mirror_zfs/scripts/dkms.mkconf

124 lines
3.0 KiB
Plaintext
Raw Normal View History

#!/bin/sh
PROG=$0
pkgcfg=/etc/sysconfig/zfs
while getopts "n:v:c:f:" opt; do
case $opt in
n) pkgname=$OPTARG ;;
v) pkgver=$OPTARG ;;
c) pkgcfg=$OPTARG ;;
f) filename=$OPTARG ;;
*) err=1 ;;
esac
done
if [ -z "${pkgname}" ] || [ -z "${pkgver}" ] || [ -z "${filename}" ] ||
[ -n "${err}" ]; then
echo "Usage: $PROG -n <pkgname> -v <pkgver> -c <pkgcfg> -f <filename>"
exit 1
fi
exec cat >"${filename}" <<EOF
PACKAGE_NAME="${pkgname}"
PACKAGE_VERSION="${pkgver}"
PACKAGE_CONFIG="${pkgcfg}"
NO_WEAK_MODULES="yes"
PRE_BUILD="configure
--prefix=/usr
--with-config=kernel
--with-linux=\$(
case \`lsb_release -is\` in
(Debian|Devuan)
if [[ -e \${kernel_source_dir/%build/source} ]]
then
echo \${kernel_source_dir/%build/source}
else
# A kpkg exception for Proxmox 2.0
echo \${kernel_source_dir}
fi
;;
(*)
echo \${kernel_source_dir}
;;
esac
)
--with-linux-obj=\${kernel_source_dir}
\$(
[[ -n \"\${ICP_ROOT}\" ]] && \\
{
echo --with-qat=\"\${ICP_ROOT}\"
}
)
\$(
[[ -r \${PACKAGE_CONFIG} ]] \\
&& source \${PACKAGE_CONFIG} \\
&& shopt -q -s extglob \\
&& \\
{
if [[ \${ZFS_DKMS_ENABLE_DEBUG,,} == @(y|yes) ]]
then
echo --enable-debug
fi
if [[ \${ZFS_DKMS_ENABLE_DEBUGINFO,,} == @(y|yes) ]]
then
echo --enable-debuginfo
fi
}
)
"
POST_BUILD="scripts/dkms.postbuild
-n \${PACKAGE_NAME}
-v \${PACKAGE_VERSION}
-a \${arch}
-k \${kernelver}
-t \${dkms_tree}
"
AUTOINSTALL="yes"
REMAKE_INITRD="no"
MAKE[0]="make"
STRIP[0]="\$(
[[ -r \${PACKAGE_CONFIG} ]] \\
&& source \${PACKAGE_CONFIG} \\
&& shopt -q -s extglob \\
&& [[ \${ZFS_DKMS_DISABLE_STRIP,,} == @(y|yes) ]] \\
&& echo -n no
)"
STRIP[1]="\${STRIP[0]}"
STRIP[2]="\${STRIP[0]}"
STRIP[3]="\${STRIP[0]}"
STRIP[4]="\${STRIP[0]}"
STRIP[5]="\${STRIP[0]}"
STRIP[6]="\${STRIP[0]}"
Update build system and packaging Minimal changes required to integrate the SPL sources in to the ZFS repository build infrastructure and packaging. Build system and packaging: * Renamed SPL_* autoconf m4 macros to ZFS_*. * Removed redundant SPL_* autoconf m4 macros. * Updated the RPM spec files to remove SPL package dependency. * The zfs package obsoletes the spl package, and the zfs-kmod package obsoletes the spl-kmod package. * The zfs-kmod-devel* packages were updated to add compatibility symlinks under /usr/src/spl-x.y.z until all dependent packages can be updated. They will be removed in a future release. * Updated copy-builtin script for in-kernel builds. * Updated DKMS package to include the spl.ko. * Updated stale AUTHORS file to include all contributors. * Updated stale COPYRIGHT and included the SPL as an exception. * Renamed README.markdown to README.md * Renamed OPENSOLARIS.LICENSE to LICENSE. * Renamed DISCLAIMER to NOTICE. Required code changes: * Removed redundant HAVE_SPL macro. * Removed _BOOT from nvpairs since it doesn't apply for Linux. * Initial header cleanup (removal of empty headers, refactoring). * Remove SPL repository clone/build from zimport.sh. * Use of DEFINE_RATELIMIT_STATE and DEFINE_SPINLOCK removed due to build issues when forcing C99 compilation. * Replaced legacy ACCESS_ONCE with READ_ONCE. * Include needed headers for `current` and `EXPORT_SYMBOL`. Reviewed-by: Tony Hutter <hutter2@llnl.gov> Reviewed-by: Olaf Faaland <faaland1@llnl.gov> Reviewed-by: Matthew Ahrens <mahrens@delphix.com> Reviewed-by: Pavel Zakharov <pavel.zakharov@delphix.com> Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov> TEST_ZIMPORT_SKIP="yes" Closes #7556
2018-02-16 04:53:18 +03:00
STRIP[7]="\${STRIP[0]}"
Add zstd support to zfs This PR adds two new compression types, based on ZStandard: - zstd: A basic ZStandard compression algorithm Available compression. Levels for zstd are zstd-1 through zstd-19, where the compression increases with every level, but speed decreases. - zstd-fast: A faster version of the ZStandard compression algorithm zstd-fast is basically a "negative" level of zstd. The compression decreases with every level, but speed increases. Available compression levels for zstd-fast: - zstd-fast-1 through zstd-fast-10 - zstd-fast-20 through zstd-fast-100 (in increments of 10) - zstd-fast-500 and zstd-fast-1000 For more information check the man page. Implementation details: Rather than treat each level of zstd as a different algorithm (as was done historically with gzip), the block pointer `enum zio_compress` value is simply zstd for all levels, including zstd-fast, since they all use the same decompression function. The