mirror_zfs/module/zfs/zio.c

3252 lines
89 KiB
C
Raw Normal View History

2008-11-20 23:01:55 +03:00
/*
* CDDL HEADER START
*
* The contents of this file are subject to the terms of the
* Common Development and Distribution License (the "License").
* You may not use this file except in compliance with the License.
*
* You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
* or http://www.opensolaris.org/os/licensing.
* See the License for the specific language governing permissions
* and limitations under the License.
*
* When distributing Covered Code, include this CDDL HEADER in each
* file and include the License file at usr/src/OPENSOLARIS.LICENSE.
* If applicable, add the following below this CDDL HEADER, with the
* fields enclosed by brackets "[]" replaced with your own identifying
* information: Portions Copyright [yyyy] [name of copyright owner]
*
* CDDL HEADER END
*/
/*
* Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
* Copyright (c) 2012 by Delphix. All rights reserved.
* Copyright (c) 2011 Nexenta Systems, Inc. All rights reserved.
2008-11-20 23:01:55 +03:00
*/
#include <sys/zfs_context.h>
#include <sys/fm/fs/zfs.h>
#include <sys/spa.h>
#include <sys/txg.h>
#include <sys/spa_impl.h>
#include <sys/vdev_impl.h>
#include <sys/zio_impl.h>
#include <sys/zio_compress.h>
#include <sys/zio_checksum.h>
#include <sys/dmu_objset.h>
#include <sys/arc.h>
#include <sys/ddt.h>
2008-11-20 23:01:55 +03:00
/*
* ==========================================================================
* I/O priority table
* ==========================================================================
*/
uint8_t zio_priority_table[ZIO_PRIORITY_TABLE_SIZE] = {
0, /* ZIO_PRIORITY_NOW */
0, /* ZIO_PRIORITY_SYNC_READ */
0, /* ZIO_PRIORITY_SYNC_WRITE */
0, /* ZIO_PRIORITY_LOG_WRITE */
1, /* ZIO_PRIORITY_CACHE_FILL */
1, /* ZIO_PRIORITY_AGG */
4, /* ZIO_PRIORITY_FREE */
4, /* ZIO_PRIORITY_ASYNC_WRITE */
6, /* ZIO_PRIORITY_ASYNC_READ */
2008-11-20 23:01:55 +03:00
10, /* ZIO_PRIORITY_RESILVER */
20, /* ZIO_PRIORITY_SCRUB */
2, /* ZIO_PRIORITY_DDT_PREFETCH */
2008-11-20 23:01:55 +03:00
};
/*
* ==========================================================================
* I/O type descriptions
* ==========================================================================
*/
char *zio_type_name[ZIO_TYPES] = {
"z_null", "z_rd", "z_wr", "z_fr", "z_cl", "z_ioctl"
};
2008-11-20 23:01:55 +03:00
/*
* ==========================================================================
* I/O kmem caches
* ==========================================================================
*/
kmem_cache_t *zio_cache;
2009-02-18 23:51:31 +03:00
kmem_cache_t *zio_link_cache;
kmem_cache_t *zio_vdev_cache;
2008-11-20 23:01:55 +03:00
kmem_cache_t *zio_buf_cache[SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT];
kmem_cache_t *zio_data_buf_cache[SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT];
int zio_bulk_flags = 0;
int zio_delay_max = ZIO_DELAY_MAX;
2008-11-20 23:01:55 +03:00
#ifdef _KERNEL
extern vmem_t *zio_alloc_arena;
#endif
extern int zfs_mg_alloc_failures;
2008-11-20 23:01:55 +03:00
/*
* The following actions directly effect the spa's sync-to-convergence logic.
* The values below define the sync pass when we start performing the action.
* Care should be taken when changing these values as they directly impact
* spa_sync() performance. Tuning these values may introduce subtle performance
* pathologies and should only be done in the context of performance analysis.
* These tunables will eventually be removed and replaced with #defines once
* enough analysis has been done to determine optimal values.
*
* The 'zfs_sync_pass_deferred_free' pass must be greater than 1 to ensure that
* regular blocks are not deferred.
*/
int zfs_sync_pass_deferred_free = 2; /* defer frees starting in this pass */
int zfs_sync_pass_dont_compress = 5; /* don't compress starting in this pass */
int zfs_sync_pass_rewrite = 2; /* rewrite new bps starting in this pass */
2008-11-20 23:01:55 +03:00
/*
* An allocating zio is one that either currently has the DVA allocate
* stage set or will have it later in its lifetime.
2008-11-20 23:01:55 +03:00
*/
#define IO_IS_ALLOCATING(zio) ((zio)->io_orig_pipeline & ZIO_STAGE_DVA_ALLOCATE)
Add missing ZFS tunables This commit adds module options for all existing zfs tunables. Ideally the average user should never need to modify any of these values. However, in practice sometimes you do need to tweak these values for one reason or another. In those cases it's nice not to have to resort to rebuilding from source. All tunables are visable to modinfo and the list is as follows: $ modinfo module/zfs/zfs.ko filename: module/zfs/zfs.ko license: CDDL author: Sun Microsystems/Oracle, Lawrence Livermore National Laboratory description: ZFS srcversion: 8EAB1D71DACE05B5AA61567 depends: spl,znvpair,zcommon,zunicode,zavl vermagic: 2.6.32-131.0.5.el6.x86_64 SMP mod_unload modversions parm: zvol_major:Major number for zvol device (uint) parm: zvol_threads:Number of threads for zvol device (uint) parm: zio_injection_enabled:Enable fault injection (int) parm: zio_bulk_flags:Additional flags to pass to bulk buffers (int) parm: zio_delay_max:Max zio millisec delay before posting event (int) parm: zio_requeue_io_start_cut_in_line:Prioritize requeued I/O (bool) parm: zil_replay_disable:Disable intent logging replay (int) parm: zfs_nocacheflush:Disable cache flushes (bool) parm: zfs_read_chunk_size:Bytes to read per chunk (long) parm: zfs_vdev_max_pending:Max pending per-vdev I/Os (int) parm: zfs_vdev_min_pending:Min pending per-vdev I/Os (int) parm: zfs_vdev_aggregation_limit:Max vdev I/O aggregation size (int) parm: zfs_vdev_time_shift:Deadline time shift for vdev I/O (int) parm: zfs_vdev_ramp_rate:Exponential I/O issue ramp-up rate (int) parm: zfs_vdev_read_gap_limit:Aggregate read I/O over gap (int) parm: zfs_vdev_write_gap_limit:Aggregate write I/O over gap (int) parm: zfs_vdev_scheduler:I/O scheduler (charp) parm: zfs_vdev_cache_max:Inflate reads small than max (int) parm: zfs_vdev_cache_size:Total size of the per-disk cache (int) parm: zfs_vdev_cache_bshift:Shift size to inflate reads too (int) parm: zfs_scrub_limit:Max scrub/resilver I/O per leaf vdev (int) parm: zfs_recover:Set to attempt to recover from fatal errors (int) parm: spa_config_path:SPA config file (/etc/zfs/zpool.cache) (charp) parm: zfs_zevent_len_max:Max event queue length (int) parm: zfs_zevent_cols:Max event column width (int) parm: zfs_zevent_console:Log events to the console (int) parm: zfs_top_maxinflight:Max I/Os per top-level (int) parm: zfs_resilver_delay:Number of ticks to delay resilver (int) parm: zfs_scrub_delay:Number of ticks to delay scrub (int) parm: zfs_scan_idle:Idle window in clock ticks (int) parm: zfs_scan_min_time_ms:Min millisecs to scrub per txg (int) parm: zfs_free_min_time_ms:Min millisecs to free per txg (int) parm: zfs_resilver_min_time_ms:Min millisecs to resilver per txg (int) parm: zfs_no_scrub_io:Set to disable scrub I/O (bool) parm: zfs_no_scrub_prefetch:Set to disable scrub prefetching (bool) parm: zfs_txg_timeout:Max seconds worth of delta per txg (int) parm: zfs_no_write_throttle:Disable write throttling (int) parm: zfs_write_limit_shift:log2(fraction of memory) per txg (int) parm: zfs_txg_synctime_ms:Target milliseconds between tgx sync (int) parm: zfs_write_limit_min:Min tgx write limit (ulong) parm: zfs_write_limit_max:Max tgx write limit (ulong) parm: zfs_write_limit_inflated:Inflated tgx write limit (ulong) parm: zfs_write_limit_override:Override tgx write limit (ulong) parm: zfs_prefetch_disable:Disable all ZFS prefetching (int) parm: zfetch_max_streams:Max number of streams per zfetch (uint) parm: zfetch_min_sec_reap:Min time before stream reclaim (uint) parm: zfetch_block_cap:Max number of blocks to fetch at a time (uint) parm: zfetch_array_rd_sz:Number of bytes in a array_read (ulong) parm: zfs_pd_blks_max:Max number of blocks to prefetch (int) parm: zfs_dedup_prefetch:Enable prefetching dedup-ed blks (int) parm: zfs_arc_min:Min arc size (ulong) parm: zfs_arc_max:Max arc size (ulong) parm: zfs_arc_meta_limit:Meta limit for arc size (ulong) parm: zfs_arc_reduce_dnlc_percent:Meta reclaim percentage (int) parm: zfs_arc_grow_retry:Seconds before growing arc size (int) parm: zfs_arc_shrink_shift:log2(fraction of arc to reclaim) (int) parm: zfs_arc_p_min_shift:arc_c shift to calc min/max arc_p (int)
2011-05-04 02:09:28 +04:00
int zio_requeue_io_start_cut_in_line = 1;
#ifdef ZFS_DEBUG
int zio_buf_debug_limit = 16384;
#else
int zio_buf_debug_limit = 0;
#endif
2008-11-20 23:01:55 +03:00
static inline void __zio_execute(zio_t *zio);
static int
zio_cons(void *arg, void *unused, int kmflag)
{
zio_t *zio = arg;
bzero(zio, sizeof (zio_t));
mutex_init(&zio->io_lock, NULL, MUTEX_DEFAULT, NULL);
cv_init(&zio->io_cv, NULL, CV_DEFAULT, NULL);
list_create(&zio->io_parent_list, sizeof (zio_link_t),
offsetof(zio_link_t, zl_parent_node));
list_create(&zio->io_child_list, sizeof (zio_link_t),
offsetof(zio_link_t, zl_child_node));
return (0);
}
static void
zio_dest(void *arg, void *unused)
{
zio_t *zio = arg;
mutex_destroy(&zio->io_lock);
cv_destroy(&zio->io_cv);
list_destroy(&zio->io_parent_list);
list_destroy(&zio->io_child_list);
}
2008-11-20 23:01:55 +03:00
void
zio_init(void)
{
size_t c;
vmem_t *data_alloc_arena = NULL;
#ifdef _KERNEL
data_alloc_arena = zio_alloc_arena;
#endif
zio_cache = kmem_cache_create("zio_cache", sizeof (zio_t), 0,
zio_cons, zio_dest, NULL, NULL, NULL, KMC_KMEM);
2009-02-18 23:51:31 +03:00
zio_link_cache = kmem_cache_create("zio_link_cache",
Improve meta data performance Profiling the system during meta data intensive workloads such as creating/removing millions of files, revealed that the system was cpu bound. A large fraction of that cpu time was being spent waiting on the virtual address space spin lock. It turns out this was caused by certain heavily used kmem_caches being backed by virtual memory. By default a kmem_cache will dynamically determine the type of memory used based on the object size. For large objects virtual memory is usually preferable and for small object physical memory is a better choice. See the spl_slab_alloc() function for a longer discussion on this. However, there is a certain amount of gray area when defining a 'large' object. For the following caches it turns out they were just over the line: * dnode_cache * zio_cache * zio_link_cache * zio_buf_512_cache * zfs_data_buf_512_cache Now because we know there will be a lot of churn in these caches, and because we know the slabs will still be reasonably sized. We can safely request with the KMC_KMEM flag that the caches be backed with physical memory addresses. This entirely avoids the need to serialize on the virtual address space lock. As a bonus this also reduces our vmalloc usage which will be good for 32-bit kernels which have a very small virtual address space. It will also probably be good for interactive performance since unrelated processes could also block of this same global lock. Finally, we may see less cpu time being burned in the arc_reclaim and txg_sync_threads. Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov> Issue #258
2011-11-02 03:56:48 +04:00
sizeof (zio_link_t), 0, NULL, NULL, NULL, NULL, NULL, KMC_KMEM);
zio_vdev_cache = kmem_cache_create("zio_vdev_cache", sizeof(vdev_io_t),
PAGESIZE, NULL, NULL, NULL, NULL, NULL, KMC_VMEM);
2008-11-20 23:01:55 +03:00
/*
* For small buffers, we want a cache for each multiple of
* SPA_MINBLOCKSIZE. For medium-size buffers, we want a cache
* for each quarter-power of 2. For large buffers, we want
* a cache for each multiple of PAGESIZE.
*/
for (c = 0; c < SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT; c++) {
size_t size = (c + 1) << SPA_MINBLOCKSHIFT;
size_t p2 = size;
size_t align = 0;
while (p2 & (p2 - 1))
p2 &= p2 - 1;
if (size <= 4 * SPA_MINBLOCKSIZE) {
align = SPA_MINBLOCKSIZE;
} else if (P2PHASE(size, PAGESIZE) == 0) {
align = PAGESIZE;
} else if (P2PHASE(size, p2 >> 2) == 0) {
align = p2 >> 2;
}
if (align != 0) {
char name[36];
Improve meta data performance Profiling the system during meta data intensive workloads such as creating/removing millions of files, revealed that the system was cpu bound. A large fraction of that cpu time was being spent waiting on the virtual address space spin lock. It turns out this was caused by certain heavily used kmem_caches being backed by virtual memory. By default a kmem_cache will dynamically determine the type of memory used based on the object size. For large objects virtual memory is usually preferable and for small object physical memory is a better choice. See the spl_slab_alloc() function for a longer discussion on this. However, there is a certain amount of gray area when defining a 'large' object. For the following caches it turns out they were just over the line: * dnode_cache * zio_cache * zio_link_cache * zio_buf_512_cache * zfs_data_buf_512_cache Now because we know there will be a lot of churn in these caches, and because we know the slabs will still be reasonably sized. We can safely request with the KMC_KMEM flag that the caches be backed with physical memory addresses. This entirely avoids the need to serialize on the virtual address space lock. As a bonus this also reduces our vmalloc usage which will be good for 32-bit kernels which have a very small virtual address space. It will also probably be good for interactive performance since unrelated processes could also block of this same global lock. Finally, we may see less cpu time being burned in the arc_reclaim and txg_sync_threads. Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov> Issue #258
2011-11-02 03:56:48 +04:00
int flags = zio_bulk_flags;
/*
* The smallest buffers (512b) are heavily used and
* experience a lot of churn. The slabs allocated
* for them are also relatively small (32K). Thus
* in over to avoid expensive calls to vmalloc() we
* make an exception to the usual slab allocation
* policy and force these buffers to be kmem backed.
*/
if (size == (1 << SPA_MINBLOCKSHIFT))
flags |= KMC_KMEM;
2008-11-20 23:01:55 +03:00
(void) sprintf(name, "zio_buf_%lu", (ulong_t)size);
zio_buf_cache[c] = kmem_cache_create(name, size,
Improve meta data performance Profiling the system during meta data intensive workloads such as creating/removing millions of files, revealed that the system was cpu bound. A large fraction of that cpu time was being spent waiting on the virtual address space spin lock. It turns out this was caused by certain heavily used kmem_caches being backed by virtual memory. By default a kmem_cache will dynamically determine the type of memory used based on the object size. For large objects virtual memory is usually preferable and for small object physical memory is a better choice. See the spl_slab_alloc() function for a longer discussion on this. However, there is a certain amount of gray area when defining a 'large' object. For the following caches it turns out they were just over the line: * dnode_cache * zio_cache * zio_link_cache * zio_buf_512_cache * zfs_data_buf_512_cache Now because we know there will be a lot of churn in these caches, and because we know the slabs will still be reasonably sized. We can safely request with the KMC_KMEM flag that the caches be backed with physical memory addresses. This entirely avoids the need to serialize on the virtual address space lock. As a bonus this also reduces our vmalloc usage which will be good for 32-bit kernels which have a very small virtual address space. It will also probably be good for interactive performance since unrelated processes could also block of this same global lock. Finally, we may see less cpu time being burned in the arc_reclaim and txg_sync_threads. Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov> Issue #258
2011-11-02 03:56:48 +04:00
align, NULL, NULL, NULL, NULL, NULL, flags);
2008-11-20 23:01:55 +03:00
(void) sprintf(name, "zio_data_buf_%lu", (ulong_t)size);
zio_data_buf_cache[c] = kmem_cache_create(name, size,
Improve meta data performance Profiling the system during meta data intensive workloads such as creating/removing millions of files, revealed that the system was cpu bound. A large fraction of that cpu time was being spent waiting on the virtual address space spin lock. It turns out this was caused by certain heavily used kmem_caches being backed by virtual memory. By default a kmem_cache will dynamically determine the type of memory used based on the object size. For large objects virtual memory is usually preferable and for small object physical memory is a better choice. See the spl_slab_alloc() function for a longer discussion on this. However, there is a certain amount of gray area when defining a 'large' object. For the following caches it turns out they were just over the line: * dnode_cache * zio_cache * zio_link_cache * zio_buf_512_cache * zfs_data_buf_512_cache Now because we know there will be a lot of churn in these caches, and because we know the slabs will still be reasonably sized. We can safely request with the KMC_KMEM flag that the caches be backed with physical memory addresses. This entirely avoids the need to serialize on the virtual address space lock. As a bonus this also reduces our vmalloc usage which will be good for 32-bit kernels which have a very small virtual address space. It will also probably be good for interactive performance since unrelated processes could also block of this same global lock. Finally, we may see less cpu time being burned in the arc_reclaim and txg_sync_threads. Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov> Issue #258
2011-11-02 03:56:48 +04:00
align, NULL, NULL, NULL, NULL,
data_alloc_arena, flags);
2008-11-20 23:01:55 +03:00
}
}
while (--c != 0) {
ASSERT(zio_buf_cache[c] != NULL);
if (zio_buf_cache[c - 1] == NULL)
zio_buf_cache[c - 1] = zio_buf_cache[c];
ASSERT(zio_data_buf_cache[c] != NULL);
if (zio_data_buf_cache[c - 1] == NULL)
zio_data_buf_cache[c - 1] = zio_data_buf_cache[c];
}
/*
* The zio write taskqs have 1 thread per cpu, allow 1/2 of the taskqs
* to fail 3 times per txg or 8 failures, whichever is greater.
*/
zfs_mg_alloc_failures = MAX((3 * max_ncpus / 2), 8);
2008-11-20 23:01:55 +03:00
zio_inject_init();
lz4_init();
2008-11-20 23:01:55 +03:00
}
void
zio_fini(void)
{
size_t c;
kmem_cache_t *last_cache = NULL;
kmem_cache_t *last_data_cache = NULL;
for (c = 0; c < SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT; c++) {
if (zio_buf_cache[c] != last_cache) {
last_cache = zio_buf_cache[c];
kmem_cache_destroy(zio_buf_cache[c]);
}
zio_buf_cache[c] = NULL;
if (zio_data_buf_cache[c] != last_data_cache) {
last_data_cache = zio_data_buf_cache[c];
kmem_cache_destroy(zio_data_buf_cache[c]);
}
zio_data_buf_cache[c] = NULL;
}
kmem_cache_destroy(zio_vdev_cache);
2009-02-18 23:51:31 +03:00
kmem_cache_destroy(zio_link_cache);
2008-11-20 23:01:55 +03:00
kmem_cache_destroy(zio_cache);
zio_inject_fini();
lz4_fini();
2008-11-20 23:01:55 +03:00
}
/*
* ==========================================================================
* Allocate and free I/O buffers
* ==========================================================================
*/
/*
* Use zio_buf_alloc to allocate ZFS metadata. This data will appear in a
* crashdump if the kernel panics, so use it judiciously. Obviously, it's
* useful to inspect ZFS metadata, but if possible, we should avoid keeping
* excess / transient data in-core during a crashdump.
*/
void *
zio_buf_alloc(size_t size)
{
size_t c = (size - 1) >> SPA_MINBLOCKSHIFT;
ASSERT(c < SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT);
return (kmem_cache_alloc(zio_buf_cache[c], KM_PUSHPAGE | KM_NODEBUG));
2008-11-20 23:01:55 +03:00
}
/*
* Use zio_data_buf_alloc to allocate data. The data will not appear in a
* crashdump if the kernel panics. This exists so that we will limit the amount
* of ZFS data that shows up in a kernel crashdump. (Thus reducing the amount
* of kernel heap dumped to disk when the kernel panics)
*/
void *
zio_data_buf_alloc(size_t size)
{
size_t c = (size - 1) >> SPA_MINBLOCKSHIFT;
ASSERT(c < SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT);
return (kmem_cache_alloc(zio_data_buf_cache[c],
KM_PUSHPAGE | KM_NODEBUG));
2008-11-20 23:01:55 +03:00
}
void
zio_buf_free(void *buf, size_t size)
{
size_t c = (size - 1) >> SPA_MINBLOCKSHIFT;
ASSERT(c < SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT);
kmem_cache_free(zio_buf_cache[c], buf);
}
void
zio_data_buf_free(void *buf, size_t size)
{
size_t c = (size - 1) >> SPA_MINBLOCKSHIFT;
ASSERT(c < SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT);
kmem_cache_free(zio_data_buf_cache[c], buf);
}
/*
* Dedicated I/O buffers to ensure that memory fragmentation never prevents
* or significantly delays the issuing of a zio. These buffers are used
* to aggregate I/O and could be used for raidz stripes.
