mirror of
				https://git.proxmox.com/git/mirror_zfs.git
				synced 2025-10-26 18:05:04 +03:00 
			
		
		
		
	
		
			
	
	
		
			1135 lines
		
	
	
		
			30 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
		
		
			
		
	
	
			1135 lines
		
	
	
		
			30 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
|   | /*
 | ||
|  |  * This file and its contents are supplied under the terms of the | ||
|  |  * Common Development and Distribution License ("CDDL"), version 1.0. | ||
|  |  * You may only use this file in accordance with the terms of version | ||
|  |  * 1.0 of the CDDL. | ||
|  |  * | ||
|  |  * A full copy of the text of the CDDL should have accompanied this | ||
|  |  * source.  A copy of the CDDL is also available via the Internet at | ||
|  |  * http://www.illumos.org/license/CDDL.
 | ||
|  |  */ | ||
|  | 
 | ||
|  | /*
 | ||
|  |  * Copyright (c) 2014 by Chunwei Chen. All rights reserved. | ||
|  |  * Copyright (c) 2016 by Delphix. All rights reserved. | ||
|  |  */ | ||
|  | 
 | ||
|  | /*
 | ||
|  |  * ARC buffer data (ABD). | ||
|  |  * | ||
|  |  * ABDs are an abstract data structure for the ARC which can use two | ||
|  |  * different ways of storing the underlying data: | ||
|  |  * | ||
|  |  * (a) Linear buffer. In this case, all the data in the ABD is stored in one | ||
|  |  *     contiguous buffer in memory (from a zio_[data_]buf_* kmem cache). | ||
|  |  * | ||
|  |  *         +-------------------+ | ||
|  |  *         | ABD (linear)      | | ||
|  |  *         |   abd_flags = ... | | ||
|  |  *         |   abd_size = ...  |     +--------------------------------+ | ||
|  |  *         |   abd_buf ------------->| raw buffer of size abd_size    | | ||
|  |  *         +-------------------+     +--------------------------------+ | ||
|  |  *              no abd_chunks | ||
|  |  * | ||
|  |  * (b) Scattered buffer. In this case, the data in the ABD is split into | ||
|  |  *     equal-sized chunks (from the abd_chunk_cache kmem_cache), with pointers | ||
|  |  *     to the chunks recorded in an array at the end of the ABD structure. | ||
|  |  * | ||
|  |  *         +-------------------+ | ||
|  |  *         | ABD (scattered)   | | ||
|  |  *         |   abd_flags = ... | | ||
|  |  *         |   abd_size = ...  | | ||
|  |  *         |   abd_offset = 0  |                           +-----------+ | ||
|  |  *         |   abd_chunks[0] ----------------------------->| chunk 0   | | ||
|  |  *         |   abd_chunks[1] ---------------------+        +-----------+ | ||
|  |  *         |   ...             |                  |        +-----------+ | ||
|  |  *         |   abd_chunks[N-1] ---------+         +------->| chunk 1   | | ||
|  |  *         +-------------------+        |                  +-----------+ | ||
|  |  *                                      |                      ... | ||
|  |  *                                      |                  +-----------+ | ||
|  |  *                                      +----------------->| chunk N-1 | | ||
|  |  *                                                         +-----------+ | ||
|  |  * | ||
|  |  * Using a large proportion of scattered ABDs decreases ARC fragmentation since | ||
|  |  * when we are at the limit of allocatable space, using equal-size chunks will | ||
|  |  * allow us to quickly reclaim enough space for a new large allocation (assuming | ||
|  |  * it is also scattered). | ||
|  |  * | ||
|  |  * In addition to directly allocating a linear or scattered ABD, it is also | ||
|  |  * possible to create an ABD by requesting the "sub-ABD" starting at an offset | ||
|  |  * within an existing ABD. In linear buffers this is simple (set abd_buf of | ||
|  |  * the new ABD to the starting point within the original raw buffer), but | ||
|  |  * scattered ABDs are a little more complex. The new ABD makes a copy of the | ||
|  |  * relevant abd_chunks pointers (but not the underlying data). However, to | ||
|  |  * provide arbitrary rather than only chunk-aligned starting offsets, it also | ||
|  |  * tracks an abd_offset field which represents the starting point of the data | ||
|  |  * within the first chunk in abd_chunks. For both linear and scattered ABDs, | ||
|  |  * creating an offset ABD marks the original ABD as the offset's parent, and the | ||
|  |  * original ABD's abd_children refcount is incremented. This data allows us to | ||
|  |  * ensure the root ABD isn't deleted before its children. | ||
|  |  * | ||
|  |  * Most consumers should never need to know what type of ABD they're using -- | ||
|  |  * the ABD public API ensures that it's possible to transparently switch from | ||
|  |  * using a linear ABD to a scattered one when doing so would be beneficial. | ||
|  |  * | ||
|  |  * If you need to use the data within an ABD directly, if you know it's linear | ||
|  |  * (because you allocated it) you can use abd_to_buf() to access the underlying | ||
|  |  * raw buffer. Otherwise, you should use one of the abd_borrow_buf* functions | ||
|  |  * which will allocate a raw buffer if necessary. Use the abd_return_buf* | ||
|  |  * functions to return any raw buffers that are no longer necessary when you're | ||
|  |  * done using them. | ||
|  |  * | ||
|  |  * There are a variety of ABD APIs that implement basic buffer operations: | ||
