mirror_zfs/module/zcommon/zfs_fletcher_avx512.c

175 lines
5.1 KiB
C
Raw Normal View History

/*
* CDDL HEADER START
*
* The contents of this file are subject to the terms of the
* Common Development and Distribution License (the "License").
* You may not use this file except in compliance with the License.
*
* You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
* or http://www.opensolaris.org/os/licensing.
* See the License for the specific language governing permissions
* and limitations under the License.
*
* When distributing Covered Code, include this CDDL HEADER in each
* file and include the License file at usr/src/OPENSOLARIS.LICENSE.
* If applicable, add the following below this CDDL HEADER, with the
* fields enclosed by brackets "[]" replaced with your own identifying
* information: Portions Copyright [yyyy] [name of copyright owner]
*
* CDDL HEADER END
*/
/*
* Copyright (C) 2016 Gvozden Nešković. All rights reserved.
*/
#if defined(__x86_64) && defined(HAVE_AVX512F)
#include <sys/byteorder.h>
#include <sys/frame.h>
#include <sys/spa_checksum.h>
Update build system and packaging Minimal changes required to integrate the SPL sources in to the ZFS repository build infrastructure and packaging. Build system and packaging: * Renamed SPL_* autoconf m4 macros to ZFS_*. * Removed redundant SPL_* autoconf m4 macros. * Updated the RPM spec files to remove SPL package dependency. * The zfs package obsoletes the spl package, and the zfs-kmod package obsoletes the spl-kmod package. * The zfs-kmod-devel* packages were updated to add compatibility symlinks under /usr/src/spl-x.y.z until all dependent packages can be updated. They will be removed in a future release. * Updated copy-builtin script for in-kernel builds. * Updated DKMS package to include the spl.ko. * Updated stale AUTHORS file to include all contributors. * Updated stale COPYRIGHT and included the SPL as an exception. * Renamed README.markdown to README.md * Renamed OPENSOLARIS.LICENSE to LICENSE. * Renamed DISCLAIMER to NOTICE. Required code changes: * Removed redundant HAVE_SPL macro. * Removed _BOOT from nvpairs since it doesn't apply for Linux. * Initial header cleanup (removal of empty headers, refactoring). * Remove SPL repository clone/build from zimport.sh. * Use of DEFINE_RATELIMIT_STATE and DEFINE_SPINLOCK removed due to build issues when forcing C99 compilation. * Replaced legacy ACCESS_ONCE with READ_ONCE. * Include needed headers for `current` and `EXPORT_SYMBOL`. Reviewed-by: Tony Hutter <hutter2@llnl.gov> Reviewed-by: Olaf Faaland <faaland1@llnl.gov> Reviewed-by: Matthew Ahrens <mahrens@delphix.com> Reviewed-by: Pavel Zakharov <pavel.zakharov@delphix.com> Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov> TEST_ZIMPORT_SKIP="yes" Closes #7556
2018-02-16 04:53:18 +03:00
#include <sys/strings.h>
#include <sys/simd.h>
#include <zfs_fletcher.h>
#define __asm __asm__ __volatile__
static void
fletcher_4_avx512f_init(fletcher_4_ctx_t *ctx)
{
bzero(ctx->avx512, 4 * sizeof (zfs_fletcher_avx512_t));
}
static void
fletcher_4_avx512f_fini(fletcher_4_ctx_t *ctx, zio_cksum_t *zcp)
{
static const uint64_t
CcA[] = { 0, 0, 1, 3, 6, 10, 15, 21 },
CcB[] = { 28, 36, 44, 52, 60, 68, 76, 84 },
DcA[] = { 0, 0, 0, 1, 4, 10, 20, 35 },
DcB[] = { 56, 84, 120, 164, 216, 276, 344, 420 },
DcC[] = { 448, 512, 576, 640, 704, 768, 832, 896 };
uint64_t A, B, C, D;
uint64_t i;
A = ctx->avx512[0].v[0];
B = 8 * ctx->avx512[1].v[0];
C = 64 * ctx->avx512[2].v[0] - CcB[0] * ctx->avx512[1].v[0];
D = 512 * ctx->avx512[3].v[0] - DcC[0] * ctx->avx512[2].v[0] +
DcB[0] * ctx->avx512[1].v[0];
for (i = 1; i < 8; i++) {
A += ctx->avx512[0].v[i];
B += 8 * ctx->avx512[1].v[i] - i * ctx->avx512[0].v[i];
C += 64 * ctx->avx512[2].v[i] - CcB[i] * ctx->avx512[1].v[i] +
