mirror_zfs/include/sys/spa_impl.h

429 lines
17 KiB
C
Raw Normal View History

2008-11-20 23:01:55 +03:00
/*
* CDDL HEADER START
*
* The contents of this file are subject to the terms of the
* Common Development and Distribution License (the "License").
* You may not use this file except in compliance with the License.
*
* You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
* or http://www.opensolaris.org/os/licensing.
* See the License for the specific language governing permissions
* and limitations under the License.
*
* When distributing Covered Code, include this CDDL HEADER in each
* file and include the License file at usr/src/OPENSOLARIS.LICENSE.
* If applicable, add the following below this CDDL HEADER, with the
* fields enclosed by brackets "[]" replaced with your own identifying
* information: Portions Copyright [yyyy] [name of copyright owner]
*
* CDDL HEADER END
*/
/*
* Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
* Copyright (c) 2011, 2018 by Delphix. All rights reserved.
* Copyright 2011 Nexenta Systems, Inc. All rights reserved.
* Copyright (c) 2014 Spectra Logic Corporation, All rights reserved.
OpenZFS 4185 - add new cryptographic checksums to ZFS: SHA-512, Skein, Edon-R Reviewed by: George Wilson <george.wilson@delphix.com> Reviewed by: Prakash Surya <prakash.surya@delphix.com> Reviewed by: Saso Kiselkov <saso.kiselkov@nexenta.com> Reviewed by: Richard Lowe <richlowe@richlowe.net> Approved by: Garrett D'Amore <garrett@damore.org> Ported by: Tony Hutter <hutter2@llnl.gov> OpenZFS-issue: https://www.illumos.org/issues/4185 OpenZFS-commit: https://github.com/openzfs/openzfs/commit/45818ee Porting Notes: This code is ported on top of the Illumos Crypto Framework code: https://github.com/zfsonlinux/zfs/pull/4329/commits/b5e030c8dbb9cd393d313571dee4756fbba8c22d The list of porting changes includes: - Copied module/icp/include/sha2/sha2.h directly from illumos - Removed from module/icp/algs/sha2/sha2.c: #pragma inline(SHA256Init, SHA384Init, SHA512Init) - Added 'ctx' to lib/libzfs/libzfs_sendrecv.c:zio_checksum_SHA256() since it now takes in an extra parameter. - Added CTASSERT() to assert.h from for module/zfs/edonr_zfs.c - Added skein & edonr to libicp/Makefile.am - Added sha512.S. It was generated from sha512-x86_64.pl in Illumos. - Updated ztest.c with new fletcher_4_*() args; used NULL for new CTX argument. - In icp/algs/edonr/edonr_byteorder.h, Removed the #if defined(__linux) section to not #include the non-existant endian.h. - In skein_test.c, renane NULL to 0 in "no test vector" array entries to get around a compiler warning. - Fixup test files: - Rename <sys/varargs.h> -> <varargs.h>, <strings.h> -> <string.h>, - Remove <note.h> and define NOTE() as NOP. - Define u_longlong_t - Rename "#!/usr/bin/ksh" -> "#!/bin/ksh -p" - Rename NULL to 0 in "no test vector" array entries to get around a compiler warning. - Remove "for isa in $($ISAINFO); do" stuff - Add/update Makefiles - Add some userspace headers like stdio.h/stdlib.h in places of sys/types.h. - EXPORT_SYMBOL *_Init/*_Update/*_Final... routines in ICP modules. - Update scripts/zfs2zol-patch.sed - include <sys/sha2.h> in sha2_impl.h - Add sha2.h to include/sys/Makefile.am - Add skein and edonr dirs to icp Makefile - Add new checksums to zpool_get.cfg - Move checksum switch block from zfs_secpolicy_setprop() to zfs_check_settable() - Fix -Wuninitialized error in edonr_byteorder.h on PPC - Fix stack frame size errors on ARM32 - Don't unroll loops in Skein on 32-bit to save stack space - Add memory barriers in sha2.c on 32-bit to save stack space - Add filetest_001_pos.ksh checksum sanity test - Add option to write psudorandom data in file_write utility
2016-06-16 01:47:05 +03:00
* Copyright 2013 Saso Kiselkov. All rights reserved.
* Copyright (c) 2016 Actifio, Inc. All rights reserved.
* Copyright (c) 2017 Datto Inc.
* Copyright (c) 2017, Intel Corporation.
2008-11-20 23:01:55 +03:00
*/
#ifndef _SYS_SPA_IMPL_H
#define _SYS_SPA_IMPL_H
#include <sys/spa.h>
OpenZFS 9166 - zfs storage pool checkpoint Details about the motivation of this feature and its usage can be found in this blogpost: https://sdimitro.github.io/post/zpool-checkpoint/ A lightning talk of this feature can be found here: https://www.youtube.com/watch?v=fPQA8K40jAM Implementation details can be found in big block comment of spa_checkpoint.c Side-changes that are relevant to this commit but not explained elsewhere: * renames members of "struct metaslab trees to be shorter without losing meaning * space_map_{alloc,truncate}() accept a block size as a parameter. The reason is that in the current state all space maps that we allocate through the DMU use a global tunable (space_map_blksz) which defauls to 4KB. This is ok for metaslab space maps in terms of bandwirdth since they are scattered all over the disk. But for other space maps this default is probably not what we want. Examples are device removal's vdev_obsolete_sm or vdev_chedkpoint_sm from this review. Both of these have a 1:1 relationship with each vdev and could benefit from a bigger block size. Porting notes: * The part of dsl_scan_sync() which handles async destroys has been moved into the new dsl_process_async_destroys() function. * Remove "VERIFY(!(flags & FWRITE))" in "kernel.c" so zhack can write to block device backed pools. * ZTS: * Fix get_txg() in zpool_sync_001_pos due to "checkpoint_txg". * Don't use large dd block sizes on /dev/urandom under Linux in checkpoint_capacity. * Adopt Delphix-OS's setting of 4 (spa_asize_inflation = SPA_DVAS_PER_BP + 1) for the checkpoint_capacity test to speed its attempts to fill the pool * Create the base and nested pools with sync=disabled to speed up the "setup" phase. * Clear labels in test pool between checkpoint tests to avoid duplicate pool issues. * The import_rewind_device_replaced test has been marked as "known to fail" for the reasons listed in its DISCLAIMER. * New module parameters: zfs_spa_discard_memory_limit, zfs_remove_max_bytes_pause (not documented - debugging only) vdev_max_ms_count (formerly metaslabs_per_vdev) vdev_min_ms_count Authored by: Serapheim Dimitropoulos <serapheim.dimitro@delphix.com> Reviewed by: Matthew Ahrens <mahrens@delphix.com> Reviewed by: John Kennedy <john.kennedy@delphix.com> Reviewed by: Dan Kimmel <dan.kimmel@delphix.com> Reviewed by: Brian Behlendorf <behlendorf1@llnl.gov> Approved by: Richard Lowe <richlowe@richlowe.net> Ported-by: Tim Chase <tim@chase2k.com> Signed-off-by: Tim Chase <tim@chase2k.com> OpenZFS-issue: https://illumos.org/issues/9166 OpenZFS-commit: https://github.com/openzfs/openzfs/commit/7159fdb8 Closes #7570
2016-12-17 01:11:29 +03:00
#include <sys/spa_checkpoint.h>
2008-11-20 23:01:55 +03:00
#include <sys/vdev.h>
OpenZFS 7614, 9064 - zfs device evacuation/removal OpenZFS 7614 - zfs device evacuation/removal OpenZFS 9064 - remove_mirror should wait for device removal to complete This project allows top-level vdevs to be removed from the storage pool with "zpool remove", reducing the total amount of storage in the pool. This operation copies all allocated regions of the device to be removed onto other devices, recording the mapping from old to new location. After the removal is complete, read and free operations to the removed (now "indirect") vdev must be remapped and performed at the new location on disk. The indirect mapping table is kept in memory whenever the pool is loaded, so there is minimal performance overhead when doing operations on the indirect vdev. The size of the in-memory mapping table will be reduced when its entries become "obsolete" because they are no longer used by any block pointers in the pool. An entry becomes obsolete when all the blocks that use it are freed. An entry can also become obsolete when all the snapshots that reference it are deleted, and the block pointers that reference it have been "remapped" in all filesystems/zvols (and clones). Whenever an indirect block is written, all the block pointers in it will be "remapped" to their new (concrete) locations if possible. This process can be accelerated by using the "zfs remap" command to proactively rewrite all indirect blocks that reference indirect (removed) vdevs. Note that when a device is removed, we do not verify the checksum of the data that is copied. This makes the process much faster, but if it were used on redundant vdevs (i.e. mirror or raidz vdevs), it would be possible to copy the wrong data, when we have the correct data on e.g. the other side of the mirror. At the moment, only mirrors and simple top-level vdevs can be removed and no removal is allowed if any of the top-level vdevs are raidz. Porting Notes: * Avoid zero-sized kmem_alloc() in vdev_compact_children(). The device evacuation code adds a dependency that vdev_compact_children() be able to properly empty the vdev_child array by setting it to NULL and zeroing vdev_children. Under Linux, kmem_alloc() and related functions return a sentinel pointer rather than NULL for zero-sized allocations. * Remove comment regarding "mpt" driver where zfs_remove_max_segment is initialized to SPA_MAXBLOCKSIZE. Change zfs_condense_indirect_commit_entry_delay_ticks to zfs_condense_indirect_commit_entry_delay_ms for consistency with most other tunables in which delays are specified in ms. * ZTS changes: Use set_tunable rather than mdb Use zpool sync as appropriate Use sync_pool instead of sync Kill jobs during test_removal_with_operation to allow unmount/export Don't add non-disk names such as "mirror" or "raidz" to $DISKS Use $TEST_BASE_DIR instead of /tmp Increase HZ from 100 to 1000 which is more common on Linux removal_multiple_indirection.ksh Reduce iterations in order to not time out on the code coverage builders. removal_resume_export: Functionally, the test case is correct but there exists a race where the kernel thread hasn't been fully started yet and is not visible. Wait for up to 1 second for the removal thread to be started before giving up on it. Also, increase the amount of data copied in order that the removal not finish before the export has a chance to fail. * MMP compatibility, the concept of concrete versus non-concrete devices has slightly changed the semantics of vdev_writeable(). Update mmp_random_leaf_impl() accordingly. * Updated dbuf_remap() to handle the org.zfsonlinux:large_dnode pool feature which is not supported by OpenZFS. * Added support for new vdev removal tracepoints. * Test cases removal_with_zdb and removal_condense_export have been intentionally disabled. When run manually they pass as intended, but when running in the automated test environment they produce unreliable results on the latest Fedora release. They may work better once the upstream pool import refectoring is merged into ZoL at which point they will be re-enabled. Authored by: Matthew Ahrens <mahrens@delphix.com> Reviewed-by: Alex Reece <alex@delphix.com> Reviewed-by: George Wilson <george.wilson@delphix.com> Reviewed-by: John Kennedy <john.kennedy@delphix.com> Reviewed-by: Prakash Surya <prakash.surya@delphix.com> Reviewed by: Richard Laager <rlaager@wiktel.com> Reviewed by: Tim Chase <tim@chase2k.com> Reviewed by: Brian Behlendorf <behlendorf1@llnl.gov> Approved by: Garrett D'Amore <garrett@damore.org> Ported-by: Tim Chase <tim@chase2k.com> Signed-off-by: Tim Chase <tim@chase2k.com> OpenZFS-issue: https://www.illumos.org/issues/7614 OpenZFS-commit: https://github.com/openzfs/openzfs/commit/f539f1eb Closes #6900