|  |  * compare, copy, read, write, and fill with zeroes. If you need a custom | ||
|  |  * function which progressively accesses the whole ABD, use the abd_iterate_* | ||
|  |  * functions. | ||
|  |  */ | ||
|  | 
 | ||
|  | #include <sys/abd.h>
 | ||
|  | #include <sys/param.h>
 | ||
|  | #include <sys/zio.h>
 | ||
|  | #include <sys/zfs_context.h>
 | ||
|  | #include <sys/zfs_znode.h>
 | ||
|  | 
 | ||
|  | typedef struct abd_stats { | ||
|  | 	kstat_named_t abdstat_struct_size; | ||
|  | 	kstat_named_t abdstat_scatter_cnt; | ||
|  | 	kstat_named_t abdstat_scatter_data_size; | ||
|  | 	kstat_named_t abdstat_scatter_chunk_waste; | ||
|  | 	kstat_named_t abdstat_linear_cnt; | ||
|  | 	kstat_named_t abdstat_linear_data_size; | ||
|  | } abd_stats_t; | ||
|  | 
 | ||
|  | static abd_stats_t abd_stats = { | ||
|  | 	/* Amount of memory occupied by all of the abd_t struct allocations */ | ||
|  | 	{ "struct_size",			KSTAT_DATA_UINT64 }, | ||
|  | 	/*
 | ||
|  | 	 * The number of scatter ABDs which are currently allocated, excluding | ||
|  | 	 * ABDs which don't own their data (for instance the ones which were | ||
|  | 	 * allocated through abd_get_offset()). | ||
|  | 	 */ | ||
|  | 	{ "scatter_cnt",			KSTAT_DATA_UINT64 }, | ||
|  | 	/* Amount of data stored in all scatter ABDs tracked by scatter_cnt */ | ||
|  | 	{ "scatter_data_size",			KSTAT_DATA_UINT64 }, | ||
|  | 	/*
 | ||
|  | 	 * The amount of space wasted at the end of the last chunk across all | ||
|  | 	 * scatter ABDs tracked by scatter_cnt. | ||
|  | 	 */ | ||
|  | 	{ "scatter_chunk_waste",		KSTAT_DATA_UINT64 }, | ||
|  | 	/*
 | ||
|  | 	 * The number of linear ABDs which are currently allocated, excluding | ||
|  | 	 * ABDs which don't own their data (for instance the ones which were | ||
|  | 	 * allocated through abd_get_offset() and abd_get_from_buf()). If an | ||
|  | 	 * ABD takes ownership of its buf then it will become tracked. | ||
|  | 	 */ | ||
|  | 	{ "linear_cnt",				KSTAT_DATA_UINT64 }, | ||
|  | 	/* Amount of data stored in all linear ABDs tracked by linear_cnt */ | ||
|  | 	{ "linear_data_size",			KSTAT_DATA_UINT64 }, | ||
|  | }; | ||
|  | 
 | ||
|  | #define	ABDSTAT(stat)		(abd_stats.stat.value.ui64)
 | ||
|  | #define	ABDSTAT_INCR(stat, val) \
 | ||
|  | 	atomic_add_64(&abd_stats.stat.value.ui64, (val)) | ||
|  | #define	ABDSTAT_BUMP(stat)	ABDSTAT_INCR(stat, 1)
 | ||
|  | #define	ABDSTAT_BUMPDOWN(stat)	ABDSTAT_INCR(stat, -1)
 | ||
|  | 
 | ||
|  | /*
 | ||
|  |  * It is possible to make all future ABDs be linear by setting this to B_FALSE. | ||
|  |  * Otherwise, ABDs are allocated scattered by default unless the caller uses | ||
|  |  * abd_alloc_linear(). | ||
|  |  */ | ||
|  | boolean_t zfs_abd_scatter_enabled = B_TRUE; | ||
|  | 
 | ||
|  | /*
 | ||
|  |  * The size of the chunks ABD allocates. Because the sizes allocated from the | ||
|  |  * kmem_cache can't change, this tunable can only be modified at boot. Changing | ||
|  |  * it at runtime would cause ABD iteration to work incorrectly for ABDs which | ||
|  |  * were allocated with the old size, so a safeguard has been put in place which | ||
|  |  * will cause the machine to panic if you change it and try to access the data | ||
|  |  * within a scattered ABD. | ||
|  |  */ | ||
|  | size_t zfs_abd_chunk_size = 4096; | ||
|  | 
 | ||
|  | #if defined(_KERNEL)
 | ||
|  | SYSCTL_DECL(_vfs_zfs); | ||
|  | 
 | ||
|  | SYSCTL_INT(_vfs_zfs, OID_AUTO, abd_scatter_enabled, CTLFLAG_RWTUN, | ||
|  | 	&zfs_abd_scatter_enabled, 0, "Enable scattered ARC data buffers"); | ||
|  | SYSCTL_ULONG(_vfs_zfs, OID_AUTO, abd_chunk_size, CTLFLAG_RDTUN, | ||
|  | 	&zfs_abd_chunk_size, 0, "The size of the chunks ABD allocates"); | ||
|  | #endif
 | ||
|  | 
 | ||
|  | kmem_cache_t *abd_chunk_cache; | ||
|  | static kstat_t *abd_ksp; | ||
|  | 
 | ||
|  | extern inline boolean_t abd_is_linear(abd_t *abd); | ||
|  | extern inline void abd_copy(abd_t *dabd, abd_t *sabd, size_t size); | ||
|  | extern inline void abd_copy_from_buf(abd_t *abd, const void *buf, size_t size); | ||
|  | extern inline void abd_copy_to_buf(void* buf, abd_t *abd, size_t size); | ||
|  | extern inline int abd_cmp_buf(abd_t *abd, const void *buf, size_t size); | ||
|  | extern inline void abd_zero(abd_t *abd, size_t size); | ||
|  | 
 | ||
|  | static void * | ||
|  | abd_alloc_chunk() | ||
|  | { | ||
|  | 	void *c = kmem_cache_alloc(abd_chunk_cache, KM_PUSHPAGE); | ||
|  | 	ASSERT3P(c, !=, NULL); | ||
|  | 	return (c); | ||
|  | } | ||
|  | 
 | ||
|  | static void | ||
|  | abd_free_chunk(void *c) | ||
|  | { | ||
|  | 	kmem_cache_free(abd_chunk_cache, c); | ||
|  | } | ||
|  | 
 | ||
|  | void | ||
|  | abd_init(void) | ||
|  | { | ||
|  | 	abd_chunk_cache = kmem_cache_create("abd_chunk", zfs_abd_chunk_size, 0, | ||
|  | 	    NULL, NULL, NULL, NULL, 0, KMC_NOTOUCH | KMC_NODEBUG); | ||
|  | 
 | ||
|  | 	abd_ksp = kstat_create("zfs", 0, "abdstats", "misc", KSTAT_TYPE_NAMED, | ||
|  | 	    sizeof (abd_stats) / sizeof (kstat_named_t), KSTAT_FLAG_VIRTUAL); | ||
|  | 	if (abd_ksp != NULL) { | ||
|  | 		abd_ksp->ks_data = &abd_stats; | ||
|  | 		kstat_install(abd_ksp); | ||
|  | 	} | ||
|  | } | ||
|  | 
 | ||
|  | void | ||
|  | abd_fini(void) | ||
|  | { | ||
|  | 	if (abd_ksp != NULL) { | ||
|  | 		kstat_delete(abd_ksp); | ||
|  | 		abd_ksp = NULL; | ||
|  | 	} | ||
