mirror_zfs/module/os/linux/zfs/zpl_super.c

406 lines
9.8 KiB
C
Raw Normal View History

/*
* CDDL HEADER START
*
* The contents of this file are subject to the terms of the
* Common Development and Distribution License (the "License").
* You may not use this file except in compliance with the License.
*
* You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
* or https://opensource.org/licenses/CDDL-1.0.
* See the License for the specific language governing permissions
* and limitations under the License.
*
* When distributing Covered Code, include this CDDL HEADER in each
* file and include the License file at usr/src/OPENSOLARIS.LICENSE.
* If applicable, add the following below this CDDL HEADER, with the
* fields enclosed by brackets "[]" replaced with your own identifying
* information: Portions Copyright [yyyy] [name of copyright owner]
*
* CDDL HEADER END
*/
/*
* Copyright (c) 2011, Lawrence Livermore National Security, LLC.
* Copyright (c) 2023, Datto Inc. All rights reserved.
*/
#include <sys/zfs_znode.h>
#include <sys/zfs_vfsops.h>
#include <sys/zfs_vnops.h>
#include <sys/zfs_ctldir.h>
#include <sys/zpl.h>
static struct inode *
zpl_inode_alloc(struct super_block *sb)
{
struct inode *ip;
VERIFY3S(zfs_inode_alloc(sb, &ip), ==, 0);
inode_set_iversion(ip, 1);
return (ip);
}
static void
zpl_inode_destroy(struct inode *ip)
{
ASSERT(atomic_read(&ip->i_count) == 0);
zfs_inode_destroy(ip);
}
/*
* Called from __mark_inode_dirty() to reflect that something in the
* inode has changed. We use it to ensure the znode system attributes
* are always strictly update to date with respect to the inode.
*/
static void
zpl_dirty_inode(struct inode *ip, int flags)
{
fstrans_cookie_t cookie;
cookie = spl_fstrans_mark();
zfs_dirty_inode(ip, flags);
spl_fstrans_unmark(cookie);
}
/*
* When ->drop_inode() is called its return value indicates if the
* inode should be evicted from the inode cache. If the inode is
* unhashed and has no links the default policy is to evict it
* immediately.
*
* The ->evict_inode() callback must minimally truncate the inode pages,
* and call clear_inode(). For 2.6.35 and later kernels this will
* simply update the inode state, with the sync occurring before the
* truncate in evict(). For earlier kernels clear_inode() maps to
* end_writeback() which is responsible for completing all outstanding
* write back. In either case, once this is done it is safe to cleanup
* any remaining inode specific data via zfs_inactive().
* remaining filesystem specific data.
*/
static void
zpl_evict_inode(struct inode *ip)
{
fstrans_cookie_t cookie;
cookie = spl_fstrans_mark();
truncate_setsize(ip, 0);
clear_inode(ip);
zfs_inactive(ip);
spl_fstrans_unmark(cookie);
}
static void
zpl_put_super(struct super_block *sb)
{
fstrans_cookie_t cookie;
int error;
cookie = spl_fstrans_mark();
error = -zfs_umount(sb);
spl_fstrans_unmark(cookie);
ASSERT3S(error, <=, 0);
}
static int
zpl_sync_fs(struct super_block *sb, int wait)
{
fstrans_cookie_t cookie;
cred_t *cr = CRED();
int error;
crhold(cr);
cookie = spl_fstrans_mark();
error = -zfs_sync(sb, wait, cr);
spl_fstrans_unmark(cookie);
crfree(cr);
ASSERT3S(error, <=, 0);
return (error);
}
static int
zpl_statfs(struct dentry *dentry, struct kstatfs *statp)
{
fstrans_cookie_t cookie;
int error;
cookie = spl_fstrans_mark();
linux: add basic fallocate(mode=0/2) compatibility Implement semi-compatible functionality for mode=0 (preallocation) and mode=FALLOC_FL_KEEP_SIZE (preallocation beyond EOF) for ZPL. Since ZFS does COW and snapshots, preallocating blocks for a file cannot guarantee that writes to the file will not run out of space. Even if the first overwrite was guaranteed, it would not handle any later overwrite of blocks due to COW, so strict compliance is futile. Instead, make a best-effort check that at least enough free space is currently available in the pool (with a bit of margin), then create a sparse file of the requested size and continue on with life. This does not handle all cases (e.g. several fallocate() calls before writing into the files when the filesystem is nearly full), which would require a more complex mechanism to be implemented, probably based on a modified version of dmu_prealloc(), but is usable as-is. A new module option zfs_fallocate_reserve_percent is used to control the reserve margin for any single fallocate call. By default, this is 110% of the requested preallocation size, so an additional 10% of available space is reserved for overhead to allow the application a good chance of finishing the write when the fallocate() succeeds. If the heuristics of this basic fallocate implementation are not desirable, the old non-functional behavior of returning EOPNOTSUPP for calls can be restored by setting zfs_fallocate_reserve_percent=0. The parameter of zfs_statvfs() is changed to take an inode instead of a dentry, since no dentry is available in zfs_fallocate_common(). A few tests from @behlendorf cover basic fallocate functionality. Reviewed-by: Richard Laager <rlaager@wiktel.com> Reviewed-by: Arshad Hussain <arshad.super@gmail.com> Reviewed-by: Matthew Ahrens <mahrens@delphix.com> Co-authored-by: Brian Behlendorf <behlendorf1@llnl.gov> Signed-off-by: Andreas Dilger <adilger@dilger.ca> Issue #326 Closes #10408
2020-06-18 21:22:11 +03:00
error = -zfs_statvfs(dentry->d_inode, statp);
spl_fstrans_unmark(cookie);
ASSERT3S(error, <=, 0);
/*
* If required by a 32-bit system call, dynamically scale the
* block size up to 16MiB and decrease the block counts. This
* allows for a maximum size of 64EiB to be reported. The file
* counts must be artificially capped at 2^32-1.
