1
0
mirror of https://git.proxmox.com/git/mirror_zfs.git synced 2025-01-19 14:36:35 +03:00
mirror_zfs/module/zfs/vdev_initialize.c

735 lines
21 KiB
C
Raw Normal View History

OpenZFS 9102 - zfs should be able to initialize storage devices PROBLEM ======== The first access to a block incurs a performance penalty on some platforms (e.g. AWS's EBS, VMware VMDKs). Therefore we recommend that volumes are "thick provisioned", where supported by the platform (VMware). This can create a large delay in getting a new virtual machines up and running (or adding storage to an existing Engine). If the thick provision step is omitted, write performance will be suboptimal until all blocks on the LUN have been written. SOLUTION ========= This feature introduces a way to 'initialize' the disks at install or in the background to make sure we don't incur this first read penalty. When an entire LUN is added to ZFS, we make all space available immediately, and allow ZFS to find unallocated space and zero it out. This works with concurrent writes to arbitrary offsets, ensuring that we don't zero out something that has been (or is in the middle of being) written. This scheme can also be applied to existing pools (affecting only free regions on the vdev). Detailed design: - new subcommand:zpool initialize [-cs] <pool> [<vdev> ...] - start, suspend, or cancel initialization - Creates new open-context thread for each vdev - Thread iterates through all metaslabs in this vdev - Each metaslab: - select a metaslab - load the metaslab - mark the metaslab as being zeroed - walk all free ranges within that metaslab and translate them to ranges on the leaf vdev - issue a "zeroing" I/O on the leaf vdev that corresponds to a free range on the metaslab we're working on - continue until all free ranges for this metaslab have been "zeroed" - reset/unmark the metaslab being zeroed - if more metaslabs exist, then repeat above tasks. - if no more metaslabs, then we're done. - progress for the initialization is stored on-disk in the vdev’s leaf zap object. The following information is stored: - the last offset that has been initialized - the state of the initialization process (i.e. active, suspended, or canceled) - the start time for the initialization - progress is reported via the zpool status command and shows information for each of the vdevs that are initializing Porting notes: - Added zfs_initialize_value module parameter to set the pattern written by "zpool initialize". - Added zfs_vdev_{initializing,removal}_{min,max}_active module options. Authored by: George Wilson <george.wilson@delphix.com> Reviewed by: John Wren Kennedy <john.kennedy@delphix.com> Reviewed by: Matthew Ahrens <mahrens@delphix.com> Reviewed by: Pavel Zakharov <pavel.zakharov@delphix.com> Reviewed by: Prakash Surya <prakash.surya@delphix.com> Reviewed by: loli10K <ezomori.nozomu@gmail.com> Reviewed by: Brian Behlendorf <behlendorf1@llnl.gov> Approved by: Richard Lowe <richlowe@richlowe.net> Signed-off-by: Tim Chase <tim@chase2k.com> Ported-by: Tim Chase <tim@chase2k.com> OpenZFS-issue: https://www.illumos.org/issues/9102 OpenZFS-commit: https://github.com/openzfs/openzfs/commit/c3963210eb Closes #8230
2018-12-19 17:54:59 +03:00
/*
* CDDL HEADER START
*
* The contents of this file are subject to the terms of the
* Common Development and Distribution License (the "License").
* You may not use this file except in compliance with the License.
*
* You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
* or http://www.opensolaris.org/os/licensing.
* See the License for the specific language governing permissions
* and limitations under the License.
*
* When distributing Covered Code, include this CDDL HEADER in each
* file and include the License file at usr/src/OPENSOLARIS.LICENSE.
* If applicable, add the following below this CDDL HEADER, with the
* fields enclosed by brackets "[]" replaced with your own identifying
* information: Portions Copyright [yyyy] [name of copyright owner]
*
* CDDL HEADER END
*/
/*
* Copyright (c) 2016 by Delphix. All rights reserved.
*/
#include <sys/spa.h>
#include <sys/spa_impl.h>
#include <sys/txg.h>
#include <sys/vdev_impl.h>
#include <sys/refcount.h>
#include <sys/metaslab_impl.h>
#include <sys/dsl_synctask.h>
#include <sys/zap.h>
#include <sys/dmu_tx.h>
/*
* Value that is written to disk during initialization.
*/
#ifdef _ILP32
unsigned long zfs_initialize_value = 0xdeadbeefUL;
#else
unsigned long zfs_initialize_value = 0xdeadbeefdeadbeeeULL;
#endif
/* maximum number of I/Os outstanding per leaf vdev */
int zfs_initialize_limit = 1;
/* size of initializing writes; default 1MiB, see zfs_remove_max_segment */
uint64_t zfs_initialize_chunk_size = 1024 * 1024;
static boolean_t
vdev_initialize_should_stop(vdev_t *vd)
{
return (vd->vdev_initialize_exit_wanted || !vdev_writeable(vd) ||
vd->vdev_detached || vd->vdev_top->vdev_removing);
}
static void
vdev_initialize_zap_update_sync(void *arg, dmu_tx_t *tx)
{
/*
* We pass in the guid instead of the vdev_t since the vdev may
* have been freed prior to the sync task being processed. This
* happens when a vdev is detached as we call spa_config_vdev_exit(),
* stop the initializing thread, schedule the sync task, and free
OpenZFS 9102 - zfs should be able to initialize storage devices PROBLEM ======== The first access to a block incurs a performance penalty on some platforms (e.g. AWS's EBS, VMware VMDKs). Therefore we recommend that volumes are "thick provisioned", where supported by the platform (VMware). This can create a large delay in getting a new virtual machines up and running (or adding storage to an existing Engine). If the thick provision step is omitted, write performance will be suboptimal until all blocks on the LUN have been written. SOLUTION ========= This feature introduces a way to 'initialize' the disks at install or in the background to make sure we don't incur this first read penalty. When an entire LUN is added to ZFS, we make all space available immediately, and allow ZFS to find unallocated space and zero it out. This works with concurrent writes to arbitrary offsets, ensuring that we don't zero out something that has been (or is in the middle of being) written. This scheme can also be applied to existing pools (affecting only free regions on the vdev). Detailed design: - new subcommand:zpool initialize [-cs] <pool> [<vdev> ...] - start, suspend, or cancel initialization - Creates new open-context thread for each vdev - Thread iterates through all metaslabs in this vdev - Each metaslab: - select a metaslab - load the metaslab - mark the metaslab as being zeroed - walk all free ranges within that metaslab and translate them to ranges on the leaf vdev - issue a "zeroing" I/O on the leaf vdev that corresponds to a free range on the metaslab we're working on - continue until all free ranges for this metaslab have been "zeroed" - reset/unmark the metaslab being zeroed - if more metaslabs exist, then repeat above tasks. - if no more metaslabs, then we're done. - progress for the initialization is stored on-disk in the vdev’s leaf zap object. The following information is stored: - the last offset that has been initialized - the state of the initialization process (i.e. active, suspended, or canceled) - the start time for the initialization - progress is reported via the zpool status command and shows information for each of the vdevs that are initializing Porting notes: - Added zfs_initialize_value module parameter to set the pattern written by "zpool initialize". - Added zfs_vdev_{initializing,removal}_{min,max}_active module options. Authored by: George Wilson <george.wilson@delphix.com> Reviewed by: John Wren Kennedy <john.kennedy@delphix.com> Reviewed by: Matthew Ahrens <mahrens@delphix.com> Reviewed by: Pavel Zakharov <pavel.zakharov@delphix.com> Reviewed by: Prakash Surya <prakash.surya@delphix.com> Reviewed by: loli10K <ezomori.nozomu@gmail.com> Reviewed by: Brian Behlendorf <behlendorf1@llnl.gov> Approved by: Richard Lowe <richlowe@richlowe.net> Signed-off-by: Tim Chase <tim@chase2k.com> Ported-by: Tim Chase <tim@chase2k.com> OpenZFS-issue: https://www.illumos.org/issues/9102 OpenZFS-commit: https://github.com/openzfs/openzfs/commit/c3963210eb Closes #8230
2018-12-19 17:54:59 +03:00
* the vdev. Later when the scheduled sync task is invoked, it would
* find that the vdev has been freed.
*/
uint64_t guid = *(uint64_t *)arg;
uint64_t txg = dmu_tx_get_txg(tx);
kmem_free(arg, sizeof (uint64_t));
vdev_t *vd = spa_lookup_by_guid(tx->tx_pool->dp_spa, guid, B_FALSE);
if (vd == NULL || vd->vdev_top->vdev_removing || !vdev_is_concrete(vd))
return;
uint64_t last_offset = vd->vdev_initialize_offset[txg & TXG_MASK];
vd->vdev_initialize_offset[txg & TXG_MASK] = 0;
VERIFY(vd->vdev_leaf_zap != 0);
objset_t *mos = vd->vdev_spa->spa_meta_objset;
if (last_offset > 0) {
vd->vdev_initialize_last_offset = last_offset;
VERIFY0(zap_update(mos, vd->vdev_leaf_zap,
VDEV_LEAF_ZAP_INITIALIZE_LAST_OFFSET,
sizeof (last_offset), 1, &last_offset, tx));
}
if (vd->vdev_initialize_action_time > 0) {
uint64_t val = (uint64_t)vd->vdev_initialize_action_time;
VERIFY0(zap_update(mos, vd->vdev_leaf_zap,
VDEV_LEAF_ZAP_INITIALIZE_ACTION_TIME, sizeof (val),
1, &val, tx));
}
uint64_t initialize_state = vd->vdev_initialize_state;
VERIFY0(zap_update(mos, vd->vdev_leaf_zap,
VDEV_LEAF_ZAP_INITIALIZE_STATE, sizeof (initialize_state), 1,
&initialize_state, tx));
}
static void
vdev_initialize_change_state(vdev_t *vd, vdev_initializing_state_t new_state)
{
ASSERT(MUTEX_HELD(&vd->vdev_initialize_lock));
spa_t *spa = vd->vdev_spa;
if (new_state == vd->vdev_initialize_state)
return;
/*
* Copy the vd's guid, this will be freed by the sync task.
*/
uint64_t *guid = kmem_zalloc(sizeof (uint64_t), KM_SLEEP);
*guid = vd->vdev_guid;
/*
* If we're suspending, then preserving the original start time.
*/
if (vd->vdev_initialize_state != VDEV_INITIALIZE_SUSPENDED) {
vd->vdev_initialize_action_time = gethrestime_sec();
}
vd->vdev_initialize_state = new_state;
dmu_tx_t *tx = dmu_tx_create_dd(spa_get_dsl(spa)->dp_mos_dir);
VERIFY0(dmu_tx_assign(tx, TXG_WAIT));
dsl_sync_task_nowait(spa_get_dsl(spa), vdev_initialize_zap_update_sync,
Add TRIM support UNMAP/TRIM support is a frequently-requested feature to help prevent performance from degrading on SSDs and on various other SAN-like storage back-ends. By issuing UNMAP/TRIM commands for sectors which are no longer allocated the underlying device can often more efficiently manage itself. This TRIM implementation is modeled on the `zpool initialize` feature which writes a pattern to all unallocated space in the pool. The new `zpool trim` command uses the same vdev_xlate() code to calculate what sectors are unallocated, the same per- vdev TRIM thread model and locking, and the same basic CLI for a consistent user experience. The core difference is that instead of writing a pattern it will issue UNMAP/TRIM commands for those extents. The zio pipeline was updated to accommodate this by adding a new ZIO_TYPE_TRIM type and associated spa taskq. This new type makes is straight forward to add the platform specific TRIM/UNMAP calls to vdev_disk.c and vdev_file.c. These new ZIO_TYPE_TRIM zios are handled largely the same way as ZIO_TYPE_READs or ZIO_TYPE_WRITEs. This makes it possible to largely avoid changing the pipieline, one exception is that TRIM zio's may exceed the 16M block size limit since they contain no data. In addition to the manual `zpool trim` command, a background automatic TRIM was added and is controlled by the 'autotrim' property. It relies on the exact same infrastructure as the manual TRIM. However, instead of relying on the extents in a metaslab's ms_allocatable range tree, a ms_trim tree is kept per metaslab. When 'autotrim=on', ranges added back to the ms_allocatable tree are also added to the ms_free tree. The ms_free tree is then periodically consumed by an autotrim thread which systematically walks a top level vdev's metaslabs. Since the automatic TRIM will skip ranges it considers too small there is value in occasionally running a full `zpool trim`. This may occur when the freed blocks are small and not enough time was allowed to aggregate them. An automatic TRIM and a manual `zpool trim` may be run concurrently, in which case the automatic TRIM will yield to the manual TRIM. Reviewed-by: Jorgen Lundman <lundman@lundman.net> Reviewed-by: Tim Chase <tim@chase2k.com> Reviewed-by: Matt Ahrens <mahrens@delphix.com> Reviewed-by: George Wilson <george.wilson@delphix.com> Reviewed-by: Serapheim Dimitropoulos <serapheim@delphix.com> Contributions-by: Saso Kiselkov <saso.kiselkov@nexenta.com> Contributions-by: Tim Chase <tim@chase2k.com> Contributions-by: Chunwei Chen <tuxoko@gmail.com> Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov> Closes #8419 Closes #598
2019-03-29 19:13:20 +03:00
guid, 2, ZFS_SPACE_CHECK_NONE, tx);
OpenZFS 9102 - zfs should be able to initialize storage devices PROBLEM ======== The first access to a block incurs a performance penalty on some platforms (e.g. AWS's EBS, VMware VMDKs). Therefore we recommend that volumes are "thick provisioned", where supported by the platform (VMware). This can create a large delay in getting a new virtual machines up and running (or adding storage to an existing Engine). If the thick provision step is omitted, write performance will be suboptimal until all blocks on the LUN have been written. SOLUTION ========= This feature introduces a way to 'initialize' the disks at install or in the background to make sure we don't incur this first read penalty. When an entire LUN is added to ZFS, we make all space available immediately, and allow ZFS to find unallocated space and zero it out. This works with concurrent writes to arbitrary offsets, ensuring that we don't zero out something that has been (or is in the middle of being) written. This scheme can also be applied to existing pools (affecting only free regions on the vdev). Detailed design: - new subcommand:zpool initialize [-cs] <pool> [<vdev> ...] - start, suspend, or cancel initialization - Creates new open-context thread for each vdev - Thread iterates through all metaslabs in this vdev - Each metaslab: - select a metaslab - load the metaslab - mark the metaslab as being zeroed - walk all free ranges within that metaslab and translate them to ranges on the leaf vdev - issue a "zeroing" I/O on the leaf vdev that corresponds to a free range on the metaslab we're working on - continue until all free ranges for this metaslab have been "zeroed" - reset/unmark the metaslab being zeroed - if more metaslabs exist, then repeat above tasks. - if no more metaslabs, then we're done. - progress for the initialization is stored on-disk in the vdev’s leaf zap object. The following information is stored: - the last offset that has been initialized - the state of the initialization process (i.e. active, suspended, or canceled) - the start time for the initialization - progress is reported via the zpool status command and shows information for each of the vdevs that are initializing Porting notes: - Added zfs_initialize_value module parameter to set the pattern written by "zpool initialize". - Added zfs_vdev_{initializing,removal}_{min,max}_active module options. Authored by: George Wilson <george.wilson@delphix.com> Reviewed by: John Wren Kennedy <john.kennedy@delphix.com> Reviewed by: Matthew Ahrens <mahrens@delphix.com> Reviewed by: Pavel Zakharov <pavel.zakharov@delphix.com> Reviewed by: Prakash Surya <prakash.surya@delphix.com> Reviewed by: loli10K <ezomori.nozomu@gmail.com> Reviewed by: Brian Behlendorf <behlendorf1@llnl.gov> Approved by: Richard Lowe <richlowe@richlowe.net> Signed-off-by: Tim Chase <tim@chase2k.com> Ported-by: Tim Chase <tim@chase2k.com> OpenZFS-issue: https://www.illumos.org/issues/9102 OpenZFS-commit: https://github.com/openzfs/openzfs/commit/c3963210eb Closes #8230
2018-12-19 17:54:59 +03:00
switch (new_state) {
case VDEV_INITIALIZE_ACTIVE:
spa_history_log_internal(spa, "initialize", tx,
"vdev=%s activated", vd->vdev_path);
break;
case VDEV_INITIALIZE_SUSPENDED:
spa_history_log_internal(spa, "initialize", tx,
"vdev=%s suspended", vd->vdev_path);
break;
case VDEV_INITIALIZE_CANCELED:
spa_history_log_internal(spa, "initialize", tx,
"vdev=%s canceled", vd->vdev_path);
break;
case VDEV_INITIALIZE_COMPLETE:
spa_history_log_internal(spa, "initialize", tx,
"vdev=%s complete", vd->vdev_path);
break;
default:
panic("invalid state %llu", (unsigned long long)new_state);
}
dmu_tx_commit(tx);
}
static void
vdev_initialize_cb(zio_t *zio)
{
vdev_t *vd = zio->io_vd;
mutex_enter(&vd->vdev_initialize_io_lock);
if (zio->io_error == ENXIO && !vdev_writeable(vd)) {
/*
* The I/O failed because the vdev was unavailable; roll the
* last offset back. (This works because spa_sync waits on
* spa_txg_zio before it runs sync tasks.)
