OpenZFS 9102 - zfs should be able to initialize storage devices
PROBLEM
========
The first access to a block incurs a performance penalty on some platforms
(e.g. AWS's EBS, VMware VMDKs). Therefore we recommend that volumes are
"thick provisioned", where supported by the platform (VMware). This can
create a large delay in getting a new virtual machines up and running (or
adding storage to an existing Engine). If the thick provision step is
omitted, write performance will be suboptimal until all blocks on the LUN
have been written.
SOLUTION
=========
This feature introduces a way to 'initialize' the disks at install or in the
background to make sure we don't incur this first read penalty.
When an entire LUN is added to ZFS, we make all space available immediately,
and allow ZFS to find unallocated space and zero it out. This works with
concurrent writes to arbitrary offsets, ensuring that we don't zero out
something that has been (or is in the middle of being) written. This scheme
can also be applied to existing pools (affecting only free regions on the
vdev). Detailed design:
- new subcommand:zpool initialize [-cs] <pool> [<vdev> ...]
- start, suspend, or cancel initialization
- Creates new open-context thread for each vdev
- Thread iterates through all metaslabs in this vdev
- Each metaslab:
- select a metaslab
- load the metaslab
- mark the metaslab as being zeroed
- walk all free ranges within that metaslab and translate
them to ranges on the leaf vdev
- issue a "zeroing" I/O on the leaf vdev that corresponds to
a free range on the metaslab we're working on
- continue until all free ranges for this metaslab have been
"zeroed"
- reset/unmark the metaslab being zeroed
- if more metaslabs exist, then repeat above tasks.
- if no more metaslabs, then we're done.
- progress for the initialization is stored on-disk in the vdev’s
leaf zap object. The following information is stored:
- the last offset that has been initialized
- the state of the initialization process (i.e. active,
suspended, or canceled)
- the start time for the initialization
- progress is reported via the zpool status command and shows
information for each of the vdevs that are initializing
Porting notes:
- Added zfs_initialize_value module parameter to set the pattern
written by "zpool initialize".
- Added zfs_vdev_{initializing,removal}_{min,max}_active module options.
Authored by: George Wilson <george.wilson@delphix.com>
Reviewed by: John Wren Kennedy <john.kennedy@delphix.com>
Reviewed by: Matthew Ahrens <mahrens@delphix.com>
Reviewed by: Pavel Zakharov <pavel.zakharov@delphix.com>
Reviewed by: Prakash Surya <prakash.surya@delphix.com>
Reviewed by: loli10K <ezomori.nozomu@gmail.com>
Reviewed by: Brian Behlendorf <behlendorf1@llnl.gov>
Approved by: Richard Lowe <richlowe@richlowe.net>
Signed-off-by: Tim Chase <tim@chase2k.com>
Ported-by: Tim Chase <tim@chase2k.com>
OpenZFS-issue: https://www.illumos.org/issues/9102
OpenZFS-commit: https://github.com/openzfs/openzfs/commit/c3963210eb
Closes #8230
2018-12-19 17:54:59 +03:00
|
|
|
/*
|
|
|
|
* CDDL HEADER START
|
|
|
|
*
|
|
|
|
* The contents of this file are subject to the terms of the
|
|
|
|
* Common Development and Distribution License (the "License").
|
|
|
|
* You may not use this file except in compliance with the License.
|
|
|
|
*
|
|
|
|
* You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
|
|
|
|
* or http://www.opensolaris.org/os/licensing.
|
|
|
|
* See the License for the specific language governing permissions
|
|
|
|
* and limitations under the License.
|
|
|
|
*
|
|
|
|
* When distributing Covered Code, include this CDDL HEADER in each
|
|
|
|
* file and include the License file at usr/src/OPENSOLARIS.LICENSE.
|
|
|
|
* If applicable, add the following below this CDDL HEADER, with the
|
|
|
|
* fields enclosed by brackets "[]" replaced with your own identifying
|
|
|
|
* information: Portions Copyright [yyyy] [name of copyright owner]
|
|
|
|
*
|
|
|
|
* CDDL HEADER END
|
|
|
|
*/
|
|
|
|
|
|
|
|
/*
|
Cap metaslab memory usage
On systems with large amounts of storage and high fragmentation, a huge
amount of space can be used by storing metaslab range trees. Since
metaslabs are only unloaded during a txg sync, and only if they have
been inactive for 8 txgs, it is possible to get into a state where all
of the system's memory is consumed by range trees and metaslabs, and
txgs cannot sync. While ZFS knows how to evict ARC data when needed,
it has no such mechanism for range tree data. This can result in boot
hangs for some system configurations.
First, we add the ability to unload metaslabs outside of syncing
context. Second, we store a multilist of all loaded metaslabs, sorted
by their selection txg, so we can quickly identify the oldest
metaslabs. We use a multilist to reduce lock contention during heavy
write workloads. Finally, we add logic that will unload a metaslab
when we're loading a new metaslab, if we're using more than a certain
fraction of the available memory on range trees.
Reviewed-by: Matt Ahrens <mahrens@delphix.com>
Reviewed-by: George Wilson <gwilson@delphix.com>
Reviewed-by: Sebastien Roy <sebastien.roy@delphix.com>
Reviewed-by: Serapheim Dimitropoulos <serapheim@delphix.com>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Paul Dagnelie <pcd@delphix.com>
Closes #9128
2019-08-16 18:08:21 +03:00
|
|
|
* Copyright (c) 2016, 2019 by Delphix. All rights reserved.
|
OpenZFS 9102 - zfs should be able to initialize storage devices
PROBLEM
========
The first access to a block incurs a performance penalty on some platforms
(e.g. AWS's EBS, VMware VMDKs). Therefore we recommend that volumes are
"thick provisioned", where supported by the platform (VMware). This can
create a large delay in getting a new virtual machines up and running (or
adding storage to an existing Engine). If the thick provision step is
omitted, write performance will be suboptimal until all blocks on the LUN
have been written.
SOLUTION
=========
This feature introduces a way to 'initialize' the disks at install or in the
background to make sure we don't incur this first read penalty.
When an entire LUN is added to ZFS, we make all space available immediately,
and allow ZFS to find unallocated space and zero it out. This works with
concurrent writes to arbitrary offsets, ensuring that we don't zero out
something that has been (or is in the middle of being) written. This scheme
can also be applied to existing pools (affecting only free regions on the
vdev). Detailed design:
- new subcommand:zpool initialize [-cs] <pool> [<vdev> ...]
- start, suspend, or cancel initialization
- Creates new open-context thread for each vdev
- Thread iterates through all metaslabs in this vdev
- Each metaslab:
- select a metaslab
- load the metaslab
- mark the metaslab as being zeroed
- walk all free ranges within that metaslab and translate
them to ranges on the leaf vdev
- issue a "zeroing" I/O on the leaf vdev that corresponds to
a free range on the metaslab we're working on
- continue until all free ranges for this metaslab have been
"zeroed"
- reset/unmark the metaslab being zeroed
- if more metaslabs exist, then repeat above tasks.
- if no more metaslabs, then we're done.
- progress for the initialization is stored on-disk in the vdev’s
leaf zap object. The following information is stored:
- the last offset that has been initialized
- the state of the initialization process (i.e. active,
suspended, or canceled)
- the start time for the initialization
- progress is reported via the zpool status command and shows
information for each of the vdevs that are initializing
Porting notes:
- Added zfs_initialize_value module parameter to set the pattern
written by "zpool initialize".
- Added zfs_vdev_{initializing,removal}_{min,max}_active module options.
Authored by: George Wilson <george.wilson@delphix.com>
Reviewed by: John Wren Kennedy <john.kennedy@delphix.com>
Reviewed by: Matthew Ahrens <mahrens@delphix.com>
Reviewed by: Pavel Zakharov <pavel.zakharov@delphix.com>
Reviewed by: Prakash Surya <prakash.surya@delphix.com>
Reviewed by: loli10K <ezomori.nozomu@gmail.com>
Reviewed by: Brian Behlendorf <behlendorf1@llnl.gov>
Approved by: Richard Lowe <richlowe@richlowe.net>
Signed-off-by: Tim Chase <tim@chase2k.com>
Ported-by: Tim Chase <tim@chase2k.com>
OpenZFS-issue: https://www.illumos.org/issues/9102
OpenZFS-commit: https://github.com/openzfs/openzfs/commit/c3963210eb
Closes #8230
2018-12-19 17:54:59 +03:00
|
|
|
*/
|
|
|
|
|
|
|
|
#include <sys/spa.h>
|
|
|
|
#include <sys/spa_impl.h>
|
|
|
|
#include <sys/txg.h>
|
|
|
|
#include <sys/vdev_impl.h>
|
|
|
|
#include <sys/refcount.h>
|
|
|
|
#include <sys/metaslab_impl.h>
|
|
|
|
#include <sys/dsl_synctask.h>
|
|
|
|
#include <sys/zap.h>
|
|
|
|
#include <sys/dmu_tx.h>
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Value that is written to disk during initialization.
|
|
|
|
*/
|
|
|
|
#ifdef _ILP32
|
|
|
|
unsigned long zfs_initialize_value = 0xdeadbeefUL;
|
|
|
|
#else
|
|
|
|
unsigned long zfs_initialize_value = 0xdeadbeefdeadbeeeULL;
|
|
|
|
#endif
|
|
|
|
|
|
|
|
/* maximum number of I/Os outstanding per leaf vdev */
|
|
|
|
int zfs_initialize_limit = 1;
|
|
|
|
|
|
|
|
/* size of initializing writes; default 1MiB, see zfs_remove_max_segment */
|
Add subcommand to wait for background zfs activity to complete
Currently the best way to wait for the completion of a long-running
operation in a pool, like a scrub or device removal, is to poll 'zpool
status' and parse its output, which is neither efficient nor convenient.
This change adds a 'wait' subcommand to the zpool command. When invoked,
'zpool wait' will block until a specified type of background activity
completes. Currently, this subcommand can wait for any of the following:
- Scrubs or resilvers to complete
- Devices to initialized
- Devices to be replaced
- Devices to be removed
- Checkpoints to be discarded
- Background freeing to complete
For example, a scrub that is in progress could be waited for by running
zpool wait -t scrub <pool>
This also adds a -w flag to the attach, checkpoint, initialize, replace,
remove, and scrub subcommands. When used, this flag makes the operations
kicked off by these subcommands synchronous instead of asynchronous.
This functionality is implemented using a new ioctl. The type of
activity to wait for is provided as input to the ioctl, and the ioctl
blocks until all activity of that type has completed. An ioctl was used
over other methods of kernel-userspace communiction primarily for the
sake of portability.
Porting Notes:
This is ported from Delphix OS change DLPX-44432. The following changes
were made while porting:
- Added ZoL-style ioctl input declaration.
- Reorganized error handling in zpool_initialize in libzfs to integrate
better with changes made for TRIM support.
- Fixed check for whether a checkpoint discard is in progress.
Previously it also waited if the pool had a checkpoint, instead of
just if a checkpoint was being discarded.
- Exposed zfs_initialize_chunk_size as a ZoL-style tunable.
- Updated more existing tests to make use of new 'zpool wait'
functionality, tests that don't exist in Delphix OS.
- Used existing ZoL tunable zfs_scan_suspend_progress, together with
zinject, in place of a new tunable zfs_scan_max_blks_per_txg.
- Added support for a non-integral interval argument to zpool wait.
Future work:
ZoL has support for trimming devices, which Delphix OS does not. In the
future, 'zpool wait' could be extended to add the ability to wait for
trim operations to complete.
Reviewed-by: Matt Ahrens <matt@delphix.com>
Reviewed-by: John Kennedy <john.kennedy@delphix.com>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: John Gallagher <john.gallagher@delphix.com>
Closes #9162
2019-09-14 04:09:06 +03:00
|
|
|
unsigned long zfs_initialize_chunk_size = 1024 * 1024;
|
OpenZFS 9102 - zfs should be able to initialize storage devices
PROBLEM
========
The first access to a block incurs a performance penalty on some platforms
(e.g. AWS's EBS, VMware VMDKs). Therefore we recommend that volumes are
"thick provisioned", where supported by the platform (VMware). This can
create a large delay in getting a new virtual machines up and running (or
adding storage to an existing Engine). If the thick provision step is
omitted, write performance will be suboptimal until all blocks on the LUN
have been written.
SOLUTION
=========
This feature introduces a way to 'initialize' the disks at install or in the
background to make sure we don't incur this first read penalty.
When an entire LUN is added to ZFS, we make all space available immediately,
and allow ZFS to find unallocated space and zero it out. This works with
concurrent writes to arbitrary offsets, ensuring that we don't zero out
something that has been (or is in the middle of being) written. This scheme
can also be applied to existing pools (affecting only free regions on the
vdev). Detailed design:
- new subcommand:zpool initialize [-cs] <pool> [<vdev> ...]
- start, suspend, or cancel initialization
- Creates new open-context thread for each vdev
- Thread iterates through all metaslabs in this vdev
- Each metaslab:
- select a metaslab
- load the metaslab
- mark the metaslab as being zeroed
- walk all free ranges within that metaslab and translate
them to ranges on the leaf vdev
- issue a "zeroing" I/O on the leaf vdev that corresponds to
a free range on the metaslab we're working on
- continue until all free ranges for this metaslab have been
"zeroed"
- reset/unmark the metaslab being zeroed
- if more metaslabs exist, then repeat above tasks.
- if no more metaslabs, then we're done.
- progress for the initialization is stored on-disk in the vdev’s
leaf zap object. The following information is stored:
- the last offset that has been initialized
- the state of the initialization process (i.e. active,
suspended, or canceled)
- the start time for the initialization
- progress is reported via the zpool status command and shows
information for each of the vdevs that are initializing
Porting notes:
- Added zfs_initialize_value module parameter to set the pattern
written by "zpool initialize".
- Added zfs_vdev_{initializing,removal}_{min,max}_active module options.
Authored by: George Wilson <george.wilson@delphix.com>
Reviewed by: John Wren Kennedy <john.kennedy@delphix.com>
Reviewed by: Matthew Ahrens <mahrens@delphix.com>
Reviewed by: Pavel Zakharov <pavel.zakharov@delphix.com>
Reviewed by: Prakash Surya <prakash.surya@delphix.com>
Reviewed by: loli10K <ezomori.nozomu@gmail.com>
Reviewed by: Brian Behlendorf <behlendorf1@llnl.gov>
Approved by: Richard Lowe <richlowe@richlowe.net>
Signed-off-by: Tim Chase <tim@chase2k.com>
Ported-by: Tim Chase <tim@chase2k.com>
OpenZFS-issue: https://www.illumos.org/issues/9102
OpenZFS-commit: https://github.com/openzfs/openzfs/commit/c3963210eb
Closes #8230
2018-12-19 17:54:59 +03:00
|
|
|
|
|
|
|
static boolean_t
|
|
|
|
vdev_initialize_should_stop(vdev_t *vd)
|
|
|
|
{
|
|
|
|
return (vd->vdev_initialize_exit_wanted || !vdev_writeable(vd) ||
|
|
|
|
vd->vdev_detached || vd->vdev_top->vdev_removing);
|
|
|
|
}
|
|
|
|
|
|
|
|
static void
|
|
|
|
vdev_initialize_zap_update_sync(void *arg, dmu_tx_t *tx)
|
|
|
|
{
|
|
|
|
/*
|
|
|
|
* We pass in the guid instead of the vdev_t since the vdev may
|
|
|
|
* have been freed prior to the sync task being processed. This
|
|
|
|
* happens when a vdev is detached as we call spa_config_vdev_exit(),
|
2019-03-12 20:39:47 +03:00
|
|
|
* stop the initializing thread, schedule the sync task, and free
|
OpenZFS 9102 - zfs should be able to initialize storage devices
PROBLEM
========
The first access to a block incurs a performance penalty on some platforms
(e.g. AWS's EBS, VMware VMDKs). Therefore we recommend that volumes are
"thick provisioned", where supported by the platform (VMware). This can
create a large delay in getting a new virtual machines up and running (or
adding storage to an existing Engine). If the thick provision step is
omitted, write performance will be suboptimal until all blocks on the LUN
have been written.
SOLUTION
=========
This feature introduces a way to 'initialize' the disks at install or in the
background to make sure we don't incur this first read penalty.