*/
void *
zio_vdev_alloc(void)
{
return (kmem_cache_alloc(zio_vdev_cache, KM_PUSHPAGE));
}
void
zio_vdev_free(void *buf)
{
kmem_cache_free(zio_vdev_cache, buf);
}
2008-11-20 23:01:55 +03:00
/*
* ==========================================================================
* Push and pop I/O transform buffers
* ==========================================================================
*/
static void
zio_push_transform(zio_t *zio, void *data, uint64_t size, uint64_t bufsize,
zio_transform_func_t *transform)
2008-11-20 23:01:55 +03:00
{
zio_transform_t *zt = kmem_alloc(sizeof (zio_transform_t), KM_PUSHPAGE);
2008-11-20 23:01:55 +03:00
zt->zt_orig_data = zio->io_data;
zt->zt_orig_size = zio->io_size;
2008-11-20 23:01:55 +03:00
zt->zt_bufsize = bufsize;
zt->zt_transform = transform;
2008-11-20 23:01:55 +03:00
zt->zt_next = zio->io_transform_stack;
zio->io_transform_stack = zt;
zio->io_data = data;
zio->io_size = size;
}
static void
zio_pop_transforms(zio_t *zio)
2008-11-20 23:01:55 +03:00
{
zio_transform_t *zt;
while ((zt = zio->io_transform_stack) != NULL) {
if (zt->zt_transform != NULL)
zt->zt_transform(zio,
zt->zt_orig_data, zt->zt_orig_size);
2008-11-20 23:01:55 +03:00
if (zt->zt_bufsize != 0)
zio_buf_free(zio->io_data, zt->zt_bufsize);
2008-11-20 23:01:55 +03:00
zio->io_data = zt->zt_orig_data;
zio->io_size = zt->zt_orig_size;
zio->io_transform_stack = zt->zt_next;
2008-11-20 23:01:55 +03:00
kmem_free(zt, sizeof (zio_transform_t));
2008-11-20 23:01:55 +03:00
}
}
/*
* ==========================================================================
* I/O transform callbacks for subblocks and decompression
* ==========================================================================
*/
static void
zio_subblock(zio_t *zio, void *data, uint64_t size)
{
ASSERT(zio->io_size > size);
if (zio->io_type == ZIO_TYPE_READ)
bcopy(zio->io_data, data, size);
}
static void
zio_decompress(zio_t *zio, void *data, uint64_t size)
{
if (zio->io_error == 0 &&
zio_decompress_data(BP_GET_COMPRESS(zio->io_bp),
zio->io_data, data, zio->io_size, size) != 0)
zio->io_error = EIO;
}
/*
* ==========================================================================
* I/O parent/child relationships and pipeline interlocks
* ==========================================================================
*/
2009-02-18 23:51:31 +03:00
/*
* NOTE - Callers to zio_walk_parents() and zio_walk_children must
* continue calling these functions until they return NULL.
* Otherwise, the next caller will pick up the list walk in
* some indeterminate state. (Otherwise every caller would
* have to pass in a cookie to keep the state represented by
* io_walk_link, which gets annoying.)
*/
zio_t *
zio_walk_parents(zio_t *cio)
{
zio_link_t *zl = cio->io_walk_link;
list_t *pl = &cio->io_parent_list;
2009-02-18 23:51:31 +03:00
zl = (zl == NULL) ? list_head(pl) : list_next(pl, zl);
cio->io_walk_link = zl;
if (zl == NULL)
return (NULL);
ASSERT(zl->zl_child == cio);
return (zl->zl_parent);
}
zio_t *
zio_walk_children(zio_t *pio)
{
zio_link_t *zl = pio->io_walk_link;
list_t *cl = &pio->io_child_list;
zl = (zl == NULL) ? list_head(cl) : list_next(cl, zl);
pio->io_walk_link = zl;
if (zl == NULL)
return (NULL);
ASSERT(zl->zl_parent == pio);
return (zl->zl_child);
}
zio_t *
zio_unique_parent(zio_t *cio)
{
zio_t *pio = zio_walk_parents(cio);
VERIFY(zio_walk_parents(cio) == NULL);
return (pio);
}
void
zio_add_child(zio_t *pio, zio_t *cio)
{
zio_link_t *zl = kmem_cache_alloc(zio_link_cache, KM_PUSHPAGE);
int w;
2009-02-18 23:51:31 +03:00
/*
* Logical I/Os can have logical, gang, or vdev children.
* Gang I/Os can have gang or vdev children.
* Vdev I/Os can only have vdev children.
* The following ASSERT captures all of these constraints.
*/
ASSERT(cio->io_child_type <= pio->io_child_type);
zl->zl_parent = pio;
zl->zl_child = cio;
mutex_enter(&cio->io_lock);
mutex_enter(&pio->io_lock);
2009-02-18 23:51:31 +03:00
ASSERT(pio->io_state[ZIO_WAIT_DONE] == 0);
for (w = 0; w < ZIO_WAIT_TYPES; w++)
2009-02-18 23:51:31 +03:00
pio->io_children[cio->io_child_type][w] += !cio->io_state[w];
list_insert_head(&pio->io_child_list, zl);
list_insert_head(&cio->io_parent_list, zl);
pio->io_child_count++;
cio->io_parent_count++;
mutex_exit(&pio->io_lock);
2009-02-18 23:51:31 +03:00
mutex_exit(&cio->io_lock);
}
2008-11-20 23:01:55 +03:00
static void
2009-02-18 23:51:31 +03:00
zio_remove_child(zio_t *pio, zio_t *cio, zio_link_t *zl)
{
2009-02-18 23:51:31 +03:00
ASSERT(zl->zl_parent == pio);
ASSERT(zl->zl_child == cio);
2009-02-18 23:51:31 +03:00
mutex_enter(&cio->io_lock);
mutex_enter(&pio->io_lock);
2009-02-18 23:51:31 +03:00
list_remove(&pio->io_child_list, zl);
list_remove(&cio->io_parent_list, zl);
pio->io_child_count--;
cio->io_parent_count--;
mutex_exit(&pio->io_lock);
2009-02-18 23:51:31 +03:00
mutex_exit(&cio->io_lock);
kmem_cache_free(zio_link_cache, zl);
}
static boolean_t
zio_wait_for_children(zio_t *zio, enum zio_child child, enum zio_wait_type wait)
2008-11-20 23:01:55 +03:00
{
uint64_t *countp = &zio->io_children[child][wait];
boolean_t waiting = B_FALSE;
mutex_enter(&zio->io_lock);
ASSERT(zio->io_stall == NULL);
if (*countp != 0) {
zio->io_stage >>= 1;
zio->io_stall = countp;
waiting = B_TRUE;
}
mutex_exit(&zio->io_lock);
return (waiting);
}
2008-11-20 23:01:55 +03:00
__attribute__((always_inline))
static inline void
zio_notify_parent(zio_t *pio, zio_t *zio, enum zio_wait_type wait)
{
uint64_t *countp = &pio->io_children[zio->io_child_type][wait];
int *errorp = &pio->io_child_error[zio->io_child_type];
2008-11-20 23:01:55 +03:00
mutex_enter(&pio->io_lock);
if (zio->io_error && !(zio->io_flags & ZIO_FLAG_DONT_PROPAGATE))
*errorp = zio_worst_error(*errorp, zio->io_error);
pio->io_reexecute |= zio->io_reexecute;
ASSERT3U(*countp, >, 0);
if (--*countp == 0 && pio->io_stall == countp) {
pio->io_stall = NULL;
mutex_exit(&pio->io_lock);
__zio_execute(pio);
} else {
mutex_exit(&pio->io_lock);
2008-11-20 23:01:55 +03:00
}
}
static void
zio_inherit_child_errors(zio_t *zio, enum zio_child c)
{
if (zio->io_child_error[c] != 0 && zio->io_error == 0)
zio->io_error = zio->io_child_error[c];
}
2008-11-20 23:01:55 +03:00
/*
* ==========================================================================
* Create the various types of I/O (read, write, free, etc)
2008-11-20 23:01:55 +03:00
* ==========================================================================
*/
static zio_t *
zio_create(zio_t *pio, spa_t *spa, uint64_t txg, const blkptr_t *bp,
2008-11-20 23:01:55 +03:00
void *data, uint64_t size, zio_done_func_t *done, void *private,
zio_type_t type, int priority, enum zio_flag flags,
vdev_t *vd, uint64_t offset, const zbookmark_t *zb,
enum zio_stage stage, enum zio_stage pipeline)
2008-11-20 23:01:55 +03:00
{
zio_t *zio;
ASSERT3U(size, <=, SPA_MAXBLOCKSIZE);
ASSERT(P2PHASE(size, SPA_MINBLOCKSIZE) == 0);
ASSERT(P2PHASE(offset, SPA_MINBLOCKSIZE) == 0);
ASSERT(!vd || spa_config_held(spa, SCL_STATE_ALL, RW_READER));
ASSERT(!bp || !(flags & ZIO_FLAG_CONFIG_WRITER));
ASSERT(vd || stage == ZIO_STAGE_OPEN);
2008-11-20 23:01:55 +03:00
zio = kmem_cache_alloc(zio_cache, KM_PUSHPAGE);
2009-02-18 23:51:31 +03:00
if (vd != NULL)
zio->io_child_type = ZIO_CHILD_VDEV;
else if (flags & ZIO_FLAG_GANG_CHILD)
zio->io_child_type = ZIO_CHILD_GANG;
else if (flags & ZIO_FLAG_DDT_CHILD)
zio->io_child_type = ZIO_CHILD_DDT;
else
zio->io_child_type = ZIO_CHILD_LOGICAL;
2008-11-20 23:01:55 +03:00
if (bp != NULL) {
zio->io_logical = NULL;
zio->io_bp = (blkptr_t *)bp;
2008-11-20 23:01:55 +03:00
zio->io_bp_copy = *bp;
zio->io_bp_orig = *bp;
if (type != ZIO_TYPE_WRITE ||
zio->io_child_type == ZIO_CHILD_DDT)
zio->io_bp = &zio->io_bp_copy; /* so caller can free */
2009-07-03 02:44:48 +04:00
if (zio->io_child_type == ZIO_CHILD_LOGICAL)
zio->io_logical = zio;
2009-07-03 02:44:48 +04:00
if (zio->io_child_type > ZIO_CHILD_GANG && BP_IS_GANG(bp))
pipeline |= ZIO_GANG_STAGES;
} else {
zio->io_logical = NULL;
zio->io_bp = NULL;
bzero(&zio->io_bp_copy, sizeof (blkptr_t));
bzero(&zio->io_bp_orig, sizeof (blkptr_t));
2008-11-20 23:01:55 +03:00
}
zio->io_spa = spa;
zio->io_txg = txg;
zio->io_ready = NULL;
2008-11-20 23:01:55 +03:00
zio->io_done = done;
zio->io_private = private;
zio->io_prev_space_delta = 0;
2008-11-20 23:01:55 +03:00
zio->io_type = type;
zio->io_priority = priority;
zio->io_vd = vd;
zio->io_vsd = NULL;
zio->io_vsd_ops = NULL;
zio->io_offset = offset;
zio->io_deadline = 0;
zio->io_timestamp = 0;
zio->io_delta = 0;
zio->io_delay = 0;
zio->io_orig_data = zio->io_data = data;
zio->io_orig_size = zio->io_size = size;
zio->io_orig_flags = zio->io_flags = flags;
zio->io_orig_stage = zio->io_stage = stage;
zio->io_orig_pipeline = zio->io_pipeline = pipeline;
bzero(&zio->io_prop, sizeof (zio_prop_t));
zio->io_cmd = 0;
zio->io_reexecute = 0;
zio->io_bp_override = NULL;
zio->io_walk_link = NULL;
zio->io_transform_stack = NULL;
zio->io_error = 0;
zio->io_child_count = 0;
zio->io_parent_count = 0;
zio->io_stall = NULL;
zio->io_gang_leader = NULL;
zio->io_gang_tree = NULL;
zio->io_executor = NULL;
zio->io_waiter = NULL;
zio->io_cksum_report = NULL;
zio->io_ena = 0;
bzero(zio->io_child_error, sizeof (int) * ZIO_CHILD_TYPES);
bzero(zio->io_children,
sizeof (uint64_t) * ZIO_CHILD_TYPES * ZIO_WAIT_TYPES);
bzero(&zio->io_bookmark, sizeof (zbookmark_t));
2008-11-20 23:01:55 +03:00
2009-02-18 23:51:31 +03:00
zio->io_state[ZIO_WAIT_READY] = (stage >= ZIO_STAGE_READY);
zio->io_state[ZIO_WAIT_DONE] = (stage >= ZIO_STAGE_DONE);
if (zb != NULL)
zio->io_bookmark = *zb;
if (pio != NULL) {
if (zio->io_logical == NULL)
2008-11-20 23:01:55 +03:00
zio->io_logical = pio->io_logical;
2009-07-03 02:44:48 +04:00
if (zio->io_child_type == ZIO_CHILD_GANG)
zio->io_gang_leader = pio->io_gang_leader;
zio_add_child(pio, zio);
2008-11-20 23:01:55 +03:00
}
taskq_init_ent(&zio->io_tqent);
2008-11-20 23:01:55 +03:00
return (zio);
}
static void
zio_destroy(zio_t *zio)
2008-11-20 23:01:55 +03:00
{
kmem_cache_free(zio_cache, zio);
2008-11-20 23:01:55 +03:00
}
zio_t *
2009-02-18 23:51:31 +03:00
zio_null(zio_t *pio, spa_t *spa, vdev_t *vd, zio_done_func_t *done,
void *private, enum zio_flag flags)
2008-11-20 23:01:55 +03:00
{
zio_t *zio;
zio = zio_create(pio, spa, 0, NULL, NULL, 0, done, private,
2009-02-18 23:51:31 +03:00
ZIO_TYPE_NULL, ZIO_PRIORITY_NOW, flags, vd, 0, NULL,
ZIO_STAGE_OPEN, ZIO_INTERLOCK_PIPELINE);
2008-11-20 23:01:55 +03:00
return (zio);
}
zio_t *
zio_root(spa_t *spa, zio_done_func_t *done, void *private, enum zio_flag flags)
2008-11-20 23:01:55 +03:00
{
2009-02-18 23:51:31 +03:00
return (zio_null(NULL, spa, NULL, done, private, flags));
2008-11-20 23:01:55 +03:00
}
zio_t *
zio_read(zio_t *pio, spa_t *spa, const blkptr_t *bp,
void *data, uint64_t size, zio_done_func_t *done, void *private,
int priority, enum zio_flag flags, const zbookmark_t *zb)
2008-11-20 23:01:55 +03:00
{
zio_t *zio;
zio = zio_create(pio, spa, BP_PHYSICAL_BIRTH(bp), bp,
data, size, done, private,
ZIO_TYPE_READ, priority, flags, NULL, 0, zb,
ZIO_STAGE_OPEN, (flags & ZIO_FLAG_DDT_CHILD) ?
ZIO_DDT_CHILD_READ_PIPELINE : ZIO_READ_PIPELINE);
2008-11-20 23:01:55 +03:00
return (zio);
}
2008-11-20 23:01:55 +03:00
zio_t *
zio_write(zio_t *pio, spa_t *spa, uint64_t txg, blkptr_t *bp,
void *data, uint64_t size, const zio_prop_t *zp,
zio_done_func_t *ready, zio_done_func_t *done, void *private,
int priority, enum zio_flag flags, const zbookmark_t *zb)
2008-11-20 23:01:55 +03:00
{
zio_t *zio;
ASSERT(zp->zp_checksum >= ZIO_CHECKSUM_OFF &&
zp->zp_checksum < ZIO_CHECKSUM_FUNCTIONS &&
zp->zp_compress >= ZIO_COMPRESS_OFF &&
zp->zp_compress < ZIO_COMPRESS_FUNCTIONS &&
DMU_OT_IS_VALID(zp->zp_type) &&
zp->zp_level < 32 &&
zp->zp_copies > 0 &&
zp->zp_copies <= spa_max_replication(spa) &&
zp->zp_dedup <= 1 &&
zp->zp_dedup_verify <= 1);
2008-11-20 23:01:55 +03:00
zio = zio_create(pio, spa, txg, bp, data, size, done, private,
ZIO_TYPE_WRITE, priority, flags, NULL, 0, zb,
ZIO_STAGE_OPEN, (flags & ZIO_FLAG_DDT_CHILD) ?
ZIO_DDT_CHILD_WRITE_PIPELINE : ZIO_WRITE_PIPELINE);
2008-11-20 23:01:55 +03:00
zio->io_ready = ready;
zio->io_prop = *zp;
2008-11-20 23:01:55 +03:00
return (zio);
}
zio_t *
zio_rewrite(zio_t *pio, spa_t *spa, uint64_t txg, blkptr_t *bp, void *data,
uint64_t size, zio_done_func_t *done, void *private, int priority,
enum zio_flag flags, zbookmark_t *zb)
2008-11-20 23:01:55 +03:00
{
zio_t *zio;
zio = zio_create(pio, spa, txg, bp, data, size, done, private,
ZIO_TYPE_WRITE, priority, flags, NULL, 0, zb,
ZIO_STAGE_OPEN, ZIO_REWRITE_PIPELINE);
2008-11-20 23:01:55 +03:00
return (zio);
}
void
zio_write_override(zio_t *zio, blkptr_t *bp, int copies)
{
ASSERT(zio->io_type == ZIO_TYPE_WRITE);
ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
ASSERT(zio->io_stage == ZIO_STAGE_OPEN);
ASSERT(zio->io_txg == spa_syncing_txg(zio->io_spa));
zio->io_prop.zp_copies = copies;
zio->io_bp_override = bp;
}
void
zio_free(spa_t *spa, uint64_t txg, const blkptr_t *bp)
{
bplist_append(&spa->spa_free_bplist[txg & TXG_MASK], bp);
}
2008-11-20 23:01:55 +03:00
zio_t *
zio_free_sync(zio_t *pio, spa_t *spa, uint64_t txg, const blkptr_t *bp,
enum zio_flag flags)
2008-11-20 23:01:55 +03:00
{
zio_t *zio;
dprintf_bp(bp, "freeing in txg %llu, pass %u",
(longlong_t)txg, spa->spa_sync_pass);
2008-11-20 23:01:55 +03:00
ASSERT(!BP_IS_HOLE(bp));
ASSERT(spa_syncing_txg(spa) == txg);
ASSERT(spa_sync_pass(spa) < zfs_sync_pass_deferred_free);
2008-11-20 23:01:55 +03:00
Illumos #3805 arc shouldn't cache freed blocks 3805 arc shouldn't cache freed blocks Reviewed by: George Wilson <george.wilson@delphix.com> Reviewed by: Christopher Siden <christopher.siden@delphix.com> Reviewed by: Richard Elling <richard.elling@dey-sys.com> Reviewed by: Will Andrews <will@firepipe.net> Approved by: Dan McDonald <danmcd@nexenta.com> References: illumos/illumos-gate@6e6d5868f52089b9026785bd90257a3d3f6e5ee2 https://www.illumos.org/issues/3805 ZFS should proactively evict freed blocks from the cache. On dcenter, we saw that we were caching ~256GB of metadata, while the pool only had <4GB of metadata on disk. We were wasting about half the system's RAM (252GB) on blocks that have been freed. Even though these freed blocks will never be used again, and thus will eventually be evicted, this causes us to use memory inefficiently for 2 reasons: 1. A block that is freed has no chance of being accessed again, but will be kept in memory preferentially to a block that was accessed before it (and is thus older) but has not been freed and thus has at least some chance of being accessed again. 2. We partition the ARC into several buckets: user data that has been accessed only once (MRU) metadata that has been accessed only once (MRU) user data that has been accessed more than once (MFU) metadata that has been accessed more than once (MFU) The user data vs metadata split is somewhat arbitrary, and the primary control on how much memory is used to cache data vs metadata is to simply try to keep the proportion the same as it has been in the past (each bucket "evicts against" itself). The secondary control is to evict data before evicting metadata. Because of this bucketing, we may end up with one bucket mostly containing freed blocks that are very old, while another bucket has more recently accessed, still-allocated blocks. Data in the useful bucket (with still-allocated blocks) may be evicted in preference to data in the useless bucket (with old, freed blocks). On dcenter, we saw that the MFU metadata bucket was 230MB, while the MFU data bucket was 27GB and the MRU metadata bucket was 256GB. However, the vast majority of data in the MRU metadata bucket (256GB) was freed blocks, and thus useless. Meanwhile, the MFU metadata bucket (230MB) was constantly evicting useful blocks that will be soon needed. The problem of cache segmentation is a larger problem that needs more investigation. However, if we stop caching freed blocks, it should reduce the impact of this more fundamental issue. Ported-by: Richard Yao <ryao@cs.stonybrook.edu> Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov> Closes #1503
2013-06-07 02:46:55 +04:00
arc_freed(spa, bp);
zio = zio_create(pio, spa, txg, bp, NULL, BP_GET_PSIZE(bp),
NULL, NULL, ZIO_TYPE_FREE, ZIO_PRIORITY_FREE, flags,
NULL, 0, NULL, ZIO_STAGE_OPEN, ZIO_FREE_PIPELINE);
2008-11-20 23:01:55 +03:00
return (zio);
}
zio_t *
zio_claim(zio_t *pio, spa_t *spa, uint64_t txg, const blkptr_t *bp,
zio_done_func_t *done, void *private, enum zio_flag flags)
2008-11-20 23:01:55 +03:00
{
zio_t *zio;
/*
* A claim is an allocation of a specific block. Claims are needed
* to support immediate writes in the intent log. The issue is that
* immediate writes contain committed data, but in a txg that was
* *not* committed. Upon opening the pool after an unclean shutdown,
* the intent log claims all blocks that contain immediate write data
* so that the SPA knows they're in use.
*
* All claims *must* be resolved in the first txg -- before the SPA
* starts allocating blocks -- so that nothing is allocated twice.
* If txg == 0 we just verify that the block is claimable.
2008-11-20 23:01:55 +03:00
*/
ASSERT3U(spa->spa_uberblock.ub_rootbp.blk_birth, <, spa_first_txg(spa));
ASSERT(txg == spa_first_txg(spa) || txg == 0);
ASSERT(!BP_GET_DEDUP(bp) || !spa_writeable(spa)); /* zdb(1M) */
2008-11-20 23:01:55 +03:00
zio = zio_create(pio, spa, txg, bp, NULL, BP_GET_PSIZE(bp),
done, private, ZIO_TYPE_CLAIM, ZIO_PRIORITY_NOW, flags,
NULL, 0, NULL, ZIO_STAGE_OPEN, ZIO_CLAIM_PIPELINE);
2008-11-20 23:01:55 +03:00
return (zio);
}
zio_t *
zio_ioctl(zio_t *pio, spa_t *spa, vdev_t *vd, int cmd,
zio_done_func_t *done, void *private, int priority, enum zio_flag flags)
2008-11-20 23:01:55 +03:00
{
zio_t *zio;
int c;
if (vd->vdev_children == 0) {
zio = zio_create(pio, spa, 0, NULL, NULL, 0, done, private,
ZIO_TYPE_IOCTL, priority, flags, vd, 0, NULL,
2008-11-20 23:01:55 +03:00
ZIO_STAGE_OPEN, ZIO_IOCTL_PIPELINE);
zio->io_cmd = cmd;
} else {
2009-02-18 23:51:31 +03:00
zio = zio_null(pio, spa, NULL, NULL, NULL, flags);
2008-11-20 23:01:55 +03:00
for (c = 0; c < vd->vdev_children; c++)
zio_nowait(zio_ioctl(zio, spa, vd->vdev_child[c], cmd,
done, private, priority, flags));
}
return (zio);
}
zio_t *
zio_read_phys(zio_t *pio, vdev_t *vd, uint64_t offset, uint64_t size,
void *data, int checksum, zio_done_func_t *done, void *private,
int priority, enum zio_flag flags, boolean_t labels)
2008-11-20 23:01:55 +03:00
{
zio_t *zio;
ASSERT(vd->vdev_children == 0);
ASSERT(!labels || offset + size <= VDEV_LABEL_START_SIZE ||
offset >= vd->vdev_psize - VDEV_LABEL_END_SIZE);
ASSERT3U(offset + size, <=, vd->vdev_psize);
2008-11-20 23:01:55 +03:00
zio = zio_create(pio, vd->vdev_spa, 0, NULL, data, size, done, private,
ZIO_TYPE_READ, priority, flags, vd, offset, NULL,
2008-11-20 23:01:55 +03:00
ZIO_STAGE_OPEN, ZIO_READ_PHYS_PIPELINE);
zio->io_prop.zp_checksum = checksum;
2008-11-20 23:01:55 +03:00
return (zio);
}
zio_t *
zio_write_phys(zio_t *pio, vdev_t *vd, uint64_t offset, uint64_t size,
void *data, int checksum, zio_done_func_t *done, void *private,
int priority, enum zio_flag flags, boolean_t labels)
2008-11-20 23:01:55 +03:00
{
zio_t *zio;
ASSERT(vd->vdev_children == 0);
ASSERT(!labels || offset + size <= VDEV_LABEL_START_SIZE ||
offset >= vd->vdev_psize - VDEV_LABEL_END_SIZE);
ASSERT3U(offset + size, <=, vd->vdev_psize);
2008-11-20 23:01:55 +03:00
zio = zio_create(pio, vd->vdev_spa, 0, NULL, data, size, done, private,
ZIO_TYPE_WRITE, priority, flags, vd, offset, NULL,
2008-11-20 23:01:55 +03:00
ZIO_STAGE_OPEN, ZIO_WRITE_PHYS_PIPELINE);
zio->io_prop.zp_checksum = checksum;
2008-11-20 23:01:55 +03:00
if (zio_checksum_table[checksum].ci_eck) {
2008-11-20 23:01:55 +03:00
/*
* zec checksums are necessarily destructive -- they modify
* the end of the write buffer to hold the verifier/checksum.