2016-09-22 19:30:13 +03:00
#include <sys/vdev_removal.h>
2008-11-20 23:01:55 +03:00
#include <sys/metaslab.h>
#include <sys/dmu.h>
#include <sys/dsl_pool.h>
#include <sys/uberblock_impl.h>
#include <sys/zfs_context.h>
#include <sys/avl.h>
#include <sys/refcount.h>
#include <sys/bplist.h>
#include <sys/bpobj.h>
Native Encryption for ZFS on Linux This change incorporates three major pieces: The first change is a keystore that manages wrapping and encryption keys for encrypted datasets. These commands mostly involve manipulating the new DSL Crypto Key ZAP Objects that live in the MOS. Each encrypted dataset has its own DSL Crypto Key that is protected with a user's key. This level of indirection allows users to change their keys without re-encrypting their entire datasets. The change implements the new subcommands "zfs load-key", "zfs unload-key" and "zfs change-key" which allow the user to manage their encryption keys and settings. In addition, several new flags and properties have been added to allow dataset creation and to make mounting and unmounting more convenient. The second piece of this patch provides the ability to encrypt, decyrpt, and authenticate protected datasets. Each object set maintains a Merkel tree of Message Authentication Codes that protect the lower layers, similarly to how checksums are maintained. This part impacts the zio layer, which handles the actual encryption and generation of MACs, as well as the ARC and DMU, which need to be able to handle encrypted buffers and protected data. The last addition is the ability to do raw, encrypted sends and receives. The idea here is to send raw encrypted and compressed data and receive it exactly as is on a backup system. This means that the dataset on the receiving system is protected using the same user key that is in use on the sending side. By doing so, datasets can be efficiently backed up to an untrusted system without fear of data being compromised. Reviewed by: Matthew Ahrens <mahrens@delphix.com> Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov> Reviewed-by: Jorgen Lundman <lundman@lundman.net> Signed-off-by: Tom Caputi <tcaputi@datto.com> Closes #494 Closes #5769
2017-08-14 20:36:48 +03:00
#include <sys/dsl_crypt.h>
#include <sys/zfeature.h>
OpenZFS 9079 - race condition in starting and ending condensing thread for indirect vdevs The timeline of the race condition is the following: [1] Thread A is about to finish condesing the first vdev in spa_condense_indirect_thread(), so it calls the spa_condense_indirect_complete_sync() sync task which sets the spa_condensing_indirect field to NULL. Waiting for the sync task to finish, thread A sleeps until the txg is done. When this happens, thread A will acquire spa_async_lock and set spa_condense_thread to NULL. [2] While thread A waits for the txg to finish, thread B which is running spa_sync() checks whether it should condense the second vdev in vdev_indirect_should_condense() by checking the spa_condensing_indirect field which was set to NULL by spa_condense_indirect_thread() from thread A. So it goes on and tries to spawn a new condensing thread in spa_condense_indirect_start_sync() and the aforementioned assertions fails because thread A has not set spa_condense_thread to NULL (which is basically the last thing it does before returning). The main issue here is that we rely on both spa_condensing_indirect and spa_condense_thread to signify whether a condensing thread is running. Ideally we would only use one throughout the codebase. In addition, for managing spa_condense_thread we currently use spa_async_lock which basically tights condensing to scrubing when it comes to pausing and resuming those actions during spa export. This commit introduces the ZTHR infrastructure, which is basically threads created during spa_load()/spa_create() and exist until we export or destroy the pool. ZTHRs sleep the majority of the time, until they are notified to wake up and do some predefined type of work. In the context of the current bug, a zthr to does the condensing of indirect mappings replacing the older code that used bare kthreads. When a pool is created, the condensing zthr is spawned but sleeps right away, until it is awaken by a signal from spa_sync(). If an existing pool is loaded, the condensing zthr looks if there is anything to condense before going to sleep, in case we were condensing mappings in the pool before it got exported. The benefits of this solution are the following: - The current bug is fixed - spa_condensing_indirect is the sole indicator of whether we are currently condensing or not - condensing is more decoupled from the spa_async_thread related functionality. As a final note, this commit also sets up the path on upstreaming other features that use the ZTHR code like zpool checkpoint and fast clone deletion. Authored by: Serapheim Dimitropoulos <serapheim@delphix.com> Reviewed by: Matt Ahrens <mahrens@delphix.com> Reviewed by: Pavel Zakharov <pavel.zakharov@delphix.com> Approved by: Hans Rosenfeld <rosenfeld@grumpf.hope-2000.org> Ported-by: Tim Chase <tim@chase2k.com> OpenZFS-issue: https://illumos.org/issues/9079 OpenZFS-commit: https://github.com/openzfs/openzfs/commit/3dc606ee Closes #6900
2017-03-16 02:41:52 +03:00
#include <sys/zthr.h>
#include <zfeature_common.h>
2008-11-20 23:01:55 +03:00
#ifdef __cplusplus
extern "C" {
#endif
typedef struct spa_error_entry {
zbookmark_phys_t se_bookmark;
char *se_name;
avl_node_t se_avl;
2008-11-20 23:01:55 +03:00
} spa_error_entry_t;
typedef struct spa_history_phys {
uint64_t sh_pool_create_len; /* ending offset of zpool create */
uint64_t sh_phys_max_off; /* physical EOF */
uint64_t sh_bof; /* logical BOF */
uint64_t sh_eof; /* logical EOF */
uint64_t sh_records_lost; /* num of records overwritten */
} spa_history_phys_t;
OpenZFS 7614, 9064 - zfs device evacuation/removal OpenZFS 7614 - zfs device evacuation/removal OpenZFS 9064 - remove_mirror should wait for device removal to complete This project allows top-level vdevs to be removed from the storage pool with "zpool remove", reducing the total amount of storage in the pool. This operation copies all allocated regions of the device to be removed onto other devices, recording the mapping from old to new location. After the removal is complete, read and free operations to the removed (now "indirect") vdev must be remapped and performed at the new location on disk. The indirect mapping table is kept in memory whenever the pool is loaded, so there is minimal performance overhead when doing operations on the indirect vdev. The size of the in-memory mapping table will be reduced when its entries become "obsolete" because they are no longer used by any block pointers in the pool. An entry becomes obsolete when all the blocks that use it are freed. An entry can also become obsolete when all the snapshots that reference it are deleted, and the block pointers that reference it have been "remapped" in all filesystems/zvols (and clones). Whenever an indirect block is written, all the block pointers in it will be "remapped" to their new (concrete) locations if possible. This process can be accelerated by using the "zfs remap" command to proactively rewrite all indirect blocks that reference indirect (removed) vdevs. Note that when a device is removed, we do not verify the checksum of the data that is copied. This makes the process much faster, but if it were used on redundant vdevs (i.e. mirror or raidz vdevs), it would be possible to copy the wrong data, when we have the correct data on e.g. the other side of the mirror. At the moment, only mirrors and simple top-level vdevs can be removed and no removal is allowed if any of the top-level vdevs are raidz. Porting Notes: * Avoid zero-sized kmem_alloc() in vdev_compact_children(). The device evacuation code adds a dependency that vdev_compact_children() be able to properly empty the vdev_child array by setting it to NULL and zeroing vdev_children. Under Linux, kmem_alloc() and related functions return a sentinel pointer rather than NULL for zero-sized allocations. * Remove comment regarding "mpt" driver where zfs_remove_max_segment is initialized to SPA_MAXBLOCKSIZE. Change zfs_condense_indirect_commit_entry_delay_ticks to zfs_condense_indirect_commit_entry_delay_ms for consistency with most other tunables in which delays are specified in ms. * ZTS changes: Use set_tunable rather than mdb Use zpool sync as appropriate Use sync_pool instead of sync Kill jobs during test_removal_with_operation to allow unmount/export Don't add non-disk names such as "mirror" or "raidz" to $DISKS Use $TEST_BASE_DIR instead of /tmp Increase HZ from 100 to 1000 which is more common on Linux removal_multiple_indirection.ksh Reduce iterations in order to not time out on the code coverage builders. removal_resume_export: Functionally, the test case is correct but there exists a race where the kernel thread hasn't been fully started yet and is not visible. Wait for up to 1 second for the removal thread to be started before giving up on it. Also, increase the amount of data copied in order that the removal not finish before the export has a chance to fail. * MMP compatibility, the concept of concrete versus non-concrete devices has slightly changed the semantics of vdev_writeable(). Update mmp_random_leaf_impl() accordingly. * Updated dbuf_remap() to handle the org.zfsonlinux:large_dnode pool feature which is not supported by OpenZFS. * Added support for new vdev removal tracepoints. * Test cases removal_with_zdb and removal_condense_export have been intentionally disabled. When run manually they pass as intended, but when running in the automated test environment they produce unreliable results on the latest Fedora release. They may work better once the upstream pool import refectoring is merged into ZoL at which point they will be re-enabled. Authored by: Matthew Ahrens <mahrens@delphix.com> Reviewed-by: Alex Reece <alex@delphix.com> Reviewed-by: George Wilson <george.wilson@delphix.com> Reviewed-by: John Kennedy <john.kennedy@delphix.com> Reviewed-by: Prakash Surya <prakash.surya@delphix.com> Reviewed by: Richard Laager <rlaager@wiktel.com> Reviewed by: Tim Chase <tim@chase2k.com> Reviewed by: Brian Behlendorf <behlendorf1@llnl.gov> Approved by: Garrett D'Amore <garrett@damore.org> Ported-by: Tim Chase <tim@chase2k.com> Signed-off-by: Tim Chase <tim@chase2k.com> OpenZFS-issue: https://www.illumos.org/issues/7614 OpenZFS-commit: https://github.com/openzfs/openzfs/commit/f539f1eb Closes #6900
2016-09-22 19:30:13 +03:00
/*
* All members must be uint64_t, for byteswap purposes.