*/
uint64_t *off =
&vd->vdev_initialize_offset[zio->io_txg & TXG_MASK];
*off = MIN(*off, zio->io_offset);
} else {
/*
* Since initializing is best-effort, we ignore I/O errors and
* rely on vdev_probe to determine if the errors are more
* critical.
*/
if (zio->io_error != 0)
vd->vdev_stat.vs_initialize_errors++;
vd->vdev_initialize_bytes_done += zio->io_orig_size;
}
ASSERT3U(vd->vdev_initialize_inflight, >, 0);
vd->vdev_initialize_inflight--;
cv_broadcast(&vd->vdev_initialize_io_cv);
mutex_exit(&vd->vdev_initialize_io_lock);
spa_config_exit(vd->vdev_spa, SCL_STATE_ALL, vd);
}
/* Takes care of physical writing and limiting # of concurrent ZIOs. */
static int
vdev_initialize_write(vdev_t *vd, uint64_t start, uint64_t size, abd_t *data)
{
spa_t *spa = vd->vdev_spa;
/* Limit inflight initializing I/Os */
mutex_enter(&vd->vdev_initialize_io_lock);
while (vd->vdev_initialize_inflight >= zfs_initialize_limit) {
cv_wait(&vd->vdev_initialize_io_cv,
&vd->vdev_initialize_io_lock);
}
vd->vdev_initialize_inflight++;
mutex_exit(&vd->vdev_initialize_io_lock);
dmu_tx_t *tx = dmu_tx_create_dd(spa_get_dsl(spa)->dp_mos_dir);
VERIFY0(dmu_tx_assign(tx, TXG_WAIT));
uint64_t txg = dmu_tx_get_txg(tx);
spa_config_enter(spa, SCL_STATE_ALL, vd, RW_READER);
mutex_enter(&vd->vdev_initialize_lock);
if (vd->vdev_initialize_offset[txg & TXG_MASK] == 0) {
uint64_t *guid = kmem_zalloc(sizeof (uint64_t), KM_SLEEP);
*guid = vd->vdev_guid;
/* This is the first write of this txg. */
dsl_sync_task_nowait(spa_get_dsl(spa),
vdev_initialize_zap_update_sync, guid, 2,
ZFS_SPACE_CHECK_RESERVED, tx);
}
/*
* We know the vdev struct will still be around since all
* consumers of vdev_free must stop the initialization first.
*/
if (vdev_initialize_should_stop(vd)) {
mutex_enter(&vd->vdev_initialize_io_lock);
ASSERT3U(vd->vdev_initialize_inflight, >, 0);
vd->vdev_initialize_inflight--;
mutex_exit(&vd->vdev_initialize_io_lock);
spa_config_exit(vd->vdev_spa, SCL_STATE_ALL, vd);
mutex_exit(&vd->vdev_initialize_lock);
dmu_tx_commit(tx);
return (SET_ERROR(EINTR));
}
mutex_exit(&vd->vdev_initialize_lock);
vd->vdev_initialize_offset[txg & TXG_MASK] = start + size;
zio_nowait(zio_write_phys(spa->spa_txg_zio[txg & TXG_MASK], vd, start,
size, data, ZIO_CHECKSUM_OFF, vdev_initialize_cb, NULL,
ZIO_PRIORITY_INITIALIZING, ZIO_FLAG_CANFAIL, B_FALSE));
/* vdev_initialize_cb releases SCL_STATE_ALL */
dmu_tx_commit(tx);
return (0);
}
/*
* Callback to fill each ABD chunk with zfs_initialize_value. len must be
* divisible by sizeof (uint64_t), and buf must be 8-byte aligned. The ABD
* allocation will guarantee these for us.
*/
/* ARGSUSED */
static int
vdev_initialize_block_fill(void *buf, size_t len, void *unused)
{
ASSERT0(len % sizeof (uint64_t));
#ifdef _ILP32
for (uint64_t i = 0; i < len; i += sizeof (uint32_t)) {
*(uint32_t *)((char *)(buf) + i) = zfs_initialize_value;
}
#else
for (uint64_t i = 0; i < len; i += sizeof (uint64_t)) {
*(uint64_t *)((char *)(buf) + i) = zfs_initialize_value;
}
#endif
return (0);
}
static abd_t *
vdev_initialize_block_alloc(void)
{
/* Allocate ABD for filler data */
abd_t *data = abd_alloc_for_io(zfs_initialize_chunk_size, B_FALSE);
ASSERT0(zfs_initialize_chunk_size % sizeof (uint64_t));
(void) abd_iterate_func(data, 0, zfs_initialize_chunk_size,
vdev_initialize_block_fill, NULL);
return (data);
}
static void
vdev_initialize_block_free(abd_t *data)
{
abd_free(data);
}
static int
vdev_initialize_ranges(vdev_t *vd, abd_t *data)
{
avl_tree_t *rt = &vd->vdev_initialize_tree->rt_root;
for (range_seg_t *rs = avl_first(rt); rs != NULL;
rs = AVL_NEXT(rt, rs)) {
uint64_t size = rs->rs_end - rs->rs_start;
/* Split range into legally-sized physical chunks */
uint64_t writes_required =
((size - 1) / zfs_initialize_chunk_size) + 1;
for (uint64_t w = 0; w < writes_required; w++) {
int error;
error = vdev_initialize_write(vd,
VDEV_LABEL_START_SIZE + rs->rs_start +
(w * zfs_initialize_chunk_size),
MIN(size - (w * zfs_initialize_chunk_size),
zfs_initialize_chunk_size), data);
if (error != 0)
return (error);
}
}
return (0);
}
static void
vdev_initialize_calculate_progress(vdev_t *vd)
{
ASSERT(spa_config_held(vd->vdev_spa, SCL_CONFIG, RW_READER) ||
spa_config_held(vd->vdev_spa, SCL_CONFIG, RW_WRITER));
ASSERT(vd->vdev_leaf_zap != 0);
vd->vdev_initialize_bytes_est = 0;
vd->vdev_initialize_bytes_done = 0;
for (uint64_t i = 0; i < vd->vdev_top->vdev_ms_count; i++) {
metaslab_t *msp = vd->vdev_top->vdev_ms[i];
mutex_enter(&msp->ms_lock);
uint64_t ms_free = msp->ms_size -
Get rid of space_map_update() for ms_synced_length Initially, metaslabs and space maps used to be the same thing in ZFS. Later, we started differentiating them by referring to the space map as the on-disk state of the metaslab, making the metaslab a higher-level concept that is metadata that deals with space accounting. Today we've managed to split that code furthermore, with the space map being its own on-disk data structure used in areas of ZFS besides metaslabs (e.g. the vdev-wide space maps used for zpool checkpoint or vdev removal features). This patch refactors the space map code to further split the space map code from the metaslab code. It does so by getting rid of the idea that the space map can have a different in-core and on-disk length (sm_length vs smp_length) which is something that is only used for the metaslab code, and other consumers of space maps just have to deal with. Instead, this patch introduces changes that move the old in-core length of the metaslab's space map to the metaslab structure itself (see ms_synced_length field) while making the space map code only care about the actual space map's length on-disk. The result of this is that space map consumers no longer have to deal with syncing two different lengths for the same structure (e.g. space_map_update() goes away) while metaslab specific behavior stays within the metaslab code. Specifically, the ms_synced_length field keeps track of the amount of data metaslab_load() can read from the metaslab's space map while working concurrently with metaslab_sync() that may be appending to that same space map. As a side note, the patch also adds a few comments around the metaslab code documenting some assumptions and expected behavior. Reviewed-by: Matt Ahrens <mahrens@delphix.com> Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov> Reviewed by: Pavel Zakharov <pavel.zakharov@delphix.com> Signed-off-by: Serapheim Dimitropoulos <serapheim@delphix.com> Closes #8328
2019-02-12 21:38:11 +03:00
metaslab_allocated_space(msp);
OpenZFS 9102 - zfs should be able to initialize storage devices PROBLEM ======== The first access to a block incurs a performance penalty on some platforms (e.g. AWS's EBS, VMware VMDKs). Therefore we recommend that volumes are "thick provisioned", where supported by the platform (VMware). This can create a large delay in getting a new virtual machines up and running (or adding storage to an existing Engine). If the thick provision step is omitted, write performance will be suboptimal until all blocks on the LUN have been written. SOLUTION ========= This feature introduces a way to 'initialize' the disks at install or in the background to make sure we don't incur this first read penalty. When an entire LUN is added to ZFS, we make all space available immediately, and allow ZFS to find unallocated space and zero it out. This works with concurrent writes to arbitrary offsets, ensuring that we don't zero out something that has been (or is in the middle of being) written. This scheme can also be applied to existing pools (affecting only free regions on the vdev). Detailed design: - new subcommand:zpool initialize [-cs] <pool> [<vdev> ...] - start, suspend, or cancel initialization - Creates new open-context thread for each vdev - Thread iterates through all metaslabs in this vdev - Each metaslab: - select a metaslab - load the metaslab - mark the metaslab as being zeroed - walk all free ranges within that metaslab and translate them to ranges on the leaf vdev - issue a "zeroing" I/O on the leaf vdev that corresponds to a free range on the metaslab we're working on - continue until all free ranges for this metaslab have been "zeroed" - reset/unmark the metaslab being zeroed - if more metaslabs exist, then repeat above tasks. - if no more metaslabs, then we're done. - progress for the initialization is stored on-disk in the vdev’s leaf zap object. The following information is stored: - the last offset that has been initialized - the state of the initialization process (i.e. active, suspended, or canceled) - the start time for the initialization - progress is reported via the zpool status command and shows information for each of the vdevs that are initializing Porting notes: - Added zfs_initialize_value module parameter to set the pattern written by "zpool initialize". - Added zfs_vdev_{initializing,removal}_{min,max}_active module options. Authored by: George Wilson <george.wilson@delphix.com> Reviewed by: John Wren Kennedy <john.kennedy@delphix.com> Reviewed by: Matthew Ahrens <mahrens@delphix.com> Reviewed by: Pavel Zakharov <pavel.zakharov@delphix.com> Reviewed by: Prakash Surya <prakash.surya@delphix.com> Reviewed by: loli10K <ezomori.nozomu@gmail.com> Reviewed by: Brian Behlendorf <behlendorf1@llnl.gov> Approved by: Richard Lowe <richlowe@richlowe.net> Signed-off-by: Tim Chase <tim@chase2k.com> Ported-by: Tim Chase <tim@chase2k.com> OpenZFS-issue: https://www.illumos.org/issues/9102 OpenZFS-commit: https://github.com/openzfs/openzfs/commit/c3963210eb Closes #8230
2018-12-19 17:54:59 +03:00
if (vd->vdev_top->vdev_ops == &vdev_raidz_ops)
ms_free /= vd->vdev_top->vdev_children;
/*
* Convert the metaslab range to a physical range
* on our vdev. We use this to determine if we are
* in the middle of this metaslab range.
*/
range_seg_t logical_rs, physical_rs;
logical_rs.rs_start = msp->ms_start;
logical_rs.rs_end = msp->ms_start + msp->ms_size;
vdev_xlate(vd, &logical_rs, &physical_rs);
if (vd->vdev_initialize_last_offset <= physical_rs.rs_start) {
vd->vdev_initialize_bytes_est += ms_free;
mutex_exit(&msp->ms_lock);
continue;
} else if (vd->vdev_initialize_last_offset >
physical_rs.rs_end) {
vd->vdev_initialize_bytes_done += ms_free;
vd->vdev_initialize_bytes_est += ms_free;
mutex_exit(&msp->ms_lock);
continue;
}
/*
* If we get here, we're in the middle of initializing this
* metaslab. Load it and walk the free tree for more accurate
* progress estimation.
