mirror of
https://git.proxmox.com/git/mirror_zfs.git
synced 2025-01-06 00:00:49 +03:00
436 lines
11 KiB
C
436 lines
11 KiB
C
|
/*
|
||
|
* CDDL HEADER START
|
||
|
*
|
||
|
* The contents of this file are subject to the terms of the
|
||
|
* Common Development and Distribution License (the "License").
|
||
|
* You may not use this file except in compliance with the License.
|
||
|
*
|
||
|
* You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
|
||
|
* or http://www.opensolaris.org/os/licensing.
|
||
|
* See the License for the specific language governing permissions
|
||
|
* and limitations under the License.
|
||
|
*
|
||
|
* When distributing Covered Code, include this CDDL HEADER in each
|
||
|
* file and include the License file at usr/src/OPENSOLARIS.LICENSE.
|
||
|
* If applicable, add the following below this CDDL HEADER, with the
|
||
|
* fields enclosed by brackets "[]" replaced with your own identifying
|
||
|
* information: Portions Copyright [yyyy] [name of copyright owner]
|
||
|
*
|
||
|
* CDDL HEADER END
|
||
|
*/
|
||
|
/*
|
||
|
* Copyright 2008 Sun Microsystems, Inc. All rights reserved.
|
||
|
* Use is subject to license terms.
|
||
|
*/
|
||
|
|
||
|
#pragma ident "@(#)vdev_cache.c 1.7 08/01/10 SMI"
|
||
|
|
||
|
#include <sys/zfs_context.h>
|
||
|
#include <sys/spa.h>
|
||
|
#include <sys/vdev_impl.h>
|
||
|
#include <sys/zio.h>
|
||
|
#include <sys/kstat.h>
|
||
|
|
||
|
/*
|
||
|
* Virtual device read-ahead caching.
|
||
|
*
|
||
|
* This file implements a simple LRU read-ahead cache. When the DMU reads
|
||
|
* a given block, it will often want other, nearby blocks soon thereafter.
|
||
|
* We take advantage of this by reading a larger disk region and caching
|
||
|
* the result. In the best case, this can turn 128 back-to-back 512-byte
|
||
|
* reads into a single 64k read followed by 127 cache hits; this reduces
|
||
|
* latency dramatically. In the worst case, it can turn an isolated 512-byte
|
||
|
* read into a 64k read, which doesn't affect latency all that much but is
|
||
|
* terribly wasteful of bandwidth. A more intelligent version of the cache
|
||
|
* could keep track of access patterns and not do read-ahead unless it sees
|
||
|
* at least two temporally close I/Os to the same region. Currently, only
|
||
|
* metadata I/O is inflated. A futher enhancement could take advantage of
|
||
|
* more semantic information about the I/O. And it could use something
|
||
|
* faster than an AVL tree; that was chosen solely for convenience.
|
||
|
*
|
||
|
* There are five cache operations: allocate, fill, read, write, evict.
|
||
|
*
|
||
|
* (1) Allocate. This reserves a cache entry for the specified region.
|
||
|
* We separate the allocate and fill operations so that multiple threads
|
||
|
* don't generate I/O for the same cache miss.
|
||
|
*
|
||
|
* (2) Fill. When the I/O for a cache miss completes, the fill routine
|
||
|
* places the data in the previously allocated cache entry.
|
||
|
*
|
||
|
* (3) Read. Read data from the cache.
|
||
|
*
|
||
|
* (4) Write. Update cache contents after write completion.
|
||
|
*
|
||
|
* (5) Evict. When allocating a new entry, we evict the oldest (LRU) entry
|
||
|
* if the total cache size exceeds zfs_vdev_cache_size.
|
||
|
*/
|
||
|
|
||
|
/*
|
||
|
* These tunables are for performance analysis.
|
||
|
*/
|
||
|
/*
|
||
|
* All i/os smaller than zfs_vdev_cache_max will be turned into
|
||
|
* 1<<zfs_vdev_cache_bshift byte reads by the vdev_cache (aka software
|
||
|
* track buffer). At most zfs_vdev_cache_size bytes will be kept in each
|
||
|
* vdev's vdev_cache.