CcA[i] * ctx->avx512[0].v[i];
D += 512 * ctx->avx512[3].v[i] - DcC[i] * ctx->avx512[2].v[i] +
DcB[i] * ctx->avx512[1].v[i] - DcA[i] * ctx->avx512[0].v[i];
}
ZIO_SET_CHECKSUM(zcp, A, B, C, D);
}
#define FLETCHER_4_AVX512_RESTORE_CTX(ctx) \
{ \
__asm("vmovdqu64 %0, %%zmm0" :: "m" ((ctx)->avx512[0])); \
__asm("vmovdqu64 %0, %%zmm1" :: "m" ((ctx)->avx512[1])); \
__asm("vmovdqu64 %0, %%zmm2" :: "m" ((ctx)->avx512[2])); \
__asm("vmovdqu64 %0, %%zmm3" :: "m" ((ctx)->avx512[3])); \
}
#define FLETCHER_4_AVX512_SAVE_CTX(ctx) \
{ \
__asm("vmovdqu64 %%zmm0, %0" : "=m" ((ctx)->avx512[0])); \
__asm("vmovdqu64 %%zmm1, %0" : "=m" ((ctx)->avx512[1])); \
__asm("vmovdqu64 %%zmm2, %0" : "=m" ((ctx)->avx512[2])); \
__asm("vmovdqu64 %%zmm3, %0" : "=m" ((ctx)->avx512[3])); \
}
static void
fletcher_4_avx512f_native(fletcher_4_ctx_t *ctx, const void *buf, uint64_t size)
{
const uint32_t *ip = buf;
const uint32_t *ipend = (uint32_t *)((uint8_t *)ip + size);
kfpu_begin();
FLETCHER_4_AVX512_RESTORE_CTX(ctx);
for (; ip < ipend; ip += 8) {
__asm("vpmovzxdq %0, %%zmm4"::"m" (*ip));
__asm("vpaddq %zmm4, %zmm0, %zmm0");
__asm("vpaddq %zmm0, %zmm1, %zmm1");
__asm("vpaddq %zmm1, %zmm2, %zmm2");
__asm("vpaddq %zmm2, %zmm3, %zmm3");
}
FLETCHER_4_AVX512_SAVE_CTX(ctx);
kfpu_end();
}
STACK_FRAME_NON_STANDARD(fletcher_4_avx512f_native);
static void
fletcher_4_avx512f_byteswap(fletcher_4_ctx_t *ctx, const void *buf,
uint64_t size)
{
static const uint64_t byteswap_mask = 0xFFULL;
const uint32_t *ip = buf;
const uint32_t *ipend = (uint32_t *)((uint8_t *)ip + size);
kfpu_begin();
FLETCHER_4_AVX512_RESTORE_CTX(ctx);
__asm("vpbroadcastq %0, %%zmm8" :: "r" (byteswap_mask));
__asm("vpsllq $8, %zmm8, %zmm9");
__asm("vpsllq $16, %zmm8, %zmm10");
__asm("vpsllq $24, %zmm8, %zmm11");
for (; ip < ipend; ip += 8) {
__asm("vpmovzxdq %0, %%zmm5"::"m" (*ip));
__asm("vpsrlq $24, %zmm5, %zmm6");
__asm("vpandd %zmm8, %zmm6, %zmm6");
__asm("vpsrlq $8, %zmm5, %zmm7");
__asm("vpandd %zmm9, %zmm7, %zmm7");
__asm("vpord %zmm6, %zmm7, %zmm4");
__asm("vpsllq $8, %zmm5, %zmm6");
__asm("vpandd %zmm10, %zmm6, %zmm6");
__asm("vpord %zmm6, %zmm4, %zmm4");
__asm("vpsllq $24, %zmm5, %zmm5");
__asm("vpandd %zmm11, %zmm5, %zmm5");
__asm("vpord %zmm5, %zmm4, %zmm4");
__asm("vpaddq %zmm4, %zmm0, %zmm0");
__asm("vpaddq %zmm0, %zmm1, %zmm1");
__asm("vpaddq %zmm1, %zmm2, %zmm2");
__asm("vpaddq %zmm2, %zmm3, %zmm3");
}
FLETCHER_4_AVX512_SAVE_CTX(ctx)
kfpu_end();
}
STACK_FRAME_NON_STANDARD(fletcher_4_avx512f_byteswap);
static boolean_t
fletcher_4_avx512f_valid(void)
{
Linux 5.0 compat: SIMD compatibility Restore the SIMD optimization for 4.19.38 LTS, 4.14.120 LTS, and 5.0 and newer kernels. This is accomplished by leveraging the fact that by definition dedicated kernel threads never need to concern themselves with saving and restoring the user FPU state. Therefore, they may use the FPU as long as we can guarantee user tasks always restore their FPU state before context switching back to user space. For the 5.0 and 5.1 kernels disabling preemption and local interrupts is sufficient to allow the FPU to be used. All non-kernel threads will restore the preserved user FPU state. For 5.2 and latter kernels the user FPU state restoration will be skipped if the kernel determines the registers have not changed. Therefore, for these kernels we need to perform the additional step of saving and restoring the FPU registers. Invalidating the per-cpu global tracking the FPU state would force a restore but that functionality is private to the core x86 FPU implementation and unavailable. In practice, restricting SIMD to kernel threads is not a major restriction for ZFS. The vast majority of SIMD operations are already performed by the IO pipeline. The remaining cases are relatively infrequent and can be handled by the generic code without significant impact. The two most noteworthy cases are: 1) Decrypting the wrapping key for an encrypted dataset, i.e. `zfs load-key`. All other encryption and decryption operations will use the SIMD optimized implementations. 