*/
VERIFY0(metaslab_load(msp));
OpenZFS 9102 - zfs should be able to initialize storage devices PROBLEM ======== The first access to a block incurs a performance penalty on some platforms (e.g. AWS's EBS, VMware VMDKs). Therefore we recommend that volumes are "thick provisioned", where supported by the platform (VMware). This can create a large delay in getting a new virtual machines up and running (or adding storage to an existing Engine). If the thick provision step is omitted, write performance will be suboptimal until all blocks on the LUN have been written. SOLUTION ========= This feature introduces a way to 'initialize' the disks at install or in the background to make sure we don't incur this first read penalty. When an entire LUN is added to ZFS, we make all space available immediately, and allow ZFS to find unallocated space and zero it out. This works with concurrent writes to arbitrary offsets, ensuring that we don't zero out something that has been (or is in the middle of being) written. This scheme can also be applied to existing pools (affecting only free regions on the vdev). Detailed design: - new subcommand:zpool initialize [-cs] <pool> [<vdev> ...] - start, suspend, or cancel initialization - Creates new open-context thread for each vdev - Thread iterates through all metaslabs in this vdev - Each metaslab: - select a metaslab - load the metaslab - mark the metaslab as being zeroed - walk all free ranges within that metaslab and translate them to ranges on the leaf vdev - issue a "zeroing" I/O on the leaf vdev that corresponds to a free range on the metaslab we're working on - continue until all free ranges for this metaslab have been "zeroed" - reset/unmark the metaslab being zeroed - if more metaslabs exist, then repeat above tasks. - if no more metaslabs, then we're done. - progress for the initialization is stored on-disk in the vdev’s leaf zap object. The following information is stored: - the last offset that has been initialized - the state of the initialization process (i.e. active, suspended, or canceled) - the start time for the initialization - progress is reported via the zpool status command and shows information for each of the vdevs that are initializing Porting notes: - Added zfs_initialize_value module parameter to set the pattern written by "zpool initialize". - Added zfs_vdev_{initializing,removal}_{min,max}_active module options. Authored by: George Wilson <george.wilson@delphix.com> Reviewed by: John Wren Kennedy <john.kennedy@delphix.com> Reviewed by: Matthew Ahrens <mahrens@delphix.com> Reviewed by: Pavel Zakharov <pavel.zakharov@delphix.com> Reviewed by: Prakash Surya <prakash.surya@delphix.com> Reviewed by: loli10K <ezomori.nozomu@gmail.com> Reviewed by: Brian Behlendorf <behlendorf1@llnl.gov> Approved by: Richard Lowe <richlowe@richlowe.net> Signed-off-by: Tim Chase <tim@chase2k.com> Ported-by: Tim Chase <tim@chase2k.com> OpenZFS-issue: https://www.illumos.org/issues/9102 OpenZFS-commit: https://github.com/openzfs/openzfs/commit/c3963210eb Closes #8230
2018-12-19 17:54:59 +03:00
for (range_seg_t *rs = avl_first(&msp->ms_allocatable->rt_root);
rs; rs = AVL_NEXT(&msp->ms_allocatable->rt_root, rs)) {
logical_rs.rs_start = rs->rs_start;
logical_rs.rs_end = rs->rs_end;
vdev_xlate(vd, &logical_rs, &physical_rs);
uint64_t size = physical_rs.rs_end -
physical_rs.rs_start;
vd->vdev_initialize_bytes_est += size;
if (vd->vdev_initialize_last_offset >
physical_rs.rs_end) {
vd->vdev_initialize_bytes_done += size;
} else if (vd->vdev_initialize_last_offset >
physical_rs.rs_start &&
vd->vdev_initialize_last_offset <
physical_rs.rs_end) {
vd->vdev_initialize_bytes_done +=
vd->vdev_initialize_last_offset -
physical_rs.rs_start;
}
}
mutex_exit(&msp->ms_lock);
}
}
static int
vdev_initialize_load(vdev_t *vd)
{
int err = 0;
ASSERT(spa_config_held(vd->vdev_spa, SCL_CONFIG, RW_READER) ||
spa_config_held(vd->vdev_spa, SCL_CONFIG, RW_WRITER));
ASSERT(vd->vdev_leaf_zap != 0);
if (vd->vdev_initialize_state == VDEV_INITIALIZE_ACTIVE ||
vd->vdev_initialize_state == VDEV_INITIALIZE_SUSPENDED) {
err = zap_lookup(vd->vdev_spa->spa_meta_objset,
vd->vdev_leaf_zap, VDEV_LEAF_ZAP_INITIALIZE_LAST_OFFSET,
sizeof (vd->vdev_initialize_last_offset), 1,
&vd->vdev_initialize_last_offset);
if (err == ENOENT) {
vd->vdev_initialize_last_offset = 0;
err = 0;
}
}
vdev_initialize_calculate_progress(vd);
return (err);
}
/*
Add TRIM support UNMAP/TRIM support is a frequently-requested feature to help prevent performance from degrading on SSDs and on various other SAN-like storage back-ends. By issuing UNMAP/TRIM commands for sectors which are no longer allocated the underlying device can often more efficiently manage itself. This TRIM implementation is modeled on the `zpool initialize` feature which writes a pattern to all unallocated space in the pool. The new `zpool trim` command uses the same vdev_xlate() code to calculate what sectors are unallocated, the same per- vdev TRIM thread model and locking, and the same basic CLI for a consistent user experience. The core difference is that instead of writing a pattern it will issue UNMAP/TRIM commands for those extents. The zio pipeline was updated to accommodate this by adding a new ZIO_TYPE_TRIM type and associated spa taskq. This new type makes is straight forward to add the platform specific TRIM/UNMAP calls to vdev_disk.c and vdev_file.c. These new ZIO_TYPE_TRIM zios are handled largely the same way as ZIO_TYPE_READs or ZIO_TYPE_WRITEs. This makes it possible to largely avoid changing the pipieline, one exception is that TRIM zio's may exceed the 16M block size limit since they contain no data. In addition to the manual `zpool trim` command, a background automatic TRIM was added and is controlled by the 'autotrim' property. It relies on the exact same infrastructure as the manual TRIM. However, instead of relying on the extents in a metaslab's ms_allocatable range tree, a ms_trim tree is kept per metaslab. When 'autotrim=on', ranges added back to the ms_allocatable tree are also added to the ms_free tree. The ms_free tree is then periodically consumed by an autotrim thread which systematically walks a top level vdev's metaslabs. Since the automatic TRIM will skip ranges it considers too small there is value in occasionally running a full `zpool trim`. This may occur when the freed blocks are small and not enough time was allowed to aggregate them. An automatic TRIM and a manual `zpool trim` may be run concurrently, in which case the automatic TRIM will yield to the manual TRIM. Reviewed-by: Jorgen Lundman <lundman@lundman.net> Reviewed-by: Tim Chase <tim@chase2k.com> Reviewed-by: Matt Ahrens <mahrens@delphix.com> Reviewed-by: George Wilson <george.wilson@delphix.com> Reviewed-by: Serapheim Dimitropoulos <serapheim@delphix.com> Contributions-by: Saso Kiselkov <saso.kiselkov@nexenta.com> Contributions-by: Tim Chase <tim@chase2k.com> Contributions-by: Chunwei Chen <tuxoko@gmail.com> Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov> Closes #8419 Closes #598
2019-03-29 19:13:20 +03:00
* Convert the logical range into a physical range and add it to our
OpenZFS 9102 - zfs should be able to initialize storage devices PROBLEM ======== The first access to a block incurs a performance penalty on some platforms (e.g. AWS's EBS, VMware VMDKs). Therefore we recommend that volumes are "thick provisioned", where supported by the platform (VMware). This can create a large delay in getting a new virtual machines up and running (or adding storage to an existing Engine). If the thick provision step is omitted, write performance will be suboptimal until all blocks on the LUN have been written. SOLUTION ========= This feature introduces a way to 'initialize' the disks at install or in the background to make sure we don't incur this first read penalty. When an entire LUN is added to ZFS, we make all space available immediately, and allow ZFS to find unallocated space and zero it out. This works with concurrent writes to arbitrary offsets, ensuring that we don't zero out something that has been (or is in the middle of being) written. This scheme can also be applied to existing pools (affecting only free regions on the vdev). Detailed design: - new subcommand:zpool initialize [-cs] <pool> [<vdev> ...] - start, suspend, or cancel initialization - Creates new open-context thread for each vdev - Thread iterates through all metaslabs in this vdev - Each metaslab: - select a metaslab - load the metaslab - mark the metaslab as being zeroed - walk all free ranges within that metaslab and translate them to ranges on the leaf vdev - issue a "zeroing" I/O on the leaf vdev that corresponds to a free range on the metaslab we're working on - continue until all free ranges for this metaslab have been "zeroed" - reset/unmark the metaslab being zeroed - if more metaslabs exist, then repeat above tasks. - if no more metaslabs, then we're done. - progress for the initialization is stored on-disk in the vdev’s leaf zap object. The following information is stored: - the last offset that has been initialized - the state of the initialization process (i.e. active, suspended, or canceled) - the start time for the initialization - progress is reported via the zpool status command and shows information for each of the vdevs that are initializing Porting notes: - Added zfs_initialize_value module parameter to set the pattern written by "zpool initialize". - Added zfs_vdev_{initializing,removal}_{min,max}_active module options. Authored by: George Wilson <george.wilson@delphix.com> Reviewed by: John Wren Kennedy <john.kennedy@delphix.com> Reviewed by: Matthew Ahrens <mahrens@delphix.com> Reviewed by: Pavel Zakharov <pavel.zakharov@delphix.com> Reviewed by: Prakash Surya <prakash.surya@delphix.com> Reviewed by: loli10K <ezomori.nozomu@gmail.com> Reviewed by: Brian Behlendorf <behlendorf1@llnl.gov> Approved by: Richard Lowe <richlowe@richlowe.net> Signed-off-by: Tim Chase <tim@chase2k.com> Ported-by: Tim Chase <tim@chase2k.com> OpenZFS-issue: https://www.illumos.org/issues/9102 OpenZFS-commit: https://github.com/openzfs/openzfs/commit/c3963210eb Closes #8230
2018-12-19 17:54:59 +03:00
* avl tree.
*/
void
vdev_initialize_range_add(void *arg, uint64_t start, uint64_t size)
{
vdev_t *vd = arg;
range_seg_t logical_rs, physical_rs;
logical_rs.rs_start = start;
logical_rs.rs_end = start + size;
ASSERT(vd->vdev_ops->vdev_op_leaf);
vdev_xlate(vd, &logical_rs, &physical_rs);
IMPLY(vd->vdev_top == vd,
logical_rs.rs_start == physical_rs.rs_start);
IMPLY(vd->vdev_top == vd,
logical_rs.rs_end == physical_rs.rs_end);
/* Only add segments that we have not visited yet */
if (physical_rs.rs_end <= vd->vdev_initialize_last_offset)
return;
/* Pick up where we left off mid-range. */
if (vd->vdev_initialize_last_offset > physical_rs.rs_start) {
zfs_dbgmsg("range write: vd %s changed (%llu, %llu) to "
"(%llu, %llu)", vd->vdev_path,
(u_longlong_t)physical_rs.rs_start,
(u_longlong_t)physical_rs.rs_end,
(u_longlong_t)vd->vdev_initialize_last_offset,
(u_longlong_t)physical_rs.rs_end);
ASSERT3U(physical_rs.rs_end, >,
vd->vdev_initialize_last_offset);
physical_rs.rs_start = vd->vdev_initialize_last_offset;
}
ASSERT3U(physical_rs.rs_end, >=, physical_rs.rs_start);
/*
* With raidz, it's possible that the logical range does not live on
* this leaf vdev. We only add the physical range to this vdev's if it
* has a length greater than 0.
*/
if (physical_rs.rs_end > physical_rs.rs_start) {
range_tree_add(vd->vdev_initialize_tree, physical_rs.rs_start,
physical_rs.rs_end - physical_rs.rs_start);
} else {
ASSERT3U(physical_rs.rs_end, ==, physical_rs.rs_start);
}
}
static void
vdev_initialize_thread(void *arg)
{
vdev_t *vd = arg;
spa_t *spa = vd->vdev_spa;
int error = 0;
uint64_t ms_count = 0;
ASSERT(vdev_is_concrete(vd));
spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
vd->vdev_initialize_last_offset = 0;
VERIFY0(vdev_initialize_load(vd));
abd_t *deadbeef = vdev_initialize_block_alloc();
vd->vdev_initialize_tree = range_tree_create(NULL, NULL);
for (uint64_t i = 0; !vd->vdev_detached &&
i < vd->vdev_top->vdev_ms_count; i++) {
metaslab_t *msp = vd->vdev_top->vdev_ms[i];
/*
* If we've expanded the top-level vdev or it's our
* first pass, calculate our progress.