*/
if (unlikely(zpl_is_32bit_api())) {
while (statp->f_blocks > UINT32_MAX &&
statp->f_bsize < SPA_MAXBLOCKSIZE) {
statp->f_frsize <<= 1;
statp->f_bsize <<= 1;
statp->f_blocks >>= 1;
statp->f_bfree >>= 1;
statp->f_bavail >>= 1;
}
uint64_t usedobjs = statp->f_files - statp->f_ffree;
statp->f_ffree = MIN(statp->f_ffree, UINT32_MAX - usedobjs);
statp->f_files = statp->f_ffree + usedobjs;
}
return (error);
}
static int
zpl_remount_fs(struct super_block *sb, int *flags, char *data)
{
zfs_mnt_t zm = { .mnt_osname = NULL, .mnt_data = data };
fstrans_cookie_t cookie;
int error;
cookie = spl_fstrans_mark();
error = -zfs_remount(sb, flags, &zm);
spl_fstrans_unmark(cookie);
ASSERT3S(error, <=, 0);
return (error);
}
static int
__zpl_show_devname(struct seq_file *seq, zfsvfs_t *zfsvfs)
{
int error;
if ((error = zpl_enter(zfsvfs, FTAG)) != 0)
return (error);
char *fsname = kmem_alloc(ZFS_MAX_DATASET_NAME_LEN, KM_SLEEP);
dmu_objset_name(zfsvfs->z_os, fsname);
for (int i = 0; fsname[i] != 0; i++) {
/*
* Spaces in the dataset name must be converted to their
* octal escape sequence for getmntent(3) to correctly
* parse then fsname portion of /proc/self/mounts.
*/
if (fsname[i] == ' ') {
seq_puts(seq, "\\040");
} else {
seq_putc(seq, fsname[i]);
}
}
kmem_free(fsname, ZFS_MAX_DATASET_NAME_LEN);
zpl_exit(zfsvfs, FTAG);
return (0);
}
static int
zpl_show_devname(struct seq_file *seq, struct dentry *root)
{
return (__zpl_show_devname(seq, root->d_sb->s_fs_info));
}
static int
__zpl_show_options(struct seq_file *seq, zfsvfs_t *zfsvfs)
{
seq_printf(seq, ",%s",
zfsvfs->z_flags & ZSB_XATTR ? "xattr" : "noxattr");
#ifdef CONFIG_FS_POSIX_ACL
switch (zfsvfs->z_acl_type) {
case ZFS_ACLTYPE_POSIX:
seq_puts(seq, ",posixacl");
break;
default:
seq_puts(seq, ",noacl");
break;
}
#endif /* CONFIG_FS_POSIX_ACL */
switch (zfsvfs->z_case) {
case ZFS_CASE_SENSITIVE:
seq_puts(seq, ",casesensitive");
break;
case ZFS_CASE_INSENSITIVE:
seq_puts(seq, ",caseinsensitive");
break;
default:
seq_puts(seq, ",casemixed");
break;
}
return (0);
}
static int
zpl_show_options(struct seq_file *seq, struct dentry *root)
{
return (__zpl_show_options(seq, root->d_sb->s_fs_info));
}
static int
zpl_fill_super(struct super_block *sb, void *data, int silent)
{
zfs_mnt_t *zm = (zfs_mnt_t *)data;
fstrans_cookie_t cookie;
int error;
cookie = spl_fstrans_mark();
error = -zfs_domount(sb, zm, silent);
spl_fstrans_unmark(cookie);
ASSERT3S(error, <=, 0);
return (error);
}
Allow mounting datasets more than once Currently mounting an already mounted zfs dataset results in an error, whereas it is typically allowed with other filesystems. This causes some bad interactions with mount namespaces. Take this sequence for example: - Create a dataset - Create a snapshot of the dataset - Create a clone of the snapshot - Create a new mount namespace - Rename the original dataset The rename results in unmounting and remounting the clone in the original mount namespace, however the remount fails because the dataset is still mounted in the new mount namespace. (Note that this means the mount in the new mount namespace is never being unmounted, so perhaps the unmount/remount of the clone isn't actually necessary.) The problem here is a result of the way mounting is implemented in the kernel module. Since it is not mounting block devices it uses mount_nodev() instead of the usual mount_bdev(). However, mount_nodev() is written for filesystems for which each mount is a new instance (i.e. a new super block), and zfs should be able to detect when a mount request can be satisfied using an existing super block. Change zpl_mount() to call sget() directly with it's own test callback. Passing the objset_t object as the fs data allows checking if a superblock already exists for the dataset, and in that case we just need to return a new reference for the sb's root dentry. Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov> Reviewed-by: Tom Caputi <tcaputi@datto.com> Signed-off-by: Alek Pinchuk <apinchuk@datto.com> Signed-off-by: Seth Forshee <seth.forshee@canonical.com> Closes #5796 Closes #7207
2018-04-12 22:24:38 +03:00
static int
zpl_test_super(struct super_block *s, void *data)
{
zfsvfs_t *zfsvfs = s->s_fs_info;
objset_t *os = data;
/*
* If the os doesn't match the z_os in the super_block, assume it is
* not a match. Matching would imply a multimount of a dataset. It is
* possible that during a multimount, there is a simultaneous operation
* that changes the z_os, e.g., rollback, where the match will be
* missed, but in that case the user will get an EBUSY.
*/
return (zfsvfs != NULL && os == zfsvfs->z_os);
Allow mounting datasets more than once Currently mounting an already mounted zfs dataset results in an error, whereas it is typically allowed with other filesystems. This causes some bad interactions with mount namespaces. Take this sequence for example: - Create a dataset - Create a snapshot of the dataset - Create a clone of the snapshot - Create a new mount namespace - Rename the original dataset The rename results in unmounting and remounting the clone in the original mount namespace, however the remount fails because the dataset is still mounted in the new mount namespace. (Note that this means the mount in the new mount namespace is never being unmounted, so perhaps the unmount/remount of the clone isn't actually necessary.) The problem here is a result of the way mounting is implemented in the kernel module. Since it is not mounting block devices it uses mount_nodev() instead of the usual mount_bdev(). However, mount_nodev() is written for filesystems for which each mount is a new instance (i.e. a new super block), and zfs should be able to detect when a mount request can be satisfied using an existing super block. Change zpl_mount() to call sget() directly with it's own test callback. Passing the objset_t object as the fs data allows checking if a superblock already exists for the dataset, and in that case we just need to return a new reference for the sb's root dentry. Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov> Reviewed-by: Tom Caputi <tcaputi@datto.com> Signed-off-by: Alek Pinchuk <apinchuk@datto.com> Signed-off-by: Seth Forshee <seth.forshee@canonical.com> Closes #5796 Closes #7207
2018-04-12 22:24:38 +03:00
}
static struct super_block *
zpl_mount_impl(struct file_system_type *fs_type, int flags, zfs_mnt_t *zm)
{
struct super_block *s;
objset_t *os;
boolean_t issnap = B_FALSE;
Allow mounting datasets more than once Currently mounting an already mounted zfs dataset results in an error, whereas it is typically allowed with other filesystems. This causes some bad interactions with mount namespaces. Take this sequence for example: - Create a dataset - Create a snapshot of the dataset - Create a clone of the snapshot - Create a new mount namespace - Rename the original dataset The rename results in unmounting and remounting the clone in the original mount namespace, however the remount fails because the dataset is still mounted in the new mount namespace. (Note that this means the mount in the new mount namespace is never being unmounted, so perhaps the unmount/remount of the clone isn't actually necessary.) The problem here is a result of the way mounting is implemented in the kernel module. Since it is not mounting block devices it uses mount_nodev() instead of the usual mount_bdev(). However, mount_nodev() is written for filesystems for which each mount is a new instance (i.e. a new super block), and zfs should be able to detect when a mount request can be satisfied using an existing super block. Change zpl_mount() to call sget() directly with it's own test callback. Passing the objset_t object as the fs data allows checking if a superblock already exists for the dataset, and in that case we just need to return a new reference for the sb's root dentry. Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov> Reviewed-by: Tom Caputi <tcaputi@datto.com> Signed-off-by: Alek Pinchuk <apinchuk@datto.com> Signed-off-by: Seth Forshee <seth.forshee@canonical.com> Closes #5796 Closes #7207
2018-04-12 22:24:38 +03:00
int err;
err = dmu_objset_hold(zm->mnt_osname, FTAG, &os);
if (err)
return (ERR_PTR(-err));
/*
* The dsl pool lock must be released prior to calling sget().