When an entire LUN is added to ZFS, we make all space available immediately,
and allow ZFS to find unallocated space and zero it out. This works with
concurrent writes to arbitrary offsets, ensuring that we don't zero out
something that has been (or is in the middle of being) written. This scheme
can also be applied to existing pools (affecting only free regions on the
vdev). Detailed design:
- new subcommand:zpool initialize [-cs] <pool> [<vdev> ...]
- start, suspend, or cancel initialization
- Creates new open-context thread for each vdev
- Thread iterates through all metaslabs in this vdev
- Each metaslab:
- select a metaslab
- load the metaslab
- mark the metaslab as being zeroed
- walk all free ranges within that metaslab and translate
them to ranges on the leaf vdev
- issue a "zeroing" I/O on the leaf vdev that corresponds to
a free range on the metaslab we're working on
- continue until all free ranges for this metaslab have been
"zeroed"
- reset/unmark the metaslab being zeroed
- if more metaslabs exist, then repeat above tasks.
- if no more metaslabs, then we're done.
- progress for the initialization is stored on-disk in the vdev’s
leaf zap object. The following information is stored:
- the last offset that has been initialized
- the state of the initialization process (i.e. active,
suspended, or canceled)
- the start time for the initialization
- progress is reported via the zpool status command and shows
information for each of the vdevs that are initializing
Porting notes:
- Added zfs_initialize_value module parameter to set the pattern
written by "zpool initialize".
- Added zfs_vdev_{initializing,removal}_{min,max}_active module options.
Authored by: George Wilson <george.wilson@delphix.com>
Reviewed by: John Wren Kennedy <john.kennedy@delphix.com>
Reviewed by: Matthew Ahrens <mahrens@delphix.com>
Reviewed by: Pavel Zakharov <pavel.zakharov@delphix.com>
Reviewed by: Prakash Surya <prakash.surya@delphix.com>
Reviewed by: loli10K <ezomori.nozomu@gmail.com>
Reviewed by: Brian Behlendorf <behlendorf1@llnl.gov>
Approved by: Richard Lowe <richlowe@richlowe.net>
Signed-off-by: Tim Chase <tim@chase2k.com>
Ported-by: Tim Chase <tim@chase2k.com>
OpenZFS-issue: https://www.illumos.org/issues/9102
OpenZFS-commit: https://github.com/openzfs/openzfs/commit/c3963210eb
Closes #8230
2018-12-19 17:54:59 +03:00
|
|
|
* the vdev. Later when the scheduled sync task is invoked, it would
|
|
|
|
* find that the vdev has been freed.
|
|
|
|
*/
|
|
|
|
uint64_t guid = *(uint64_t *)arg;
|
|
|
|
uint64_t txg = dmu_tx_get_txg(tx);
|
|
|
|
kmem_free(arg, sizeof (uint64_t));
|
|
|
|
|
|
|
|
vdev_t *vd = spa_lookup_by_guid(tx->tx_pool->dp_spa, guid, B_FALSE);
|
|
|
|
if (vd == NULL || vd->vdev_top->vdev_removing || !vdev_is_concrete(vd))
|
|
|
|
return;
|
|
|
|
|
|
|
|
uint64_t last_offset = vd->vdev_initialize_offset[txg & TXG_MASK];
|
|
|
|
vd->vdev_initialize_offset[txg & TXG_MASK] = 0;
|
|
|
|
|
|
|
|
VERIFY(vd->vdev_leaf_zap != 0);
|
|
|
|
|
|
|
|
objset_t *mos = vd->vdev_spa->spa_meta_objset;
|
|
|
|
|
|
|
|
if (last_offset > 0) {
|
|
|
|
vd->vdev_initialize_last_offset = last_offset;
|
|
|
|
VERIFY0(zap_update(mos, vd->vdev_leaf_zap,
|
|
|
|
VDEV_LEAF_ZAP_INITIALIZE_LAST_OFFSET,
|
|
|
|
sizeof (last_offset), 1, &last_offset, tx));
|
|
|
|
}
|
|
|
|
if (vd->vdev_initialize_action_time > 0) {
|
|
|
|
uint64_t val = (uint64_t)vd->vdev_initialize_action_time;
|
|
|
|
VERIFY0(zap_update(mos, vd->vdev_leaf_zap,
|
|
|
|
VDEV_LEAF_ZAP_INITIALIZE_ACTION_TIME, sizeof (val),
|
|
|
|
1, &val, tx));
|
|
|
|
}
|
|
|
|
|
|
|
|
uint64_t initialize_state = vd->vdev_initialize_state;
|
|
|
|
VERIFY0(zap_update(mos, vd->vdev_leaf_zap,
|
|
|
|
VDEV_LEAF_ZAP_INITIALIZE_STATE, sizeof (initialize_state), 1,
|
|
|
|
&initialize_state, tx));
|
|
|
|
}
|
|
|
|
|
|
|
|
static void
|
|
|
|
vdev_initialize_change_state(vdev_t *vd, vdev_initializing_state_t new_state)
|
|
|
|
{
|
|
|
|
ASSERT(MUTEX_HELD(&vd->vdev_initialize_lock));
|
|
|
|
spa_t *spa = vd->vdev_spa;
|
|
|
|
|
|
|
|
if (new_state == vd->vdev_initialize_state)
|
|
|
|
return;
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Copy the vd's guid, this will be freed by the sync task.
|
|
|
|
*/
|
|
|
|
uint64_t *guid = kmem_zalloc(sizeof (uint64_t), KM_SLEEP);
|
|
|
|
*guid = vd->vdev_guid;
|
|
|
|
|
|
|
|
/*
|
|
|
|
* If we're suspending, then preserving the original start time.
|
|
|
|
*/
|
|
|
|
if (vd->vdev_initialize_state != VDEV_INITIALIZE_SUSPENDED) {
|
|
|
|
vd->vdev_initialize_action_time = gethrestime_sec();
|
|
|
|
}
|
|
|
|
vd->vdev_initialize_state = new_state;
|
|
|
|
|
|
|
|
dmu_tx_t *tx = dmu_tx_create_dd(spa_get_dsl(spa)->dp_mos_dir);
|
|
|
|
VERIFY0(dmu_tx_assign(tx, TXG_WAIT));
|
|
|
|
dsl_sync_task_nowait(spa_get_dsl(spa), vdev_initialize_zap_update_sync,
|
2019-03-29 19:13:20 +03:00
|
|
|
guid, 2, ZFS_SPACE_CHECK_NONE, tx);
|
OpenZFS 9102 - zfs should be able to initialize storage devices
PROBLEM
========
The first access to a block incurs a performance penalty on some platforms
(e.g. AWS's EBS, VMware VMDKs). Therefore we recommend that volumes are
"thick provisioned", where supported by the platform (VMware). This can
create a large delay in getting a new virtual machines up and running (or
adding storage to an existing Engine). If the thick provision step is
omitted, write performance will be suboptimal until all blocks on the LUN
have been written.
SOLUTION
=========
This feature introduces a way to 'initialize' the disks at install or in the
background to make sure we don't incur this first read penalty.
When an entire LUN is added to ZFS, we make all space available immediately,
and allow ZFS to find unallocated space and zero it out. This works with
concurrent writes to arbitrary offsets, ensuring that we don't zero out
something that has been (or is in the middle of being) written. This scheme
can also be applied to existing pools (affecting only free regions on the
vdev). Detailed design:
- new subcommand:zpool initialize [-cs] <pool> [<vdev> ...]
- start, suspend, or cancel initialization
- Creates new open-context thread for each vdev
- Thread iterates through all metaslabs in this vdev
- Each metaslab:
- select a metaslab
- load the metaslab
- mark the metaslab as being zeroed
- walk all free ranges within that metaslab and translate
them to ranges on the leaf vdev
- issue a "zeroing" I/O on the leaf vdev that corresponds to
a free range on the metaslab we're working on
- continue until all free ranges for this metaslab have been
"zeroed"
- reset/unmark the metaslab being zeroed
- if more metaslabs exist, then repeat above tasks.
- if no more metaslabs, then we're done.
- progress for the initialization is stored on-disk in the vdev’s
leaf zap object. The following information is stored:
- the last offset that has been initialized
- the state of the initialization process (i.e. active,
suspended, or canceled)
- the start time for the initialization
- progress is reported via the zpool status command and shows
information for each of the vdevs that are initializing
Porting notes:
- Added zfs_initialize_value module parameter to set the pattern
written by "zpool initialize".
- Added zfs_vdev_{initializing,removal}_{min,max}_active module options.
Authored by: George Wilson <george.wilson@delphix.com>
Reviewed by: John Wren Kennedy <john.kennedy@delphix.com>
Reviewed by: Matthew Ahrens <mahrens@delphix.com>
Reviewed by: Pavel Zakharov <pavel.zakharov@delphix.com>
Reviewed by: Prakash Surya <prakash.surya@delphix.com>
Reviewed by: loli10K <ezomori.nozomu@gmail.com>
Reviewed by: Brian Behlendorf <behlendorf1@llnl.gov>
Approved by: Richard Lowe <richlowe@richlowe.net>
Signed-off-by: Tim Chase <tim@chase2k.com>
Ported-by: Tim Chase <tim@chase2k.com>
OpenZFS-issue: https://www.illumos.org/issues/9102
OpenZFS-commit: https://github.com/openzfs/openzfs/commit/c3963210eb
Closes #8230
2018-12-19 17:54:59 +03:00
|
|
|
|
|
|
|
switch (new_state) {
|
|
|
|
case VDEV_INITIALIZE_ACTIVE:
|
|
|
|
spa_history_log_internal(spa, "initialize", tx,
|
|
|
|
"vdev=%s activated", vd->vdev_path);
|
|
|
|
break;
|
|
|
|
case VDEV_INITIALIZE_SUSPENDED:
|
|
|
|
spa_history_log_internal(spa, "initialize", tx,
|
|
|
|
"vdev=%s suspended", vd->vdev_path);
|
|
|
|
break;
|
|
|
|
case VDEV_INITIALIZE_CANCELED:
|
|
|
|
spa_history_log_internal(spa, "initialize", tx,
|
|
|
|
"vdev=%s canceled", vd->vdev_path);
|
|
|
|
break;
|
|
|
|
case VDEV_INITIALIZE_COMPLETE:
|
|
|
|
spa_history_log_internal(spa, "initialize", tx,
|
|
|
|
"vdev=%s complete", vd->vdev_path);
|
|
|
|
break;
|
|
|
|
default:
|
|
|
|
panic("invalid state %llu", (unsigned long long)new_state);
|
|
|
|
}
|
|
|
|
|
|
|
|
dmu_tx_commit(tx);
|
Add subcommand to wait for background zfs activity to complete
Currently the best way to wait for the completion of a long-running
operation in a pool, like a scrub or device removal, is to poll 'zpool
status' and parse its output, which is neither efficient nor convenient.
This change adds a 'wait' subcommand to the zpool command. When invoked,
'zpool wait' will block until a specified type of background activity
completes. Currently, this subcommand can wait for any of the following:
- Scrubs or resilvers to complete
- Devices to initialized
- Devices to be replaced
- Devices to be removed
- Checkpoints to be discarded
- Background freeing to complete
For example, a scrub that is in progress could be waited for by running
zpool wait -t scrub <pool>
This also adds a -w flag to the attach, checkpoint, initialize, replace,
remove, and scrub subcommands. When used, this flag makes the operations
kicked off by these subcommands synchronous instead of asynchronous.
This functionality is implemented using a new ioctl. The type of
activity to wait for is provided as input to the ioctl, and the ioctl
blocks until all activity of that type has completed. An ioctl was used
over other methods of kernel-userspace communiction primarily for the
sake of portability.
Porting Notes:
This is ported from Delphix OS change DLPX-44432. The following changes
were made while porting:
- Added ZoL-style ioctl input declaration.
- Reorganized error handling in zpool_initialize in libzfs to integrate
better with changes made for TRIM support.
- Fixed check for whether a checkpoint discard is in progress.
Previously it also waited if the pool had a checkpoint, instead of
just if a checkpoint was being discarded.
- Exposed zfs_initialize_chunk_size as a ZoL-style tunable.
- Updated more existing tests to make use of new 'zpool wait'
functionality, tests that don't exist in Delphix OS.
- Used existing ZoL tunable zfs_scan_suspend_progress, together with
zinject, in place of a new tunable zfs_scan_max_blks_per_txg.
- Added support for a non-integral interval argument to zpool wait.
Future work:
ZoL has support for trimming devices, which Delphix OS does not. In the
future, 'zpool wait' could be extended to add the ability to wait for
trim operations to complete.
Reviewed-by: Matt Ahrens <matt@delphix.com>
Reviewed-by: John Kennedy <john.kennedy@delphix.com>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: John Gallagher <john.gallagher@delphix.com>
Closes #9162
2019-09-14 04:09:06 +03:00
|
|
|
|
|
|
|
if (new_state != VDEV_INITIALIZE_ACTIVE)
|
|
|
|
spa_notify_waiters(spa);
|
OpenZFS 9102 - zfs should be able to initialize storage devices
PROBLEM
========
The first access to a block incurs a performance penalty on some platforms
(e.g. AWS's EBS, VMware VMDKs). Therefore we recommend that volumes are
"thick provisioned", where supported by the platform (VMware). This can
create a large delay in getting a new virtual machines up and running (or
adding storage to an existing Engine). If the thick provision step is
omitted, write performance will be suboptimal until all blocks on the LUN
have been written.
SOLUTION
=========
This feature introduces a way to 'initialize' the disks at install or in the
background to make sure we don't incur this first read penalty.
When an entire LUN is added to ZFS, we make all space available immediately,
and allow ZFS to find unallocated space and zero it out. This works with
concurrent writes to arbitrary offsets, ensuring that we don't zero out
something that has been (or is in the middle of being) written. This scheme
can also be applied to existing pools (affecting only free regions on the
vdev). Detailed design:
- new subcommand:zpool initialize [-cs] <pool> [<vdev> ...]
- start, suspend, or cancel initialization
- Creates new open-context thread for each vdev
- Thread iterates through all metaslabs in this vdev
- Each metaslab:
- select a metaslab
- load the metaslab
- mark the metaslab as being zeroed
- walk all free ranges within that metaslab and translate
them to ranges on the leaf vdev
- issue a "zeroing" I/O on the leaf vdev that corresponds to
a free range on the metaslab we're working on
- continue until all free ranges for this metaslab have been
"zeroed"
- reset/unmark the metaslab being zeroed
- if more metaslabs exist, then repeat above tasks.
- if no more metaslabs, then we're done.
- progress for the initialization is stored on-disk in the vdev’s
leaf zap object. The following information is stored:
- the last offset that has been initialized
- the state of the initialization process (i.e. active,
suspended, or canceled)
- the start time for the initialization
- progress is reported via the zpool status command and shows
information for each of the vdevs that are initializing
Porting notes:
- Added zfs_initialize_value module parameter to set the pattern
written by "zpool initialize".
- Added zfs_vdev_{initializing,removal}_{min,max}_active module options.
