68c:2s-0 ONLINE 0 0 0 L0 ONLINE 0 0 0 L1 ONLINE 0 0 0 ... U25 ONLINE 0 0 0 U26 ONLINE 0 0 0 spare-53 ONLINE 0 0 0 U27 ONLINE 0 0 0 draid2-0-0 ONLINE 0 0 0 U28 ONLINE 0 0 0 U29 ONLINE 0 0 0 ... U42 ONLINE 0 0 0 U43 ONLINE 0 0 0 special mirror-1 ONLINE 0 0 0 L5 ONLINE 0 0 0 U5 ONLINE 0 0 0 mirror-2 ONLINE 0 0 0 L6 ONLINE 0 0 0 U6 ONLINE 0 0 0 spares draid2-0-0 INUSE currently in use draid2-0-1 AVAIL ``` When adding test coverage for the new dRAID vdev type the following options were added to the ztest command. These options are leverages by zloop.sh to test a wide range of dRAID configurations. -K draid|raidz|random - kind of RAID to test -D <value> - dRAID data drives per group -S <value> - dRAID distributed hot spares -R <value> - RAID parity (raidz or dRAID) The zpool_create, zpool_import, redundancy, replacement and fault test groups have all been updated provide test coverage for the dRAID feature. Co-authored-by: Isaac Huang <he.huang@intel.com> Co-authored-by: Mark Maybee <mmaybee@cray.com> Co-authored-by: Don Brady <don.brady@delphix.com> Co-authored-by: Matthew Ahrens <mahrens@delphix.com> Co-authored-by: Brian Behlendorf <behlendorf1@llnl.gov> Reviewed-by: Mark Maybee <mmaybee@cray.com> Reviewed-by: Matt Ahrens <matt@delphix.com> Reviewed-by: Tony Hutter <hutter2@llnl.gov> Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov> Closes #10102
2020-11-14 00:51:51 +03:00
NULL, ztest_opts.zo_raid_children, zs->zs_mirrors, 1);
props = make_random_pool_props();
/*
* We don't expect the pool to suspend unless maxfaults == 0,
* in which case ztest_fault_inject() temporarily takes away
* the only valid replica.
*/
fnvlist_add_uint64(props,
zpool_prop_to_name(ZPOOL_PROP_FAILUREMODE),
MAXFAULTS(zs) ? ZIO_FAILURE_MODE_PANIC : ZIO_FAILURE_MODE_WAIT);
for (i = 0; i < SPA_FEATURES; i++) {
char *buf;
Log Spacemap Project = Motivation At Delphix we've seen a lot of customer systems where fragmentation is over 75% and random writes take a performance hit because a lot of time is spend on I/Os that update on-disk space accounting metadata. Specifically, we seen cases where 20% to 40% of sync time is spend after sync pass 1 and ~30% of the I/Os on the system is spent updating spacemaps. The problem is that these pools have existed long enough that we've touched almost every metaslab at least once, and random writes scatter frees across all metaslabs every TXG, thus appending to their spacemaps and resulting in many I/Os. To give an example, assuming that every VDEV has 200 metaslabs and our writes fit within a single spacemap block (generally 4K) we have 200 I/Os. Then if we assume 2 levels of indirection, we need 400 additional I/Os and since we are talking about metadata for which we keep 2 extra copies for redundancy we need to triple that number, leading to a total of 1800 I/Os per VDEV every TXG. We could try and decrease the number of metaslabs so we have less I/Os per TXG but then each metaslab would cover a wider range on disk and thus would take more time to be loaded in memory from disk. In addition, after it's loaded, it's range tree would consume more memory. Another idea would be to just increase the spacemap block size which would allow us to fit more entries within an I/O block resulting in fewer I/Os per metaslab and a speedup in loading time. The problem is still that we don't deal with the number of I/Os going up as the number of metaslabs is increasing and the fact is that we generally write a lot to a few metaslabs and a little to the rest of them. Thus, just increasing the block size would actually waste bandwidth because we won't be utilizing our bigger block size. = About this patch This patch introduces the Log Spacemap project which provides the solution to the above problem while taking into account all the aforementioned tradeoffs. The details on how it achieves that can be found in the references sections below and in the code (see Big Theory Statement in spa_log_spacemap.c). Even though the change is fairly constraint within the metaslab and lower-level SPA codepaths, there is a side-change that is user-facing. The change is that VDEV IDs from VDEV holes will no longer be reused. To give some background and reasoning for this, when a log device is removed and its VDEV structure was replaced with a hole (or was compacted; if at the end of the vdev array), its vdev_id could be reused by devices added after that. Now with the pool-wide space maps recording the vdev ID, this behavior can cause problems (e.g. is this entry referring to a segment in the new vdev or the removed log?). Thus, to simplify things the ID reuse behavior is gone and now vdev IDs for top-level vdevs are truly unique within a pool. = Testing The illumos implementation of this feature has been used internally for a year and has been in production for ~6 months. For this patch specifically there don't seem to be any regressions introduced to ZTS and I have been running zloop for a week without any related problems. = Performance Analysis (Linux Specific) All performance results and analysis for illumos can be found in the links of the references. Redoing the same experiments in Linux gave similar results. Below are the specifics of the Linux run. After the pool reached stable state the percentage of the time spent in pass 1 per TXG was 64% on average for the stock bits while the log spacemap bits stayed at 95% during the experiment (graph: sdimitro.github.io/img/linux-lsm/PercOfSyncInPassOne.png). Sync times per TXG were 37.6 seconds on average for the stock bits and 22.7 seconds for the log spacemap bits (related graph: sdimitro.github.io/img/linux-lsm/SyncTimePerTXG.png). As a result the log spacemap bits were able to push more TXGs, which is also the reason why all graphs quantified per TXG have more entries for the log spacemap bits. Another interesting aspect in terms of txg syncs is that the stock bits had 22% of their TXGs reach sync pass 7, 55% reach sync pass 8, and 20% reach 9. The log space map bits reached sync pass 4 in 79% of their TXGs, sync pass 7 in 19%, and sync pass 8 at 1%. This emphasizes the fact that not only we spend less time on metadata but we also iterate less times to convergence in spa_sync() dirtying objects. [related graphs: stock- sdimitro.github.io/img/linux-lsm/NumberOfPassesPerTXGStock.png lsm- sdimitro.github.io/img/linux-lsm/NumberOfPassesPerTXGLSM.png] Finally, the improvement in IOPs that the userland gains from the change is approximately 40%. There is a consistent win in IOPS as you can see from the graphs below but the absolute amount of improvement that the log spacemap gives varies within each minute interval. sdimitro.github.io/img/linux-lsm/StockVsLog3Days.png sdimitro.github.io/img/linux-lsm/StockVsLog10Hours.png = Porting to Other Platforms For people that want to port this commit to other platforms below is a list of ZoL commits that this patch depends on: Make zdb results for checkpoint tests consistent db587941c5ff6dea01932bb78f70db63cf7f38ba Update vdev_is_spacemap_addressable() for new spacemap encoding 419ba5914552c6185afbe1dd17b3ed4b0d526547 Simplify spa_sync by breaking it up to smaller functions 8dc2197b7b1e4d7ebc1420ea30e51c6541f1d834 Factor metaslab_load_wait() in metaslab_load() b194fab0fb6caad18711abccaff3c69ad8b3f6d3 Rename range_tree_verify to range_tree_verify_not_present df72b8bebe0ebac0b20e0750984bad182cb6564a Change target size of metaslabs from 256GB to 16GB c853f382db731e15a87512f4ef1101d14d778a55 zdb -L should skip leak detection altogether 21e7cf5da89f55ce98ec1115726b150e19eefe89 vs_alloc can underflow in L2ARC vdevs 7558997d2f808368867ca7e5234e5793446e8f3f Simplify log vdev removal code 6c926f426a26ffb6d7d8e563e33fc176164175cb Get rid of space_map_update() for ms_synced_length 425d3237ee88abc53d8522a7139c926d278b4b7f Introduce auxiliary metaslab histograms 928e8ad47d3478a3d5d01f0dd6ae74a9371af65e Error path in metaslab_load_impl() forgets to drop ms_sync_lock 8eef997679ba54547f7d361553d21b3291f41ae7 = References Background, Motivation, and Internals of the Feature - OpenZFS 2017 Presentation: youtu.be/jj2IxRkl5bQ - Slides: slideshare.net/SerapheimNikolaosDim/zfs-log-spacemaps-project Flushing Algorithm Internals & Performance Results (Illumos Specific) - Blogpost: sdimitro.github.io/post/zfs-lsm-flushing/ - OpenZFS 2018 Presentation: youtu.be/x6D2dHRjkxw - Slides: slideshare.net/SerapheimNikolaosDim/zfs-log-spacemap-flushing-algorithm Upstream Delphix Issues: DLPX-51539, DLPX-59659, DLPX-57783, DLPX-61438, DLPX-41227, DLPX-59320 DLPX-63385 Reviewed-by: Sean Eric Fagan <sef@ixsystems.com> Reviewed-by: Matt Ahrens <matt@delphix.com> Reviewed-by: George Wilson <gwilson@delphix.com> Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov> Signed-off-by: Serapheim Dimitropoulos <serapheim@delphix.com> Closes #8442
2019-07-16 20:11:49 +03:00
if (!spa_feature_table[i].fi_zfs_mod_supported)
continue;
Log Spacemap Project = Motivation At Delphix we've seen a lot of customer systems where fragmentation is over 75% and random writes take a performance hit because a lot of time is spend on I/Os that update on-disk space accounting metadata. Specifically, we seen cases where 20% to 40% of sync time is spend after sync pass 1 and ~30% of the I/Os on the system is spent updating spacemaps. The problem is that these pools have existed long enough that we've touched almost every metaslab at least once, and random writes scatter frees across all metaslabs every TXG, thus appending to their spacemaps and resulting in many I/Os. To give an example, assuming that every VDEV has 200 metaslabs and our writes fit within a single spacemap block (generally 4K) we have 200 I/Os. Then if we assume 2 levels of indirection, we need 400 additional I/Os and since we are talking about metadata for which we keep 2 extra copies for redundancy we need to triple that number, leading to a total of 1800 I/Os per VDEV every TXG. We could try and decrease the number of metaslabs so we have less I/Os per TXG but then each metaslab would cover a wider range on disk and thus would take more time to be loaded in memory from disk. In addition, after it's loaded, it's range tree would consume more memory. Another idea would be to just increase the spacemap block size which would allow us to fit more entries within an I/O block resulting in fewer I/Os per metaslab and a speedup in loading time. The problem is still that we don't deal with the number of I/Os going up as the number of metaslabs is increasing and the fact is that we generally write a lot to a few metaslabs and a little to the rest of them. Thus, just increasing the block size would actually waste bandwidth because we won't be