compress= property (a 64bit unsigned integer) uses the lower 7 bits to store the compression algorithm (matching the number of bits used in a block pointer, as the 8th bit was borrowed for embedded block pointers). The upper bits are used to store the compression level. It is necessary to be able to determine what compression level was used when later reading a block back, so the concept used in LZ4, where the first 32bits of the on-disk value are the size of the compressed data (since the allocation is rounded up to the nearest ashift), was extended, and we store the version of ZSTD and the level as well as the compressed size. This value is returned when decompressing a block, so that if the block needs to be recompressed (L2ARC, nop-write, etc), that the same parameters will be used to result in the matching checksum. All of the internal ZFS code ( `arc_buf_hdr_t`, `objset_t`, `zio_prop_t`, etc.) uses the separated _compress and _complevel variables. Only the properties ZAP contains the combined/bit-shifted value. The combined value is split when the compression_changed_cb() callback is called, and sets both objset members (os_compress and os_complevel). The userspace tools all use the combined/bit-shifted value. Additional notes: zdb can now also decode the ZSTD compression header (flag -Z) and inspect the size, version and compression level saved in that header. For each record, if it is ZSTD compressed, the parameters of the decoded compression header get printed. ZSTD is included with all current tests and new tests are added as-needed. Per-dataset feature flags now get activated when the property is set. If a compression algorithm requires a feature flag, zfs activates the feature when the property is set, rather than waiting for the first block to be born. This is currently only used by zstd but can be extended as needed. Portions-Sponsored-By: The FreeBSD Foundation Co-authored-by: Allan Jude <allanjude@freebsd.org> Co-authored-by: Brian Behlendorf <behlendorf1@llnl.gov> Co-authored-by: Sebastian Gottschall <s.gottschall@dd-wrt.com> Co-authored-by: Kjeld Schouten-Lebbing <kjeld@schouten-lebbing.nl> Co-authored-by: Michael Niewöhner <foss@mniewoehner.de> Signed-off-by: Allan Jude <allan@klarasystems.com> Signed-off-by: Allan Jude <allanjude@freebsd.org> Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov> Signed-off-by: Sebastian Gottschall <s.gottschall@dd-wrt.com> Signed-off-by: Kjeld Schouten-Lebbing <kjeld@schouten-lebbing.nl> Signed-off-by: Michael Niewöhner <foss@mniewoehner.de> Closes #6247 Closes #9024 Closes #10277 Closes #10278
2020-08-18 20:10:17 +03:00
STRIP[8]="\${STRIP[0]}"
BUILT_MODULE_NAME[0]="zavl"
BUILT_MODULE_LOCATION[0]="module/avl/"
DEST_MODULE_LOCATION[0]="/extra/avl/avl"
BUILT_MODULE_NAME[1]="znvpair"
BUILT_MODULE_LOCATION[1]="module/nvpair/"
DEST_MODULE_LOCATION[1]="/extra/nvpair/znvpair"
BUILT_MODULE_NAME[2]="zunicode"
BUILT_MODULE_LOCATION[2]="module/unicode/"
DEST_MODULE_LOCATION[2]="/extra/unicode/zunicode"
BUILT_MODULE_NAME[3]="zcommon"
BUILT_MODULE_LOCATION[3]="module/zcommon/"
DEST_MODULE_LOCATION[3]="/extra/zcommon/zcommon"
BUILT_MODULE_NAME[4]="zfs"
BUILT_MODULE_LOCATION[4]="module/zfs/"
DEST_MODULE_LOCATION[4]="/extra/zfs/zfs"
BUILT_MODULE_NAME[5]="icp"
BUILT_MODULE_LOCATION[5]="module/icp/"
DEST_MODULE_LOCATION[5]="/extra/icp/icp"
BUILT_MODULE_NAME[6]="zlua"
BUILT_MODULE_LOCATION[6]="module/lua/"
DEST_MODULE_LOCATION[6]="/extra/lua/zlua"
Update build system and packaging Minimal changes required to integrate the SPL sources in to the ZFS repository build infrastructure and packaging. Build system and packaging: * Renamed SPL_* autoconf m4 macros to ZFS_*. * Removed redundant SPL_* autoconf m4 macros. * Updated the RPM spec files to remove SPL package dependency. * The zfs package obsoletes the spl package, and the zfs-kmod package obsoletes the spl-kmod package. * The zfs-kmod-devel* packages were updated to add compatibility symlinks under /usr/src/spl-x.y.z until all dependent packages can be updated. They will be removed in a future release. * Updated copy-builtin script for in-kernel builds. * Updated DKMS package to include the spl.ko. * Updated stale AUTHORS file to include all contributors. * Updated stale COPYRIGHT and included the SPL as an exception. * Renamed README.markdown to README.md * Renamed OPENSOLARIS.LICENSE to LICENSE. * Renamed DISCLAIMER to NOTICE. Required code changes: * Removed redundant HAVE_SPL macro. * Removed _BOOT from nvpairs since it doesn't apply for Linux. * Initial header cleanup (removal of empty headers, refactoring). * Remove SPL repository clone/build from zimport.sh. * Use of DEFINE_RATELIMIT_STATE and DEFINE_SPINLOCK removed due to build issues when forcing C99 compilation. * Replaced legacy ACCESS_ONCE with READ_ONCE. * Include needed headers for `current` and `EXPORT_SYMBOL`. Reviewed-by: Tony Hutter <hutter2@llnl.gov> Reviewed-by: Olaf Faaland <faaland1@llnl.gov> Reviewed-by: Matthew Ahrens <mahrens@delphix.com> Reviewed-by: Pavel Zakharov <pavel.zakharov@delphix.com> Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov> TEST_ZIMPORT_SKIP="yes" Closes #7556