|  | 
 | ||
|  | 	kmem_cache_destroy(abd_chunk_cache); | ||
|  | 	abd_chunk_cache = NULL; | ||
|  | } | ||
|  | 
 | ||
|  | static inline size_t | ||
|  | abd_chunkcnt_for_bytes(size_t size) | ||
|  | { | ||
|  | 	return (P2ROUNDUP(size, zfs_abd_chunk_size) / zfs_abd_chunk_size); | ||
|  | } | ||
|  | 
 | ||
|  | static inline size_t | ||
|  | abd_scatter_chunkcnt(abd_t *abd) | ||
|  | { | ||
|  | 	ASSERT(!abd_is_linear(abd)); | ||
|  | 	return (abd_chunkcnt_for_bytes( | ||
|  | 	    abd->abd_u.abd_scatter.abd_offset + abd->abd_size)); | ||
|  | } | ||
|  | 
 | ||
|  | static inline void | ||
|  | abd_verify(abd_t *abd) | ||
|  | { | ||
|  | 	ASSERT3U(abd->abd_size, >, 0); | ||
|  | 	ASSERT3U(abd->abd_size, <=, SPA_MAXBLOCKSIZE); | ||
|  | 	ASSERT3U(abd->abd_flags, ==, abd->abd_flags & (ABD_FLAG_LINEAR | | ||
|  | 	    ABD_FLAG_OWNER | ABD_FLAG_META)); | ||
|  | 	IMPLY(abd->abd_parent != NULL, !(abd->abd_flags & ABD_FLAG_OWNER)); | ||
|  | 	IMPLY(abd->abd_flags & ABD_FLAG_META, abd->abd_flags & ABD_FLAG_OWNER); | ||
|  | 	if (abd_is_linear(abd)) { | ||
|  | 		ASSERT3P(abd->abd_u.abd_linear.abd_buf, !=, NULL); | ||
|  | 	} else { | ||
|  | 		ASSERT3U(abd->abd_u.abd_scatter.abd_offset, <, | ||
|  | 		    zfs_abd_chunk_size); | ||
|  | 		size_t n = abd_scatter_chunkcnt(abd); | ||
|  | 		for (int i = 0; i < n; i++) { | ||
|  | 			ASSERT3P( | ||
|  | 			    abd->abd_u.abd_scatter.abd_chunks[i], !=, NULL); | ||
|  | 		} | ||
|  | 	} | ||
|  | } | ||
|  | 
 | ||
|  | static inline abd_t * | ||
|  | abd_alloc_struct(size_t chunkcnt) | ||
|  | { | ||
|  | 	size_t size = offsetof(abd_t, abd_u.abd_scatter.abd_chunks[chunkcnt]); | ||
|  | 	abd_t *abd = kmem_alloc(size, KM_PUSHPAGE); | ||
|  | 	ASSERT3P(abd, !=, NULL); | ||
|  | 	ABDSTAT_INCR(abdstat_struct_size, size); | ||
|  | 
 | ||
|  | 	return (abd); | ||
|  | } | ||
|  | 
 | ||
|  | static inline void | ||
|  | abd_free_struct(abd_t *abd) | ||
|  | { | ||
|  | 	size_t chunkcnt = abd_is_linear(abd) ? 0 : abd_scatter_chunkcnt(abd); | ||
|  | 	int size = offsetof(abd_t, abd_u.abd_scatter.abd_chunks[chunkcnt]); | ||
|  | 	kmem_free(abd, size); | ||
|  | 	ABDSTAT_INCR(abdstat_struct_size, -size); | ||
|  | } | ||
|  | 
 | ||
|  | /*
 | ||
|  |  * Allocate an ABD, along with its own underlying data buffers. Use this if you | ||
|  |  * don't care whether the ABD is linear or not. | ||
|  |  */ | ||
|  | abd_t * | ||
|  | abd_alloc(size_t size, boolean_t is_metadata) | ||
|  | { | ||
|  | 	if (!zfs_abd_scatter_enabled || size <= zfs_abd_chunk_size) | ||
|  | 		return (abd_alloc_linear(size, is_metadata)); | ||
|  | 
 | ||
|  | 	VERIFY3U(size, <=, SPA_MAXBLOCKSIZE); | ||
|  | 
 | ||
|  | 	size_t n = abd_chunkcnt_for_bytes(size); | ||
|  | 	abd_t *abd = abd_alloc_struct(n); | ||
|  | 
 | ||
|  | 	abd->abd_flags = ABD_FLAG_OWNER; | ||
|  | 	if (is_metadata) { | ||
|  | 		abd->abd_flags |= ABD_FLAG_META; | ||
|  | 	} | ||
|  | 	abd->abd_size = size; | ||
|  | 	abd->abd_parent = NULL; | ||
|  | 	zfs_refcount_create(&abd->abd_children); | ||
|  | 
 | ||
|  | 	abd->abd_u.abd_scatter.abd_offset = 0; | ||
|  | 	abd->abd_u.abd_scatter.abd_chunk_size = zfs_abd_chunk_size; | ||
|  | 
 | ||
|  | 	for (int i = 0; i < n; i++) { | ||
|  | 		void *c = abd_alloc_chunk(); | ||
|  | 		ASSERT3P(c, !=, NULL); | ||
|  | 		abd->abd_u.abd_scatter.abd_chunks[i] = c; | ||
|  | 	} | ||
|  | 
 | ||
|  | 	ABDSTAT_BUMP(abdstat_scatter_cnt); | ||
|  | 	ABDSTAT_INCR(abdstat_scatter_data_size, size); | ||
|  | 	ABDSTAT_INCR(abdstat_scatter_chunk_waste, | ||
|  | 	    n * zfs_abd_chunk_size - size); | ||
|  | 
 | ||
|  | 	return (abd); | ||
|  | } | ||
|  | 
 | ||
|  | static void | ||
|  | abd_free_scatter(abd_t *abd) | ||
|  | { | ||
|  | 	size_t n = abd_scatter_chunkcnt(abd); | ||
|  | 	for (int i = 0; i < n; i++) { | ||
|  | 		abd_free_chunk(abd->abd_u.abd_scatter.abd_chunks[i]); | ||
|  | 	} | ||
|  | 
 | ||
|  | 	zfs_refcount_destroy(&abd->abd_children); | ||
|  | 	ABDSTAT_BUMPDOWN(abdstat_scatter_cnt); | ||
|  | 	ABDSTAT_INCR(abdstat_scatter_data_size, -(int)abd->abd_size); | ||
|  | 	ABDSTAT_INCR(abdstat_scatter_chunk_waste, | ||
|  | 	    abd->abd_size - n * zfs_abd_chunk_size); | ||
|  | 
 | ||
|  | 	abd_free_struct(abd); | ||
|  | } | ||
|  | 
 | ||
|  | /*
 | ||
|  |  * Allocate an ABD that must be linear, along with its own underlying data | ||
|  |  * buffer. Only use this when it would be very annoying to write your ABD | ||
|  |  * consumer with a scattered ABD. | ||
|  |  */ | ||
|  | abd_t * | ||
|  | abd_alloc_linear(size_t size, boolean_t is_metadata) | ||
|  | { | ||
|  | 	abd_t *abd = abd_alloc_struct(0); | ||
|  | 
 | ||
|  | 	VERIFY3U(size, <=, SPA_MAXBLOCKSIZE); | ||
|  | 
 | ||
|  | 	abd->abd_flags = ABD_FLAG_LINEAR | ABD_FLAG_OWNER; | ||
|  | 	if (is_metadata) { | ||
|  | 		abd->abd_flags |= ABD_FLAG_META; | ||
|  | 	} | ||
|  | 	abd->abd_size = size; | ||
|  | 	abd->abd_parent = NULL; | ||
|  | 	zfs_refcount_create(&abd->abd_children); | ||
|  | 
 | ||
|  | 	if (is_metadata) { | ||
|  | 		abd->abd_u.abd_linear.abd_buf = zio_buf_alloc(size); | ||
|  | 	} else { | ||
|  | 		abd->abd_u.abd_linear.abd_buf = zio_data_buf_alloc(size); | ||
|  | 	} | ||
|  | 
 | ||
|  | 	ABDSTAT_BUMP(abdstat_linear_cnt); | ||
|  | 	ABDSTAT_INCR(abdstat_linear_data_size, size); | ||
|  | 
 | ||
|  | 	return (abd); | ||
|  | } | ||