utilizing our bigger block size. = About this patch This patch introduces the Log Spacemap project which provides the solution to the above problem while taking into account all the aforementioned tradeoffs. The details on how it achieves that can be found in the references sections below and in the code (see Big Theory Statement in spa_log_spacemap.c). Even though the change is fairly constraint within the metaslab and lower-level SPA codepaths, there is a side-change that is user-facing. The change is that VDEV IDs from VDEV holes will no longer be reused. To give some background and reasoning for this, when a log device is removed and its VDEV structure was replaced with a hole (or was compacted; if at the end of the vdev array), its vdev_id could be reused by devices added after that. Now with the pool-wide space maps recording the vdev ID, this behavior can cause problems (e.g. is this entry referring to a segment in the new vdev or the removed log?). Thus, to simplify things the ID reuse behavior is gone and now vdev IDs for top-level vdevs are truly unique within a pool. = Testing The illumos implementation of this feature has been used internally for a year and has been in production for ~6 months. For this patch specifically there don't seem to be any regressions introduced to ZTS and I have been running zloop for a week without any related problems. = Performance Analysis (Linux Specific) All performance results and analysis for illumos can be found in the links of the references. Redoing the same experiments in Linux gave similar results. Below are the specifics of the Linux run. After the pool reached stable state the percentage of the time spent in pass 1 per TXG was 64% on average for the stock bits while the log spacemap bits stayed at 95% during the experiment (graph: sdimitro.github.io/img/linux-lsm/PercOfSyncInPassOne.png). Sync times per TXG were 37.6 seconds on average for the stock bits and 22.7 seconds for the log spacemap bits (related graph: sdimitro.github.io/img/linux-lsm/SyncTimePerTXG.png). As a result the log spacemap bits were able to push more TXGs, which is also the reason why all graphs quantified per TXG have more entries for the log spacemap bits. Another interesting aspect in terms of txg syncs is that the stock bits had 22% of their TXGs reach sync pass 7, 55% reach sync pass 8, and 20% reach 9. The log space map bits reached sync pass 4 in 79% of their TXGs, sync pass 7 in 19%, and sync pass 8 at 1%. This emphasizes the fact that not only we spend less time on metadata but we also iterate less times to convergence in spa_sync() dirtying objects. [related graphs: stock- sdimitro.github.io/img/linux-lsm/NumberOfPassesPerTXGStock.png lsm- sdimitro.github.io/img/linux-lsm/NumberOfPassesPerTXGLSM.png] Finally, the improvement in IOPs that the userland gains from the change is approximately 40%. There is a consistent win in IOPS as you can see from the graphs below but the absolute amount of improvement that the log spacemap gives varies within each minute interval. sdimitro.github.io/img/linux-lsm/StockVsLog3Days.png sdimitro.github.io/img/linux-lsm/StockVsLog10Hours.png = Porting to Other Platforms For people that want to port this commit to other platforms below is a list of ZoL commits that this patch depends on: Make zdb results for checkpoint tests consistent db587941c5ff6dea01932bb78f70db63cf7f38ba Update vdev_is_spacemap_addressable() for new spacemap encoding 419ba5914552c6185afbe1dd17b3ed4b0d526547 Simplify spa_sync by breaking it up to smaller functions 8dc2197b7b1e4d7ebc1420ea30e51c6541f1d834 Factor metaslab_load_wait() in metaslab_load() b194fab0fb6caad18711abccaff3c69ad8b3f6d3 Rename range_tree_verify to range_tree_verify_not_present df72b8bebe0ebac0b20e0750984bad182cb6564a Change target size of metaslabs from 256GB to 16GB c853f382db731e15a87512f4ef1101d14d778a55 zdb -L should skip leak detection altogether 21e7cf5da89f55ce98ec1115726b150e19eefe89 vs_alloc can underflow in L2ARC vdevs 7558997d2f808368867ca7e5234e5793446e8f3f Simplify log vdev removal code 6c926f426a26ffb6d7d8e563e33fc176164175cb Get rid of space_map_update() for ms_synced_length 425d3237ee88abc53d8522a7139c926d278b4b7f Introduce auxiliary metaslab histograms 928e8ad47d3478a3d5d01f0dd6ae74a9371af65e Error path in metaslab_load_impl() forgets to drop ms_sync_lock 8eef997679ba54547f7d361553d21b3291f41ae7 = References Background, Motivation, and Internals of the Feature - OpenZFS 2017 Presentation: youtu.be/jj2IxRkl5bQ - Slides: slideshare.net/SerapheimNikolaosDim/zfs-log-spacemaps-project Flushing Algorithm Internals & Performance Results (Illumos Specific) - Blogpost: sdimitro.github.io/post/zfs-lsm-flushing/ - OpenZFS 2018 Presentation: youtu.be/x6D2dHRjkxw - Slides: slideshare.net/SerapheimNikolaosDim/zfs-log-spacemap-flushing-algorithm Upstream Delphix Issues: DLPX-51539, DLPX-59659, DLPX-57783, DLPX-61438, DLPX-41227, DLPX-59320 DLPX-63385 Reviewed-by: Sean Eric Fagan <sef@ixsystems.com> Reviewed-by: Matt Ahrens <matt@delphix.com> Reviewed-by: George Wilson <gwilson@delphix.com> Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov> Signed-off-by: Serapheim Dimitropoulos <serapheim@delphix.com> Closes #8442
2019-07-16 20:11:49 +03:00
/*
* 75% chance of using the log space map feature. We want ztest
* to exercise both the code paths that use the log space map
* feature and the ones that don't.
*/
if (i == SPA_FEATURE_LOG_SPACEMAP && ztest_random(4) == 0)
continue;
/*
* split 50/50 between legacy and fast dedup
*/
if (i == SPA_FEATURE_FAST_DEDUP && ztest_random(2) != 0)
Log Spacemap Project = Motivation At Delphix we've seen a lot of customer systems where fragmentation is over 75% and random writes take a performance hit because a lot of time is spend on I/Os that update on-disk space accounting metadata. Specifically, we seen cases where 20% to 40% of sync time is spend after sync pass 1 and ~30% of the I/Os on the system is spent updating spacemaps. The problem is that these pools have existed long enough that we've touched almost every metaslab at least once, and random writes scatter frees across all metaslabs every TXG, thus appending to their spacemaps and resulting in many I/Os. To give an example, assuming that every VDEV has 200 metaslabs and our writes fit within a single spacemap block (generally 4K) we have 200 I/Os. Then if we assume 2 levels of indirection, we need 400 additional I/Os and since we are talking about metadata for which we keep 2 extra copies for redundancy we need to triple that number, leading to a total of 1800 I/Os per VDEV every TXG. We could try and decrease the number of metaslabs so we have less I/Os per TXG but then each metaslab would cover a wider range on disk and thus would take more time to be loaded in memory from disk. In addition, after it's loaded, it's range tree would consume more memory. Another idea would be to just increase the spacemap block size which would allow us to fit more entries within an I/O block resulting in fewer I/Os per metaslab and a speedup in loading time. The problem is still that we don't deal with the number of I/Os going up as the number of metaslabs is increasing and the fact is that we generally write a lot to a few metaslabs and a little to the rest of them. Thus, just increasing the block size would actually waste bandwidth because we won't be utilizing our bigger block size. = About this patch This patch introduces the Log Spacemap project which provides the solution to the above problem while taking into account all the aforementioned tradeoffs. The details on how it achieves that can be found in the references sections below and in the code (see Big Theory Statement in spa_log_spacemap.c). Even though the change is fairly constraint within the metaslab and lower-level SPA codepaths, there is a side-change that is user-facing. The change is that VDEV IDs from VDEV holes will no longer be reused. To give some background and reasoning for this, when a log device is removed and its VDEV structure was replaced with a hole (or was compacted; if at the end of the vdev array), its vdev_id could be reused by devices added after that. Now with the pool-wide space maps recording the vdev ID, this behavior can cause problems (e.g. is this entry referring to a segment in the new vdev or the removed log?). Thus, to simplify things the ID reuse behavior is gone and now vdev IDs for top-level vdevs are truly unique within a pool. = Testing The illumos implementation of this feature has been used internally for a year and has been in production for ~6 months. For this patch specifically there don't seem to be any regressions introduced to ZTS and I have been running zloop for a week without any related problems. = Performance Analysis (Linux Specific) All performance results and analysis for illumos can be found in the links of the references. Redoing the same experiments in Linux gave similar results. Below are the specifics of the Linux run. After the pool reached stable state the percentage of the time spent in pass 1 per TXG was 64% on average for the stock bits while the log spacemap bits stayed at 95% during the experiment (graph: sdimitro.github.io/img/linux-lsm/PercOfSyncInPassOne.png). Sync times per TXG were 37.6 seconds on average for the stock bits and 22.7 seconds for the log spacemap bits (related graph: sdimitro.github.io/img/linux-lsm/SyncTimePerTXG.png). As a result the log spacemap bits were able to push more TXGs, which is also the reason why all graphs quantified per TXG have more entries for the log spacemap bits. Another interesting aspect in terms of txg syncs is that the stock bits had 22% of their TXGs reach sync pass 7, 55% reach sync pass 8, and 20% reach 9. The log space map bits reached sync pass 4 in 79% of their TXGs, sync pass 7 in 19%, and sync pass 8 at 1%. This emphasizes the fact that not only we spend less time on metadata but we also iterate less times to convergence in spa_sync() dirtying objects. [related graphs: stock- sdimitro.github.io/img/linux-lsm/NumberOfPassesPerTXGStock.png lsm- sdimitro.github.io/img/linux-lsm/NumberOfPassesPerTXGLSM.png] Finally, the improvement in IOPs that the userland gains from the change is approximately 40%. There is a consistent win in IOPS as you can see from the graphs below but the absolute amount of improvement that the log spacemap gives varies within each minute interval. sdimitro.github.io/img/linux-lsm/StockVsLog3Days.png sdimitro.github.io/img/linux-lsm/StockVsLog10Hours.png = Porting to Other Platforms For people that want to port this commit to other platforms below is a list of ZoL commits that this patch depends on: Make zdb results for