*/
typedef struct spa_removing_phys {
uint64_t sr_state; /* dsl_scan_state_t */
/*
* The vdev ID that we most recently attempted to remove,
* or -1 if no removal has been attempted.
*/
uint64_t sr_removing_vdev;
/*
* The vdev ID that we most recently successfully removed,
* or -1 if no devices have been removed.
*/
uint64_t sr_prev_indirect_vdev;
uint64_t sr_start_time;
uint64_t sr_end_time;
/*
* Note that we can not use the space map's or indirect mapping's
* accounting as a substitute for these values, because we need to
* count frees of not-yet-copied data as though it did the copy.
* Otherwise, we could get into a situation where copied > to_copy,
* or we complete before copied == to_copy.
*/
uint64_t sr_to_copy; /* bytes that need to be copied */
uint64_t sr_copied; /* bytes that have been copied or freed */
} spa_removing_phys_t;
/*
* This struct is stored as an entry in the DMU_POOL_DIRECTORY_OBJECT
* (with key DMU_POOL_CONDENSING_INDIRECT). It is present if a condense
* of an indirect vdev's mapping object is in progress.
*/
typedef struct spa_condensing_indirect_phys {
/*
* The vdev ID of the indirect vdev whose indirect mapping is
* being condensed.
*/
uint64_t scip_vdev;
/*
* The vdev's old obsolete spacemap. This spacemap's contents are
* being integrated into the new mapping.
*/
uint64_t scip_prev_obsolete_sm_object;
/*
* The new mapping object that is being created.
*/
uint64_t scip_next_mapping_object;
} spa_condensing_indirect_phys_t;
2008-11-20 23:01:55 +03:00
struct spa_aux_vdev {
uint64_t sav_object; /* MOS object for device list */
nvlist_t *sav_config; /* cached device config */
vdev_t **sav_vdevs; /* devices */
int sav_count; /* number devices */
boolean_t sav_sync; /* sync the device list */
nvlist_t **sav_pending; /* pending device additions */
uint_t sav_npending; /* # pending devices */
};
typedef struct spa_config_lock {
kmutex_t scl_lock;
kthread_t *scl_writer;
int scl_write_wanted;
2008-11-20 23:01:55 +03:00
kcondvar_t scl_cv;
zfs_refcount_t scl_count;
2008-11-20 23:01:55 +03:00
} spa_config_lock_t;
typedef struct spa_config_dirent {
list_node_t scd_link;
char *scd_path;
} spa_config_dirent_t;
Illumos #3581 spa_zio_taskq[ZIO_TYPE_FREE][ZIO_TASKQ_ISSUE]->tq_lock contention 3581 spa_zio_taskq[ZIO_TYPE_FREE][ZIO_TASKQ_ISSUE]->tq_lock is piping hot Reviewed by: Matthew Ahrens <mahrens@delphix.com> Reviewed by: George Wilson <george.wilson@delphix.com> Reviewed by: Christopher Siden <christopher.siden@delphix.com> Reviewed by: Gordon Ross <gordon.ross@nexenta.com> Approved by: Richard Lowe <richlowe@richlowe.net> References: illumos/illumos-gate@ec94d32 https://illumos.org/issues/3581 Notes for Linux port: Earlier commit 08d08eb reduced contention on this taskq lock by simply reducing the number of z_fr_iss threads from 100 to one-per-CPU. We also optimized the taskq implementation in zfsonlinux/spl@3c6ed54. These changes significantly improved unlink performance to acceptable levels. This patch further reduces time spent spinning on this lock by randomly dispatching the work items over multiple independent task queues. The Illumos ZFS developers stated that this lock contention only arose after "3329 spa_sync() spends 10-20% of its time in spa_free_sync_cb()" was landed. It's not clear if 3329 affects the Linux port or not. I didn't see spa_free_sync_cb() show up in oprofile sessions while unlinking large files, but I may just not have used the right test case. I tested unlinking a 1 TB of data with and without the patch and didn't observe a meaningful difference in elapsed time. However, oprofile showed that the percent time spent in taskq_thread() was reduced from about 16% to about 5%. Aside from a possible slight performance benefit this may be worth landing if only for the sake of maintaining consistency with upstream. Ported-by: Ned Bass <bass6@llnl.gov> Closes #1327
2013-05-06 23:24:30 +04:00
typedef enum zio_taskq_type {
ZIO_TASKQ_ISSUE = 0,
ZIO_TASKQ_ISSUE_HIGH,
ZIO_TASKQ_INTERRUPT,
ZIO_TASKQ_INTERRUPT_HIGH,
ZIO_TASKQ_TYPES
Illumos #3581 spa_zio_taskq[ZIO_TYPE_FREE][ZIO_TASKQ_ISSUE]->tq_lock contention 3581 spa_zio_taskq[ZIO_TYPE_FREE][ZIO_TASKQ_ISSUE]->tq_lock is piping hot Reviewed by: Matthew Ahrens <mahrens@delphix.com> Reviewed by: George Wilson <george.wilson@delphix.com> Reviewed by: Christopher Siden <christopher.siden@delphix.com> Reviewed by: Gordon Ross <gordon.ross@nexenta.com> Approved by: Richard Lowe <richlowe@richlowe.net> References: illumos/illumos-gate@ec94d32 https://illumos.org/issues/3581 Notes for Linux port: Earlier commit 08d08eb reduced contention on this taskq lock by simply reducing the number of z_fr_iss threads from 100 to one-per-CPU. We also optimized the taskq implementation in zfsonlinux/spl@3c6ed54. These changes significantly improved unlink performance to acceptable levels. This patch further reduces time spent spinning on this lock by randomly dispatching the work items over multiple independent task queues. The Illumos ZFS developers stated that this lock contention only arose after "3329 spa_sync() spends 10-20% of its time in spa_free_sync_cb()" was landed. It's not clear if 3329 affects the Linux port or not. I didn't see spa_free_sync_cb() show up in oprofile sessions while unlinking large files, but I may just not have used the right test case. I tested unlinking a 1 TB of data with and without the patch and didn't observe a meaningful difference in elapsed time. However, oprofile showed that the percent time spent in taskq_thread() was reduced from about 16% to about 5%. Aside from a possible slight performance benefit this may be worth landing if only for the sake of maintaining consistency with upstream. Ported-by: Ned Bass <bass6@llnl.gov> Closes #1327
2013-05-06 23:24:30 +04:00
} zio_taskq_type_t;
/*
Illumos #3581 spa_zio_taskq[ZIO_TYPE_FREE][ZIO_TASKQ_ISSUE]->tq_lock contention 3581 spa_zio_taskq[ZIO_TYPE_FREE][ZIO_TASKQ_ISSUE]->tq_lock is piping hot Reviewed by: Matthew Ahrens <mahrens@delphix.com> Reviewed by: George Wilson <george.wilson@delphix.com> Reviewed by: Christopher Siden <christopher.siden@delphix.com> Reviewed by: Gordon Ross <gordon.ross@nexenta.com> Approved by: Richard Lowe <richlowe@richlowe.net> References: illumos/illumos-gate@ec94d32 https://illumos.org/issues/3581 Notes for Linux port: Earlier commit 08d08eb reduced contention on this taskq lock by simply reducing the number of z_fr_iss threads from 100 to one-per-CPU. We also optimized the taskq implementation in zfsonlinux/spl@3c6ed54. These changes significantly improved unlink performance to acceptable levels. This patch further reduces time spent spinning on this lock by randomly dispatching the work items over multiple independent task queues. The Illumos ZFS developers stated that this lock contention only arose after "3329 spa_sync() spends 10-20% of its time in spa_free_sync_cb()" was landed. It's not clear if 3329 affects the Linux port or not. I didn't see spa_free_sync_cb() show up in oprofile sessions while unlinking large files, but I may just not have used the right test case. I tested unlinking a 1 TB of data with and without the patch and didn't observe a meaningful difference in elapsed time. However, oprofile showed that the percent time spent in taskq_thread() was reduced from about 16% to about 5%. Aside from a possible slight performance benefit this may be worth landing if only for the sake of maintaining consistency with upstream. Ported-by: Ned Bass <bass6@llnl.gov> Closes #1327
2013-05-06 23:24:30 +04:00
* State machine for the zpool-poolname process. The states transitions
* are done as follows:
*
* From To Routine
* PROC_NONE -> PROC_CREATED spa_activate()
* PROC_CREATED -> PROC_ACTIVE spa_thread()
* PROC_ACTIVE -> PROC_DEACTIVATE spa_deactivate()
* PROC_DEACTIVATE -> PROC_GONE spa_thread()
* PROC_GONE -> PROC_NONE spa_deactivate()
*/
typedef enum spa_proc_state {
SPA_PROC_NONE, /* spa_proc = &p0, no process created */
SPA_PROC_CREATED, /* spa_activate() has proc, is waiting */
SPA_PROC_ACTIVE, /* taskqs created, spa_proc set */
SPA_PROC_DEACTIVATE, /* spa_deactivate() requests process exit */
SPA_PROC_GONE /* spa_thread() is exiting, spa_proc = &p0 */
} spa_proc_state_t;
Illumos #3581 spa_zio_taskq[ZIO_TYPE_FREE][ZIO_TASKQ_ISSUE]->tq_lock contention 3581 spa_zio_taskq[ZIO_TYPE_FREE][ZIO_TASKQ_ISSUE]->tq_lock is piping hot Reviewed by: Matthew Ahrens <mahrens@delphix.com> Reviewed by: George Wilson <george.wilson@delphix.com> Reviewed by: Christopher Siden <christopher.siden@delphix.com> Reviewed by: Gordon Ross <gordon.ross@nexenta.com> Approved by: Richard Lowe <richlowe@richlowe.net> References: illumos/illumos-gate@ec94d32 https://illumos.org/issues/3581 Notes for Linux port: Earlier commit 08d08eb reduced contention on this taskq lock by simply reducing the number of z_fr_iss threads from 100 to one-per-CPU. We also optimized the taskq implementation in zfsonlinux/spl@3c6ed54. These changes significantly improved unlink performance to acceptable levels. This patch further reduces time spent spinning on this lock by randomly dispatching the work items over multiple independent task queues. The Illumos ZFS developers stated that this lock contention only arose after "3329 spa_sync() spends 10-20% of its time in spa_free_sync_cb()" was landed. It's not clear if 3329 affects the Linux port or not. I didn't see spa_free_sync_cb() show up in oprofile sessions while unlinking large files, but I may just not have used the right test case. I tested unlinking a 1 TB of data with and without the patch and didn't observe a meaningful difference in elapsed time. However, oprofile showed that the percent time spent in taskq_thread() was reduced from about 16% to about 5%. Aside from a possible slight performance benefit this may be worth landing if only for the sake of maintaining consistency with upstream. Ported-by: Ned Bass <bass6@llnl.gov> Closes #1327
2013-05-06 23:24:30 +04:00
typedef struct spa_taskqs {
uint_t stqs_count;
taskq_t **stqs_taskq;
} spa_taskqs_t;
typedef enum spa_all_vdev_zap_action {
AVZ_ACTION_NONE = 0,
AVZ_ACTION_DESTROY, /* Destroy all per-vdev ZAPs and the AVZ. */
AVZ_ACTION_REBUILD, /* Populate the new AVZ, see spa_avz_rebuild */
AVZ_ACTION_INITIALIZE
} spa_avz_action_t;