|  | 
 | ||
|  | static void | ||
|  | abd_free_linear(abd_t *abd) | ||
|  | { | ||
|  | 	if (abd->abd_flags & ABD_FLAG_META) { | ||
|  | 		zio_buf_free(abd->abd_u.abd_linear.abd_buf, abd->abd_size); | ||
|  | 	} else { | ||
|  | 		zio_data_buf_free(abd->abd_u.abd_linear.abd_buf, abd->abd_size); | ||
|  | 	} | ||
|  | 
 | ||
|  | 	zfs_refcount_destroy(&abd->abd_children); | ||
|  | 	ABDSTAT_BUMPDOWN(abdstat_linear_cnt); | ||
|  | 	ABDSTAT_INCR(abdstat_linear_data_size, -(int)abd->abd_size); | ||
|  | 
 | ||
|  | 	abd_free_struct(abd); | ||
|  | } | ||
|  | 
 | ||
|  | /*
 | ||
|  |  * Free an ABD. Only use this on ABDs allocated with abd_alloc() or | ||
|  |  * abd_alloc_linear(). | ||
|  |  */ | ||
|  | void | ||
|  | abd_free(abd_t *abd) | ||
|  | { | ||
|  | 	if (abd == NULL) | ||
|  | 		return; | ||
|  | 
 | ||
|  | 	abd_verify(abd); | ||
|  | 	ASSERT3P(abd->abd_parent, ==, NULL); | ||
|  | 	ASSERT(abd->abd_flags & ABD_FLAG_OWNER); | ||
|  | 	if (abd_is_linear(abd)) | ||
|  | 		abd_free_linear(abd); | ||
|  | 	else | ||
|  | 		abd_free_scatter(abd); | ||
|  | } | ||
|  | 
 | ||
|  | /*
 | ||
|  |  * Allocate an ABD of the same format (same metadata flag, same scatterize | ||
|  |  * setting) as another ABD. | ||
|  |  */ | ||
|  | abd_t * | ||
|  | abd_alloc_sametype(abd_t *sabd, size_t size) | ||
|  | { | ||
|  | 	boolean_t is_metadata = (sabd->abd_flags & ABD_FLAG_META) != 0; | ||
|  | 	if (abd_is_linear(sabd)) { | ||
|  | 		return (abd_alloc_linear(size, is_metadata)); | ||
|  | 	} else { | ||
|  | 		return (abd_alloc(size, is_metadata)); | ||
|  | 	} | ||
|  | } | ||
|  | 
 | ||
|  | /*
 | ||
|  |  * If we're going to use this ABD for doing I/O using the block layer, the | ||
|  |  * consumer of the ABD data doesn't care if it's scattered or not, and we don't | ||
|  |  * plan to store this ABD in memory for a long period of time, we should | ||
|  |  * allocate the ABD type that requires the least data copying to do the I/O. | ||
|  |  * | ||
|  |  * Currently this is linear ABDs, however if ldi_strategy() can ever issue I/Os | ||
|  |  * using a scatter/gather list we should switch to that and replace this call | ||
|  |  * with vanilla abd_alloc(). | ||
|  |  */ | ||
|  | abd_t * | ||
|  | abd_alloc_for_io(size_t size, boolean_t is_metadata) | ||
|  | { | ||
|  | 	return (abd_alloc_linear(size, is_metadata)); | ||
|  | } | ||
|  | 
 | ||
|  | /*
 | ||
|  |  * Allocate a new ABD to point to offset off of sabd. It shares the underlying | ||
|  |  * buffer data with sabd. Use abd_put() to free. sabd must not be freed while | ||
|  |  * any derived ABDs exist. | ||
|  |  */ | ||
|  | /* ARGSUSED */ | ||
|  | static inline abd_t * | ||
|  | abd_get_offset_impl(abd_t *sabd, size_t off, size_t size) | ||
|  | { | ||
|  | 	abd_t *abd; | ||
|  | 
 | ||
|  | 	abd_verify(sabd); | ||
|  | 	ASSERT3U(off, <=, sabd->abd_size); | ||
|  | 
 | ||
|  | 	if (abd_is_linear(sabd)) { | ||
|  | 		abd = abd_alloc_struct(0); | ||
|  | 
 | ||
|  | 		/*
 | ||
|  | 		 * Even if this buf is filesystem metadata, we only track that | ||
|  | 		 * if we own the underlying data buffer, which is not true in | ||
|  | 		 * this case. Therefore, we don't ever use ABD_FLAG_META here. | ||
|  | 		 */ | ||
|  | 		abd->abd_flags = ABD_FLAG_LINEAR; | ||
|  | 
 | ||
|  | 		abd->abd_u.abd_linear.abd_buf = | ||
|  | 		    (char *)sabd->abd_u.abd_linear.abd_buf + off; | ||
|  | 	} else { | ||
|  | 		size_t new_offset = sabd->abd_u.abd_scatter.abd_offset + off; | ||
|  | 		size_t chunkcnt = abd_scatter_chunkcnt(sabd) - | ||
|  | 		    (new_offset / zfs_abd_chunk_size); | ||
|  | 
 | ||
|  | 		abd = abd_alloc_struct(chunkcnt); | ||
|  | 
 | ||
|  | 		/*
 | ||
|  | 		 * Even if this buf is filesystem metadata, we only track that | ||
|  | 		 * if we own the underlying data buffer, which is not true in | ||
|  | 		 * this case. Therefore, we don't ever use ABD_FLAG_META here. | ||
|  | 		 */ | ||
|  | 		abd->abd_flags = 0; | ||
|  | 
 | ||
|  | 		abd->abd_u.abd_scatter.abd_offset = | ||
|  | 		    new_offset % zfs_abd_chunk_size; | ||
|  | 		abd->abd_u.abd_scatter.abd_chunk_size = zfs_abd_chunk_size; | ||
|  | 
 | ||
|  | 		/* Copy the scatterlist starting at the correct offset */ | ||
|  | 		(void) memcpy(&abd->abd_u.abd_scatter.abd_chunks, | ||
|  | 		    &sabd->abd_u.abd_scatter.abd_chunks[new_offset / | ||
|  | 		    zfs_abd_chunk_size], | ||
|  | 		    chunkcnt * sizeof (void *)); | ||
|  | 	} | ||
|  | 
 | ||
|  | 	if (size == 0) | ||
|  | 		abd->abd_size = sabd->abd_size - off; | ||
|  | 	else | ||
|  | 		abd->abd_size = size; | ||
|  | 	abd->abd_parent = sabd; | ||
|  | 	zfs_refcount_create(&abd->abd_children); | ||
|  | 	(void) zfs_refcount_add_many(&sabd->abd_children, abd->abd_size, abd); | ||
|  | 
 | ||
|  | 	return (abd); | ||
|  | } | ||
|  | 
 | ||
|  | abd_t * | ||
|  | abd_get_offset(abd_t *sabd, size_t off) | ||
|  | { | ||
|  | 
 | ||
|  | 	return (abd_get_offset_impl(sabd, off, 0)); | ||
|  | } | ||
|  | 
 | ||
|  | abd_t * | ||
|  | abd_get_offset_size(abd_t *sabd, size_t off, size_t size) | ||
|  | { | ||
|  | 	ASSERT3U(off + size, <=, sabd->abd_size); | ||
|  | 
 | ||
|  | 	return (abd_get_offset_impl(sabd, off, size)); | ||
|  | } | ||
|  | 
 | ||
|  | 
 | ||
|  | /*
 | ||
|  |  * Allocate a linear ABD structure for buf. You must free this with abd_put() | ||