2008-11-20 23:01:55 +03:00
* Therefore, we must make a local copy in case the data is
* being written to multiple places in parallel.
2008-11-20 23:01:55 +03:00
*/
void *wbuf = zio_buf_alloc(size);
2008-11-20 23:01:55 +03:00
bcopy(data, wbuf, size);
zio_push_transform(zio, wbuf, size, size, NULL);
2008-11-20 23:01:55 +03:00
}
return (zio);
}
/*
* Create a child I/O to do some work for us.
2008-11-20 23:01:55 +03:00
*/
zio_t *
zio_vdev_child_io(zio_t *pio, blkptr_t *bp, vdev_t *vd, uint64_t offset,
void *data, uint64_t size, int type, int priority, enum zio_flag flags,
2008-11-20 23:01:55 +03:00
zio_done_func_t *done, void *private)
{
enum zio_stage pipeline = ZIO_VDEV_CHILD_PIPELINE;
zio_t *zio;
ASSERT(vd->vdev_parent ==
(pio->io_vd ? pio->io_vd : pio->io_spa->spa_root_vdev));
2008-11-20 23:01:55 +03:00
if (type == ZIO_TYPE_READ && bp != NULL) {
/*
* If we have the bp, then the child should perform the
* checksum and the parent need not. This pushes error
* detection as close to the leaves as possible and
* eliminates redundant checksums in the interior nodes.
*/
pipeline |= ZIO_STAGE_CHECKSUM_VERIFY;
pio->io_pipeline &= ~ZIO_STAGE_CHECKSUM_VERIFY;
2008-11-20 23:01:55 +03:00
}
if (vd->vdev_children == 0)
offset += VDEV_LABEL_START_SIZE;
flags |= ZIO_VDEV_CHILD_FLAGS(pio) | ZIO_FLAG_DONT_PROPAGATE;
/*
* If we've decided to do a repair, the write is not speculative --
* even if the original read was.
*/
if (flags & ZIO_FLAG_IO_REPAIR)
flags &= ~ZIO_FLAG_SPECULATIVE;
zio = zio_create(pio, pio->io_spa, pio->io_txg, bp, data, size,
done, private, type, priority, flags, vd, offset, &pio->io_bookmark,
ZIO_STAGE_VDEV_IO_START >> 1, pipeline);
2008-11-20 23:01:55 +03:00
return (zio);
2008-11-20 23:01:55 +03:00
}
zio_t *
zio_vdev_delegated_io(vdev_t *vd, uint64_t offset, void *data, uint64_t size,
int type, int priority, enum zio_flag flags,
zio_done_func_t *done, void *private)
2008-11-20 23:01:55 +03:00
{
zio_t *zio;
2008-11-20 23:01:55 +03:00
ASSERT(vd->vdev_ops->vdev_op_leaf);
2008-11-20 23:01:55 +03:00
zio = zio_create(NULL, vd->vdev_spa, 0, NULL,
data, size, done, private, type, priority,
flags | ZIO_FLAG_CANFAIL | ZIO_FLAG_DONT_RETRY,
vd, offset, NULL,
ZIO_STAGE_VDEV_IO_START >> 1, ZIO_VDEV_CHILD_PIPELINE);
2008-11-20 23:01:55 +03:00
return (zio);
2008-11-20 23:01:55 +03:00
}
void
zio_flush(zio_t *zio, vdev_t *vd)
2008-11-20 23:01:55 +03:00
{
zio_nowait(zio_ioctl(zio, zio->io_spa, vd, DKIOCFLUSHWRITECACHE,
NULL, NULL, ZIO_PRIORITY_NOW,
ZIO_FLAG_CANFAIL | ZIO_FLAG_DONT_PROPAGATE | ZIO_FLAG_DONT_RETRY));
2008-11-20 23:01:55 +03:00
}
void
zio_shrink(zio_t *zio, uint64_t size)
{
ASSERT(zio->io_executor == NULL);
ASSERT(zio->io_orig_size == zio->io_size);
ASSERT(size <= zio->io_size);
/*
* We don't shrink for raidz because of problems with the
* reconstruction when reading back less than the block size.
* Note, BP_IS_RAIDZ() assumes no compression.
*/
ASSERT(BP_GET_COMPRESS(zio->io_bp) == ZIO_COMPRESS_OFF);
if (!BP_IS_RAIDZ(zio->io_bp))
zio->io_orig_size = zio->io_size = size;
}
2008-11-20 23:01:55 +03:00
/*
* ==========================================================================
* Prepare to read and write logical blocks
2008-11-20 23:01:55 +03:00
* ==========================================================================
*/
2008-11-20 23:01:55 +03:00
static int
zio_read_bp_init(zio_t *zio)
2008-11-20 23:01:55 +03:00
{
blkptr_t *bp = zio->io_bp;
2008-11-20 23:01:55 +03:00
2009-01-16 00:59:39 +03:00
if (BP_GET_COMPRESS(bp) != ZIO_COMPRESS_OFF &&
2009-07-03 02:44:48 +04:00
zio->io_child_type == ZIO_CHILD_LOGICAL &&
!(zio->io_flags & ZIO_FLAG_RAW)) {
uint64_t psize = BP_GET_PSIZE(bp);
void *cbuf = zio_buf_alloc(psize);
zio_push_transform(zio, cbuf, psize, psize, zio_decompress);
2008-11-20 23:01:55 +03:00
}
if (!DMU_OT_IS_METADATA(BP_GET_TYPE(bp)) && BP_GET_LEVEL(bp) == 0)
zio->io_flags |= ZIO_FLAG_DONT_CACHE;
if (BP_GET_TYPE(bp) == DMU_OT_DDT_ZAP)
zio->io_flags |= ZIO_FLAG_DONT_CACHE;
if (BP_GET_DEDUP(bp) && zio->io_child_type == ZIO_CHILD_LOGICAL)
zio->io_pipeline = ZIO_DDT_READ_PIPELINE;
return (ZIO_PIPELINE_CONTINUE);
2008-11-20 23:01:55 +03:00
}
static int
zio_write_bp_init(zio_t *zio)
2008-11-20 23:01:55 +03:00
{
spa_t *spa = zio->io_spa;
zio_prop_t *zp = &zio->io_prop;
enum zio_compress compress = zp->zp_compress;
2008-11-20 23:01:55 +03:00
blkptr_t *bp = zio->io_bp;
uint64_t lsize = zio->io_size;
uint64_t psize = lsize;
int pass = 1;
2008-11-20 23:01:55 +03:00
/*
* If our children haven't all reached the ready stage,
* wait for them and then repeat this pipeline stage.
*/
if (zio_wait_for_children(zio, ZIO_CHILD_GANG, ZIO_WAIT_READY) ||
zio_wait_for_children(zio, ZIO_CHILD_LOGICAL, ZIO_WAIT_READY))
return (ZIO_PIPELINE_STOP);
2008-11-20 23:01:55 +03:00
if (!IO_IS_ALLOCATING(zio))
return (ZIO_PIPELINE_CONTINUE);
2008-11-20 23:01:55 +03:00
ASSERT(zio->io_child_type != ZIO_CHILD_DDT);
if (zio->io_bp_override) {
ASSERT(bp->blk_birth != zio->io_txg);
ASSERT(BP_GET_DEDUP(zio->io_bp_override) == 0);
*bp = *zio->io_bp_override;
zio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
if (BP_IS_HOLE(bp) || !zp->zp_dedup)
return (ZIO_PIPELINE_CONTINUE);
ASSERT(zio_checksum_table[zp->zp_checksum].ci_dedup ||
zp->zp_dedup_verify);
if (BP_GET_CHECKSUM(bp) == zp->zp_checksum) {
BP_SET_DEDUP(bp, 1);
zio->io_pipeline |= ZIO_STAGE_DDT_WRITE;
return (ZIO_PIPELINE_CONTINUE);
}
zio->io_bp_override = NULL;
BP_ZERO(bp);
}
2008-11-20 23:01:55 +03:00
if (bp->blk_birth == zio->io_txg) {
/*
* We're rewriting an existing block, which means we're
* working on behalf of spa_sync(). For spa_sync() to
* converge, it must eventually be the case that we don't
* have to allocate new blocks. But compression changes
* the blocksize, which forces a reallocate, and makes
* convergence take longer. Therefore, after the first
* few passes, stop compressing to ensure convergence.
*/
pass = spa_sync_pass(spa);
ASSERT(zio->io_txg == spa_syncing_txg(spa));
ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
ASSERT(!BP_GET_DEDUP(bp));
2008-11-20 23:01:55 +03:00
if (pass >= zfs_sync_pass_dont_compress)
compress = ZIO_COMPRESS_OFF;
2008-11-20 23:01:55 +03:00
/* Make sure someone doesn't change their mind on overwrites */
ASSERT(MIN(zp->zp_copies + BP_IS_GANG(bp),
spa_max_replication(spa)) == BP_GET_NDVAS(bp));
}
2008-11-20 23:01:55 +03:00
if (compress != ZIO_COMPRESS_OFF) {
void *cbuf = zio_buf_alloc(lsize);
psize = zio_compress_data(compress, zio->io_data, cbuf, lsize);
if (psize == 0 || psize == lsize) {
compress = ZIO_COMPRESS_OFF;
zio_buf_free(cbuf, lsize);
} else {
ASSERT(psize < lsize);
zio_push_transform(zio, cbuf, psize, lsize, NULL);
}
}
2008-11-20 23:01:55 +03:00
/*
* The final pass of spa_sync() must be all rewrites, but the first
* few passes offer a trade-off: allocating blocks defers convergence,
* but newly allocated blocks are sequential, so they can be written
* to disk faster. Therefore, we allow the first few passes of
* spa_sync() to allocate new blocks, but force rewrites after that.
* There should only be a handful of blocks after pass 1 in any case.
*/
if (bp->blk_birth == zio->io_txg && BP_GET_PSIZE(bp) == psize &&
pass >= zfs_sync_pass_rewrite) {
enum zio_stage gang_stages = zio->io_pipeline & ZIO_GANG_STAGES;
ASSERT(psize != 0);
zio->io_pipeline = ZIO_REWRITE_PIPELINE | gang_stages;
zio->io_flags |= ZIO_FLAG_IO_REWRITE;
} else {
BP_ZERO(bp);
zio->io_pipeline = ZIO_WRITE_PIPELINE;
}
2008-11-20 23:01:55 +03:00
if (psize == 0) {
zio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
} else {
ASSERT(zp->zp_checksum != ZIO_CHECKSUM_GANG_HEADER);
BP_SET_LSIZE(bp, lsize);
BP_SET_PSIZE(bp, psize);
BP_SET_COMPRESS(bp, compress);
BP_SET_CHECKSUM(bp, zp->zp_checksum);
BP_SET_TYPE(bp, zp->zp_type);
BP_SET_LEVEL(bp, zp->zp_level);
BP_SET_DEDUP(bp, zp->zp_dedup);
BP_SET_BYTEORDER(bp, ZFS_HOST_BYTEORDER);
if (zp->zp_dedup) {
ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
ASSERT(!(zio->io_flags & ZIO_FLAG_IO_REWRITE));
zio->io_pipeline = ZIO_DDT_WRITE_PIPELINE;
}
}
return (ZIO_PIPELINE_CONTINUE);
}
static int
zio_free_bp_init(zio_t *zio)
{
blkptr_t *bp = zio->io_bp;
if (zio->io_child_type == ZIO_CHILD_LOGICAL) {
if (BP_GET_DEDUP(bp))
zio->io_pipeline = ZIO_DDT_FREE_PIPELINE;
}
2008-11-20 23:01:55 +03:00
return (ZIO_PIPELINE_CONTINUE);
}
/*
* ==========================================================================
* Execute the I/O pipeline
* ==========================================================================
*/
static void
Illumos #3581 spa_zio_taskq[ZIO_TYPE_FREE][ZIO_TASKQ_ISSUE]->tq_lock contention 3581 spa_zio_taskq[ZIO_TYPE_FREE][ZIO_TASKQ_ISSUE]->tq_lock is piping hot Reviewed by: Matthew Ahrens <mahrens@delphix.com> Reviewed by: George Wilson <george.wilson@delphix.com> Reviewed by: Christopher Siden <christopher.siden@delphix.com> Reviewed by: Gordon Ross <gordon.ross@nexenta.com> Approved by: Richard Lowe <richlowe@richlowe.net> References: illumos/illumos-gate@ec94d32 https://illumos.org/issues/3581 Notes for Linux port: Earlier commit 08d08eb reduced contention on this taskq lock by simply reducing the number of z_fr_iss threads from 100 to one-per-CPU. We also optimized the taskq implementation in zfsonlinux/spl@3c6ed54. These changes significantly improved unlink performance to acceptable levels. This patch further reduces time spent spinning on this lock by randomly dispatching the work items over multiple independent task queues. The Illumos ZFS developers stated that this lock contention only arose after "3329 spa_sync() spends 10-20% of its time in spa_free_sync_cb()" was landed. It's not clear if 3329 affects the Linux port or not. I didn't see spa_free_sync_cb() show up in oprofile sessions while unlinking large files, but I may just not have used the right test case. I tested unlinking a 1 TB of data with and without the patch and didn't observe a meaningful difference in elapsed time. However, oprofile showed that the percent time spent in taskq_thread() was reduced from about 16% to about 5%. Aside from a possible slight performance benefit this may be worth landing if only for the sake of maintaining consistency with upstream. Ported-by: Ned Bass <bass6@llnl.gov> Closes #1327
2013-05-06 23:24:30 +04:00
zio_taskq_dispatch(zio_t *zio, zio_taskq_type_t q, boolean_t cutinline)
2008-11-20 23:01:55 +03:00
{
spa_t *spa = zio->io_spa;
zio_type_t t = zio->io_type;
int flags = (cutinline ? TQ_FRONT : 0);
2008-11-20 23:01:55 +03:00
/*
2009-07-03 02:44:48 +04:00
* If we're a config writer or a probe, the normal issue and
* interrupt threads may all be blocked waiting for the config lock.
* In this case, select the otherwise-unused taskq for ZIO_TYPE_NULL.
2008-11-20 23:01:55 +03:00
*/
2009-07-03 02:44:48 +04:00
if (zio->io_flags & (ZIO_FLAG_CONFIG_WRITER | ZIO_FLAG_PROBE))
t = ZIO_TYPE_NULL;
2008-11-20 23:01:55 +03:00
/*
* A similar issue exists for the L2ARC write thread until L2ARC 2.0.
2008-11-20 23:01:55 +03:00
*/
if (t == ZIO_TYPE_WRITE && zio->io_vd && zio->io_vd->vdev_aux)
t = ZIO_TYPE_NULL;
2008-11-20 23:01:55 +03:00
/*
Illumos #3581 spa_zio_taskq[ZIO_TYPE_FREE][ZIO_TASKQ_ISSUE]->tq_lock contention 3581 spa_zio_taskq[ZIO_TYPE_FREE][ZIO_TASKQ_ISSUE]->tq_lock is piping hot Reviewed by: Matthew Ahrens <mahrens@delphix.com> Reviewed by: George Wilson <george.wilson@delphix.com> Reviewed by: Christopher Siden <christopher.siden@delphix.com> Reviewed by: Gordon Ross <gordon.ross@nexenta.com> Approved by: Richard Lowe <richlowe@richlowe.net> References: illumos/illumos-gate@ec94d32 https://illumos.org/issues/3581 Notes for Linux port: Earlier commit 08d08eb reduced contention on this taskq lock by simply reducing the number of z_fr_iss threads from 100 to one-per-CPU. We also optimized the taskq implementation in zfsonlinux/spl@3c6ed54. These changes significantly improved unlink performance to acceptable levels. This patch further reduces time spent spinning on this lock by randomly dispatching the work items over multiple independent task queues. The Illumos ZFS developers stated that this lock contention only arose after "3329 spa_sync() spends 10-20% of its time in spa_free_sync_cb()" was landed. It's not clear if 3329 affects the Linux port or not. I didn't see spa_free_sync_cb() show up in oprofile sessions while unlinking large files, but I may just not have used the right test case. I tested unlinking a 1 TB of data with and without the patch and didn't observe a meaningful difference in elapsed time. However, oprofile showed that the percent time spent in taskq_thread() was reduced from about 16% to about 5%. Aside from a possible slight performance benefit this may be worth landing if only for the sake of maintaining consistency with upstream. Ported-by: Ned Bass <bass6@llnl.gov> Closes #1327
2013-05-06 23:24:30 +04:00
* If this is a high priority I/O, then use the high priority taskq if
* available.
*/
if (zio->io_priority == ZIO_PRIORITY_NOW &&
Illumos #3581 spa_zio_taskq[ZIO_TYPE_FREE][ZIO_TASKQ_ISSUE]->tq_lock contention 3581 spa_zio_taskq[ZIO_TYPE_FREE][ZIO_TASKQ_ISSUE]->tq_lock is piping hot Reviewed by: Matthew Ahrens <mahrens@delphix.com> Reviewed by: George Wilson <george.wilson@delphix.com> Reviewed by: Christopher Siden <christopher.siden@delphix.com> Reviewed by: Gordon Ross <gordon.ross@nexenta.com> Approved by: Richard Lowe <richlowe@richlowe.net> References: illumos/illumos-gate@ec94d32 https://illumos.org/issues/3581 Notes for Linux port: Earlier commit 08d08eb reduced contention on this taskq lock by simply reducing the number of z_fr_iss threads from 100 to one-per-CPU. We also optimized the taskq implementation in zfsonlinux/spl@3c6ed54. These changes significantly improved unlink performance to acceptable levels. This patch further reduces time spent spinning on this lock by randomly dispatching the work items over multiple independent task queues. The Illumos ZFS developers stated that this lock contention only arose after "3329 spa_sync() spends 10-20% of its time in spa_free_sync_cb()" was landed. It's not clear if 3329 affects the Linux port or not. I didn't see spa_free_sync_cb() show up in oprofile sessions while unlinking large files, but I may just not have used the right test case. I tested unlinking a 1 TB of data with and without the patch and didn't observe a meaningful difference in elapsed time. However, oprofile showed that the percent time spent in taskq_thread() was reduced from about 16% to about 5%. Aside from a possible slight performance benefit this may be worth landing if only for the sake of maintaining consistency with upstream. Ported-by: Ned Bass <bass6@llnl.gov> Closes #1327
2013-05-06 23:24:30 +04:00
spa->spa_zio_taskq[t][q + 1].stqs_count != 0)
q++;
ASSERT3U(q, <, ZIO_TASKQ_TYPES);
/*
* NB: We are assuming that the zio can only be dispatched
* to a single taskq at a time. It would be a grievous error
* to dispatch the zio to another taskq at the same time.
