1
0
mirror of https://git.proxmox.com/git/mirror_zfs.git synced 2025-01-25 01:16:34 +03:00
mirror_zfs/module/os/linux/zfs/arc_os.c

474 lines
12 KiB
C
Raw Normal View History

/*
* CDDL HEADER START
*
* The contents of this file are subject to the terms of the
* Common Development and Distribution License (the "License").
* You may not use this file except in compliance with the License.
*
* You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
* or http://www.opensolaris.org/os/licensing.
* See the License for the specific language governing permissions
* and limitations under the License.
*
* When distributing Covered Code, include this CDDL HEADER in each
* file and include the License file at usr/src/OPENSOLARIS.LICENSE.
* If applicable, add the following below this CDDL HEADER, with the
* fields enclosed by brackets "[]" replaced with your own identifying
* information: Portions Copyright [yyyy] [name of copyright owner]
*
* CDDL HEADER END
*/
/*
* Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
* Copyright (c) 2018, Joyent, Inc.
* Copyright (c) 2011, 2019 by Delphix. All rights reserved.
* Copyright (c) 2014 by Saso Kiselkov. All rights reserved.
* Copyright 2017 Nexenta Systems, Inc. All rights reserved.
*/
#include <sys/spa.h>
#include <sys/zio.h>
#include <sys/spa_impl.h>
#include <sys/zio_compress.h>
#include <sys/zio_checksum.h>
#include <sys/zfs_context.h>
#include <sys/arc.h>
#include <sys/refcount.h>
#include <sys/vdev.h>
#include <sys/vdev_trim.h>
#include <sys/vdev_impl.h>
#include <sys/dsl_pool.h>
#include <sys/zio_checksum.h>
#include <sys/multilist.h>
#include <sys/abd.h>
#include <sys/zil.h>
#include <sys/fm/fs/zfs.h>
#ifdef _KERNEL
#include <sys/shrinker.h>
#include <sys/vmsystm.h>
#include <sys/zpl.h>
#include <linux/page_compat.h>
#endif
#include <sys/callb.h>
#include <sys/kstat.h>
#include <sys/zthr.h>
#include <zfs_fletcher.h>
#include <sys/arc_impl.h>
#include <sys/trace_zfs.h>
#include <sys/aggsum.h>
int64_t last_free_memory;
free_memory_reason_t last_free_reason;
#ifdef _KERNEL
/*
* Return maximum amount of memory that we could possibly use. Reduced
* to half of all memory in user space which is primarily used for testing.
*/
uint64_t
arc_all_memory(void)
{
#ifdef CONFIG_HIGHMEM
return (ptob(zfs_totalram_pages - zfs_totalhigh_pages));
#else
return (ptob(zfs_totalram_pages));
#endif /* CONFIG_HIGHMEM */
}
/*
* Return the amount of memory that is considered free. In user space
* which is primarily used for testing we pretend that free memory ranges
* from 0-20% of all memory.
*/
uint64_t
arc_free_memory(void)
{
#ifdef CONFIG_HIGHMEM
struct sysinfo si;
si_meminfo(&si);
return (ptob(si.freeram - si.freehigh));
#else
return (ptob(nr_free_pages() +
nr_inactive_file_pages() +
nr_inactive_anon_pages() +
nr_slab_reclaimable_pages()));
#endif /* CONFIG_HIGHMEM */
}
/*
* Additional reserve of pages for pp_reserve.
*/
int64_t arc_pages_pp_reserve = 64;
/*
* Additional reserve of pages for swapfs.
*/
int64_t arc_swapfs_reserve = 64;
/*
* Return the amount of memory that can be consumed before reclaim will be
* needed. Positive if there is sufficient free memory, negative indicates
* the amount of memory that needs to be freed up.
*/
int64_t
arc_available_memory(void)
{
int64_t lowest = INT64_MAX;
free_memory_reason_t r = FMR_UNKNOWN;
int64_t n;
#ifdef freemem
#undef freemem
#endif
pgcnt_t needfree = btop(arc_need_free);
pgcnt_t lotsfree = btop(arc_sys_free);
pgcnt_t desfree = 0;
pgcnt_t freemem = btop(arc_free_memory());
if (needfree > 0) {
n = PAGESIZE * (-needfree);
if (n < lowest) {
lowest = n;
r = FMR_NEEDFREE;
}
}
/*
* check that we're out of range of the pageout scanner. It starts to
* schedule paging if freemem is less than lotsfree and needfree.
* lotsfree is the high-water mark for pageout, and needfree is the
* number of needed free pages. We add extra pages here to make sure
* the scanner doesn't start up while we're freeing memory.