checkpoint tests consistent db587941c5ff6dea01932bb78f70db63cf7f38ba Update vdev_is_spacemap_addressable() for new spacemap encoding 419ba5914552c6185afbe1dd17b3ed4b0d526547 Simplify spa_sync by breaking it up to smaller functions 8dc2197b7b1e4d7ebc1420ea30e51c6541f1d834 Factor metaslab_load_wait() in metaslab_load() b194fab0fb6caad18711abccaff3c69ad8b3f6d3 Rename range_tree_verify to range_tree_verify_not_present df72b8bebe0ebac0b20e0750984bad182cb6564a Change target size of metaslabs from 256GB to 16GB c853f382db731e15a87512f4ef1101d14d778a55 zdb -L should skip leak detection altogether 21e7cf5da89f55ce98ec1115726b150e19eefe89 vs_alloc can underflow in L2ARC vdevs 7558997d2f808368867ca7e5234e5793446e8f3f Simplify log vdev removal code 6c926f426a26ffb6d7d8e563e33fc176164175cb Get rid of space_map_update() for ms_synced_length 425d3237ee88abc53d8522a7139c926d278b4b7f Introduce auxiliary metaslab histograms 928e8ad47d3478a3d5d01f0dd6ae74a9371af65e Error path in metaslab_load_impl() forgets to drop ms_sync_lock 8eef997679ba54547f7d361553d21b3291f41ae7 = References Background, Motivation, and Internals of the Feature - OpenZFS 2017 Presentation: youtu.be/jj2IxRkl5bQ - Slides: slideshare.net/SerapheimNikolaosDim/zfs-log-spacemaps-project Flushing Algorithm Internals & Performance Results (Illumos Specific) - Blogpost: sdimitro.github.io/post/zfs-lsm-flushing/ - OpenZFS 2018 Presentation: youtu.be/x6D2dHRjkxw - Slides: slideshare.net/SerapheimNikolaosDim/zfs-log-spacemap-flushing-algorithm Upstream Delphix Issues: DLPX-51539, DLPX-59659, DLPX-57783, DLPX-61438, DLPX-41227, DLPX-59320 DLPX-63385 Reviewed-by: Sean Eric Fagan <sef@ixsystems.com> Reviewed-by: Matt Ahrens <matt@delphix.com> Reviewed-by: George Wilson <gwilson@delphix.com> Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov> Signed-off-by: Serapheim Dimitropoulos <serapheim@delphix.com> Closes #8442
2019-07-16 20:11:49 +03:00
continue;
VERIFY3S(-1, !=, asprintf(&buf, "feature@%s",
spa_feature_table[i].fi_uname));
fnvlist_add_uint64(props, buf, 0);
free(buf);
}
VERIFY0(spa_create(ztest_opts.zo_pool, nvroot, props, NULL, NULL));
fnvlist_free(nvroot);
fnvlist_free(props);
2008-11-20 23:01:55 +03:00
VERIFY0(spa_open(ztest_opts.zo_pool, &spa, FTAG));
zs->zs_metaslab_sz =
1ULL << spa->spa_root_vdev->vdev_child[0]->vdev_ms_shift;
zs->zs_guid = spa_guid(spa);
2008-11-20 23:01:55 +03:00
spa_close(spa, FTAG);
kernel_fini();
Multi-modifier protection (MMP) Add multihost=on|off pool property to control MMP. When enabled a new thread writes uberblocks to the last slot in each label, at a set frequency, to indicate to other hosts the pool is actively imported. These uberblocks are the last synced uberblock with an updated timestamp. Property defaults to off. During tryimport, find the "best" uberblock (newest txg and timestamp) repeatedly, checking for change in the found uberblock. Include the results of the activity test in the config returned by tryimport. These results are reported to user in "zpool import". Allow the user to control the period between MMP writes, and the duration of the activity test on import, via a new module parameter zfs_multihost_interval. The period is specified in milliseconds. The activity test duration is calculated from this value, and from the mmp_delay in the "best" uberblock found initially. Add a kstat interface to export statistics about Multiple Modifier Protection (MMP) updates. Include the last synced txg number, the timestamp, the delay since the last MMP update, the VDEV GUID, the VDEV label that received the last MMP update, and the VDEV path. Abbreviated output below. $ cat /proc/spl/kstat/zfs/mypool/multihost 31 0 0x01 10 880 105092382393521 105144180101111 txg timestamp mmp_delay vdev_guid vdev_label vdev_path 20468 261337 250274925 68396651780 3 /dev/sda 20468 261339 252023374 6267402363293 1 /dev/sdc 20468 261340 252000858 6698080955233 1 /dev/sdx 20468 261341 251980635 783892869810 2 /dev/sdy 20468 261342 253385953 8923255792467 3 /dev/sdd 20468 261344 253336622 042125143176 0 /dev/sdab 20468 261345 253310522 1200778101278 2 /dev/sde 20468 261346 253286429 0950576198362 2 /dev/sdt 20468 261347 253261545 96209817917 3 /dev/sds 20468 261349 253238188 8555725937673 3 /dev/sdb Add a new tunable zfs_multihost_history to specify the number of MMP updates to store history for. By default it is set to zero meaning that no MMP statistics are stored. When using ztest to generate activity, for automated tests of the MMP function, some test functions interfere with the test. For example, the pool is exported to run zdb and then imported again. Add a new ztest function, "-M", to alter ztest behavior to prevent this. Add new tests to verify the new functionality. Tests provided by Giuseppe Di Natale. Reviewed by: Matthew Ahrens <mahrens@delphix.com> Reviewed-by: Giuseppe Di Natale <dinatale2@llnl.gov> Reviewed-by: Ned Bass <bass6@llnl.gov> Reviewed-by: Andreas Dilger <andreas.dilger@intel.com> Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov> Signed-off-by: Olaf Faaland <faaland1@llnl.gov> Closes #745 Closes #6279
2017-07-08 06:20:35 +03:00
if (!ztest_opts.zo_mmp_test) {
ztest_run_zdb(zs->zs_guid);
Multi-modifier protection (MMP) Add multihost=on|off pool property to control MMP. When enabled a new thread writes uberblocks to the last slot in each label, at a set frequency, to indicate to other hosts the pool is actively imported. These uberblocks are the last synced uberblock with an updated timestamp. Property defaults to off. During tryimport, find the "best" uberblock (newest txg and timestamp) repeatedly, checking for change in the found uberblock. Include the results of the activity test in the config returned by tryimport. These results are reported to user in "zpool import". Allow the user to control the period between MMP writes, and the duration of the activity test on import, via a new module parameter zfs_multihost_interval. The period is specified in milliseconds. The activity test duration is calculated from this value, and from the mmp_delay in the "best" uberblock found initially. Add a kstat interface to export statistics about Multiple Modifier Protection (MMP) updates. Include the last synced txg number, the timestamp, the delay since the last MMP update, the VDEV GUID, the VDEV label that received the last MMP update, and the VDEV path. Abbreviated output below. $ cat /proc/spl/kstat/zfs/mypool/multihost 31 0 0x01 10 880 105092382393521 105144180101111 txg timestamp mmp_delay vdev_guid vdev_label vdev_path 20468 261337 250274925 68396651780 3 /dev/sda 20468 261339 252023374 6267402363293 1 /dev/sdc 20468 261340 252000858 6698080955233 1 /dev/sdx 20468 261341 251980635 783892869810 2 /dev/sdy 20468 261342 253385953 8923255792467 3 /dev/sdd 20468 261344 253336622 042125143176 0 /dev/sdab 20468 261345 253310522 1200778101278 2 /dev/sde 20468 261346 253286429 0950576198362 2 /dev/sdt 20468 261347 253261545 96209817917 3 /dev/sds 20468 261349 253238188 8555725937673 3 /dev/sdb Add a new tunable zfs_multihost_history to specify the number of MMP updates to store history for. By default it is set to zero meaning that no MMP statistics are stored. When using ztest to generate activity, for automated tests of the MMP function, some test functions interfere with the test. For example, the pool is exported to run zdb and then imported again. Add a new ztest function, "-M", to alter ztest behavior to prevent this. Add new tests to verify the new functionality. Tests provided by Giuseppe Di Natale. Reviewed by: Matthew Ahrens <mahrens@delphix.com> Reviewed-by: Giuseppe Di Natale <dinatale2@llnl.gov> Reviewed-by: Ned Bass <bass6@llnl.gov> Reviewed-by: Andreas Dilger <andreas.dilger@intel.com> Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov> Signed-off-by: Olaf Faaland <faaland1@llnl.gov> Closes #745 Closes #6279
2017-07-08 06:20:35 +03:00
ztest_freeze();
ztest_run_zdb(zs->zs_guid);
Multi-modifier protection (MMP) Add multihost=on|off pool property to control MMP. When enabled a new thread writes uberblocks to the last slot in each label, at a set frequency, to indicate to other hosts the pool is actively imported. These uberblocks are the last synced uberblock with an updated timestamp. Property defaults to off. During tryimport, find the "best" uberblock (newest txg and timestamp) repeatedly, checking for change in the found uberblock. Include the results of the activity test in the config returned by tryimport. These results are reported to user in "zpool import". Allow the user to control the period between MMP writes, and the duration of the activity test on import, via a new module parameter zfs_multihost_interval. The period is specified in milliseconds. The activity test duration is calculated from this value, and from the mmp_delay in the "best" uberblock found initially. Add a kstat interface to export statistics about Multiple Modifier Protection (MMP) updates. Include the last synced txg number, the timestamp, the delay since the last MMP update, the VDEV GUID, the VDEV label that received the last MMP update, and the VDEV path. Abbreviated output below. $ cat /proc/spl/kstat/zfs/mypool/multihost 31 0 0x01 10 880 105092382393521 105144180101111 txg timestamp mmp_delay vdev_guid vdev_label vdev_path 20468 261337 250274925 68396651780 3 /dev/sda 20468 261339 252023374 6267402363293 1 /dev/sdc 20468 261340 252000858 6698080955233 1 /dev/sdx 20468 261341 251980635 783892869810 2 /dev/sdy 20468 261342 253385953 8923255792467 3 /dev/sdd 20468 261344 253336622 042125143176 0 /dev/sdab 20468 261345 253310522 1200778101278 2 /dev/sde 20468 261346 253286429 0950576198362 2 /dev/sdt 20468 261347 253261545 96209817917 3 /dev/sds 20468 261349 253238188 8555725937673 3 /dev/sdb Add a new tunable zfs_multihost_history to specify the number of MMP updates to store history for. By default it is set to zero meaning that no MMP statistics are stored. When using ztest to generate activity, for automated tests of the MMP function, some test functions interfere with the test. For example, the pool is exported to run zdb and then imported again. Add a new ztest function, "-M", to alter ztest behavior to prevent this. Add new tests to verify the new functionality. Tests provided by Giuseppe Di Natale. Reviewed by: Matthew Ahrens <mahrens@delphix.com> Reviewed-by: Giuseppe Di Natale <dinatale2@llnl.gov> Reviewed-by: Ned Bass <bass6@llnl.gov> Reviewed-by: Andreas Dilger <andreas.dilger@intel.com> Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov> Signed-off-by: Olaf Faaland <faaland1@llnl.gov> Closes #745 Closes #6279
2017-07-08 06:20:35 +03:00
}
(void) pthread_rwlock_destroy(&ztest_name_lock);
mutex_destroy(&ztest_vdev_lock);