*/
ASSERT(taskq_empty_ent(&zio->io_tqent));
Illumos #3581 spa_zio_taskq[ZIO_TYPE_FREE][ZIO_TASKQ_ISSUE]->tq_lock contention 3581 spa_zio_taskq[ZIO_TYPE_FREE][ZIO_TASKQ_ISSUE]->tq_lock is piping hot Reviewed by: Matthew Ahrens <mahrens@delphix.com> Reviewed by: George Wilson <george.wilson@delphix.com> Reviewed by: Christopher Siden <christopher.siden@delphix.com> Reviewed by: Gordon Ross <gordon.ross@nexenta.com> Approved by: Richard Lowe <richlowe@richlowe.net> References: illumos/illumos-gate@ec94d32 https://illumos.org/issues/3581 Notes for Linux port: Earlier commit 08d08eb reduced contention on this taskq lock by simply reducing the number of z_fr_iss threads from 100 to one-per-CPU. We also optimized the taskq implementation in zfsonlinux/spl@3c6ed54. These changes significantly improved unlink performance to acceptable levels. This patch further reduces time spent spinning on this lock by randomly dispatching the work items over multiple independent task queues. The Illumos ZFS developers stated that this lock contention only arose after "3329 spa_sync() spends 10-20% of its time in spa_free_sync_cb()" was landed. It's not clear if 3329 affects the Linux port or not. I didn't see spa_free_sync_cb() show up in oprofile sessions while unlinking large files, but I may just not have used the right test case. I tested unlinking a 1 TB of data with and without the patch and didn't observe a meaningful difference in elapsed time. However, oprofile showed that the percent time spent in taskq_thread() was reduced from about 16% to about 5%. Aside from a possible slight performance benefit this may be worth landing if only for the sake of maintaining consistency with upstream. Ported-by: Ned Bass <bass6@llnl.gov> Closes #1327
2013-05-06 23:24:30 +04:00
spa_taskq_dispatch_ent(spa, t, q, (task_func_t *)zio_execute, zio,
flags, &zio->io_tqent);
}
2008-11-20 23:01:55 +03:00
static boolean_t
Illumos #3581 spa_zio_taskq[ZIO_TYPE_FREE][ZIO_TASKQ_ISSUE]->tq_lock contention 3581 spa_zio_taskq[ZIO_TYPE_FREE][ZIO_TASKQ_ISSUE]->tq_lock is piping hot Reviewed by: Matthew Ahrens <mahrens@delphix.com> Reviewed by: George Wilson <george.wilson@delphix.com> Reviewed by: Christopher Siden <christopher.siden@delphix.com> Reviewed by: Gordon Ross <gordon.ross@nexenta.com> Approved by: Richard Lowe <richlowe@richlowe.net> References: illumos/illumos-gate@ec94d32 https://illumos.org/issues/3581 Notes for Linux port: Earlier commit 08d08eb reduced contention on this taskq lock by simply reducing the number of z_fr_iss threads from 100 to one-per-CPU. We also optimized the taskq implementation in zfsonlinux/spl@3c6ed54. These changes significantly improved unlink performance to acceptable levels. This patch further reduces time spent spinning on this lock by randomly dispatching the work items over multiple independent task queues. The Illumos ZFS developers stated that this lock contention only arose after "3329 spa_sync() spends 10-20% of its time in spa_free_sync_cb()" was landed. It's not clear if 3329 affects the Linux port or not. I didn't see spa_free_sync_cb() show up in oprofile sessions while unlinking large files, but I may just not have used the right test case. I tested unlinking a 1 TB of data with and without the patch and didn't observe a meaningful difference in elapsed time. However, oprofile showed that the percent time spent in taskq_thread() was reduced from about 16% to about 5%. Aside from a possible slight performance benefit this may be worth landing if only for the sake of maintaining consistency with upstream. Ported-by: Ned Bass <bass6@llnl.gov> Closes #1327
2013-05-06 23:24:30 +04:00
zio_taskq_member(zio_t *zio, zio_taskq_type_t q)
{
kthread_t *executor = zio->io_executor;
spa_t *spa = zio->io_spa;
zio_type_t t;
2008-11-20 23:01:55 +03:00
Illumos #3581 spa_zio_taskq[ZIO_TYPE_FREE][ZIO_TASKQ_ISSUE]->tq_lock contention 3581 spa_zio_taskq[ZIO_TYPE_FREE][ZIO_TASKQ_ISSUE]->tq_lock is piping hot Reviewed by: Matthew Ahrens <mahrens@delphix.com> Reviewed by: George Wilson <george.wilson@delphix.com> Reviewed by: Christopher Siden <christopher.siden@delphix.com> Reviewed by: Gordon Ross <gordon.ross@nexenta.com> Approved by: Richard Lowe <richlowe@richlowe.net> References: illumos/illumos-gate@ec94d32 https://illumos.org/issues/3581 Notes for Linux port: Earlier commit 08d08eb reduced contention on this taskq lock by simply reducing the number of z_fr_iss threads from 100 to one-per-CPU. We also optimized the taskq implementation in zfsonlinux/spl@3c6ed54. These changes significantly improved unlink performance to acceptable levels. This patch further reduces time spent spinning on this lock by randomly dispatching the work items over multiple independent task queues. The Illumos ZFS developers stated that this lock contention only arose after "3329 spa_sync() spends 10-20% of its time in spa_free_sync_cb()" was landed. It's not clear if 3329 affects the Linux port or not. I didn't see spa_free_sync_cb() show up in oprofile sessions while unlinking large files, but I may just not have used the right test case. I tested unlinking a 1 TB of data with and without the patch and didn't observe a meaningful difference in elapsed time. However, oprofile showed that the percent time spent in taskq_thread() was reduced from about 16% to about 5%. Aside from a possible slight performance benefit this may be worth landing if only for the sake of maintaining consistency with upstream. Ported-by: Ned Bass <bass6@llnl.gov> Closes #1327
2013-05-06 23:24:30 +04:00
for (t = 0; t < ZIO_TYPES; t++) {
spa_taskqs_t *tqs = &spa->spa_zio_taskq[t][q];
uint_t i;
for (i = 0; i < tqs->stqs_count; i++) {
if (taskq_member(tqs->stqs_taskq[i], executor))
return (B_TRUE);
}
}
2008-11-20 23:01:55 +03:00
return (B_FALSE);
}
2008-11-20 23:01:55 +03:00
static int
zio_issue_async(zio_t *zio)
{
zio_taskq_dispatch(zio, ZIO_TASKQ_ISSUE, B_FALSE);
return (ZIO_PIPELINE_STOP);
2008-11-20 23:01:55 +03:00
}
void
zio_interrupt(zio_t *zio)
2008-11-20 23:01:55 +03:00
{
zio_taskq_dispatch(zio, ZIO_TASKQ_INTERRUPT, B_FALSE);
}
2008-11-20 23:01:55 +03:00
/*
* Execute the I/O pipeline until one of the following occurs:
* (1) the I/O completes; (2) the pipeline stalls waiting for
* dependent child I/Os; (3) the I/O issues, so we're waiting
* for an I/O completion interrupt; (4) the I/O is delegated by
* vdev-level caching or aggregation; (5) the I/O is deferred
* due to vdev-level queueing; (6) the I/O is handed off to
* another thread. In all cases, the pipeline stops whenever
* there's no CPU work; it never burns a thread in cv_wait_io().
*
* There's no locking on io_stage because there's no legitimate way
* for multiple threads to be attempting to process the same I/O.
*/
static zio_pipe_stage_t *zio_pipeline[];
2008-11-20 23:01:55 +03:00
/*
* zio_execute() is a wrapper around the static function
* __zio_execute() so that we can force __zio_execute() to be
* inlined. This reduces stack overhead which is important
* because __zio_execute() is called recursively in several zio
* code paths. zio_execute() itself cannot be inlined because
* it is externally visible.
*/
void
zio_execute(zio_t *zio)
{
__zio_execute(zio);
}
__attribute__((always_inline))
static inline void
__zio_execute(zio_t *zio)
{
zio->io_executor = curthread;
2008-11-20 23:01:55 +03:00
while (zio->io_stage < ZIO_STAGE_DONE) {
enum zio_stage pipeline = zio->io_pipeline;
enum zio_stage stage = zio->io_stage;
dsl_pool_t *dp;
Make tgx_sync_thread zio's async The majority of the recursive operations performed by the dsl are done either in the context of the tgx_sync_thread or during pool import. It is these recursive operations which contribute greatly to the stack depth. When this recursion is coupled with a synchronous I/O in the same context overflow becomes possible. Previously to handle this case I have focused on keeping the individual stack frames as light as possible. This is a good idea as long as it can be done in a way which doesn't overly complicate the code. However, there is a better solution. If we treat all zio's issued by the tgx_sync_thread as async then we can use the tgx_sync_thread stack for the recursive parts, and the zio_* threads for the I/O parts. This effectively doubles our available stack space with the only drawback being a small delay to schedule the I/O. However, in practice the scheduling time is so much smaller than the actual I/O time this isn't an issue. Another benefit of making the zio async is that the zio pipeline is now parallel. That should mean for CPU intensive pipelines such as compression or dedup performance may be improved. With this change in place the worst case stack usage observed so far is 6902 bytes. This is still higher than I'd like but significantly improved. Additional changes to specific functions should improve this further. This change allows us to revent commit 6656bf5 which did some horrible things to the recursive traverse_visitbp() callpath in the name of saving stack.
2011-05-26 02:22:04 +04:00
boolean_t cut;
int rv;
2008-11-20 23:01:55 +03:00
ASSERT(!MUTEX_HELD(&zio->io_lock));
ASSERT(ISP2(stage));
ASSERT(zio->io_stall == NULL);
2008-11-20 23:01:55 +03:00
do {
stage <<= 1;
} while ((stage & pipeline) == 0);
ASSERT(stage <= ZIO_STAGE_DONE);
2008-11-20 23:01:55 +03:00
dp = spa_get_dsl(zio->io_spa);
Make tgx_sync_thread zio's async The majority of the recursive operations performed by the dsl are done either in the context of the tgx_sync_thread or during pool import. It is these recursive operations which contribute greatly to the stack depth. When this recursion is coupled with a synchronous I/O in the same context overflow becomes possible. Previously to handle this case I have focused on keeping the individual stack frames as light as possible. This is a good idea as long as it can be done in a way which doesn't overly complicate the code. However, there is a better solution. If we treat all zio's issued by the tgx_sync_thread as async then we can use the tgx_sync_thread stack for the recursive parts, and the zio_* threads for the I/O parts. This effectively doubles our available stack space with the only drawback being a small delay to schedule the I/O. However, in practice the scheduling time is so much smaller than the actual I/O time this isn't an issue. Another benefit of making the zio async is that the zio pipeline is now parallel. That should mean for CPU intensive pipelines such as compression or dedup performance may be improved. With this change in place the worst case stack usage observed so far is 6902 bytes. This is still higher than I'd like but significantly improved. Additional changes to specific functions should improve this further. This change allows us to revent commit 6656bf5 which did some horrible things to the recursive traverse_visitbp() callpath in the name of saving stack.
2011-05-26 02:22:04 +04:00
cut = (stage == ZIO_STAGE_VDEV_IO_START) ?
zio_requeue_io_start_cut_in_line : B_FALSE;
2008-11-20 23:01:55 +03:00
/*
* If we are in interrupt context and this pipeline stage
* will grab a config lock that is held across I/O,
* or may wait for an I/O that needs an interrupt thread
* to complete, issue async to avoid deadlock.
*
* For VDEV_IO_START, we cut in line so that the io will
* be sent to disk promptly.
2008-11-20 23:01:55 +03:00
*/
if ((stage & ZIO_BLOCKING_STAGES) && zio->io_vd == NULL &&
zio_taskq_member(zio, ZIO_TASKQ_INTERRUPT)) {
zio_taskq_dispatch(zio, ZIO_TASKQ_ISSUE, cut);
return;
}
#ifdef _KERNEL
/*
* If we executing in the context of the tx_sync_thread,
* or we are performing pool initialization outside of a
* zio_taskq[ZIO_TASKQ_ISSUE] context. Then issue the zio
* async to minimize stack usage for these deep call paths.
*/
if ((dp && curthread == dp->dp_tx.tx_sync_thread) ||
(dp && spa_is_initializing(dp->dp_spa) &&
!zio_taskq_member(zio, ZIO_TASKQ_ISSUE))) {
zio_taskq_dispatch(zio, ZIO_TASKQ_ISSUE, cut);
return;
2008-11-20 23:01:55 +03:00
}
#endif
2008-11-20 23:01:55 +03:00
zio->io_stage = stage;
rv = zio_pipeline[highbit(stage) - 1](zio);
2008-11-20 23:01:55 +03:00
if (rv == ZIO_PIPELINE_STOP)
return;
2008-11-20 23:01:55 +03:00
ASSERT(rv == ZIO_PIPELINE_CONTINUE);
}
2008-11-20 23:01:55 +03:00
}
/*
* ==========================================================================
* Initiate I/O, either sync or async
* ==========================================================================
*/
int
zio_wait(zio_t *zio)
2008-11-20 23:01:55 +03:00
{
int error;
2008-11-20 23:01:55 +03:00
ASSERT(zio->io_stage == ZIO_STAGE_OPEN);
ASSERT(zio->io_executor == NULL);
2008-11-20 23:01:55 +03:00
zio->io_waiter = curthread;
2008-11-20 23:01:55 +03:00
__zio_execute(zio);
2008-11-20 23:01:55 +03:00
mutex_enter(&zio->io_lock);
while (zio->io_executor != NULL)
cv_wait_io(&zio->io_cv, &zio->io_lock);
mutex_exit(&zio->io_lock);
2008-11-20 23:01:55 +03:00
error = zio->io_error;
zio_destroy(zio);
2008-11-20 23:01:55 +03:00
return (error);
}
2008-11-20 23:01:55 +03:00
void
zio_nowait(zio_t *zio)
{
ASSERT(zio->io_executor == NULL);
2008-11-20 23:01:55 +03:00
2009-02-18 23:51:31 +03:00
if (zio->io_child_type == ZIO_CHILD_LOGICAL &&
zio_unique_parent(zio) == NULL) {
2008-11-20 23:01:55 +03:00
/*
* This is a logical async I/O with no parent to wait for it.
2009-07-03 02:44:48 +04:00
* We add it to the spa_async_root_zio "Godfather" I/O which
* will ensure they complete prior to unloading the pool.
2008-11-20 23:01:55 +03:00
*/
spa_t *spa = zio->io_spa;
2009-07-03 02:44:48 +04:00
zio_add_child(spa->spa_async_zio_root, zio);
}
2008-11-20 23:01:55 +03:00
__zio_execute(zio);
}
2008-11-20 23:01:55 +03:00
/*
* ==========================================================================
* Reexecute or suspend/resume failed I/O
* ==========================================================================
*/
2008-11-20 23:01:55 +03:00
static void
zio_reexecute(zio_t *pio)
{
2009-02-18 23:51:31 +03:00
zio_t *cio, *cio_next;
int c, w;
2009-02-18 23:51:31 +03:00
ASSERT(pio->io_child_type == ZIO_CHILD_LOGICAL);
ASSERT(pio->io_orig_stage == ZIO_STAGE_OPEN);
2009-07-03 02:44:48 +04:00
ASSERT(pio->io_gang_leader == NULL);
ASSERT(pio->io_gang_tree == NULL);
2008-11-20 23:01:55 +03:00
pio->io_flags = pio->io_orig_flags;
pio->io_stage = pio->io_orig_stage;
pio->io_pipeline = pio->io_orig_pipeline;
pio->io_reexecute = 0;
pio->io_error = 0;
for (w = 0; w < ZIO_WAIT_TYPES; w++)
2009-02-18 23:51:31 +03:00
pio->io_state[w] = 0;
for (c = 0; c < ZIO_CHILD_TYPES; c++)
pio->io_child_error[c] = 0;
2008-11-20 23:01:55 +03:00
if (IO_IS_ALLOCATING(pio))
BP_ZERO(pio->io_bp);
2008-11-20 23:01:55 +03:00
/*
* As we reexecute pio's children, new children could be created.
2009-02-18 23:51:31 +03:00
* New children go to the head of pio's io_child_list, however,
* so we will (correctly) not reexecute them. The key is that
2009-02-18 23:51:31 +03:00
* the remainder of pio's io_child_list, from 'cio_next' onward,
* cannot be affected by any side effects of reexecuting 'cio'.
*/
2009-02-18 23:51:31 +03:00
for (cio = zio_walk_children(pio); cio != NULL; cio = cio_next) {
cio_next = zio_walk_children(pio);
mutex_enter(&pio->io_lock);
for (w = 0; w < ZIO_WAIT_TYPES; w++)
2009-02-18 23:51:31 +03:00
pio->io_children[cio->io_child_type][w]++;
mutex_exit(&pio->io_lock);
2009-02-18 23:51:31 +03:00
zio_reexecute(cio);
2008-11-20 23:01:55 +03:00
}
/*
* Now that all children have been reexecuted, execute the parent.
2009-07-03 02:44:48 +04:00
* We don't reexecute "The Godfather" I/O here as it's the
* responsibility of the caller to wait on him.
*/
2009-07-03 02:44:48 +04:00
if (!(pio->io_flags & ZIO_FLAG_GODFATHER))
__zio_execute(pio);
2008-11-20 23:01:55 +03:00
}
void
zio_suspend(spa_t *spa, zio_t *zio)
2008-11-20 23:01:55 +03:00
{
if (spa_get_failmode(spa) == ZIO_FAILURE_MODE_PANIC)
fm_panic("Pool '%s' has encountered an uncorrectable I/O "
"failure and the failure mode property for this pool "
"is set to panic.", spa_name(spa));
2008-11-20 23:01:55 +03:00
zfs_ereport_post(FM_EREPORT_ZFS_IO_FAILURE, spa, NULL, NULL, 0, 0);
2008-11-20 23:01:55 +03:00
mutex_enter(&spa->spa_suspend_lock);
2008-11-20 23:01:55 +03:00
if (spa->spa_suspend_zio_root == NULL)
2009-07-03 02:44:48 +04:00
spa->spa_suspend_zio_root = zio_root(spa, NULL, NULL,
ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE |
ZIO_FLAG_GODFATHER);
2008-11-20 23:01:55 +03:00
spa->spa_suspended = B_TRUE;
2008-11-20 23:01:55 +03:00
if (zio != NULL) {
2009-07-03 02:44:48 +04:00
ASSERT(!(zio->io_flags & ZIO_FLAG_GODFATHER));
ASSERT(zio != spa->spa_suspend_zio_root);
ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
2009-02-18 23:51:31 +03:00
ASSERT(zio_unique_parent(zio) == NULL);
ASSERT(zio->io_stage == ZIO_STAGE_DONE);
zio_add_child(spa->spa_suspend_zio_root, zio);
}
2008-11-20 23:01:55 +03:00
mutex_exit(&spa->spa_suspend_lock);
}
2008-11-20 23:01:55 +03:00
2009-07-03 02:44:48 +04:00
int
zio_resume(spa_t *spa)
{
2009-07-03 02:44:48 +04:00
zio_t *pio;
2008-11-20 23:01:55 +03:00
/*
* Reexecute all previously suspended i/o.
2008-11-20 23:01:55 +03:00
*/
mutex_enter(&spa->spa_suspend_lock);
spa->spa_suspended = B_FALSE;
cv_broadcast(&spa->spa_suspend_cv);
pio = spa->spa_suspend_zio_root;
spa->spa_suspend_zio_root = NULL;
mutex_exit(&spa->spa_suspend_lock);
if (pio == NULL)
2009-07-03 02:44:48 +04:00
return (0);
2008-11-20 23:01:55 +03:00
2009-07-03 02:44:48 +04:00
zio_reexecute(pio);
return (zio_wait(pio));
}
void
zio_resume_wait(spa_t *spa)
{
mutex_enter(&spa->spa_suspend_lock);
while (spa_suspended(spa))
cv_wait(&spa->spa_suspend_cv, &spa->spa_suspend_lock);
mutex_exit(&spa->spa_suspend_lock);
2008-11-20 23:01:55 +03:00
}
/*
* ==========================================================================
* Gang blocks.
*
* A gang block is a collection of small blocks that looks to the DMU
* like one large block. When zio_dva_allocate() cannot find a block
* of the requested size, due to either severe fragmentation or the pool
* being nearly full, it calls zio_write_gang_block() to construct the
* block from smaller fragments.
*
* A gang block consists of a gang header (zio_gbh_phys_t) and up to
* three (SPA_GBH_NBLKPTRS) gang members. The gang header is just like
* an indirect block: it's an array of block pointers. It consumes
* only one sector and hence is allocatable regardless of fragmentation.
* The gang header's bps point to its gang members, which hold the data.
*
* Gang blocks are self-checksumming, using the bp's <vdev, offset, txg>
* as the verifier to ensure uniqueness of the SHA256 checksum.
* Critically, the gang block bp's blk_cksum is the checksum of the data,
* not the gang header. This ensures that data block signatures (needed for
* deduplication) are independent of how the block is physically stored.
*
* Gang blocks can be nested: a gang member may itself be a gang block.
* Thus every gang block is a tree in which root and all interior nodes are
* gang headers, and the leaves are normal blocks that contain user data.
* The root of the gang tree is called the gang leader.
*
* To perform any operation (read, rewrite, free, claim) on a gang block,
* zio_gang_assemble() first assembles the gang tree (minus data leaves)
* in the io_gang_tree field of the original logical i/o by recursively
* reading the gang leader and all gang headers below it. This yields
* an in-core tree containing the contents of every gang header and the
* bps for every constituent of the gang block.
*
* With the gang tree now assembled, zio_gang_issue() just walks the gang tree
* and invokes a callback on each bp. To free a gang block, zio_gang_issue()
* calls zio_free_gang() -- a trivial wrapper around zio_free() -- for each bp.
* zio_claim_gang() provides a similarly trivial wrapper for zio_claim().
* zio_read_gang() is a wrapper around zio_read() that omits reading gang
* headers, since we already have those in io_gang_tree. zio_rewrite_gang()
* performs a zio_rewrite() of the data or, for gang headers, a zio_rewrite()
* of the gang header plus zio_checksum_compute() of the data to update the
* gang header's blk_cksum as described above.
*
* The two-phase assemble/issue model solves the problem of partial failure --
* what if you'd freed part of a gang block but then couldn't read the
* gang header for another part? Assembling the entire gang tree first
* ensures that all the necessary gang header I/O has succeeded before
* starting the actual work of free, claim, or write. Once the gang tree
* is assembled, free and claim are in-memory operations that cannot fail.
*
* In the event that a gang write fails, zio_dva_unallocate() walks the
* gang tree to immediately free (i.e. insert back into the space map)
* everything we've allocated. This ensures that we don't get ENOSPC
* errors during repeated suspend/resume cycles due to a flaky device.
*
* Gang rewrites only happen during sync-to-convergence. If we can't assemble
* the gang tree, we won't modify the block, so we can safely defer the free
* (knowing that the block is still intact). If we *can* assemble the gang
* tree, then even if some of the rewrites fail, zio_dva_unallocate() will free
* each constituent bp and we can allocate a new block on the next sync pass.
*
* In all cases, the gang tree allows complete recovery from partial failure.
2008-11-20 23:01:55 +03:00
* ==========================================================================
*/
static zio_t *
zio_read_gang(zio_t *pio, blkptr_t *bp, zio_gang_node_t *gn, void *data)
2008-11-20 23:01:55 +03:00
{
if (gn != NULL)
return (pio);
2008-11-20 23:01:55 +03:00
return (zio_read(pio, pio->io_spa, bp, data, BP_GET_PSIZE(bp),
NULL, NULL, pio->io_priority, ZIO_GANG_CHILD_FLAGS(pio),
&pio->io_bookmark));
}
zio_t *
zio_rewrite_gang(zio_t *pio, blkptr_t *bp, zio_gang_node_t *gn, void *data)
{
zio_t *zio;
if (gn != NULL) {
zio = zio_rewrite(pio, pio->io_spa, pio->io_txg, bp,
gn->gn_gbh, SPA_GANGBLOCKSIZE, NULL, NULL, pio->io_priority,
ZIO_GANG_CHILD_FLAGS(pio), &pio->io_bookmark);
2008-11-20 23:01:55 +03:00
/*
* As we rewrite each gang header, the pipeline will compute
* a new gang block header checksum for it; but no one will
* compute a new data checksum, so we do that here. The one
* exception is the gang leader: the pipeline already computed
* its data checksum because that stage precedes gang assembly.
* (Presently, nothing actually uses interior data checksums;
* this is just good hygiene.)
2008-11-20 23:01:55 +03:00
*/
2009-07-03 02:44:48 +04:00
if (gn != pio->io_gang_leader->io_gang_tree) {
zio_checksum_compute(zio, BP_GET_CHECKSUM(bp),
data, BP_GET_PSIZE(bp));
}
/*
* If we are here to damage data for testing purposes,
* leave the GBH alone so that we can detect the damage.