Authored by: George Wilson <george.wilson@delphix.com>
Reviewed by: John Wren Kennedy <john.kennedy@delphix.com>
Reviewed by: Matthew Ahrens <mahrens@delphix.com>
Reviewed by: Pavel Zakharov <pavel.zakharov@delphix.com>
Reviewed by: Prakash Surya <prakash.surya@delphix.com>
Reviewed by: loli10K <ezomori.nozomu@gmail.com>
Reviewed by: Brian Behlendorf <behlendorf1@llnl.gov>
Approved by: Richard Lowe <richlowe@richlowe.net>
Signed-off-by: Tim Chase <tim@chase2k.com>
Ported-by: Tim Chase <tim@chase2k.com>
OpenZFS-issue: https://www.illumos.org/issues/9102
OpenZFS-commit: https://github.com/openzfs/openzfs/commit/c3963210eb
Closes #8230
2018-12-19 17:54:59 +03:00
|
|
|
}
|
|
|
|
|
|
|
|
static void
|
|
|
|
vdev_initialize_cb(zio_t *zio)
|
|
|
|
{
|
|
|
|
vdev_t *vd = zio->io_vd;
|
|
|
|
mutex_enter(&vd->vdev_initialize_io_lock);
|
|
|
|
if (zio->io_error == ENXIO && !vdev_writeable(vd)) {
|
|
|
|
/*
|
|
|
|
* The I/O failed because the vdev was unavailable; roll the
|
|
|
|
* last offset back. (This works because spa_sync waits on
|
|
|
|
* spa_txg_zio before it runs sync tasks.)
|
|
|
|
*/
|
|
|
|
uint64_t *off =
|
|
|
|
&vd->vdev_initialize_offset[zio->io_txg & TXG_MASK];
|
|
|
|
*off = MIN(*off, zio->io_offset);
|
|
|
|
} else {
|
|
|
|
/*
|
|
|
|
* Since initializing is best-effort, we ignore I/O errors and
|
|
|
|
* rely on vdev_probe to determine if the errors are more
|
|
|
|
* critical.
|
|
|
|
*/
|
|
|
|
if (zio->io_error != 0)
|
|
|
|
vd->vdev_stat.vs_initialize_errors++;
|
|
|
|
|
|
|
|
vd->vdev_initialize_bytes_done += zio->io_orig_size;
|
|
|
|
}
|
|
|
|
ASSERT3U(vd->vdev_initialize_inflight, >, 0);
|
|
|
|
vd->vdev_initialize_inflight--;
|
|
|
|
cv_broadcast(&vd->vdev_initialize_io_cv);
|
|
|
|
mutex_exit(&vd->vdev_initialize_io_lock);
|
|
|
|
|
|
|
|
spa_config_exit(vd->vdev_spa, SCL_STATE_ALL, vd);
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Takes care of physical writing and limiting # of concurrent ZIOs. */
|
|
|
|
static int
|
|
|
|
vdev_initialize_write(vdev_t *vd, uint64_t start, uint64_t size, abd_t *data)
|
|
|
|
{
|
|
|
|
spa_t *spa = vd->vdev_spa;
|
|
|
|
|
|
|
|
/* Limit inflight initializing I/Os */
|
|
|
|
mutex_enter(&vd->vdev_initialize_io_lock);
|
|
|
|
while (vd->vdev_initialize_inflight >= zfs_initialize_limit) {
|
|
|
|
cv_wait(&vd->vdev_initialize_io_cv,
|
|
|
|
&vd->vdev_initialize_io_lock);
|
|
|
|
}
|
|
|
|
vd->vdev_initialize_inflight++;
|
|
|
|
mutex_exit(&vd->vdev_initialize_io_lock);
|
|
|
|
|
|
|
|
dmu_tx_t *tx = dmu_tx_create_dd(spa_get_dsl(spa)->dp_mos_dir);
|
|
|
|
VERIFY0(dmu_tx_assign(tx, TXG_WAIT));
|
|
|
|
uint64_t txg = dmu_tx_get_txg(tx);
|
|
|
|
|
|
|
|
spa_config_enter(spa, SCL_STATE_ALL, vd, RW_READER);
|
|
|
|
mutex_enter(&vd->vdev_initialize_lock);
|
|
|
|
|
|
|
|
if (vd->vdev_initialize_offset[txg & TXG_MASK] == 0) {
|
|
|
|
uint64_t *guid = kmem_zalloc(sizeof (uint64_t), KM_SLEEP);
|
|
|
|
*guid = vd->vdev_guid;
|
|
|
|
|
|
|
|
/* This is the first write of this txg. */
|
|
|
|
dsl_sync_task_nowait(spa_get_dsl(spa),
|
|
|
|
vdev_initialize_zap_update_sync, guid, 2,
|
|
|
|
ZFS_SPACE_CHECK_RESERVED, tx);
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* We know the vdev struct will still be around since all
|
|
|
|
* consumers of vdev_free must stop the initialization first.
|
|
|
|
*/
|
|
|
|
if (vdev_initialize_should_stop(vd)) {
|
|
|
|
mutex_enter(&vd->vdev_initialize_io_lock);
|
|
|
|
ASSERT3U(vd->vdev_initialize_inflight, >, 0);
|
|
|
|
vd->vdev_initialize_inflight--;
|
|
|
|
mutex_exit(&vd->vdev_initialize_io_lock);
|
|
|
|
spa_config_exit(vd->vdev_spa, SCL_STATE_ALL, vd);
|
|
|
|
mutex_exit(&vd->vdev_initialize_lock);
|
|
|
|
dmu_tx_commit(tx);
|
|
|
|
return (SET_ERROR(EINTR));
|
|
|
|
}
|
|
|
|
mutex_exit(&vd->vdev_initialize_lock);
|
|
|
|
|
|
|
|
vd->vdev_initialize_offset[txg & TXG_MASK] = start + size;
|
|
|
|
zio_nowait(zio_write_phys(spa->spa_txg_zio[txg & TXG_MASK], vd, start,
|
|
|
|
size, data, ZIO_CHECKSUM_OFF, vdev_initialize_cb, NULL,
|
|
|
|
ZIO_PRIORITY_INITIALIZING, ZIO_FLAG_CANFAIL, B_FALSE));
|
|
|
|
/* vdev_initialize_cb releases SCL_STATE_ALL */
|
|
|
|
|
|
|
|
dmu_tx_commit(tx);
|
|
|
|
|
|
|
|
return (0);
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Callback to fill each ABD chunk with zfs_initialize_value. len must be
|
|
|
|
* divisible by sizeof (uint64_t), and buf must be 8-byte aligned. The ABD
|
|
|
|
* allocation will guarantee these for us.
|
|
|
|
*/
|
|
|
|
/* ARGSUSED */
|
|
|
|
static int
|
|
|
|
vdev_initialize_block_fill(void *buf, size_t len, void *unused)
|
|
|
|
{
|
|
|
|
ASSERT0(len % sizeof (uint64_t));
|
|
|
|
#ifdef _ILP32
|
|
|
|
for (uint64_t i = 0; i < len; i += sizeof (uint32_t)) {
|
|
|
|
*(uint32_t *)((char *)(buf) + i) = zfs_initialize_value;
|
|
|
|
}
|
|
|
|
#else
|
|
|
|
for (uint64_t i = 0; i < len; i += sizeof (uint64_t)) {
|
|
|
|
*(uint64_t *)((char *)(buf) + i) = zfs_initialize_value;
|
|
|
|
}
|
|
|
|
#endif
|
|
|
|
return (0);
|
|
|
|
}
|
|
|
|
|
|
|
|
static abd_t *
|
|
|
|
vdev_initialize_block_alloc(void)
|
|
|
|
{
|
|
|
|
/* Allocate ABD for filler data */
|
|
|
|
abd_t *data = abd_alloc_for_io(zfs_initialize_chunk_size, B_FALSE);
|
|
|
|
|
|
|
|
ASSERT0(zfs_initialize_chunk_size % sizeof (uint64_t));
|
|
|
|
(void) abd_iterate_func(data, 0, zfs_initialize_chunk_size,
|
|
|
|
vdev_initialize_block_fill, NULL);
|
|
|
|
|
|
|
|
return (data);
|
|
|
|
}
|
|
|
|
|
|
|
|
static void
|
|
|
|
vdev_initialize_block_free(abd_t *data)
|
|
|
|
{
|
|
|
|
abd_free(data);
|
|
|
|
}
|
|
|
|
|
|
|
|
static int
|
|
|
|
vdev_initialize_ranges(vdev_t *vd, abd_t *data)
|
|
|
|
{
|
|
|
|
avl_tree_t *rt = &vd->vdev_initialize_tree->rt_root;
|
|
|
|
|
|
|
|
for (range_seg_t *rs = avl_first(rt); rs != NULL;
|
|
|
|
rs = AVL_NEXT(rt, rs)) {
|
|
|
|
uint64_t size = rs->rs_end - rs->rs_start;
|
|
|
|
|
|
|
|
/* Split range into legally-sized physical chunks */
|
|
|
|
uint64_t writes_required =
|
|
|
|
((size - 1) / zfs_initialize_chunk_size) + 1;
|
|
|
|
|
|
|
|
for (uint64_t w = 0; w < writes_required; w++) {
|
|
|
|
int error;
|
|
|
|
|
|
|
|
error = vdev_initialize_write(vd,
|
|
|
|
VDEV_LABEL_START_SIZE + rs->rs_start +
|
|
|
|
(w * zfs_initialize_chunk_size),
|
|
|
|
MIN(size - (w * zfs_initialize_chunk_size),
|
|
|
|
zfs_initialize_chunk_size), data);
|
|
|
|
if (error != 0)
|
|
|
|
return (error);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
return (0);
|
|
|
|
}
|
|
|
|
|
|
|
|
static void
|
|
|
|
vdev_initialize_calculate_progress(vdev_t *vd)
|
|
|
|
{
|
|
|
|
ASSERT(spa_config_held(vd->vdev_spa, SCL_CONFIG, RW_READER) ||
|
|
|
|
spa_config_held(vd->vdev_spa, SCL_CONFIG, RW_WRITER));
|
|
|
|
ASSERT(vd->vdev_leaf_zap != 0);
|
|
|
|
|
|
|
|
vd->vdev_initialize_bytes_est = 0;
|
|
|
|
vd->vdev_initialize_bytes_done = 0;
|
|
|
|
|
|
|
|
for (uint64_t i = 0; i < vd->vdev_top->vdev_ms_count; i++) {
|
|
|
|
metaslab_t *msp = vd->vdev_top->vdev_ms[i];
|
|
|
|
mutex_enter(&msp->ms_lock);
|
|
|
|
|
|
|
|
uint64_t ms_free = msp->ms_size -
|
2019-02-12 21:38:11 +03:00
|
|
|
metaslab_allocated_space(msp);
|
OpenZFS 9102 - zfs should be able to initialize storage devices
PROBLEM
========
The first access to a block incurs a performance penalty on some platforms
(e.g. AWS's EBS, VMware VMDKs). Therefore we recommend that volumes are
"thick provisioned", where supported by the platform (VMware). This can
create a large delay in getting a new virtual machines up and running (or
adding storage to an existing Engine). If the thick provision step is
omitted, write performance will be suboptimal until all blocks on the LUN
have been written.
SOLUTION
=========
This feature introduces a way to 'initialize' the disks at install or in the
background to make sure we don't incur this first read penalty.
When an entire LUN is added to ZFS, we make all space available immediately,
and allow ZFS to find unallocated space and zero it out. This works with
concurrent writes to arbitrary offsets, ensuring that we don't zero out
something that has been (or is in the middle of being) written. This scheme
can also be applied to existing pools (affecting only free regions on the
vdev). Detailed design:
- new subcommand:zpool initialize [-cs] <pool> [<vdev> ...]
- start, suspend, or cancel initialization
- Creates new open-context thread for each vdev
- Thread iterates through all metaslabs in this vdev
- Each metaslab:
- select a metaslab
- load the metaslab
- mark the metaslab as being zeroed
- walk all free ranges within that metaslab and translate
them to ranges on the leaf vdev
- issue a "zeroing" I/O on the leaf vdev that corresponds to
a free range on the metaslab we're working on
- continue until all free ranges for this metaslab have been
"zeroed"
- reset/unmark the metaslab being zeroed
- if more metaslabs exist, then repeat above tasks.
- if no more metaslabs, then we're done.
- progress for the initialization is stored on-disk in the vdev’s
leaf zap object. The following information is stored:
- the last offset that has been initialized
- the state of the initialization process (i.e. active,
suspended, or canceled)
- the start time for the initialization
- progress is reported via the zpool status command and shows
information for each of the vdevs that are initializing
Porting notes:
- Added zfs_initialize_value module parameter to set the pattern
written by "zpool initialize".
- Added zfs_vdev_{initializing,removal}_{min,max}_active module options.
Authored by: George Wilson <george.wilson@delphix.com>
Reviewed by: John Wren Kennedy <john.kennedy@delphix.com>
Reviewed by: Matthew Ahrens <mahrens@delphix.com>
Reviewed by: Pavel Zakharov <pavel.zakharov@delphix.com>
Reviewed by: Prakash Surya <prakash.surya@delphix.com>
Reviewed by: loli10K <ezomori.nozomu@gmail.com>
Reviewed by: Brian Behlendorf <behlendorf1@llnl.gov>
Approved by: Richard Lowe <richlowe@richlowe.net>
Signed-off-by: Tim Chase <tim@chase2k.com>
Ported-by: Tim Chase <tim@chase2k.com>
OpenZFS-issue: https://www.illumos.org/issues/9102
OpenZFS-commit: https://github.com/openzfs/openzfs/commit/c3963210eb
Closes #8230
2018-12-19 17:54:59 +03:00
|
|
|
|
|
|
|
if (vd->vdev_top->vdev_ops == &vdev_raidz_ops)
|
|
|
|
ms_free /= vd->vdev_top->vdev_children;
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Convert the metaslab range to a physical range
|
|
|
|
* on our vdev. We use this to determine if we are
|
|
|
|
* in the middle of this metaslab range.
|
|
|
|
*/
|
|
|
|
range_seg_t logical_rs, physical_rs;
|
|
|
|
logical_rs.rs_start = msp->ms_start;
|
|
|
|
logical_rs.rs_end = msp->ms_start + msp->ms_size;
|
|
|
|
vdev_xlate(vd, &logical_rs, &physical_rs);
|
|
|
|
|
|
|
|
if (vd->vdev_initialize_last_offset <= physical_rs.rs_start) {
|
|
|
|
vd->vdev_initialize_bytes_est += ms_free;
|
|
|
|
mutex_exit(&msp->ms_lock);
|
|
|
|
continue;
|
|
|
|
} else if (vd->vdev_initialize_last_offset >
|
|
|
|
physical_rs.rs_end) {
|
|
|
|
vd->vdev_initialize_bytes_done += ms_free;
|
|
|
|
vd->vdev_initialize_bytes_est += ms_free;
|
|
|
|
mutex_exit(&msp->ms_lock);
|
|
|
|
continue;
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* If we get here, we're in the middle of initializing this
|
|
|
|
* metaslab. Load it and walk the free tree for more accurate
|
|
|
|
* progress estimation.
|
|
|
|
*/
|
2019-01-18 22:10:32 +03:00
|
|
|
VERIFY0(metaslab_load(msp));
|
OpenZFS 9102 - zfs should be able to initialize storage devices
PROBLEM
========
The first access to a block incurs a performance penalty on some platforms
(e.g. AWS's EBS, VMware VMDKs). Therefore we recommend that volumes are
"thick provisioned", where supported by the platform (VMware). This can
create a large delay in getting a new virtual machines up and running (or
adding storage to an existing Engine). If the thick provision step is
omitted, write performance will be suboptimal until all blocks on the LUN
have been written.
SOLUTION
=========
This feature introduces a way to 'initialize' the disks at install or in the
background to make sure we don't incur this first read penalty.
When an entire LUN is added to ZFS, we make all space available immediately,
and allow ZFS to find unallocated space and zero it out. This works with
concurrent writes to arbitrary offsets, ensuring that we don't zero out
something that has been (or is in the middle of being) written. This scheme
can also be applied to existing pools (affecting only free regions on the
vdev). Detailed design:
- new subcommand:zpool initialize [-cs] <pool> [<vdev> ...]
- start, suspend, or cancel initialization
- Creates new open-context thread for each vdev
- Thread iterates through all metaslabs in this vdev
- Each metaslab:
- select a metaslab
- load the metaslab
- mark the metaslab as being zeroed
- walk all free ranges within that metaslab and translate
them to ranges on the leaf vdev
- issue a "zeroing" I/O on the leaf vdev that corresponds to
a free range on the metaslab we're working on
- continue until all free ranges for this metaslab have been
"zeroed"
- reset/unmark the metaslab being zeroed
- if more metaslabs exist, then repeat above tasks.
- if no more metaslabs, then we're done.
- progress for the initialization is stored on-disk in the vdev’s
leaf zap object. The following information is stored:
- the last offset that has been initialized
- the state of the initialization process (i.e. active,
suspended, or canceled)
- the start time for the initialization
- progress is reported via the zpool status command and shows
information for each of the vdevs that are initializing
Porting notes:
- Added zfs_initialize_value module parameter to set the pattern
written by "zpool initialize".
- Added zfs_vdev_{initializing,removal}_{min,max}_active module options.