OpenZFS 9166 - zfs storage pool checkpoint Details about the motivation of this feature and its usage can be found in this blogpost: https://sdimitro.github.io/post/zpool-checkpoint/ A lightning talk of this feature can be found here: https://www.youtube.com/watch?v=fPQA8K40jAM Implementation details can be found in big block comment of spa_checkpoint.c Side-changes that are relevant to this commit but not explained elsewhere: * renames members of "struct metaslab trees to be shorter without losing meaning * space_map_{alloc,truncate}() accept a block size as a parameter. The reason is that in the current state all space maps that we allocate through the DMU use a global tunable (space_map_blksz) which defauls to 4KB. This is ok for metaslab space maps in terms of bandwirdth since they are scattered all over the disk. But for other space maps this default is probably not what we want. Examples are device removal's vdev_obsolete_sm or vdev_chedkpoint_sm from this review. Both of these have a 1:1 relationship with each vdev and could benefit from a bigger block size. Porting notes: * The part of dsl_scan_sync() which handles async destroys has been moved into the new dsl_process_async_destroys() function. * Remove "VERIFY(!(flags & FWRITE))" in "kernel.c" so zhack can write to block device backed pools. * ZTS: * Fix get_txg() in zpool_sync_001_pos due to "checkpoint_txg". * Don't use large dd block sizes on /dev/urandom under Linux in checkpoint_capacity. * Adopt Delphix-OS's setting of 4 (spa_asize_inflation = SPA_DVAS_PER_BP + 1) for the checkpoint_capacity test to speed its attempts to fill the pool * Create the base and nested pools with sync=disabled to speed up the "setup" phase. * Clear labels in test pool between checkpoint tests to avoid duplicate pool issues. * The import_rewind_device_replaced test has been marked as "known to fail" for the reasons listed in its DISCLAIMER. * New module parameters: zfs_spa_discard_memory_limit, zfs_remove_max_bytes_pause (not documented - debugging only) vdev_max_ms_count (formerly metaslabs_per_vdev) vdev_min_ms_count Authored by: Serapheim Dimitropoulos <serapheim.dimitro@delphix.com> Reviewed by: Matthew Ahrens <mahrens@delphix.com> Reviewed by: John Kennedy <john.kennedy@delphix.com> Reviewed by: Dan Kimmel <dan.kimmel@delphix.com> Reviewed by: Brian Behlendorf <behlendorf1@llnl.gov> Approved by: Richard Lowe <richlowe@richlowe.net> Ported-by: Tim Chase <tim@chase2k.com> Signed-off-by: Tim Chase <tim@chase2k.com> OpenZFS-issue: https://illumos.org/issues/9166 OpenZFS-commit: https://github.com/openzfs/openzfs/commit/7159fdb8 Closes #7570
2016-12-17 01:11:29 +03:00
mutex_destroy(&ztest_checkpoint_lock);
}
static void
setup_data_fd(void)
{
static char ztest_name_data[] = "/tmp/ztest.data.XXXXXX";
ztest_fd_data = mkstemp(ztest_name_data);
ASSERT3S(ztest_fd_data, >=, 0);
(void) unlink(ztest_name_data);
}
static int
shared_data_size(ztest_shared_hdr_t *hdr)
{
int size;
size = hdr->zh_hdr_size;
size += hdr->zh_opts_size;
size += hdr->zh_size;
size += hdr->zh_stats_size * hdr->zh_stats_count;
size += hdr->zh_ds_size * hdr->zh_ds_count;
RAID-Z expansion feature This feature allows disks to be added one at a time to a RAID-Z group, expanding its capacity incrementally. This feature is especially useful for small pools (typically with only one RAID-Z group), where there isn't sufficient hardware to add capacity by adding a whole new RAID-Z group (typically doubling the number of disks). == Initiating expansion == A new device (disk) can be attached to an existing RAIDZ vdev, by running `zpool attach POOL raidzP-N NEW_DEVICE`, e.g. `zpool attach tank raidz2-0 sda`. The new device will become part of the RAIDZ group. A "raidz expansion" will be initiated, and the new device will contribute additional space to the RAIDZ group once the expansion completes. The `feature@raidz_expansion` on-disk feature flag must be `enabled` to initiate an expansion, and it remains `active` for the life of the pool. In other words, pools with expanded RAIDZ vdevs can not be imported by older releases of the ZFS software. == During expansion == The expansion entails reading all allocated space from existing disks in the RAIDZ group, and rewriting it to the new disks in the RAIDZ group (including the newly added device). The expansion progress can be monitored with `zpool status`. Data redundancy is maintained during (and after) the expansion. If a disk fails while the expansion is in progress, the expansion pauses until the health of the RAIDZ vdev is restored (e.g. by replacing the failed disk and waiting for reconstruction to complete). The pool remains accessible during expansion. Following a reboot or export/import, the expansion resumes where it left off. == After expansion == When the expansion completes, the additional space is available for use, and is reflected in the `available` zfs property (as seen in `zfs list`, `df`, etc). Expansion does not change the number of failures that can be tolerated without data loss (e.g. a RAIDZ2 is still a RAIDZ2 even after expansion). A RAIDZ vdev can be expanded multiple times. After the expansion completes, old blocks remain with their old data-to-parity ratio (e.g. 5-wide RAIDZ2, has 3 data to 2 parity), but distributed among the larger set of disks. New blocks will be written with the new data-to-parity ratio (e.g. a 5-wide RAIDZ2 which has been expanded once to 6-wide, has 4 data to 2 parity). However, the RAIDZ vdev's "assumed parity ratio" does not change, so slightly less space than is expected may be reported for newly-written blocks, according to `zfs list`, `df`, `ls -s`, and similar tools. Sponsored-by: The FreeBSD Foundation Sponsored-by: iXsystems, Inc. Sponsored-by: vStack Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov> Reviewed-by: Mark Maybee <mark.maybee@delphix.com> Authored-by: Matthew Ahrens <mahrens@delphix.com> Contributions-by: Fedor Uporov <fuporov.vstack@gmail.com> Contributions-by: Stuart Maybee <stuart.maybee@comcast.net> Contributions-by: Thorsten Behrens <tbehrens@outlook.com> Contributions-by: Fmstrat <nospam@nowsci.com> Contributions-by: Don Brady <dev.fs.zfs@gmail.com> Signed-off-by: Don Brady <dev.fs.zfs@gmail.com> Closes #15022
2023-11-08 21:19:41 +03:00
size += hdr->zh_scratch_state_size;
return (size);
}
static void
setup_hdr(void)
{
int size;
ztest_shared_hdr_t *hdr;
hdr = (void *)mmap(0, P2ROUNDUP(sizeof (*hdr), getpagesize()),
PROT_READ | PROT_WRITE, MAP_SHARED, ztest_fd_data, 0);
ASSERT3P(hdr, !=, MAP_FAILED);
VERIFY0(ftruncate(ztest_fd_data, sizeof (ztest_shared_hdr_t)));
hdr->zh_hdr_size = sizeof (ztest_shared_hdr_t);
hdr->zh_opts_size = sizeof (ztest_shared_opts_t);
hdr->zh_size = sizeof (ztest_shared_t);
hdr->zh_stats_size = sizeof (ztest_shared_callstate_t);
hdr->zh_stats_count = ZTEST_FUNCS;
hdr->zh_ds_size = sizeof (ztest_shared_ds_t);
hdr->zh_ds_count = ztest_opts.zo_datasets;
RAID-Z expansion feature This feature allows disks to be added one at a time to a RAID-Z group, expanding its capacity incrementally. This feature is especially useful for small pools (typically with only one RAID-Z group), where there isn't sufficient hardware to add capacity by adding a whole new RAID-Z group (typically doubling the number of disks). == Initiating expansion == A new device (disk) can be attached to an existing RAIDZ vdev, by running `zpool attach POOL raidzP-N NEW_DEVICE`, e.g. `zpool attach tank raidz2-0 sda`. The new device will become part of the RAIDZ group. A "raidz expansion" will be initiated, and the new device will contribute additional space to the RAIDZ group once the expansion completes. The `feature@raidz_expansion` on-disk feature flag must be `enabled` to initiate an expansion, and it remains `active` for the life of the pool. In other words, pools with expanded RAIDZ vdevs can not be imported by older releases of the ZFS software. == During expansion == The expansion entails reading all allocated space from existing disks in the RAIDZ group, and rewriting it to the new disks in the RAIDZ group (including the newly added device). The expansion progress can be monitored with `zpool status`. Data redundancy is maintained during (and after) the expansion. If a disk fails while the expansion is in progress, the expansion pauses until the health of the RAIDZ vdev is restored (e.g. by replacing the failed disk and waiting for reconstruction to complete). The pool remains accessible during expansion. Following a reboot or export/import, the expansion resumes where it left off. == After expansion == When the expansion completes, the additional space is available for use, and is reflected in the `available` zfs property (as seen in `zfs list`, `df`, etc). Expansion does not change the number of failures that can be tolerated without data loss (e.g. a RAIDZ2 is still a RAIDZ2 even after expansion). A RAIDZ vdev can be expanded multiple times. After the expansion completes, old blocks remain with their old data-to-parity ratio (e.g. 5-wide RAIDZ2, has 3 data to 2 parity), but distributed among the larger set of disks. New blocks will be written with the new data-to-parity ratio (e.g. a 5-wide RAIDZ2 which has been expanded once to 6-wide, has 4 data to 2 parity). However, the RAIDZ vdev's "assumed parity ratio" does not change, so slightly less space than is expected may be reported for newly-written blocks, according to `zfs list`, `df`, `ls -s`, and similar tools. Sponsored-by: The FreeBSD Foundation Sponsored-by: iXsystems, Inc. Sponsored-by: vStack Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov> Reviewed-by: Mark Maybee <mark.maybee@delphix.com> Authored-by: Matthew Ahrens <mahrens@delphix.com> Contributions-by: Fedor Uporov <fuporov.vstack@gmail.com> Contributions-by: Stuart Maybee <stuart.maybee@comcast.net> Contributions-by: Thorsten Behrens <tbehrens@outlook.com> Contributions-by: Fmstrat <nospam@nowsci.com> Contributions-by: Don Brady <dev.fs.zfs@gmail.com> Signed-off-by: Don Brady <dev.fs.zfs@gmail.com> Closes #15022
2023-11-08 21:19:41 +03:00
hdr->zh_scratch_state_size = sizeof (ztest_shared_scratch_state_t);
size = shared_data_size(hdr);
VERIFY0(ftruncate(ztest_fd_data, size));
(void) munmap((caddr_t)hdr, P2ROUNDUP(sizeof (*hdr), getpagesize()));
}
static void
setup_data(void)
{
int size, offset;
ztest_shared_hdr_t *hdr;
uint8_t *buf;
hdr = (void *)mmap(0, P2ROUNDUP(sizeof (*hdr), getpagesize()),
PROT_READ, MAP_SHARED, ztest_fd_data, 0);
ASSERT3P(hdr, !=, MAP_FAILED);
size = shared_data_size(hdr);
(void) munmap((caddr_t)hdr, P2ROUNDUP(sizeof (*hdr), getpagesize()));
hdr = ztest_shared_hdr = (void *)mmap(0, P2ROUNDUP(size, getpagesize()),