*/
if (pio->io_gang_leader->io_flags & ZIO_FLAG_INDUCE_DAMAGE)
zio->io_pipeline &= ~ZIO_VDEV_IO_STAGES;
2008-11-20 23:01:55 +03:00
} else {
zio = zio_rewrite(pio, pio->io_spa, pio->io_txg, bp,
data, BP_GET_PSIZE(bp), NULL, NULL, pio->io_priority,
ZIO_GANG_CHILD_FLAGS(pio), &pio->io_bookmark);
2008-11-20 23:01:55 +03:00
}
return (zio);
}
2008-11-20 23:01:55 +03:00
/* ARGSUSED */
zio_t *
zio_free_gang(zio_t *pio, blkptr_t *bp, zio_gang_node_t *gn, void *data)
{
return (zio_free_sync(pio, pio->io_spa, pio->io_txg, bp,
ZIO_GANG_CHILD_FLAGS(pio)));
2008-11-20 23:01:55 +03:00
}
/* ARGSUSED */
zio_t *
zio_claim_gang(zio_t *pio, blkptr_t *bp, zio_gang_node_t *gn, void *data)
2008-11-20 23:01:55 +03:00
{
return (zio_claim(pio, pio->io_spa, pio->io_txg, bp,
NULL, NULL, ZIO_GANG_CHILD_FLAGS(pio)));
}
static zio_gang_issue_func_t *zio_gang_issue_func[ZIO_TYPES] = {
NULL,
zio_read_gang,
zio_rewrite_gang,
zio_free_gang,
zio_claim_gang,
NULL
};
2008-11-20 23:01:55 +03:00
static void zio_gang_tree_assemble_done(zio_t *zio);
2008-11-20 23:01:55 +03:00
static zio_gang_node_t *
zio_gang_node_alloc(zio_gang_node_t **gnpp)
{
zio_gang_node_t *gn;
2008-11-20 23:01:55 +03:00
ASSERT(*gnpp == NULL);
2008-11-20 23:01:55 +03:00
gn = kmem_zalloc(sizeof (*gn), KM_PUSHPAGE);
gn->gn_gbh = zio_buf_alloc(SPA_GANGBLOCKSIZE);
*gnpp = gn;
2008-11-20 23:01:55 +03:00
return (gn);
2008-11-20 23:01:55 +03:00
}
static void
zio_gang_node_free(zio_gang_node_t **gnpp)
2008-11-20 23:01:55 +03:00
{
zio_gang_node_t *gn = *gnpp;
int g;
2008-11-20 23:01:55 +03:00
for (g = 0; g < SPA_GBH_NBLKPTRS; g++)
ASSERT(gn->gn_child[g] == NULL);
zio_buf_free(gn->gn_gbh, SPA_GANGBLOCKSIZE);
kmem_free(gn, sizeof (*gn));
*gnpp = NULL;
2008-11-20 23:01:55 +03:00
}
static void
zio_gang_tree_free(zio_gang_node_t **gnpp)
2008-11-20 23:01:55 +03:00
{
zio_gang_node_t *gn = *gnpp;
int g;
2008-11-20 23:01:55 +03:00
if (gn == NULL)
return;
2008-11-20 23:01:55 +03:00
for (g = 0; g < SPA_GBH_NBLKPTRS; g++)
zio_gang_tree_free(&gn->gn_child[g]);
2008-11-20 23:01:55 +03:00
zio_gang_node_free(gnpp);
2008-11-20 23:01:55 +03:00
}
static void
2009-07-03 02:44:48 +04:00
zio_gang_tree_assemble(zio_t *gio, blkptr_t *bp, zio_gang_node_t **gnpp)
2008-11-20 23:01:55 +03:00
{
zio_gang_node_t *gn = zio_gang_node_alloc(gnpp);
2009-07-03 02:44:48 +04:00
ASSERT(gio->io_gang_leader == gio);
ASSERT(BP_IS_GANG(bp));
2008-11-20 23:01:55 +03:00
2009-07-03 02:44:48 +04:00
zio_nowait(zio_read(gio, gio->io_spa, bp, gn->gn_gbh,
SPA_GANGBLOCKSIZE, zio_gang_tree_assemble_done, gn,
2009-07-03 02:44:48 +04:00
gio->io_priority, ZIO_GANG_CHILD_FLAGS(gio), &gio->io_bookmark));
}
2008-11-20 23:01:55 +03:00
static void
zio_gang_tree_assemble_done(zio_t *zio)
{
2009-07-03 02:44:48 +04:00
zio_t *gio = zio->io_gang_leader;
zio_gang_node_t *gn = zio->io_private;
blkptr_t *bp = zio->io_bp;
int g;
2008-11-20 23:01:55 +03:00
2009-07-03 02:44:48 +04:00
ASSERT(gio == zio_unique_parent(zio));
ASSERT(zio->io_child_count == 0);
2008-11-20 23:01:55 +03:00
if (zio->io_error)
return;
2008-11-20 23:01:55 +03:00
if (BP_SHOULD_BYTESWAP(bp))
byteswap_uint64_array(zio->io_data, zio->io_size);
2008-11-20 23:01:55 +03:00
ASSERT(zio->io_data == gn->gn_gbh);
ASSERT(zio->io_size == SPA_GANGBLOCKSIZE);
ASSERT(gn->gn_gbh->zg_tail.zec_magic == ZEC_MAGIC);
2008-11-20 23:01:55 +03:00
for (g = 0; g < SPA_GBH_NBLKPTRS; g++) {
blkptr_t *gbp = &gn->gn_gbh->zg_blkptr[g];
if (!BP_IS_GANG(gbp))
continue;
2009-07-03 02:44:48 +04:00
zio_gang_tree_assemble(gio, gbp, &gn->gn_child[g]);
}
2008-11-20 23:01:55 +03:00
}
static void
zio_gang_tree_issue(zio_t *pio, zio_gang_node_t *gn, blkptr_t *bp, void *data)
2008-11-20 23:01:55 +03:00
{
2009-07-03 02:44:48 +04:00
zio_t *gio = pio->io_gang_leader;
zio_t *zio;
int g;
2008-11-20 23:01:55 +03:00
ASSERT(BP_IS_GANG(bp) == !!gn);
2009-07-03 02:44:48 +04:00
ASSERT(BP_GET_CHECKSUM(bp) == BP_GET_CHECKSUM(gio->io_bp));
ASSERT(BP_GET_LSIZE(bp) == BP_GET_PSIZE(bp) || gn == gio->io_gang_tree);
2008-11-20 23:01:55 +03:00
/*
* If you're a gang header, your data is in gn->gn_gbh.
* If you're a gang member, your data is in 'data' and gn == NULL.
*/
2009-07-03 02:44:48 +04:00
zio = zio_gang_issue_func[gio->io_type](pio, bp, gn, data);
2008-11-20 23:01:55 +03:00
if (gn != NULL) {
ASSERT(gn->gn_gbh->zg_tail.zec_magic == ZEC_MAGIC);
2008-11-20 23:01:55 +03:00
for (g = 0; g < SPA_GBH_NBLKPTRS; g++) {
blkptr_t *gbp = &gn->gn_gbh->zg_blkptr[g];
if (BP_IS_HOLE(gbp))
continue;
zio_gang_tree_issue(zio, gn->gn_child[g], gbp, data);
data = (char *)data + BP_GET_PSIZE(gbp);
}
2008-11-20 23:01:55 +03:00
}
2009-07-03 02:44:48 +04:00
if (gn == gio->io_gang_tree)
ASSERT3P((char *)gio->io_data + gio->io_size, ==, data);
2008-11-20 23:01:55 +03:00
if (zio != pio)
zio_nowait(zio);
2008-11-20 23:01:55 +03:00
}
static int
zio_gang_assemble(zio_t *zio)
2008-11-20 23:01:55 +03:00
{
blkptr_t *bp = zio->io_bp;
2008-11-20 23:01:55 +03:00
2009-07-03 02:44:48 +04:00
ASSERT(BP_IS_GANG(bp) && zio->io_gang_leader == NULL);
ASSERT(zio->io_child_type > ZIO_CHILD_GANG);
zio->io_gang_leader = zio;
2008-11-20 23:01:55 +03:00
zio_gang_tree_assemble(zio, bp, &zio->io_gang_tree);
2008-11-20 23:01:55 +03:00
return (ZIO_PIPELINE_CONTINUE);
}
static int
zio_gang_issue(zio_t *zio)
2008-11-20 23:01:55 +03:00
{
blkptr_t *bp = zio->io_bp;
2008-11-20 23:01:55 +03:00
if (zio_wait_for_children(zio, ZIO_CHILD_GANG, ZIO_WAIT_DONE))
return (ZIO_PIPELINE_STOP);
2008-11-20 23:01:55 +03:00
2009-07-03 02:44:48 +04:00
ASSERT(BP_IS_GANG(bp) && zio->io_gang_leader == zio);
ASSERT(zio->io_child_type > ZIO_CHILD_GANG);
2008-11-20 23:01:55 +03:00
if (zio->io_child_error[ZIO_CHILD_GANG] == 0)
2009-07-03 02:44:48 +04:00
zio_gang_tree_issue(zio, zio->io_gang_tree, bp, zio->io_data);
else
2009-07-03 02:44:48 +04:00
zio_gang_tree_free(&zio->io_gang_tree);
2008-11-20 23:01:55 +03:00
zio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
2008-11-20 23:01:55 +03:00
return (ZIO_PIPELINE_CONTINUE);
}
static void
zio_write_gang_member_ready(zio_t *zio)
2008-11-20 23:01:55 +03:00
{
2009-02-18 23:51:31 +03:00
zio_t *pio = zio_unique_parent(zio);
ASSERTV(zio_t *gio = zio->io_gang_leader;)
2008-11-20 23:01:55 +03:00
dva_t *cdva = zio->io_bp->blk_dva;
dva_t *pdva = pio->io_bp->blk_dva;
uint64_t asize;
int d;
2008-11-20 23:01:55 +03:00
if (BP_IS_HOLE(zio->io_bp))
return;
ASSERT(BP_IS_HOLE(&zio->io_bp_orig));
ASSERT(zio->io_child_type == ZIO_CHILD_GANG);
ASSERT3U(zio->io_prop.zp_copies, ==, gio->io_prop.zp_copies);
ASSERT3U(zio->io_prop.zp_copies, <=, BP_GET_NDVAS(zio->io_bp));
ASSERT3U(pio->io_prop.zp_copies, <=, BP_GET_NDVAS(pio->io_bp));
2008-11-20 23:01:55 +03:00
ASSERT3U(BP_GET_NDVAS(zio->io_bp), <=, BP_GET_NDVAS(pio->io_bp));
mutex_enter(&pio->io_lock);
for (d = 0; d < BP_GET_NDVAS(zio->io_bp); d++) {
2008-11-20 23:01:55 +03:00
ASSERT(DVA_GET_GANG(&pdva[d]));
asize = DVA_GET_ASIZE(&pdva[d]);
asize += DVA_GET_ASIZE(&cdva[d]);
DVA_SET_ASIZE(&pdva[d], asize);
}
mutex_exit(&pio->io_lock);
}
static int
zio_write_gang_block(zio_t *pio)
2008-11-20 23:01:55 +03:00
{
spa_t *spa = pio->io_spa;
blkptr_t *bp = pio->io_bp;
2009-07-03 02:44:48 +04:00
zio_t *gio = pio->io_gang_leader;
zio_t *zio;
zio_gang_node_t *gn, **gnpp;
2008-11-20 23:01:55 +03:00
zio_gbh_phys_t *gbh;
uint64_t txg = pio->io_txg;
uint64_t resid = pio->io_size;
uint64_t lsize;
int copies = gio->io_prop.zp_copies;
int gbh_copies = MIN(copies + 1, spa_max_replication(spa));
zio_prop_t zp;
int g, error;
2008-11-20 23:01:55 +03:00
error = metaslab_alloc(spa, spa_normal_class(spa), SPA_GANGBLOCKSIZE,
bp, gbh_copies, txg, pio == gio ? NULL : gio->io_bp,
METASLAB_HINTBP_FAVOR | METASLAB_GANG_HEADER);
2008-11-20 23:01:55 +03:00
if (error) {
pio->io_error = error;
2008-11-20 23:01:55 +03:00
return (ZIO_PIPELINE_CONTINUE);
}
2009-07-03 02:44:48 +04:00
if (pio == gio) {
gnpp = &gio->io_gang_tree;
} else {
gnpp = pio->io_private;
ASSERT(pio->io_ready == zio_write_gang_member_ready);
2008-11-20 23:01:55 +03:00
}
gn = zio_gang_node_alloc(gnpp);
gbh = gn->gn_gbh;
bzero(gbh, SPA_GANGBLOCKSIZE);
2008-11-20 23:01:55 +03:00
/*
* Create the gang header.
*/
zio = zio_rewrite(pio, spa, txg, bp, gbh, SPA_GANGBLOCKSIZE, NULL, NULL,
pio->io_priority, ZIO_GANG_CHILD_FLAGS(pio), &pio->io_bookmark);
2008-11-20 23:01:55 +03:00
/*
* Create and nowait the gang children.
*/
for (g = 0; resid != 0; resid -= lsize, g++) {
lsize = P2ROUNDUP(resid / (SPA_GBH_NBLKPTRS - g),
SPA_MINBLOCKSIZE);
ASSERT(lsize >= SPA_MINBLOCKSIZE && lsize <= resid);
2009-07-03 02:44:48 +04:00
zp.zp_checksum = gio->io_prop.zp_checksum;
zp.zp_compress = ZIO_COMPRESS_OFF;
zp.zp_type = DMU_OT_NONE;
zp.zp_level = 0;
zp.zp_copies = gio->io_prop.zp_copies;
zp.zp_dedup = 0;
zp.zp_dedup_verify = 0;
zio_nowait(zio_write(zio, spa, txg, &gbh->zg_blkptr[g],
(char *)pio->io_data + (pio->io_size - resid), lsize, &zp,
zio_write_gang_member_ready, NULL, &gn->gn_child[g],
pio->io_priority, ZIO_GANG_CHILD_FLAGS(pio),
&pio->io_bookmark));
}
2008-11-20 23:01:55 +03:00
/*
* Set pio's pipeline to just wait for zio to finish.
2008-11-20 23:01:55 +03:00
*/
pio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
Add FASTWRITE algorithm for synchronous writes. Currently, ZIL blocks are spread over vdevs using hint block pointers managed by the ZIL commit code and passed to metaslab_alloc(). Spreading log blocks accross vdevs is important for performance: indeed, using mutliple disks in parallel decreases the ZIL commit latency, which is the main performance metric for synchronous writes. However, the current implementation suffers from the following issues: 1) It would be best if the ZIL module was not aware of such low-level details. They should be handled by the ZIO and metaslab modules; 2) Because the hint block pointer is managed per log, simultaneous commits from multiple logs might use the same vdevs at the same time, which is inefficient; 3) Because dmu_write() does not honor the block pointer hint, indirect writes are not spread. The naive solution of rotating the metaslab rotor each time a block is allocated for the ZIL or dmu_sync() doesn't work in practice because the first ZIL block to be written is actually allocated during the previous commit. Consequently, when metaslab_alloc() decides the vdev for this block, it will do so while a bunch of other allocations are happening at the same time (from dmu_sync() and other ZILs). This means the vdev for this block is chosen more or less at random. When the next commit happens, there is a high chance (especially when the number of blocks per commit is slightly less than the number of the disks) that one disk will have to write two blocks (with a potential seek) while other disks are sitting idle, which defeats spreading and increases the commit latency. This commit introduces a new concept in the metaslab allocator: fastwrites. Basically, each top-level vdev maintains a counter indicating the number of synchronous writes (from dmu_sync() and the ZIL) which have been allocated but not yet completed. When the metaslab is called with the FASTWRITE flag, it will choose the vdev with the least amount of pending synchronous writes. If there are multiple vdevs with the same value, the first matching vdev (starting from the rotor) is used. Once metaslab_alloc() has decided which vdev the block is allocated to, it updates the fastwrite counter for this vdev. The rationale goes like this: when an allocation is done with FASTWRITE, it "reserves" the vdev until the data is written. Until then, all future allocations will naturally avoid this vdev, even after a full rotation of the rotor. As a result, pending synchronous writes at a given point in time will be nicely spread over all vdevs. This contrasts with the previous algorithm, which is based on the implicit assumption that blocks are written instantaneously after they're allocated. metaslab_fastwrite_mark() and metaslab_fastwrite_unmark() are used to manually increase or decrease fastwrite counters, respectively. They should be used with caution, as there is no per-BP tracking of fastwrite information, so leaks and "double-unmarks" are possible. There is, however, an assert in the vdev teardown code which will fire if the fastwrite counters are not zero when the pool is exported or the vdev removed. Note that as stated above, marking is also done implictly by metaslab_alloc(). ZIO also got a new FASTWRITE flag; when it is used, ZIO will pass it to the metaslab when allocating (assuming ZIO does the allocation, which is only true in the case of dmu_sync). This flag will also trigger an unmark when zio_done() fires. A side-effect of the new algorithm is that when a ZIL stops being used, its last block can stay in the pending state (allocated but not yet written) for a long time, polluting the fastwrite counters. To avoid that, I've implemented a somewhat crude but working solution which unmarks these pending blocks in zil_sync(), thus guaranteeing that linguering fastwrites will get pruned at each sync event. The best performance improvements are observed with pools using a large number of top-level vdevs and heavy synchronous write workflows (especially indirect writes and concurrent writes from multiple ZILs). Real-life testing shows a 200% to 300% performance increase with indirect writes and various commit sizes. Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov> Issue #1013
2012-06-27 17:20:20 +04:00
/*
* We didn't allocate this bp, so make sure it doesn't get unmarked.
*/
pio->io_flags &= ~ZIO_FLAG_FASTWRITE;
zio_nowait(zio);
return (ZIO_PIPELINE_CONTINUE);
2008-11-20 23:01:55 +03:00
}
/*
* ==========================================================================
* Dedup
2008-11-20 23:01:55 +03:00
* ==========================================================================
*/
static void
zio_ddt_child_read_done(zio_t *zio)
{
blkptr_t *bp = zio->io_bp;
ddt_entry_t *dde = zio->io_private;
ddt_phys_t *ddp;
zio_t *pio = zio_unique_parent(zio);
mutex_enter(&pio->io_lock);
ddp = ddt_phys_select(dde, bp);
if (zio->io_error == 0)
ddt_phys_clear(ddp); /* this ddp doesn't need repair */
if (zio->io_error == 0 && dde->dde_repair_data == NULL)
dde->dde_repair_data = zio->io_data;
else
zio_buf_free(zio->io_data, zio->io_size);
mutex_exit(&pio->io_lock);
}
static int
zio_ddt_read_start(zio_t *zio)
{
blkptr_t *bp = zio->io_bp;
int p;
ASSERT(BP_GET_DEDUP(bp));
ASSERT(BP_GET_PSIZE(bp) == zio->io_size);
ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
if (zio->io_child_error[ZIO_CHILD_DDT]) {
ddt_t *ddt = ddt_select(zio->io_spa, bp);
ddt_entry_t *dde = ddt_repair_start(ddt, bp);
ddt_phys_t *ddp = dde->dde_phys;
ddt_phys_t *ddp_self = ddt_phys_select(dde, bp);
blkptr_t blk;
ASSERT(zio->io_vsd == NULL);
zio->io_vsd = dde;
if (ddp_self == NULL)
return (ZIO_PIPELINE_CONTINUE);
for (p = 0; p < DDT_PHYS_TYPES; p++, ddp++) {
if (ddp->ddp_phys_birth == 0 || ddp == ddp_self)
continue;
ddt_bp_create(ddt->ddt_checksum, &dde->dde_key, ddp,
&blk);
zio_nowait(zio_read(zio, zio->io_spa, &blk,
zio_buf_alloc(zio->io_size), zio->io_size,
zio_ddt_child_read_done, dde, zio->io_priority,
ZIO_DDT_CHILD_FLAGS(zio) | ZIO_FLAG_DONT_PROPAGATE,
&zio->io_bookmark));
}
return (ZIO_PIPELINE_CONTINUE);
}
zio_nowait(zio_read(zio, zio->io_spa, bp,
zio->io_data, zio->io_size, NULL, NULL, zio->io_priority,
ZIO_DDT_CHILD_FLAGS(zio), &zio->io_bookmark));
return (ZIO_PIPELINE_CONTINUE);
}
static int
zio_ddt_read_done(zio_t *zio)
{
blkptr_t *bp = zio->io_bp;
if (zio_wait_for_children(zio, ZIO_CHILD_DDT, ZIO_WAIT_DONE))
return (ZIO_PIPELINE_STOP);
ASSERT(BP_GET_DEDUP(bp));
ASSERT(BP_GET_PSIZE(bp) == zio->io_size);
ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
if (zio->io_child_error[ZIO_CHILD_DDT]) {
ddt_t *ddt = ddt_select(zio->io_spa, bp);
ddt_entry_t *dde = zio->io_vsd;
if (ddt == NULL) {
ASSERT(spa_load_state(zio->io_spa) != SPA_LOAD_NONE);
return (ZIO_PIPELINE_CONTINUE);
}
if (dde == NULL) {
zio->io_stage = ZIO_STAGE_DDT_READ_START >> 1;
zio_taskq_dispatch(zio, ZIO_TASKQ_ISSUE, B_FALSE);
return (ZIO_PIPELINE_STOP);
}
if (dde->dde_repair_data != NULL) {
bcopy(dde->dde_repair_data, zio->io_data, zio->io_size);
zio->io_child_error[ZIO_CHILD_DDT] = 0;
}
ddt_repair_done(ddt, dde);
zio->io_vsd = NULL;
}
ASSERT(zio->io_vsd == NULL);
return (ZIO_PIPELINE_CONTINUE);
}
static boolean_t
zio_ddt_collision(zio_t *zio, ddt_t *ddt, ddt_entry_t *dde)
{
spa_t *spa = zio->io_spa;
int p;
/*
* Note: we compare the original data, not the transformed data,
* because when zio->io_bp is an override bp, we will not have
* pushed the I/O transforms. That's an important optimization
* because otherwise we'd compress/encrypt all dmu_sync() data twice.