*/
if (vd->vdev_top->vdev_ms_count != ms_count) {
vdev_initialize_calculate_progress(vd);
ms_count = vd->vdev_top->vdev_ms_count;
}
Add TRIM support UNMAP/TRIM support is a frequently-requested feature to help prevent performance from degrading on SSDs and on various other SAN-like storage back-ends. By issuing UNMAP/TRIM commands for sectors which are no longer allocated the underlying device can often more efficiently manage itself. This TRIM implementation is modeled on the `zpool initialize` feature which writes a pattern to all unallocated space in the pool. The new `zpool trim` command uses the same vdev_xlate() code to calculate what sectors are unallocated, the same per- vdev TRIM thread model and locking, and the same basic CLI for a consistent user experience. The core difference is that instead of writing a pattern it will issue UNMAP/TRIM commands for those extents. The zio pipeline was updated to accommodate this by adding a new ZIO_TYPE_TRIM type and associated spa taskq. This new type makes is straight forward to add the platform specific TRIM/UNMAP calls to vdev_disk.c and vdev_file.c. These new ZIO_TYPE_TRIM zios are handled largely the same way as ZIO_TYPE_READs or ZIO_TYPE_WRITEs. This makes it possible to largely avoid changing the pipieline, one exception is that TRIM zio's may exceed the 16M block size limit since they contain no data. In addition to the manual `zpool trim` command, a background automatic TRIM was added and is controlled by the 'autotrim' property. It relies on the exact same infrastructure as the manual TRIM. However, instead of relying on the extents in a metaslab's ms_allocatable range tree, a ms_trim tree is kept per metaslab. When 'autotrim=on', ranges added back to the ms_allocatable tree are also added to the ms_free tree. The ms_free tree is then periodically consumed by an autotrim thread which systematically walks a top level vdev's metaslabs. Since the automatic TRIM will skip ranges it considers too small there is value in occasionally running a full `zpool trim`. This may occur when the freed blocks are small and not enough time was allowed to aggregate them. An automatic TRIM and a manual `zpool trim` may be run concurrently, in which case the automatic TRIM will yield to the manual TRIM. Reviewed-by: Jorgen Lundman <lundman@lundman.net> Reviewed-by: Tim Chase <tim@chase2k.com> Reviewed-by: Matt Ahrens <mahrens@delphix.com> Reviewed-by: George Wilson <george.wilson@delphix.com> Reviewed-by: Serapheim Dimitropoulos <serapheim@delphix.com> Contributions-by: Saso Kiselkov <saso.kiselkov@nexenta.com> Contributions-by: Tim Chase <tim@chase2k.com> Contributions-by: Chunwei Chen <tuxoko@gmail.com> Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov> Closes #8419 Closes #598
2019-03-29 19:13:20 +03:00
spa_config_exit(spa, SCL_CONFIG, FTAG);
metaslab_disable(msp);
OpenZFS 9102 - zfs should be able to initialize storage devices PROBLEM ======== The first access to a block incurs a performance penalty on some platforms (e.g. AWS's EBS, VMware VMDKs). Therefore we recommend that volumes are "thick provisioned", where supported by the platform (VMware). This can create a large delay in getting a new virtual machines up and running (or adding storage to an existing Engine). If the thick provision step is omitted, write performance will be suboptimal until all blocks on the LUN have been written. SOLUTION ========= This feature introduces a way to 'initialize' the disks at install or in the background to make sure we don't incur this first read penalty. When an entire LUN is added to ZFS, we make all space available immediately, and allow ZFS to find unallocated space and zero it out. This works with concurrent writes to arbitrary offsets, ensuring that we don't zero out something that has been (or is in the middle of being) written. This scheme can also be applied to existing pools (affecting only free regions on the vdev). Detailed design: - new subcommand:zpool initialize [-cs] <pool> [<vdev> ...] - start, suspend, or cancel initialization - Creates new open-context thread for each vdev - Thread iterates through all metaslabs in this vdev - Each metaslab: - select a metaslab - load the metaslab - mark the metaslab as being zeroed - walk all free ranges within that metaslab and translate them to ranges on the leaf vdev - issue a "zeroing" I/O on the leaf vdev that corresponds to a free range on the metaslab we're working on - continue until all free ranges for this metaslab have been "zeroed" - reset/unmark the metaslab being zeroed - if more metaslabs exist, then repeat above tasks. - if no more metaslabs, then we're done. - progress for the initialization is stored on-disk in the vdev’s leaf zap object. The following information is stored: - the last offset that has been initialized - the state of the initialization process (i.e. active, suspended, or canceled) - the start time for the initialization - progress is reported via the zpool status command and shows information for each of the vdevs that are initializing Porting notes: - Added zfs_initialize_value module parameter to set the pattern written by "zpool initialize". - Added zfs_vdev_{initializing,removal}_{min,max}_active module options. Authored by: George Wilson <george.wilson@delphix.com> Reviewed by: John Wren Kennedy <john.kennedy@delphix.com> Reviewed by: Matthew Ahrens <mahrens@delphix.com> Reviewed by: Pavel Zakharov <pavel.zakharov@delphix.com> Reviewed by: Prakash Surya <prakash.surya@delphix.com> Reviewed by: loli10K <ezomori.nozomu@gmail.com> Reviewed by: Brian Behlendorf <behlendorf1@llnl.gov> Approved by: Richard Lowe <richlowe@richlowe.net> Signed-off-by: Tim Chase <tim@chase2k.com> Ported-by: Tim Chase <tim@chase2k.com> OpenZFS-issue: https://www.illumos.org/issues/9102 OpenZFS-commit: https://github.com/openzfs/openzfs/commit/c3963210eb Closes #8230
2018-12-19 17:54:59 +03:00
mutex_enter(&msp->ms_lock);
VERIFY0(metaslab_load(msp));
OpenZFS 9102 - zfs should be able to initialize storage devices PROBLEM ======== The first access to a block incurs a performance penalty on some platforms (e.g. AWS's EBS, VMware VMDKs). Therefore we recommend that volumes are "thick provisioned", where supported by the platform (VMware). This can create a large delay in getting a new virtual machines up and running (or adding storage to an existing Engine). If the thick provision step is omitted, write performance will be suboptimal until all blocks on the LUN have been written. SOLUTION ========= This feature introduces a way to 'initialize' the disks at install or in the background to make sure we don't incur this first read penalty. When an entire LUN is added to ZFS, we make all space available immediately, and allow ZFS to find unallocated space and zero it out. This works with concurrent writes to arbitrary offsets, ensuring that we don't zero out something that has been (or is in the middle of being) written. This scheme can also be applied to existing pools (affecting only free regions on the vdev). Detailed design: - new subcommand:zpool initialize [-cs] <pool> [<vdev> ...] - start, suspend, or cancel initialization - Creates new open-context thread for each vdev - Thread iterates through all metaslabs in this vdev - Each metaslab: - select a metaslab - load the metaslab - mark the metaslab as being zeroed - walk all free ranges within that metaslab and translate them to ranges on the leaf vdev - issue a "zeroing" I/O on the leaf vdev that corresponds to a free range on the metaslab we're working on - continue until all free ranges for this metaslab have been "zeroed" - reset/unmark the metaslab being zeroed - if more metaslabs exist, then repeat above tasks. - if no more metaslabs, then we're done. - progress for the initialization is stored on-disk in the vdev’s leaf zap object. The following information is stored: - the last offset that has been initialized - the state of the initialization process (i.e. active, suspended, or canceled) - the start time for the initialization - progress is reported via the zpool status command and shows information for each of the vdevs that are initializing Porting notes: - Added zfs_initialize_value module parameter to set the pattern written by "zpool initialize". - Added zfs_vdev_{initializing,removal}_{min,max}_active module options. Authored by: George Wilson <george.wilson@delphix.com> Reviewed by: John Wren Kennedy <john.kennedy@delphix.com> Reviewed by: Matthew Ahrens <mahrens@delphix.com> Reviewed by: Pavel Zakharov <pavel.zakharov@delphix.com> Reviewed by: Prakash Surya <prakash.surya@delphix.com> Reviewed by: loli10K <ezomori.nozomu@gmail.com> Reviewed by: Brian Behlendorf <behlendorf1@llnl.gov> Approved by: Richard Lowe <richlowe@richlowe.net> Signed-off-by: Tim Chase <tim@chase2k.com> Ported-by: Tim Chase <tim@chase2k.com> OpenZFS-issue: https://www.illumos.org/issues/9102 OpenZFS-commit: https://github.com/openzfs/openzfs/commit/c3963210eb Closes #8230
2018-12-19 17:54:59 +03:00
range_tree_walk(msp->ms_allocatable, vdev_initialize_range_add,
vd);
mutex_exit(&msp->ms_lock);
error = vdev_initialize_ranges(vd, deadbeef);
Add TRIM support UNMAP/TRIM support is a frequently-requested feature to help prevent performance from degrading on SSDs and on various other SAN-like storage back-ends. By issuing UNMAP/TRIM commands for sectors which are no longer allocated the underlying device can often more efficiently manage itself. This TRIM implementation is modeled on the `zpool initialize` feature which writes a pattern to all unallocated space in the pool. The new `zpool trim` command uses the same vdev_xlate() code to calculate what sectors are unallocated, the same per- vdev TRIM thread model and locking, and the same basic CLI for a consistent user experience. The core difference is that instead of writing a pattern it will issue UNMAP/TRIM commands for those extents. The zio pipeline was updated to accommodate this by adding a new ZIO_TYPE_TRIM type and associated spa taskq. This new type makes is straight forward to add the platform specific TRIM/UNMAP calls to vdev_disk.c and vdev_file.c. These new ZIO_TYPE_TRIM zios are handled largely the same way as ZIO_TYPE_READs or ZIO_TYPE_WRITEs. This makes it possible to largely avoid changing the pipieline, one exception is that TRIM zio's may exceed the 16M block size limit since they contain no data. In addition to the manual `zpool trim` command, a background automatic TRIM was added and is controlled by the 'autotrim' property. It relies on the exact same infrastructure as the manual TRIM. However, instead of relying on the extents in a metaslab's ms_allocatable range tree, a ms_trim tree is kept per metaslab. When 'autotrim=on', ranges added back to the ms_allocatable tree are also added to the ms_free tree. The ms_free tree is then periodically consumed by an autotrim thread which systematically walks a top level vdev's metaslabs. Since the automatic TRIM will skip ranges it considers too small there is value in occasionally running a full `zpool trim`. This may occur when the freed blocks are small and not enough time was allowed to aggregate them. An automatic TRIM and a manual `zpool trim` may be run concurrently, in which case the automatic TRIM will yield to the manual TRIM. Reviewed-by: Jorgen Lundman <lundman@lundman.net> Reviewed-by: Tim Chase <tim@chase2k.com> Reviewed-by: Matt Ahrens <mahrens@delphix.com> Reviewed-by: George Wilson <george.wilson@delphix.com> Reviewed-by: Serapheim Dimitropoulos <serapheim@delphix.com> Contributions-by: Saso Kiselkov <saso.kiselkov@nexenta.com> Contributions-by: Tim Chase <tim@chase2k.com> Contributions-by: Chunwei Chen <tuxoko@gmail.com> Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov> Closes #8419 Closes #598
2019-03-29 19:13:20 +03:00
metaslab_enable(msp, B_TRUE);
OpenZFS 9102 - zfs should be able to initialize storage devices PROBLEM ======== The first access to a block incurs a performance penalty on some platforms (e.g. AWS's EBS, VMware VMDKs). Therefore we recommend that volumes are "thick provisioned", where supported by the platform (VMware). This can create a large delay in getting a new virtual machines up and running (or adding storage to an existing Engine). If the thick provision step is omitted, write performance will be suboptimal until all blocks on the LUN have been written. SOLUTION ========= This feature introduces a way to 'initialize' the disks at install or in the background to make sure we don't incur this first read penalty. When an entire LUN is added to ZFS, we make all space available immediately, and allow ZFS to find unallocated space and zero it out. This works with concurrent writes to arbitrary offsets, ensuring that we don't zero out something that has been (or is in the middle of being) written. This scheme can also be applied to existing pools (affecting only free regions on the vdev). Detailed design: - new subcommand:zpool initialize [-cs] <pool> [<vdev> ...] - start, suspend, or cancel initialization - Creates new open-context thread for each vdev - Thread iterates through all metaslabs in this vdev - Each metaslab: - select a metaslab - load the metaslab - mark the metaslab as being zeroed - walk all free ranges within that metaslab and translate them to ranges on the leaf vdev - issue a "zeroing" I/O on the leaf vdev that corresponds to a free range on the metaslab we're working on - continue until all free ranges for this metaslab have been "zeroed" - reset/unmark the metaslab being zeroed - if more metaslabs exist, then repeat above tasks. - if no more metaslabs, then we're done. - progress for the initialization is stored on-disk in the vdev’s leaf zap object. The following information is stored: - the last offset that has been initialized - the state of the initialization process (i.e. active, suspended, or canceled) - the start time for the initialization - progress is reported via the zpool status command and shows information for each of the vdevs that are initializing Porting notes: - Added zfs_initialize_value module parameter to set the pattern written by "zpool initialize". - Added zfs_vdev_{initializing,removal}_{min,max}_active module options. Authored by: George Wilson <george.wilson@delphix.com> Reviewed by: John Wren Kennedy <john.kennedy@delphix.com> Reviewed by: Matthew Ahrens <mahrens@delphix.com> Reviewed by: Pavel Zakharov <pavel.zakharov@delphix.com> Reviewed by: Prakash Surya <prakash.surya@delphix.com> Reviewed by: loli10K <ezomori.nozomu@gmail.com> Reviewed by: Brian Behlendorf <behlendorf1@llnl.gov> Approved by: Richard Lowe <richlowe@richlowe.net> Signed-off-by: Tim Chase <tim@chase2k.com> Ported-by: Tim Chase <tim@chase2k.com> OpenZFS-issue: https://www.illumos.org/issues/9102 OpenZFS-commit: https://github.com/openzfs/openzfs/commit/c3963210eb Closes #8230
2018-12-19 17:54:59 +03:00
spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
range_tree_vacate(vd->vdev_initialize_tree, NULL, NULL);
if (error != 0)
break;
}
spa_config_exit(spa, SCL_CONFIG, FTAG);
mutex_enter(&vd->vdev_initialize_io_lock);
while (vd->vdev_initialize_inflight > 0) {
cv_wait(&vd->vdev_initialize_io_cv,
&vd->vdev_initialize_io_lock);
}
mutex_exit(&vd->vdev_initialize_io_lock);
range_tree_destroy(vd->vdev_initialize_tree);
vdev_initialize_block_free(deadbeef);
vd->vdev_initialize_tree = NULL;
mutex_enter(&vd->vdev_initialize_lock);
if (!vd->vdev_initialize_exit_wanted && vdev_writeable(vd)) {
vdev_initialize_change_state(vd, VDEV_INITIALIZE_COMPLETE);
}
ASSERT(vd->vdev_initialize_thread != NULL ||
vd->vdev_initialize_inflight == 0);
/*
* Drop the vdev_initialize_lock while we sync out the
* txg since it's possible that a device might be trying to
* come online and must check to see if it needs to restart an
* initialization. That thread will be holding the spa_config_lock
* which would prevent the txg_wait_synced from completing.
*/
mutex_exit(&vd->vdev_initialize_lock);
txg_wait_synced(spa_get_dsl(spa), 0);
mutex_enter(&vd->vdev_initialize_lock);
vd->vdev_initialize_thread = NULL;
cv_broadcast(&vd->vdev_initialize_cv);
mutex_exit(&vd->vdev_initialize_lock);
}
/*
* Initiates a device. Caller must hold vdev_initialize_lock.
* Device must be a leaf and not already be initializing.