*/
n = PAGESIZE * (freemem - lotsfree - needfree - desfree);
if (n < lowest) {
lowest = n;
r = FMR_LOTSFREE;
}
#if defined(_ILP32)
/*
* If we're on a 32-bit platform, it's possible that we'll exhaust the
* kernel heap space before we ever run out of available physical
* memory. Most checks of the size of the heap_area compare against
* tune.t_minarmem, which is the minimum available real memory that we
* can have in the system. However, this is generally fixed at 25 pages
* which is so low that it's useless. In this comparison, we seek to
* calculate the total heap-size, and reclaim if more than 3/4ths of the
* heap is allocated. (Or, in the calculation, if less than 1/4th is
* free)
*/
n = vmem_size(heap_arena, VMEM_FREE) -
(vmem_size(heap_arena, VMEM_FREE | VMEM_ALLOC) >> 2);
if (n < lowest) {
lowest = n;
r = FMR_HEAP_ARENA;
}
#endif
/*
* If zio data pages are being allocated out of a separate heap segment,
* then enforce that the size of available vmem for this arena remains
* above about 1/4th (1/(2^arc_zio_arena_free_shift)) free.
*
* Note that reducing the arc_zio_arena_free_shift keeps more virtual
* memory (in the zio_arena) free, which can avoid memory
* fragmentation issues.
*/
if (zio_arena != NULL) {
n = (int64_t)vmem_size(zio_arena, VMEM_FREE) -
(vmem_size(zio_arena, VMEM_ALLOC) >>
arc_zio_arena_free_shift);
if (n < lowest) {
lowest = n;
r = FMR_ZIO_ARENA;
}
}
last_free_memory = lowest;
last_free_reason = r;
return (lowest);
}
static uint64_t
arc_evictable_memory(void)
{
int64_t asize = aggsum_value(&arc_size);
uint64_t arc_clean =
zfs_refcount_count(&arc_mru->arcs_esize[ARC_BUFC_DATA]) +
zfs_refcount_count(&arc_mru->arcs_esize[ARC_BUFC_METADATA]) +
zfs_refcount_count(&arc_mfu->arcs_esize[ARC_BUFC_DATA]) +
zfs_refcount_count(&arc_mfu->arcs_esize[ARC_BUFC_METADATA]);
uint64_t arc_dirty = MAX((int64_t)asize - (int64_t)arc_clean, 0);
/*
* Scale reported evictable memory in proportion to page cache, cap
* at specified min/max.
*/
uint64_t min = (ptob(nr_file_pages()) / 100) * zfs_arc_pc_percent;
min = MAX(arc_c_min, MIN(arc_c_max, min));
if (arc_dirty >= min)
return (arc_clean);
return (MAX((int64_t)asize - (int64_t)min, 0));
}
/*
* If sc->nr_to_scan is zero, the caller is requesting a query of the
* number of objects which can potentially be freed. If it is nonzero,
* the request is to free that many objects.
*
* Linux kernels >= 3.12 have the count_objects and scan_objects callbacks
* in struct shrinker and also require the shrinker to return the number
* of objects freed.
*
* Older kernels require the shrinker to return the number of freeable
* objects following the freeing of nr_to_free.
*/
static spl_shrinker_t
__arc_shrinker_func(struct shrinker *shrink, struct shrink_control *sc)
{
int64_t pages;
/* The arc is considered warm once reclaim has occurred */
if (unlikely(arc_warm == B_FALSE))
arc_warm = B_TRUE;
/* Return the potential number of reclaimable pages */
pages = btop((int64_t)arc_evictable_memory());
if (sc->nr_to_scan == 0)
return (pages);
/* Not allowed to perform filesystem reclaim */
if (!(sc->gfp_mask & __GFP_FS))
return (SHRINK_STOP);
/* Reclaim in progress */
if (mutex_tryenter(&arc_adjust_lock) == 0) {
ARCSTAT_INCR(arcstat_need_free, ptob(sc->nr_to_scan));
return (0);
}
mutex_exit(&arc_adjust_lock);
/*
* Evict the requested number of pages by shrinking arc_c the
* requested amount.
*/
if (pages > 0) {
arc_reduce_target_size(ptob(sc->nr_to_scan));
if (current_is_kswapd())
arc_kmem_reap_soon();
#ifdef HAVE_SPLIT_SHRINKER_CALLBACK
pages = MAX((int64_t)pages -
(int64_t)btop(arc_evictable_memory()), 0);
#else
pages = btop(arc_evictable_memory());
#endif
/*
* We've shrunk what we can, wake up threads.
*/
cv_broadcast(&arc_adjust_waiters_cv);
} else
pages = SHRINK_STOP;
/*
* When direct reclaim is observed it usually indicates a rapid
* increase in memory pressure. This occurs because the kswapd
* threads were unable to asynchronously keep enough free memory
* available. In this case set arc_no_grow to briefly pause arc
* growth to avoid compounding the memory pressure.