*/
for (p = DDT_PHYS_SINGLE; p <= DDT_PHYS_TRIPLE; p++) {
zio_t *lio = dde->dde_lead_zio[p];
if (lio != NULL) {
return (lio->io_orig_size != zio->io_orig_size ||
bcmp(zio->io_orig_data, lio->io_orig_data,
zio->io_orig_size) != 0);
}
}
for (p = DDT_PHYS_SINGLE; p <= DDT_PHYS_TRIPLE; p++) {
ddt_phys_t *ddp = &dde->dde_phys[p];
if (ddp->ddp_phys_birth != 0) {
arc_buf_t *abuf = NULL;
uint32_t aflags = ARC_WAIT;
blkptr_t blk = *zio->io_bp;
int error;
ddt_bp_fill(ddp, &blk, ddp->ddp_phys_birth);
ddt_exit(ddt);
error = arc_read(NULL, spa, &blk,
arc_getbuf_func, &abuf, ZIO_PRIORITY_SYNC_READ,
ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE,
&aflags, &zio->io_bookmark);
if (error == 0) {
if (arc_buf_size(abuf) != zio->io_orig_size ||
bcmp(abuf->b_data, zio->io_orig_data,
zio->io_orig_size) != 0)
error = EEXIST;
VERIFY(arc_buf_remove_ref(abuf, &abuf) == 1);
}
ddt_enter(ddt);
return (error != 0);
}
}
return (B_FALSE);
}
static void
zio_ddt_child_write_ready(zio_t *zio)
{
int p = zio->io_prop.zp_copies;
ddt_t *ddt = ddt_select(zio->io_spa, zio->io_bp);
ddt_entry_t *dde = zio->io_private;
ddt_phys_t *ddp = &dde->dde_phys[p];
zio_t *pio;
if (zio->io_error)
return;
ddt_enter(ddt);
ASSERT(dde->dde_lead_zio[p] == zio);
ddt_phys_fill(ddp, zio->io_bp);
while ((pio = zio_walk_parents(zio)) != NULL)
ddt_bp_fill(ddp, pio->io_bp, zio->io_txg);
ddt_exit(ddt);
}
static void
zio_ddt_child_write_done(zio_t *zio)
{
int p = zio->io_prop.zp_copies;
ddt_t *ddt = ddt_select(zio->io_spa, zio->io_bp);
ddt_entry_t *dde = zio->io_private;
ddt_phys_t *ddp = &dde->dde_phys[p];
ddt_enter(ddt);
ASSERT(ddp->ddp_refcnt == 0);
ASSERT(dde->dde_lead_zio[p] == zio);
dde->dde_lead_zio[p] = NULL;
if (zio->io_error == 0) {
while (zio_walk_parents(zio) != NULL)
ddt_phys_addref(ddp);
} else {
ddt_phys_clear(ddp);
}
ddt_exit(ddt);
}
static void
zio_ddt_ditto_write_done(zio_t *zio)
{
int p = DDT_PHYS_DITTO;
blkptr_t *bp = zio->io_bp;
ddt_t *ddt = ddt_select(zio->io_spa, bp);
ddt_entry_t *dde = zio->io_private;
ddt_phys_t *ddp = &dde->dde_phys[p];
ddt_key_t *ddk = &dde->dde_key;
ASSERTV(zio_prop_t *zp = &zio->io_prop);
ddt_enter(ddt);
ASSERT(ddp->ddp_refcnt == 0);
ASSERT(dde->dde_lead_zio[p] == zio);
dde->dde_lead_zio[p] = NULL;
if (zio->io_error == 0) {
ASSERT(ZIO_CHECKSUM_EQUAL(bp->blk_cksum, ddk->ddk_cksum));
ASSERT(zp->zp_copies < SPA_DVAS_PER_BP);
ASSERT(zp->zp_copies == BP_GET_NDVAS(bp) - BP_IS_GANG(bp));
if (ddp->ddp_phys_birth != 0)
ddt_phys_free(ddt, ddk, ddp, zio->io_txg);
ddt_phys_fill(ddp, bp);
}
ddt_exit(ddt);
}
static int
zio_ddt_write(zio_t *zio)
{
spa_t *spa = zio->io_spa;
blkptr_t *bp = zio->io_bp;
uint64_t txg = zio->io_txg;
zio_prop_t *zp = &zio->io_prop;
int p = zp->zp_copies;
int ditto_copies;
zio_t *cio = NULL;
zio_t *dio = NULL;
ddt_t *ddt = ddt_select(spa, bp);
ddt_entry_t *dde;
ddt_phys_t *ddp;
ASSERT(BP_GET_DEDUP(bp));
ASSERT(BP_GET_CHECKSUM(bp) == zp->zp_checksum);
ASSERT(BP_IS_HOLE(bp) || zio->io_bp_override);
ddt_enter(ddt);
dde = ddt_lookup(ddt, bp, B_TRUE);
ddp = &dde->dde_phys[p];
if (zp->zp_dedup_verify && zio_ddt_collision(zio, ddt, dde)) {
/*
* If we're using a weak checksum, upgrade to a strong checksum
* and try again. If we're already using a strong checksum,
* we can't resolve it, so just convert to an ordinary write.
* (And automatically e-mail a paper to Nature?)
*/
if (!zio_checksum_table[zp->zp_checksum].ci_dedup) {
zp->zp_checksum = spa_dedup_checksum(spa);
zio_pop_transforms(zio);
zio->io_stage = ZIO_STAGE_OPEN;
BP_ZERO(bp);
} else {
zp->zp_dedup = 0;
}
zio->io_pipeline = ZIO_WRITE_PIPELINE;
ddt_exit(ddt);
return (ZIO_PIPELINE_CONTINUE);
}
ditto_copies = ddt_ditto_copies_needed(ddt, dde, ddp);
ASSERT(ditto_copies < SPA_DVAS_PER_BP);
if (ditto_copies > ddt_ditto_copies_present(dde) &&
dde->dde_lead_zio[DDT_PHYS_DITTO] == NULL) {
zio_prop_t czp = *zp;
czp.zp_copies = ditto_copies;
/*
* If we arrived here with an override bp, we won't have run
* the transform stack, so we won't have the data we need to
* generate a child i/o. So, toss the override bp and restart.
* This is safe, because using the override bp is just an
* optimization; and it's rare, so the cost doesn't matter.
*/
if (zio->io_bp_override) {
zio_pop_transforms(zio);
zio->io_stage = ZIO_STAGE_OPEN;
zio->io_pipeline = ZIO_WRITE_PIPELINE;
zio->io_bp_override = NULL;
BP_ZERO(bp);
ddt_exit(ddt);
return (ZIO_PIPELINE_CONTINUE);
}
dio = zio_write(zio, spa, txg, bp, zio->io_orig_data,
zio->io_orig_size, &czp, NULL,
zio_ddt_ditto_write_done, dde, zio->io_priority,
ZIO_DDT_CHILD_FLAGS(zio), &zio->io_bookmark);
zio_push_transform(dio, zio->io_data, zio->io_size, 0, NULL);
dde->dde_lead_zio[DDT_PHYS_DITTO] = dio;
}
if (ddp->ddp_phys_birth != 0 || dde->dde_lead_zio[p] != NULL) {
if (ddp->ddp_phys_birth != 0)
ddt_bp_fill(ddp, bp, txg);
if (dde->dde_lead_zio[p] != NULL)
zio_add_child(zio, dde->dde_lead_zio[p]);
else
ddt_phys_addref(ddp);
} else if (zio->io_bp_override) {
ASSERT(bp->blk_birth == txg);
ASSERT(BP_EQUAL(bp, zio->io_bp_override));
ddt_phys_fill(ddp, bp);
ddt_phys_addref(ddp);
} else {
cio = zio_write(zio, spa, txg, bp, zio->io_orig_data,
zio->io_orig_size, zp, zio_ddt_child_write_ready,
zio_ddt_child_write_done, dde, zio->io_priority,
ZIO_DDT_CHILD_FLAGS(zio), &zio->io_bookmark);
zio_push_transform(cio, zio->io_data, zio->io_size, 0, NULL);
dde->dde_lead_zio[p] = cio;
}
ddt_exit(ddt);
if (cio)
zio_nowait(cio);
if (dio)
zio_nowait(dio);
return (ZIO_PIPELINE_CONTINUE);
}
ddt_entry_t *freedde; /* for debugging */
static int
zio_ddt_free(zio_t *zio)
{
spa_t *spa = zio->io_spa;
blkptr_t *bp = zio->io_bp;
ddt_t *ddt = ddt_select(spa, bp);
ddt_entry_t *dde;
ddt_phys_t *ddp;
ASSERT(BP_GET_DEDUP(bp));
ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
ddt_enter(ddt);
freedde = dde = ddt_lookup(ddt, bp, B_TRUE);
if (dde) {
ddp = ddt_phys_select(dde, bp);
if (ddp)
ddt_phys_decref(ddp);
}
ddt_exit(ddt);
return (ZIO_PIPELINE_CONTINUE);
}
/*
* ==========================================================================
* Allocate and free blocks
* ==========================================================================
*/
2008-11-20 23:01:55 +03:00
static int
zio_dva_allocate(zio_t *zio)
{
spa_t *spa = zio->io_spa;
metaslab_class_t *mc = spa_normal_class(spa);
2008-11-20 23:01:55 +03:00
blkptr_t *bp = zio->io_bp;
int error;
int flags = 0;
2008-11-20 23:01:55 +03:00
2009-07-03 02:44:48 +04:00
if (zio->io_gang_leader == NULL) {
ASSERT(zio->io_child_type > ZIO_CHILD_GANG);
zio->io_gang_leader = zio;
}
2008-11-20 23:01:55 +03:00
ASSERT(BP_IS_HOLE(bp));
ASSERT0(BP_GET_NDVAS(bp));
ASSERT3U(zio->io_prop.zp_copies, >, 0);
ASSERT3U(zio->io_prop.zp_copies, <=, spa_max_replication(spa));
2008-11-20 23:01:55 +03:00
ASSERT3U(zio->io_size, ==, BP_GET_PSIZE(bp));
/*
* The dump device does not support gang blocks so allocation on
* behalf of the dump device (i.e. ZIO_FLAG_NODATA) must avoid
* the "fast" gang feature.
*/
flags |= (zio->io_flags & ZIO_FLAG_NODATA) ? METASLAB_GANG_AVOID : 0;
flags |= (zio->io_flags & ZIO_FLAG_GANG_CHILD) ?
METASLAB_GANG_CHILD : 0;
Add FASTWRITE algorithm for synchronous writes. Currently, ZIL blocks are spread over vdevs using hint block pointers managed by the ZIL commit code and passed to metaslab_alloc(). Spreading log blocks accross vdevs is important for performance: indeed, using mutliple disks in parallel decreases the ZIL commit latency, which is the main performance metric for synchronous writes. However, the current implementation suffers from the following issues: 1) It would be best if the ZIL module was not aware of such low-level details. They should be handled by the ZIO and metaslab modules; 2) Because the hint block pointer is managed per log, simultaneous commits from multiple logs might use the same vdevs at the same time, which is inefficient; 3) Because dmu_write() does not honor the block pointer hint, indirect writes are not spread. The naive solution of rotating the metaslab rotor each time a block is allocated for the ZIL or dmu_sync() doesn't work in practice because the first ZIL block to be written is actually allocated during the previous commit. Consequently, when metaslab_alloc() decides the vdev for this block, it will do so while a bunch of other allocations are happening at the same time (from dmu_sync() and other ZILs). This means the vdev for this block is chosen more or less at random. When the next commit happens, there is a high chance (especially when the number of blocks per commit is slightly less than the number of the disks) that one disk will have to write two blocks (with a potential seek) while other disks are sitting idle, which defeats spreading and increases the commit latency. This commit introduces a new concept in the metaslab allocator: fastwrites. Basically, each top-level vdev maintains a counter indicating the number of synchronous writes (from dmu_sync() and the ZIL) which have been allocated but not yet completed. When the metaslab is called with the FASTWRITE flag, it will choose the vdev with the least amount of pending synchronous writes. If there are multiple vdevs with the same value, the first matching vdev (starting from the rotor) is used. Once metaslab_alloc() has decided which vdev the block is allocated to, it updates the fastwrite counter for this vdev. The rationale goes like this: when an allocation is done with FASTWRITE, it "reserves" the vdev until the data is written. Until then, all future allocations will naturally avoid this vdev, even after a full rotation of the rotor. As a result, pending synchronous writes at a given point in time will be nicely spread over all vdevs. This contrasts with the previous algorithm, which is based on the implicit assumption that blocks are written instantaneously after they're allocated. metaslab_fastwrite_mark() and metaslab_fastwrite_unmark() are used to manually increase or decrease fastwrite counters, respectively. They should be used with caution, as there is no per-BP tracking of fastwrite information, so leaks and "double-unmarks" are possible. There is, however, an assert in the vdev teardown code which will fire if the fastwrite counters are not zero when the pool is exported or the vdev removed. Note that as stated above, marking is also done implictly by metaslab_alloc(). ZIO also got a new FASTWRITE flag; when it is used, ZIO will pass it to the metaslab when allocating (assuming ZIO does the allocation, which is only true in the case of dmu_sync). This flag will also trigger an unmark when zio_done() fires. A side-effect of the new algorithm is that when a ZIL stops being used, its last block can stay in the pending state (allocated but not yet written) for a long time, polluting the fastwrite counters. To avoid that, I've implemented a somewhat crude but working solution which unmarks these pending blocks in zil_sync(), thus guaranteeing that linguering fastwrites will get pruned at each sync event. The best performance improvements are observed with pools using a large number of top-level vdevs and heavy synchronous write workflows (especially indirect writes and concurrent writes from multiple ZILs). Real-life testing shows a 200% to 300% performance increase with indirect writes and various commit sizes. Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov> Issue #1013
2012-06-27 17:20:20 +04:00
flags |= (zio->io_flags & ZIO_FLAG_FASTWRITE) ? METASLAB_FASTWRITE : 0;
error = metaslab_alloc(spa, mc, zio->io_size, bp,
zio->io_prop.zp_copies, zio->io_txg, NULL, flags);
2008-11-20 23:01:55 +03:00
if (error) {
spa_dbgmsg(spa, "%s: metaslab allocation failure: zio %p, "
"size %llu, error %d", spa_name(spa), zio, zio->io_size,
error);
if (error == ENOSPC && zio->io_size > SPA_MINBLOCKSIZE)
return (zio_write_gang_block(zio));
2008-11-20 23:01:55 +03:00
zio->io_error = error;
}
return (ZIO_PIPELINE_CONTINUE);
}
static int
zio_dva_free(zio_t *zio)
{
metaslab_free(zio->io_spa, zio->io_bp, zio->io_txg, B_FALSE);
2008-11-20 23:01:55 +03:00
return (ZIO_PIPELINE_CONTINUE);
}
static int
zio_dva_claim(zio_t *zio)
{
int error;
error = metaslab_claim(zio->io_spa, zio->io_bp, zio->io_txg);
if (error)
zio->io_error = error;
2008-11-20 23:01:55 +03:00
return (ZIO_PIPELINE_CONTINUE);
}
/*
* Undo an allocation. This is used by zio_done() when an I/O fails
* and we want to give back the block we just allocated.
* This handles both normal blocks and gang blocks.
*/
static void
zio_dva_unallocate(zio_t *zio, zio_gang_node_t *gn, blkptr_t *bp)
{
int g;
ASSERT(bp->blk_birth == zio->io_txg || BP_IS_HOLE(bp));
ASSERT(zio->io_bp_override == NULL);
if (!BP_IS_HOLE(bp))
metaslab_free(zio->io_spa, bp, bp->blk_birth, B_TRUE);
if (gn != NULL) {
for (g = 0; g < SPA_GBH_NBLKPTRS; g++) {
zio_dva_unallocate(zio, gn->gn_child[g],
&gn->gn_gbh->zg_blkptr[g]);
}
}
}
/*
* Try to allocate an intent log block. Return 0 on success, errno on failure.
*/
int
Add FASTWRITE algorithm for synchronous writes. Currently, ZIL blocks are spread over vdevs using hint block pointers managed by the ZIL commit code and passed to metaslab_alloc(). Spreading log blocks accross vdevs is important for performance: indeed, using mutliple disks in parallel decreases the ZIL commit latency, which is the main performance metric for synchronous writes. However, the current implementation suffers from the following issues: 1) It would be best if the ZIL module was not aware of such low-level details. They should be handled by the ZIO and metaslab modules; 2) Because the hint block pointer is managed per log, simultaneous commits from multiple logs might use the same vdevs at the same time, which is inefficient; 3) Because dmu_write() does not honor the block pointer hint, indirect writes are not spread. The naive solution of rotating the metaslab rotor each time a block is allocated for the ZIL or dmu_sync() doesn't work in practice because the first ZIL block to be written is actually allocated during the previous commit. Consequently, when metaslab_alloc() decides the vdev for this block, it will do so while a bunch of other allocations are happening at the same time (from dmu_sync() and other ZILs). This means the vdev for this block is chosen more or less at random. When the next commit happens, there is a high chance (especially when the number of blocks per commit is slightly less than the number of the disks) that one disk will have to write two blocks (with a potential seek) while other disks are sitting idle, which defeats spreading and increases the commit latency. This commit introduces a new concept in the metaslab allocator: fastwrites. Basically, each top-level vdev maintains a counter indicating the number of synchronous writes (from dmu_sync() and the ZIL) which have been allocated but not yet completed. When the metaslab is called with the FASTWRITE flag, it will choose the vdev with the least amount of pending synchronous writes. If there are multiple vdevs with the same value, the first matching vdev (starting from the rotor) is used. Once metaslab_alloc() has decided which vdev the block is allocated to, it updates the fastwrite counter for this vdev. The rationale goes like this: when an allocation is done with FASTWRITE, it "reserves" the vdev until the data is written. Until then, all future allocations will naturally avoid this vdev, even after a full rotation of the rotor. As a result, pending synchronous writes at a given point in time will be nicely spread over all vdevs. This contrasts with the previous algorithm, which is based on the implicit assumption that blocks are written instantaneously after they're allocated. metaslab_fastwrite_mark() and metaslab_fastwrite_unmark() are used to manually increase or decrease fastwrite counters, respectively. They should be used with caution, as there is no per-BP tracking of fastwrite information, so leaks and "double-unmarks" are possible. There is, however, an assert in the vdev teardown code which will fire if the fastwrite counters are not zero when the pool is exported or the vdev removed. Note that as stated above, marking is also done implictly by metaslab_alloc(). ZIO also got a new FASTWRITE flag; when it is used, ZIO will pass it to the metaslab when allocating (assuming ZIO does the allocation, which is only true in the case of dmu_sync). This flag will also trigger an unmark when zio_done() fires. A side-effect of the new algorithm is that when a ZIL stops being used, its last block can stay in the pending state (allocated but not yet written) for a long time, polluting the fastwrite counters. To avoid that, I've implemented a somewhat crude but working solution which unmarks these pending blocks in zil_sync(), thus guaranteeing that linguering fastwrites will get pruned at each sync event. The best performance improvements are observed with pools using a large number of top-level vdevs and heavy synchronous write workflows (especially indirect writes and concurrent writes from multiple ZILs). Real-life testing shows a 200% to 300% performance increase with indirect writes and various commit sizes. Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov> Issue #1013
2012-06-27 17:20:20 +04:00
zio_alloc_zil(spa_t *spa, uint64_t txg, blkptr_t *new_bp, uint64_t size,
boolean_t use_slog)
{
int error = 1;
ASSERT(txg > spa_syncing_txg(spa));
/*
* ZIL blocks are always contiguous (i.e. not gang blocks) so we
* set the METASLAB_GANG_AVOID flag so that they don't "fast gang"
* when allocating them.
*/
if (use_slog) {
error = metaslab_alloc(spa, spa_log_class(spa), size,
Add FASTWRITE algorithm for synchronous writes. Currently, ZIL blocks are spread over vdevs using hint block pointers managed by the ZIL commit code and passed to metaslab_alloc(). Spreading log blocks accross vdevs is important for performance: indeed, using mutliple disks in parallel decreases the ZIL commit latency, which is the main performance metric for synchronous writes. However, the current implementation suffers from the following issues: 1) It would be best if the ZIL module was not aware of such low-level details. They should be handled by the ZIO and metaslab modules; 2) Because the hint block pointer is managed per log, simultaneous commits from multiple logs might use the same vdevs at the same time, which is inefficient; 3) Because dmu_write() does not honor the block pointer hint, indirect writes are not spread. The naive solution of rotating the metaslab rotor each time a block is allocated for the ZIL or dmu_sync() doesn't work in practice because the first ZIL block to be written is actually allocated during the previous commit. Consequently, when metaslab_alloc() decides the vdev for this block, it will do so while a bunch of other allocations are happening at the same time (from dmu_sync() and other ZILs). This means the vdev for this block is chosen more or less at random. When the next commit happens, there is a high chance (especially when the number of blocks per commit is slightly less than the number of the disks) that one disk will have to write two blocks (with a potential seek) while other disks are sitting idle, which defeats spreading and increases the commit latency. This commit introduces a new concept in the metaslab allocator: fastwrites. Basically, each top-level vdev maintains a counter indicating the number of synchronous writes (from dmu_sync() and the ZIL) which have been allocated but not yet completed. When the metaslab is called with the FASTWRITE flag, it will choose the vdev with the least amount of pending synchronous writes. If there are multiple vdevs with the same value, the first matching vdev (starting from the rotor) is used. Once metaslab_alloc() has decided which vdev the block is allocated to, it updates the fastwrite counter for this vdev. The rationale goes like this: when an allocation is done with FASTWRITE, it "reserves" the vdev until the data is written. Until then, all future allocations will naturally avoid this vdev, even after a full rotation of the rotor. As a result, pending synchronous writes at a given point in time will be nicely spread over all vdevs. This contrasts with the previous algorithm, which is based on the implicit assumption that blocks are written instantaneously after they're allocated. metaslab_fastwrite_mark() and metaslab_fastwrite_unmark() are used to manually increase or decrease fastwrite counters, respectively. They should be used with caution, as there is no per-BP tracking of fastwrite information, so leaks and "double-unmarks" are possible. There is, however, an assert in the vdev teardown code which will fire if the fastwrite counters are not zero when the pool is exported or the vdev removed. Note that as stated above, marking is also done implictly by metaslab_alloc(). ZIO also got a new FASTWRITE flag; when it is used, ZIO will pass it to the metaslab when allocating (assuming ZIO does the allocation, which is only true in the case of dmu_sync). This flag will also trigger an unmark when zio_done() fires. A side-effect of the new algorithm is that when a ZIL stops being used, its last block can stay in the pending state (allocated but not yet written) for a long time, polluting the fastwrite counters. To avoid that, I've implemented a somewhat crude but working solution which unmarks these pending blocks in zil_sync(), thus guaranteeing that linguering fastwrites will get pruned at each sync event. The best performance improvements are observed with pools using a large number of top-level vdevs and heavy synchronous write workflows (especially indirect writes and concurrent writes from multiple ZILs). Real-life testing shows a 200% to 300% performance increase with indirect writes and various commit sizes. Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov> Issue #1013
2012-06-27 17:20:20 +04:00
new_bp, 1, txg, NULL,
METASLAB_FASTWRITE | METASLAB_GANG_AVOID);
}
if (error) {
error = metaslab_alloc(spa, spa_normal_class(spa), size,
Add FASTWRITE algorithm for synchronous writes. Currently, ZIL blocks are spread over vdevs using hint block pointers managed by the ZIL commit code and passed to metaslab_alloc(). Spreading log blocks accross vdevs is important for performance: indeed, using mutliple disks in parallel decreases the ZIL commit latency, which is the main performance metric for synchronous writes. However, the current implementation suffers from the following issues: 1) It would be best if the ZIL module was not aware of such low-level details. They should be handled by the ZIO and metaslab modules; 2) Because the hint block pointer is managed per log, simultaneous commits from multiple logs might use the same vdevs at the same time, which is inefficient; 3) Because dmu_write() does not honor the block pointer hint, indirect writes are not spread. The naive solution of rotating the metaslab rotor each time a block is allocated for the ZIL or dmu_sync() doesn't work in practice because the first ZIL block to be written is actually allocated during the previous commit. Consequently, when metaslab_alloc() decides the vdev for this block, it will do so while a bunch of other allocations are happening at the same time (from dmu_sync() and other ZILs). This means the vdev for this block is chosen more or less at random. When the next commit happens, there is a high chance (especially when the number of blocks per commit is slightly less than the number of the disks) that one disk will have to write two blocks (with a potential seek) while other disks are sitting idle, which defeats spreading and increases the commit latency. This commit introduces a new concept in the metaslab allocator: fastwrites. Basically, each top-level vdev maintains a counter indicating the number of synchronous writes (from dmu_sync() and the ZIL) which have been allocated but not yet completed. When the metaslab is called with the FASTWRITE flag, it will choose the vdev with the least amount of pending synchronous writes. If there are multiple vdevs with the same value, the first matching vdev (starting from the rotor) is used. Once metaslab_alloc() has decided which vdev the block is allocated to, it updates the fastwrite counter for this vdev. The rationale goes like this: when an allocation is done with FASTWRITE, it "reserves" the vdev until the data is written. Until then, all future allocations will naturally avoid this vdev, even after a full rotation of the rotor. As a result, pending synchronous writes at a given point in time will be nicely spread over all vdevs. This contrasts with the previous algorithm, which is based on the implicit assumption that blocks are written instantaneously after they're allocated. metaslab_fastwrite_mark() and metaslab_fastwrite_unmark() are used to manually increase or decrease fastwrite counters, respectively. They should be used with caution, as there is no per-BP tracking of fastwrite information, so leaks and "double-unmarks" are possible. There is, however, an assert in the vdev teardown code which will fire if the fastwrite counters are not zero when the pool is exported or the vdev removed. Note that as stated above, marking is also done implictly by metaslab_alloc(). ZIO also got a new FASTWRITE flag; when it is used, ZIO will pass it to the metaslab when allocating (assuming ZIO does the allocation, which is only true in the case of dmu_sync). This flag will also trigger an unmark when zio_done() fires. A side-effect of the new algorithm is that when a ZIL stops being used, its last block can stay in the pending state (allocated but not yet written) for a long time, polluting the fastwrite counters. To avoid that, I've implemented a somewhat crude but working solution which unmarks these pending blocks in zil_sync(), thus guaranteeing that linguering fastwrites will get pruned at each sync event. The best performance improvements are observed with pools using a large number of top-level vdevs and heavy synchronous write workflows (especially indirect writes and concurrent writes from multiple ZILs). Real-life testing shows a 200% to 300% performance increase with indirect writes and various commit sizes. Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov> Issue #1013
2012-06-27 17:20:20 +04:00
new_bp, 1, txg, NULL,
METASLAB_FASTWRITE | METASLAB_GANG_AVOID);
}
if (error == 0) {
BP_SET_LSIZE(new_bp, size);
BP_SET_PSIZE(new_bp, size);
BP_SET_COMPRESS(new_bp, ZIO_COMPRESS_OFF);
BP_SET_CHECKSUM(new_bp,
spa_version(spa) >= SPA_VERSION_SLIM_ZIL
? ZIO_CHECKSUM_ZILOG2 : ZIO_CHECKSUM_ZILOG);
BP_SET_TYPE(new_bp, DMU_OT_INTENT_LOG);
BP_SET_LEVEL(new_bp, 0);
BP_SET_DEDUP(new_bp, 0);
BP_SET_BYTEORDER(new_bp, ZFS_HOST_BYTEORDER);
}
return (error);
}
/*
* Free an intent log block.