|
||
|
*/
|
||
|
int zfs_vdev_cache_max = 1<<14; /* 16KB */
|
||
|
int zfs_vdev_cache_size = 10ULL << 20; /* 10MB */
|
||
|
int zfs_vdev_cache_bshift = 16;
|
||
|
|
||
|
#define VCBS (1 << zfs_vdev_cache_bshift) /* 64KB */
|
||
|
|
||
|
kstat_t *vdc_ksp = NULL;
|
||
|
|
||
|
typedef struct vdc_stats {
|
||
|
kstat_named_t vdc_stat_delegations;
|
||
|
kstat_named_t vdc_stat_hits;
|
||
|
kstat_named_t vdc_stat_misses;
|
||
|
} vdc_stats_t;
|
||
|
|
||
|
static vdc_stats_t vdc_stats = {
|
||
|
{ "delegations", KSTAT_DATA_UINT64 },
|
||
|
{ "hits", KSTAT_DATA_UINT64 },
|
||
|
{ "misses", KSTAT_DATA_UINT64 }
|
||
|
};
|
||
|
|
||
|
#define VDCSTAT_BUMP(stat) atomic_add_64(&vdc_stats.stat.value.ui64, 1);
|
||
|
|
||
|
static int
|
||
|
vdev_cache_offset_compare(const void *a1, const void *a2)
|
||
|
{
|
||
|
const vdev_cache_entry_t *ve1 = a1;
|
||
|
const vdev_cache_entry_t *ve2 = a2;
|
||
|
|
||
|
if (ve1->ve_offset < ve2->ve_offset)
|
||
|
return (-1);
|
||
|
if (ve1->ve_offset > ve2->ve_offset)
|
||
|
return (1);
|
||
|
return (0);
|
||
|
}
|
||
|
|
||
|
static int
|
||
|
vdev_cache_lastused_compare(const void *a1, const void *a2)
|
||
|
{
|
||
|
const vdev_cache_entry_t *ve1 = a1;
|
||
|
const vdev_cache_entry_t *ve2 = a2;
|
||
|
|
||
|
if (ve1->ve_lastused < ve2->ve_lastused)
|
||
|
return (-1);
|
||
|
if (ve1->ve_lastused > ve2->ve_lastused)
|
||
|
return (1);
|
||
|
|
||
|
/*
|
||
|
* Among equally old entries, sort by offset to ensure uniqueness.
|
||
|
*/
|
||
|
return (vdev_cache_offset_compare(a1, a2));
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Evict the specified entry from the cache.
|
||
|
*/
|
||
|
static void
|
||
|
vdev_cache_evict(vdev_cache_t *vc, vdev_cache_entry_t *ve)
|
||
|
{
|
||
|
ASSERT(MUTEX_HELD(&vc->vc_lock));
|
||
|
ASSERT(ve->ve_fill_io == NULL);
|
||
|
ASSERT(ve->ve_data != NULL);
|
||
|
|
||
|
dprintf("evicting %p, off %llx, LRU %llu, age %lu, hits %u, stale %u\n",
|
||
|
vc, ve->ve_offset, ve->ve_lastused, lbolt - ve->ve_lastused,
|
||
|
ve->ve_hits, ve->ve_missed_update);
|
||
|
|
||
|
avl_remove(&vc->vc_lastused_tree, ve);
|
||
|
avl_remove(&vc->vc_offset_tree, ve);
|
||
|
zio_buf_free(ve->ve_data, VCBS);
|
||
|
kmem_free(ve, sizeof (vdev_cache_entry_t));
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Allocate an entry in the cache. At the point we don't have the data,
|
||
|
* we're just creating a placeholder so that multiple threads don't all
|
||
|
* go off and read the same blocks.
|
||
|
*/
|
||
|
static vdev_cache_entry_t *
|
||
|
vdev_cache_allocate(zio_t *zio)
|
||
|
{
|
||
|
vdev_cache_t *vc = &zio->io_vd->vdev_cache;
|
||
|
uint64_t offset = P2ALIGN(zio->io_offset, VCBS);
|
||
|
vdev_cache_entry_t *ve;
|
||
|
|
||
|
ASSERT(MUTEX_HELD(&vc->vc_lock));
|
||
|
|
||
|
if (zfs_vdev_cache_size == 0)
|
||
|
return (NULL);
|
||
|
|
||
|
/*
|
||
|
* If adding a new entry would exceed the cache size,
|
||
|
* evict the oldest entry (LRU).