|  |  * since the resulting ABD doesn't own its own buffer. | ||
|  |  */ | ||
|  | abd_t * | ||
|  | abd_get_from_buf(void *buf, size_t size) | ||
|  | { | ||
|  | 	abd_t *abd = abd_alloc_struct(0); | ||
|  | 
 | ||
|  | 	VERIFY3U(size, <=, SPA_MAXBLOCKSIZE); | ||
|  | 
 | ||
|  | 	/*
 | ||
|  | 	 * Even if this buf is filesystem metadata, we only track that if we | ||
|  | 	 * own the underlying data buffer, which is not true in this case. | ||
|  | 	 * Therefore, we don't ever use ABD_FLAG_META here. | ||
|  | 	 */ | ||
|  | 	abd->abd_flags = ABD_FLAG_LINEAR; | ||
|  | 	abd->abd_size = size; | ||
|  | 	abd->abd_parent = NULL; | ||
|  | 	zfs_refcount_create(&abd->abd_children); | ||
|  | 
 | ||
|  | 	abd->abd_u.abd_linear.abd_buf = buf; | ||
|  | 
 | ||
|  | 	return (abd); | ||
|  | } | ||
|  | 
 | ||
|  | /*
 | ||
|  |  * Free an ABD allocated from abd_get_offset() or abd_get_from_buf(). Will not | ||
|  |  * free the underlying scatterlist or buffer. | ||
|  |  */ | ||
|  | void | ||
|  | abd_put(abd_t *abd) | ||
|  | { | ||
|  | 	if (abd == NULL) | ||
|  | 		return; | ||
|  | 	abd_verify(abd); | ||
|  | 	ASSERT(!(abd->abd_flags & ABD_FLAG_OWNER)); | ||
|  | 
 | ||
|  | 	if (abd->abd_parent != NULL) { | ||
|  | 		(void) zfs_refcount_remove_many(&abd->abd_parent->abd_children, | ||
|  | 		    abd->abd_size, abd); | ||
|  | 	} | ||
|  | 
 | ||
|  | 	zfs_refcount_destroy(&abd->abd_children); | ||
|  | 	abd_free_struct(abd); | ||
|  | } | ||
|  | 
 | ||
|  | /*
 | ||
|  |  * Get the raw buffer associated with a linear ABD. | ||
|  |  */ | ||
|  | void * | ||
|  | abd_to_buf(abd_t *abd) | ||
|  | { | ||
|  | 	ASSERT(abd_is_linear(abd)); | ||
|  | 	abd_verify(abd); | ||
|  | 	return (abd->abd_u.abd_linear.abd_buf); | ||
|  | } | ||
|  | 
 | ||
|  | /*
 | ||
|  |  * Borrow a raw buffer from an ABD without copying the contents of the ABD | ||
|  |  * into the buffer. If the ABD is scattered, this will allocate a raw buffer | ||
|  |  * whose contents are undefined. To copy over the existing data in the ABD, use | ||
|  |  * abd_borrow_buf_copy() instead. | ||
|  |  */ | ||
|  | void * | ||
|  | abd_borrow_buf(abd_t *abd, size_t n) | ||
|  | { | ||
|  | 	void *buf; | ||
|  | 	abd_verify(abd); | ||
|  | 	ASSERT3U(abd->abd_size, >=, n); | ||
|  | 	if (abd_is_linear(abd)) { | ||
|  | 		buf = abd_to_buf(abd); | ||
|  | 	} else { | ||
|  | 		buf = zio_buf_alloc(n); | ||
|  | 	} | ||
|  | 	(void) zfs_refcount_add_many(&abd->abd_children, n, buf); | ||
|  | 
 | ||
|  | 	return (buf); | ||
|  | } | ||
|  | 
 | ||
|  | void * | ||
|  | abd_borrow_buf_copy(abd_t *abd, size_t n) | ||
|  | { | ||
|  | 	void *buf = abd_borrow_buf(abd, n); | ||
|  | 	if (!abd_is_linear(abd)) { | ||
|  | 		abd_copy_to_buf(buf, abd, n); | ||
|  | 	} | ||
|  | 	return (buf); | ||
|  | } | ||
|  | 
 | ||
|  | /*
 | ||
|  |  * Return a borrowed raw buffer to an ABD. If the ABD is scattered, this will | ||
|  |  * not change the contents of the ABD and will ASSERT that you didn't modify | ||
|  |  * the buffer since it was borrowed. If you want any changes you made to buf to | ||
|  |  * be copied back to abd, use abd_return_buf_copy() instead. | ||
|  |  */ | ||
|  | void | ||
|  | abd_return_buf(abd_t *abd, void *buf, size_t n) | ||
|  | { | ||
|  | 	abd_verify(abd); | ||
|  | 	ASSERT3U(abd->abd_size, >=, n); | ||
|  | 	if (abd_is_linear(abd)) { | ||
|  | 		ASSERT3P(buf, ==, abd_to_buf(abd)); | ||
|  | 	} else { | ||
|  | 		ASSERT0(abd_cmp_buf(abd, buf, n)); | ||
|  | 		zio_buf_free(buf, n); | ||
|  | 	} | ||
|  | 	(void) zfs_refcount_remove_many(&abd->abd_children, n, buf); | ||
|  | } | ||
|  | 
 | ||
|  | void | ||
|  | abd_return_buf_copy(abd_t *abd, void *buf, size_t n) | ||
|  | { | ||
|  | 	if (!abd_is_linear(abd)) { | ||
|  | 		abd_copy_from_buf(abd, buf, n); | ||
|  | 	} | ||
|  | 	abd_return_buf(abd, buf, n); | ||
|  | } | ||
|  | 
 | ||
|  | /*
 | ||
|  |  * Give this ABD ownership of the buffer that it's storing. Can only be used on | ||
|  |  * linear ABDs which were allocated via abd_get_from_buf(), or ones allocated | ||
|  |  * with abd_alloc_linear() which subsequently released ownership of their buf | ||
|  |  * with abd_release_ownership_of_buf(). | ||
|  |  */ | ||
|  | void | ||
|  | abd_take_ownership_of_buf(abd_t *abd, boolean_t is_metadata) | ||
|  | { | ||
|  | 	ASSERT(abd_is_linear(abd)); | ||
|  | 	ASSERT(!(abd->abd_flags & ABD_FLAG_OWNER)); | ||
|  | 	abd_verify(abd); | ||
|  | 
 | ||
|  | 	abd->abd_flags |= ABD_FLAG_OWNER; | ||
|  | 	if (is_metadata) { | ||
|  | 		abd->abd_flags |= ABD_FLAG_META; | ||
|  | 	} | ||
|  | 
 | ||
|  | 	ABDSTAT_BUMP(abdstat_linear_cnt); | ||
|  | 	ABDSTAT_INCR(abdstat_linear_data_size, abd->abd_size); | ||
|  | } | ||
|  | 
 | ||
|  | void | ||
|  | abd_release_ownership_of_buf(abd_t *abd) | ||
|  | { | ||
|  | 	ASSERT(abd_is_linear(abd)); | ||
|  | 	ASSERT(abd->abd_flags & ABD_FLAG_OWNER); | ||
|  | 	abd_verify(abd); | ||
|  | 
 | ||
|  | 	abd->abd_flags &= ~ABD_FLAG_OWNER; | ||
|  | 	/* Disable this flag since we no longer own the data buffer */ | ||
|  | 	abd->abd_flags &= ~ABD_FLAG_META; | ||
|  | 
 | ||
|  | 	ABDSTAT_BUMPDOWN(abdstat_linear_cnt); | ||
|  | 	ABDSTAT_INCR(abdstat_linear_data_size, -(int)abd->abd_size); | ||
|  | } | ||
|  | 
 | ||
|  | struct abd_iter { | ||