*/
void
zio_free_zil(spa_t *spa, uint64_t txg, blkptr_t *bp)
{
ASSERT(BP_GET_TYPE(bp) == DMU_OT_INTENT_LOG);
ASSERT(!BP_IS_GANG(bp));
zio_free(spa, txg, bp);
}
2008-11-20 23:01:55 +03:00
/*
* ==========================================================================
* Read and write to physical devices
* ==========================================================================
*/
static int
zio_vdev_io_start(zio_t *zio)
{
vdev_t *vd = zio->io_vd;
uint64_t align;
spa_t *spa = zio->io_spa;
ASSERT(zio->io_error == 0);
ASSERT(zio->io_child_error[ZIO_CHILD_VDEV] == 0);
2008-11-20 23:01:55 +03:00
if (vd == NULL) {
if (!(zio->io_flags & ZIO_FLAG_CONFIG_WRITER))
spa_config_enter(spa, SCL_ZIO, zio, RW_READER);
2008-11-20 23:01:55 +03:00
/*
* The mirror_ops handle multiple DVAs in a single BP.
*/
return (vdev_mirror_ops.vdev_op_io_start(zio));
2008-11-20 23:01:55 +03:00
}
/*
* We keep track of time-sensitive I/Os so that the scan thread
* can quickly react to certain workloads. In particular, we care
* about non-scrubbing, top-level reads and writes with the following
* characteristics:
* - synchronous writes of user data to non-slog devices
* - any reads of user data
* When these conditions are met, adjust the timestamp of spa_last_io
* which allows the scan thread to adjust its workload accordingly.
*/
if (!(zio->io_flags & ZIO_FLAG_SCAN_THREAD) && zio->io_bp != NULL &&
vd == vd->vdev_top && !vd->vdev_islog &&
zio->io_bookmark.zb_objset != DMU_META_OBJSET &&
zio->io_txg != spa_syncing_txg(spa)) {
uint64_t old = spa->spa_last_io;
uint64_t new = ddi_get_lbolt64();
if (old != new)
(void) atomic_cas_64(&spa->spa_last_io, old, new);
}
align = 1ULL << vd->vdev_top->vdev_ashift;
if (P2PHASE(zio->io_size, align) != 0) {
2008-11-20 23:01:55 +03:00
uint64_t asize = P2ROUNDUP(zio->io_size, align);
char *abuf = zio_buf_alloc(asize);
ASSERT(vd == vd->vdev_top);
2008-11-20 23:01:55 +03:00
if (zio->io_type == ZIO_TYPE_WRITE) {
bcopy(zio->io_data, abuf, zio->io_size);
bzero(abuf + zio->io_size, asize - zio->io_size);
}
zio_push_transform(zio, abuf, asize, asize, zio_subblock);
2008-11-20 23:01:55 +03:00
}
ASSERT(P2PHASE(zio->io_offset, align) == 0);
ASSERT(P2PHASE(zio->io_size, align) == 0);
VERIFY(zio->io_type != ZIO_TYPE_WRITE || spa_writeable(spa));
2009-01-16 00:59:39 +03:00
/*
* If this is a repair I/O, and there's no self-healing involved --
* that is, we're just resilvering what we expect to resilver --
* then don't do the I/O unless zio's txg is actually in vd's DTL.
* This prevents spurious resilvering with nested replication.
* For example, given a mirror of mirrors, (A+B)+(C+D), if only
* A is out of date, we'll read from C+D, then use the data to
* resilver A+B -- but we don't actually want to resilver B, just A.
* The top-level mirror has no way to know this, so instead we just
* discard unnecessary repairs as we work our way down the vdev tree.
* The same logic applies to any form of nested replication:
* ditto + mirror, RAID-Z + replacing, etc. This covers them all.
*/
if ((zio->io_flags & ZIO_FLAG_IO_REPAIR) &&
!(zio->io_flags & ZIO_FLAG_SELF_HEAL) &&
zio->io_txg != 0 && /* not a delegated i/o */
!vdev_dtl_contains(vd, DTL_PARTIAL, zio->io_txg, 1)) {
ASSERT(zio->io_type == ZIO_TYPE_WRITE);
zio_vdev_io_bypass(zio);
return (ZIO_PIPELINE_CONTINUE);
}
2008-11-20 23:01:55 +03:00
if (vd->vdev_ops->vdev_op_leaf &&
(zio->io_type == ZIO_TYPE_READ || zio->io_type == ZIO_TYPE_WRITE)) {
if (zio->io_type == ZIO_TYPE_READ && vdev_cache_read(zio) == 0)
2009-02-18 23:51:31 +03:00
return (ZIO_PIPELINE_CONTINUE);
if ((zio = vdev_queue_io(zio)) == NULL)
return (ZIO_PIPELINE_STOP);
if (!vdev_accessible(vd, zio)) {
zio->io_error = ENXIO;
zio_interrupt(zio);
return (ZIO_PIPELINE_STOP);
}
}
2008-11-20 23:01:55 +03:00
return (vd->vdev_ops->vdev_op_io_start(zio));
}
static int
zio_vdev_io_done(zio_t *zio)
{
vdev_t *vd = zio->io_vd;
vdev_ops_t *ops = vd ? vd->vdev_ops : &vdev_mirror_ops;
boolean_t unexpected_error = B_FALSE;
2008-11-20 23:01:55 +03:00
if (zio_wait_for_children(zio, ZIO_CHILD_VDEV, ZIO_WAIT_DONE))
return (ZIO_PIPELINE_STOP);
2008-11-20 23:01:55 +03:00
ASSERT(zio->io_type == ZIO_TYPE_READ || zio->io_type == ZIO_TYPE_WRITE);
if (vd != NULL && vd->vdev_ops->vdev_op_leaf) {
vdev_queue_io_done(zio);
if (zio->io_type == ZIO_TYPE_WRITE)
vdev_cache_write(zio);
if (zio_injection_enabled && zio->io_error == 0)
2009-07-03 02:44:48 +04:00
zio->io_error = zio_handle_device_injection(vd,
zio, EIO);
if (zio_injection_enabled && zio->io_error == 0)
zio->io_error = zio_handle_label_injection(zio, EIO);
if (zio->io_error) {
if (!vdev_accessible(vd, zio)) {
zio->io_error = ENXIO;
} else {
unexpected_error = B_TRUE;
}
}
}
ops->vdev_op_io_done(zio);
2008-11-20 23:01:55 +03:00
if (unexpected_error)
2009-02-18 23:51:31 +03:00
VERIFY(vdev_probe(vd, zio) == NULL);
2008-11-20 23:01:55 +03:00
return (ZIO_PIPELINE_CONTINUE);
2008-11-20 23:01:55 +03:00
}
/*
* For non-raidz ZIOs, we can just copy aside the bad data read from the
* disk, and use that to finish the checksum ereport later.
*/
static void
zio_vsd_default_cksum_finish(zio_cksum_report_t *zcr,
const void *good_buf)
{
/* no processing needed */
zfs_ereport_finish_checksum(zcr, good_buf, zcr->zcr_cbdata, B_FALSE);
}
/*ARGSUSED*/
void
zio_vsd_default_cksum_report(zio_t *zio, zio_cksum_report_t *zcr, void *ignored)
{
void *buf = zio_buf_alloc(zio->io_size);
bcopy(zio->io_data, buf, zio->io_size);
zcr->zcr_cbinfo = zio->io_size;
zcr->zcr_cbdata = buf;
zcr->zcr_finish = zio_vsd_default_cksum_finish;
zcr->zcr_free = zio_buf_free;
}
2008-11-20 23:01:55 +03:00
static int
zio_vdev_io_assess(zio_t *zio)
{
vdev_t *vd = zio->io_vd;
if (zio_wait_for_children(zio, ZIO_CHILD_VDEV, ZIO_WAIT_DONE))
return (ZIO_PIPELINE_STOP);
if (vd == NULL && !(zio->io_flags & ZIO_FLAG_CONFIG_WRITER))
spa_config_exit(zio->io_spa, SCL_ZIO, zio);
if (zio->io_vsd != NULL) {
zio->io_vsd_ops->vsd_free(zio);
zio->io_vsd = NULL;
2008-11-20 23:01:55 +03:00
}
if (zio_injection_enabled && zio->io_error == 0)
2008-11-20 23:01:55 +03:00
zio->io_error = zio_handle_fault_injection(zio, EIO);
/*
* If the I/O failed, determine whether we should attempt to retry it.
*
* On retry, we cut in line in the issue queue, since we don't want
* compression/checksumming/etc. work to prevent our (cheap) IO reissue.
2008-11-20 23:01:55 +03:00
*/
if (zio->io_error && vd == NULL &&
!(zio->io_flags & (ZIO_FLAG_DONT_RETRY | ZIO_FLAG_IO_RETRY))) {
ASSERT(!(zio->io_flags & ZIO_FLAG_DONT_QUEUE)); /* not a leaf */
ASSERT(!(zio->io_flags & ZIO_FLAG_IO_BYPASS)); /* not a leaf */
2008-11-20 23:01:55 +03:00
zio->io_error = 0;
zio->io_flags |= ZIO_FLAG_IO_RETRY |
ZIO_FLAG_DONT_CACHE | ZIO_FLAG_DONT_AGGREGATE;
zio->io_stage = ZIO_STAGE_VDEV_IO_START >> 1;
zio_taskq_dispatch(zio, ZIO_TASKQ_ISSUE,
zio_requeue_io_start_cut_in_line);
return (ZIO_PIPELINE_STOP);
2008-11-20 23:01:55 +03:00
}
/*
* If we got an error on a leaf device, convert it to ENXIO
* if the device is not accessible at all.
*/
if (zio->io_error && vd != NULL && vd->vdev_ops->vdev_op_leaf &&
!vdev_accessible(vd, zio))
zio->io_error = ENXIO;
/*
* If we can't write to an interior vdev (mirror or RAID-Z),
* set vdev_cant_write so that we stop trying to allocate from it.
*/
if (zio->io_error == ENXIO && zio->io_type == ZIO_TYPE_WRITE &&
vd != NULL && !vd->vdev_ops->vdev_op_leaf)
vd->vdev_cant_write = B_TRUE;
if (zio->io_error)
zio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
2008-11-20 23:01:55 +03:00
return (ZIO_PIPELINE_CONTINUE);
}
void
zio_vdev_io_reissue(zio_t *zio)
{
ASSERT(zio->io_stage == ZIO_STAGE_VDEV_IO_START);
ASSERT(zio->io_error == 0);
zio->io_stage >>= 1;
2008-11-20 23:01:55 +03:00
}
void
zio_vdev_io_redone(zio_t *zio)
{
ASSERT(zio->io_stage == ZIO_STAGE_VDEV_IO_DONE);
zio->io_stage >>= 1;
2008-11-20 23:01:55 +03:00
}
void
zio_vdev_io_bypass(zio_t *zio)
{
ASSERT(zio->io_stage == ZIO_STAGE_VDEV_IO_START);
ASSERT(zio->io_error == 0);
zio->io_flags |= ZIO_FLAG_IO_BYPASS;
zio->io_stage = ZIO_STAGE_VDEV_IO_ASSESS >> 1;
2008-11-20 23:01:55 +03:00
}
/*
* ==========================================================================
* Generate and verify checksums
* ==========================================================================
*/
static int
zio_checksum_generate(zio_t *zio)
{
blkptr_t *bp = zio->io_bp;
enum zio_checksum checksum;
2008-11-20 23:01:55 +03:00
if (bp == NULL) {
/*
* This is zio_write_phys().
* We're either generating a label checksum, or none at all.
*/
checksum = zio->io_prop.zp_checksum;
2008-11-20 23:01:55 +03:00
if (checksum == ZIO_CHECKSUM_OFF)
return (ZIO_PIPELINE_CONTINUE);
ASSERT(checksum == ZIO_CHECKSUM_LABEL);
} else {
if (BP_IS_GANG(bp) && zio->io_child_type == ZIO_CHILD_GANG) {
ASSERT(!IO_IS_ALLOCATING(zio));
checksum = ZIO_CHECKSUM_GANG_HEADER;
} else {
checksum = BP_GET_CHECKSUM(bp);
}
}
2008-11-20 23:01:55 +03:00
zio_checksum_compute(zio, checksum, zio->io_data, zio->io_size);
2008-11-20 23:01:55 +03:00
return (ZIO_PIPELINE_CONTINUE);
}
static int
zio_checksum_verify(zio_t *zio)
2008-11-20 23:01:55 +03:00
{
zio_bad_cksum_t info;
blkptr_t *bp = zio->io_bp;
int error;
2008-11-20 23:01:55 +03:00
ASSERT(zio->io_vd != NULL);
if (bp == NULL) {
/*
* This is zio_read_phys().
* We're either verifying a label checksum, or nothing at all.
*/
if (zio->io_prop.zp_checksum == ZIO_CHECKSUM_OFF)
return (ZIO_PIPELINE_CONTINUE);
2008-11-20 23:01:55 +03:00
ASSERT(zio->io_prop.zp_checksum == ZIO_CHECKSUM_LABEL);
}
2008-11-20 23:01:55 +03:00
if ((error = zio_checksum_error(zio, &info)) != 0) {
zio->io_error = error;
if (!(zio->io_flags & ZIO_FLAG_SPECULATIVE)) {
zfs_ereport_start_checksum(zio->io_spa,
zio->io_vd, zio, zio->io_offset,
zio->io_size, NULL, &info);
}
2008-11-20 23:01:55 +03:00
}
return (ZIO_PIPELINE_CONTINUE);
}
/*
* Called by RAID-Z to ensure we don't compute the checksum twice.
*/
void
zio_checksum_verified(zio_t *zio)
{
zio->io_pipeline &= ~ZIO_STAGE_CHECKSUM_VERIFY;
2008-11-20 23:01:55 +03:00
}
/*
* ==========================================================================
* Error rank. Error are ranked in the order 0, ENXIO, ECKSUM, EIO, other.
* An error of 0 indictes success. ENXIO indicates whole-device failure,
* which may be transient (e.g. unplugged) or permament. ECKSUM and EIO
* indicate errors that are specific to one I/O, and most likely permanent.
* Any other error is presumed to be worse because we weren't expecting it.
* ==========================================================================
2008-11-20 23:01:55 +03:00
*/
int
zio_worst_error(int e1, int e2)
2008-11-20 23:01:55 +03:00
{
static int zio_error_rank[] = { 0, ENXIO, ECKSUM, EIO };
int r1, r2;
for (r1 = 0; r1 < sizeof (zio_error_rank) / sizeof (int); r1++)
if (e1 == zio_error_rank[r1])
break;
2008-11-20 23:01:55 +03:00
for (r2 = 0; r2 < sizeof (zio_error_rank) / sizeof (int); r2++)
if (e2 == zio_error_rank[r2])
break;
return (r1 > r2 ? e1 : e2);
2008-11-20 23:01:55 +03:00
}
/*
* ==========================================================================
* I/O completion
2008-11-20 23:01:55 +03:00
* ==========================================================================
*/
static int
zio_ready(zio_t *zio)
2008-11-20 23:01:55 +03:00
{
blkptr_t *bp = zio->io_bp;
2009-02-18 23:51:31 +03:00
zio_t *pio, *pio_next;
2008-11-20 23:01:55 +03:00
if (zio_wait_for_children(zio, ZIO_CHILD_GANG, ZIO_WAIT_READY) ||
zio_wait_for_children(zio, ZIO_CHILD_DDT, ZIO_WAIT_READY))
2009-07-03 02:44:48 +04:00
return (ZIO_PIPELINE_STOP);
2008-11-20 23:01:55 +03:00
2009-07-03 02:44:48 +04:00
if (zio->io_ready) {
ASSERT(IO_IS_ALLOCATING(zio));
ASSERT(bp->blk_birth == zio->io_txg || BP_IS_HOLE(bp));
ASSERT(zio->io_children[ZIO_CHILD_GANG][ZIO_WAIT_READY] == 0);
2008-11-20 23:01:55 +03:00
zio->io_ready(zio);
}
2008-11-20 23:01:55 +03:00
if (bp != NULL && bp != &zio->io_bp_copy)
zio->io_bp_copy = *bp;
2008-11-20 23:01:55 +03:00
if (zio->io_error)
zio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
2008-11-20 23:01:55 +03:00
2009-02-18 23:51:31 +03:00
mutex_enter(&zio->io_lock);
zio->io_state[ZIO_WAIT_READY] = 1;
pio = zio_walk_parents(zio);
mutex_exit(&zio->io_lock);
/*
* As we notify zio's parents, new parents could be added.
* New parents go to the head of zio's io_parent_list, however,
* so we will (correctly) not notify them. The remainder of zio's
* io_parent_list, from 'pio_next' onward, cannot change because
* all parents must wait for us to be done before they can be done.
*/
for (; pio != NULL; pio = pio_next) {
pio_next = zio_walk_parents(zio);
zio_notify_parent(pio, zio, ZIO_WAIT_READY);
2009-02-18 23:51:31 +03:00
}
2008-11-20 23:01:55 +03:00
if (zio->io_flags & ZIO_FLAG_NODATA) {
if (BP_IS_GANG(bp)) {
zio->io_flags &= ~ZIO_FLAG_NODATA;
} else {
ASSERT((uintptr_t)zio->io_data < SPA_MAXBLOCKSIZE);
zio->io_pipeline &= ~ZIO_VDEV_IO_STAGES;
}
}
if (zio_injection_enabled &&
zio->io_spa->spa_syncing_txg == zio->io_txg)
zio_handle_ignored_writes(zio);
return (ZIO_PIPELINE_CONTINUE);
2008-11-20 23:01:55 +03:00
}
static int
zio_done(zio_t *zio)
2008-11-20 23:01:55 +03:00
{
2009-02-18 23:51:31 +03:00
zio_t *pio, *pio_next;
int c, w;
2008-11-20 23:01:55 +03:00
/*
2009-07-03 02:44:48 +04:00
* If our children haven't all completed,
* wait for them and then repeat this pipeline stage.
*/
if (zio_wait_for_children(zio, ZIO_CHILD_VDEV, ZIO_WAIT_DONE) ||
zio_wait_for_children(zio, ZIO_CHILD_GANG, ZIO_WAIT_DONE) ||
zio_wait_for_children(zio, ZIO_CHILD_DDT, ZIO_WAIT_DONE) ||
zio_wait_for_children(zio, ZIO_CHILD_LOGICAL, ZIO_WAIT_DONE))
return (ZIO_PIPELINE_STOP);
2008-11-20 23:01:55 +03:00
for (c = 0; c < ZIO_CHILD_TYPES; c++)
for (w = 0; w < ZIO_WAIT_TYPES; w++)
ASSERT(zio->io_children[c][w] == 0);
if (zio->io_bp != NULL) {
ASSERT(zio->io_bp->blk_pad[0] == 0);
ASSERT(zio->io_bp->blk_pad[1] == 0);
ASSERT(bcmp(zio->io_bp, &zio->io_bp_copy, sizeof (blkptr_t)) == 0 ||
(zio->io_bp == zio_unique_parent(zio)->io_bp));
if (zio->io_type == ZIO_TYPE_WRITE && !BP_IS_HOLE(zio->io_bp) &&
zio->io_bp_override == NULL &&
!(zio->io_flags & ZIO_FLAG_IO_REPAIR)) {
ASSERT(!BP_SHOULD_BYTESWAP(zio->io_bp));
ASSERT3U(zio->io_prop.zp_copies, <=, BP_GET_NDVAS(zio->io_bp));
ASSERT(BP_COUNT_GANG(zio->io_bp) == 0 ||
(BP_COUNT_GANG(zio->io_bp) == BP_GET_NDVAS(zio->io_bp)));
}
}
/*
* If there were child vdev/gang/ddt errors, they apply to us now.
*/
zio_inherit_child_errors(zio, ZIO_CHILD_VDEV);
zio_inherit_child_errors(zio, ZIO_CHILD_GANG);
zio_inherit_child_errors(zio, ZIO_CHILD_DDT);
/*
* If the I/O on the transformed data was successful, generate any
* checksum reports now while we still have the transformed data.
*/
if (zio->io_error == 0) {
while (zio->io_cksum_report != NULL) {
zio_cksum_report_t *zcr = zio->io_cksum_report;
uint64_t align = zcr->zcr_align;
uint64_t asize = P2ROUNDUP(zio->io_size, align);
char *abuf = zio->io_data;
if (asize != zio->io_size) {
abuf = zio_buf_alloc(asize);
bcopy(zio->io_data, abuf, zio->io_size);
bzero(abuf + zio->io_size, asize - zio->io_size);
}
zio->io_cksum_report = zcr->zcr_next;
zcr->zcr_next = NULL;
zcr->zcr_finish(zcr, abuf);
zfs_ereport_free_checksum(zcr);
if (asize != zio->io_size)
zio_buf_free(abuf, asize);
}
}
zio_pop_transforms(zio); /* note: may set zio->io_error */
vdev_stat_update(zio, zio->io_size);
/*
* If this I/O is attached to a particular vdev is slow, exceeding
* 30 seconds to complete, post an error described the I/O delay.