|
||
|
*/
|
||
|
if ((avl_numnodes(&vc->vc_lastused_tree) << zfs_vdev_cache_bshift) >
|
||
|
zfs_vdev_cache_size) {
|
||
|
ve = avl_first(&vc->vc_lastused_tree);
|
||
|
if (ve->ve_fill_io != NULL) {
|
||
|
dprintf("can't evict in %p, still filling\n", vc);
|
||
|
return (NULL);
|
||
|
}
|
||
|
ASSERT(ve->ve_hits != 0);
|
||
|
vdev_cache_evict(vc, ve);
|
||
|
}
|
||
|
|
||
|
ve = kmem_zalloc(sizeof (vdev_cache_entry_t), KM_SLEEP);
|
||
|
ve->ve_offset = offset;
|
||
|
ve->ve_lastused = lbolt;
|
||
|
ve->ve_data = zio_buf_alloc(VCBS);
|
||
|
|
||
|
avl_add(&vc->vc_offset_tree, ve);
|
||
|
avl_add(&vc->vc_lastused_tree, ve);
|
||
|
|
||
|
return (ve);
|
||
|
}
|
||
|
|
||
|
static void
|
||
|
vdev_cache_hit(vdev_cache_t *vc, vdev_cache_entry_t *ve, zio_t *zio)
|
||
|
{
|
||
|
uint64_t cache_phase = P2PHASE(zio->io_offset, VCBS);
|
||
|
|
||
|
ASSERT(MUTEX_HELD(&vc->vc_lock));
|
||
|
ASSERT(ve->ve_fill_io == NULL);
|
||
|
|
||
|
if (ve->ve_lastused != lbolt) {
|
||
|
avl_remove(&vc->vc_lastused_tree, ve);
|
||
|
ve->ve_lastused = lbolt;
|
||
|
avl_add(&vc->vc_lastused_tree, ve);
|
||
|
}
|
||
|
|
||
|
ve->ve_hits++;
|
||
|
bcopy(ve->ve_data + cache_phase, zio->io_data, zio->io_size);
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Fill a previously allocated cache entry with data.
|
||
|
*/
|
||
|
static void
|
||
|
vdev_cache_fill(zio_t *zio)
|
||
|
{
|
||
|
vdev_t *vd = zio->io_vd;
|
||
|
vdev_cache_t *vc = &vd->vdev_cache;
|
||
|
vdev_cache_entry_t *ve = zio->io_private;
|
||
|
zio_t *dio;
|
||
|
|
||
|
ASSERT(zio->io_size == VCBS);
|
||
|
|
||
|
/*
|
||
|
* Add data to the cache.
|
||
|
*/
|
||
|
mutex_enter(&vc->vc_lock);
|
||
|
|
||
|
ASSERT(ve->ve_fill_io == zio);
|
||
|
ASSERT(ve->ve_offset == zio->io_offset);
|
||
|
ASSERT(ve->ve_data == zio->io_data);
|
||
|
|
||
|
ve->ve_fill_io = NULL;
|
||
|
|
||
|
/*
|
||
|
* Even if this cache line was invalidated by a missed write update,
|
||
|
* any reads that were queued up before the missed update are still
|
||
|
* valid, so we can satisfy them from this line before we evict it.
|
||
|
*/
|
||
|
for (dio = zio->io_delegate_list; dio; dio = dio->io_delegate_next)
|
||
|
vdev_cache_hit(vc, ve, dio);
|
||
|
|
||
|
if (zio->io_error || ve->ve_missed_update)
|
||
|
vdev_cache_evict(vc, ve);
|
||
|
|
||
|
mutex_exit(&vc->vc_lock);
|
||
|
|
||
|
while ((dio = zio->io_delegate_list) != NULL) {
|
||
|
zio->io_delegate_list = dio->io_delegate_next;
|
||
|
dio->io_delegate_next = NULL;
|
||
|
dio->io_error = zio->io_error;
|
||
|
zio_execute(dio);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Read data from the cache. Returns 0 on cache hit, errno on a miss.