Authored by: George Wilson <george.wilson@delphix.com>
Reviewed by: John Wren Kennedy <john.kennedy@delphix.com>
Reviewed by: Matthew Ahrens <mahrens@delphix.com>
Reviewed by: Pavel Zakharov <pavel.zakharov@delphix.com>
Reviewed by: Prakash Surya <prakash.surya@delphix.com>
Reviewed by: loli10K <ezomori.nozomu@gmail.com>
Reviewed by: Brian Behlendorf <behlendorf1@llnl.gov>
Approved by: Richard Lowe <richlowe@richlowe.net>
Signed-off-by: Tim Chase <tim@chase2k.com>
Ported-by: Tim Chase <tim@chase2k.com>
OpenZFS-issue: https://www.illumos.org/issues/9102
OpenZFS-commit: https://github.com/openzfs/openzfs/commit/c3963210eb
Closes #8230
2018-12-19 17:54:59 +03:00
|
|
|
|
|
|
|
for (range_seg_t *rs = avl_first(&msp->ms_allocatable->rt_root);
|
|
|
|
rs; rs = AVL_NEXT(&msp->ms_allocatable->rt_root, rs)) {
|
|
|
|
logical_rs.rs_start = rs->rs_start;
|
|
|
|
logical_rs.rs_end = rs->rs_end;
|
|
|
|
vdev_xlate(vd, &logical_rs, &physical_rs);
|
|
|
|
|
|
|
|
uint64_t size = physical_rs.rs_end -
|
|
|
|
physical_rs.rs_start;
|
|
|
|
vd->vdev_initialize_bytes_est += size;
|
|
|
|
if (vd->vdev_initialize_last_offset >
|
|
|
|
physical_rs.rs_end) {
|
|
|
|
vd->vdev_initialize_bytes_done += size;
|
|
|
|
} else if (vd->vdev_initialize_last_offset >
|
|
|
|
physical_rs.rs_start &&
|
|
|
|
vd->vdev_initialize_last_offset <
|
|
|
|
physical_rs.rs_end) {
|
|
|
|
vd->vdev_initialize_bytes_done +=
|
|
|
|
vd->vdev_initialize_last_offset -
|
|
|
|
physical_rs.rs_start;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
mutex_exit(&msp->ms_lock);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
static int
|
|
|
|
vdev_initialize_load(vdev_t *vd)
|
|
|
|
{
|
|
|
|
int err = 0;
|
|
|
|
ASSERT(spa_config_held(vd->vdev_spa, SCL_CONFIG, RW_READER) ||
|
|
|
|
spa_config_held(vd->vdev_spa, SCL_CONFIG, RW_WRITER));
|
|
|
|
ASSERT(vd->vdev_leaf_zap != 0);
|
|
|
|
|
|
|
|
if (vd->vdev_initialize_state == VDEV_INITIALIZE_ACTIVE ||
|
|
|
|
vd->vdev_initialize_state == VDEV_INITIALIZE_SUSPENDED) {
|
|
|
|
err = zap_lookup(vd->vdev_spa->spa_meta_objset,
|
|
|
|
vd->vdev_leaf_zap, VDEV_LEAF_ZAP_INITIALIZE_LAST_OFFSET,
|
|
|
|
sizeof (vd->vdev_initialize_last_offset), 1,
|
|
|
|
&vd->vdev_initialize_last_offset);
|
|
|
|
if (err == ENOENT) {
|
|
|
|
vd->vdev_initialize_last_offset = 0;
|
|
|
|
err = 0;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
vdev_initialize_calculate_progress(vd);
|
|
|
|
return (err);
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
2019-03-29 19:13:20 +03:00
|
|
|
* Convert the logical range into a physical range and add it to our
|
OpenZFS 9102 - zfs should be able to initialize storage devices
PROBLEM
========
The first access to a block incurs a performance penalty on some platforms
(e.g. AWS's EBS, VMware VMDKs). Therefore we recommend that volumes are
"thick provisioned", where supported by the platform (VMware). This can
create a large delay in getting a new virtual machines up and running (or
adding storage to an existing Engine). If the thick provision step is
omitted, write performance will be suboptimal until all blocks on the LUN
have been written.
SOLUTION
=========
This feature introduces a way to 'initialize' the disks at install or in the
background to make sure we don't incur this first read penalty.
When an entire LUN is added to ZFS, we make all space available immediately,
and allow ZFS to find unallocated space and zero it out. This works with
concurrent writes to arbitrary offsets, ensuring that we don't zero out
something that has been (or is in the middle of being) written. This scheme
can also be applied to existing pools (affecting only free regions on the
vdev). Detailed design:
- new subcommand:zpool initialize [-cs] <pool> [<vdev> ...]
- start, suspend, or cancel initialization
- Creates new open-context thread for each vdev
- Thread iterates through all metaslabs in this vdev
- Each metaslab:
- select a metaslab
- load the metaslab
- mark the metaslab as being zeroed
- walk all free ranges within that metaslab and translate
them to ranges on the leaf vdev
- issue a "zeroing" I/O on the leaf vdev that corresponds to
a free range on the metaslab we're working on
- continue until all free ranges for this metaslab have been
"zeroed"
- reset/unmark the metaslab being zeroed
- if more metaslabs exist, then repeat above tasks.
- if no more metaslabs, then we're done.
- progress for the initialization is stored on-disk in the vdev’s
leaf zap object. The following information is stored:
- the last offset that has been initialized
- the state of the initialization process (i.e. active,
suspended, or canceled)
- the start time for the initialization
- progress is reported via the zpool status command and shows
information for each of the vdevs that are initializing
Porting notes:
- Added zfs_initialize_value module parameter to set the pattern
written by "zpool initialize".
- Added zfs_vdev_{initializing,removal}_{min,max}_active module options.
Authored by: George Wilson <george.wilson@delphix.com>
Reviewed by: John Wren Kennedy <john.kennedy@delphix.com>
Reviewed by: Matthew Ahrens <mahrens@delphix.com>
Reviewed by: Pavel Zakharov <pavel.zakharov@delphix.com>
Reviewed by: Prakash Surya <prakash.surya@delphix.com>
Reviewed by: loli10K <ezomori.nozomu@gmail.com>
Reviewed by: Brian Behlendorf <behlendorf1@llnl.gov>
Approved by: Richard Lowe <richlowe@richlowe.net>
Signed-off-by: Tim Chase <tim@chase2k.com>
Ported-by: Tim Chase <tim@chase2k.com>
OpenZFS-issue: https://www.illumos.org/issues/9102
OpenZFS-commit: https://github.com/openzfs/openzfs/commit/c3963210eb
Closes #8230
2018-12-19 17:54:59 +03:00
|
|
|
* avl tree.
|
|
|
|
*/
|
|
|
|
void
|
|
|
|
vdev_initialize_range_add(void *arg, uint64_t start, uint64_t size)
|
|
|
|
{
|
|
|
|
vdev_t *vd = arg;
|
|
|
|
range_seg_t logical_rs, physical_rs;
|
|
|
|
logical_rs.rs_start = start;
|
|
|
|
logical_rs.rs_end = start + size;
|
|
|
|
|
|
|
|
ASSERT(vd->vdev_ops->vdev_op_leaf);
|
|
|
|
vdev_xlate(vd, &logical_rs, &physical_rs);
|
|
|
|
|
|
|
|
IMPLY(vd->vdev_top == vd,
|
|
|
|
logical_rs.rs_start == physical_rs.rs_start);
|
|
|
|
IMPLY(vd->vdev_top == vd,
|
|
|
|
logical_rs.rs_end == physical_rs.rs_end);
|
|
|
|
|
|
|
|
/* Only add segments that we have not visited yet */
|
|
|
|
if (physical_rs.rs_end <= vd->vdev_initialize_last_offset)
|
|
|
|
return;
|
|
|
|
|
|
|
|
/* Pick up where we left off mid-range. */
|
|
|
|
if (vd->vdev_initialize_last_offset > physical_rs.rs_start) {
|
|
|
|
zfs_dbgmsg("range write: vd %s changed (%llu, %llu) to "
|
|
|
|
"(%llu, %llu)", vd->vdev_path,
|
|
|
|
(u_longlong_t)physical_rs.rs_start,
|
|
|
|
(u_longlong_t)physical_rs.rs_end,
|
|
|
|
(u_longlong_t)vd->vdev_initialize_last_offset,
|
|
|
|
(u_longlong_t)physical_rs.rs_end);
|
|
|
|
ASSERT3U(physical_rs.rs_end, >,
|
|
|
|
vd->vdev_initialize_last_offset);
|
|
|
|
physical_rs.rs_start = vd->vdev_initialize_last_offset;
|
|
|
|
}
|
|
|
|
ASSERT3U(physical_rs.rs_end, >=, physical_rs.rs_start);
|
|
|
|
|
|
|
|
/*
|
|
|
|
* With raidz, it's possible that the logical range does not live on
|
|
|
|
* this leaf vdev. We only add the physical range to this vdev's if it
|
|
|
|
* has a length greater than 0.
|
|
|
|
*/
|
|
|
|
if (physical_rs.rs_end > physical_rs.rs_start) {
|
|
|
|
range_tree_add(vd->vdev_initialize_tree, physical_rs.rs_start,
|
|
|
|
physical_rs.rs_end - physical_rs.rs_start);
|
|
|
|
} else {
|
|
|
|
ASSERT3U(physical_rs.rs_end, ==, physical_rs.rs_start);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
static void
|
|
|
|
vdev_initialize_thread(void *arg)
|
|
|
|
{
|
|
|
|
vdev_t *vd = arg;
|
|
|
|
spa_t *spa = vd->vdev_spa;
|
|
|
|
int error = 0;
|
|
|
|
uint64_t ms_count = 0;
|
|
|
|
|
|
|
|
ASSERT(vdev_is_concrete(vd));
|
|
|
|
spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
|
|
|
|
|
|
|
|
vd->vdev_initialize_last_offset = 0;
|
|
|
|
VERIFY0(vdev_initialize_load(vd));
|
|
|
|
|
|
|
|
abd_t *deadbeef = vdev_initialize_block_alloc();
|
|
|
|
|
|
|
|
vd->vdev_initialize_tree = range_tree_create(NULL, NULL);
|
|
|
|
|
|
|
|
for (uint64_t i = 0; !vd->vdev_detached &&
|
|
|
|
i < vd->vdev_top->vdev_ms_count; i++) {
|
|
|
|
metaslab_t *msp = vd->vdev_top->vdev_ms[i];
|
Cap metaslab memory usage
On systems with large amounts of storage and high fragmentation, a huge
amount of space can be used by storing metaslab range trees. Since
metaslabs are only unloaded during a txg sync, and only if they have
been inactive for 8 txgs, it is possible to get into a state where all
of the system's memory is consumed by range trees and metaslabs, and
txgs cannot sync. While ZFS knows how to evict ARC data when needed,
it has no such mechanism for range tree data. This can result in boot
hangs for some system configurations.
First, we add the ability to unload metaslabs outside of syncing
context. Second, we store a multilist of all loaded metaslabs, sorted
by their selection txg, so we can quickly identify the oldest
metaslabs. We use a multilist to reduce lock contention during heavy
write workloads. Finally, we add logic that will unload a metaslab
when we're loading a new metaslab, if we're using more than a certain
fraction of the available memory on range trees.
Reviewed-by: Matt Ahrens <mahrens@delphix.com>
Reviewed-by: George Wilson <gwilson@delphix.com>
Reviewed-by: Sebastien Roy <sebastien.roy@delphix.com>
Reviewed-by: Serapheim Dimitropoulos <serapheim@delphix.com>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Paul Dagnelie <pcd@delphix.com>
Closes #9128
2019-08-16 18:08:21 +03:00
|
|
|
boolean_t unload_when_done = B_FALSE;
|
OpenZFS 9102 - zfs should be able to initialize storage devices
PROBLEM
========
The first access to a block incurs a performance penalty on some platforms
(e.g. AWS's EBS, VMware VMDKs). Therefore we recommend that volumes are
"thick provisioned", where supported by the platform (VMware). This can
create a large delay in getting a new virtual machines up and running (or
adding storage to an existing Engine). If the thick provision step is
omitted, write performance will be suboptimal until all blocks on the LUN
have been written.
SOLUTION
=========
This feature introduces a way to 'initialize' the disks at install or in the
background to make sure we don't incur this first read penalty.
When an entire LUN is added to ZFS, we make all space available immediately,
and allow ZFS to find unallocated space and zero it out. This works with
concurrent writes to arbitrary offsets, ensuring that we don't zero out
something that has been (or is in the middle of being) written. This scheme
can also be applied to existing pools (affecting only free regions on the
vdev). Detailed design:
- new subcommand:zpool initialize [-cs] <pool> [<vdev> ...]
- start, suspend, or cancel initialization
- Creates new open-context thread for each vdev
- Thread iterates through all metaslabs in this vdev
- Each metaslab:
- select a metaslab
- load the metaslab
- mark the metaslab as being zeroed
- walk all free ranges within that metaslab and translate
them to ranges on the leaf vdev
- issue a "zeroing" I/O on the leaf vdev that corresponds to
a free range on the metaslab we're working on
- continue until all free ranges for this metaslab have been
"zeroed"
- reset/unmark the metaslab being zeroed
- if more metaslabs exist, then repeat above tasks.
- if no more metaslabs, then we're done.
- progress for the initialization is stored on-disk in the vdev’s
leaf zap object. The following information is stored:
- the last offset that has been initialized
- the state of the initialization process (i.e. active,
suspended, or canceled)
- the start time for the initialization
- progress is reported via the zpool status command and shows
information for each of the vdevs that are initializing
Porting notes:
- Added zfs_initialize_value module parameter to set the pattern
written by "zpool initialize".
- Added zfs_vdev_{initializing,removal}_{min,max}_active module options.
Authored by: George Wilson <george.wilson@delphix.com>
Reviewed by: John Wren Kennedy <john.kennedy@delphix.com>
Reviewed by: Matthew Ahrens <mahrens@delphix.com>
Reviewed by: Pavel Zakharov <pavel.zakharov@delphix.com>
Reviewed by: Prakash Surya <prakash.surya@delphix.com>
Reviewed by: loli10K <ezomori.nozomu@gmail.com>
Reviewed by: Brian Behlendorf <behlendorf1@llnl.gov>
Approved by: Richard Lowe <richlowe@richlowe.net>
Signed-off-by: Tim Chase <tim@chase2k.com>
Ported-by: Tim Chase <tim@chase2k.com>
OpenZFS-issue: https://www.illumos.org/issues/9102
OpenZFS-commit: https://github.com/openzfs/openzfs/commit/c3963210eb
Closes #8230
2018-12-19 17:54:59 +03:00
|
|
|
|
|
|
|
/*
|
|
|
|
* If we've expanded the top-level vdev or it's our
|
|
|
|
* first pass, calculate our progress.
|
|
|
|
*/
|
|
|
|
if (vd->vdev_top->vdev_ms_count != ms_count) {
|
|
|
|
vdev_initialize_calculate_progress(vd);
|
|
|
|
ms_count = vd->vdev_top->vdev_ms_count;
|
|
|
|
}
|
|
|
|
|
2019-03-29 19:13:20 +03:00
|
|
|
spa_config_exit(spa, SCL_CONFIG, FTAG);
|
|
|
|
metaslab_disable(msp);
|
OpenZFS 9102 - zfs should be able to initialize storage devices
PROBLEM
========
The first access to a block incurs a performance penalty on some platforms
(e.g. AWS's EBS, VMware VMDKs). Therefore we recommend that volumes are
"thick provisioned", where supported by the platform (VMware). This can
create a large delay in getting a new virtual machines up and running (or
adding storage to an existing Engine). If the thick provision step is
omitted, write performance will be suboptimal until all blocks on the LUN
have been written.
SOLUTION
=========
This feature introduces a way to 'initialize' the disks at install or in the
background to make sure we don't incur this first read penalty.
When an entire LUN is added to ZFS, we make all space available immediately,
and allow ZFS to find unallocated space and zero it out. This works with
concurrent writes to arbitrary offsets, ensuring that we don't zero out
something that has been (or is in the middle of being) written. This scheme
can also be applied to existing pools (affecting only free regions on the
vdev). Detailed design:
- new subcommand:zpool initialize [-cs] <pool> [<vdev> ...]