*/
void
vdev_initialize(vdev_t *vd)
{
ASSERT(MUTEX_HELD(&vd->vdev_initialize_lock));
ASSERT(vd->vdev_ops->vdev_op_leaf);
ASSERT(vdev_is_concrete(vd));
ASSERT3P(vd->vdev_initialize_thread, ==, NULL);
ASSERT(!vd->vdev_detached);
ASSERT(!vd->vdev_initialize_exit_wanted);
ASSERT(!vd->vdev_top->vdev_removing);
vdev_initialize_change_state(vd, VDEV_INITIALIZE_ACTIVE);
vd->vdev_initialize_thread = thread_create(NULL, 0,
vdev_initialize_thread, vd, 0, &p0, TS_RUN, maxclsyspri);
}
/*
zfs initialize performance enhancements PROBLEM ======== When invoking "zpool initialize" on a pool the command will create a thread to initialize each disk. Unfortunately, it does this serially across many transaction groups which can result in commands taking a long time to return to the user and may appear hung. The same thing is true when trying to suspend/cancel the operation. SOLUTION ========= This change refactors the way we invoke the initialize interface to ensure we can start or stop the intialization in just a few transaction groups. When stopping or cancelling a vdev initialization perform it in two phases. First signal each vdev initialization thread that it should exit, then after all threads have been signaled wait for them to exit. On a pool with 40 leaf vdevs this reduces the vdev initialize stop/cancel time from ~10 minutes to under a second. The reason for this is spa_vdev_initialize() no longer needs to wait on multiple full TXGs per leaf vdev being stopped. This commit additionally adds some missing checks for the passed "initialize_vdevs" input nvlist. The contents of the user provided input "initialize_vdevs" nvlist must be validated to ensure all values are uint64s. This is done in zfs_ioc_pool_initialize() in order to keep all of these checks in a single location. Updated the innvl and outnvl comments to match the formatting used for all other new sytle ioctls. Reviewed by: Matt Ahrens <mahrens@delphix.com> Reviewed-by: loli10K <ezomori.nozomu@gmail.com> Reviewed-by: Tim Chase <tim@chase2k.com> Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov> Signed-off-by: George Wilson <george.wilson@delphix.com> Closes #8230
2018-12-19 19:20:39 +03:00
* Wait for the initialize thread to be terminated (cancelled or stopped).
*/
static void
vdev_initialize_stop_wait_impl(vdev_t *vd)
{
ASSERT(MUTEX_HELD(&vd->vdev_initialize_lock));
while (vd->vdev_initialize_thread != NULL)
cv_wait(&vd->vdev_initialize_cv, &vd->vdev_initialize_lock);
ASSERT3P(vd->vdev_initialize_thread, ==, NULL);
vd->vdev_initialize_exit_wanted = B_FALSE;
}
/*
* Wait for vdev initialize threads which were either to cleanly exit.
OpenZFS 9102 - zfs should be able to initialize storage devices PROBLEM ======== The first access to a block incurs a performance penalty on some platforms (e.g. AWS's EBS, VMware VMDKs). Therefore we recommend that volumes are "thick provisioned", where supported by the platform (VMware). This can create a large delay in getting a new virtual machines up and running (or adding storage to an existing Engine). If the thick provision step is omitted, write performance will be suboptimal until all blocks on the LUN have been written. SOLUTION ========= This feature introduces a way to 'initialize' the disks at install or in the background to make sure we don't incur this first read penalty. When an entire LUN is added to ZFS, we make all space available immediately, and allow ZFS to find unallocated space and zero it out. This works with concurrent writes to arbitrary offsets, ensuring that we don't zero out something that has been (or is in the middle of being) written. This scheme can also be applied to existing pools (affecting only free regions on the vdev). Detailed design: - new subcommand:zpool initialize [-cs] <pool> [<vdev> ...] - start, suspend, or cancel initialization - Creates new open-context thread for each vdev - Thread iterates through all metaslabs in this vdev - Each metaslab: - select a metaslab - load the metaslab - mark the metaslab as being zeroed - walk all free ranges within that metaslab and translate them to ranges on the leaf vdev - issue a "zeroing" I/O on the leaf vdev that corresponds to a free range on the metaslab we're working on - continue until all free ranges for this metaslab have been "zeroed" - reset/unmark the metaslab being zeroed - if more metaslabs exist, then repeat above tasks. - if no more metaslabs, then we're done. - progress for the initialization is stored on-disk in the vdev’s leaf zap object. The following information is stored: - the last offset that has been initialized - the state of the initialization process (i.e. active, suspended, or canceled) - the start time for the initialization - progress is reported via the zpool status command and shows information for each of the vdevs that are initializing Porting notes: - Added zfs_initialize_value module parameter to set the pattern written by "zpool initialize". - Added zfs_vdev_{initializing,removal}_{min,max}_active module options. Authored by: George Wilson <george.wilson@delphix.com> Reviewed by: John Wren Kennedy <john.kennedy@delphix.com> Reviewed by: Matthew Ahrens <mahrens@delphix.com> Reviewed by: Pavel Zakharov <pavel.zakharov@delphix.com> Reviewed by: Prakash Surya <prakash.surya@delphix.com> Reviewed by: loli10K <ezomori.nozomu@gmail.com> Reviewed by: Brian Behlendorf <behlendorf1@llnl.gov> Approved by: Richard Lowe <richlowe@richlowe.net> Signed-off-by: Tim Chase <tim@chase2k.com> Ported-by: Tim Chase <tim@chase2k.com> OpenZFS-issue: https://www.illumos.org/issues/9102 OpenZFS-commit: https://github.com/openzfs/openzfs/commit/c3963210eb Closes #8230
2018-12-19 17:54:59 +03:00
*/
void
zfs initialize performance enhancements PROBLEM ======== When invoking "zpool initialize" on a pool the command will create a thread to initialize each disk. Unfortunately, it does this serially across many transaction groups which can result in commands taking a long time to return to the user and may appear hung. The same thing is true when trying to suspend/cancel the operation. SOLUTION ========= This change refactors the way we invoke the initialize interface to ensure we can start or stop the intialization in just a few transaction groups. When stopping or cancelling a vdev initialization perform it in two phases. First signal each vdev initialization thread that it should exit, then after all threads have been signaled wait for them to exit. On a pool with 40 leaf vdevs this reduces the vdev initialize stop/cancel time from ~10 minutes to under a second. The reason for this is spa_vdev_initialize() no longer needs to wait on multiple full TXGs per leaf vdev being stopped. This commit additionally adds some missing checks for the passed "initialize_vdevs" input nvlist. The contents of the user provided input "initialize_vdevs" nvlist must be validated to ensure all values are uint64s. This is done in zfs_ioc_pool_initialize() in order to keep all of these checks in a single location. Updated the innvl and outnvl comments to match the formatting used for all other new sytle ioctls. Reviewed by: Matt Ahrens <mahrens@delphix.com> Reviewed-by: loli10K <ezomori.nozomu@gmail.com> Reviewed-by: Tim Chase <tim@chase2k.com> Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov> Signed-off-by: George Wilson <george.wilson@delphix.com> Closes #8230
2018-12-19 19:20:39 +03:00
vdev_initialize_stop_wait(spa_t *spa, list_t *vd_list)
OpenZFS 9102 - zfs should be able to initialize storage devices PROBLEM ======== The first access to a block incurs a performance penalty on some platforms (e.g. AWS's EBS, VMware VMDKs). Therefore we recommend that volumes are "thick provisioned", where supported by the platform (VMware). This can create a large delay in getting a new virtual machines up and running (or adding storage to an existing Engine). If the thick provision step is omitted, write performance will be suboptimal until all blocks on the LUN have been written. SOLUTION ========= This feature introduces a way to 'initialize' the disks at install or in the background to make sure we don't incur this first read penalty. When an entire LUN is added to ZFS, we make all space available immediately, and allow ZFS to find unallocated space and zero it out. This works with concurrent writes to arbitrary offsets, ensuring that we don't zero out something that has been (or is in the middle of being) written. This scheme can also be applied to existing pools (affecting only free regions on the vdev). Detailed design: - new subcommand:zpool initialize [-cs] <pool> [<vdev> ...] - start, suspend, or cancel initialization - Creates new open-context thread for each vdev - Thread iterates through all metaslabs in this vdev - Each metaslab: - select a metaslab - load the metaslab - mark the metaslab as being zeroed - walk all free ranges within that metaslab and translate them to ranges on the leaf vdev - issue a "zeroing" I/O on the leaf vdev that corresponds to a free range on the metaslab we're working on - continue until all free ranges for this metaslab have been "zeroed" - reset/unmark the metaslab being zeroed - if more metaslabs exist, then repeat above tasks. - if no more metaslabs, then we're done. - progress for the initialization is stored on-disk in the vdev’s leaf zap object. The following information is stored: - the last offset that has been initialized - the state of the initialization process (i.e. active, suspended, or canceled) - the start time for the initialization - progress is reported via the zpool status command and shows information for each of the vdevs that are initializing Porting notes: - Added zfs_initialize_value module parameter to set the pattern written by "zpool initialize". - Added zfs_vdev_{initializing,removal}_{min,max}_active module options. Authored by: George Wilson <george.wilson@delphix.com> Reviewed by: John Wren Kennedy <john.kennedy@delphix.com> Reviewed by: Matthew Ahrens <mahrens@delphix.com> Reviewed by: Pavel Zakharov <pavel.zakharov@delphix.com> Reviewed by: Prakash Surya <prakash.surya@delphix.com> Reviewed by: loli10K <ezomori.nozomu@gmail.com> Reviewed by: Brian Behlendorf <behlendorf1@llnl.gov> Approved by: Richard Lowe <richlowe@richlowe.net> Signed-off-by: Tim Chase <tim@chase2k.com> Ported-by: Tim Chase <tim@chase2k.com> OpenZFS-issue: https://www.illumos.org/issues/9102 OpenZFS-commit: https://github.com/openzfs/openzfs/commit/c3963210eb Closes #8230
2018-12-19 17:54:59 +03:00
{
zfs initialize performance enhancements PROBLEM ======== When invoking "zpool initialize" on a pool the command will create a thread to initialize each disk. Unfortunately, it does this serially across many transaction groups which can result in commands taking a long time to return to the user and may appear hung. The same thing is true when trying to suspend/cancel the operation. SOLUTION ========= This change refactors the way we invoke the initialize interface to ensure we can start or stop the intialization in just a few transaction groups. When stopping or cancelling a vdev initialization perform it in two phases. First signal each vdev initialization thread that it should exit, then after all threads have been signaled wait for them to exit. On a pool with 40 leaf vdevs this reduces the vdev initialize stop/cancel time from ~10 minutes to under a second. The reason for this is spa_vdev_initialize() no longer needs to wait on multiple full TXGs per leaf vdev being stopped. This commit additionally adds some missing checks for the passed "initialize_vdevs" input nvlist. The contents of the user provided input "initialize_vdevs" nvlist must be validated to ensure all values are uint64s. This is done in zfs_ioc_pool_initialize() in order to keep all of these checks in a single location. Updated the innvl and outnvl comments to match the formatting used for all other new sytle ioctls. Reviewed by: Matt Ahrens <mahrens@delphix.com> Reviewed-by: loli10K <ezomori.nozomu@gmail.com> Reviewed-by: Tim Chase <tim@chase2k.com> Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov> Signed-off-by: George Wilson <george.wilson@delphix.com> Closes #8230
2018-12-19 19:20:39 +03:00
vdev_t *vd;
ASSERT(MUTEX_HELD(&spa_namespace_lock));
while ((vd = list_remove_head(vd_list)) != NULL) {
mutex_enter(&vd->vdev_initialize_lock);
vdev_initialize_stop_wait_impl(vd);
mutex_exit(&vd->vdev_initialize_lock);
}
}
OpenZFS 9102 - zfs should be able to initialize storage devices PROBLEM ======== The first access to a block incurs a performance penalty on some platforms (e.g. AWS's EBS, VMware VMDKs). Therefore we recommend that volumes are "thick provisioned", where supported by the platform (VMware). This can create a large delay in getting a new virtual machines up and running (or adding storage to an existing Engine). If the thick provision step is omitted, write performance will be suboptimal until all blocks on the LUN have been written. SOLUTION ========= This feature introduces a way to 'initialize' the disks at install or in the background to make sure we don't incur this first read penalty. When an entire LUN is added to ZFS, we make all space available immediately, and allow ZFS to find unallocated space and zero it out. This works with concurrent writes to arbitrary offsets, ensuring that we don't zero out something that has been (or is in the middle of being) written. This scheme can also be applied to existing pools (affecting only free regions on the vdev). Detailed design: - new subcommand:zpool initialize [-cs] <pool> [<vdev> ...] - start, suspend, or cancel initialization - Creates new open-context thread for each vdev - Thread iterates through all metaslabs in this vdev - Each metaslab: - select a metaslab - load the metaslab - mark the metaslab as being zeroed - walk all free ranges within that metaslab and translate them to ranges on the leaf vdev - issue a "zeroing" I/O on the leaf vdev that corresponds to a free range on the metaslab we're working on - continue until all free ranges for this metaslab have been "zeroed" - reset/unmark the metaslab being zeroed - if more metaslabs exist, then repeat above tasks. - if no more metaslabs, then we're done. - progress for the initialization is stored on-disk in the vdev’s leaf zap object. The following information is stored: - the last offset that has been initialized - the state of the initialization process (i.e. active, suspended, or canceled) - the start time for the initialization - progress is reported via the zpool status command and shows information for each of the vdevs that are initializing Porting notes: - Added zfs_initialize_value module parameter to set the pattern written by "zpool initialize". - Added zfs_vdev_{initializing,removal}_{min,max}_active module options. Authored by: George Wilson <george.wilson@delphix.com> Reviewed by: John Wren Kennedy <john.kennedy@delphix.com> Reviewed by: Matthew Ahrens <mahrens@delphix.com> Reviewed by: Pavel Zakharov <pavel.zakharov@delphix.com> Reviewed by: Prakash Surya <prakash.surya@delphix.com> Reviewed by: loli10K <ezomori.nozomu@gmail.com> Reviewed by: Brian Behlendorf <behlendorf1@llnl.gov> Approved by: Richard Lowe <richlowe@richlowe.net> Signed-off-by: Tim Chase <tim@chase2k.com> Ported-by: Tim Chase <tim@chase2k.com> OpenZFS-issue: https://www.illumos.org/issues/9102 OpenZFS-commit: https://github.com/openzfs/openzfs/commit/c3963210eb Closes #8230
2018-12-19 17:54:59 +03:00
zfs initialize performance enhancements PROBLEM ======== When invoking "zpool initialize" on a pool the command will create a thread to initialize each disk. Unfortunately, it does this serially across many transaction groups which can result in commands taking a long time to return to the user and may appear hung. The same thing is true when trying to suspend/cancel the operation. SOLUTION ========= This change refactors the way we invoke the initialize interface to ensure we can start or stop the intialization in just a few transaction groups. When stopping or cancelling a vdev initialization perform it in two phases. First signal each vdev initialization thread that it should exit, then after all threads have been signaled wait for them to exit. On a pool with 40 leaf vdevs this reduces the vdev initialize stop/cancel time from ~10 minutes to under a second. The reason for this is spa_vdev_initialize() no longer needs to wait on multiple full TXGs per leaf vdev being stopped. This commit additionally adds some missing checks for the passed "initialize_vdevs" input nvlist. The contents of the user provided input "initialize_vdevs" nvlist must be validated to ensure all values are uint64s. This is done in zfs_ioc_pool_initialize() in order to keep all of these checks in a single location. Updated the innvl and outnvl comments to match the formatting used for all other new sytle ioctls. Reviewed by: Matt Ahrens <mahrens@delphix.com> Reviewed-by: loli10K <ezomori.nozomu@gmail.com> Reviewed-by: Tim Chase <tim@chase2k.com> Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov> Signed-off-by: George Wilson <george.wilson@delphix.com> Closes #8230
2018-12-19 19:20:39 +03:00
/*
* Stop initializing a device, with the resultant initialing state being
* tgt_state. For blocking behavior pass NULL for vd_list. Otherwise, when
* a list_t is provided the stopping vdev is inserted in to the list. Callers
* are then required to call vdev_initialize_stop_wait() to block for all the
* initialization threads to exit. The caller must hold vdev_initialize_lock
* and must not be writing to the spa config, as the initializing thread may
* try to enter the config as a reader before exiting.