PROT_READ | PROT_WRITE, MAP_SHARED, ztest_fd_data, 0);
ASSERT3P(hdr, !=, MAP_FAILED);
buf = (uint8_t *)hdr;
offset = hdr->zh_hdr_size;
ztest_shared_opts = (void *)&buf[offset];
offset += hdr->zh_opts_size;
ztest_shared = (void *)&buf[offset];
offset += hdr->zh_size;
ztest_shared_callstate = (void *)&buf[offset];
offset += hdr->zh_stats_size * hdr->zh_stats_count;
ztest_shared_ds = (void *)&buf[offset];
RAID-Z expansion feature This feature allows disks to be added one at a time to a RAID-Z group, expanding its capacity incrementally. This feature is especially useful for small pools (typically with only one RAID-Z group), where there isn't sufficient hardware to add capacity by adding a whole new RAID-Z group (typically doubling the number of disks). == Initiating expansion == A new device (disk) can be attached to an existing RAIDZ vdev, by running `zpool attach POOL raidzP-N NEW_DEVICE`, e.g. `zpool attach tank raidz2-0 sda`. The new device will become part of the RAIDZ group. A "raidz expansion" will be initiated, and the new device will contribute additional space to the RAIDZ group once the expansion completes. The `feature@raidz_expansion` on-disk feature flag must be `enabled` to initiate an expansion, and it remains `active` for the life of the pool. In other words, pools with expanded RAIDZ vdevs can not be imported by older releases of the ZFS software. == During expansion == The expansion entails reading all allocated space from existing disks in the RAIDZ group, and rewriting it to the new disks in the RAIDZ group (including the newly added device). The expansion progress can be monitored with `zpool status`. Data redundancy is maintained during (and after) the expansion. If a disk fails while the expansion is in progress, the expansion pauses until the health of the RAIDZ vdev is restored (e.g. by replacing the failed disk and waiting for reconstruction to complete). The pool remains accessible during expansion. Following a reboot or export/import, the expansion resumes where it left off. == After expansion == When the expansion completes, the additional space is available for use, and is reflected in the `available` zfs property (as seen in `zfs list`, `df`, etc). Expansion does not change the number of failures that can be tolerated without data loss (e.g. a RAIDZ2 is still a RAIDZ2 even after expansion). A RAIDZ vdev can be expanded multiple times. After the expansion completes, old blocks remain with their old data-to-parity ratio (e.g. 5-wide RAIDZ2, has 3 data to 2 parity), but distributed among the larger set of disks. New blocks will be written with the new data-to-parity ratio (e.g. a 5-wide RAIDZ2 which has been expanded once to 6-wide, has 4 data to 2 parity). However, the RAIDZ vdev's "assumed parity ratio" does not change, so slightly less space than is expected may be reported for newly-written blocks, according to `zfs list`, `df`, `ls -s`, and similar tools. Sponsored-by: The FreeBSD Foundation Sponsored-by: iXsystems, Inc. Sponsored-by: vStack Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov> Reviewed-by: Mark Maybee <mark.maybee@delphix.com> Authored-by: Matthew Ahrens <mahrens@delphix.com> Contributions-by: Fedor Uporov <fuporov.vstack@gmail.com> Contributions-by: Stuart Maybee <stuart.maybee@comcast.net> Contributions-by: Thorsten Behrens <tbehrens@outlook.com> Contributions-by: Fmstrat <nospam@nowsci.com> Contributions-by: Don Brady <dev.fs.zfs@gmail.com> Signed-off-by: Don Brady <dev.fs.zfs@gmail.com> Closes #15022
2023-11-08 21:19:41 +03:00
offset += hdr->zh_ds_size * hdr->zh_ds_count;
ztest_scratch_state = (void *)&buf[offset];
}
static boolean_t
exec_child(char *cmd, char *libpath, boolean_t ignorekill, int *statusp)
{
pid_t pid;
int status;
char *cmdbuf = NULL;
pid = fork();
if (cmd == NULL) {
cmdbuf = umem_alloc(MAXPATHLEN, UMEM_NOFAIL);
(void) strlcpy(cmdbuf, getexecname(), MAXPATHLEN);
cmd = cmdbuf;
}
if (pid == -1)
fatal(B_TRUE, "fork failed");
if (pid == 0) { /* child */
char fd_data_str[12];
VERIFY3S(11, >=,
snprintf(fd_data_str, 12, "%d", ztest_fd_data));
VERIFY0(setenv("ZTEST_FD_DATA", fd_data_str, 1));
if (libpath != NULL) {
const char *curlp = getenv("LD_LIBRARY_PATH");
if (curlp == NULL)
VERIFY0(setenv("LD_LIBRARY_PATH", libpath, 1));
else {
char *newlp = NULL;
VERIFY3S(-1, !=,
asprintf(&newlp, "%s:%s", libpath, curlp));
VERIFY0(setenv("LD_LIBRARY_PATH", newlp, 1));
free(newlp);
}
}
Remove enable_extended_FILE_stdio() Even on Illumos it's only available in the 32-bit programming environment, and, quoth enable_extended_FILE_stdio(3C): > Historically, 32-bit Solaris applications have been limited to using > only the file descriptors 0 through 255 with the standard I/O > functions (see stdio(3C)) in the C library. The extended FILE > facility allows well-behaved 32-bit applications to use any > valid file descriptor with the standard I/O functions. where "well-behaved" means that it > does not directly access any fields in the FILE structure pointed > to by the FILE pointer associated with any standard I/O stream, And the stdio/flush.c implementation reads: /* * if this is not an internal extended FILE then check * if _file is being changed from underneath us. * It should not be because if * it is then then we lose our ability to guard against * silent data corruption. */ if (!iop->__xf_nocheck && bad_fd > -1 && iop->_magic != bad_fd) { (void) fprintf(stderr, "Application violated extended FILE safety mechanism.\n" "Please read the man page for extendedFILE.\nAborting\n"); abort(); } This appears to be an insane workaround for broken implementation with exposed FILE internals and _file being an u8, both only on non-LP64; it's shimmed out on all LP64 targets in Illumos, and we shim it out as well: just get rid of it This appears to've been originally fixed in illumos-gate a5f69788de7ac07553de47f7fec8c05a9a94c105 ("PSARC 2006/162 Extended FILE space for 32-bit Solaris processes", "1085341 32-bit stdio routines should support file descriptors >255"), which also bears extendedFILE and enable_extended_FILE_stdio(3C): - unsigned char _file; /* UNIX System file descriptor */ + unsigned char _magic; /* Old home of the file descriptor */ + /* Only fileno(3C) can retrieve the value now */ and +/* + * Macros to aid the extended fd FILE work. + * This helps isolate the changes to only the 32-bit code + * since 64-bit Solaris is not affected by this. + */ +#ifdef _LP64 +#define GET_FD(iop) ((iop)->_file) +#define SET_FILE(iop, fd) ((iop)->_file = (fd)) +#else +#define GET_FD(iop) \ + (((iop)->__extendedfd) ? _file_get(iop) : (iop)->_magic) +#define SET_FILE(iop, fd) (iop)->_magic = (fd); (iop)->__extendedfd = 0 +#endif Also remove the 1k setrlimit(NOFILE) calls: that's the default on Linux, with 64k on Illumos and 171k on FreeBSD Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov> Signed-off-by: Ahelenia Ziemiańska <nabijaczleweli@nabijaczleweli.xyz> Closes #13411
2022-05-03 15:52:53 +03:00
(void) execl(cmd, cmd, (char *)NULL);
ztest_dump_core = B_FALSE;
fatal(B_TRUE, "exec failed: %s", cmd);
}
if (cmdbuf != NULL) {
umem_free(cmdbuf, MAXPATHLEN);
cmd = NULL;
}
while (waitpid(pid, &status, 0) != pid)
continue;
if (statusp != NULL)
*statusp = status;
if (WIFEXITED(status)) {
if (WEXITSTATUS(status) != 0) {
(void) fprintf(stderr, "child exited with code %d\n",
WEXITSTATUS(status));
exit(2);
}
return (B_FALSE);
} else if (WIFSIGNALED(status)) {
if (!ignorekill || WTERMSIG(status) != SIGKILL) {
(void) fprintf(stderr, "child died with signal %d\n",
WTERMSIG(status));
exit(3);
}
return (B_TRUE);
} else {
(void) fprintf(stderr, "something strange happened to child\n");
exit(4);
}
}
static void
ztest_run_init(void)
{
int i;
ztest_shared_t *zs = ztest_shared;
/*
* Blow away any existing copy of zpool.cache
*/
(void) remove(spa_config_path);
Multi-modifier protection (MMP) Add multihost=on|off pool property to control MMP. When enabled a new thread writes uberblocks to the last slot in each label, at a set frequency, to indicate to other hosts the pool is actively imported. These uberblocks are the last synced uberblock with an updated timestamp. Property defaults to off. During tryimport, find the "best" uberblock (newest txg and timestamp) repeatedly, checking for change in the found uberblock. Include the results of the activity test in the config returned by tryimport. These results are reported to user in "zpool import". Allow the user to control the period between MMP writes, and the duration of the activity test on import, via a new module parameter zfs_multihost_interval. The period is specified in milliseconds. The activity test duration is calculated from this value, and from the mmp_delay in the "best" uberblock found initially. Add a kstat interface to export statistics about Multiple Modifier Protection (MMP) updates. Include the last synced txg number, the timestamp, the delay since the last MMP update, the VDEV GUID, the VDEV label that received the last MMP update, and the VDEV path. Abbreviated output below. $ cat /proc/spl/kstat/zfs/mypool/multihost 31 0 0x01 10 880 105092382393521 105144180101111 txg timestamp mmp_delay vdev_guid vdev_label vdev_path 20468 261337 250274925 68396651780 3 /dev/sda 20468 261339 252023374 6267402363293 1 /dev/sdc 20468 261340 252000858 6698080955233 1 /dev/sdx 20468 261341 251980635 783892869810 2 /dev/sdy 20468 261342 253385953 8923255792467 3 /dev/sdd 20468 261344 253336622 042125143176 0 /dev/sdab 20468 261345 253310522 1200778101278 2 /dev/sde 20468 261346 253286429 0950576198362 2 /dev/sdt 20468 261347 253261545 96209817917 3 /dev/sds 20468 261349 253238188 8555725937673 3 /dev/sdb Add a new tunable zfs_multihost_history to specify the number of MMP updates to store history for. By default it is set to zero meaning that no MMP statistics are stored. When using ztest to generate activity, for automated tests of the MMP function, some test functions interfere with the test. For example, the pool is exported to run zdb and then imported again. Add a new ztest function, "-M", to alter ztest behavior to prevent this. Add new tests to verify the new functionality. Tests provided by Giuseppe Di Natale. Reviewed by: Matthew Ahrens <mahrens@delphix.com> Reviewed-by: Giuseppe Di Natale <dinatale2@llnl.gov> Reviewed-by: Ned Bass <bass6@llnl.gov> Reviewed-by: Andreas Dilger <andreas.dilger@intel.com> Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov> Signed-off-by: Olaf Faaland <faaland1@llnl.gov> Closes #745 Closes #6279
2017-07-08 06:20:35 +03:00
if (ztest_opts.zo_init == 0) {
if (ztest_opts.zo_verbose >= 1)
(void) printf("Importing pool %s\n",
ztest_opts.zo_pool);
ztest_import(zs);
return;
}
/*
* Create and initialize our storage pool.