- start, suspend, or cancel initialization
- Creates new open-context thread for each vdev
- Thread iterates through all metaslabs in this vdev
- Each metaslab:
- select a metaslab
- load the metaslab
- mark the metaslab as being zeroed
- walk all free ranges within that metaslab and translate
them to ranges on the leaf vdev
- issue a "zeroing" I/O on the leaf vdev that corresponds to
a free range on the metaslab we're working on
- continue until all free ranges for this metaslab have been
"zeroed"
- reset/unmark the metaslab being zeroed
- if more metaslabs exist, then repeat above tasks.
- if no more metaslabs, then we're done.
- progress for the initialization is stored on-disk in the vdev’s
leaf zap object. The following information is stored:
- the last offset that has been initialized
- the state of the initialization process (i.e. active,
suspended, or canceled)
- the start time for the initialization
- progress is reported via the zpool status command and shows
information for each of the vdevs that are initializing
Porting notes:
- Added zfs_initialize_value module parameter to set the pattern
written by "zpool initialize".
- Added zfs_vdev_{initializing,removal}_{min,max}_active module options.
Authored by: George Wilson <george.wilson@delphix.com>
Reviewed by: John Wren Kennedy <john.kennedy@delphix.com>
Reviewed by: Matthew Ahrens <mahrens@delphix.com>
Reviewed by: Pavel Zakharov <pavel.zakharov@delphix.com>
Reviewed by: Prakash Surya <prakash.surya@delphix.com>
Reviewed by: loli10K <ezomori.nozomu@gmail.com>
Reviewed by: Brian Behlendorf <behlendorf1@llnl.gov>
Approved by: Richard Lowe <richlowe@richlowe.net>
Signed-off-by: Tim Chase <tim@chase2k.com>
Ported-by: Tim Chase <tim@chase2k.com>
OpenZFS-issue: https://www.illumos.org/issues/9102
OpenZFS-commit: https://github.com/openzfs/openzfs/commit/c3963210eb
Closes #8230
2018-12-19 17:54:59 +03:00
|
|
|
mutex_enter(&msp->ms_lock);
|
Cap metaslab memory usage
On systems with large amounts of storage and high fragmentation, a huge
amount of space can be used by storing metaslab range trees. Since
metaslabs are only unloaded during a txg sync, and only if they have
been inactive for 8 txgs, it is possible to get into a state where all
of the system's memory is consumed by range trees and metaslabs, and
txgs cannot sync. While ZFS knows how to evict ARC data when needed,
it has no such mechanism for range tree data. This can result in boot
hangs for some system configurations.
First, we add the ability to unload metaslabs outside of syncing
context. Second, we store a multilist of all loaded metaslabs, sorted
by their selection txg, so we can quickly identify the oldest
metaslabs. We use a multilist to reduce lock contention during heavy
write workloads. Finally, we add logic that will unload a metaslab
when we're loading a new metaslab, if we're using more than a certain
fraction of the available memory on range trees.
Reviewed-by: Matt Ahrens <mahrens@delphix.com>
Reviewed-by: George Wilson <gwilson@delphix.com>
Reviewed-by: Sebastien Roy <sebastien.roy@delphix.com>
Reviewed-by: Serapheim Dimitropoulos <serapheim@delphix.com>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Paul Dagnelie <pcd@delphix.com>
Closes #9128
2019-08-16 18:08:21 +03:00
|
|
|
if (!msp->ms_loaded && !msp->ms_loading)
|
|
|
|
unload_when_done = B_TRUE;
|
2019-01-18 22:10:32 +03:00
|
|
|
VERIFY0(metaslab_load(msp));
|
OpenZFS 9102 - zfs should be able to initialize storage devices
PROBLEM
========
The first access to a block incurs a performance penalty on some platforms
(e.g. AWS's EBS, VMware VMDKs). Therefore we recommend that volumes are
"thick provisioned", where supported by the platform (VMware). This can
create a large delay in getting a new virtual machines up and running (or
adding storage to an existing Engine). If the thick provision step is
omitted, write performance will be suboptimal until all blocks on the LUN
have been written.
SOLUTION
=========
This feature introduces a way to 'initialize' the disks at install or in the
background to make sure we don't incur this first read penalty.
When an entire LUN is added to ZFS, we make all space available immediately,
and allow ZFS to find unallocated space and zero it out. This works with
concurrent writes to arbitrary offsets, ensuring that we don't zero out
something that has been (or is in the middle of being) written. This scheme
can also be applied to existing pools (affecting only free regions on the
vdev). Detailed design:
- new subcommand:zpool initialize [-cs] <pool> [<vdev> ...]
- start, suspend, or cancel initialization
- Creates new open-context thread for each vdev
- Thread iterates through all metaslabs in this vdev
- Each metaslab:
- select a metaslab
- load the metaslab
- mark the metaslab as being zeroed
- walk all free ranges within that metaslab and translate
them to ranges on the leaf vdev
- issue a "zeroing" I/O on the leaf vdev that corresponds to
a free range on the metaslab we're working on
- continue until all free ranges for this metaslab have been
"zeroed"
- reset/unmark the metaslab being zeroed
- if more metaslabs exist, then repeat above tasks.
- if no more metaslabs, then we're done.
- progress for the initialization is stored on-disk in the vdev’s
leaf zap object. The following information is stored:
- the last offset that has been initialized
- the state of the initialization process (i.e. active,
suspended, or canceled)
- the start time for the initialization
- progress is reported via the zpool status command and shows
information for each of the vdevs that are initializing
Porting notes:
- Added zfs_initialize_value module parameter to set the pattern
written by "zpool initialize".
- Added zfs_vdev_{initializing,removal}_{min,max}_active module options.
Authored by: George Wilson <george.wilson@delphix.com>
Reviewed by: John Wren Kennedy <john.kennedy@delphix.com>
Reviewed by: Matthew Ahrens <mahrens@delphix.com>
Reviewed by: Pavel Zakharov <pavel.zakharov@delphix.com>
Reviewed by: Prakash Surya <prakash.surya@delphix.com>
Reviewed by: loli10K <ezomori.nozomu@gmail.com>
Reviewed by: Brian Behlendorf <behlendorf1@llnl.gov>
Approved by: Richard Lowe <richlowe@richlowe.net>
Signed-off-by: Tim Chase <tim@chase2k.com>
Ported-by: Tim Chase <tim@chase2k.com>
OpenZFS-issue: https://www.illumos.org/issues/9102
OpenZFS-commit: https://github.com/openzfs/openzfs/commit/c3963210eb
Closes #8230
2018-12-19 17:54:59 +03:00
|
|
|
|
|
|
|
range_tree_walk(msp->ms_allocatable, vdev_initialize_range_add,
|
|
|
|
vd);
|
|
|
|
mutex_exit(&msp->ms_lock);
|
|
|
|
|
|
|
|
error = vdev_initialize_ranges(vd, deadbeef);
|
Cap metaslab memory usage
On systems with large amounts of storage and high fragmentation, a huge
amount of space can be used by storing metaslab range trees. Since
metaslabs are only unloaded during a txg sync, and only if they have
been inactive for 8 txgs, it is possible to get into a state where all
of the system's memory is consumed by range trees and metaslabs, and
txgs cannot sync. While ZFS knows how to evict ARC data when needed,
it has no such mechanism for range tree data. This can result in boot
hangs for some system configurations.
First, we add the ability to unload metaslabs outside of syncing
context. Second, we store a multilist of all loaded metaslabs, sorted
by their selection txg, so we can quickly identify the oldest
metaslabs. We use a multilist to reduce lock contention during heavy
write workloads. Finally, we add logic that will unload a metaslab
when we're loading a new metaslab, if we're using more than a certain
fraction of the available memory on range trees.
Reviewed-by: Matt Ahrens <mahrens@delphix.com>
Reviewed-by: George Wilson <gwilson@delphix.com>
Reviewed-by: Sebastien Roy <sebastien.roy@delphix.com>
Reviewed-by: Serapheim Dimitropoulos <serapheim@delphix.com>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Paul Dagnelie <pcd@delphix.com>
Closes #9128
2019-08-16 18:08:21 +03:00
|
|
|
metaslab_enable(msp, B_TRUE, unload_when_done);
|
OpenZFS 9102 - zfs should be able to initialize storage devices
PROBLEM
========
The first access to a block incurs a performance penalty on some platforms
(e.g. AWS's EBS, VMware VMDKs). Therefore we recommend that volumes are
"thick provisioned", where supported by the platform (VMware). This can
create a large delay in getting a new virtual machines up and running (or
adding storage to an existing Engine). If the thick provision step is
omitted, write performance will be suboptimal until all blocks on the LUN
have been written.
SOLUTION
=========
This feature introduces a way to 'initialize' the disks at install or in the
background to make sure we don't incur this first read penalty.
When an entire LUN is added to ZFS, we make all space available immediately,
and allow ZFS to find unallocated space and zero it out. This works with
concurrent writes to arbitrary offsets, ensuring that we don't zero out
something that has been (or is in the middle of being) written. This scheme
can also be applied to existing pools (affecting only free regions on the
vdev). Detailed design:
- new subcommand:zpool initialize [-cs] <pool> [<vdev> ...]
- start, suspend, or cancel initialization
- Creates new open-context thread for each vdev
- Thread iterates through all metaslabs in this vdev
- Each metaslab:
- select a metaslab
- load the metaslab
- mark the metaslab as being zeroed
- walk all free ranges within that metaslab and translate
them to ranges on the leaf vdev
- issue a "zeroing" I/O on the leaf vdev that corresponds to
a free range on the metaslab we're working on
- continue until all free ranges for this metaslab have been
"zeroed"
- reset/unmark the metaslab being zeroed
- if more metaslabs exist, then repeat above tasks.
- if no more metaslabs, then we're done.
- progress for the initialization is stored on-disk in the vdev’s
leaf zap object. The following information is stored:
- the last offset that has been initialized
- the state of the initialization process (i.e. active,
suspended, or canceled)
- the start time for the initialization
- progress is reported via the zpool status command and shows
information for each of the vdevs that are initializing
Porting notes:
- Added zfs_initialize_value module parameter to set the pattern
written by "zpool initialize".
- Added zfs_vdev_{initializing,removal}_{min,max}_active module options.
Authored by: George Wilson <george.wilson@delphix.com>
Reviewed by: John Wren Kennedy <john.kennedy@delphix.com>
Reviewed by: Matthew Ahrens <mahrens@delphix.com>
Reviewed by: Pavel Zakharov <pavel.zakharov@delphix.com>
Reviewed by: Prakash Surya <prakash.surya@delphix.com>
Reviewed by: loli10K <ezomori.nozomu@gmail.com>
Reviewed by: Brian Behlendorf <behlendorf1@llnl.gov>
Approved by: Richard Lowe <richlowe@richlowe.net>
Signed-off-by: Tim Chase <tim@chase2k.com>
Ported-by: Tim Chase <tim@chase2k.com>
OpenZFS-issue: https://www.illumos.org/issues/9102
OpenZFS-commit: https://github.com/openzfs/openzfs/commit/c3963210eb
Closes #8230
2018-12-19 17:54:59 +03:00
|
|
|
spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
|
|
|
|
|
|
|
|
range_tree_vacate(vd->vdev_initialize_tree, NULL, NULL);
|
|
|
|
if (error != 0)
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
|
|
|
|
spa_config_exit(spa, SCL_CONFIG, FTAG);
|
|
|
|
mutex_enter(&vd->vdev_initialize_io_lock);
|
|
|
|
while (vd->vdev_initialize_inflight > 0) {
|
|
|
|
cv_wait(&vd->vdev_initialize_io_cv,
|
|
|
|
&vd->vdev_initialize_io_lock);
|
|
|
|
}
|
|
|
|
mutex_exit(&vd->vdev_initialize_io_lock);
|
|
|
|
|
|
|
|
range_tree_destroy(vd->vdev_initialize_tree);
|
|
|
|
vdev_initialize_block_free(deadbeef);
|
|
|
|
vd->vdev_initialize_tree = NULL;
|
|
|
|
|
|
|
|
mutex_enter(&vd->vdev_initialize_lock);
|
|
|
|
if (!vd->vdev_initialize_exit_wanted && vdev_writeable(vd)) {
|
|
|
|
vdev_initialize_change_state(vd, VDEV_INITIALIZE_COMPLETE);
|
|
|
|
}
|
|
|
|
ASSERT(vd->vdev_initialize_thread != NULL ||
|
|
|
|
vd->vdev_initialize_inflight == 0);
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Drop the vdev_initialize_lock while we sync out the
|
|
|
|
* txg since it's possible that a device might be trying to
|
|
|
|
* come online and must check to see if it needs to restart an
|
|
|
|
* initialization. That thread will be holding the spa_config_lock
|
|
|
|
* which would prevent the txg_wait_synced from completing.
|
|
|
|
*/
|
|
|
|
mutex_exit(&vd->vdev_initialize_lock);
|
|
|
|
txg_wait_synced(spa_get_dsl(spa), 0);
|
|
|
|
mutex_enter(&vd->vdev_initialize_lock);
|
|
|
|
|
|
|
|
vd->vdev_initialize_thread = NULL;
|
|
|
|
cv_broadcast(&vd->vdev_initialize_cv);
|
|
|
|
mutex_exit(&vd->vdev_initialize_lock);
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Initiates a device. Caller must hold vdev_initialize_lock.
|
|
|
|
* Device must be a leaf and not already be initializing.
|
|
|
|
*/
|
|
|
|
void
|
|
|
|
vdev_initialize(vdev_t *vd)
|
|
|
|
{
|
|
|
|
ASSERT(MUTEX_HELD(&vd->vdev_initialize_lock));
|
|
|
|
ASSERT(vd->vdev_ops->vdev_op_leaf);
|
|
|
|
ASSERT(vdev_is_concrete(vd));
|
|
|
|
ASSERT3P(vd->vdev_initialize_thread, ==, NULL);
|
|
|
|
ASSERT(!vd->vdev_detached);
|
|
|
|
ASSERT(!vd->vdev_initialize_exit_wanted);
|
|
|
|
ASSERT(!vd->vdev_top->vdev_removing);
|
|
|
|
|
|
|
|
vdev_initialize_change_state(vd, VDEV_INITIALIZE_ACTIVE);
|
|
|
|
vd->vdev_initialize_thread = thread_create(NULL, 0,
|
|
|
|
vdev_initialize_thread, vd, 0, &p0, TS_RUN, maxclsyspri);
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
2018-12-19 19:20:39 +03:00
|
|
|
* Wait for the initialize thread to be terminated (cancelled or stopped).
|
|
|
|
*/
|
|
|
|
static void
|
|
|
|
vdev_initialize_stop_wait_impl(vdev_t *vd)
|
|
|
|
{
|
|
|
|
ASSERT(MUTEX_HELD(&vd->vdev_initialize_lock));
|
|
|
|
|
|
|
|
while (vd->vdev_initialize_thread != NULL)
|
|
|
|
cv_wait(&vd->vdev_initialize_cv, &vd->vdev_initialize_lock);
|
|
|
|
|
|
|
|
ASSERT3P(vd->vdev_initialize_thread, ==, NULL);
|
|
|
|
vd->vdev_initialize_exit_wanted = B_FALSE;
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Wait for vdev initialize threads which were either to cleanly exit.
|
OpenZFS 9102 - zfs should be able to initialize storage devices
PROBLEM
========
The first access to a block incurs a performance penalty on some platforms
(e.g. AWS's EBS, VMware VMDKs). Therefore we recommend that volumes are
"thick provisioned", where supported by the platform (VMware). This can
create a large delay in getting a new virtual machines up and running (or
adding storage to an existing Engine). If the thick provision step is
omitted, write performance will be suboptimal until all blocks on the LUN
have been written.
SOLUTION
=========
This feature introduces a way to 'initialize' the disks at install or in the
background to make sure we don't incur this first read penalty.
When an entire LUN is added to ZFS, we make all space available immediately,
and allow ZFS to find unallocated space and zero it out. This works with
concurrent writes to arbitrary offsets, ensuring that we don't zero out
something that has been (or is in the middle of being) written. This scheme
can also be applied to existing pools (affecting only free regions on the
vdev). Detailed design:
- new subcommand:zpool initialize [-cs] <pool> [<vdev> ...]