*/
void
vdev_initialize_stop(vdev_t *vd, vdev_initializing_state_t tgt_state,
list_t *vd_list)
{
ASSERT(!spa_config_held(vd->vdev_spa, SCL_CONFIG|SCL_STATE, RW_WRITER));
OpenZFS 9102 - zfs should be able to initialize storage devices PROBLEM ======== The first access to a block incurs a performance penalty on some platforms (e.g. AWS's EBS, VMware VMDKs). Therefore we recommend that volumes are "thick provisioned", where supported by the platform (VMware). This can create a large delay in getting a new virtual machines up and running (or adding storage to an existing Engine). If the thick provision step is omitted, write performance will be suboptimal until all blocks on the LUN have been written. SOLUTION ========= This feature introduces a way to 'initialize' the disks at install or in the background to make sure we don't incur this first read penalty. When an entire LUN is added to ZFS, we make all space available immediately, and allow ZFS to find unallocated space and zero it out. This works with concurrent writes to arbitrary offsets, ensuring that we don't zero out something that has been (or is in the middle of being) written. This scheme can also be applied to existing pools (affecting only free regions on the vdev). Detailed design: - new subcommand:zpool initialize [-cs] <pool> [<vdev> ...] - start, suspend, or cancel initialization - Creates new open-context thread for each vdev - Thread iterates through all metaslabs in this vdev - Each metaslab: - select a metaslab - load the metaslab - mark the metaslab as being zeroed - walk all free ranges within that metaslab and translate them to ranges on the leaf vdev - issue a "zeroing" I/O on the leaf vdev that corresponds to a free range on the metaslab we're working on - continue until all free ranges for this metaslab have been "zeroed" - reset/unmark the metaslab being zeroed - if more metaslabs exist, then repeat above tasks. - if no more metaslabs, then we're done. - progress for the initialization is stored on-disk in the vdev’s leaf zap object. The following information is stored: - the last offset that has been initialized - the state of the initialization process (i.e. active, suspended, or canceled) - the start time for the initialization - progress is reported via the zpool status command and shows information for each of the vdevs that are initializing Porting notes: - Added zfs_initialize_value module parameter to set the pattern written by "zpool initialize". - Added zfs_vdev_{initializing,removal}_{min,max}_active module options. Authored by: George Wilson <george.wilson@delphix.com> Reviewed by: John Wren Kennedy <john.kennedy@delphix.com> Reviewed by: Matthew Ahrens <mahrens@delphix.com> Reviewed by: Pavel Zakharov <pavel.zakharov@delphix.com> Reviewed by: Prakash Surya <prakash.surya@delphix.com> Reviewed by: loli10K <ezomori.nozomu@gmail.com> Reviewed by: Brian Behlendorf <behlendorf1@llnl.gov> Approved by: Richard Lowe <richlowe@richlowe.net> Signed-off-by: Tim Chase <tim@chase2k.com> Ported-by: Tim Chase <tim@chase2k.com> OpenZFS-issue: https://www.illumos.org/issues/9102 OpenZFS-commit: https://github.com/openzfs/openzfs/commit/c3963210eb Closes #8230
2018-12-19 17:54:59 +03:00
ASSERT(MUTEX_HELD(&vd->vdev_initialize_lock));
ASSERT(vd->vdev_ops->vdev_op_leaf);
ASSERT(vdev_is_concrete(vd));
/*
* Allow cancel requests to proceed even if the initialize thread
* has stopped.
*/
if (vd->vdev_initialize_thread == NULL &&
tgt_state != VDEV_INITIALIZE_CANCELED) {
return;
}
vdev_initialize_change_state(vd, tgt_state);
vd->vdev_initialize_exit_wanted = B_TRUE;
zfs initialize performance enhancements PROBLEM ======== When invoking "zpool initialize" on a pool the command will create a thread to initialize each disk. Unfortunately, it does this serially across many transaction groups which can result in commands taking a long time to return to the user and may appear hung. The same thing is true when trying to suspend/cancel the operation. SOLUTION ========= This change refactors the way we invoke the initialize interface to ensure we can start or stop the intialization in just a few transaction groups. When stopping or cancelling a vdev initialization perform it in two phases. First signal each vdev initialization thread that it should exit, then after all threads have been signaled wait for them to exit. On a pool with 40 leaf vdevs this reduces the vdev initialize stop/cancel time from ~10 minutes to under a second. The reason for this is spa_vdev_initialize() no longer needs to wait on multiple full TXGs per leaf vdev being stopped. This commit additionally adds some missing checks for the passed "initialize_vdevs" input nvlist. The contents of the user provided input "initialize_vdevs" nvlist must be validated to ensure all values are uint64s. This is done in zfs_ioc_pool_initialize() in order to keep all of these checks in a single location. Updated the innvl and outnvl comments to match the formatting used for all other new sytle ioctls. Reviewed by: Matt Ahrens <mahrens@delphix.com> Reviewed-by: loli10K <ezomori.nozomu@gmail.com> Reviewed-by: Tim Chase <tim@chase2k.com> Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov> Signed-off-by: George Wilson <george.wilson@delphix.com> Closes #8230
2018-12-19 19:20:39 +03:00
if (vd_list == NULL) {
vdev_initialize_stop_wait_impl(vd);
} else {
ASSERT(MUTEX_HELD(&spa_namespace_lock));
list_insert_tail(vd_list, vd);
}
OpenZFS 9102 - zfs should be able to initialize storage devices PROBLEM ======== The first access to a block incurs a performance penalty on some platforms (e.g. AWS's EBS, VMware VMDKs). Therefore we recommend that volumes are "thick provisioned", where supported by the platform (VMware). This can create a large delay in getting a new virtual machines up and running (or adding storage to an existing Engine). If the thick provision step is omitted, write performance will be suboptimal until all blocks on the LUN have been written. SOLUTION ========= This feature introduces a way to 'initialize' the disks at install or in the background to make sure we don't incur this first read penalty. When an entire LUN is added to ZFS, we make all space available immediately, and allow ZFS to find unallocated space and zero it out. This works with concurrent writes to arbitrary offsets, ensuring that we don't zero out something that has been (or is in the middle of being) written. This scheme can also be applied to existing pools (affecting only free regions on the vdev). Detailed design: - new subcommand:zpool initialize [-cs] <pool> [<vdev> ...] - start, suspend, or cancel initialization - Creates new open-context thread for each vdev - Thread iterates through all metaslabs in this vdev - Each metaslab: - select a metaslab - load the metaslab - mark the metaslab as being zeroed - walk all free ranges within that metaslab and translate them to ranges on the leaf vdev - issue a "zeroing" I/O on the leaf vdev that corresponds to a free range on the metaslab we're working on - continue until all free ranges for this metaslab have been "zeroed" - reset/unmark the metaslab being zeroed - if more metaslabs exist, then repeat above tasks. - if no more metaslabs, then we're done. - progress for the initialization is stored on-disk in the vdev’s leaf zap object. The following information is stored: - the last offset that has been initialized - the state of the initialization process (i.e. active, suspended, or canceled) - the start time for the initialization - progress is reported via the zpool status command and shows information for each of the vdevs that are initializing Porting notes: - Added zfs_initialize_value module parameter to set the pattern written by "zpool initialize". - Added zfs_vdev_{initializing,removal}_{min,max}_active module options. Authored by: George Wilson <george.wilson@delphix.com> Reviewed by: John Wren Kennedy <john.kennedy@delphix.com> Reviewed by: Matthew Ahrens <mahrens@delphix.com> Reviewed by: Pavel Zakharov <pavel.zakharov@delphix.com> Reviewed by: Prakash Surya <prakash.surya@delphix.com> Reviewed by: loli10K <ezomori.nozomu@gmail.com> Reviewed by: Brian Behlendorf <behlendorf1@llnl.gov> Approved by: Richard Lowe <richlowe@richlowe.net> Signed-off-by: Tim Chase <tim@chase2k.com> Ported-by: Tim Chase <tim@chase2k.com> OpenZFS-issue: https://www.illumos.org/issues/9102 OpenZFS-commit: https://github.com/openzfs/openzfs/commit/c3963210eb Closes #8230
2018-12-19 17:54:59 +03:00
}
static void
zfs initialize performance enhancements PROBLEM ======== When invoking "zpool initialize" on a pool the command will create a thread to initialize each disk. Unfortunately, it does this serially across many transaction groups which can result in commands taking a long time to return to the user and may appear hung. The same thing is true when trying to suspend/cancel the operation. SOLUTION ========= This change refactors the way we invoke the initialize interface to ensure we can start or stop the intialization in just a few transaction groups. When stopping or cancelling a vdev initialization perform it in two phases. First signal each vdev initialization thread that it should exit, then after all threads have been signaled wait for them to exit. On a pool with 40 leaf vdevs this reduces the vdev initialize stop/cancel time from ~10 minutes to under a second. The reason for this is spa_vdev_initialize() no longer needs to wait on multiple full TXGs per leaf vdev being stopped. This commit additionally adds some missing checks for the passed "initialize_vdevs" input nvlist. The contents of the user provided input "initialize_vdevs" nvlist must be validated to ensure all values are uint64s. This is done in zfs_ioc_pool_initialize() in order to keep all of these checks in a single location. Updated the innvl and outnvl comments to match the formatting used for all other new sytle ioctls. Reviewed by: Matt Ahrens <mahrens@delphix.com> Reviewed-by: loli10K <ezomori.nozomu@gmail.com> Reviewed-by: Tim Chase <tim@chase2k.com> Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov> Signed-off-by: George Wilson <george.wilson@delphix.com> Closes #8230
2018-12-19 19:20:39 +03:00
vdev_initialize_stop_all_impl(vdev_t *vd, vdev_initializing_state_t tgt_state,
list_t *vd_list)
OpenZFS 9102 - zfs should be able to initialize storage devices PROBLEM ======== The first access to a block incurs a performance penalty on some platforms (e.g. AWS's EBS, VMware VMDKs). Therefore we recommend that volumes are "thick provisioned", where supported by the platform (VMware). This can create a large delay in getting a new virtual machines up and running (or adding storage to an existing Engine). If the thick provision step is omitted, write performance will be suboptimal until all blocks on the LUN have been written. SOLUTION ========= This feature introduces a way to 'initialize' the disks at install or in the background to make sure we don't incur this first read penalty. When an entire LUN is added to ZFS, we make all space available immediately, and allow ZFS to find unallocated space and zero it out. This works with concurrent writes to arbitrary offsets, ensuring that we don't zero out something that has been (or is in the middle of being) written. This scheme can also be applied to existing pools (affecting only free regions on the vdev). Detailed design: - new subcommand:zpool initialize [-cs] <pool> [<vdev> ...] - start, suspend, or cancel initialization - Creates new open-context thread for each vdev - Thread iterates through all metaslabs in this vdev - Each metaslab: - select a metaslab - load the metaslab - mark the metaslab as being zeroed - walk all free ranges within that metaslab and translate them to ranges on the leaf vdev - issue a "zeroing" I/O on the leaf vdev that corresponds to a free range on the metaslab we're working on - continue until all free ranges for this metaslab have been "zeroed" - reset/unmark the metaslab being zeroed - if more metaslabs exist, then repeat above tasks. - if no more metaslabs, then we're done. - progress for the initialization is stored on-disk in the vdev’s leaf zap object. The following information is stored: - the last offset that has been initialized - the state of the initialization process (i.e. active, suspended, or canceled) - the start time for the initialization - progress is reported via the zpool status command and shows information for each of the vdevs that are initializing Porting notes: - Added zfs_initialize_value module parameter to set the pattern written by "zpool initialize". - Added zfs_vdev_{initializing,removal}_{min,max}_active module options. Authored by: George Wilson <george.wilson@delphix.com> Reviewed by: John Wren Kennedy <john.kennedy@delphix.com> Reviewed by: Matthew Ahrens <mahrens@delphix.com> Reviewed by: Pavel Zakharov <pavel.zakharov@delphix.com> Reviewed by: Prakash Surya <prakash.surya@delphix.com> Reviewed by: loli10K <ezomori.nozomu@gmail.com> Reviewed by: Brian Behlendorf <behlendorf1@llnl.gov> Approved by: Richard Lowe <richlowe@richlowe.net> Signed-off-by: Tim Chase <tim@chase2k.com> Ported-by: Tim Chase <tim@chase2k.com> OpenZFS-issue: https://www.illumos.org/issues/9102 OpenZFS-commit: https://github.com/openzfs/openzfs/commit/c3963210eb Closes #8230
2018-12-19 17:54:59 +03:00
{
if (vd->vdev_ops->vdev_op_leaf && vdev_is_concrete(vd)) {
mutex_enter(&vd->vdev_initialize_lock);
zfs initialize performance enhancements PROBLEM ======== When invoking "zpool initialize" on a pool the command will create a thread to initialize each disk. Unfortunately, it does this serially across many transaction groups which can result in commands taking a long time to return to the user and may appear hung. The same thing is true when trying to suspend/cancel the operation. SOLUTION ========= This change refactors the way we invoke the initialize interface to ensure we can start or stop the intialization in just a few transaction groups. When stopping or cancelling a vdev initialization perform it in two phases. First signal each vdev initialization thread that it should exit, then after all threads have been signaled wait for them to exit. On a pool with 40 leaf vdevs this reduces the vdev initialize stop/cancel time from ~10 minutes to under a second. The reason for this is spa_vdev_initialize() no longer needs to wait on multiple full TXGs per leaf vdev being stopped. This commit additionally adds some missing checks for the passed "initialize_vdevs" input nvlist. The contents of the user provided input "initialize_vdevs" nvlist must be validated to ensure all values are uint64s. This is done in zfs_ioc_pool_initialize() in order to keep all of these checks in a single location. Updated the innvl and outnvl comments to match the formatting used for all other new sytle ioctls. Reviewed by: Matt Ahrens <mahrens@delphix.com> Reviewed-by: loli10K <ezomori.nozomu@gmail.com> Reviewed-by: Tim Chase <tim@chase2k.com> Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov> Signed-off-by: George Wilson <george.wilson@delphix.com> Closes #8230