*/
for (i = 1; i <= ztest_opts.zo_init; i++) {
memset(zs, 0, sizeof (*zs));
if (ztest_opts.zo_verbose >= 3 &&
ztest_opts.zo_init != 1) {
(void) printf("ztest_init(), pass %d\n", i);
}
ztest_init(zs);
}
2008-11-20 23:01:55 +03:00
}
int
main(int argc, char **argv)
{
int kills = 0;
int iters = 0;
int older = 0;
int newer = 0;
2008-11-20 23:01:55 +03:00
ztest_shared_t *zs;
ztest_info_t *zi;
ztest_shared_callstate_t *zc;
2008-11-20 23:01:55 +03:00
char timebuf[100];
char numbuf[NN_NUMBUF_SZ];
char *cmd;
boolean_t hasalt;
int f, err;
char *fd_data_str = getenv("ZTEST_FD_DATA");
struct sigaction action;
2008-11-20 23:01:55 +03:00
(void) setvbuf(stdout, NULL, _IOLBF, 0);
dprintf_setup(&argc, argv);
Extend deadman logic The intent of this patch is extend the existing deadman code such that it's flexible enough to be used by both ztest and on production systems. The proposed changes include: * Added a new `zfs_deadman_failmode` module option which is used to dynamically control the behavior of the deadman. It's loosely modeled after, but independant from, the pool failmode property. It can be set to wait, continue, or panic. * wait - Wait for the "hung" I/O (default) * continue - Attempt to recover from a "hung" I/O * panic - Panic the system * Added a new `zfs_deadman_ziotime_ms` module option which is analogous to `zfs_deadman_synctime_ms` except instead of applying to a pool TXG sync it applies to zio_wait(). A default value of 300s is used to define a "hung" zio. * The ztest deadman thread has been re-enabled by default, aligned with the upstream OpenZFS code, and then extended to terminate the process when it takes significantly longer to complete than expected. * The -G option was added to ztest to print the internal debug log when a fatal error is encountered. This same option was previously added to zdb in commit fa603f82. Update zloop.sh to unconditionally pass -G to obtain additional debugging. * The FM_EREPORT_ZFS_DELAY event which was previously posted when the deadman detect a "hung" pool has been replaced by a new dedicated FM_EREPORT_ZFS_DEADMAN event. * The proposed recovery logic attempts to restart a "hung" zio by calling zio_interrupt() on any outstanding leaf zios. We may want to further restrict this to zios in either the ZIO_STAGE_VDEV_IO_START or ZIO_STAGE_VDEV_IO_DONE stages. Calling zio_interrupt() is expected to only be useful for cases when an IO has been submitted to the physical device but for some reasonable the completion callback hasn't been called by the lower layers. This shouldn't be possible but has been observed and may be caused by kernel/driver bugs. * The 'zfs_deadman_synctime_ms' default value was reduced from 1000s to 600s. * Depending on how ztest fails there may be no cache file to move. This should not be considered fatal, collect the logs which are available and carry on. * Add deadman test cases for spa_deadman() and zio_wait(). * Increase default zfs_deadman_checktime_ms to 60s. Reviewed-by: Tim Chase <tim@chase2k.com> Reviewed by: Thomas Caputi <tcaputi@datto.com> Reviewed-by: Giuseppe Di Natale <dinatale2@llnl.gov> Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov> Closes #6999
2017-12-19 01:06:07 +03:00
zfs_deadman_synctime_ms = 300000;
zfs_deadman_checktime_ms = 30000;
OpenZFS 9238 - ZFS Spacemap Encoding V2 Motivation ========== The current space map encoding has the following disadvantages: [1] Assuming 512 sector size each entry can represent at most 16MB for a segment. This makes the encoding very inefficient for large regions of space. [2] As vdev-wide space maps have started to be used by new features (i.e. device removal, zpool checkpoint) we've started imposing limits in the vdevs that can be used with them based on the maximum addressable offset (currently 64PB for a top-level vdev). New encoding ============ The layout can be found at space_map.h and it remains backwards compatible with the old one. The introduced two-word entry format, besides extending the limits imposed by the single-entry layout, also includes a vdev field and some extra padding after its prefix. The extra padding after the prefix should is reserved for future usage (e.g. new prefixes for future encodings or new fields for flags). The new vdev field not only makes the space maps more self-descriptive, but also opens the doors for pool-wide space maps (expected to be used in the log spacemap project). One final important note is that the number of bits used for vdevs is reduced to 24 bits for blkptrs. That was decided as we don't know of any setups that use more than 16M vdevs for the time being and we wanted to fit the vdev field in the space map. In addition that gives us some extra bits in dva_t. Other references: ================= The new encoding is also discussed towards the end of the Log Space Map presentation from 2017's OpenZFS summit. Link: https://www.youtube.com/watch?v=jj2IxRkl5bQ Authored by: Serapheim Dimitropoulos <serapheim@delphix.com> Reviewed by: Matt Ahrens <mahrens@delphix.com> Reviewed by: George Wilson <gwilson@zfsmail.com> Reviewed by: Brian Behlendorf <behlendorf1@llnl.gov> Approved by: Gordon Ross <gwr@nexenta.com> Ported-by: Tim Chase <tim@chase2k.com> Signed-off-by: Tim Chase <tim@chase2k.com> OpenZFS-commit: https://github.com/openzfs/openzfs/commit/90a56e6d OpenZFS-issue: https://www.illumos.org/issues/9238 Closes #7665
2017-08-04 19:30:49 +03:00
/*
* As two-word space map entries may not come up often (especially
* if pool and vdev sizes are small) we want to force at least some
* of them so the feature get tested.
*/
zfs_force_some_double_word_sm_entries = B_TRUE;
/*
* Verify that even extensively damaged split blocks with many
* segments can be reconstructed in a reasonable amount of time
* when reconstruction is known to be possible.
*
* Note: the lower this value is, the more damage we inflict, and
* the more time ztest spends in recovering that damage. We chose
* to induce damage 1/100th of the time so recovery is tested but
* not so frequently that ztest doesn't get to test other code paths.
*/
zfs_reconstruct_indirect_damage_fraction = 100;
action.sa_handler = sig_handler;
sigemptyset(&action.sa_mask);
action.sa_flags = 0;
if (sigaction(SIGSEGV, &action, NULL) < 0) {
(void) fprintf(stderr, "ztest: cannot catch SIGSEGV: %s.\n",
strerror(errno));
exit(EXIT_FAILURE);
}
if (sigaction(SIGABRT, &action, NULL) < 0) {
(void) fprintf(stderr, "ztest: cannot catch SIGABRT: %s.\n",
strerror(errno));
exit(EXIT_FAILURE);
}
/*
* Force random_get_bytes() to use /dev/urandom in order to prevent
* ztest from needlessly depleting the system entropy pool.