- start, suspend, or cancel initialization
- Creates new open-context thread for each vdev
- Thread iterates through all metaslabs in this vdev
- Each metaslab:
- select a metaslab
- load the metaslab
- mark the metaslab as being zeroed
- walk all free ranges within that metaslab and translate
them to ranges on the leaf vdev
- issue a "zeroing" I/O on the leaf vdev that corresponds to
a free range on the metaslab we're working on
- continue until all free ranges for this metaslab have been
"zeroed"
- reset/unmark the metaslab being zeroed
- if more metaslabs exist, then repeat above tasks.
- if no more metaslabs, then we're done.
- progress for the initialization is stored on-disk in the vdev’s
leaf zap object. The following information is stored:
- the last offset that has been initialized
- the state of the initialization process (i.e. active,
suspended, or canceled)
- the start time for the initialization
- progress is reported via the zpool status command and shows
information for each of the vdevs that are initializing
Porting notes:
- Added zfs_initialize_value module parameter to set the pattern
written by "zpool initialize".
- Added zfs_vdev_{initializing,removal}_{min,max}_active module options.
Authored by: George Wilson <george.wilson@delphix.com>
Reviewed by: John Wren Kennedy <john.kennedy@delphix.com>
Reviewed by: Matthew Ahrens <mahrens@delphix.com>
Reviewed by: Pavel Zakharov <pavel.zakharov@delphix.com>
Reviewed by: Prakash Surya <prakash.surya@delphix.com>
Reviewed by: loli10K <ezomori.nozomu@gmail.com>
Reviewed by: Brian Behlendorf <behlendorf1@llnl.gov>
Approved by: Richard Lowe <richlowe@richlowe.net>
Signed-off-by: Tim Chase <tim@chase2k.com>
Ported-by: Tim Chase <tim@chase2k.com>
OpenZFS-issue: https://www.illumos.org/issues/9102
OpenZFS-commit: https://github.com/openzfs/openzfs/commit/c3963210eb
Closes #8230
2018-12-19 17:54:59 +03:00
|
|
|
*/
|
|
|
|
void
|
2018-12-19 19:20:39 +03:00
|
|
|
vdev_initialize_stop_wait(spa_t *spa, list_t *vd_list)
|
OpenZFS 9102 - zfs should be able to initialize storage devices
PROBLEM
========
The first access to a block incurs a performance penalty on some platforms
(e.g. AWS's EBS, VMware VMDKs). Therefore we recommend that volumes are
"thick provisioned", where supported by the platform (VMware). This can
create a large delay in getting a new virtual machines up and running (or
adding storage to an existing Engine). If the thick provision step is
omitted, write performance will be suboptimal until all blocks on the LUN
have been written.
SOLUTION
=========
This feature introduces a way to 'initialize' the disks at install or in the
background to make sure we don't incur this first read penalty.
When an entire LUN is added to ZFS, we make all space available immediately,
and allow ZFS to find unallocated space and zero it out. This works with
concurrent writes to arbitrary offsets, ensuring that we don't zero out
something that has been (or is in the middle of being) written. This scheme
can also be applied to existing pools (affecting only free regions on the
vdev). Detailed design:
- new subcommand:zpool initialize [-cs] <pool> [<vdev> ...]
- start, suspend, or cancel initialization
- Creates new open-context thread for each vdev
- Thread iterates through all metaslabs in this vdev
- Each metaslab:
- select a metaslab
- load the metaslab
- mark the metaslab as being zeroed
- walk all free ranges within that metaslab and translate
them to ranges on the leaf vdev
- issue a "zeroing" I/O on the leaf vdev that corresponds to
a free range on the metaslab we're working on
- continue until all free ranges for this metaslab have been
"zeroed"
- reset/unmark the metaslab being zeroed
- if more metaslabs exist, then repeat above tasks.
- if no more metaslabs, then we're done.
- progress for the initialization is stored on-disk in the vdev’s
leaf zap object. The following information is stored:
- the last offset that has been initialized
- the state of the initialization process (i.e. active,
suspended, or canceled)
- the start time for the initialization
- progress is reported via the zpool status command and shows
information for each of the vdevs that are initializing
Porting notes:
- Added zfs_initialize_value module parameter to set the pattern
written by "zpool initialize".
- Added zfs_vdev_{initializing,removal}_{min,max}_active module options.
Authored by: George Wilson <george.wilson@delphix.com>
Reviewed by: John Wren Kennedy <john.kennedy@delphix.com>
Reviewed by: Matthew Ahrens <mahrens@delphix.com>
Reviewed by: Pavel Zakharov <pavel.zakharov@delphix.com>
Reviewed by: Prakash Surya <prakash.surya@delphix.com>
Reviewed by: loli10K <ezomori.nozomu@gmail.com>
Reviewed by: Brian Behlendorf <behlendorf1@llnl.gov>
Approved by: Richard Lowe <richlowe@richlowe.net>
Signed-off-by: Tim Chase <tim@chase2k.com>
Ported-by: Tim Chase <tim@chase2k.com>
OpenZFS-issue: https://www.illumos.org/issues/9102
OpenZFS-commit: https://github.com/openzfs/openzfs/commit/c3963210eb
Closes #8230
2018-12-19 17:54:59 +03:00
|
|
|
{
|
2018-12-19 19:20:39 +03:00
|
|
|
vdev_t *vd;
|
|
|
|
|
|
|
|
ASSERT(MUTEX_HELD(&spa_namespace_lock));
|
|
|
|
|
|
|
|
while ((vd = list_remove_head(vd_list)) != NULL) {
|
|
|
|
mutex_enter(&vd->vdev_initialize_lock);
|
|
|
|
vdev_initialize_stop_wait_impl(vd);
|
|
|
|
mutex_exit(&vd->vdev_initialize_lock);
|
|
|
|
}
|
|
|
|
}
|
OpenZFS 9102 - zfs should be able to initialize storage devices
PROBLEM
========
The first access to a block incurs a performance penalty on some platforms
(e.g. AWS's EBS, VMware VMDKs). Therefore we recommend that volumes are
"thick provisioned", where supported by the platform (VMware). This can
create a large delay in getting a new virtual machines up and running (or
adding storage to an existing Engine). If the thick provision step is
omitted, write performance will be suboptimal until all blocks on the LUN
have been written.
SOLUTION
=========
This feature introduces a way to 'initialize' the disks at install or in the
background to make sure we don't incur this first read penalty.
When an entire LUN is added to ZFS, we make all space available immediately,
and allow ZFS to find unallocated space and zero it out. This works with
concurrent writes to arbitrary offsets, ensuring that we don't zero out
something that has been (or is in the middle of being) written. This scheme
can also be applied to existing pools (affecting only free regions on the
vdev). Detailed design:
- new subcommand:zpool initialize [-cs] <pool> [<vdev> ...]
- start, suspend, or cancel initialization
- Creates new open-context thread for each vdev
- Thread iterates through all metaslabs in this vdev
- Each metaslab:
- select a metaslab
- load the metaslab
- mark the metaslab as being zeroed
- walk all free ranges within that metaslab and translate
them to ranges on the leaf vdev
- issue a "zeroing" I/O on the leaf vdev that corresponds to
a free range on the metaslab we're working on
- continue until all free ranges for this metaslab have been
"zeroed"
- reset/unmark the metaslab being zeroed
- if more metaslabs exist, then repeat above tasks.
- if no more metaslabs, then we're done.
- progress for the initialization is stored on-disk in the vdev’s
leaf zap object. The following information is stored:
- the last offset that has been initialized
- the state of the initialization process (i.e. active,
suspended, or canceled)
- the start time for the initialization
- progress is reported via the zpool status command and shows
information for each of the vdevs that are initializing
Porting notes:
- Added zfs_initialize_value module parameter to set the pattern
written by "zpool initialize".
- Added zfs_vdev_{initializing,removal}_{min,max}_active module options.
Authored by: George Wilson <george.wilson@delphix.com>
Reviewed by: John Wren Kennedy <john.kennedy@delphix.com>
Reviewed by: Matthew Ahrens <mahrens@delphix.com>
Reviewed by: Pavel Zakharov <pavel.zakharov@delphix.com>
Reviewed by: Prakash Surya <prakash.surya@delphix.com>
Reviewed by: loli10K <ezomori.nozomu@gmail.com>
Reviewed by: Brian Behlendorf <behlendorf1@llnl.gov>
Approved by: Richard Lowe <richlowe@richlowe.net>
Signed-off-by: Tim Chase <tim@chase2k.com>
Ported-by: Tim Chase <tim@chase2k.com>
OpenZFS-issue: https://www.illumos.org/issues/9102
OpenZFS-commit: https://github.com/openzfs/openzfs/commit/c3963210eb
Closes #8230
2018-12-19 17:54:59 +03:00
|
|
|
|
2018-12-19 19:20:39 +03:00
|
|
|
/*
|
2019-09-03 03:56:41 +03:00
|
|
|
* Stop initializing a device, with the resultant initializing state being
|
2018-12-19 19:20:39 +03:00
|
|
|
* tgt_state. For blocking behavior pass NULL for vd_list. Otherwise, when
|
|
|
|
* a list_t is provided the stopping vdev is inserted in to the list. Callers
|
|
|
|
* are then required to call vdev_initialize_stop_wait() to block for all the
|
|
|
|
* initialization threads to exit. The caller must hold vdev_initialize_lock
|
|
|
|
* and must not be writing to the spa config, as the initializing thread may
|
|
|
|
* try to enter the config as a reader before exiting.
|
|
|
|
*/
|
|
|
|
void
|
|
|
|
vdev_initialize_stop(vdev_t *vd, vdev_initializing_state_t tgt_state,
|
|
|
|
list_t *vd_list)
|
|
|
|
{
|
|
|
|
ASSERT(!spa_config_held(vd->vdev_spa, SCL_CONFIG|SCL_STATE, RW_WRITER));
|
OpenZFS 9102 - zfs should be able to initialize storage devices
PROBLEM
========
The first access to a block incurs a performance penalty on some platforms
(e.g. AWS's EBS, VMware VMDKs). Therefore we recommend that volumes are
"thick provisioned", where supported by the platform (VMware). This can
create a large delay in getting a new virtual machines up and running (or
adding storage to an existing Engine). If the thick provision step is
omitted, write performance will be suboptimal until all blocks on the LUN
have been written.
SOLUTION
=========
This feature introduces a way to 'initialize' the disks at install or in the
background to make sure we don't incur this first read penalty.
When an entire LUN is added to ZFS, we make all space available immediately,
and allow ZFS to find unallocated space and zero it out. This works with
concurrent writes to arbitrary offsets, ensuring that we don't zero out
something that has been (or is in the middle of being) written. This scheme
can also be applied to existing pools (affecting only free regions on the
vdev). Detailed design:
- new subcommand:zpool initialize [-cs] <pool> [<vdev> ...]
- start, suspend, or cancel initialization
- Creates new open-context thread for each vdev
- Thread iterates through all metaslabs in this vdev
- Each metaslab:
- select a metaslab
- load the metaslab
- mark the metaslab as being zeroed
- walk all free ranges within that metaslab and translate
them to ranges on the leaf vdev
- issue a "zeroing" I/O on the leaf vdev that corresponds to
a free range on the metaslab we're working on
- continue until all free ranges for this metaslab have been
"zeroed"
- reset/unmark the metaslab being zeroed
- if more metaslabs exist, then repeat above tasks.
- if no more metaslabs, then we're done.
- progress for the initialization is stored on-disk in the vdev’s
leaf zap object. The following information is stored:
- the last offset that has been initialized
- the state of the initialization process (i.e. active,
suspended, or canceled)
- the start time for the initialization
- progress is reported via the zpool status command and shows
information for each of the vdevs that are initializing
Porting notes:
- Added zfs_initialize_value module parameter to set the pattern
written by "zpool initialize".
- Added zfs_vdev_{initializing,removal}_{min,max}_active module options.
Authored by: George Wilson <george.wilson@delphix.com>
Reviewed by: John Wren Kennedy <john.kennedy@delphix.com>
Reviewed by: Matthew Ahrens <mahrens@delphix.com>
Reviewed by: Pavel Zakharov <pavel.zakharov@delphix.com>
Reviewed by: Prakash Surya <prakash.surya@delphix.com>
Reviewed by: loli10K <ezomori.nozomu@gmail.com>
Reviewed by: Brian Behlendorf <behlendorf1@llnl.gov>
Approved by: Richard Lowe <richlowe@richlowe.net>
Signed-off-by: Tim Chase <tim@chase2k.com>
Ported-by: Tim Chase <tim@chase2k.com>
OpenZFS-issue: https://www.illumos.org/issues/9102
OpenZFS-commit: https://github.com/openzfs/openzfs/commit/c3963210eb
Closes #8230
2018-12-19 17:54:59 +03:00
|
|
|
ASSERT(MUTEX_HELD(&vd->vdev_initialize_lock));
|
|
|
|
ASSERT(vd->vdev_ops->vdev_op_leaf);
|
|
|
|
ASSERT(vdev_is_concrete(vd));
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Allow cancel requests to proceed even if the initialize thread
|
|
|
|
* has stopped.
|
|
|
|
*/
|
|
|
|
if (vd->vdev_initialize_thread == NULL &&
|
|
|
|
tgt_state != VDEV_INITIALIZE_CANCELED) {
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
|
|
|
|
vdev_initialize_change_state(vd, tgt_state);
|
|
|
|
vd->vdev_initialize_exit_wanted = B_TRUE;
|
|
|
|
|
2018-12-19 19:20:39 +03:00
|
|
|
if (vd_list == NULL) {
|
|
|
|
vdev_initialize_stop_wait_impl(vd);
|
|
|
|
} else {
|
|
|
|
ASSERT(MUTEX_HELD(&spa_namespace_lock));
|
|
|
|
list_insert_tail(vd_list, vd);
|
|
|
|
}
|
OpenZFS 9102 - zfs should be able to initialize storage devices
PROBLEM
========
The first access to a block incurs a performance penalty on some platforms
(e.g. AWS's EBS, VMware VMDKs). Therefore we recommend that volumes are
"thick provisioned", where supported by the platform (VMware). This can
create a large delay in getting a new virtual machines up and running (or
adding storage to an existing Engine). If the thick provision step is
omitted, write performance will be suboptimal until all blocks on the LUN
have been written.
SOLUTION
=========
This feature introduces a way to 'initialize' the disks at install or in the
background to make sure we don't incur this first read penalty.
When an entire LUN is added to ZFS, we make all space available immediately,
and allow ZFS to find unallocated space and zero it out. This works with
concurrent writes to arbitrary offsets, ensuring that we don't zero out
something that has been (or is in the middle of being) written. This scheme
can also be applied to existing pools (affecting only free regions on the
vdev). Detailed design:
- new subcommand:zpool initialize [-cs] <pool> [<vdev> ...]
- start, suspend, or cancel initialization
- Creates new open-context thread for each vdev
- Thread iterates through all metaslabs in this vdev
- Each metaslab:
- select a metaslab
- load the metaslab
- mark the metaslab as being zeroed
- walk all free ranges within that metaslab and translate
them to ranges on the leaf vdev
- issue a "zeroing" I/O on the leaf vdev that corresponds to
a free range on the metaslab we're working on
- continue until all free ranges for this metaslab have been
"zeroed"
- reset/unmark the metaslab being zeroed
- if more metaslabs exist, then repeat above tasks.
- if no more metaslabs, then we're done.
- progress for the initialization is stored on-disk in the vdev’s
leaf zap object. The following information is stored:
- the last offset that has been initialized
- the state of the initialization process (i.e. active,
suspended, or canceled)
- the start time for the initialization
- progress is reported via the zpool status command and shows
information for each of the vdevs that are initializing
Porting notes:
- Added zfs_initialize_value module parameter to set the pattern
written by "zpool initialize".
- Added zfs_vdev_{initializing,removal}_{min,max}_active module options.