2018-12-19 19:20:39 +03:00
vdev_initialize_stop(vd, tgt_state, vd_list);
OpenZFS 9102 - zfs should be able to initialize storage devices PROBLEM ======== The first access to a block incurs a performance penalty on some platforms (e.g. AWS's EBS, VMware VMDKs). Therefore we recommend that volumes are "thick provisioned", where supported by the platform (VMware). This can create a large delay in getting a new virtual machines up and running (or adding storage to an existing Engine). If the thick provision step is omitted, write performance will be suboptimal until all blocks on the LUN have been written. SOLUTION ========= This feature introduces a way to 'initialize' the disks at install or in the background to make sure we don't incur this first read penalty. When an entire LUN is added to ZFS, we make all space available immediately, and allow ZFS to find unallocated space and zero it out. This works with concurrent writes to arbitrary offsets, ensuring that we don't zero out something that has been (or is in the middle of being) written. This scheme can also be applied to existing pools (affecting only free regions on the vdev). Detailed design: - new subcommand:zpool initialize [-cs] <pool> [<vdev> ...] - start, suspend, or cancel initialization - Creates new open-context thread for each vdev - Thread iterates through all metaslabs in this vdev - Each metaslab: - select a metaslab - load the metaslab - mark the metaslab as being zeroed - walk all free ranges within that metaslab and translate them to ranges on the leaf vdev - issue a "zeroing" I/O on the leaf vdev that corresponds to a free range on the metaslab we're working on - continue until all free ranges for this metaslab have been "zeroed" - reset/unmark the metaslab being zeroed - if more metaslabs exist, then repeat above tasks. - if no more metaslabs, then we're done. - progress for the initialization is stored on-disk in the vdev’s leaf zap object. The following information is stored: - the last offset that has been initialized - the state of the initialization process (i.e. active, suspended, or canceled) - the start time for the initialization - progress is reported via the zpool status command and shows information for each of the vdevs that are initializing Porting notes: - Added zfs_initialize_value module parameter to set the pattern written by "zpool initialize". - Added zfs_vdev_{initializing,removal}_{min,max}_active module options. Authored by: George Wilson <george.wilson@delphix.com> Reviewed by: John Wren Kennedy <john.kennedy@delphix.com> Reviewed by: Matthew Ahrens <mahrens@delphix.com> Reviewed by: Pavel Zakharov <pavel.zakharov@delphix.com> Reviewed by: Prakash Surya <prakash.surya@delphix.com> Reviewed by: loli10K <ezomori.nozomu@gmail.com> Reviewed by: Brian Behlendorf <behlendorf1@llnl.gov> Approved by: Richard Lowe <richlowe@richlowe.net> Signed-off-by: Tim Chase <tim@chase2k.com> Ported-by: Tim Chase <tim@chase2k.com> OpenZFS-issue: https://www.illumos.org/issues/9102 OpenZFS-commit: https://github.com/openzfs/openzfs/commit/c3963210eb Closes #8230
2018-12-19 17:54:59 +03:00
mutex_exit(&vd->vdev_initialize_lock);
return;
}
for (uint64_t i = 0; i < vd->vdev_children; i++) {
zfs initialize performance enhancements PROBLEM ======== When invoking "zpool initialize" on a pool the command will create a thread to initialize each disk. Unfortunately, it does this serially across many transaction groups which can result in commands taking a long time to return to the user and may appear hung. The same thing is true when trying to suspend/cancel the operation. SOLUTION ========= This change refactors the way we invoke the initialize interface to ensure we can start or stop the intialization in just a few transaction groups. When stopping or cancelling a vdev initialization perform it in two phases. First signal each vdev initialization thread that it should exit, then after all threads have been signaled wait for them to exit. On a pool with 40 leaf vdevs this reduces the vdev initialize stop/cancel time from ~10 minutes to under a second. The reason for this is spa_vdev_initialize() no longer needs to wait on multiple full TXGs per leaf vdev being stopped. This commit additionally adds some missing checks for the passed "initialize_vdevs" input nvlist. The contents of the user provided input "initialize_vdevs" nvlist must be validated to ensure all values are uint64s. This is done in zfs_ioc_pool_initialize() in order to keep all of these checks in a single location. Updated the innvl and outnvl comments to match the formatting used for all other new sytle ioctls. Reviewed by: Matt Ahrens <mahrens@delphix.com> Reviewed-by: loli10K <ezomori.nozomu@gmail.com> Reviewed-by: Tim Chase <tim@chase2k.com> Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov> Signed-off-by: George Wilson <george.wilson@delphix.com> Closes #8230
2018-12-19 19:20:39 +03:00
vdev_initialize_stop_all_impl(vd->vdev_child[i], tgt_state,
vd_list);
OpenZFS 9102 - zfs should be able to initialize storage devices PROBLEM ======== The first access to a block incurs a performance penalty on some platforms (e.g. AWS's EBS, VMware VMDKs). Therefore we recommend that volumes are "thick provisioned", where supported by the platform (VMware). This can create a large delay in getting a new virtual machines up and running (or adding storage to an existing Engine). If the thick provision step is omitted, write performance will be suboptimal until all blocks on the LUN have been written. SOLUTION ========= This feature introduces a way to 'initialize' the disks at install or in the background to make sure we don't incur this first read penalty. When an entire LUN is added to ZFS, we make all space available immediately, and allow ZFS to find unallocated space and zero it out. This works with concurrent writes to arbitrary offsets, ensuring that we don't zero out something that has been (or is in the middle of being) written. This scheme can also be applied to existing pools (affecting only free regions on the vdev). Detailed design: - new subcommand:zpool initialize [-cs] <pool> [<vdev> ...] - start, suspend, or cancel initialization - Creates new open-context thread for each vdev - Thread iterates through all metaslabs in this vdev - Each metaslab: - select a metaslab - load the metaslab - mark the metaslab as being zeroed - walk all free ranges within that metaslab and translate them to ranges on the leaf vdev - issue a "zeroing" I/O on the leaf vdev that corresponds to a free range on the metaslab we're working on - continue until all free ranges for this metaslab have been "zeroed" - reset/unmark the metaslab being zeroed - if more metaslabs exist, then repeat above tasks. - if no more metaslabs, then we're done. - progress for the initialization is stored on-disk in the vdev’s leaf zap object. The following information is stored: - the last offset that has been initialized - the state of the initialization process (i.e. active, suspended, or canceled) - the start time for the initialization - progress is reported via the zpool status command and shows information for each of the vdevs that are initializing Porting notes: - Added zfs_initialize_value module parameter to set the pattern written by "zpool initialize". - Added zfs_vdev_{initializing,removal}_{min,max}_active module options. Authored by: George Wilson <george.wilson@delphix.com> Reviewed by: John Wren Kennedy <john.kennedy@delphix.com> Reviewed by: Matthew Ahrens <mahrens@delphix.com> Reviewed by: Pavel Zakharov <pavel.zakharov@delphix.com> Reviewed by: Prakash Surya <prakash.surya@delphix.com> Reviewed by: loli10K <ezomori.nozomu@gmail.com> Reviewed by: Brian Behlendorf <behlendorf1@llnl.gov> Approved by: Richard Lowe <richlowe@richlowe.net> Signed-off-by: Tim Chase <tim@chase2k.com> Ported-by: Tim Chase <tim@chase2k.com> OpenZFS-issue: https://www.illumos.org/issues/9102 OpenZFS-commit: https://github.com/openzfs/openzfs/commit/c3963210eb Closes #8230
2018-12-19 17:54:59 +03:00
}
}
/*
* Convenience function to stop initializing of a vdev tree and set all
* initialize thread pointers to NULL.
*/
void
vdev_initialize_stop_all(vdev_t *vd, vdev_initializing_state_t tgt_state)
{
zfs initialize performance enhancements PROBLEM ======== When invoking "zpool initialize" on a pool the command will create a thread to initialize each disk. Unfortunately, it does this serially across many transaction groups which can result in commands taking a long time to return to the user and may appear hung. The same thing is true when trying to suspend/cancel the operation. SOLUTION ========= This change refactors the way we invoke the initialize interface to ensure we can start or stop the intialization in just a few transaction groups. When stopping or cancelling a vdev initialization perform it in two phases. First signal each vdev initialization thread that it should exit, then after all threads have been signaled wait for them to exit. On a pool with 40 leaf vdevs this reduces the vdev initialize stop/cancel time from ~10 minutes to under a second. The reason for this is spa_vdev_initialize() no longer needs to wait on multiple full TXGs per leaf vdev being stopped. This commit additionally adds some missing checks for the passed "initialize_vdevs" input nvlist. The contents of the user provided input "initialize_vdevs" nvlist must be validated to ensure all values are uint64s. This is done in zfs_ioc_pool_initialize() in order to keep all of these checks in a single location. Updated the innvl and outnvl comments to match the formatting used for all other new sytle ioctls. Reviewed by: Matt Ahrens <mahrens@delphix.com> Reviewed-by: loli10K <ezomori.nozomu@gmail.com> Reviewed-by: Tim Chase <tim@chase2k.com> Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov> Signed-off-by: George Wilson <george.wilson@delphix.com> Closes #8230
2018-12-19 19:20:39 +03:00
spa_t *spa = vd->vdev_spa;
list_t vd_list;
ASSERT(MUTEX_HELD(&spa_namespace_lock));
list_create(&vd_list, sizeof (vdev_t),
offsetof(vdev_t, vdev_initialize_node));
vdev_initialize_stop_all_impl(vd, tgt_state, &vd_list);
vdev_initialize_stop_wait(spa, &vd_list);
OpenZFS 9102 - zfs should be able to initialize storage devices PROBLEM ======== The first access to a block incurs a performance penalty on some platforms (e.g. AWS's EBS, VMware VMDKs). Therefore we recommend that volumes are "thick provisioned", where supported by the platform (VMware). This can create a large delay in getting a new virtual machines up and running (or adding storage to an existing Engine). If the thick provision step is omitted, write performance will be suboptimal until all blocks on the LUN have been written. SOLUTION ========= This feature introduces a way to 'initialize' the disks at install or in the background to make sure we don't incur this first read penalty. When an entire LUN is added to ZFS, we make all space available immediately, and allow ZFS to find unallocated space and zero it out. This works with concurrent writes to arbitrary offsets, ensuring that we don't zero out something that has been (or is in the middle of being) written. This scheme can also be applied to existing pools (affecting only free regions on the vdev). Detailed design: - new subcommand:zpool initialize [-cs] <pool> [<vdev> ...] - start, suspend, or cancel initialization - Creates new open-context thread for each vdev - Thread iterates through all metaslabs in this vdev - Each metaslab: - select a metaslab - load the metaslab - mark the metaslab as being zeroed - walk all free ranges within that metaslab and translate them to ranges on the leaf vdev - issue a "zeroing" I/O on the leaf vdev that corresponds to a free range on the metaslab we're working on - continue until all free ranges for this metaslab have been "zeroed" - reset/unmark the metaslab being zeroed - if more metaslabs exist, then repeat above tasks. - if no more metaslabs, then we're done. - progress for the initialization is stored on-disk in the vdev’s leaf zap object. The following information is stored: - the last offset that has been initialized - the state of the initialization process (i.e. active, suspended, or canceled) - the start time for the initialization - progress is reported via the zpool status command and shows information for each of the vdevs that are initializing Porting notes: - Added zfs_initialize_value module parameter to set the pattern written by "zpool initialize". - Added zfs_vdev_{initializing,removal}_{min,max}_active module options. Authored by: George Wilson <george.wilson@delphix.com> Reviewed by: John Wren Kennedy <john.kennedy@delphix.com> Reviewed by: Matthew Ahrens <mahrens@delphix.com> Reviewed by: Pavel Zakharov <pavel.zakharov@delphix.com> Reviewed by: Prakash Surya <prakash.surya@delphix.com> Reviewed by: loli10K <ezomori.nozomu@gmail.com> Reviewed by: Brian Behlendorf <behlendorf1@llnl.gov> Approved by: Richard Lowe <richlowe@richlowe.net> Signed-off-by: Tim Chase <tim@chase2k.com> Ported-by: Tim Chase <tim@chase2k.com> OpenZFS-issue: https://www.illumos.org/issues/9102 OpenZFS-commit: https://github.com/openzfs/openzfs/commit/c3963210eb Closes #8230
2018-12-19 17:54:59 +03:00
if (vd->vdev_spa->spa_sync_on) {
/* Make sure that our state has been synced to disk */
txg_wait_synced(spa_get_dsl(vd->vdev_spa), 0);
}
zfs initialize performance enhancements PROBLEM ======== When invoking "zpool initialize" on a pool the command will create a thread to initialize each disk. Unfortunately, it does this serially across many transaction groups which can result in commands taking a long time to return to the user and may appear hung. The same thing is true when trying to suspend/cancel the operation. SOLUTION ========= This change refactors the way we invoke the initialize interface to ensure we can start or stop the intialization in just a few transaction groups. When stopping or cancelling a vdev initialization perform it in two phases. First signal each vdev initialization thread that it should exit, then after all threads have been signaled wait for them to exit. On a pool with 40 leaf vdevs this reduces the vdev initialize stop/cancel time from ~10 minutes to under a second. The reason for this is spa_vdev_initialize() no longer needs to wait on multiple full TXGs per leaf vdev being stopped. This commit additionally adds some missing checks for the passed "initialize_vdevs" input nvlist. The contents of the user provided input "initialize_vdevs" nvlist must be validated to ensure all values are uint64s. This is done in zfs_ioc_pool_initialize() in order to keep all of these checks in a single location. Updated the innvl and outnvl comments to match the formatting used for all other new sytle ioctls. Reviewed by: Matt Ahrens <mahrens@delphix.com> Reviewed-by: loli10K <ezomori.nozomu@gmail.com> Reviewed-by: Tim Chase <tim@chase2k.com> Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov> Signed-off-by: George Wilson <george.wilson@delphix.com> Closes #8230
2018-12-19 19:20:39 +03:00
list_destroy(&vd_list);