* It is possible sget() may block on the lock in grab_super()
* while deactivate_super() holds that same lock and waits for
* a txg sync. If the dsl_pool lock is held over sget()
* this can prevent the pool sync and cause a deadlock.
*/
dsl_dataset_long_hold(dmu_objset_ds(os), FTAG);
dsl_pool_rele(dmu_objset_pool(os), FTAG);
Linux compat: Minimum kernel version 3.10 Increase the minimum supported kernel version from 2.6.32 to 3.10. This removes support for the following Linux enterprise distributions. Distribution | Kernel | End of Life ---------------- | ------ | ------------- Ubuntu 12.04 LTS | 3.2 | Apr 28, 2017 SLES 11 | 3.0 | Mar 32, 2019 RHEL / CentOS 6 | 2.6.32 | Nov 30, 2020 The following changes were made as part of removing support. * Updated `configure` to enforce a minimum kernel version as specified in the META file (Linux-Minimum: 3.10). configure: error: *** Cannot build against kernel version 2.6.32. *** The minimum supported kernel version is 3.10. * Removed all `configure` kABI checks and matching C code for interfaces which solely predate the Linux 3.10 kernel. * Updated all `configure` kABI checks to fail when an interface is missing which was in the 3.10 kernel up to the latest 5.1 kernel. Removed the HAVE_* preprocessor defines for these checks and updated the code to unconditionally use the verified interface. * Inverted the detection logic in several kABI checks to match the new interface as it appears in 3.10 and newer and not the legacy interface. * Consolidated the following checks in to individual files. Due the large number of changes in the checks it made sense to handle this now. It would be desirable to group other related checks in the same fashion, but this as left as future work. - config/kernel-blkdev.m4 - Block device kABI checks - config/kernel-blk-queue.m4 - Block queue kABI checks - config/kernel-bio.m4 - Bio interface kABI checks * Removed the kABI checks for sops->nr_cached_objects() and sops->free_cached_objects(). These interfaces are currently unused. Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov> Closes #9566
2019-11-12 19:59:06 +03:00
s = sget(fs_type, zpl_test_super, set_anon_super, flags, os);
/*
* Recheck with the lock held to prevent mounting the wrong dataset
* since z_os can be stale when the teardown lock is held.
*
* We can't do this in zpl_test_super in since it's under spinlock and
* also s_umount lock is not held there so it would race with
* zfs_umount and zfsvfs can be freed.
*/
if (!IS_ERR(s) && s->s_fs_info != NULL) {
zfsvfs_t *zfsvfs = s->s_fs_info;
if (zpl_enter(zfsvfs, FTAG) == 0) {
if (os != zfsvfs->z_os)
err = -SET_ERROR(EBUSY);
issnap = zfsvfs->z_issnap;
zpl_exit(zfsvfs, FTAG);
} else {
err = -SET_ERROR(EBUSY);
}
}
dsl_dataset_long_rele(dmu_objset_ds(os), FTAG);
dsl_dataset_rele(dmu_objset_ds(os), FTAG);
Allow mounting datasets more than once Currently mounting an already mounted zfs dataset results in an error, whereas it is typically allowed with other filesystems. This causes some bad interactions with mount namespaces. Take this sequence for example: - Create a dataset - Create a snapshot of the dataset - Create a clone of the snapshot - Create a new mount namespace - Rename the original dataset The rename results in unmounting and remounting the clone in the original mount namespace, however the remount fails because the dataset is still mounted in the new mount namespace. (Note that this means the mount in the new mount namespace is never being unmounted, so perhaps the unmount/remount of the clone isn't actually necessary.) The problem here is a result of the way mounting is implemented in the kernel module. Since it is not mounting block devices it uses mount_nodev() instead of the usual mount_bdev(). However, mount_nodev() is written for filesystems for which each mount is a new instance (i.e. a new super block), and zfs should be able to detect when a mount request can be satisfied using an existing super block. Change zpl_mount() to call sget() directly with it's own test callback. Passing the objset_t object as the fs data allows checking if a superblock already exists for the dataset, and in that case we just need to return a new reference for the sb's root dentry. Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov> Reviewed-by: Tom Caputi <tcaputi@datto.com> Signed-off-by: Alek Pinchuk <apinchuk@datto.com> Signed-off-by: Seth Forshee <seth.forshee@canonical.com> Closes #5796 Closes #7207
2018-04-12 22:24:38 +03:00
if (IS_ERR(s))
return (ERR_CAST(s));
if (err) {
deactivate_locked_super(s);
return (ERR_PTR(err));
}
Allow mounting datasets more than once Currently mounting an already mounted zfs dataset results in an error, whereas it is typically allowed with other filesystems. This causes some bad interactions with mount namespaces. Take this sequence for example: - Create a dataset - Create a snapshot of the dataset - Create a clone of the snapshot - Create a new mount namespace - Rename the original dataset The rename results in unmounting and remounting the clone in the original mount namespace, however the remount fails because the dataset is still mounted in the new mount namespace. (Note that this means the mount in the new mount namespace is never being unmounted, so perhaps the unmount/remount of the clone isn't actually necessary.) The problem here is a result of the way mounting is implemented in the kernel module. Since it is not mounting block devices it uses mount_nodev() instead of the usual mount_bdev(). However, mount_nodev() is written for filesystems for which each mount is a new instance (i.e. a new super block), and zfs should be able to detect when a mount request can be satisfied using an existing super block. Change zpl_mount() to call sget() directly with it's own test callback. Passing the objset_t object as the fs data allows checking if a superblock already exists for the dataset, and in that case we just need to return a new reference for the sb's root dentry. Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov> Reviewed-by: Tom Caputi <tcaputi@datto.com> Signed-off-by: Alek Pinchuk <apinchuk@datto.com> Signed-off-by: Seth Forshee <seth.forshee@canonical.com> Closes #5796 Closes #7207
2018-04-12 22:24:38 +03:00
if (s->s_root == NULL) {
err = zpl_fill_super(s, zm, flags & SB_SILENT ? 1 : 0);
if (err) {
deactivate_locked_super(s);
return (ERR_PTR(err));
}
s->s_flags |= SB_ACTIVE;
} else if (!issnap && ((flags ^ s->s_flags) & SB_RDONLY)) {
/*
* Skip ro check for snap since snap is always ro regardless
* ro flag is passed by mount or not.