Authored by: George Wilson <george.wilson@delphix.com>
Reviewed by: John Wren Kennedy <john.kennedy@delphix.com>
Reviewed by: Matthew Ahrens <mahrens@delphix.com>
Reviewed by: Pavel Zakharov <pavel.zakharov@delphix.com>
Reviewed by: Prakash Surya <prakash.surya@delphix.com>
Reviewed by: loli10K <ezomori.nozomu@gmail.com>
Reviewed by: Brian Behlendorf <behlendorf1@llnl.gov>
Approved by: Richard Lowe <richlowe@richlowe.net>
Signed-off-by: Tim Chase <tim@chase2k.com>
Ported-by: Tim Chase <tim@chase2k.com>
OpenZFS-issue: https://www.illumos.org/issues/9102
OpenZFS-commit: https://github.com/openzfs/openzfs/commit/c3963210eb
Closes #8230
2018-12-19 17:54:59 +03:00
|
|
|
}
|
|
|
|
|
|
|
|
static void
|
2018-12-19 19:20:39 +03:00
|
|
|
vdev_initialize_stop_all_impl(vdev_t *vd, vdev_initializing_state_t tgt_state,
|
|
|
|
list_t *vd_list)
|
OpenZFS 9102 - zfs should be able to initialize storage devices
PROBLEM
========
The first access to a block incurs a performance penalty on some platforms
(e.g. AWS's EBS, VMware VMDKs). Therefore we recommend that volumes are
"thick provisioned", where supported by the platform (VMware). This can
create a large delay in getting a new virtual machines up and running (or
adding storage to an existing Engine). If the thick provision step is
omitted, write performance will be suboptimal until all blocks on the LUN
have been written.
SOLUTION
=========
This feature introduces a way to 'initialize' the disks at install or in the
background to make sure we don't incur this first read penalty.
When an entire LUN is added to ZFS, we make all space available immediately,
and allow ZFS to find unallocated space and zero it out. This works with
concurrent writes to arbitrary offsets, ensuring that we don't zero out
something that has been (or is in the middle of being) written. This scheme
can also be applied to existing pools (affecting only free regions on the
vdev). Detailed design:
- new subcommand:zpool initialize [-cs] <pool> [<vdev> ...]
- start, suspend, or cancel initialization
- Creates new open-context thread for each vdev
- Thread iterates through all metaslabs in this vdev
- Each metaslab:
- select a metaslab
- load the metaslab
- mark the metaslab as being zeroed
- walk all free ranges within that metaslab and translate
them to ranges on the leaf vdev
- issue a "zeroing" I/O on the leaf vdev that corresponds to
a free range on the metaslab we're working on
- continue until all free ranges for this metaslab have been
"zeroed"
- reset/unmark the metaslab being zeroed
- if more metaslabs exist, then repeat above tasks.
- if no more metaslabs, then we're done.
- progress for the initialization is stored on-disk in the vdev’s
leaf zap object. The following information is stored:
- the last offset that has been initialized
- the state of the initialization process (i.e. active,
suspended, or canceled)
- the start time for the initialization
- progress is reported via the zpool status command and shows
information for each of the vdevs that are initializing
Porting notes:
- Added zfs_initialize_value module parameter to set the pattern
written by "zpool initialize".
- Added zfs_vdev_{initializing,removal}_{min,max}_active module options.
Authored by: George Wilson <george.wilson@delphix.com>
Reviewed by: John Wren Kennedy <john.kennedy@delphix.com>
Reviewed by: Matthew Ahrens <mahrens@delphix.com>
Reviewed by: Pavel Zakharov <pavel.zakharov@delphix.com>
Reviewed by: Prakash Surya <prakash.surya@delphix.com>
Reviewed by: loli10K <ezomori.nozomu@gmail.com>
Reviewed by: Brian Behlendorf <behlendorf1@llnl.gov>
Approved by: Richard Lowe <richlowe@richlowe.net>
Signed-off-by: Tim Chase <tim@chase2k.com>
Ported-by: Tim Chase <tim@chase2k.com>
OpenZFS-issue: https://www.illumos.org/issues/9102
OpenZFS-commit: https://github.com/openzfs/openzfs/commit/c3963210eb
Closes #8230
2018-12-19 17:54:59 +03:00
|
|
|
{
|
|
|
|
if (vd->vdev_ops->vdev_op_leaf && vdev_is_concrete(vd)) {
|
|
|
|
mutex_enter(&vd->vdev_initialize_lock);
|
2018-12-19 19:20:39 +03:00
|
|
|
vdev_initialize_stop(vd, tgt_state, vd_list);
|
OpenZFS 9102 - zfs should be able to initialize storage devices
PROBLEM
========
The first access to a block incurs a performance penalty on some platforms
(e.g. AWS's EBS, VMware VMDKs). Therefore we recommend that volumes are
"thick provisioned", where supported by the platform (VMware). This can
create a large delay in getting a new virtual machines up and running (or
adding storage to an existing Engine). If the thick provision step is
omitted, write performance will be suboptimal until all blocks on the LUN
have been written.
SOLUTION
=========
This feature introduces a way to 'initialize' the disks at install or in the
background to make sure we don't incur this first read penalty.
When an entire LUN is added to ZFS, we make all space available immediately,
and allow ZFS to find unallocated space and zero it out. This works with
concurrent writes to arbitrary offsets, ensuring that we don't zero out
something that has been (or is in the middle of being) written. This scheme
can also be applied to existing pools (affecting only free regions on the
vdev). Detailed design:
- new subcommand:zpool initialize [-cs] <pool> [<vdev> ...]
- start, suspend, or cancel initialization
- Creates new open-context thread for each vdev
- Thread iterates through all metaslabs in this vdev
- Each metaslab:
- select a metaslab
- load the metaslab
- mark the metaslab as being zeroed
- walk all free ranges within that metaslab and translate
them to ranges on the leaf vdev
- issue a "zeroing" I/O on the leaf vdev that corresponds to
a free range on the metaslab we're working on
- continue until all free ranges for this metaslab have been
"zeroed"
- reset/unmark the metaslab being zeroed
- if more metaslabs exist, then repeat above tasks.
- if no more metaslabs, then we're done.
- progress for the initialization is stored on-disk in the vdev’s
leaf zap object. The following information is stored:
- the last offset that has been initialized
- the state of the initialization process (i.e. active,
suspended, or canceled)
- the start time for the initialization
- progress is reported via the zpool status command and shows
information for each of the vdevs that are initializing
Porting notes:
- Added zfs_initialize_value module parameter to set the pattern
written by "zpool initialize".
- Added zfs_vdev_{initializing,removal}_{min,max}_active module options.
Authored by: George Wilson <george.wilson@delphix.com>
Reviewed by: John Wren Kennedy <john.kennedy@delphix.com>
Reviewed by: Matthew Ahrens <mahrens@delphix.com>
Reviewed by: Pavel Zakharov <pavel.zakharov@delphix.com>
Reviewed by: Prakash Surya <prakash.surya@delphix.com>
Reviewed by: loli10K <ezomori.nozomu@gmail.com>
Reviewed by: Brian Behlendorf <behlendorf1@llnl.gov>
Approved by: Richard Lowe <richlowe@richlowe.net>
Signed-off-by: Tim Chase <tim@chase2k.com>
Ported-by: Tim Chase <tim@chase2k.com>
OpenZFS-issue: https://www.illumos.org/issues/9102
OpenZFS-commit: https://github.com/openzfs/openzfs/commit/c3963210eb
Closes #8230
2018-12-19 17:54:59 +03:00
|
|
|
mutex_exit(&vd->vdev_initialize_lock);
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
|
|
|
|
for (uint64_t i = 0; i < vd->vdev_children; i++) {
|
2018-12-19 19:20:39 +03:00
|
|
|
vdev_initialize_stop_all_impl(vd->vdev_child[i], tgt_state,
|
|
|
|
vd_list);
|
OpenZFS 9102 - zfs should be able to initialize storage devices
PROBLEM
========
The first access to a block incurs a performance penalty on some platforms
(e.g. AWS's EBS, VMware VMDKs). Therefore we recommend that volumes are
"thick provisioned", where supported by the platform (VMware). This can
create a large delay in getting a new virtual machines up and running (or
adding storage to an existing Engine). If the thick provision step is
omitted, write performance will be suboptimal until all blocks on the LUN
have been written.
SOLUTION
=========
This feature introduces a way to 'initialize' the disks at install or in the
background to make sure we don't incur this first read penalty.
When an entire LUN is added to ZFS, we make all space available immediately,
and allow ZFS to find unallocated space and zero it out. This works with
concurrent writes to arbitrary offsets, ensuring that we don't zero out
something that has been (or is in the middle of being) written. This scheme
can also be applied to existing pools (affecting only free regions on the
vdev). Detailed design:
- new subcommand:zpool initialize [-cs] <pool> [<vdev> ...]
- start, suspend, or cancel initialization
- Creates new open-context thread for each vdev
- Thread iterates through all metaslabs in this vdev
- Each metaslab:
- select a metaslab
- load the metaslab
- mark the metaslab as being zeroed
- walk all free ranges within that metaslab and translate
them to ranges on the leaf vdev
- issue a "zeroing" I/O on the leaf vdev that corresponds to
a free range on the metaslab we're working on
- continue until all free ranges for this metaslab have been
"zeroed"
- reset/unmark the metaslab being zeroed
- if more metaslabs exist, then repeat above tasks.
- if no more metaslabs, then we're done.
- progress for the initialization is stored on-disk in the vdev’s
leaf zap object. The following information is stored:
- the last offset that has been initialized
- the state of the initialization process (i.e. active,
suspended, or canceled)
- the start time for the initialization
- progress is reported via the zpool status command and shows
information for each of the vdevs that are initializing
Porting notes:
- Added zfs_initialize_value module parameter to set the pattern
written by "zpool initialize".
- Added zfs_vdev_{initializing,removal}_{min,max}_active module options.
Authored by: George Wilson <george.wilson@delphix.com>
Reviewed by: John Wren Kennedy <john.kennedy@delphix.com>
Reviewed by: Matthew Ahrens <mahrens@delphix.com>
Reviewed by: Pavel Zakharov <pavel.zakharov@delphix.com>
Reviewed by: Prakash Surya <prakash.surya@delphix.com>
Reviewed by: loli10K <ezomori.nozomu@gmail.com>
Reviewed by: Brian Behlendorf <behlendorf1@llnl.gov>
Approved by: Richard Lowe <richlowe@richlowe.net>
Signed-off-by: Tim Chase <tim@chase2k.com>
Ported-by: Tim Chase <tim@chase2k.com>
OpenZFS-issue: https://www.illumos.org/issues/9102
OpenZFS-commit: https://github.com/openzfs/openzfs/commit/c3963210eb
Closes #8230
2018-12-19 17:54:59 +03:00
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Convenience function to stop initializing of a vdev tree and set all
|
|
|
|
* initialize thread pointers to NULL.
|
|
|
|
*/
|
|
|
|
void
|
|
|
|
vdev_initialize_stop_all(vdev_t *vd, vdev_initializing_state_t tgt_state)
|
|
|
|
{
|
2018-12-19 19:20:39 +03:00
|
|
|
spa_t *spa = vd->vdev_spa;
|
|
|
|
list_t vd_list;
|
|
|
|
|
|
|
|
ASSERT(MUTEX_HELD(&spa_namespace_lock));
|
|
|
|
|
|
|
|
list_create(&vd_list, sizeof (vdev_t),
|
|
|
|
offsetof(vdev_t, vdev_initialize_node));
|
|
|
|
|
|
|
|
vdev_initialize_stop_all_impl(vd, tgt_state, &vd_list);
|
|
|
|
vdev_initialize_stop_wait(spa, &vd_list);
|
OpenZFS 9102 - zfs should be able to initialize storage devices
PROBLEM
========
The first access to a block incurs a performance penalty on some platforms
(e.g. AWS's EBS, VMware VMDKs). Therefore we recommend that volumes are
"thick provisioned", where supported by the platform (VMware). This can
create a large delay in getting a new virtual machines up and running (or
adding storage to an existing Engine). If the thick provision step is
omitted, write performance will be suboptimal until all blocks on the LUN
have been written.
SOLUTION
=========
This feature introduces a way to 'initialize' the disks at install or in the
background to make sure we don't incur this first read penalty.
When an entire LUN is added to ZFS, we make all space available immediately,
and allow ZFS to find unallocated space and zero it out. This works with
concurrent writes to arbitrary offsets, ensuring that we don't zero out
something that has been (or is in the middle of being) written. This scheme
can also be applied to existing pools (affecting only free regions on the
vdev). Detailed design:
- new subcommand:zpool initialize [-cs] <pool> [<vdev> ...]
- start, suspend, or cancel initialization
- Creates new open-context thread for each vdev
- Thread iterates through all metaslabs in this vdev
- Each metaslab:
- select a metaslab
- load the metaslab
- mark the metaslab as being zeroed
- walk all free ranges within that metaslab and translate
them to ranges on the leaf vdev
- issue a "zeroing" I/O on the leaf vdev that corresponds to
a free range on the metaslab we're working on
- continue until all free ranges for this metaslab have been
"zeroed"
- reset/unmark the metaslab being zeroed
- if more metaslabs exist, then repeat above tasks.
- if no more metaslabs, then we're done.
- progress for the initialization is stored on-disk in the vdev’s
leaf zap object. The following information is stored:
- the last offset that has been initialized
- the state of the initialization process (i.e. active,
suspended, or canceled)
- the start time for the initialization
- progress is reported via the zpool status command and shows
information for each of the vdevs that are initializing
Porting notes:
- Added zfs_initialize_value module parameter to set the pattern
written by "zpool initialize".
- Added zfs_vdev_{initializing,removal}_{min,max}_active module options.
Authored by: George Wilson <george.wilson@delphix.com>
Reviewed by: John Wren Kennedy <john.kennedy@delphix.com>
Reviewed by: Matthew Ahrens <mahrens@delphix.com>
Reviewed by: Pavel Zakharov <pavel.zakharov@delphix.com>
Reviewed by: Prakash Surya <prakash.surya@delphix.com>
Reviewed by: loli10K <ezomori.nozomu@gmail.com>
Reviewed by: Brian Behlendorf <behlendorf1@llnl.gov>
Approved by: Richard Lowe <richlowe@richlowe.net>
Signed-off-by: Tim Chase <tim@chase2k.com>
Ported-by: Tim Chase <tim@chase2k.com>
OpenZFS-issue: https://www.illumos.org/issues/9102
OpenZFS-commit: https://github.com/openzfs/openzfs/commit/c3963210eb
Closes #8230
2018-12-19 17:54:59 +03:00
|
|
|
|
|
|
|
if (vd->vdev_spa->spa_sync_on) {
|
|
|
|
/* Make sure that our state has been synced to disk */
|
|
|
|
txg_wait_synced(spa_get_dsl(vd->vdev_spa), 0);
|
|
|
|
}
|
2018-12-19 19:20:39 +03:00
|
|
|
|
|
|
|
list_destroy(&vd_list);
|
OpenZFS 9102 - zfs should be able to initialize storage devices
PROBLEM
========
The first access to a block incurs a performance penalty on some platforms
(e.g. AWS's EBS, VMware VMDKs). Therefore we recommend that volumes are
"thick provisioned", where supported by the platform (VMware). This can
create a large delay in getting a new virtual machines up and running (or
adding storage to an existing Engine). If the thick provision step is
omitted, write performance will be suboptimal until all blocks on the LUN
have been written.
SOLUTION
=========
This feature introduces a way to 'initialize' the disks at install or in the
background to make sure we don't incur this first read penalty.
When an entire LUN is added to ZFS, we make all space available immediately,
and allow ZFS to find unallocated space and zero it out. This works with
concurrent writes to arbitrary offsets, ensuring that we don't zero out
something that has been (or is in the middle of being) written. This scheme
can also be applied to existing pools (affecting only free regions on the
vdev). Detailed design:
- new subcommand:zpool initialize [-cs] <pool> [<vdev> ...]
- start, suspend, or cancel initialization
- Creates new open-context thread for each vdev
- Thread iterates through all metaslabs in this vdev
- Each metaslab:
- select a metaslab
- load the metaslab
- mark the metaslab as being zeroed
- walk all free ranges within that metaslab and translate
them to ranges on the leaf vdev
- issue a "zeroing" I/O on the leaf vdev that corresponds to
a free range on the metaslab we're working on
- continue until all free ranges for this metaslab have been
"zeroed"
- reset/unmark the metaslab being zeroed
- if more metaslabs exist, then repeat above tasks.