OpenZFS 9102 - zfs should be able to initialize storage devices PROBLEM ======== The first access to a block incurs a performance penalty on some platforms (e.g. AWS's EBS, VMware VMDKs). Therefore we recommend that volumes are "thick provisioned", where supported by the platform (VMware). This can create a large delay in getting a new virtual machines up and running (or adding storage to an existing Engine). If the thick provision step is omitted, write performance will be suboptimal until all blocks on the LUN have been written. SOLUTION ========= This feature introduces a way to 'initialize' the disks at install or in the background to make sure we don't incur this first read penalty. When an entire LUN is added to ZFS, we make all space available immediately, and allow ZFS to find unallocated space and zero it out. This works with concurrent writes to arbitrary offsets, ensuring that we don't zero out something that has been (or is in the middle of being) written. This scheme can also be applied to existing pools (affecting only free regions on the vdev). Detailed design: - new subcommand:zpool initialize [-cs] <pool> [<vdev> ...] - start, suspend, or cancel initialization - Creates new open-context thread for each vdev - Thread iterates through all metaslabs in this vdev - Each metaslab: - select a metaslab - load the metaslab - mark the metaslab as being zeroed - walk all free ranges within that metaslab and translate them to ranges on the leaf vdev - issue a "zeroing" I/O on the leaf vdev that corresponds to a free range on the metaslab we're working on - continue until all free ranges for this metaslab have been "zeroed" - reset/unmark the metaslab being zeroed - if more metaslabs exist, then repeat above tasks. - if no more metaslabs, then we're done. - progress for the initialization is stored on-disk in the vdev’s leaf zap object. The following information is stored: - the last offset that has been initialized - the state of the initialization process (i.e. active, suspended, or canceled) - the start time for the initialization - progress is reported via the zpool status command and shows information for each of the vdevs that are initializing Porting notes: - Added zfs_initialize_value module parameter to set the pattern written by "zpool initialize". - Added zfs_vdev_{initializing,removal}_{min,max}_active module options. Authored by: George Wilson <george.wilson@delphix.com> Reviewed by: John Wren Kennedy <john.kennedy@delphix.com> Reviewed by: Matthew Ahrens <mahrens@delphix.com> Reviewed by: Pavel Zakharov <pavel.zakharov@delphix.com> Reviewed by: Prakash Surya <prakash.surya@delphix.com> Reviewed by: loli10K <ezomori.nozomu@gmail.com> Reviewed by: Brian Behlendorf <behlendorf1@llnl.gov> Approved by: Richard Lowe <richlowe@richlowe.net> Signed-off-by: Tim Chase <tim@chase2k.com> Ported-by: Tim Chase <tim@chase2k.com> OpenZFS-issue: https://www.illumos.org/issues/9102 OpenZFS-commit: https://github.com/openzfs/openzfs/commit/c3963210eb Closes #8230
2018-12-19 17:54:59 +03:00
}
void
vdev_initialize_restart(vdev_t *vd)
{
ASSERT(MUTEX_HELD(&spa_namespace_lock));
ASSERT(!spa_config_held(vd->vdev_spa, SCL_ALL, RW_WRITER));
if (vd->vdev_leaf_zap != 0) {
mutex_enter(&vd->vdev_initialize_lock);
uint64_t initialize_state = VDEV_INITIALIZE_NONE;
int err = zap_lookup(vd->vdev_spa->spa_meta_objset,
vd->vdev_leaf_zap, VDEV_LEAF_ZAP_INITIALIZE_STATE,
sizeof (initialize_state), 1, &initialize_state);
ASSERT(err == 0 || err == ENOENT);
vd->vdev_initialize_state = initialize_state;
uint64_t timestamp = 0;
err = zap_lookup(vd->vdev_spa->spa_meta_objset,
vd->vdev_leaf_zap, VDEV_LEAF_ZAP_INITIALIZE_ACTION_TIME,
sizeof (timestamp), 1, &timestamp);
ASSERT(err == 0 || err == ENOENT);
vd->vdev_initialize_action_time = (time_t)timestamp;
if (vd->vdev_initialize_state == VDEV_INITIALIZE_SUSPENDED ||
vd->vdev_offline) {
/* load progress for reporting, but don't resume */
VERIFY0(vdev_initialize_load(vd));
} else if (vd->vdev_initialize_state ==
VDEV_INITIALIZE_ACTIVE && vdev_writeable(vd) &&
!vd->vdev_top->vdev_removing &&
vd->vdev_initialize_thread == NULL) {
OpenZFS 9102 - zfs should be able to initialize storage devices PROBLEM ======== The first access to a block incurs a performance penalty on some platforms (e.g. AWS's EBS, VMware VMDKs). Therefore we recommend that volumes are "thick provisioned", where supported by the platform (VMware). This can create a large delay in getting a new virtual machines up and running (or adding storage to an existing Engine). If the thick provision step is omitted, write performance will be suboptimal until all blocks on the LUN have been written. SOLUTION ========= This feature introduces a way to 'initialize' the disks at install or in the background to make sure we don't incur this first read penalty. When an entire LUN is added to ZFS, we make all space available immediately, and allow ZFS to find unallocated space and zero it out. This works with concurrent writes to arbitrary offsets, ensuring that we don't zero out something that has been (or is in the middle of being) written. This scheme can also be applied to existing pools (affecting only free regions on the vdev). Detailed design: - new subcommand:zpool initialize [-cs] <pool> [<vdev> ...] - start, suspend, or cancel initialization - Creates new open-context thread for each vdev - Thread iterates through all metaslabs in this vdev - Each metaslab: - select a metaslab - load the metaslab - mark the metaslab as being zeroed - walk all free ranges within that metaslab and translate them to ranges on the leaf vdev - issue a "zeroing" I/O on the leaf vdev that corresponds to a free range on the metaslab we're working on - continue until all free ranges for this metaslab have been "zeroed" - reset/unmark the metaslab being zeroed - if more metaslabs exist, then repeat above tasks. - if no more metaslabs, then we're done. - progress for the initialization is stored on-disk in the vdev’s leaf zap object. The following information is stored: - the last offset that has been initialized - the state of the initialization process (i.e. active, suspended, or canceled) - the start time for the initialization - progress is reported via the zpool status command and shows information for each of the vdevs that are initializing Porting notes: - Added zfs_initialize_value module parameter to set the pattern written by "zpool initialize". - Added zfs_vdev_{initializing,removal}_{min,max}_active module options. Authored by: George Wilson <george.wilson@delphix.com> Reviewed by: John Wren Kennedy <john.kennedy@delphix.com> Reviewed by: Matthew Ahrens <mahrens@delphix.com> Reviewed by: Pavel Zakharov <pavel.zakharov@delphix.com> Reviewed by: Prakash Surya <prakash.surya@delphix.com> Reviewed by: loli10K <ezomori.nozomu@gmail.com> Reviewed by: Brian Behlendorf <behlendorf1@llnl.gov> Approved by: Richard Lowe <richlowe@richlowe.net> Signed-off-by: Tim Chase <tim@chase2k.com> Ported-by: Tim Chase <tim@chase2k.com> OpenZFS-issue: https://www.illumos.org/issues/9102 OpenZFS-commit: https://github.com/openzfs/openzfs/commit/c3963210eb Closes #8230
2018-12-19 17:54:59 +03:00
vdev_initialize(vd);
}
mutex_exit(&vd->vdev_initialize_lock);
}
for (uint64_t i = 0; i < vd->vdev_children; i++) {
vdev_initialize_restart(vd->vdev_child[i]);
}
}
#if defined(_KERNEL)
EXPORT_SYMBOL(vdev_initialize);
EXPORT_SYMBOL(vdev_initialize_stop);
zfs initialize performance enhancements PROBLEM ======== When invoking "zpool initialize" on a pool the command will create a thread to initialize each disk. Unfortunately, it does this serially across many transaction groups which can result in commands taking a long time to return to the user and may appear hung. The same thing is true when trying to suspend/cancel the operation. SOLUTION ========= This change refactors the way we invoke the initialize interface to ensure we can start or stop the intialization in just a few transaction groups. When stopping or cancelling a vdev initialization perform it in two phases. First signal each vdev initialization thread that it should exit, then after all threads have been signaled wait for them to exit. On a pool with 40 leaf vdevs this reduces the vdev initialize stop/cancel time from ~10 minutes to under a second. The reason for this is spa_vdev_initialize() no longer needs to wait on multiple full TXGs per leaf vdev being stopped. This commit additionally adds some missing checks for the passed "initialize_vdevs" input nvlist. The contents of the user provided input "initialize_vdevs" nvlist must be validated to ensure all values are uint64s. This is done in zfs_ioc_pool_initialize() in order to keep all of these checks in a single location. Updated the innvl and outnvl comments to match the formatting used for all other new sytle ioctls. Reviewed by: Matt Ahrens <mahrens@delphix.com> Reviewed-by: loli10K <ezomori.nozomu@gmail.com> Reviewed-by: Tim Chase <tim@chase2k.com> Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov> Signed-off-by: George Wilson <george.wilson@delphix.com> Closes #8230
2018-12-19 19:20:39 +03:00
EXPORT_SYMBOL(vdev_initialize_stop_all);
EXPORT_SYMBOL(vdev_initialize_stop_wait);
Add TRIM support UNMAP/TRIM support is a frequently-requested feature to help prevent performance from degrading on SSDs and on various other SAN-like storage back-ends. By issuing UNMAP/TRIM commands for sectors which are no longer allocated the underlying device can often more efficiently manage itself. This TRIM implementation is modeled on the `zpool initialize` feature which writes a pattern to all unallocated space in the pool. The new `zpool trim` command uses the same vdev_xlate() code to calculate what sectors are unallocated, the same per- vdev TRIM thread model and locking, and the same basic CLI for a consistent user experience. The core difference is that instead of writing a pattern it will issue UNMAP/TRIM commands for those extents. The zio pipeline was updated to accommodate this by adding a new ZIO_TYPE_TRIM type and associated spa taskq. This new type makes is straight forward to add the platform specific TRIM/UNMAP calls to vdev_disk.c and vdev_file.c. These new ZIO_TYPE_TRIM zios are handled largely the same way as ZIO_TYPE_READs or ZIO_TYPE_WRITEs. This makes it possible to largely avoid changing the pipieline, one exception is that TRIM zio's may exceed the 16M block size limit since they contain no data. In addition to the manual `zpool trim` command, a background automatic TRIM was added and is controlled by the 'autotrim' property. It relies on the exact same infrastructure as the manual TRIM. However, instead of relying on the extents in a metaslab's ms_allocatable range tree, a ms_trim tree is kept per metaslab. When 'autotrim=on', ranges added back to the ms_allocatable tree are also added to the ms_free tree. The ms_free tree is then periodically consumed by an autotrim thread which systematically walks a top level vdev's metaslabs. Since the automatic TRIM will skip ranges it considers too small there is value in occasionally running a full `zpool trim`. This may occur when the freed blocks are small and not enough time was allowed to aggregate them. An automatic TRIM and a manual `zpool trim` may be run concurrently, in which case the automatic TRIM will yield to the manual TRIM. Reviewed-by: Jorgen Lundman <lundman@lundman.net> Reviewed-by: Tim Chase <tim@chase2k.com> Reviewed-by: Matt Ahrens <mahrens@delphix.com> Reviewed-by: George Wilson <george.wilson@delphix.com> Reviewed-by: Serapheim Dimitropoulos <serapheim@delphix.com> Contributions-by: Saso Kiselkov <saso.kiselkov@nexenta.com> Contributions-by: Tim Chase <tim@chase2k.com> Contributions-by: Chunwei Chen <tuxoko@gmail.com> Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov> Closes #8419 Closes #598
2019-03-29 19:13:20 +03:00
EXPORT_SYMBOL(vdev_initialize_restart);
OpenZFS 9102 - zfs should be able to initialize storage devices PROBLEM ======== The first access to a block incurs a performance penalty on some platforms (e.g. AWS's EBS, VMware VMDKs). Therefore we recommend that volumes are "thick provisioned", where supported by the platform (VMware). This can create a large delay in getting a new virtual machines up and running (or adding storage to an existing Engine). If the thick provision step is omitted, write performance will be suboptimal until all blocks on the LUN have been written. SOLUTION ========= This feature introduces a way to 'initialize' the disks at install or in the background to make sure we don't incur this first read penalty. When an entire LUN is added to ZFS, we make all space available immediately, and allow ZFS to find unallocated space and zero it out. This works with concurrent writes to arbitrary offsets, ensuring that we don't zero out something that has been (or is in the middle of being) written. This scheme can also be applied to existing pools (affecting only free regions on the vdev). Detailed design: - new subcommand:zpool initialize [-cs] <pool> [<vdev> ...] - start, suspend, or cancel initialization - Creates new open-context thread for each vdev - Thread iterates through all metaslabs in this vdev - Each metaslab: - select a metaslab - load the metaslab - mark the metaslab as being zeroed - walk all free ranges within that metaslab and translate them to ranges on the leaf vdev - issue a "zeroing" I/O on the leaf vdev that corresponds to a free range on the metaslab we're working on - continue until all free ranges for this metaslab have been "zeroed" - reset/unmark the metaslab being zeroed - if more metaslabs exist, then repeat above tasks. - if no more metaslabs, then we're done. - progress for the initialization is stored on-disk in the vdev’s leaf zap object. The following information is stored: - the last offset that has been initialized - the state of the initialization process (i.e. active, suspended, or canceled) - the start time for the initialization - progress is reported via the zpool status command and shows information for each of the vdevs that are initializing Porting notes: - Added zfs_initialize_value module parameter to set the pattern written by "zpool initialize". - Added zfs_vdev_{initializing,removal}_{min,max}_active module options. Authored by: George Wilson <george.wilson@delphix.com> Reviewed by: John Wren Kennedy <john.kennedy@delphix.com> Reviewed by: Matthew Ahrens <mahrens@delphix.com> Reviewed by: Pavel Zakharov <pavel.zakharov@delphix.com> Reviewed by: Prakash Surya <prakash.surya@delphix.com> Reviewed by: loli10K <ezomori.nozomu@gmail.com> Reviewed by: Brian Behlendorf <behlendorf1@llnl.gov> Approved by: Richard Lowe <richlowe@richlowe.net> Signed-off-by: Tim Chase <tim@chase2k.com> Ported-by: Tim Chase <tim@chase2k.com> OpenZFS-issue: https://www.illumos.org/issues/9102 OpenZFS-commit: https://github.com/openzfs/openzfs/commit/c3963210eb Closes #8230
2018-12-19 17:54:59 +03:00
/* CSTYLED */
module_param(zfs_initialize_value, ulong, 0644);
MODULE_PARM_DESC(zfs_initialize_value,
"Value written during zpool initialize");
#endif