*/
Allow mounting datasets more than once Currently mounting an already mounted zfs dataset results in an error, whereas it is typically allowed with other filesystems. This causes some bad interactions with mount namespaces. Take this sequence for example: - Create a dataset - Create a snapshot of the dataset - Create a clone of the snapshot - Create a new mount namespace - Rename the original dataset The rename results in unmounting and remounting the clone in the original mount namespace, however the remount fails because the dataset is still mounted in the new mount namespace. (Note that this means the mount in the new mount namespace is never being unmounted, so perhaps the unmount/remount of the clone isn't actually necessary.) The problem here is a result of the way mounting is implemented in the kernel module. Since it is not mounting block devices it uses mount_nodev() instead of the usual mount_bdev(). However, mount_nodev() is written for filesystems for which each mount is a new instance (i.e. a new super block), and zfs should be able to detect when a mount request can be satisfied using an existing super block. Change zpl_mount() to call sget() directly with it's own test callback. Passing the objset_t object as the fs data allows checking if a superblock already exists for the dataset, and in that case we just need to return a new reference for the sb's root dentry. Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov> Reviewed-by: Tom Caputi <tcaputi@datto.com> Signed-off-by: Alek Pinchuk <apinchuk@datto.com> Signed-off-by: Seth Forshee <seth.forshee@canonical.com> Closes #5796 Closes #7207
2018-04-12 22:24:38 +03:00
deactivate_locked_super(s);
return (ERR_PTR(-EBUSY));
}
return (s);
}
Linux compat 2.6.39: mount_nodev() The .get_sb callback has been replaced by a .mount callback in the file_system_type structure. When using the new interface the caller must now use the mount_nodev() helper. Unfortunately, the new interface no longer passes the vfsmount down to the zfs layers. This poses a problem for the existing implementation because we currently save this pointer in the super block for latter use. It provides our only entry point in to the namespace layer for manipulating certain mount options. This needed to be done originally to allow commands like 'zfs set atime=off tank' to work properly. It also allowed me to keep more of the original Solaris code unmodified. Under Solaris there is a 1-to-1 mapping between a mount point and a file system so this is a fairly natural thing to do. However, under Linux they many be multiple entries in the namespace which reference the same filesystem. Thus keeping a back reference from the filesystem to the namespace is complicated. Rather than introduce some ugly hack to get the vfsmount and continue as before. I'm leveraging this API change to update the ZFS code to do things in a more natural way for Linux. This has the upside that is resolves the compatibility issue for the long term and fixes several other minor bugs which have been reported. This commit updates the code to remove this vfsmount back reference entirely. All modifications to filesystem mount options are now passed in to the kernel via a '-o remount'. This is the expected Linux mechanism and allows the namespace to properly handle any options which apply to it before passing them on to the file system itself. Aside from fixing the compatibility issue, removing the vfsmount has had the benefit of simplifying the code. This change which fairly involved has turned out nicely. Closes #246 Closes #217 Closes #187 Closes #248 Closes #231
2011-05-19 22:44:07 +04:00
static struct dentry *
zpl_mount(struct file_system_type *fs_type, int flags,
const char *osname, void *data)
{
zfs_mnt_t zm = { .mnt_osname = osname, .mnt_data = data };
Linux compat 2.6.39: mount_nodev() The .get_sb callback has been replaced by a .mount callback in the file_system_type structure. When using the new interface the caller must now use the mount_nodev() helper. Unfortunately, the new interface no longer passes the vfsmount down to the zfs layers. This poses a problem for the existing implementation because we currently save this pointer in the super block for latter use. It provides our only entry point in to the namespace layer for manipulating certain mount options. This needed to be done originally to allow commands like 'zfs set atime=off tank' to work properly. It also allowed me to keep more of the original Solaris code unmodified. Under Solaris there is a 1-to-1 mapping between a mount point and a file system so this is a fairly natural thing to do. However, under Linux they many be multiple entries in the namespace which reference the same filesystem. Thus keeping a back reference from the filesystem to the namespace is complicated. Rather than introduce some ugly hack to get the vfsmount and continue as before. I'm leveraging this API change to update the ZFS code to do things in a more natural way for Linux. This has the upside that is resolves the compatibility issue for the long term and fixes several other minor bugs which have been reported. This commit updates the code to remove this vfsmount back reference entirely. All modifications to filesystem mount options are now passed in to the kernel via a '-o remount'. This is the expected Linux mechanism and allows the namespace to properly handle any options which apply to it before passing them on to the file system itself. Aside from fixing the compatibility issue, removing the vfsmount has had the benefit of simplifying the code. This change which fairly involved has turned out nicely. Closes #246 Closes #217 Closes #187 Closes #248 Closes #231
2011-05-19 22:44:07 +04:00
Allow mounting datasets more than once Currently mounting an already mounted zfs dataset results in an error, whereas it is typically allowed with other filesystems. This causes some bad interactions with mount namespaces. Take this sequence for example: - Create a dataset - Create a snapshot of the dataset - Create a clone of the snapshot - Create a new mount namespace - Rename the original dataset The rename results in unmounting and remounting the clone in the original mount namespace, however the remount fails because the dataset is still mounted in the new mount namespace. (Note that this means the mount in the new mount namespace is never being unmounted, so perhaps the unmount/remount of the clone isn't actually necessary.) The problem here is a result of the way mounting is implemented in the kernel module. Since it is not mounting block devices it uses mount_nodev() instead of the usual mount_bdev(). However, mount_nodev() is written for filesystems for which each mount is a new instance (i.e. a new super block), and zfs should be able to detect when a mount request can be satisfied using an existing super block. Change zpl_mount() to call sget() directly with it's own test callback. Passing the objset_t object as the fs data allows checking if a superblock already exists for the dataset, and in that case we just need to return a new reference for the sb's root dentry. Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov> Reviewed-by: Tom Caputi <tcaputi@datto.com> Signed-off-by: Alek Pinchuk <apinchuk@datto.com> Signed-off-by: Seth Forshee <seth.forshee@canonical.com> Closes #5796 Closes #7207
2018-04-12 22:24:38 +03:00
struct super_block *sb = zpl_mount_impl(fs_type, flags, &zm);
if (IS_ERR(sb))
return (ERR_CAST(sb));
return (dget(sb->s_root));