|
||
|
*/
|
||
|
int
|
||
|
vdev_cache_read(zio_t *zio)
|
||
|
{
|
||
|
vdev_cache_t *vc = &zio->io_vd->vdev_cache;
|
||
|
vdev_cache_entry_t *ve, ve_search;
|
||
|
uint64_t cache_offset = P2ALIGN(zio->io_offset, VCBS);
|
||
|
uint64_t cache_phase = P2PHASE(zio->io_offset, VCBS);
|
||
|
zio_t *fio;
|
||
|
|
||
|
ASSERT(zio->io_type == ZIO_TYPE_READ);
|
||
|
|
||
|
if (zio->io_flags & ZIO_FLAG_DONT_CACHE)
|
||
|
return (EINVAL);
|
||
|
|
||
|
if (zio->io_size > zfs_vdev_cache_max)
|
||
|
return (EOVERFLOW);
|
||
|
|
||
|
/*
|
||
|
* If the I/O straddles two or more cache blocks, don't cache it.
|
||
|
*/
|
||
|
if (P2CROSS(zio->io_offset, zio->io_offset + zio->io_size - 1, VCBS))
|
||
|
return (EXDEV);
|
||
|
|
||
|
ASSERT(cache_phase + zio->io_size <= VCBS);
|
||
|
|
||
|
mutex_enter(&vc->vc_lock);
|
||
|
|
||
|
ve_search.ve_offset = cache_offset;
|
||
|
ve = avl_find(&vc->vc_offset_tree, &ve_search, NULL);
|
||
|
|
||
|
if (ve != NULL) {
|
||
|
if (ve->ve_missed_update) {
|
||
|
mutex_exit(&vc->vc_lock);
|
||
|
return (ESTALE);
|
||
|
}
|
||
|
|
||
|
if ((fio = ve->ve_fill_io) != NULL) {
|
||
|
zio->io_delegate_next = fio->io_delegate_list;
|
||
|
fio->io_delegate_list = zio;
|
||
|
zio_vdev_io_bypass(zio);
|
||
|
mutex_exit(&vc->vc_lock);
|
||
|
VDCSTAT_BUMP(vdc_stat_delegations);
|
||
|
return (0);
|
||
|
}
|
||
|
|
||
|
vdev_cache_hit(vc, ve, zio);
|
||
|
zio_vdev_io_bypass(zio);
|
||
|
|
||
|
mutex_exit(&vc->vc_lock);
|
||
|
zio_execute(zio);
|
||
|
VDCSTAT_BUMP(vdc_stat_hits);
|
||
|
return (0);
|
||
|
}
|
||
|
|
||
|
ve = vdev_cache_allocate(zio);
|
||
|
|
||
|
if (ve == NULL) {
|
||
|
mutex_exit(&vc->vc_lock);
|
||
|
return (ENOMEM);
|
||
|
}
|
||
|
|
||
|
fio = zio_vdev_child_io(zio, NULL, zio->io_vd, cache_offset,
|
||
|
ve->ve_data, VCBS, ZIO_TYPE_READ, ZIO_PRIORITY_CACHE_FILL,
|
||
|
ZIO_FLAG_DONT_CACHE | ZIO_FLAG_DONT_PROPAGATE |
|
||
|
ZIO_FLAG_DONT_RETRY | ZIO_FLAG_NOBOOKMARK,
|
||
|
vdev_cache_fill, ve);
|
||
|
|
||
|
ve->ve_fill_io = fio;
|
||
|
fio->io_delegate_list = zio;
|
||
|
zio_vdev_io_bypass(zio);
|
||
|
|
||
|
mutex_exit(&vc->vc_lock);
|
||
|
zio_nowait(fio);
|
||
|
VDCSTAT_BUMP(vdc_stat_misses);
|
||
|
|
||
|
return (0);
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Update cache contents upon write completion.