*/
random_path = "/dev/urandom";
ztest_fd_rand = open(random_path, O_RDONLY | O_CLOEXEC);
ASSERT3S(ztest_fd_rand, >=, 0);
if (!fd_data_str) {
process_options(argc, argv);
2008-11-20 23:01:55 +03:00
setup_data_fd();
setup_hdr();
setup_data();
memcpy(ztest_shared_opts, &ztest_opts,
sizeof (*ztest_shared_opts));
} else {
ztest_fd_data = atoi(fd_data_str);
setup_data();
memcpy(&ztest_opts, ztest_shared_opts, sizeof (ztest_opts));
}
ASSERT3U(ztest_opts.zo_datasets, ==, ztest_shared_hdr->zh_ds_count);
2008-11-20 23:01:55 +03:00
err = ztest_set_global_vars();
if (err != 0 && !fd_data_str) {
/* error message done by ztest_set_global_vars */
exit(EXIT_FAILURE);
} else {
/* children should not be spawned if setting gvars fails */
VERIFY3S(err, ==, 0);
}
/* Override location of zpool.cache */
VERIFY3S(asprintf((char **)&spa_config_path, "%s/zpool.cache",
ztest_opts.zo_dir), !=, -1);
ztest_ds = umem_alloc(ztest_opts.zo_datasets * sizeof (ztest_ds_t),
UMEM_NOFAIL);
zs = ztest_shared;
if (fd_data_str) {
metaslab_force_ganging = ztest_opts.zo_metaslab_force_ganging;
metaslab_df_alloc_threshold =
zs->zs_metaslab_df_alloc_threshold;
if (zs->zs_do_init)
ztest_run_init();
else
ztest_run(zs);
exit(0);
}
2008-11-20 23:01:55 +03:00
hasalt = (strlen(ztest_opts.zo_alt_ztest) != 0);
2008-11-20 23:01:55 +03:00
if (ztest_opts.zo_verbose >= 1) {
RAID-Z expansion feature This feature allows disks to be added one at a time to a RAID-Z group, expanding its capacity incrementally. This feature is especially useful for small pools (typically with only one RAID-Z group), where there isn't sufficient hardware to add capacity by adding a whole new RAID-Z group (typically doubling the number of disks). == Initiating expansion == A new device (disk) can be attached to an existing RAIDZ vdev, by running `zpool attach POOL raidzP-N NEW_DEVICE`, e.g. `zpool attach tank raidz2-0 sda`. The new device will become part of the RAIDZ group. A "raidz expansion" will be initiated, and the new device will contribute additional space to the RAIDZ group once the expansion completes. The `feature@raidz_expansion` on-disk feature flag must be `enabled` to initiate an expansion, and it remains `active` for the life of the pool. In other words, pools with expanded RAIDZ vdevs can not be imported by older releases of the ZFS software. == During expansion == The expansion entails reading all allocated space from existing disks in the RAIDZ group, and rewriting it to the new disks in the RAIDZ group (including the newly added device). The expansion progress can be monitored with `zpool status`. Data redundancy is maintained during (and after) the expansion. If a disk fails while the expansion is in progress, the expansion pauses until the health of the RAIDZ vdev is restored (e.g. by replacing the failed disk and waiting for reconstruction to complete). The pool remains accessible during expansion. Following a reboot or export/import, the expansion resumes where it left off. == After expansion == When the expansion completes, the additional space is available for use, and is reflected in the `available` zfs property (as seen in `zfs list`, `df`, etc). Expansion does not change the number of failures that can be tolerated without data loss (e.g. a RAIDZ2 is still a RAIDZ2 even after expansion). A RAIDZ vdev can be expanded multiple times. After the expansion completes, old blocks remain with their old data-to-parity ratio (e.g. 5-wide RAIDZ2, has 3 data to 2 parity), but distributed among the larger set of disks. New blocks will be written with the new data-to-parity ratio (e.g. a 5-wide RAIDZ2 which has been expanded once to 6-wide, has 4 data to 2 parity). However, the RAIDZ vdev's "assumed parity ratio" does not change, so slightly less space than is expected may be reported for newly-written blocks, according to `zfs list`, `df`, `ls -s`, and similar tools. Sponsored-by: The FreeBSD Foundation Sponsored-by: iXsystems, Inc. Sponsored-by: vStack Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov> Reviewed-by: Mark Maybee <mark.maybee@delphix.com> Authored-by: Matthew Ahrens <mahrens@delphix.com> Contributions-by: Fedor Uporov <fuporov.vstack@gmail.com> Contributions-by: Stuart Maybee <stuart.maybee@comcast.net> Contributions-by: Thorsten Behrens <tbehrens@outlook.com> Contributions-by: Fmstrat <nospam@nowsci.com> Contributions-by: Don Brady <dev.fs.zfs@gmail.com> Signed-off-by: Don Brady <dev.fs.zfs@gmail.com> Closes #15022
2023-11-08 21:19:41 +03:00
(void) printf("%"PRIu64" vdevs, %d datasets, %d threads, "
"%d %s disks, parity %d, %"PRIu64" seconds...\n\n",
ztest_opts.zo_vdevs,
ztest_opts.zo_datasets,
ztest_opts.zo_threads,
Distributed Spare (dRAID) Feature This patch adds a new top-level vdev type called dRAID, which stands for Distributed parity RAID. This pool configuration allows all dRAID vdevs to participate when rebuilding to a distributed hot spare device. This can substantially reduce the total time required to restore full parity to pool with a failed device. A dRAID pool can be created using the new top-level `draid` type. Like `raidz`, the desired redundancy is specified after the type: `draid[1,2,3]`. No additional information is required to create the pool and reasonable default values will be chosen based on the number of child vdevs in the dRAID vdev. zpool create <pool> draid[1,2,3] <vdevs...> Unlike raidz, additional optional dRAID configuration values can be provided as part of the draid type as colon separated values. This allows administrators to fully specify a layout for either performance or capacity reasons. The supported options include: zpool create <pool> \ draid[<parity>][:<data>d][:<children>c][:<spares>s] \ <vdevs...> - draid[parity] - Parity level (default 1) - draid[:<data>d] - Data devices per group (default 8) - draid[:<children>c] - Expected number of child vdevs - draid[:<spares>s] - Distributed hot spares (default 0) Abbreviated example `zpool status` output for a 68 disk dRAID pool with two distributed spares using special allocation classes. ``` pool: tank state: ONLINE config: NAME STATE READ WRITE CKSUM slag7 ONLINE 0 0 0 draid2:8d:68c:2s-0 ONLINE 0 0 0 L0 ONLINE 0 0 0 L1 ONLINE 0 0 0 ... U25 ONLINE 0 0 0 U26 ONLINE 0 0 0 spare-53 ONLINE 0 0 0 U27 ONLINE 0 0 0 draid2-0-0 ONLINE 0 0 0 U28 ONLINE 0 0 0 U29 ONLINE 0 0 0 ... U42 ONLINE 0 0 0 U43 ONLINE 0 0 0 special mirror-1 ONLINE 0 0 0 L5 ONLINE 0 0 0 U5 ONLINE 0 0 0 mirror-2 ONLINE 0 0 0 L6 ONLINE 0 0 0 U6 ONLINE 0 0 0 spares draid2-0-0 INUSE currently in use draid2-0-1 AVAIL ``` When adding test coverage for the new dRAID vdev type the following options were added to the ztest command. These options are leverages by zloop.sh to test a wide range of dRAID configurations. -K draid|raidz|random - kind of RAID to test -D <value> - dRAID data drives per group -S <value> - dRAID distributed hot spares -R <value> - RAID parity (raidz or dRAID) The zpool_create, zpool_import, redundancy, replacement and fault test groups have all been updated provide test coverage for the dRAID feature. Co-authored-by: Isaac Huang <he.huang@intel.com> Co-authored-by: Mark Maybee <mmaybee@cray.com> Co-authored-by: Don Brady <don.brady@delphix.com> Co-authored-by: Matthew Ahrens <mahrens@delphix.com> Co-authored-by: Brian Behlendorf <behlendorf1@llnl.gov> Reviewed-by: Mark Maybee <mmaybee@cray.com> Reviewed-by: Matt Ahrens <matt@delphix.com> Reviewed-by: Tony Hutter <hutter2@llnl.gov> Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov> Closes #10102
2020-11-14 00:51:51 +03:00
ztest_opts.zo_raid_children,
ztest_opts.zo_raid_type,
RAID-Z expansion feature This feature allows disks to be added one at a time to a RAID-Z group, expanding its capacity incrementally. This feature is especially useful for small pools (typically with only one RAID-Z group), where there isn't sufficient hardware to add capacity by adding a whole new RAID-Z group (typically doubling the number of disks). == Initiating expansion == A new device (disk) can be attached to an existing RAIDZ vdev, by running `zpool attach POOL raidzP-N NEW_DEVICE`, e.g. `zpool attach tank raidz2-0 sda`. The new device will become part of the RAIDZ group. A "raidz expansion" will be initiated, and the new device will contribute additional space to the RAIDZ group once the expansion completes. The `feature@raidz_expansion` on-disk feature flag must be `enabled` to initiate an expansion, and it remains `active` for the life of the pool. In other words, pools with expanded RAIDZ vdevs can not be imported by older releases of the ZFS software. == During expansion == The expansion entails reading all allocated space from existing disks in the RAIDZ group, and rewriting it to the new disks in the RAIDZ group (including the newly added device). The expansion progress can be monitored with `zpool status`. Data redundancy is maintained during (and after) the expansion. If a disk fails while the expansion is in progress, the expansion pauses until the health of the RAIDZ vdev is restored (e.g. by replacing the failed disk and waiting for reconstruction to complete). The pool remains accessible during expansion. Following a reboot or export/import, the expansion resumes where it left off. == After expansion == When the expansion completes, the additional space is available for use, and is reflected in the `available` zfs property (as seen in `zfs list`, `df`, etc). Expansion does not change the number of failures that can be tolerated without data loss (e.g. a RAIDZ2 is still a RAIDZ2 even after expansion). A RAIDZ vdev can be expanded multiple times. After the expansion completes, old blocks remain with their old data-to-parity ratio (e.g. 5-wide RAIDZ2, has 3 data to 2 parity), but distributed among the larger set of disks. New blocks will be written with the new data-to-parity ratio (e.g. a 5-wide RAIDZ2 which has been expanded once to 6-wide, has 4 data to 2 parity). However, the RAIDZ vdev's "assumed parity ratio" does not change, so slightly less space than is expected may be reported for newly-written blocks, according to `zfs list`, `df`, `ls -s`, and similar tools. Sponsored-by: The FreeBSD Foundation Sponsored-by: iXsystems, Inc. Sponsored-by: vStack Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov> Reviewed-by: Mark Maybee <mark.maybee@delphix.com> Authored-by: Matthew Ahrens <mahrens@delphix.com> Contributions-by: Fedor Uporov <fuporov.vstack@gmail.com> Contributions-by: Stuart Maybee <stuart.maybee@comcast.net> Contributions-by: Thorsten Behrens <tbehrens@outlook.com> Contributions-by: Fmstrat <nospam@nowsci.com> Contributions-by: Don Brady <dev.fs.zfs@gmail.com> Signed-off-by: Don Brady <dev.fs.zfs@gmail.com> Closes #15022
2023-11-08 21:19:41 +03:00
ztest_opts.zo_raid_parity,
ztest_opts.zo_time);
2008-11-20 23:01:55 +03:00
}
cmd = umem_alloc(MAXNAMELEN, UMEM_NOFAIL);
(void) strlcpy(cmd, getexecname(), MAXNAMELEN);
zs->zs_do_init = B_TRUE;
if (strlen(ztest_opts.zo_alt_ztest) != 0) {
if (ztest_opts.zo_verbose >= 1) {
(void) printf("Executing older ztest for "
"initialization: %s\n", ztest_opts.zo_alt_ztest);
}
VERIFY(!exec_child(ztest_opts.zo_alt_ztest,
ztest_opts.zo_alt_libpath, B_FALSE, NULL));
} else {
VERIFY(!exec_child(NULL, NULL, B_FALSE, NULL));
2008-11-20 23:01:55 +03:00
}
zs->zs_do_init = B_FALSE;
2008-11-20 23:01:55 +03:00
zs->zs_proc_start = gethrtime();
zs->zs_proc_stop = zs->zs_proc_start + ztest_opts.zo_time * NANOSEC;
2008-11-20 23:01:55 +03:00
for (f = 0; f < ZTEST_FUNCS; f++) {
zi = &ztest_info[f];
zc = ZTEST_GET_SHARED_CALLSTATE(f);
if (zs->zs_proc_start + zi->zi_interval[0] > zs->zs_proc_stop)
zc->zc_next = UINT64_MAX;
2008-11-20 23:01:55 +03:00
else
zc->zc_next = zs->zs_proc_start +
ztest_random(2 * zi->zi_interval[0] + 1);
2008-11-20 23:01:55 +03:00
}
/*
* Run the tests in a loop. These tests include fault injection
* to verify that self-healing data works, and forced crashes
* to verify that we never lose on-disk consistency.