|  | 	abd_t		*iter_abd;	/* ABD being iterated through */ | ||
|  | 	size_t		iter_pos;	/* position (relative to abd_offset) */ | ||
|  | 	void		*iter_mapaddr;	/* addr corresponding to iter_pos */ | ||
|  | 	size_t		iter_mapsize;	/* length of data valid at mapaddr */ | ||
|  | }; | ||
|  | 
 | ||
|  | static inline size_t | ||
|  | abd_iter_scatter_chunk_offset(struct abd_iter *aiter) | ||
|  | { | ||
|  | 	ASSERT(!abd_is_linear(aiter->iter_abd)); | ||
|  | 	return ((aiter->iter_abd->abd_u.abd_scatter.abd_offset + | ||
|  | 	    aiter->iter_pos) % zfs_abd_chunk_size); | ||
|  | } | ||
|  | 
 | ||
|  | static inline size_t | ||
|  | abd_iter_scatter_chunk_index(struct abd_iter *aiter) | ||
|  | { | ||
|  | 	ASSERT(!abd_is_linear(aiter->iter_abd)); | ||
|  | 	return ((aiter->iter_abd->abd_u.abd_scatter.abd_offset + | ||
|  | 	    aiter->iter_pos) / zfs_abd_chunk_size); | ||
|  | } | ||
|  | 
 | ||
|  | /*
 | ||
|  |  * Initialize the abd_iter. | ||
|  |  */ | ||
|  | static void | ||
|  | abd_iter_init(struct abd_iter *aiter, abd_t *abd) | ||
|  | { | ||
|  | 	abd_verify(abd); | ||
|  | 	aiter->iter_abd = abd; | ||
|  | 	aiter->iter_pos = 0; | ||
|  | 	aiter->iter_mapaddr = NULL; | ||
|  | 	aiter->iter_mapsize = 0; | ||
|  | } | ||
|  | 
 | ||
|  | /*
 | ||
|  |  * Advance the iterator by a certain amount. Cannot be called when a chunk is | ||
|  |  * in use. This can be safely called when the aiter has already exhausted, in | ||
|  |  * which case this does nothing. | ||
|  |  */ | ||
|  | static void | ||
|  | abd_iter_advance(struct abd_iter *aiter, size_t amount) | ||
|  | { | ||
|  | 	ASSERT3P(aiter->iter_mapaddr, ==, NULL); | ||
|  | 	ASSERT0(aiter->iter_mapsize); | ||
|  | 
 | ||
|  | 	/* There's nothing left to advance to, so do nothing */ | ||
|  | 	if (aiter->iter_pos == aiter->iter_abd->abd_size) | ||
|  | 		return; | ||
|  | 
 | ||
|  | 	aiter->iter_pos += amount; | ||
|  | } | ||
|  | 
 | ||
|  | /*
 | ||
|  |  * Map the current chunk into aiter. This can be safely called when the aiter | ||
|  |  * has already exhausted, in which case this does nothing. | ||
|  |  */ | ||
|  | static void | ||
|  | abd_iter_map(struct abd_iter *aiter) | ||
|  | { | ||
|  | 	void *paddr; | ||
|  | 	size_t offset = 0; | ||
|  | 
 | ||
|  | 	ASSERT3P(aiter->iter_mapaddr, ==, NULL); | ||
|  | 	ASSERT0(aiter->iter_mapsize); | ||
|  | 
 | ||
|  | 	/* Panic if someone has changed zfs_abd_chunk_size */ | ||
|  | 	IMPLY(!abd_is_linear(aiter->iter_abd), zfs_abd_chunk_size == | ||
|  | 	    aiter->iter_abd->abd_u.abd_scatter.abd_chunk_size); | ||
|  | 
 | ||
|  | 	/* There's nothing left to iterate over, so do nothing */ | ||
|  | 	if (aiter->iter_pos == aiter->iter_abd->abd_size) | ||
|  | 		return; | ||
|  | 
 | ||
|  | 	if (abd_is_linear(aiter->iter_abd)) { | ||
|  | 		offset = aiter->iter_pos; | ||
|  | 		aiter->iter_mapsize = aiter->iter_abd->abd_size - offset; | ||
|  | 		paddr = aiter->iter_abd->abd_u.abd_linear.abd_buf; | ||
|  | 	} else { | ||
|  | 		size_t index = abd_iter_scatter_chunk_index(aiter); | ||
|  | 		offset = abd_iter_scatter_chunk_offset(aiter); | ||
|  | 		aiter->iter_mapsize = MIN(zfs_abd_chunk_size - offset, | ||
|  | 		    aiter->iter_abd->abd_size - aiter->iter_pos); | ||
|  | 		paddr = aiter->iter_abd->abd_u.abd_scatter.abd_chunks[index]; | ||
|  | 	} | ||
|  | 	aiter->iter_mapaddr = (char *)paddr + offset; | ||
|  | } | ||
|  | 
 | ||
|  | /*
 | ||
|  |  * Unmap the current chunk from aiter. This can be safely called when the aiter | ||
|  |  * has already exhausted, in which case this does nothing. | ||
|  |  */ | ||
|  | static void | ||
|  | abd_iter_unmap(struct abd_iter *aiter) | ||
|  | { | ||
|  | 	/* There's nothing left to unmap, so do nothing */ | ||
|  | 	if (aiter->iter_pos == aiter->iter_abd->abd_size) | ||
|  | 		return; | ||
|  | 
 | ||
|  | 	ASSERT3P(aiter->iter_mapaddr, !=, NULL); | ||
|  | 	ASSERT3U(aiter->iter_mapsize, >, 0); | ||
|  | 
 | ||
|  | 	aiter->iter_mapaddr = NULL; | ||
|  | 	aiter->iter_mapsize = 0; | ||
|  | } | ||
|  | 
 | ||
|  | int | ||
|  | abd_iterate_func(abd_t *abd, size_t off, size_t size, | ||
|  |     abd_iter_func_t *func, void *private) | ||
|  | { | ||
|  | 	int ret = 0; | ||
|  | 	struct abd_iter aiter; | ||
|  | 
 | ||
|  | 	abd_verify(abd); | ||
|  | 	ASSERT3U(off + size, <=, abd->abd_size); | ||
|  | 
 | ||
|  | 	abd_iter_init(&aiter, abd); | ||
|  | 	abd_iter_advance(&aiter, off); | ||
|  | 
 | ||
|  | 	while (size > 0) { | ||
|  | 		abd_iter_map(&aiter); | ||
|  | 
 | ||
|  | 		size_t len = MIN(aiter.iter_mapsize, size); | ||
|  | 		ASSERT3U(len, >, 0); | ||
|  | 
 | ||
|  | 		ret = func(aiter.iter_mapaddr, len, private); | ||
|  | 
 | ||
|  | 		abd_iter_unmap(&aiter); | ||
|  | 
 | ||
|  | 		if (ret != 0) | ||
|  | 			break; | ||
|  | 
 | ||
|  | 		size -= len; | ||
|  | 		abd_iter_advance(&aiter, len); | ||
|  | 	} | ||
|  | 
 | ||
|  | 	return (ret); | ||
|  | } | ||
|  | 
 | ||
|  | struct buf_arg { | ||
|  | 	void *arg_buf; | ||
|  | }; | ||
|  | 
 | ||
|  | static int | ||
|  | abd_copy_to_buf_off_cb(void *buf, size_t size, void *private) | ||
|  | { | ||
|  | 	struct buf_arg *ba_ptr = private; | ||
|  | 
 | ||
|  | 	(void) memcpy(ba_ptr->arg_buf, buf, size); | ||
|  | 	ba_ptr->arg_buf = (char *)ba_ptr->arg_buf + size; | ||
|  | 
 | ||
|  | 	return (0); | ||
|  | } | ||
|  | 
 | ||
|  | /*
 | ||