Linux compat 2.6.39: mount_nodev() The .get_sb callback has been replaced by a .mount callback in the file_system_type structure. When using the new interface the caller must now use the mount_nodev() helper. Unfortunately, the new interface no longer passes the vfsmount down to the zfs layers. This poses a problem for the existing implementation because we currently save this pointer in the super block for latter use. It provides our only entry point in to the namespace layer for manipulating certain mount options. This needed to be done originally to allow commands like 'zfs set atime=off tank' to work properly. It also allowed me to keep more of the original Solaris code unmodified. Under Solaris there is a 1-to-1 mapping between a mount point and a file system so this is a fairly natural thing to do. However, under Linux they many be multiple entries in the namespace which reference the same filesystem. Thus keeping a back reference from the filesystem to the namespace is complicated. Rather than introduce some ugly hack to get the vfsmount and continue as before. I'm leveraging this API change to update the ZFS code to do things in a more natural way for Linux. This has the upside that is resolves the compatibility issue for the long term and fixes several other minor bugs which have been reported. This commit updates the code to remove this vfsmount back reference entirely. All modifications to filesystem mount options are now passed in to the kernel via a '-o remount'. This is the expected Linux mechanism and allows the namespace to properly handle any options which apply to it before passing them on to the file system itself. Aside from fixing the compatibility issue, removing the vfsmount has had the benefit of simplifying the code. This change which fairly involved has turned out nicely. Closes #246 Closes #217 Closes #187 Closes #248 Closes #231
2011-05-19 22:44:07 +04:00
}
static void
zpl_kill_sb(struct super_block *sb)
{
zfs_preumount(sb);
kill_anon_super(sb);
}
Linux 3.1 compat, super_block->s_shrink The Linux 3.1 kernel has introduced the concept of per-filesystem shrinkers which are directly assoicated with a super block. Prior to this change there was one shared global shrinker. The zfs code relied on being able to call the global shrinker when the arc_meta_limit was exceeded. This would cause the VFS to drop references on a fraction of the dentries in the dcache. The ARC could then safely reclaim the memory used by these entries and honor the arc_meta_limit. Unfortunately, when per-filesystem shrinkers were added the old interfaces were made unavailable. This change adds support to use the new per-filesystem shrinker interface so we can continue to honor the arc_meta_limit. The major benefit of the new interface is that we can now target only the zfs filesystem for dentry and inode pruning. Thus we can minimize any impact on the caching of other filesystems. In the context of making this change several other important issues related to managing the ARC were addressed, they include: * The dnlc_reduce_cache() function which was called by the ARC to drop dentries for the Posix layer was replaced with a generic zfs_prune_t callback. The ZPL layer now registers a callback to drop these dentries removing a layering violation which dates back to the Solaris code. This callback can also be used by other ARC consumers such as Lustre. arc_add_prune_callback() arc_remove_prune_callback() * The arc_reduce_dnlc_percent module option has been changed to arc_meta_prune for clarity. The dnlc functions are specific to Solaris's VFS and have already been largely eliminated already. The replacement tunable now represents the number of bytes the prune callback will request when invoked. * Less aggressively invoke the prune callback. We used to call this whenever we exceeded the arc_meta_limit however that's not strictly correct since it results in over zeleous reclaim of dentries and inodes. It is now only called once the arc_meta_limit is exceeded and every effort has been made to evict other data from the ARC cache. * More promptly manage exceeding the arc_meta_limit. When reading meta data in to the cache if a buffer was unable to be recycled notify the arc_reclaim thread to invoke the required prune. * Added arcstat_prune kstat which is incremented when the ARC is forced to request that a consumer prune its cache. Remember this will only occur when the ARC has no other choice. If it can evict buffers safely without invoking the prune callback it will. * This change is also expected to resolve the unexpect collapses of the ARC cache. This would occur because when exceeded just the arc_meta_limit reclaim presure would be excerted on the arc_c value via arc_shrink(). This effectively shrunk the entire cache when really we just needed to reclaim meta data. Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov> Closes #466 Closes #292
2011-12-23 00:20:43 +04:00
void
zpl_prune_sb(uint64_t nr_to_scan, void *arg)
Linux 3.1 compat, super_block->s_shrink The Linux 3.1 kernel has introduced the concept of per-filesystem shrinkers which are directly assoicated with a super block. Prior to this change there was one shared global shrinker. The zfs code relied on being able to call the global shrinker when the arc_meta_limit was exceeded. This would cause the VFS to drop references on a fraction of the dentries in the dcache. The ARC could then safely reclaim the memory used by these entries and honor the arc_meta_limit. Unfortunately, when per-filesystem shrinkers were added the old interfaces were made unavailable. This change adds support to use the new per-filesystem shrinker interface so we can continue to honor the arc_meta_limit. The major benefit of the new interface is that we can now target only the zfs filesystem for dentry and inode pruning. Thus we can minimize any impact on the caching of other filesystems. In the context of making this change several other important issues related to managing the ARC were addressed, they include: * The dnlc_reduce_cache() function which was called by the ARC to drop dentries for the Posix layer was replaced with a generic zfs_prune_t callback. The ZPL layer now registers a callback to drop these dentries removing a layering violation which dates back to the Solaris code. This callback can also be used by other ARC consumers such as Lustre. arc_add_prune_callback() arc_remove_prune_callback() * The arc_reduce_dnlc_percent module option has been changed to arc_meta_prune for clarity. The dnlc functions are specific to Solaris's VFS and have already been largely eliminated already. The replacement tunable now represents the number of bytes the prune callback will request when invoked. * Less aggressively invoke the prune callback. We used to call this whenever we exceeded the arc_meta_limit however that's not strictly correct since it results in over zeleous reclaim of dentries and inodes. It is now only called once the arc_meta_limit is exceeded and every effort has been made to evict other data from the ARC cache. * More promptly manage exceeding the arc_meta_limit. When reading meta data in to the cache if a buffer was unable to be recycled notify the arc_reclaim thread to invoke the required prune. * Added arcstat_prune kstat which is incremented when the ARC is forced to request that a consumer prune its cache. Remember this will only occur when the ARC has no other choice. If it can evict buffers safely without invoking the prune callback it will. * This change is also expected to resolve the unexpect collapses of the ARC cache. This would occur because when exceeded just the arc_meta_limit reclaim presure would be excerted on the arc_c value via arc_shrink(). This effectively shrunk the entire cache when really we just needed to reclaim meta data. Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov> Closes #466 Closes #292
2011-12-23 00:20:43 +04:00
{