OpenZFS 9075 - Improve ZFS pool import/load process and corrupted pool recovery Some work has been done lately to improve the debugability of the ZFS pool load (and import) process. This includes: 7638 Refactor spa_load_impl into several functions 8961 SPA load/import should tell us why it failed 7277 zdb should be able to print zfs_dbgmsg's To iterate on top of that, there's a few changes that were made to make the import process more resilient and crash free. One of the first tasks during the pool load process is to parse a config provided from userland that describes what devices the pool is composed of. A vdev tree is generated from that config, and then all the vdevs are opened. The Meta Object Set (MOS) of the pool is accessed, and several metadata objects that are necessary to load the pool are read. The exact configuration of the pool is also stored inside the MOS. Since the configuration provided from userland is external and might not accurately describe the vdev tree of the pool at the txg that is being loaded, it cannot be relied upon to safely operate the pool. For that reason, the configuration in the MOS is read early on. In the past, the two configurations were compared together and if there was a mismatch then the load process was aborted and an error was returned. The latter was a good way to ensure a pool does not get corrupted, however it made the pool load process needlessly fragile in cases where the vdev configuration changed or the userland configuration was outdated. Since the MOS is stored in 3 copies, the configuration provided by userland doesn't have to be perfect in order to read its contents. Hence, a new approach has been adopted: The pool is first opened with the untrusted userland configuration just so that the real configuration can be read from the MOS. The trusted MOS configuration is then used to generate a new vdev tree and the pool is re-opened. When the pool is opened with an untrusted configuration, writes are disabled to avoid accidentally damaging it. During reads, some sanity checks are performed on block pointers to see if each DVA points to a known vdev; when the configuration is untrusted, instead of panicking the system if those checks fail we simply avoid issuing reads to the invalid DVAs. This new two-step pool load process now allows rewinding pools accross vdev tree changes such as device replacement, addition, etc. Loading a pool from an external config file in a clustering environment also becomes much safer now since the pool will import even if the config is outdated and didn't, for instance, register a recent device addition. With this code in place, it became relatively easy to implement a long-sought-after feature: the ability to import a pool with missing top level (i.e. non-redundant) devices. Note that since this almost guarantees some loss of data, this feature is for now restricted to a read-only import. Porting notes (ZTS): * Fix 'make dist' target in zpool_import * The maximum path length allowed by tar is 99 characters. Several of the new test cases exceeded this limit resulting in them not being included in the tarball. Shorten the names slightly. * Set/get tunables using accessor functions. * Get last synced txg via the "zfs_txg_history" mechanism. * Clear zinject handlers in cleanup for import_cache_device_replaced and import_rewind_device_replaced in order that the zpool can be exported if there is an error. * Increase FILESIZE to 8G in zfs-test.sh to allow for a larger ext4 file system to be created on ZFS_DISK2. Also, there's no need to partition ZFS_DISK2 at all. The partitioning had already been disabled for multipath devices. Among other things, the partitioning steals some space from the ext4 file system, makes it difficult to accurately calculate the paramters to parted and can make some of the tests fail. * Increase FS_SIZE and FILE_SIZE in the zpool_import test configuration now that FILESIZE is larger. * Write more data in order that device evacuation take lonnger in a couple tests. * Use mkdir -p to avoid errors when the directory already exists. * Remove use of sudo in import_rewind_config_changed. Authored by: Pavel Zakharov <pavel.zakharov@delphix.com> Reviewed by: George Wilson <george.wilson@delphix.com> Reviewed by: Matthew Ahrens <mahrens@delphix.com> Reviewed by: Andrew Stormont <andyjstormont@gmail.com> Approved by: Hans Rosenfeld <rosenfeld@grumpf.hope-2000.org> Ported-by: Tim Chase <tim@chase2k.com> Signed-off-by: Tim Chase <tim@chase2k.com> OpenZFS-issue: https://illumos.org/issues/9075 OpenZFS-commit: https://github.com/openzfs/openzfs/commit/619c0123 Closes #7459
2016-07-22 17:39:36 +03:00
typedef enum spa_config_source {
SPA_CONFIG_SRC_NONE = 0,
SPA_CONFIG_SRC_SCAN, /* scan of path (default: /dev/dsk) */
SPA_CONFIG_SRC_CACHEFILE, /* any cachefile */
SPA_CONFIG_SRC_TRYIMPORT, /* returned from call to tryimport */
SPA_CONFIG_SRC_SPLIT, /* new pool in a pool split */
SPA_CONFIG_SRC_MOS /* MOS, but not always from right txg */
} spa_config_source_t;
2008-11-20 23:01:55 +03:00
struct spa {
/*
* Fields protected by spa_namespace_lock.
*/
char spa_name[ZFS_MAX_DATASET_NAME_LEN]; /* pool name */
char *spa_comment; /* comment */
2008-11-20 23:01:55 +03:00
avl_node_t spa_avl; /* node in spa_namespace_avl */
nvlist_t *spa_config; /* last synced config */
nvlist_t *spa_config_syncing; /* currently syncing config */
nvlist_t *spa_config_splitting; /* config for splitting */
nvlist_t *spa_load_info; /* info and errors from load */
2008-11-20 23:01:55 +03:00
uint64_t spa_config_txg; /* txg of last config change */
int spa_sync_pass; /* iterate-to-convergence */
pool_state_t spa_state; /* pool state */
2008-11-20 23:01:55 +03:00
int spa_inject_ref; /* injection references */
uint8_t spa_sync_on; /* sync threads are running */
spa_load_state_t spa_load_state; /* current load operation */
OpenZFS 7614, 9064 - zfs device evacuation/removal OpenZFS 7614 - zfs device evacuation/removal OpenZFS 9064 - remove_mirror should wait for device removal to complete This project allows top-level vdevs to be removed from the storage pool with "zpool remove", reducing the total amount of storage in the pool. This operation copies all allocated regions of the device to be removed onto other devices, recording the mapping from old to new location. After the removal is complete, read and free operations to the removed (now "indirect") vdev must be remapped and performed at the new location on disk. The indirect mapping table is kept in memory whenever the pool is loaded, so there is minimal performance overhead when doing operations on the indirect vdev. The size of the in-memory mapping table will be reduced when its entries become "obsolete" because they are no longer used by any block pointers in the pool. An entry becomes obsolete when all the blocks that use it are freed. An entry can also become obsolete when all the snapshots that reference it are deleted, and the block pointers that reference it have been "remapped" in all filesystems/zvols (and clones). Whenever an indirect block is written, all the block pointers in it will be "remapped" to their new (concrete) locations if possible. This process can be accelerated by using the "zfs remap" command to proactively rewrite all indirect blocks that reference indirect (removed) vdevs. Note that when a device is removed, we do not verify the checksum of the data that is copied. This makes the process much faster, but if it were used on redundant vdevs (i.e. mirror or raidz vdevs), it would be possible to copy the wrong data, when we have the correct data on e.g. the other side of the mirror. At the moment, only mirrors and simple top-level vdevs can be removed and no removal is allowed if any of the top-level vdevs are raidz. Porting Notes: * Avoid zero-sized kmem_alloc() in vdev_compact_children(). The device evacuation code adds a dependency that vdev_compact_children() be able to properly empty the vdev_child array by setting it to NULL and zeroing vdev_children. Under Linux, kmem_alloc() and related functions return a sentinel pointer rather than NULL for zero-sized allocations. * Remove comment regarding "mpt" driver where zfs_remove_max_segment is initialized to SPA_MAXBLOCKSIZE. Change zfs_condense_indirect_commit_entry_delay_ticks to zfs_condense_indirect_commit_entry_delay_ms for consistency with most other tunables in which delays are specified in ms. * ZTS changes: Use set_tunable rather than mdb Use zpool sync as appropriate Use sync_pool instead of sync Kill jobs during test_removal_with_operation to allow unmount/export Don't add non-disk names such as "mirror" or "raidz" to $DISKS Use $TEST_BASE_DIR instead of /tmp Increase HZ from 100 to 1000 which is more common on Linux removal_multiple_indirection.ksh Reduce iterations in order to not time out on the code coverage builders. removal_resume_export: Functionally, the test case is correct but there exists a race where the kernel thread hasn't been fully started yet and is not visible. Wait for up to 1 second for the removal thread to be started before giving up on it. Also, increase the amount of data copied in order that the removal not finish before the export has a chance to fail. * MMP compatibility, the concept of concrete versus non-concrete devices has slightly changed the semantics of vdev_writeable(). Update mmp_random_leaf_impl() accordingly. * Updated dbuf_remap() to handle the org.zfsonlinux:large_dnode pool feature which is not supported by OpenZFS. * Added support for new vdev removal tracepoints. * Test cases removal_with_zdb and removal_condense_export have been intentionally disabled. When run manually they pass as intended, but when running in the automated test environment they produce unreliable results on the latest Fedora release. They may work better once the upstream pool import refectoring is merged into ZoL at which point they will be re-enabled. Authored by: Matthew Ahrens <mahrens@delphix.com> Reviewed-by: Alex Reece <alex@delphix.com> Reviewed-by: George Wilson <george.wilson@delphix.com> Reviewed-by: John Kennedy <john.kennedy@delphix.com> Reviewed-by: Prakash Surya <prakash.surya@delphix.com> Reviewed by: Richard Laager <rlaager@wiktel.com> Reviewed by: Tim Chase <tim@chase2k.com> Reviewed by: Brian Behlendorf <behlendorf1@llnl.gov> Approved by: Garrett D'Amore <garrett@damore.org> Ported-by: Tim Chase <tim@chase2k.com> Signed-off-by: Tim Chase <tim@chase2k.com> OpenZFS-issue: https://www.illumos.org/issues/7614 OpenZFS-commit: https://github.com/openzfs/openzfs/commit/f539f1eb Closes #6900
2016-09-22 19:30:13 +03:00
boolean_t spa_indirect_vdevs_loaded; /* mappings loaded? */