|  |  * Copy abd to buf. (off is the offset in abd.) | ||
|  |  */ | ||
|  | void | ||
|  | abd_copy_to_buf_off(void *buf, abd_t *abd, size_t off, size_t size) | ||
|  | { | ||
|  | 	struct buf_arg ba_ptr = { buf }; | ||
|  | 
 | ||
|  | 	(void) abd_iterate_func(abd, off, size, abd_copy_to_buf_off_cb, | ||
|  | 	    &ba_ptr); | ||
|  | } | ||
|  | 
 | ||
|  | static int | ||
|  | abd_cmp_buf_off_cb(void *buf, size_t size, void *private) | ||
|  | { | ||
|  | 	int ret; | ||
|  | 	struct buf_arg *ba_ptr = private; | ||
|  | 
 | ||
|  | 	ret = memcmp(buf, ba_ptr->arg_buf, size); | ||
|  | 	ba_ptr->arg_buf = (char *)ba_ptr->arg_buf + size; | ||
|  | 
 | ||
|  | 	return (ret); | ||
|  | } | ||
|  | 
 | ||
|  | /*
 | ||
|  |  * Compare the contents of abd to buf. (off is the offset in abd.) | ||
|  |  */ | ||
|  | int | ||
|  | abd_cmp_buf_off(abd_t *abd, const void *buf, size_t off, size_t size) | ||
|  | { | ||
|  | 	struct buf_arg ba_ptr = { (void *) buf }; | ||
|  | 
 | ||
|  | 	return (abd_iterate_func(abd, off, size, abd_cmp_buf_off_cb, &ba_ptr)); | ||
|  | } | ||
|  | 
 | ||
|  | static int | ||
|  | abd_copy_from_buf_off_cb(void *buf, size_t size, void *private) | ||
|  | { | ||
|  | 	struct buf_arg *ba_ptr = private; | ||
|  | 
 | ||
|  | 	(void) memcpy(buf, ba_ptr->arg_buf, size); | ||
|  | 	ba_ptr->arg_buf = (char *)ba_ptr->arg_buf + size; | ||
|  | 
 | ||
|  | 	return (0); | ||
|  | } | ||
|  | 
 | ||
|  | /*
 | ||
|  |  * Copy from buf to abd. (off is the offset in abd.) | ||
|  |  */ | ||
|  | void | ||
|  | abd_copy_from_buf_off(abd_t *abd, const void *buf, size_t off, size_t size) | ||
|  | { | ||
|  | 	struct buf_arg ba_ptr = { (void *) buf }; | ||
|  | 
 | ||
|  | 	(void) abd_iterate_func(abd, off, size, abd_copy_from_buf_off_cb, | ||
|  | 	    &ba_ptr); | ||
|  | } | ||
|  | 
 | ||
|  | /*ARGSUSED*/ | ||
|  | static int | ||
|  | abd_zero_off_cb(void *buf, size_t size, void *private) | ||
|  | { | ||
|  | 	(void) memset(buf, 0, size); | ||
|  | 	return (0); | ||
|  | } | ||
|  | 
 | ||
|  | /*
 | ||
|  |  * Zero out the abd from a particular offset to the end. | ||
|  |  */ | ||
|  | void | ||
|  | abd_zero_off(abd_t *abd, size_t off, size_t size) | ||
|  | { | ||
|  | 	(void) abd_iterate_func(abd, off, size, abd_zero_off_cb, NULL); | ||
|  | } | ||
|  | 
 | ||
|  | /*
 | ||
|  |  * Iterate over two ABDs and call func incrementally on the two ABDs' data in | ||
|  |  * equal-sized chunks (passed to func as raw buffers). func could be called many | ||
|  |  * times during this iteration. | ||
|  |  */ | ||
|  | int | ||
|  | abd_iterate_func2(abd_t *dabd, abd_t *sabd, size_t doff, size_t soff, | ||
|  |     size_t size, abd_iter_func2_t *func, void *private) | ||
|  | { | ||
|  | 	int ret = 0; | ||
|  | 	struct abd_iter daiter, saiter; | ||
|  | 
 | ||
|  | 	abd_verify(dabd); | ||
|  | 	abd_verify(sabd); | ||
|  | 
 | ||
|  | 	ASSERT3U(doff + size, <=, dabd->abd_size); | ||
|  | 	ASSERT3U(soff + size, <=, sabd->abd_size); | ||
|  | 
 | ||
|  | 	abd_iter_init(&daiter, dabd); | ||
|  | 	abd_iter_init(&saiter, sabd); | ||
|  | 	abd_iter_advance(&daiter, doff); | ||
|  | 	abd_iter_advance(&saiter, soff); | ||
|  | 
 | ||
|  | 	while (size > 0) { | ||
|  | 		abd_iter_map(&daiter); | ||
|  | 		abd_iter_map(&saiter); | ||
|  | 
 | ||
|  | 		size_t dlen = MIN(daiter.iter_mapsize, size); | ||
|  | 		size_t slen = MIN(saiter.iter_mapsize, size); | ||
|  | 		size_t len = MIN(dlen, slen); | ||
|  | 		ASSERT(dlen > 0 || slen > 0); | ||
|  | 
 | ||
|  | 		ret = func(daiter.iter_mapaddr, saiter.iter_mapaddr, len, | ||
|  | 		    private); | ||
|  | 
 | ||
|  | 		abd_iter_unmap(&saiter); | ||
|  | 		abd_iter_unmap(&daiter); | ||
|  | 
 | ||
|  | 		if (ret != 0) | ||
|  | 			break; | ||
|  | 
 | ||
|  | 		size -= len; | ||
|  | 		abd_iter_advance(&daiter, len); | ||
|  | 		abd_iter_advance(&saiter, len); | ||
|  | 	} | ||
|  | 
 | ||
|  | 	return (ret); | ||
|  | } | ||
|  | 
 | ||
|  | /*ARGSUSED*/ | ||
|  | static int | ||
|  | abd_copy_off_cb(void *dbuf, void *sbuf, size_t size, void *private) | ||
|  | { | ||
|  | 	(void) memcpy(dbuf, sbuf, size); | ||
|  | 	return (0); | ||
|  | } | ||
|  | 
 | ||
|  | /*
 | ||
|  |  * Copy from sabd to dabd starting from soff and doff. | ||
|  |  */ | ||
|  | void | ||
|  | abd_copy_off(abd_t *dabd, abd_t *sabd, size_t doff, size_t soff, size_t size) | ||
|  | { | ||
|  | 	(void) abd_iterate_func2(dabd, sabd, doff, soff, size, | ||
|  | 	    abd_copy_off_cb, NULL); | ||
|  | } | ||
|  | 
 | ||
|  | /*ARGSUSED*/ | ||
|  | static int | ||
|  | abd_cmp_cb(void *bufa, void *bufb, size_t size, void *private) | ||
|  | { | ||
|  | 	return (memcmp(bufa, bufb, size)); | ||
|  | } | ||
|  | 
 | ||
|  | /*
 | ||
|  |  * Compares the contents of two ABDs. | ||
|  |  */ | ||
|  | int | ||
|  | abd_cmp(abd_t *dabd, abd_t *sabd) | ||
|  | { | ||
|  | 	ASSERT3U(dabd->abd_size, ==, sabd->abd_size); | ||
|  | 	return (abd_iterate_func2(dabd, sabd, 0, 0, dabd->abd_size, | ||
|  | 	    abd_cmp_cb, NULL)); | ||
|  | } | ||
|  | 
 | ||
|  | /*
 | ||
|  |  * Iterate over code ABDs and a data ABD and call @func_raidz_gen. | ||
|  |  * | ||
|  |  * @cabds          parity ABDs, must have equal size | ||
|  |  * @dabd           data ABD. Can be NULL (in this case @dsize = 0) | ||
|  |  * @func_raidz_gen should be implemented so that its behaviour | ||