*/
if (current_is_kswapd()) {
ARCSTAT_BUMP(arcstat_memory_indirect_count);
} else {
arc_no_grow = B_TRUE;
arc_kmem_reap_soon();
ARCSTAT_BUMP(arcstat_memory_direct_count);
}
return (pages);
}
SPL_SHRINKER_CALLBACK_WRAPPER(arc_shrinker_func);
SPL_SHRINKER_DECLARE(arc_shrinker, arc_shrinker_func, DEFAULT_SEEKS);
int
arc_memory_throttle(spa_t *spa, uint64_t reserve, uint64_t txg)
{
uint64_t available_memory = arc_free_memory();
#if defined(_ILP32)
available_memory =
MIN(available_memory, vmem_size(heap_arena, VMEM_FREE));
#endif
if (available_memory > arc_all_memory() * arc_lotsfree_percent / 100)
return (0);
if (txg > spa->spa_lowmem_last_txg) {
spa->spa_lowmem_last_txg = txg;
spa->spa_lowmem_page_load = 0;
}
/*
* If we are in pageout, we know that memory is already tight,
* the arc is already going to be evicting, so we just want to
* continue to let page writes occur as quickly as possible.
*/
if (current_is_kswapd()) {
if (spa->spa_lowmem_page_load >
MAX(arc_sys_free / 4, available_memory) / 4) {
DMU_TX_STAT_BUMP(dmu_tx_memory_reclaim);
return (SET_ERROR(ERESTART));
}
/* Note: reserve is inflated, so we deflate */
atomic_add_64(&spa->spa_lowmem_page_load, reserve / 8);
return (0);
} else if (spa->spa_lowmem_page_load > 0 && arc_reclaim_needed()) {
/* memory is low, delay before restarting */
ARCSTAT_INCR(arcstat_memory_throttle_count, 1);
DMU_TX_STAT_BUMP(dmu_tx_memory_reclaim);
return (SET_ERROR(EAGAIN));
}
spa->spa_lowmem_page_load = 0;
return (0);
}
void
arc_lowmem_init(void)
{
uint64_t allmem = arc_all_memory();
/*
* Register a shrinker to support synchronous (direct) memory
* reclaim from the arc. This is done to prevent kswapd from
* swapping out pages when it is preferable to shrink the arc.
*/
spl_register_shrinker(&arc_shrinker);
/* Set to 1/64 of all memory or a minimum of 512K */
arc_sys_free = MAX(allmem / 64, (512 * 1024));
arc_need_free = 0;
}
void
arc_lowmem_fini(void)
{
spl_unregister_shrinker(&arc_shrinker);
}
int
param_set_arc_long(const char *buf, zfs_kernel_param_t *kp)
{
int error;
error = param_set_long(buf, kp);
if (error < 0)
return (SET_ERROR(error));
arc_tuning_update();
return (0);
}
int
param_set_arc_int(const char *buf, zfs_kernel_param_t *kp)
{
int error;
error = param_set_int(buf, kp);
if (error < 0)
return (SET_ERROR(error));
arc_tuning_update();
return (0);
}
#else /* _KERNEL */
int64_t
arc_available_memory(void)
{
int64_t lowest = INT64_MAX;
free_memory_reason_t r = FMR_UNKNOWN;
/* Every 100 calls, free a small amount */
if (spa_get_random(100) == 0)
lowest = -1024;
last_free_memory = lowest;
last_free_reason = r;
return (lowest);
}
int
arc_memory_throttle(spa_t *spa, uint64_t reserve, uint64_t txg)
{
return (0);
}
uint64_t
arc_all_memory(void)
{
return (ptob(physmem) / 2);
}
uint64_t
arc_free_memory(void)
{
return (spa_get_random(arc_all_memory() * 20 / 100));
}
#endif /* _KERNEL */
/*
* Helper function for arc_prune_async() it is responsible for safely
* handling the execution of a registered arc_prune_func_t.
*/
static void
arc_prune_task(void *ptr)
{
arc_prune_t *ap = (arc_prune_t *)ptr;
arc_prune_func_t *func = ap->p_pfunc;
if (func != NULL)
func(ap->p_adjust, ap->p_private);
zfs_refcount_remove(&ap->p_refcnt, func);
}
/*
* Notify registered consumers they must drop holds on a portion of the ARC
* buffered they reference. This provides a mechanism to ensure the ARC can
* honor the arc_meta_limit and reclaim otherwise pinned ARC buffers. This
* is analogous to dnlc_reduce_cache() but more generic.
*
* This operation is performed asynchronously so it may be safely called
* in the context of the arc_reclaim_thread(). A reference is taken here
* for each registered arc_prune_t and the arc_prune_task() is responsible
* for releasing it once the registered arc_prune_func_t has completed.
*/
void
arc_prune_async(int64_t adjust)
{
arc_prune_t *ap;
mutex_enter(&arc_prune_mtx);
for (ap = list_head(&arc_prune_list); ap != NULL;
ap = list_next(&arc_prune_list, ap)) {
if (zfs_refcount_count(&ap->p_refcnt) >= 2)
continue;
zfs_refcount_add(&ap->p_refcnt, ap->p_pfunc);
ap->p_adjust = adjust;
if (taskq_dispatch(arc_prune_taskq, arc_prune_task,
ap, TQ_SLEEP) == TASKQID_INVALID) {
zfs_refcount_remove(&ap->p_refcnt, ap->p_pfunc);
continue;
}
ARCSTAT_BUMP(arcstat_prune);
}
mutex_exit(&arc_prune_mtx);
}