* We ignore these errors if the device is currently unavailable.
*/
if (zio->io_delay >= MSEC_TO_TICK(zio_delay_max)) {
if (zio->io_vd != NULL && !vdev_is_dead(zio->io_vd))
zfs_ereport_post(FM_EREPORT_ZFS_DELAY, zio->io_spa,
zio->io_vd, zio, 0, 0);
}
if (zio->io_error) {
/*
* If this I/O is attached to a particular vdev,
* generate an error message describing the I/O failure
* at the block level. We ignore these errors if the
* device is currently unavailable.
*/
if (zio->io_error != ECKSUM && zio->io_vd != NULL &&
!vdev_is_dead(zio->io_vd))
zfs_ereport_post(FM_EREPORT_ZFS_IO, zio->io_spa,
zio->io_vd, zio, 0, 0);
2008-11-20 23:01:55 +03:00
if ((zio->io_error == EIO || !(zio->io_flags &
(ZIO_FLAG_SPECULATIVE | ZIO_FLAG_DONT_PROPAGATE))) &&
zio == zio->io_logical) {
/*
* For logical I/O requests, tell the SPA to log the
* error and generate a logical data ereport.
*/
spa_log_error(zio->io_spa, zio);
zfs_ereport_post(FM_EREPORT_ZFS_DATA, zio->io_spa, NULL, zio,
0, 0);
}
}
2008-11-20 23:01:55 +03:00
if (zio->io_error && zio == zio->io_logical) {
/*
* Determine whether zio should be reexecuted. This will
* propagate all the way to the root via zio_notify_parent().
*/
ASSERT(zio->io_vd == NULL && zio->io_bp != NULL);
ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
if (IO_IS_ALLOCATING(zio) &&
!(zio->io_flags & ZIO_FLAG_CANFAIL)) {
if (zio->io_error != ENOSPC)
zio->io_reexecute |= ZIO_REEXECUTE_NOW;
else
zio->io_reexecute |= ZIO_REEXECUTE_SUSPEND;
}
if ((zio->io_type == ZIO_TYPE_READ ||
zio->io_type == ZIO_TYPE_FREE) &&
!(zio->io_flags & ZIO_FLAG_SCAN_THREAD) &&
zio->io_error == ENXIO &&
spa_load_state(zio->io_spa) == SPA_LOAD_NONE &&
spa_get_failmode(zio->io_spa) != ZIO_FAILURE_MODE_CONTINUE)
zio->io_reexecute |= ZIO_REEXECUTE_SUSPEND;
if (!(zio->io_flags & ZIO_FLAG_CANFAIL) && !zio->io_reexecute)
zio->io_reexecute |= ZIO_REEXECUTE_SUSPEND;
/*
* Here is a possibly good place to attempt to do
* either combinatorial reconstruction or error correction
* based on checksums. It also might be a good place
* to send out preliminary ereports before we suspend
* processing.
*/
2008-11-20 23:01:55 +03:00
}
/*
* If there were logical child errors, they apply to us now.
* We defer this until now to avoid conflating logical child
* errors with errors that happened to the zio itself when
* updating vdev stats and reporting FMA events above.
2008-11-20 23:01:55 +03:00
*/
zio_inherit_child_errors(zio, ZIO_CHILD_LOGICAL);
2008-11-20 23:01:55 +03:00
if ((zio->io_error || zio->io_reexecute) &&
IO_IS_ALLOCATING(zio) && zio->io_gang_leader == zio &&
!(zio->io_flags & ZIO_FLAG_IO_REWRITE))
zio_dva_unallocate(zio, zio->io_gang_tree, zio->io_bp);
2009-07-03 02:44:48 +04:00
zio_gang_tree_free(&zio->io_gang_tree);
/*
* Godfather I/Os should never suspend.
*/
if ((zio->io_flags & ZIO_FLAG_GODFATHER) &&
(zio->io_reexecute & ZIO_REEXECUTE_SUSPEND))
zio->io_reexecute = 0;
if (zio->io_reexecute) {
/*
* This is a logical I/O that wants to reexecute.
*
* Reexecute is top-down. When an i/o fails, if it's not
* the root, it simply notifies its parent and sticks around.
* The parent, seeing that it still has children in zio_done(),
* does the same. This percolates all the way up to the root.
* The root i/o will reexecute or suspend the entire tree.
*
* This approach ensures that zio_reexecute() honors
* all the original i/o dependency relationships, e.g.
* parents not executing until children are ready.
*/
ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
2008-11-20 23:01:55 +03:00
2009-07-03 02:44:48 +04:00
zio->io_gang_leader = NULL;
2009-02-18 23:51:31 +03:00
mutex_enter(&zio->io_lock);
zio->io_state[ZIO_WAIT_DONE] = 1;
mutex_exit(&zio->io_lock);
2009-07-03 02:44:48 +04:00
/*
* "The Godfather" I/O monitors its children but is
* not a true parent to them. It will track them through
* the pipeline but severs its ties whenever they get into
* trouble (e.g. suspended). This allows "The Godfather"
* I/O to return status without blocking.
*/
for (pio = zio_walk_parents(zio); pio != NULL; pio = pio_next) {
zio_link_t *zl = zio->io_walk_link;
pio_next = zio_walk_parents(zio);
if ((pio->io_flags & ZIO_FLAG_GODFATHER) &&
(zio->io_reexecute & ZIO_REEXECUTE_SUSPEND)) {
zio_remove_child(pio, zio, zl);
zio_notify_parent(pio, zio, ZIO_WAIT_DONE);
}
}
2009-02-18 23:51:31 +03:00
if ((pio = zio_unique_parent(zio)) != NULL) {
/*
* We're not a root i/o, so there's nothing to do
* but notify our parent. Don't propagate errors
* upward since we haven't permanently failed yet.
*/
2009-07-03 02:44:48 +04:00
ASSERT(!(zio->io_flags & ZIO_FLAG_GODFATHER));
zio->io_flags |= ZIO_FLAG_DONT_PROPAGATE;
zio_notify_parent(pio, zio, ZIO_WAIT_DONE);
} else if (zio->io_reexecute & ZIO_REEXECUTE_SUSPEND) {
/*
* We'd fail again if we reexecuted now, so suspend
* until conditions improve (e.g. device comes online).
*/
zio_suspend(zio->io_spa, zio);
} else {
/*
* Reexecution is potentially a huge amount of work.
* Hand it off to the otherwise-unused claim taskq.
*/
ASSERT(taskq_empty_ent(&zio->io_tqent));
Illumos #3581 spa_zio_taskq[ZIO_TYPE_FREE][ZIO_TASKQ_ISSUE]->tq_lock contention 3581 spa_zio_taskq[ZIO_TYPE_FREE][ZIO_TASKQ_ISSUE]->tq_lock is piping hot Reviewed by: Matthew Ahrens <mahrens@delphix.com> Reviewed by: George Wilson <george.wilson@delphix.com> Reviewed by: Christopher Siden <christopher.siden@delphix.com> Reviewed by: Gordon Ross <gordon.ross@nexenta.com> Approved by: Richard Lowe <richlowe@richlowe.net> References: illumos/illumos-gate@ec94d32 https://illumos.org/issues/3581 Notes for Linux port: Earlier commit 08d08eb reduced contention on this taskq lock by simply reducing the number of z_fr_iss threads from 100 to one-per-CPU. We also optimized the taskq implementation in zfsonlinux/spl@3c6ed54. These changes significantly improved unlink performance to acceptable levels. This patch further reduces time spent spinning on this lock by randomly dispatching the work items over multiple independent task queues. The Illumos ZFS developers stated that this lock contention only arose after "3329 spa_sync() spends 10-20% of its time in spa_free_sync_cb()" was landed. It's not clear if 3329 affects the Linux port or not. I didn't see spa_free_sync_cb() show up in oprofile sessions while unlinking large files, but I may just not have used the right test case. I tested unlinking a 1 TB of data with and without the patch and didn't observe a meaningful difference in elapsed time. However, oprofile showed that the percent time spent in taskq_thread() was reduced from about 16% to about 5%. Aside from a possible slight performance benefit this may be worth landing if only for the sake of maintaining consistency with upstream. Ported-by: Ned Bass <bass6@llnl.gov> Closes #1327
2013-05-06 23:24:30 +04:00
spa_taskq_dispatch_ent(zio->io_spa,
ZIO_TYPE_CLAIM, ZIO_TASKQ_ISSUE,
(task_func_t *)zio_reexecute, zio, 0,
&zio->io_tqent);
}
return (ZIO_PIPELINE_STOP);
2008-11-20 23:01:55 +03:00
}
ASSERT(zio->io_child_count == 0);
ASSERT(zio->io_reexecute == 0);
ASSERT(zio->io_error == 0 || (zio->io_flags & ZIO_FLAG_CANFAIL));
2008-11-20 23:01:55 +03:00
/*
* Report any checksum errors, since the I/O is complete.
*/
while (zio->io_cksum_report != NULL) {
zio_cksum_report_t *zcr = zio->io_cksum_report;
zio->io_cksum_report = zcr->zcr_next;
zcr->zcr_next = NULL;
zcr->zcr_finish(zcr, NULL);
zfs_ereport_free_checksum(zcr);
}
Add FASTWRITE algorithm for synchronous writes. Currently, ZIL blocks are spread over vdevs using hint block pointers managed by the ZIL commit code and passed to metaslab_alloc(). Spreading log blocks accross vdevs is important for performance: indeed, using mutliple disks in parallel decreases the ZIL commit latency, which is the main performance metric for synchronous writes. However, the current implementation suffers from the following issues: 1) It would be best if the ZIL module was not aware of such low-level details. They should be handled by the ZIO and metaslab modules; 2) Because the hint block pointer is managed per log, simultaneous commits from multiple logs might use the same vdevs at the same time, which is inefficient; 3) Because dmu_write() does not honor the block pointer hint, indirect writes are not spread. The naive solution of rotating the metaslab rotor each time a block is allocated for the ZIL or dmu_sync() doesn't work in practice because the first ZIL block to be written is actually allocated during the previous commit. Consequently, when metaslab_alloc() decides the vdev for this block, it will do so while a bunch of other allocations are happening at the same time (from dmu_sync() and other ZILs). This means the vdev for this block is chosen more or less at random. When the next commit happens, there is a high chance (especially when the number of blocks per commit is slightly less than the number of the disks) that one disk will have to write two blocks (with a potential seek) while other disks are sitting idle, which defeats spreading and increases the commit latency. This commit introduces a new concept in the metaslab allocator: fastwrites. Basically, each top-level vdev maintains a counter indicating the number of synchronous writes (from dmu_sync() and the ZIL) which have been allocated but not yet completed. When the metaslab is called with the FASTWRITE flag, it will choose the vdev with the least amount of pending synchronous writes. If there are multiple vdevs with the same value, the first matching vdev (starting from the rotor) is used. Once metaslab_alloc() has decided which vdev the block is allocated to, it updates the fastwrite counter for this vdev. The rationale goes like this: when an allocation is done with FASTWRITE, it "reserves" the vdev until the data is written. Until then, all future allocations will naturally avoid this vdev, even after a full rotation of the rotor. As a result, pending synchronous writes at a given point in time will be nicely spread over all vdevs. This contrasts with the previous algorithm, which is based on the implicit assumption that blocks are written instantaneously after they're allocated. metaslab_fastwrite_mark() and metaslab_fastwrite_unmark() are used to manually increase or decrease fastwrite counters, respectively. They should be used with caution, as there is no per-BP tracking of fastwrite information, so leaks and "double-unmarks" are possible. There is, however, an assert in the vdev teardown code which will fire if the fastwrite counters are not zero when the pool is exported or the vdev removed. Note that as stated above, marking is also done implictly by metaslab_alloc(). ZIO also got a new FASTWRITE flag; when it is used, ZIO will pass it to the metaslab when allocating (assuming ZIO does the allocation, which is only true in the case of dmu_sync). This flag will also trigger an unmark when zio_done() fires. A side-effect of the new algorithm is that when a ZIL stops being used, its last block can stay in the pending state (allocated but not yet written) for a long time, polluting the fastwrite counters. To avoid that, I've implemented a somewhat crude but working solution which unmarks these pending blocks in zil_sync(), thus guaranteeing that linguering fastwrites will get pruned at each sync event. The best performance improvements are observed with pools using a large number of top-level vdevs and heavy synchronous write workflows (especially indirect writes and concurrent writes from multiple ZILs). Real-life testing shows a 200% to 300% performance increase with indirect writes and various commit sizes. Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov> Issue #1013
2012-06-27 17:20:20 +04:00
if (zio->io_flags & ZIO_FLAG_FASTWRITE && zio->io_bp &&
!BP_IS_HOLE(zio->io_bp)) {
metaslab_fastwrite_unmark(zio->io_spa, zio->io_bp);
}
2009-02-18 23:51:31 +03:00
/*
* It is the responsibility of the done callback to ensure that this
* particular zio is no longer discoverable for adoption, and as
* such, cannot acquire any new parents.
*/
if (zio->io_done)
zio->io_done(zio);
2008-11-20 23:01:55 +03:00
2009-02-18 23:51:31 +03:00
mutex_enter(&zio->io_lock);
zio->io_state[ZIO_WAIT_DONE] = 1;
mutex_exit(&zio->io_lock);
2008-11-20 23:01:55 +03:00
2009-02-18 23:51:31 +03:00
for (pio = zio_walk_parents(zio); pio != NULL; pio = pio_next) {
zio_link_t *zl = zio->io_walk_link;
pio_next = zio_walk_parents(zio);
zio_remove_child(pio, zio, zl);
zio_notify_parent(pio, zio, ZIO_WAIT_DONE);
}
2008-11-20 23:01:55 +03:00
if (zio->io_waiter != NULL) {
mutex_enter(&zio->io_lock);
zio->io_executor = NULL;
cv_broadcast(&zio->io_cv);
mutex_exit(&zio->io_lock);
} else {
zio_destroy(zio);
}
2008-11-20 23:01:55 +03:00
return (ZIO_PIPELINE_STOP);
2008-11-20 23:01:55 +03:00
}
/*
* ==========================================================================
* I/O pipeline definition
* ==========================================================================
2008-11-20 23:01:55 +03:00
*/
static zio_pipe_stage_t *zio_pipeline[] = {
NULL,
zio_read_bp_init,
zio_free_bp_init,
zio_issue_async,
zio_write_bp_init,
zio_checksum_generate,
zio_ddt_read_start,
zio_ddt_read_done,
zio_ddt_write,
zio_ddt_free,
zio_gang_assemble,
zio_gang_issue,
zio_dva_allocate,
zio_dva_free,
zio_dva_claim,
zio_ready,
zio_vdev_io_start,
zio_vdev_io_done,
zio_vdev_io_assess,
zio_checksum_verify,
zio_done
};
/* dnp is the dnode for zb1->zb_object */
boolean_t
zbookmark_is_before(const dnode_phys_t *dnp, const zbookmark_t *zb1,
const zbookmark_t *zb2)
{
uint64_t zb1nextL0, zb2thisobj;
ASSERT(zb1->zb_objset == zb2->zb_objset);
ASSERT(zb2->zb_level == 0);
/*
* A bookmark in the deadlist is considered to be after
* everything else.
*/
if (zb2->zb_object == DMU_DEADLIST_OBJECT)
return (B_TRUE);
/* The objset_phys_t isn't before anything. */
if (dnp == NULL)
return (B_FALSE);
zb1nextL0 = (zb1->zb_blkid + 1) <<
((zb1->zb_level) * (dnp->dn_indblkshift - SPA_BLKPTRSHIFT));
zb2thisobj = zb2->zb_object ? zb2->zb_object :
zb2->zb_blkid << (DNODE_BLOCK_SHIFT - DNODE_SHIFT);
if (zb1->zb_object == DMU_META_DNODE_OBJECT) {
uint64_t nextobj = zb1nextL0 *
(dnp->dn_datablkszsec << SPA_MINBLOCKSHIFT) >> DNODE_SHIFT;
return (nextobj <= zb2thisobj);
}
if (zb1->zb_object < zb2thisobj)
return (B_TRUE);
if (zb1->zb_object > zb2thisobj)
return (B_FALSE);
if (zb2->zb_object == DMU_META_DNODE_OBJECT)
return (B_FALSE);
return (zb1nextL0 <= zb2->zb_blkid);
}
#if defined(_KERNEL) && defined(HAVE_SPL)
/* Fault injection */
EXPORT_SYMBOL(zio_injection_enabled);
EXPORT_SYMBOL(zio_inject_fault);
EXPORT_SYMBOL(zio_inject_list_next);
EXPORT_SYMBOL(zio_clear_fault);
EXPORT_SYMBOL(zio_handle_fault_injection);
EXPORT_SYMBOL(zio_handle_device_injection);
EXPORT_SYMBOL(zio_handle_label_injection);
EXPORT_SYMBOL(zio_priority_table);
EXPORT_SYMBOL(zio_type_name);
module_param(zio_bulk_flags, int, 0644);
MODULE_PARM_DESC(zio_bulk_flags, "Additional flags to pass to bulk buffers");
module_param(zio_delay_max, int, 0644);
Add missing ZFS tunables This commit adds module options for all existing zfs tunables. Ideally the average user should never need to modify any of these values. However, in practice sometimes you do need to tweak these values for one reason or another. In those cases it's nice not to have to resort to rebuilding from source. All tunables are visable to modinfo and the list is as follows: $ modinfo module/zfs/zfs.ko filename: module/zfs/zfs.ko license: CDDL author: Sun Microsystems/Oracle, Lawrence Livermore National Laboratory description: ZFS srcversion: 8EAB1D71DACE05B5AA61567 depends: spl,znvpair,zcommon,zunicode,zavl vermagic: 2.6.32-131.0.5.el6.x86_64 SMP mod_unload modversions parm: zvol_major:Major number for zvol device (uint) parm: zvol_threads:Number of threads for zvol device (uint) parm: zio_injection_enabled:Enable fault injection (int) parm: zio_bulk_flags:Additional flags to pass to bulk buffers (int) parm: zio_delay_max:Max zio millisec delay before posting event (int) parm: zio_requeue_io_start_cut_in_line:Prioritize requeued I/O (bool) parm: zil_replay_disable:Disable intent logging replay (int) parm: zfs_nocacheflush:Disable cache flushes (bool) parm: zfs_read_chunk_size:Bytes to read per chunk (long) parm: zfs_vdev_max_pending:Max pending per-vdev I/Os (int) parm: zfs_vdev_min_pending:Min pending per-vdev I/Os (int) parm: zfs_vdev_aggregation_limit:Max vdev I/O aggregation size (int) parm: zfs_vdev_time_shift:Deadline time shift for vdev I/O (int) parm: zfs_vdev_ramp_rate:Exponential I/O issue ramp-up rate (int) parm: zfs_vdev_read_gap_limit:Aggregate read I/O over gap (int) parm: zfs_vdev_write_gap_limit:Aggregate write I/O over gap (int) parm: zfs_vdev_scheduler:I/O scheduler (charp) parm: zfs_vdev_cache_max:Inflate reads small than max (int) parm: zfs_vdev_cache_size:Total size of the per-disk cache (int) parm: zfs_vdev_cache_bshift:Shift size to inflate reads too (int) parm: zfs_scrub_limit:Max scrub/resilver I/O per leaf vdev (int) parm: zfs_recover:Set to attempt to recover from fatal errors (int) parm: spa_config_path:SPA config file (/etc/zfs/zpool.cache) (charp) parm: zfs_zevent_len_max:Max event queue length (int) parm: zfs_zevent_cols:Max event column width (int) parm: zfs_zevent_console:Log events to the console (int) parm: zfs_top_maxinflight:Max I/Os per top-level (int) parm: zfs_resilver_delay:Number of ticks to delay resilver (int) parm: zfs_scrub_delay:Number of ticks to delay scrub (int) parm: zfs_scan_idle:Idle window in clock ticks (int) parm: zfs_scan_min_time_ms:Min millisecs to scrub per txg (int) parm: zfs_free_min_time_ms:Min millisecs to free per txg (int) parm: zfs_resilver_min_time_ms:Min millisecs to resilver per txg (int) parm: zfs_no_scrub_io:Set to disable scrub I/O (bool) parm: zfs_no_scrub_prefetch:Set to disable scrub prefetching (bool) parm: zfs_txg_timeout:Max seconds worth of delta per txg (int) parm: zfs_no_write_throttle:Disable write throttling (int) parm: zfs_write_limit_shift:log2(fraction of memory) per txg (int) parm: zfs_txg_synctime_ms:Target milliseconds between tgx sync (int) parm: zfs_write_limit_min:Min tgx write limit (ulong) parm: zfs_write_limit_max:Max tgx write limit (ulong) parm: zfs_write_limit_inflated:Inflated tgx write limit (ulong) parm: zfs_write_limit_override:Override tgx write limit (ulong) parm: zfs_prefetch_disable:Disable all ZFS prefetching (int) parm: zfetch_max_streams:Max number of streams per zfetch (uint) parm: zfetch_min_sec_reap:Min time before stream reclaim (uint) parm: zfetch_block_cap:Max number of blocks to fetch at a time (uint) parm: zfetch_array_rd_sz:Number of bytes in a array_read (ulong) parm: zfs_pd_blks_max:Max number of blocks to prefetch (int) parm: zfs_dedup_prefetch:Enable prefetching dedup-ed blks (int) parm: zfs_arc_min:Min arc size (ulong) parm: zfs_arc_max:Max arc size (ulong) parm: zfs_arc_meta_limit:Meta limit for arc size (ulong) parm: zfs_arc_reduce_dnlc_percent:Meta reclaim percentage (int) parm: zfs_arc_grow_retry:Seconds before growing arc size (int) parm: zfs_arc_shrink_shift:log2(fraction of arc to reclaim) (int) parm: zfs_arc_p_min_shift:arc_c shift to calc min/max arc_p (int)
2011-05-04 02:09:28 +04:00
MODULE_PARM_DESC(zio_delay_max, "Max zio millisec delay before posting event");
module_param(zio_requeue_io_start_cut_in_line, int, 0644);
MODULE_PARM_DESC(zio_requeue_io_start_cut_in_line, "Prioritize requeued I/O");
module_param(zfs_sync_pass_deferred_free, int, 0644);
MODULE_PARM_DESC(zfs_sync_pass_deferred_free,
"defer frees starting in this pass");
module_param(zfs_sync_pass_dont_compress, int, 0644);
MODULE_PARM_DESC(zfs_sync_pass_dont_compress,
"don't compress starting in this pass");
module_param(zfs_sync_pass_rewrite, int, 0644);
MODULE_PARM_DESC(zfs_sync_pass_rewrite,
"rewrite new bps starting in this pass");
#endif