|
||
|
*/
|
||
|
void
|
||
|
vdev_cache_write(zio_t *zio)
|
||
|
{
|
||
|
vdev_cache_t *vc = &zio->io_vd->vdev_cache;
|
||
|
vdev_cache_entry_t *ve, ve_search;
|
||
|
uint64_t io_start = zio->io_offset;
|
||
|
uint64_t io_end = io_start + zio->io_size;
|
||
|
uint64_t min_offset = P2ALIGN(io_start, VCBS);
|
||
|
uint64_t max_offset = P2ROUNDUP(io_end, VCBS);
|
||
|
avl_index_t where;
|
||
|
|
||
|
ASSERT(zio->io_type == ZIO_TYPE_WRITE);
|
||
|
|
||
|
mutex_enter(&vc->vc_lock);
|
||
|
|
||
|
ve_search.ve_offset = min_offset;
|
||
|
ve = avl_find(&vc->vc_offset_tree, &ve_search, &where);
|
||
|
|
||
|
if (ve == NULL)
|
||
|
ve = avl_nearest(&vc->vc_offset_tree, where, AVL_AFTER);
|
||
|
|
||
|
while (ve != NULL && ve->ve_offset < max_offset) {
|
||
|
uint64_t start = MAX(ve->ve_offset, io_start);
|
||
|
uint64_t end = MIN(ve->ve_offset + VCBS, io_end);
|
||
|
|
||
|
if (ve->ve_fill_io != NULL) {
|
||
|
ve->ve_missed_update = 1;
|
||
|
} else {
|
||
|
bcopy((char *)zio->io_data + start - io_start,
|
||
|
ve->ve_data + start - ve->ve_offset, end - start);
|
||
|
}
|
||
|
ve = AVL_NEXT(&vc->vc_offset_tree, ve);
|
||
|
}
|
||
|
mutex_exit(&vc->vc_lock);
|
||
|
}
|
||
|
|
||
|
void
|
||
|
vdev_cache_purge(vdev_t *vd)
|
||
|
{
|
||
|
vdev_cache_t *vc = &vd->vdev_cache;
|
||
|
vdev_cache_entry_t *ve;
|
||
|
|
||
|
mutex_enter(&vc->vc_lock);
|
||
|
while ((ve = avl_first(&vc->vc_offset_tree)) != NULL)
|
||
|
vdev_cache_evict(vc, ve);
|
||
|
mutex_exit(&vc->vc_lock);
|
||
|
}
|
||
|
|
||
|
void
|
||
|
vdev_cache_init(vdev_t *vd)
|
||
|
{
|
||
|
vdev_cache_t *vc = &vd->vdev_cache;
|
||
|
|
||
|
mutex_init(&vc->vc_lock, NULL, MUTEX_DEFAULT, NULL);
|
||
|
|
||
|
avl_create(&vc->vc_offset_tree, vdev_cache_offset_compare,
|
||
|
sizeof (vdev_cache_entry_t),
|
||
|
offsetof(struct vdev_cache_entry, ve_offset_node));
|
||
|
|
||
|
avl_create(&vc->vc_lastused_tree, vdev_cache_lastused_compare,
|
||
|
sizeof (vdev_cache_entry_t),
|
||
|
offsetof(struct vdev_cache_entry, ve_lastused_node));
|
||
|
}
|
||
|
|
||
|
void
|
||
|
vdev_cache_fini(vdev_t *vd)
|
||
|
{
|
||
|
vdev_cache_t *vc = &vd->vdev_cache;
|
||
|
|
||
|
vdev_cache_purge(vd);
|
||
|
|
||
|
avl_destroy(&vc->vc_offset_tree);
|
||
|
avl_destroy(&vc->vc_lastused_tree);
|
||
|
|
||
|
mutex_destroy(&vc->vc_lock);
|
||
|
}
|
||
|
|
||
|
void
|
||
|
vdev_cache_stat_init(void)
|
||
|
{
|
||
|
vdc_ksp = kstat_create("zfs", 0, "vdev_cache_stats", "misc",
|
||
|
KSTAT_TYPE_NAMED, sizeof (vdc_stats) / sizeof (kstat_named_t),
|
||
|
KSTAT_FLAG_VIRTUAL);
|
||
|
if (vdc_ksp != NULL) {
|
||
|
vdc_ksp->ks_data = &vdc_stats;
|
||
|
kstat_install(vdc_ksp);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
void
|
||
|
vdev_cache_stat_fini(void)
|
||
|
{
|
||
|
if (vdc_ksp != NULL) {
|
||
|
kstat_delete(vdc_ksp);
|
||
|
vdc_ksp = NULL;
|
||
|
}
|
||
|
}
|