Restructure per-filesystem reclaim Originally when the ARC prune callback was introduced the idea was to register a single callback for the ZPL. The ARC could invoke this call back if it needed the ZPL to drop dentries, inodes, or other cache objects which might be pinning buffers in the ARC. The ZPL would iterate over all ZFS super blocks and perform the reclaim. For the most part this design has worked well but due to limitations in 2.6.35 and earlier kernels there were some problems. This patch is designed to address those issues. 1) iterate_supers_type() is not provided by all kernels which makes it impossible to safely iterate over all zpl_fs_type filesystems in a single callback. The most straight forward and portable way to resolve this is to register a callback per-filesystem during mount. The arc_*_prune_callback() functions have always supported multiple callbacks so this is functionally a very small change. 2) Commit 050d22b removed the non-portable shrink_dcache_memory() and shrink_icache_memory() functions and didn't replace them with equivalent functionality. This meant that for Linux 3.1 and older kernels the ARC had no mechanism to drop dentries and inodes from the caches if needed. This patch adds that missing functionality by calling shrink_dcache_parent() to release dentries which may be pinning inodes. This will result in all unused cache entries being dropped which is a bit heavy handed but it's the only interface available for old kernels. 3) A zpl_drop_inode() callback is registered for kernels older than 2.6.35 which do not support the .evict_inode callback. This ensures that when the last reference on an inode is dropped it is immediately removed from the cache. If this isn't done than inode can end up on the global unused LRU with no mechanism available to ZFS to drop them. Since the ARC buffers are not dropped the hottest inodes can still be recreated without performing disk IO. Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov> Signed-off-by: Pavel Snajdr <snajpa@snajpa.net> Issue #3160
2015-03-18 01:07:47 +03:00
struct super_block *sb = (struct super_block *)arg;
int objects = 0;
Linux 3.1 compat, super_block->s_shrink The Linux 3.1 kernel has introduced the concept of per-filesystem shrinkers which are directly assoicated with a super block. Prior to this change there was one shared global shrinker. The zfs code relied on being able to call the global shrinker when the arc_meta_limit was exceeded. This would cause the VFS to drop references on a fraction of the dentries in the dcache. The ARC could then safely reclaim the memory used by these entries and honor the arc_meta_limit. Unfortunately, when per-filesystem shrinkers were added the old interfaces were made unavailable. This change adds support to use the new per-filesystem shrinker interface so we can continue to honor the arc_meta_limit. The major benefit of the new interface is that we can now target only the zfs filesystem for dentry and inode pruning. Thus we can minimize any impact on the caching of other filesystems. In the context of making this change several other important issues related to managing the ARC were addressed, they include: * The dnlc_reduce_cache() function which was called by the ARC to drop dentries for the Posix layer was replaced with a generic zfs_prune_t callback. The ZPL layer now registers a callback to drop these dentries removing a layering violation which dates back to the Solaris code. This callback can also be used by other ARC consumers such as Lustre. arc_add_prune_callback() arc_remove_prune_callback() * The arc_reduce_dnlc_percent module option has been changed to arc_meta_prune for clarity. The dnlc functions are specific to Solaris's VFS and have already been largely eliminated already. The replacement tunable now represents the number of bytes the prune callback will request when invoked. * Less aggressively invoke the prune callback. We used to call this whenever we exceeded the arc_meta_limit however that's not strictly correct since it results in over zeleous reclaim of dentries and inodes. It is now only called once the arc_meta_limit is exceeded and every effort has been made to evict other data from the ARC cache. * More promptly manage exceeding the arc_meta_limit. When reading meta data in to the cache if a buffer was unable to be recycled notify the arc_reclaim thread to invoke the required prune. * Added arcstat_prune kstat which is incremented when the ARC is forced to request that a consumer prune its cache. Remember this will only occur when the ARC has no other choice. If it can evict buffers safely without invoking the prune callback it will. * This change is also expected to resolve the unexpect collapses of the ARC cache. This would occur because when exceeded just the arc_meta_limit reclaim presure would be excerted on the arc_c value via arc_shrink(). This effectively shrunk the entire cache when really we just needed to reclaim meta data. Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov> Closes #466 Closes #292
2011-12-23 00:20:43 +04:00
(void) -zfs_prune(sb, nr_to_scan, &objects);
}
Linux 3.1 compat, super_block->s_shrink The Linux 3.1 kernel has introduced the concept of per-filesystem shrinkers which are directly assoicated with a super block. Prior to this change there was one shared global shrinker. The zfs code relied on being able to call the global shrinker when the arc_meta_limit was exceeded. This would cause the VFS to drop references on a fraction of the dentries in the dcache. The ARC could then safely reclaim the memory used by these entries and honor the arc_meta_limit. Unfortunately, when per-filesystem shrinkers were added the old interfaces were made unavailable. This change adds support to use the new per-filesystem shrinker interface so we can continue to honor the arc_meta_limit. The major benefit of the new interface is that we can now target only the zfs filesystem for dentry and inode pruning. Thus we can minimize any impact on the caching of other filesystems. In the context of making this change several other important issues related to managing the ARC were addressed, they include: * The dnlc_reduce_cache() function which was called by the ARC to drop dentries for the Posix layer was replaced with a generic zfs_prune_t callback. The ZPL layer now registers a callback to drop these dentries removing a layering violation which dates back to the Solaris code. This callback can also be used by other ARC consumers such as Lustre. arc_add_prune_callback() arc_remove_prune_callback() * The arc_reduce_dnlc_percent module option has been changed to arc_meta_prune for clarity. The dnlc functions are specific to Solaris's VFS and have already been largely eliminated already. The replacement tunable now represents the number of bytes the prune callback will request when invoked. * Less aggressively invoke the prune callback. We used to call this whenever we exceeded the arc_meta_limit however that's not strictly correct since it results in over zeleous reclaim of dentries and inodes. It is now only called once the arc_meta_limit is exceeded and every effort has been made to evict other data from the ARC cache. * More promptly manage exceeding the arc_meta_limit. When reading meta data in to the cache if a buffer was unable to be recycled notify the arc_reclaim thread to invoke the required prune. * Added arcstat_prune kstat which is incremented when the ARC is forced to request that a consumer prune its cache. Remember this will only occur when the ARC has no other choice. If it can evict buffers safely without invoking the prune callback it will. * This change is also expected to resolve the unexpect collapses of the ARC cache. This would occur because when exceeded just the arc_meta_limit reclaim presure would be excerted on the arc_c value via arc_shrink(). This effectively shrunk the entire cache when really we just needed to reclaim meta data. Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov> Closes #466 Closes #292