OpenZFS 9075 - Improve ZFS pool import/load process and corrupted pool recovery Some work has been done lately to improve the debugability of the ZFS pool load (and import) process. This includes: 7638 Refactor spa_load_impl into several functions 8961 SPA load/import should tell us why it failed 7277 zdb should be able to print zfs_dbgmsg's To iterate on top of that, there's a few changes that were made to make the import process more resilient and crash free. One of the first tasks during the pool load process is to parse a config provided from userland that describes what devices the pool is composed of. A vdev tree is generated from that config, and then all the vdevs are opened. The Meta Object Set (MOS) of the pool is accessed, and several metadata objects that are necessary to load the pool are read. The exact configuration of the pool is also stored inside the MOS. Since the configuration provided from userland is external and might not accurately describe the vdev tree of the pool at the txg that is being loaded, it cannot be relied upon to safely operate the pool. For that reason, the configuration in the MOS is read early on. In the past, the two configurations were compared together and if there was a mismatch then the load process was aborted and an error was returned. The latter was a good way to ensure a pool does not get corrupted, however it made the pool load process needlessly fragile in cases where the vdev configuration changed or the userland configuration was outdated. Since the MOS is stored in 3 copies, the configuration provided by userland doesn't have to be perfect in order to read its contents. Hence, a new approach has been adopted: The pool is first opened with the untrusted userland configuration just so that the real configuration can be read from the MOS. The trusted MOS configuration is then used to generate a new vdev tree and the pool is re-opened. When the pool is opened with an untrusted configuration, writes are disabled to avoid accidentally damaging it. During reads, some sanity checks are performed on block pointers to see if each DVA points to a known vdev; when the configuration is untrusted, instead of panicking the system if those checks fail we simply avoid issuing reads to the invalid DVAs. This new two-step pool load process now allows rewinding pools accross vdev tree changes such as device replacement, addition, etc. Loading a pool from an external config file in a clustering environment also becomes much safer now since the pool will import even if the config is outdated and didn't, for instance, register a recent device addition. With this code in place, it became relatively easy to implement a long-sought-after feature: the ability to import a pool with missing top level (i.e. non-redundant) devices. Note that since this almost guarantees some loss of data, this feature is for now restricted to a read-only import. Porting notes (ZTS): * Fix 'make dist' target in zpool_import * The maximum path length allowed by tar is 99 characters. Several of the new test cases exceeded this limit resulting in them not being included in the tarball. Shorten the names slightly. * Set/get tunables using accessor functions. * Get last synced txg via the "zfs_txg_history" mechanism. * Clear zinject handlers in cleanup for import_cache_device_replaced and import_rewind_device_replaced in order that the zpool can be exported if there is an error. * Increase FILESIZE to 8G in zfs-test.sh to allow for a larger ext4 file system to be created on ZFS_DISK2. Also, there's no need to partition ZFS_DISK2 at all. The partitioning had already been disabled for multipath devices. Among other things, the partitioning steals some space from the ext4 file system, makes it difficult to accurately calculate the paramters to parted and can make some of the tests fail. * Increase FS_SIZE and FILE_SIZE in the zpool_import test configuration now that FILESIZE is larger. * Write more data in order that device evacuation take lonnger in a couple tests. * Use mkdir -p to avoid errors when the directory already exists. * Remove use of sudo in import_rewind_config_changed. Authored by: Pavel Zakharov <pavel.zakharov@delphix.com> Reviewed by: George Wilson <george.wilson@delphix.com> Reviewed by: Matthew Ahrens <mahrens@delphix.com> Reviewed by: Andrew Stormont <andyjstormont@gmail.com> Approved by: Hans Rosenfeld <rosenfeld@grumpf.hope-2000.org> Ported-by: Tim Chase <tim@chase2k.com> Signed-off-by: Tim Chase <tim@chase2k.com> OpenZFS-issue: https://illumos.org/issues/9075 OpenZFS-commit: https://github.com/openzfs/openzfs/commit/619c0123 Closes #7459
2016-07-22 17:39:36 +03:00
boolean_t spa_trust_config; /* do we trust vdev tree? */
spa_config_source_t spa_config_source; /* where config comes from? */
uint64_t spa_import_flags; /* import specific flags */
Illumos #3581 spa_zio_taskq[ZIO_TYPE_FREE][ZIO_TASKQ_ISSUE]->tq_lock contention 3581 spa_zio_taskq[ZIO_TYPE_FREE][ZIO_TASKQ_ISSUE]->tq_lock is piping hot Reviewed by: Matthew Ahrens <mahrens@delphix.com> Reviewed by: George Wilson <george.wilson@delphix.com> Reviewed by: Christopher Siden <christopher.siden@delphix.com> Reviewed by: Gordon Ross <gordon.ross@nexenta.com> Approved by: Richard Lowe <richlowe@richlowe.net> References: illumos/illumos-gate@ec94d32 https://illumos.org/issues/3581 Notes for Linux port: Earlier commit 08d08eb reduced contention on this taskq lock by simply reducing the number of z_fr_iss threads from 100 to one-per-CPU. We also optimized the taskq implementation in zfsonlinux/spl@3c6ed54. These changes significantly improved unlink performance to acceptable levels. This patch further reduces time spent spinning on this lock by randomly dispatching the work items over multiple independent task queues. The Illumos ZFS developers stated that this lock contention only arose after "3329 spa_sync() spends 10-20% of its time in spa_free_sync_cb()" was landed. It's not clear if 3329 affects the Linux port or not. I didn't see spa_free_sync_cb() show up in oprofile sessions while unlinking large files, but I may just not have used the right test case. I tested unlinking a 1 TB of data with and without the patch and didn't observe a meaningful difference in elapsed time. However, oprofile showed that the percent time spent in taskq_thread() was reduced from about 16% to about 5%. Aside from a possible slight performance benefit this may be worth landing if only for the sake of maintaining consistency with upstream. Ported-by: Ned Bass <bass6@llnl.gov> Closes #1327
2013-05-06 23:24:30 +04:00
spa_taskqs_t spa_zio_taskq[ZIO_TYPES][ZIO_TASKQ_TYPES];
2008-11-20 23:01:55 +03:00
dsl_pool_t *spa_dsl_pool;
boolean_t spa_is_initializing; /* true while opening pool */
boolean_t spa_is_exporting; /* true while exporting pool */
2008-11-20 23:01:55 +03:00
metaslab_class_t *spa_normal_class; /* normal data class */
metaslab_class_t *spa_log_class; /* intent log data class */
metaslab_class_t *spa_special_class; /* special allocation class */
metaslab_class_t *spa_dedup_class; /* dedup allocation class */
2008-11-20 23:01:55 +03:00
uint64_t spa_first_txg; /* first txg after spa_open() */
uint64_t spa_final_txg; /* txg of export/destroy */
uint64_t spa_freeze_txg; /* freeze pool at this txg */
uint64_t spa_load_max_txg; /* best initial ub_txg */
uint64_t spa_claim_max_txg; /* highest claimed birth txg */
inode_timespec_t spa_loaded_ts; /* 1st successful open time */
2008-11-20 23:01:55 +03:00
objset_t *spa_meta_objset; /* copy of dp->dp_meta_objset */
kmutex_t spa_evicting_os_lock; /* Evicting objset list lock */
list_t spa_evicting_os_list; /* Objsets being evicted. */
kcondvar_t spa_evicting_os_cv; /* Objset Eviction Completion */
2008-11-20 23:01:55 +03:00
txg_list_t spa_vdev_txg_list; /* per-txg dirty vdev list */
vdev_t *spa_root_vdev; /* top-level vdev container */
int spa_min_ashift; /* of vdevs in normal class */
int spa_max_ashift; /* of vdevs in normal class */
uint64_t spa_config_guid; /* config pool guid */
uint64_t spa_load_guid; /* spa_load initialized guid */
uint64_t spa_last_synced_guid; /* last synced guid */
list_t spa_config_dirty_list; /* vdevs with dirty config */
list_t spa_state_dirty_list; /* vdevs with dirty state */
OpenZFS 9112 - Improve allocation performance on high-end systems Overview ======== We parallelize the allocation process by creating the concept of "allocators". There are a certain number of allocators per metaslab group, defined by the value of a tunable at pool open time. Each allocator for a given metaslab group has up to 2 active metaslabs; one "primary", and one "secondary". The primary and secondary weight mean the same thing they did in in the pre-allocator world; primary metaslabs are used for most allocations, secondary metaslabs are used for ditto blocks being allocated in the same metaslab group. There is also the CLAIM weight, which has been separated out from the other weights, but that is less important to understanding the patch. The active metaslabs for each allocator are moved from their normal place in the metaslab tree for the group to the back of the tree. This way, they will not be selected for use by other allocators searching for new metaslabs unless all the passive metaslabs are unsuitable for allocations. If that does happen, the allocators will "steal" from each other to ensure that IOs don't fail until there is truly no space left to perform allocations. In addition, the alloc queue for each metaslab group has been broken into a separate queue for each allocator. We don't want to dramatically increase the number of inflight IOs on low-end systems, because it can significantly increase txg times. On the other hand, we want to ensure that there are enough IOs for each allocator to allow for good coalescing before sending the IOs to the disk. As a result, we take a compromise path; each allocator's alloc queue max depth starts at a certain value for every txg. Every time an IO completes, we increase the max depth. This should hopefully provide a good balance between the two failure modes, while not dramatically increasing complexity. We also parallelize the spa_alloc_tree and spa_alloc_lock, which cause very similar contention when selecting IOs to allocate. This parallelization uses the same allocator scheme as metaslab selection. Performance Results =================== Performance improvements from this change can vary significantly based on the number of CPUs in the system, whether or not the system has a NUMA architecture, the speed of the drives, the values for the various tunables, and the workload being performed. For an fio async sequential write workload on a 24 core NUMA system with 256 GB of RAM and 8 128 GB SSDs, there is a roughly 25% performance improvement. Future Work =========== Analysis of the performance of the system with this patch applied shows that a significant new bottleneck is the vdev disk queues, which also need to be parallelized. Prototyping of this change has occurred, and there was a performance improvement, but more work needs to be done before its stability has been verified and it is ready to be upstreamed. Authored by: Paul Dagnelie <pcd@delphix.com> Reviewed by: Matthew Ahrens <mahrens@delphix.com> Reviewed by: George Wilson <george.wilson@delphix.com> Reviewed by: Serapheim Dimitropoulos <serapheim.dimitro@delphix.com> Reviewed by: Alexander Motin <mav@FreeBSD.org> Reviewed by: Brian Behlendorf <behlendorf1@llnl.gov> Approved by: Gordon Ross <gwr@nexenta.com> Ported-by: Paul Dagnelie <pcd@delphix.com> Signed-off-by: Paul Dagnelie <pcd@delphix.com> Porting Notes: * Fix reservation test failures by increasing tolerance. OpenZFS-issue: https://illumos.org/issues/9112 OpenZFS-commit: https://github.com/openzfs/openzfs/commit/3f3cc3c3 Closes #7682
2018-02-12 23:56:06 +03:00
/*
* spa_alloc_locks and spa_alloc_trees are arrays, whose lengths are
* stored in spa_alloc_count. There is one tree and one lock for each
* allocator, to help improve allocation performance in write-heavy
* workloads.