- if no more metaslabs, then we're done.
- progress for the initialization is stored on-disk in the vdev’s
leaf zap object. The following information is stored:
- the last offset that has been initialized
- the state of the initialization process (i.e. active,
suspended, or canceled)
- the start time for the initialization
- progress is reported via the zpool status command and shows
information for each of the vdevs that are initializing
Porting notes:
- Added zfs_initialize_value module parameter to set the pattern
written by "zpool initialize".
- Added zfs_vdev_{initializing,removal}_{min,max}_active module options.
Authored by: George Wilson <george.wilson@delphix.com>
Reviewed by: John Wren Kennedy <john.kennedy@delphix.com>
Reviewed by: Matthew Ahrens <mahrens@delphix.com>
Reviewed by: Pavel Zakharov <pavel.zakharov@delphix.com>
Reviewed by: Prakash Surya <prakash.surya@delphix.com>
Reviewed by: loli10K <ezomori.nozomu@gmail.com>
Reviewed by: Brian Behlendorf <behlendorf1@llnl.gov>
Approved by: Richard Lowe <richlowe@richlowe.net>
Signed-off-by: Tim Chase <tim@chase2k.com>
Ported-by: Tim Chase <tim@chase2k.com>
OpenZFS-issue: https://www.illumos.org/issues/9102
OpenZFS-commit: https://github.com/openzfs/openzfs/commit/c3963210eb
Closes #8230
2018-12-19 17:54:59 +03:00
|
|
|
}
|
|
|
|
|
|
|
|
void
|
|
|
|
vdev_initialize_restart(vdev_t *vd)
|
|
|
|
{
|
|
|
|
ASSERT(MUTEX_HELD(&spa_namespace_lock));
|
|
|
|
ASSERT(!spa_config_held(vd->vdev_spa, SCL_ALL, RW_WRITER));
|
|
|
|
|
|
|
|
if (vd->vdev_leaf_zap != 0) {
|
|
|
|
mutex_enter(&vd->vdev_initialize_lock);
|
|
|
|
uint64_t initialize_state = VDEV_INITIALIZE_NONE;
|
|
|
|
int err = zap_lookup(vd->vdev_spa->spa_meta_objset,
|
|
|
|
vd->vdev_leaf_zap, VDEV_LEAF_ZAP_INITIALIZE_STATE,
|
|
|
|
sizeof (initialize_state), 1, &initialize_state);
|
|
|
|
ASSERT(err == 0 || err == ENOENT);
|
|
|
|
vd->vdev_initialize_state = initialize_state;
|
|
|
|
|
|
|
|
uint64_t timestamp = 0;
|
|
|
|
err = zap_lookup(vd->vdev_spa->spa_meta_objset,
|
|
|
|
vd->vdev_leaf_zap, VDEV_LEAF_ZAP_INITIALIZE_ACTION_TIME,
|
|
|
|
sizeof (timestamp), 1, ×tamp);
|
|
|
|
ASSERT(err == 0 || err == ENOENT);
|
|
|
|
vd->vdev_initialize_action_time = (time_t)timestamp;
|
|
|
|
|
|
|
|
if (vd->vdev_initialize_state == VDEV_INITIALIZE_SUSPENDED ||
|
|
|
|
vd->vdev_offline) {
|
|
|
|
/* load progress for reporting, but don't resume */
|
|
|
|
VERIFY0(vdev_initialize_load(vd));
|
|
|
|
} else if (vd->vdev_initialize_state ==
|
2019-03-12 20:39:47 +03:00
|
|
|
VDEV_INITIALIZE_ACTIVE && vdev_writeable(vd) &&
|
|
|
|
!vd->vdev_top->vdev_removing &&
|
|
|
|
vd->vdev_initialize_thread == NULL) {
|
OpenZFS 9102 - zfs should be able to initialize storage devices
PROBLEM
========
The first access to a block incurs a performance penalty on some platforms
(e.g. AWS's EBS, VMware VMDKs). Therefore we recommend that volumes are
"thick provisioned", where supported by the platform (VMware). This can
create a large delay in getting a new virtual machines up and running (or
adding storage to an existing Engine). If the thick provision step is
omitted, write performance will be suboptimal until all blocks on the LUN
have been written.
SOLUTION
=========
This feature introduces a way to 'initialize' the disks at install or in the
background to make sure we don't incur this first read penalty.
When an entire LUN is added to ZFS, we make all space available immediately,
and allow ZFS to find unallocated space and zero it out. This works with
concurrent writes to arbitrary offsets, ensuring that we don't zero out
something that has been (or is in the middle of being) written. This scheme
can also be applied to existing pools (affecting only free regions on the
vdev). Detailed design:
- new subcommand:zpool initialize [-cs] <pool> [<vdev> ...]
- start, suspend, or cancel initialization
- Creates new open-context thread for each vdev
- Thread iterates through all metaslabs in this vdev
- Each metaslab:
- select a metaslab
- load the metaslab
- mark the metaslab as being zeroed
- walk all free ranges within that metaslab and translate
them to ranges on the leaf vdev
- issue a "zeroing" I/O on the leaf vdev that corresponds to
a free range on the metaslab we're working on
- continue until all free ranges for this metaslab have been
"zeroed"
- reset/unmark the metaslab being zeroed
- if more metaslabs exist, then repeat above tasks.
- if no more metaslabs, then we're done.
- progress for the initialization is stored on-disk in the vdev’s
leaf zap object. The following information is stored:
- the last offset that has been initialized
- the state of the initialization process (i.e. active,
suspended, or canceled)
- the start time for the initialization
- progress is reported via the zpool status command and shows
information for each of the vdevs that are initializing
Porting notes:
- Added zfs_initialize_value module parameter to set the pattern
written by "zpool initialize".
- Added zfs_vdev_{initializing,removal}_{min,max}_active module options.
Authored by: George Wilson <george.wilson@delphix.com>
Reviewed by: John Wren Kennedy <john.kennedy@delphix.com>
Reviewed by: Matthew Ahrens <mahrens@delphix.com>
Reviewed by: Pavel Zakharov <pavel.zakharov@delphix.com>
Reviewed by: Prakash Surya <prakash.surya@delphix.com>
Reviewed by: loli10K <ezomori.nozomu@gmail.com>
Reviewed by: Brian Behlendorf <behlendorf1@llnl.gov>
Approved by: Richard Lowe <richlowe@richlowe.net>
Signed-off-by: Tim Chase <tim@chase2k.com>
Ported-by: Tim Chase <tim@chase2k.com>
OpenZFS-issue: https://www.illumos.org/issues/9102
OpenZFS-commit: https://github.com/openzfs/openzfs/commit/c3963210eb
Closes #8230
2018-12-19 17:54:59 +03:00
|
|
|
vdev_initialize(vd);
|
|
|
|
}
|
|
|
|
|
|
|
|
mutex_exit(&vd->vdev_initialize_lock);
|
|
|
|
}
|
|
|
|
|
|
|
|
for (uint64_t i = 0; i < vd->vdev_children; i++) {
|
|
|
|
vdev_initialize_restart(vd->vdev_child[i]);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
EXPORT_SYMBOL(vdev_initialize);
|
|
|
|
EXPORT_SYMBOL(vdev_initialize_stop);
|
2018-12-19 19:20:39 +03:00
|
|
|
EXPORT_SYMBOL(vdev_initialize_stop_all);
|
|
|
|
EXPORT_SYMBOL(vdev_initialize_stop_wait);
|
2019-03-29 19:13:20 +03:00
|
|
|
EXPORT_SYMBOL(vdev_initialize_restart);
|
OpenZFS 9102 - zfs should be able to initialize storage devices
PROBLEM
========
The first access to a block incurs a performance penalty on some platforms
(e.g. AWS's EBS, VMware VMDKs). Therefore we recommend that volumes are
"thick provisioned", where supported by the platform (VMware). This can
create a large delay in getting a new virtual machines up and running (or
adding storage to an existing Engine). If the thick provision step is
omitted, write performance will be suboptimal until all blocks on the LUN
have been written.
SOLUTION
=========
This feature introduces a way to 'initialize' the disks at install or in the
background to make sure we don't incur this first read penalty.
When an entire LUN is added to ZFS, we make all space available immediately,
and allow ZFS to find unallocated space and zero it out. This works with
concurrent writes to arbitrary offsets, ensuring that we don't zero out
something that has been (or is in the middle of being) written. This scheme
can also be applied to existing pools (affecting only free regions on the
vdev). Detailed design:
- new subcommand:zpool initialize [-cs] <pool> [<vdev> ...]
- start, suspend, or cancel initialization
- Creates new open-context thread for each vdev
- Thread iterates through all metaslabs in this vdev
- Each metaslab:
- select a metaslab
- load the metaslab
- mark the metaslab as being zeroed
- walk all free ranges within that metaslab and translate
them to ranges on the leaf vdev
- issue a "zeroing" I/O on the leaf vdev that corresponds to
a free range on the metaslab we're working on
- continue until all free ranges for this metaslab have been
"zeroed"
- reset/unmark the metaslab being zeroed
- if more metaslabs exist, then repeat above tasks.
- if no more metaslabs, then we're done.
- progress for the initialization is stored on-disk in the vdev’s
leaf zap object. The following information is stored:
- the last offset that has been initialized
- the state of the initialization process (i.e. active,
suspended, or canceled)
- the start time for the initialization
- progress is reported via the zpool status command and shows
information for each of the vdevs that are initializing
Porting notes:
- Added zfs_initialize_value module parameter to set the pattern
written by "zpool initialize".
- Added zfs_vdev_{initializing,removal}_{min,max}_active module options.
Authored by: George Wilson <george.wilson@delphix.com>
Reviewed by: John Wren Kennedy <john.kennedy@delphix.com>
Reviewed by: Matthew Ahrens <mahrens@delphix.com>
Reviewed by: Pavel Zakharov <pavel.zakharov@delphix.com>
Reviewed by: Prakash Surya <prakash.surya@delphix.com>
Reviewed by: loli10K <ezomori.nozomu@gmail.com>
Reviewed by: Brian Behlendorf <behlendorf1@llnl.gov>
Approved by: Richard Lowe <richlowe@richlowe.net>
Signed-off-by: Tim Chase <tim@chase2k.com>
Ported-by: Tim Chase <tim@chase2k.com>
OpenZFS-issue: https://www.illumos.org/issues/9102
OpenZFS-commit: https://github.com/openzfs/openzfs/commit/c3963210eb
Closes #8230
2018-12-19 17:54:59 +03:00
|
|
|
|
2019-09-06 00:49:49 +03:00
|
|
|
/* BEGIN CSTYLED */
|
|
|
|
ZFS_MODULE_PARAM(zfs, zfs_, initialize_value, ULONG, ZMOD_RW,
|
OpenZFS 9102 - zfs should be able to initialize storage devices
PROBLEM
========
The first access to a block incurs a performance penalty on some platforms
(e.g. AWS's EBS, VMware VMDKs). Therefore we recommend that volumes are
"thick provisioned", where supported by the platform (VMware). This can
create a large delay in getting a new virtual machines up and running (or
adding storage to an existing Engine). If the thick provision step is
omitted, write performance will be suboptimal until all blocks on the LUN
have been written.
SOLUTION
=========
This feature introduces a way to 'initialize' the disks at install or in the
background to make sure we don't incur this first read penalty.
When an entire LUN is added to ZFS, we make all space available immediately,
and allow ZFS to find unallocated space and zero it out. This works with
concurrent writes to arbitrary offsets, ensuring that we don't zero out
something that has been (or is in the middle of being) written. This scheme
can also be applied to existing pools (affecting only free regions on the
vdev). Detailed design:
- new subcommand:zpool initialize [-cs] <pool> [<vdev> ...]
- start, suspend, or cancel initialization
- Creates new open-context thread for each vdev
- Thread iterates through all metaslabs in this vdev
- Each metaslab:
- select a metaslab
- load the metaslab
- mark the metaslab as being zeroed
- walk all free ranges within that metaslab and translate
them to ranges on the leaf vdev
- issue a "zeroing" I/O on the leaf vdev that corresponds to
a free range on the metaslab we're working on
- continue until all free ranges for this metaslab have been
"zeroed"
- reset/unmark the metaslab being zeroed
- if more metaslabs exist, then repeat above tasks.
- if no more metaslabs, then we're done.
- progress for the initialization is stored on-disk in the vdev’s
leaf zap object. The following information is stored:
- the last offset that has been initialized
- the state of the initialization process (i.e. active,
suspended, or canceled)
- the start time for the initialization
- progress is reported via the zpool status command and shows
information for each of the vdevs that are initializing
Porting notes:
- Added zfs_initialize_value module parameter to set the pattern
written by "zpool initialize".
- Added zfs_vdev_{initializing,removal}_{min,max}_active module options.
Authored by: George Wilson <george.wilson@delphix.com>
Reviewed by: John Wren Kennedy <john.kennedy@delphix.com>
Reviewed by: Matthew Ahrens <mahrens@delphix.com>
Reviewed by: Pavel Zakharov <pavel.zakharov@delphix.com>
Reviewed by: Prakash Surya <prakash.surya@delphix.com>
Reviewed by: loli10K <ezomori.nozomu@gmail.com>
Reviewed by: Brian Behlendorf <behlendorf1@llnl.gov>
Approved by: Richard Lowe <richlowe@richlowe.net>
Signed-off-by: Tim Chase <tim@chase2k.com>
Ported-by: Tim Chase <tim@chase2k.com>
OpenZFS-issue: https://www.illumos.org/issues/9102
OpenZFS-commit: https://github.com/openzfs/openzfs/commit/c3963210eb
Closes #8230
2018-12-19 17:54:59 +03:00
|
|
|
"Value written during zpool initialize");
|
Add subcommand to wait for background zfs activity to complete
Currently the best way to wait for the completion of a long-running
operation in a pool, like a scrub or device removal, is to poll 'zpool
status' and parse its output, which is neither efficient nor convenient.
This change adds a 'wait' subcommand to the zpool command. When invoked,
'zpool wait' will block until a specified type of background activity
completes. Currently, this subcommand can wait for any of the following:
- Scrubs or resilvers to complete
- Devices to initialized
- Devices to be replaced
- Devices to be removed
- Checkpoints to be discarded
- Background freeing to complete
For example, a scrub that is in progress could be waited for by running
zpool wait -t scrub <pool>
This also adds a -w flag to the attach, checkpoint, initialize, replace,
remove, and scrub subcommands. When used, this flag makes the operations
kicked off by these subcommands synchronous instead of asynchronous.
This functionality is implemented using a new ioctl. The type of
activity to wait for is provided as input to the ioctl, and the ioctl
blocks until all activity of that type has completed. An ioctl was used
over other methods of kernel-userspace communiction primarily for the
sake of portability.
Porting Notes:
This is ported from Delphix OS change DLPX-44432. The following changes
were made while porting:
- Added ZoL-style ioctl input declaration.
- Reorganized error handling in zpool_initialize in libzfs to integrate
better with changes made for TRIM support.
- Fixed check for whether a checkpoint discard is in progress.
Previously it also waited if the pool had a checkpoint, instead of
just if a checkpoint was being discarded.
- Exposed zfs_initialize_chunk_size as a ZoL-style tunable.
- Updated more existing tests to make use of new 'zpool wait'
functionality, tests that don't exist in Delphix OS.
- Used existing ZoL tunable zfs_scan_suspend_progress, together with
zinject, in place of a new tunable zfs_scan_max_blks_per_txg.
- Added support for a non-integral interval argument to zpool wait.
Future work:
ZoL has support for trimming devices, which Delphix OS does not. In the
future, 'zpool wait' could be extended to add the ability to wait for
trim operations to complete.
Reviewed-by: Matt Ahrens <matt@delphix.com>
Reviewed-by: John Kennedy <john.kennedy@delphix.com>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: John Gallagher <john.gallagher@delphix.com>
Closes #9162
2019-09-14 04:09:06 +03:00
|
|
|
|
|
|
|
ZFS_MODULE_PARAM(zfs, zfs_, initialize_chunk_size, ULONG, ZMOD_RW,
|
|
|
|
"Size in bytes of writes by zpool initialize");
|
2019-09-06 00:49:49 +03:00
|
|
|
/* END CSTYLED */
|