|  |  *                 is the same when taking linear and when taking scatter | ||
|  |  */ | ||
|  | void | ||
|  | abd_raidz_gen_iterate(abd_t **cabds, abd_t *dabd, | ||
|  |     ssize_t csize, ssize_t dsize, const unsigned parity, | ||
|  |     void (*func_raidz_gen)(void **, const void *, size_t, size_t)) | ||
|  | { | ||
|  | 	int i; | ||
|  | 	ssize_t len, dlen; | ||
|  | 	struct abd_iter caiters[3]; | ||
|  | 	struct abd_iter daiter = {0}; | ||
|  | 	void *caddrs[3]; | ||
|  | 
 | ||
|  | 	ASSERT3U(parity, <=, 3); | ||
|  | 
 | ||
|  | 	for (i = 0; i < parity; i++) | ||
|  | 		abd_iter_init(&caiters[i], cabds[i]); | ||
|  | 
 | ||
|  | 	if (dabd) | ||
|  | 		abd_iter_init(&daiter, dabd); | ||
|  | 
 | ||
|  | 	ASSERT3S(dsize, >=, 0); | ||
|  | 
 | ||
|  | 	critical_enter(); | ||
|  | 	while (csize > 0) { | ||
|  | 		len = csize; | ||
|  | 
 | ||
|  | 		if (dabd && dsize > 0) | ||
|  | 			abd_iter_map(&daiter); | ||
|  | 
 | ||
|  | 		for (i = 0; i < parity; i++) { | ||
|  | 			abd_iter_map(&caiters[i]); | ||
|  | 			caddrs[i] = caiters[i].iter_mapaddr; | ||
|  | 		} | ||
|  | 
 | ||
|  | 		switch (parity) { | ||
|  | 			case 3: | ||
|  | 				len = MIN(caiters[2].iter_mapsize, len); | ||
|  | 			case 2: | ||
|  | 				len = MIN(caiters[1].iter_mapsize, len); | ||
|  | 			case 1: | ||
|  | 				len = MIN(caiters[0].iter_mapsize, len); | ||
|  | 		} | ||
|  | 
 | ||
|  | 		/* must be progressive */ | ||
|  | 		ASSERT3S(len, >, 0); | ||
|  | 
 | ||
|  | 		if (dabd && dsize > 0) { | ||
|  | 			/* this needs precise iter.length */ | ||
|  | 			len = MIN(daiter.iter_mapsize, len); | ||
|  | 			dlen = len; | ||
|  | 		} else | ||
|  | 			dlen = 0; | ||
|  | 
 | ||
|  | 		/* must be progressive */ | ||
|  | 		ASSERT3S(len, >, 0); | ||
|  | 		/*
 | ||
|  | 		 * The iterated function likely will not do well if each | ||
|  | 		 * segment except the last one is not multiple of 512 (raidz). | ||
|  | 		 */ | ||
|  | 		ASSERT3U(((uint64_t)len & 511ULL), ==, 0); | ||
|  | 
 | ||
|  | 		func_raidz_gen(caddrs, daiter.iter_mapaddr, len, dlen); | ||
|  | 
 | ||
|  | 		for (i = parity-1; i >= 0; i--) { | ||
|  | 			abd_iter_unmap(&caiters[i]); | ||
|  | 			abd_iter_advance(&caiters[i], len); | ||
|  | 		} | ||
|  | 
 | ||
|  | 		if (dabd && dsize > 0) { | ||
|  | 			abd_iter_unmap(&daiter); | ||
|  | 			abd_iter_advance(&daiter, dlen); | ||
|  | 			dsize -= dlen; | ||
|  | 		} | ||
|  | 
 | ||
|  | 		csize -= len; | ||
|  | 
 | ||
|  | 		ASSERT3S(dsize, >=, 0); | ||
|  | 		ASSERT3S(csize, >=, 0); | ||
|  | 	} | ||
|  | 	critical_exit(); | ||
|  | } | ||
|  | 
 | ||
|  | /*
 | ||
|  |  * Iterate over code ABDs and data reconstruction target ABDs and call | ||
|  |  * @func_raidz_rec. Function maps at most 6 pages atomically. | ||
|  |  * | ||
|  |  * @cabds           parity ABDs, must have equal size | ||
|  |  * @tabds           rec target ABDs, at most 3 | ||
|  |  * @tsize           size of data target columns | ||
|  |  * @func_raidz_rec  expects syndrome data in target columns. Function | ||
|  |  *                  reconstructs data and overwrites target columns. | ||
|  |  */ | ||
|  | void | ||
|  | abd_raidz_rec_iterate(abd_t **cabds, abd_t **tabds, | ||
|  |     ssize_t tsize, const unsigned parity, | ||
|  |     void (*func_raidz_rec)(void **t, const size_t tsize, void **c, | ||
|  |     const unsigned *mul), | ||
|  |     const unsigned *mul) | ||
|  | { | ||
|  | 	int i; | ||
|  | 	ssize_t len; | ||
|  | 	struct abd_iter citers[3]; | ||
|  | 	struct abd_iter xiters[3]; | ||
|  | 	void *caddrs[3], *xaddrs[3]; | ||
|  | 
 | ||
|  | 	ASSERT3U(parity, <=, 3); | ||
|  | 
 | ||
|  | 	for (i = 0; i < parity; i++) { | ||
|  | 		abd_iter_init(&citers[i], cabds[i]); | ||
|  | 		abd_iter_init(&xiters[i], tabds[i]); | ||
|  | 	} | ||
|  | 
 | ||
|  | 	critical_enter(); | ||
|  | 	while (tsize > 0) { | ||
|  | 
 | ||
|  | 		for (i = 0; i < parity; i++) { | ||
|  | 			abd_iter_map(&citers[i]); | ||
|  | 			abd_iter_map(&xiters[i]); | ||
|  | 			caddrs[i] = citers[i].iter_mapaddr; | ||
|  | 			xaddrs[i] = xiters[i].iter_mapaddr; | ||
|  | 		} | ||
|  | 
 | ||
|  | 		len = tsize; | ||
|  | 		switch (parity) { | ||
|  | 			case 3: | ||
|  | 				len = MIN(xiters[2].iter_mapsize, len); | ||
|  | 				len = MIN(citers[2].iter_mapsize, len); | ||
|  | 			case 2: | ||
|  | 				len = MIN(xiters[1].iter_mapsize, len); | ||
|  | 				len = MIN(citers[1].iter_mapsize, len); | ||
|  | 			case 1: | ||
|  | 				len = MIN(xiters[0].iter_mapsize, len); | ||
|  | 				len = MIN(citers[0].iter_mapsize, len); | ||
|  | 		} | ||
|  | 		/* must be progressive */ | ||
|  | 		ASSERT3S(len, >, 0); | ||
|  | 		/*
 | ||
|  | 		 * The iterated function likely will not do well if each | ||
|  | 		 * segment except the last one is not multiple of 512 (raidz). | ||
|  | 		 */ | ||
|  | 		ASSERT3U(((uint64_t)len & 511ULL), ==, 0); | ||
|  | 
 | ||
|  | 		func_raidz_rec(xaddrs, len, caddrs, mul); | ||
|  | 
 | ||
|  | 		for (i = parity-1; i >= 0; i--) { | ||
|  | 			abd_iter_unmap(&xiters[i]); | ||
|  | 			abd_iter_unmap(&citers[i]); | ||
|  | 			abd_iter_advance(&xiters[i], len); | ||
|  | 			abd_iter_advance(&citers[i], len); | ||
|  | 		} | ||
|  | 
 | ||
|  | 		tsize -= len; | ||
|  | 		ASSERT3S(tsize, >=, 0); | ||
|  | 	} | ||
|  | 	critical_exit(); | ||
|  | } |