*/
kmutex_t *spa_alloc_locks;
avl_tree_t *spa_alloc_trees;
int spa_alloc_count;
2008-11-20 23:01:55 +03:00
spa_aux_vdev_t spa_spares; /* hot spares */
spa_aux_vdev_t spa_l2cache; /* L2ARC cache devices */
nvlist_t *spa_label_features; /* Features for reading MOS */
2008-11-20 23:01:55 +03:00
uint64_t spa_config_object; /* MOS object for pool config */
uint64_t spa_config_generation; /* config generation number */
2008-11-20 23:01:55 +03:00
uint64_t spa_syncing_txg; /* txg currently syncing */
bpobj_t spa_deferred_bpobj; /* deferred-free bplist */
bplist_t spa_free_bplist[TXG_SIZE]; /* bplist of stuff to free */
OpenZFS 4185 - add new cryptographic checksums to ZFS: SHA-512, Skein, Edon-R Reviewed by: George Wilson <george.wilson@delphix.com> Reviewed by: Prakash Surya <prakash.surya@delphix.com> Reviewed by: Saso Kiselkov <saso.kiselkov@nexenta.com> Reviewed by: Richard Lowe <richlowe@richlowe.net> Approved by: Garrett D'Amore <garrett@damore.org> Ported by: Tony Hutter <hutter2@llnl.gov> OpenZFS-issue: https://www.illumos.org/issues/4185 OpenZFS-commit: https://github.com/openzfs/openzfs/commit/45818ee Porting Notes: This code is ported on top of the Illumos Crypto Framework code: https://github.com/zfsonlinux/zfs/pull/4329/commits/b5e030c8dbb9cd393d313571dee4756fbba8c22d The list of porting changes includes: - Copied module/icp/include/sha2/sha2.h directly from illumos - Removed from module/icp/algs/sha2/sha2.c: #pragma inline(SHA256Init, SHA384Init, SHA512Init) - Added 'ctx' to lib/libzfs/libzfs_sendrecv.c:zio_checksum_SHA256() since it now takes in an extra parameter. - Added CTASSERT() to assert.h from for module/zfs/edonr_zfs.c - Added skein & edonr to libicp/Makefile.am - Added sha512.S. It was generated from sha512-x86_64.pl in Illumos. - Updated ztest.c with new fletcher_4_*() args; used NULL for new CTX argument. - In icp/algs/edonr/edonr_byteorder.h, Removed the #if defined(__linux) section to not #include the non-existant endian.h. - In skein_test.c, renane NULL to 0 in "no test vector" array entries to get around a compiler warning. - Fixup test files: - Rename <sys/varargs.h> -> <varargs.h>, <strings.h> -> <string.h>, - Remove <note.h> and define NOTE() as NOP. - Define u_longlong_t - Rename "#!/usr/bin/ksh" -> "#!/bin/ksh -p" - Rename NULL to 0 in "no test vector" array entries to get around a compiler warning. - Remove "for isa in $($ISAINFO); do" stuff - Add/update Makefiles - Add some userspace headers like stdio.h/stdlib.h in places of sys/types.h. - EXPORT_SYMBOL *_Init/*_Update/*_Final... routines in ICP modules. - Update scripts/zfs2zol-patch.sed - include <sys/sha2.h> in sha2_impl.h - Add sha2.h to include/sys/Makefile.am - Add skein and edonr dirs to icp Makefile - Add new checksums to zpool_get.cfg - Move checksum switch block from zfs_secpolicy_setprop() to zfs_check_settable() - Fix -Wuninitialized error in edonr_byteorder.h on PPC - Fix stack frame size errors on ARM32 - Don't unroll loops in Skein on 32-bit to save stack space - Add memory barriers in sha2.c on 32-bit to save stack space - Add filetest_001_pos.ksh checksum sanity test - Add option to write psudorandom data in file_write utility
2016-06-16 01:47:05 +03:00
zio_cksum_salt_t spa_cksum_salt; /* secret salt for cksum */
/* checksum context templates */
kmutex_t spa_cksum_tmpls_lock;
void *spa_cksum_tmpls[ZIO_CHECKSUM_FUNCTIONS];
2008-11-20 23:01:55 +03:00
uberblock_t spa_ubsync; /* last synced uberblock */
uberblock_t spa_uberblock; /* current uberblock */
boolean_t spa_extreme_rewind; /* rewind past deferred frees */
2008-11-20 23:01:55 +03:00
kmutex_t spa_scrub_lock; /* resilver/scrub lock */
uint64_t spa_scrub_inflight; /* in-flight scrub bytes */
uint64_t spa_load_verify_ios; /* in-flight verification IOs */
2008-11-20 23:01:55 +03:00
kcondvar_t spa_scrub_io_cv; /* scrub I/O completion */
uint8_t spa_scrub_active; /* active or suspended? */
uint8_t spa_scrub_type; /* type of scrub we're doing */
uint8_t spa_scrub_finished; /* indicator to rotate logs */
uint8_t spa_scrub_started; /* started since last boot */
uint8_t spa_scrub_reopen; /* scrub doing vdev_reopen */
uint64_t spa_scan_pass_start; /* start time per pass/reboot */
uint64_t spa_scan_pass_scrub_pause; /* scrub pause time */
uint64_t spa_scan_pass_scrub_spent_paused; /* total paused */
uint64_t spa_scan_pass_exam; /* examined bytes per pass */
uint64_t spa_scan_pass_issued; /* issued bytes per pass */
/*
* We are in the middle of a resilver, and another resilver
* is needed once this one completes. This is set iff any
* vdev_resilver_deferred is set.