2011-12-23 00:20:43 +04:00
const struct super_operations zpl_super_operations = {
Linux 3.1 compat, super_block->s_shrink The Linux 3.1 kernel has introduced the concept of per-filesystem shrinkers which are directly assoicated with a super block. Prior to this change there was one shared global shrinker. The zfs code relied on being able to call the global shrinker when the arc_meta_limit was exceeded. This would cause the VFS to drop references on a fraction of the dentries in the dcache. The ARC could then safely reclaim the memory used by these entries and honor the arc_meta_limit. Unfortunately, when per-filesystem shrinkers were added the old interfaces were made unavailable. This change adds support to use the new per-filesystem shrinker interface so we can continue to honor the arc_meta_limit. The major benefit of the new interface is that we can now target only the zfs filesystem for dentry and inode pruning. Thus we can minimize any impact on the caching of other filesystems. In the context of making this change several other important issues related to managing the ARC were addressed, they include: * The dnlc_reduce_cache() function which was called by the ARC to drop dentries for the Posix layer was replaced with a generic zfs_prune_t callback. The ZPL layer now registers a callback to drop these dentries removing a layering violation which dates back to the Solaris code. This callback can also be used by other ARC consumers such as Lustre. arc_add_prune_callback() arc_remove_prune_callback() * The arc_reduce_dnlc_percent module option has been changed to arc_meta_prune for clarity. The dnlc functions are specific to Solaris's VFS and have already been largely eliminated already. The replacement tunable now represents the number of bytes the prune callback will request when invoked. * Less aggressively invoke the prune callback. We used to call this whenever we exceeded the arc_meta_limit however that's not strictly correct since it results in over zeleous reclaim of dentries and inodes. It is now only called once the arc_meta_limit is exceeded and every effort has been made to evict other data from the ARC cache. * More promptly manage exceeding the arc_meta_limit. When reading meta data in to the cache if a buffer was unable to be recycled notify the arc_reclaim thread to invoke the required prune. * Added arcstat_prune kstat which is incremented when the ARC is forced to request that a consumer prune its cache. Remember this will only occur when the ARC has no other choice. If it can evict buffers safely without invoking the prune callback it will. * This change is also expected to resolve the unexpect collapses of the ARC cache. This would occur because when exceeded just the arc_meta_limit reclaim presure would be excerted on the arc_c value via arc_shrink(). This effectively shrunk the entire cache when really we just needed to reclaim meta data. Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov> Closes #466 Closes #292
2011-12-23 00:20:43 +04:00
.alloc_inode = zpl_inode_alloc,
.destroy_inode = zpl_inode_destroy,
.dirty_inode = zpl_dirty_inode,
Linux 3.1 compat, super_block->s_shrink The Linux 3.1 kernel has introduced the concept of per-filesystem shrinkers which are directly assoicated with a super block. Prior to this change there was one shared global shrinker. The zfs code relied on being able to call the global shrinker when the arc_meta_limit was exceeded. This would cause the VFS to drop references on a fraction of the dentries in the dcache. The ARC could then safely reclaim the memory used by these entries and honor the arc_meta_limit. Unfortunately, when per-filesystem shrinkers were added the old interfaces were made unavailable. This change adds support to use the new per-filesystem shrinker interface so we can continue to honor the arc_meta_limit. The major benefit of the new interface is that we can now target only the zfs filesystem for dentry and inode pruning. Thus we can minimize any impact on the caching of other filesystems. In the context of making this change several other important issues related to managing the ARC were addressed, they include: * The dnlc_reduce_cache() function which was called by the ARC to drop dentries for the Posix layer was replaced with a generic zfs_prune_t callback. The ZPL layer now registers a callback to drop these dentries removing a layering violation which dates back to the Solaris code. This callback can also be used by other ARC consumers such as Lustre. arc_add_prune_callback() arc_remove_prune_callback() * The arc_reduce_dnlc_percent module option has been changed to arc_meta_prune for clarity. The dnlc functions are specific to Solaris's VFS and have already been largely eliminated already. The replacement tunable now represents the number of bytes the prune callback will request when invoked. * Less aggressively invoke the prune callback. We used to call this whenever we exceeded the arc_meta_limit however that's not strictly correct since it results in over zeleous reclaim of dentries and inodes. It is now only called once the arc_meta_limit is exceeded and every effort has been made to evict other data from the ARC cache. * More promptly manage exceeding the arc_meta_limit. When reading meta data in to the cache if a buffer was unable to be recycled notify the arc_reclaim thread to invoke the required prune. * Added arcstat_prune kstat which is incremented when the ARC is forced to request that a consumer prune its cache. Remember this will only occur when the ARC has no other choice. If it can evict buffers safely without invoking the prune callback it will. * This change is also expected to resolve the unexpect collapses of the ARC cache. This would occur because when exceeded just the arc_meta_limit reclaim presure would be excerted on the arc_c value via arc_shrink(). This effectively shrunk the entire cache when really we just needed to reclaim meta data. Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov> Closes #466 Closes #292
2011-12-23 00:20:43 +04:00
.write_inode = NULL,
.evict_inode = zpl_evict_inode,
.put_super = zpl_put_super,
.sync_fs = zpl_sync_fs,
.statfs = zpl_statfs,
.remount_fs = zpl_remount_fs,
.show_devname = zpl_show_devname,
Linux 3.1 compat, super_block->s_shrink The Linux 3.1 kernel has introduced the concept of per-filesystem shrinkers which are directly assoicated with a super block. Prior to this change there was one shared global shrinker. The zfs code relied on being able to call the global shrinker when the arc_meta_limit was exceeded. This would cause the VFS to drop references on a fraction of the dentries in the dcache. The ARC could then safely reclaim the memory used by these entries and honor the arc_meta_limit. Unfortunately, when per-filesystem shrinkers were added the old interfaces were made unavailable. This change adds support to use the new per-filesystem shrinker interface so we can continue to honor the arc_meta_limit. The major benefit of the new interface is that we can now target only the zfs filesystem for dentry and inode pruning. Thus we can minimize any impact on the caching of other filesystems. In the context of making this change several other important issues related to managing the ARC were addressed, they include: * The dnlc_reduce_cache() function which was called by the ARC to drop dentries for the Posix layer was replaced with a generic zfs_prune_t callback. The ZPL layer now registers a callback to drop these dentries removing a layering violation which dates back to the Solaris code. This callback can also