2) Generating the payload checksums for a `zfs send` stream. In order to avoid making any changes to the higher layers of ZFS all of the `*_get_ops()` functions were updated to take in to consideration the calling context. This allows for the fastest implementation to be used as appropriate (see kfpu_allowed()). The only other notable instance of SIMD operations being used outside a kernel thread was at module load time. This code was moved in to a taskq in order to accommodate the new kernel thread restriction. Finally, a few other modifications were made in order to further harden this code and facilitate testing. They include updating each implementations operations structure to be declared as a constant. And allowing "cycle" to be set when selecting the preferred ops in the kernel as well as user space. Reviewed-by: Tony Hutter <hutter2@llnl.gov> Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov> Closes #8754 Closes #8793 Closes #8965
2019-07-12 19:31:20 +03:00
return (kfpu_allowed() && zfs_avx512f_available());
}
const fletcher_4_ops_t fletcher_4_avx512f_ops = {
Rework of fletcher_4 module - Benchmark memory block is increased to 128kiB to reflect real block sizes more accurately. Measurements include all three stages needed for checksum generation, i.e. `init()/compute()/fini()`. The inner loop is repeated multiple times to offset overhead of time function. - Fastest implementation selects native and byteswap methods independently in benchmark. To support this new function pointers `init_byteswap()/fini_byteswap()` are introduced. - Implementation mutex lock is replaced by atomic variable. - To save time, benchmark is not executed in userspace. Instead, highest supported implementation is used for fastest. Default userspace selector is still 'cycle'. - `fletcher_4_native/byteswap()` methods use incremental methods to finish calculation if data size is not multiple of vector stride (currently 64B). - Added `fletcher_4_native_varsize()` special purpose method for use when buffer size is not known in advance. The method does not enforce 4B alignment on buffer size, and will ignore last (size % 4) bytes of the data buffer. - Benchmark `kstat` is changed to match the one of vdev_raidz. It now shows throughput for all supported implementations (in B/s), native and byteswap, as well as the code [fastest] is running. Example of `fletcher_4_bench` running on `Intel(R) Xeon(R) CPU E5-2660 v3 @ 2.60GHz`: implementation native byteswap scalar 4768120823 3426105750 sse2 7947841777 4318964249 ssse3 7951922722 6112191941 avx2 13269714358 11043200912 fastest avx2 avx2 Example of `fletcher_4_bench` running on `Intel(R) Xeon Phi(TM) CPU 7210 @ 1.30GHz`: implementation native byteswap scalar 1291115967 1031555336 sse2 2539571138 1280970926 ssse3 2537778746 1080016762 avx2 4950749767 1078493449 avx512f 9581379998 4010029046 fastest avx512f avx512f Signed-off-by: Gvozden Neskovic <neskovic@gmail.com> Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov> Closes #4952
2016-07-12 18:50:54 +03:00
.init_native = fletcher_4_avx512f_init,
.fini_native = fletcher_4_avx512f_fini,
.compute_native = fletcher_4_avx512f_native,
.init_byteswap = fletcher_4_avx512f_init,
.fini_byteswap = fletcher_4_avx512f_fini,
.compute_byteswap = fletcher_4_avx512f_byteswap,
.valid = fletcher_4_avx512f_valid,
.name = "avx512f"
};
#endif /* defined(__x86_64) && defined(HAVE_AVX512F) */