*/
boolean_t spa_resilver_deferred;
2008-11-20 23:01:55 +03:00
kmutex_t spa_async_lock; /* protect async state */
kthread_t *spa_async_thread; /* thread doing async task */
int spa_async_suspended; /* async tasks suspended */
kcondvar_t spa_async_cv; /* wait for thread_exit() */
uint16_t spa_async_tasks; /* async task mask */
OpenZFS 9075 - Improve ZFS pool import/load process and corrupted pool recovery Some work has been done lately to improve the debugability of the ZFS pool load (and import) process. This includes: 7638 Refactor spa_load_impl into several functions 8961 SPA load/import should tell us why it failed 7277 zdb should be able to print zfs_dbgmsg's To iterate on top of that, there's a few changes that were made to make the import process more resilient and crash free. One of the first tasks during the pool load process is to parse a config provided from userland that describes what devices the pool is composed of. A vdev tree is generated from that config, and then all the vdevs are opened. The Meta Object Set (MOS) of the pool is accessed, and several metadata objects that are necessary to load the pool are read. The exact configuration of the pool is also stored inside the MOS. Since the configuration provided from userland is external and might not accurately describe the vdev tree of the pool at the txg that is being loaded, it cannot be relied upon to safely operate the pool. For that reason, the configuration in the MOS is read early on. In the past, the two configurations were compared together and if there was a mismatch then the load process was aborted and an error was returned. The latter was a good way to ensure a pool does not get corrupted, however it made the pool load process needlessly fragile in cases where the vdev configuration changed or the userland configuration was outdated. Since the MOS is stored in 3 copies, the configuration provided by userland doesn't have to be perfect in order to read its contents. Hence, a new approach has been adopted: The pool is first opened with the untrusted userland configuration just so that the real configuration can be read from the MOS. The trusted MOS configuration is then used to generate a new vdev tree and the pool is re-opened. When the pool is opened with an untrusted configuration, writes are disabled to avoid accidentally damaging it. During reads, some sanity checks are performed on block pointers to see if each DVA points to a known vdev; when the configuration is untrusted, instead of panicking the system if those checks fail we simply avoid issuing reads to the invalid DVAs. This new two-step pool load process now allows rewinding pools accross vdev tree changes such as device replacement, addition, etc. Loading a pool from an external config file in a clustering environment also becomes much safer now since the pool will import even if the config is outdated and didn't, for instance, register a recent device addition. With this code in place, it became relatively easy to implement a long-sought-after feature: the ability to import a pool with missing top level (i.e. non-redundant) devices. Note that since this almost guarantees some loss of data, this feature is for now restricted to a read-only import. Porting notes (ZTS): * Fix 'make dist' target in zpool_import * The maximum path length allowed by tar is 99 characters. Several of the new test cases exceeded this limit resulting in them not being included in the tarball. Shorten the names slightly. * Set/get tunables using accessor functions. * Get last synced txg via the "zfs_txg_history" mechanism. * Clear zinject handlers in cleanup for import_cache_device_replaced and import_rewind_device_replaced in order that the zpool can be exported if there is an error. * Increase FILESIZE to 8G in zfs-test.sh to allow for a larger ext4 file system to be created on ZFS_DISK2. Also, there's no need to partition ZFS_DISK2 at all. The partitioning had already been disabled for multipath devices. Among other things, the partitioning steals some space from the ext4 file system, makes it difficult to accurately calculate the paramters to parted and can make some of the tests fail. * Increase FS_SIZE and FILE_SIZE in the zpool_import test configuration now that FILESIZE is larger. * Write more data in order that device evacuation take lonnger in a couple tests. * Use mkdir -p to avoid errors when the directory already exists. * Remove use of sudo in import_rewind_config_changed. Authored by: Pavel Zakharov <pavel.zakharov@delphix.com> Reviewed by: George Wilson <george.wilson@delphix.com> Reviewed by: Matthew Ahrens <mahrens@delphix.com> Reviewed by: Andrew Stormont <andyjstormont@gmail.com> Approved by: Hans Rosenfeld <rosenfeld@grumpf.hope-2000.org> Ported-by: Tim Chase <tim@chase2k.com> Signed-off-by: Tim Chase <tim@chase2k.com> OpenZFS-issue: https://illumos.org/issues/9075 OpenZFS-commit: https://github.com/openzfs/openzfs/commit/619c0123 Closes #7459
2016-07-22 17:39:36 +03:00
uint64_t spa_missing_tvds; /* unopenable tvds on load */
uint64_t spa_missing_tvds_allowed; /* allow loading spa? */
OpenZFS 7614, 9064 - zfs device evacuation/removal OpenZFS 7614 - zfs device evacuation/removal OpenZFS 9064 - remove_mirror should wait for device removal to complete This project allows top-level vdevs to be removed from the storage pool with "zpool remove", reducing the total amount of storage in the pool. This operation copies all allocated regions of the device to be removed onto other devices, recording the mapping from old to new location. After the removal is complete, read and free operations to the removed (now "indirect") vdev must be remapped and performed at the new location on disk. The indirect mapping table is kept in memory whenever the pool is loaded, so there is minimal performance overhead when doing operations on the indirect vdev. The size of the in-memory mapping table will be reduced when its entries become "obsolete" because they are no longer used by any block pointers in the pool. An entry becomes obsolete when all the blocks that use it are freed. An entry can also become obsolete when all the snapshots that reference it are deleted, and the block pointers that reference it have been "remapped" in all filesystems/zvols (and clones). Whenever an indirect block is written, all the block pointers in it will be "remapped" to their new (concrete) locations if possible. This process can be accelerated by using the "zfs remap" command to proactively rewrite all indirect blocks that reference indirect (removed) vdevs. Note that when a device is removed, we do not verify the checksum of the data that is copied. This makes the process much faster, but if it were used on redundant vdevs (i.e. mirror or raidz vdevs), it would be possible to copy the wrong data, when we have the correct data on e.g. the other side of the mirror. At the moment, only mirrors and simple top-level vdevs can be removed and no removal is allowed if any of the top-level vdevs are raidz. Porting Notes: * Avoid zero-sized kmem_alloc() in vdev_compact_children(). The device evacuation code adds a dependency that vdev_compact_children() be able to properly empty the vdev_child array by setting it to NULL and zeroing vdev_children. Under Linux, kmem_alloc() and related functions return a sentinel pointer rather than NULL for zero-sized allocations. * Remove comment regarding "mpt" driver where zfs_remove_max_segment is initialized to SPA_MAXBLOCKSIZE. Change zfs_condense_indirect_commit_entry_delay_ticks to zfs_condense_indirect_commit_entry_delay_ms for consistency with most other tunables in which delays are specified in ms. * ZTS changes: Use set_tunable rather than mdb Use zpool sync as appropriate Use sync_pool instead of sync Kill jobs during test_removal_with_operation to allow unmount/export Don't add non-disk names such as "mirror" or "raidz" to $DISKS Use $TEST_BASE_DIR instead of /tmp Increase HZ from 100 to 1000 which is more common on Linux removal_multiple_indirection.ksh Reduce iterations in order to not time out on the code coverage builders. removal_resume_export: Functionally, the test case is correct but there exists a race where the kernel thread hasn't been fully started yet and is not visible. Wait for up to 1 second for the removal thread to be started before giving up on it. Also, increase the amount of data copied in order that the removal not finish before the export has a chance to fail. * MMP compatibility, the concept of concrete versus non-concrete devices has slightly changed the semantics of vdev_writeable(). Update mmp_random_leaf_impl() accordingly. * Updated dbuf_remap() to handle the org.zfsonlinux:large_dnode pool feature which is not supported by OpenZFS. * Added support for new vdev removal tracepoints. * Test cases removal_with_zdb and removal_condense_export have been intentionally disabled. When run manually they pass as intended, but when running in the automated test environment they produce unreliable results on the latest Fedora release. They may work better once the upstream pool import refectoring is merged into ZoL at which point they will be re-enabled. Authored by: Matthew Ahrens <mahrens@delphix.com> Reviewed-by: Alex Reece <alex@delphix.com> Reviewed-by: George Wilson <george.wilson@delphix.com> Reviewed-by: John Kennedy <john.kennedy@delphix.com> Reviewed-by: Prakash Surya <prakash.surya@delphix.com> Reviewed by: Richard Laager <rlaager@wiktel.com> Reviewed by: Tim Chase <tim@chase2k.com> Reviewed by: Brian Behlendorf <behlendorf1@llnl.gov> Approved by: Garrett D'Amore <garrett@damore.org> Ported-by: Tim Chase <tim@chase2k.com> Signed-off-by: Tim Chase <tim@chase2k.com> OpenZFS-issue: https://www.illumos.org/issues/7614 OpenZFS-commit: https://github.com/openzfs/openzfs/commit/f539f1eb Closes #6900
2016-09-22 19:30:13 +03:00
spa_removing_phys_t spa_removing_phys;
spa_vdev_removal_t *spa_vdev_removal;
spa_condensing_indirect_phys_t spa_condensing_indirect_phys;
spa_condensing_indirect_t *spa_condensing_indirect;
OpenZFS 9079 - race condition in starting and ending condensing thread for indirect vdevs The timeline of the race condition is the following: [1] Thread A is about to finish condesing the first vdev in spa_condense_indirect_thread(), so it calls the spa_condense_indirect_complete_sync() sync task which sets the spa_condensing_indirect field to NULL. Waiting for the sync task to finish, thread A sleeps until the txg is done. When this happens, thread A will acquire spa_async_lock and set spa_condense_thread to NULL. [2] While thread A waits for the txg to finish, thread B which is running spa_sync() checks whether it should condense the second vdev in vdev_indirect_should_condense() by checking the spa_condensing_indirect field which was set to NULL by spa_condense_indirect_thread() from thread A. So it goes on and tries to spawn a new condensing thread in spa_condense_indirect_start_sync() and the aforementioned assertions fails because thread A has not set spa_condense_thread to NULL (which is basically the last thing it does before returning). The main issue here is that we rely on both spa_condensing_indirect and spa_condense_thread to signify whether a condensing thread is running. Ideally we would only use one throughout the codebase. In addition, for managing spa_condense_thread we currently use spa_async_lock which basically tights condensing to scrubing when it comes to pausing and resuming those actions during spa export. This commit introduces the ZTHR infrastructure, which is basically threads created during spa_load()/spa_create() and exist until we export or destroy the pool. ZTHRs sleep the majority of the time, until they are notified to wake up and do some predefined type of work. In the context of the current bug, a zthr to does the condensing of indirect mappings replacing the older code that used bare kthreads. When a pool is created, the condensing zthr is spawned but sleeps right away, until it is awaken by a signal from spa_sync(). If an existing pool is loaded, the condensing zthr looks if there is anything to condense before going to sleep, in case we were condensing mappings in the pool before it got exported. The benefits of this solution are the following: - The current bug is fixed - spa_condensing_indirect is the sole indicator of whether we are currently condensing or not - condensing is more decoupled from the spa_async_thread related functionality. As a final note, this commit also sets up the path on upstreaming other features that use the ZTHR code like zpool checkpoint and fast clone deletion. Authored by: Serapheim Dimitropoulos <serapheim@delphix.com> Reviewed by: Matt Ahrens <mahrens@delphix.com> Reviewed by: Pavel Zakharov <pavel.zakharov@delphix.com> Approved by: Hans Rosenfeld <rosenfeld@grumpf.hope-2000.org> Ported-by: Tim Chase <tim@chase2k.com> OpenZFS-issue: https://illumos.org/issues/9079 OpenZFS-commit: https://github.com/openzfs/openzfs/commit/3dc606ee Closes #6900