be used by other ARC consumers such as Lustre. arc_add_prune_callback() arc_remove_prune_callback() * The arc_reduce_dnlc_percent module option has been changed to arc_meta_prune for clarity. The dnlc functions are specific to Solaris's VFS and have already been largely eliminated already. The replacement tunable now represents the number of bytes the prune callback will request when invoked. * Less aggressively invoke the prune callback. We used to call this whenever we exceeded the arc_meta_limit however that's not strictly correct since it results in over zeleous reclaim of dentries and inodes. It is now only called once the arc_meta_limit is exceeded and every effort has been made to evict other data from the ARC cache. * More promptly manage exceeding the arc_meta_limit. When reading meta data in to the cache if a buffer was unable to be recycled notify the arc_reclaim thread to invoke the required prune. * Added arcstat_prune kstat which is incremented when the ARC is forced to request that a consumer prune its cache. Remember this will only occur when the ARC has no other choice. If it can evict buffers safely without invoking the prune callback it will. * This change is also expected to resolve the unexpect collapses of the ARC cache. This would occur because when exceeded just the arc_meta_limit reclaim presure would be excerted on the arc_c value via arc_shrink(). This effectively shrunk the entire cache when really we just needed to reclaim meta data. Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov> Closes #466 Closes #292
2011-12-23 00:20:43 +04:00
.show_options = zpl_show_options,
.show_stats = NULL,
};
struct file_system_type zpl_fs_type = {
Linux 3.1 compat, super_block->s_shrink The Linux 3.1 kernel has introduced the concept of per-filesystem shrinkers which are directly assoicated with a super block. Prior to this change there was one shared global shrinker. The zfs code relied on being able to call the global shrinker when the arc_meta_limit was exceeded. This would cause the VFS to drop references on a fraction of the dentries in the dcache. The ARC could then safely reclaim the memory used by these entries and honor the arc_meta_limit. Unfortunately, when per-filesystem shrinkers were added the old interfaces were made unavailable. This change adds support to use the new per-filesystem shrinker interface so we can continue to honor the arc_meta_limit. The major benefit of the new interface is that we can now target only the zfs filesystem for dentry and inode pruning. Thus we can minimize any impact on the caching of other filesystems. In the context of making this change several other important issues related to managing the ARC were addressed, they include: * The dnlc_reduce_cache() function which was called by the ARC to drop dentries for the Posix layer was replaced with a generic zfs_prune_t callback. The ZPL layer now registers a callback to drop these dentries removing a layering violation which dates back to the Solaris code. This callback can also be used by other ARC consumers such as Lustre. arc_add_prune_callback() arc_remove_prune_callback() * The arc_reduce_dnlc_percent module option has been changed to arc_meta_prune for clarity. The dnlc functions are specific to Solaris's VFS and have already been largely eliminated already. The replacement tunable now represents the number of bytes the prune callback will request when invoked. * Less aggressively invoke the prune callback. We used to call this whenever we exceeded the arc_meta_limit however that's not strictly correct since it results in over zeleous reclaim of dentries and inodes. It is now only called once the arc_meta_limit is exceeded and every effort has been made to evict other data from the ARC cache. * More promptly manage exceeding the arc_meta_limit. When reading meta data in to the cache if a buffer was unable to be recycled notify the arc_reclaim thread to invoke the required prune. * Added arcstat_prune kstat which is incremented when the ARC is forced to request that a consumer prune its cache. Remember this will only occur when the ARC has no other choice. If it can evict buffers safely without invoking the prune callback it will. * This change is also expected to resolve the unexpect collapses of the ARC cache. This would occur because when exceeded just the arc_meta_limit reclaim presure would be excerted on the arc_c value via arc_shrink(). This effectively shrunk the entire cache when really we just needed to reclaim meta data. Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov> Closes #466 Closes #292
2011-12-23 00:20:43 +04:00
.owner = THIS_MODULE,
.name = ZFS_DRIVER,
#if defined(HAVE_IDMAP_MNT_API)
.fs_flags = FS_USERNS_MOUNT | FS_ALLOW_IDMAP,
#else
.fs_flags = FS_USERNS_MOUNT,
#endif
Linux 3.1 compat, super_block->s_shrink The Linux 3.1 kernel has introduced the concept of per-filesystem shrinkers which are directly assoicated with a super block. Prior to this change there was one shared global shrinker. The zfs code relied on being able to call the global shrinker when the arc_meta_limit was exceeded. This would cause the VFS to drop references on a fraction of the dentries in the dcache. The ARC could then safely reclaim the memory used by these entries and honor the arc_meta_limit. Unfortunately, when per-filesystem shrinkers were added the old interfaces were made unavailable. This change adds support to use the new per-filesystem shrinker interface so we can continue to honor the arc_meta_limit. The major benefit of the new interface is that we can now target only the zfs filesystem for dentry and inode pruning. Thus we can minimize any impact on the caching of other filesystems. In the context of making this change several other important issues related to managing the ARC were addressed, they include: * The dnlc_reduce_cache() function which was called by the ARC to drop dentries for the Posix layer was replaced with a generic zfs_prune_t callback. The ZPL layer now registers a callback to drop these dentries removing a layering violation which dates back to the Solaris code. This callback can also be used by other ARC consumers such as Lustre. arc_add_prune_callback() arc_remove_prune_callback() * The arc_reduce_dnlc_percent module option has been changed to arc_meta_prune for clarity. The dnlc functions are specific to Solaris's VFS and have already been largely eliminated already. The replacement tunable now represents the number of bytes the prune callback will request when invoked. * Less aggressively invoke the prune callback. We used to call this whenever we exceeded the arc_meta_limit however that's not strictly correct since it results in over zeleous reclaim of dentries and inodes. It is now only called once the arc_meta_limit is exceeded and every effort has been made to evict other data from the ARC cache. * More promptly manage exceeding the arc_meta_limit. When reading meta data in to the cache if a buffer was unable to be recycled notify the arc_reclaim thread to invoke the required prune. * Added arcstat_prune kstat which is incremented when the ARC is forced to request that a consumer prune its cache. Remember this will only occur when the ARC has no other choice. If it can evict buffers safely without invoking the prune callback it will. * This change is also expected to resolve the unexpect collapses of the ARC cache. This would occur because when exceeded just the arc_meta_limit reclaim presure would be excerted on the arc_c value via arc_shrink(). This effectively shrunk the entire cache when really we just needed to reclaim meta data. Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov> Closes #466 Closes #292
2011-12-23 00:20:43 +04:00
.mount = zpl_mount,
.kill_sb = zpl_kill_sb,
};