*/
while (gethrtime() < zs->zs_proc_stop) {
2008-11-20 23:01:55 +03:00
int status;
boolean_t killed;
2008-11-20 23:01:55 +03:00
/*
* Initialize the workload counters for each function.
*/
for (f = 0; f < ZTEST_FUNCS; f++) {
zc = ZTEST_GET_SHARED_CALLSTATE(f);
zc->zc_count = 0;
zc->zc_time = 0;
2008-11-20 23:01:55 +03:00
}
2009-07-03 02:44:48 +04:00
/* Set the allocation switch size */
zs->zs_metaslab_df_alloc_threshold =
ztest_random(zs->zs_metaslab_sz / 4) + 1;
2009-07-03 02:44:48 +04:00
if (!hasalt || ztest_random(2) == 0) {
if (hasalt && ztest_opts.zo_verbose >= 1) {
(void) printf("Executing newer ztest: %s\n",
cmd);
2008-11-20 23:01:55 +03:00
}
newer++;
killed = exec_child(cmd, NULL, B_TRUE, &status);
2008-11-20 23:01:55 +03:00
} else {
if (hasalt && ztest_opts.zo_verbose >= 1) {
(void) printf("Executing older ztest: %s\n",
ztest_opts.zo_alt_ztest);
}
older++;
killed = exec_child(ztest_opts.zo_alt_ztest,
ztest_opts.zo_alt_libpath, B_TRUE, &status);
2008-11-20 23:01:55 +03:00
}
if (killed)
kills++;
2008-11-20 23:01:55 +03:00
iters++;
if (ztest_opts.zo_verbose >= 1) {
2008-11-20 23:01:55 +03:00
hrtime_t now = gethrtime();
now = MIN(now, zs->zs_proc_stop);
print_time(zs->zs_proc_stop - now, timebuf);
nicenum(zs->zs_space, numbuf, sizeof (numbuf));
2008-11-20 23:01:55 +03:00
(void) printf("Pass %3d, %8s, %3"PRIu64" ENOSPC, "
2008-11-20 23:01:55 +03:00
"%4.1f%% of %5s used, %3.0f%% done, %8s to go\n",
iters,
WIFEXITED(status) ? "Complete" : "SIGKILL",
zs->zs_enospc_count,
2008-11-20 23:01:55 +03:00
100.0 * zs->zs_alloc / zs->zs_space,
numbuf,
100.0 * (now - zs->zs_proc_start) /
(ztest_opts.zo_time * NANOSEC), timebuf);
2008-11-20 23:01:55 +03:00
}
if (ztest_opts.zo_verbose >= 2) {
2008-11-20 23:01:55 +03:00
(void) printf("\nWorkload summary:\n\n");
(void) printf("%7s %9s %s\n",
"Calls", "Time", "Function");
(void) printf("%7s %9s %s\n",
"-----", "----", "--------");
for (f = 0; f < ZTEST_FUNCS; f++) {
zi = &ztest_info[f];
zc = ZTEST_GET_SHARED_CALLSTATE(f);
print_time(zc->zc_time, timebuf);
(void) printf("%7"PRIu64" %9s %s\n",
zc->zc_count, timebuf,
zi->zi_funcname);
2008-11-20 23:01:55 +03:00
}
(void) printf("\n");
}
Multi-modifier protection (MMP) Add multihost=on|off pool property to control MMP. When enabled a new thread writes uberblocks to the last slot in each label, at a set frequency, to indicate to other hosts the pool is actively imported. These uberblocks are the last synced uberblock with an updated timestamp. Property defaults to off. During tryimport, find the "best" uberblock (newest txg and timestamp) repeatedly, checking for change in the found uberblock. Include the results of the activity test in the config returned by tryimport. These results are reported to user in "zpool import". Allow the user to control the period between MMP writes, and the duration of the activity test on import, via a new module parameter zfs_multihost_interval. The period is specified in milliseconds. The activity test duration is calculated from this value, and from the mmp_delay in the "best" uberblock found initially. Add a kstat interface to export statistics about Multiple Modifier Protection (MMP) updates. Include the last synced txg number, the timestamp, the delay since the last MMP update, the VDEV GUID, the VDEV label that received the last MMP update, and the VDEV path. Abbreviated output below. $ cat /proc/spl/kstat/zfs/mypool/multihost 31 0 0x01 10 880 105092382393521 105144180101111 txg timestamp mmp_delay vdev_guid vdev_label vdev_path 20468 261337 250274925 68396651780 3 /dev/sda 20468 261339 252023374 6267402363293 1 /dev/sdc 20468 261340 252000858 6698080955233 1 /dev/sdx 20468 261341 251980635 783892869810 2 /dev/sdy 20468 261342 253385953 8923255792467 3 /dev/sdd 20468 261344 253336622 042125143176 0 /dev/sdab 20468 261345 253310522 1200778101278 2 /dev/sde 20468 261346 253286429 0950576198362 2 /dev/sdt 20468 261347 253261545 96209817917 3 /dev/sds 20468 261349 253238188 8555725937673 3 /dev/sdb Add a new tunable zfs_multihost_history to specify the number of MMP updates to store history for. By default it is set to zero meaning that no MMP statistics are stored. When using ztest to generate activity, for automated tests of the MMP function, some test functions interfere with the test. For example, the pool is exported to run zdb and then imported again. Add a new ztest function, "-M", to alter ztest behavior to prevent this. Add new tests to verify the new functionality. Tests provided by Giuseppe Di Natale. Reviewed by: Matthew Ahrens <mahrens@delphix.com> Reviewed-by: Giuseppe Di Natale <dinatale2@llnl.gov> Reviewed-by: Ned Bass <bass6@llnl.gov> Reviewed-by: Andreas Dilger <andreas.dilger@intel.com> Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov> Signed-off-by: Olaf Faaland <faaland1@llnl.gov> Closes #745 Closes #6279
2017-07-08 06:20:35 +03:00
if (!ztest_opts.zo_mmp_test)
ztest_run_zdb(zs->zs_guid);
RAID-Z expansion feature This feature allows disks to be added one at a time to a RAID-Z group, expanding its capacity incrementally. This feature is especially useful for small pools (typically with only one RAID-Z group), where there isn't sufficient hardware to add capacity by adding a whole new RAID-Z group (typically doubling the number of disks). == Initiating expansion == A new device (disk) can be attached to an existing RAIDZ vdev, by running `zpool attach POOL raidzP-N NEW_DEVICE`, e.g. `zpool attach tank raidz2-0 sda`. The new device will become part of the RAIDZ group. A "raidz expansion" will be initiated, and the new device will contribute additional space to the RAIDZ group once the expansion completes. The `feature@raidz_expansion` on-disk feature flag must be `enabled` to initiate an expansion, and it remains `active` for the life of the pool. In other words, pools with expanded RAIDZ vdevs can not be imported by older releases of the ZFS software. == During expansion == The expansion entails reading all allocated space from existing disks in the RAIDZ group, and rewriting it to the new disks in the RAIDZ group (including the newly added device). The expansion progress can be monitored with `zpool status`. Data redundancy is maintained during (and after) the expansion. If a disk fails while the expansion is in progress, the expansion pauses until the health of the RAIDZ vdev is restored (e.g. by replacing the failed disk and waiting for reconstruction to complete). The pool remains accessible during expansion. Following a reboot or export/import, the expansion resumes where it left off. == After expansion == When the expansion completes, the additional space is available for use, and is reflected in the `available` zfs property (as seen in `zfs list`, `df`, etc). Expansion does not change the number of failures that can be tolerated without data loss (e.g. a RAIDZ2 is still a RAIDZ2 even after expansion). A RAIDZ vdev can be expanded multiple times. After the expansion completes, old blocks remain with their old data-to-parity ratio (e.g. 5-wide RAIDZ2, has 3 data to 2 parity), but distributed among the larger set of disks. New blocks will be written with the new data-to-parity ratio (e.g. a 5-wide RAIDZ2 which has been expanded once to 6-wide, has 4 data to 2 parity). However, the RAIDZ vdev's "assumed parity ratio" does not change, so slightly less space than is expected may be reported for newly-written blocks, according to `zfs list`, `df`, `ls -s`, and similar tools. Sponsored-by: The FreeBSD Foundation Sponsored-by: iXsystems, Inc. Sponsored-by: vStack Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov> Reviewed-by: Mark Maybee <mark.maybee@delphix.com> Authored-by: Matthew Ahrens <mahrens@delphix.com> Contributions-by: Fedor Uporov <fuporov.vstack@gmail.com> Contributions-by: Stuart Maybee <stuart.maybee@comcast.net> Contributions-by: Thorsten Behrens <tbehrens@outlook.com> Contributions-by: Fmstrat <nospam@nowsci.com> Contributions-by: Don Brady <dev.fs.zfs@gmail.com> Signed-off-by: Don Brady <dev.fs.zfs@gmail.com> Closes #15022
2023-11-08 21:19:41 +03:00
if (ztest_shared_opts->zo_raidz_expand_test ==
RAIDZ_EXPAND_CHECKED)
break; /* raidz expand test complete */
}
2008-11-20 23:01:55 +03:00
if (ztest_opts.zo_verbose >= 1) {
if (hasalt) {
(void) printf("%d runs of older ztest: %s\n", older,
ztest_opts.zo_alt_ztest);
(void) printf("%d runs of newer ztest: %s\n", newer,
cmd);
}
2008-11-20 23:01:55 +03:00
(void) printf("%d killed, %d completed, %.0f%% kill rate\n",
kills, iters - kills, (100.0 * kills) / MAX(1, iters));
}
umem_free(cmd, MAXNAMELEN);
2008-11-20 23:01:55 +03:00
return (0);
}