2018-02-16 04:53:18 +03:00
BUILT_MODULE_NAME[7]="spl"
BUILT_MODULE_LOCATION[7]="module/spl/"
DEST_MODULE_LOCATION[7]="/extra/spl/spl"
Add zstd support to zfs This PR adds two new compression types, based on ZStandard: - zstd: A basic ZStandard compression algorithm Available compression. Levels for zstd are zstd-1 through zstd-19, where the compression increases with every level, but speed decreases. - zstd-fast: A faster version of the ZStandard compression algorithm zstd-fast is basically a "negative" level of zstd. The compression decreases with every level, but speed increases. Available compression levels for zstd-fast: - zstd-fast-1 through zstd-fast-10 - zstd-fast-20 through zstd-fast-100 (in increments of 10) - zstd-fast-500 and zstd-fast-1000 For more information check the man page. Implementation details: Rather than treat each level of zstd as a different algorithm (as was done historically with gzip), the block pointer `enum zio_compress` value is simply zstd for all levels, including zstd-fast, since they all use the same decompression function. The compress= property (a 64bit unsigned integer) uses the lower 7 bits to store the compression algorithm (matching the number of bits used in a block pointer, as the 8th bit was borrowed for embedded block pointers). The upper bits are used to store the compression level. It is necessary to be able to determine what compression level was used when later reading a block back, so the concept used in LZ4, where the first 32bits of the on-disk value are the size of the compressed data (since the allocation is rounded up to the nearest ashift), was extended, and we store the version of ZSTD and the level as well as the compressed size. This value is returned when decompressing a block, so that if the block needs to be recompressed (L2ARC, nop-write, etc), that the same parameters will be used to result in the matching checksum. All of the internal ZFS code ( `arc_buf_hdr_t`, `objset_t`, `zio_prop_t`, etc.) uses the separated _compress and _complevel variables. Only the properties ZAP contains the combined/bit-shifted value. The combined value is split when the compression_changed_cb() callback is called, and sets both objset members (os_compress and os_complevel). The userspace tools all use the combined/bit-shifted value. Additional notes: zdb can now also decode the ZSTD compression header (flag -Z) and inspect the size, version and compression level saved in that header. For each record, if it is ZSTD compressed, the parameters of the decoded compression header get printed. ZSTD is included with all current tests and new tests are added as-needed. Per-dataset feature flags now get activated when the property is set. If a compression algorithm requires a feature flag, zfs activates the feature when the property is set, rather than waiting for the first block to be born. This is currently only used by zstd but can be extended as needed. Portions-Sponsored-By: The FreeBSD Foundation Co-authored-by: Allan Jude <allanjude@freebsd.org> Co-authored-by: Brian Behlendorf <behlendorf1@llnl.gov> Co-authored-by: Sebastian Gottschall <s.gottschall@dd-wrt.com> Co-authored-by: Kjeld Schouten-Lebbing <kjeld@schouten-lebbing.nl> Co-authored-by: Michael Niewöhner <foss@mniewoehner.de> Signed-off-by: Allan Jude <allan@klarasystems.com> Signed-off-by: Allan Jude <allanjude@freebsd.org> Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov> Signed-off-by: Sebastian Gottschall <s.gottschall@dd-wrt.com> Signed-off-by: Kjeld Schouten-Lebbing <kjeld@schouten-lebbing.nl> Signed-off-by: Michael Niewöhner <foss@mniewoehner.de> Closes #6247 Closes #9024 Closes #10277 Closes #10278
2020-08-18 20:10:17 +03:00
BUILT_MODULE_NAME[8]="zzstd"
BUILT_MODULE_LOCATION[8]="module/zstd/"
DEST_MODULE_LOCATION[8]="/extra/zstd/zzstd"
EOF