2017-03-16 02:41:52 +03:00
zthr_t *spa_condense_zthr; /* zthr doing condense. */
OpenZFS 7614, 9064 - zfs device evacuation/removal OpenZFS 7614 - zfs device evacuation/removal OpenZFS 9064 - remove_mirror should wait for device removal to complete This project allows top-level vdevs to be removed from the storage pool with "zpool remove", reducing the total amount of storage in the pool. This operation copies all allocated regions of the device to be removed onto other devices, recording the mapping from old to new location. After the removal is complete, read and free operations to the removed (now "indirect") vdev must be remapped and performed at the new location on disk. The indirect mapping table is kept in memory whenever the pool is loaded, so there is minimal performance overhead when doing operations on the indirect vdev. The size of the in-memory mapping table will be reduced when its entries become "obsolete" because they are no longer used by any block pointers in the pool. An entry becomes obsolete when all the blocks that use it are freed. An entry can also become obsolete when all the snapshots that reference it are deleted, and the block pointers that reference it have been "remapped" in all filesystems/zvols (and clones). Whenever an indirect block is written, all the block pointers in it will be "remapped" to their new (concrete) locations if possible. This process can be accelerated by using the "zfs remap" command to proactively rewrite all indirect blocks that reference indirect (removed) vdevs. Note that when a device is removed, we do not verify the checksum of the data that is copied. This makes the process much faster, but if it were used on redundant vdevs (i.e. mirror or raidz vdevs), it would be possible to copy the wrong data, when we have the correct data on e.g. the other side of the mirror. At the moment, only mirrors and simple top-level vdevs can be removed and no removal is allowed if any of the top-level vdevs are raidz. Porting Notes: * Avoid zero-sized kmem_alloc() in vdev_compact_children(). The device evacuation code adds a dependency that vdev_compact_children() be able to properly empty the vdev_child array by setting it to NULL and zeroing vdev_children. Under Linux, kmem_alloc() and related functions return a sentinel pointer rather than NULL for zero-sized allocations. * Remove comment regarding "mpt" driver where zfs_remove_max_segment is initialized to SPA_MAXBLOCKSIZE. Change zfs_condense_indirect_commit_entry_delay_ticks to zfs_condense_indirect_commit_entry_delay_ms for consistency with most other tunables in which delays are specified in ms. * ZTS changes: Use set_tunable rather than mdb Use zpool sync as appropriate Use sync_pool instead of sync Kill jobs during test_removal_with_operation to allow unmount/export Don't add non-disk names such as "mirror" or "raidz" to $DISKS Use $TEST_BASE_DIR instead of /tmp Increase HZ from 100 to 1000 which is more common on Linux removal_multiple_indirection.ksh Reduce iterations in order to not time out on the code coverage builders. removal_resume_export: Functionally, the test case is correct but there exists a race where the kernel thread hasn't been fully started yet and is not visible. Wait for up to 1 second for the removal thread to be started before giving up on it. Also, increase the amount of data copied in order that the removal not finish before the export has a chance to fail. * MMP compatibility, the concept of concrete versus non-concrete devices has slightly changed the semantics of vdev_writeable(). Update mmp_random_leaf_impl() accordingly. * Updated dbuf_remap() to handle the org.zfsonlinux:large_dnode pool feature which is not supported by OpenZFS. * Added support for new vdev removal tracepoints. * Test cases removal_with_zdb and removal_condense_export have been intentionally disabled. When run manually they pass as intended, but when running in the automated test environment they produce unreliable results on the latest Fedora release. They may work better once the upstream pool import refectoring is merged into ZoL at which point they will be re-enabled. Authored by: Matthew Ahrens <mahrens@delphix.com> Reviewed-by: Alex Reece <alex@delphix.com> Reviewed-by: George Wilson <george.wilson@delphix.com> Reviewed-by: John Kennedy <john.kennedy@delphix.com> Reviewed-by: Prakash Surya <prakash.surya@delphix.com> Reviewed by: Richard Laager <rlaager@wiktel.com> Reviewed by: Tim Chase <tim@chase2k.com> Reviewed by: Brian Behlendorf <behlendorf1@llnl.gov> Approved by: Garrett D'Amore <garrett@damore.org> Ported-by: Tim Chase <tim@chase2k.com> Signed-off-by: Tim Chase <tim@chase2k.com> OpenZFS-issue: https://www.illumos.org/issues/7614 OpenZFS-commit: https://github.com/openzfs/openzfs/commit/f539f1eb Closes #6900
2016-09-22 19:30:13 +03:00
OpenZFS 9166 - zfs storage pool checkpoint Details about the motivation of this feature and its usage can be found in this blogpost: https://sdimitro.github.io/post/zpool-checkpoint/ A lightning talk of this feature can be found here: https://www.youtube.com/watch?v=fPQA8K40jAM Implementation details can be found in big block comment of spa_checkpoint.c Side-changes that are relevant to this commit but not explained elsewhere: * renames members of "struct metaslab trees to be shorter without losing meaning * space_map_{alloc,truncate}() accept a block size as a parameter. The reason is that in the current state all space maps that we allocate through the DMU use a global tunable (space_map_blksz) which defauls to 4KB. This is ok for metaslab space maps in terms of bandwirdth since they are scattered all over the disk. But for other space maps this default is probably not what we want. Examples are device removal's vdev_obsolete_sm or vdev_chedkpoint_sm from this review. Both of these have a 1:1 relationship with each vdev and could benefit from a bigger block size. Porting notes: * The part of dsl_scan_sync() which handles async destroys has been moved into the new dsl_process_async_destroys() function. * Remove "VERIFY(!(flags & FWRITE))" in "kernel.c" so zhack can write to block device backed pools. * ZTS: * Fix get_txg() in zpool_sync_001_pos due to "checkpoint_txg". * Don't use large dd block sizes on /dev/urandom under Linux in checkpoint_capacity. * Adopt Delphix-OS's setting of 4 (spa_asize_inflation = SPA_DVAS_PER_BP + 1) for the checkpoint_capacity test to speed its attempts to fill the pool * Create the base and nested pools with sync=disabled to speed up the "setup" phase. * Clear labels in test pool between checkpoint tests to avoid duplicate pool issues. * The import_rewind_device_replaced test has been marked as "known to fail" for the reasons listed in its DISCLAIMER. * New module parameters: zfs_spa_discard_memory_limit, zfs_remove_max_bytes_pause (not documented - debugging only) vdev_max_ms_count (formerly metaslabs_per_vdev) vdev_min_ms_count Authored by: Serapheim Dimitropoulos <serapheim.dimitro@delphix.com> Reviewed by: Matthew Ahrens <mahrens@delphix.com> Reviewed by: John Kennedy <john.kennedy@delphix.com> Reviewed by: Dan Kimmel <dan.kimmel@delphix.com> Reviewed by: Brian Behlendorf <behlendorf1@llnl.gov> Approved by: Richard Lowe <richlowe@richlowe.net> Ported-by: Tim Chase <tim@chase2k.com> Signed-off-by: Tim Chase <tim@chase2k.com> OpenZFS-issue: https://illumos.org/issues/9166 OpenZFS-commit: https://github.com/openzfs/openzfs/commit/7159fdb8 Closes #7570
2016-12-17 01:11:29 +03:00
uint64_t spa_checkpoint_txg; /* the txg of the checkpoint */
spa_checkpoint_info_t spa_checkpoint_info; /* checkpoint accounting */
zthr_t *spa_checkpoint_discard_zthr;
2008-11-20 23:01:55 +03:00
char *spa_root; /* alternate root directory */
uint64_t spa_ena; /* spa-wide ereport ENA */
int spa_last_open_failed; /* error if last open failed */
uint64_t spa_last_ubsync_txg; /* "best" uberblock txg */
uint64_t spa_last_ubsync_txg_ts; /* timestamp from that ub */
uint64_t spa_load_txg; /* ub txg that loaded */
uint64_t spa_load_txg_ts; /* timestamp from that ub */
uint64_t spa_load_meta_errors; /* verify metadata err count */
uint64_t spa_load_data_errors; /* verify data err count */
uint64_t spa_verify_min_txg; /* start txg of verify scrub */
2008-11-20 23:01:55 +03:00
kmutex_t spa_errlog_lock; /* error log lock */
uint64_t spa_errlog_last; /* last error log object */
uint64_t spa_errlog_scrub; /* scrub error log object */
kmutex_t spa_errlist_lock; /* error list/ereport lock */
avl_tree_t spa_errlist_last; /* last error list */
avl_tree_t spa_errlist_scrub; /* scrub error list */
uint64_t spa_deflate; /* should we deflate? */
uint64_t spa_history; /* history object */
kmutex_t spa_history_lock; /* history lock */
vdev_t *spa_pending_vdev; /* pending vdev additions */
kmutex_t spa_props_lock; /* property lock */
uint64_t spa_pool_props_object; /* object for properties */
uint64_t spa_bootfs; /* default boot filesystem */
uint64_t spa_failmode; /* failure mode for the pool */
Extend deadman logic The intent of this patch is extend the existing deadman code such that it's flexible enough to be used by both ztest and on production systems. The proposed changes include: * Added a new `zfs_deadman_failmode` module option which is used to dynamically control the behavior of the deadman. It's loosely modeled after, but independant from, the pool failmode property. It can be set to wait, continue, or panic. * wait - Wait for the "hung" I/O (default) * continue - Attempt to recover from a "hung" I/O * panic - Panic the system * Added a new `zfs_deadman_ziotime_ms` module option which is analogous to `zfs_deadman_synctime_ms` except instead of applying to a pool TXG sync it applies to zio_wait(). A default value of 300s is used to define a "hung" zio. * The ztest deadman thread has been re-enabled by default, aligned with the upstream OpenZFS code, and then extended to terminate the process when it takes significantly longer to complete than expected. * The -G option was added to ztest to print the internal debug log when a fatal error is encountered. This same option was previously added to zdb in commit fa603f82. Update zloop.sh to unconditionally pass -G to obtain additional debugging. * The FM_EREPORT_ZFS_DELAY event which was previously posted when the deadman detect a "hung" pool has been replaced by a new dedicated FM_EREPORT_ZFS_DEADMAN event. * The proposed recovery logic attempts to restart a "hung" zio by calling zio_interrupt() on any outstanding leaf zios. We may want to further restrict this to zios in either the ZIO_STAGE_VDEV_IO_START or ZIO_STAGE_VDEV_IO_DONE stages. Calling zio_interrupt() is expected to only be useful for cases when an IO has been submitted to the physical device but for some reasonable the completion callback hasn't been called by the lower layers. This shouldn't be possible but has been observed and may be caused by kernel/driver bugs. * The 'zfs_deadman_synctime_ms' default value was reduced from 1000s to 600s. * Depending on how ztest fails there may be no cache file to move. This should not be considered fatal, collect the logs which are available and carry on. * Add deadman test cases for spa_deadman() and zio_wait(). * Increase default zfs_deadman_checktime_ms to 60s. Reviewed-by: Tim Chase <tim@chase2k.com> Reviewed by: Thomas Caputi <tcaputi@datto.com> Reviewed-by: Giuseppe Di Natale <dinatale2@llnl.gov> Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov> Closes #6999
2017-12-19 01:06:07 +03:00
uint64_t spa_deadman_failmode; /* failure mode for deadman */
uint64_t spa_delegation; /* delegation on/off */
list_t spa_config_list; /* previous cache file(s) */
/* per-CPU array of root of async I/O: */
zio_t **spa_async_zio_root;
zio_t *spa_suspend_zio_root; /* root of all suspended I/O */
OpenZFS 7614, 9064 - zfs device evacuation/removal OpenZFS 7614 - zfs device evacuation/removal OpenZFS 9064 - remove_mirror should wait for device removal to complete This project allows top-level vdevs to be removed from the storage pool with "zpool remove", reducing the total amount of storage in the pool. This operation copies all allocated regions of the device to be removed onto other devices, recording the mapping from old to new location. After the removal is complete, read and free operations to the removed (now "indirect") vdev must be remapped and performed at the new location on disk. The indirect mapping table is kept in memory whenever the pool is loaded, so there is minimal performance overhead when doing operations on the indirect vdev. The size of the in-memory mapping table will be reduced when its entries become "obsolete" because they are no longer used by any block pointers in the pool. An entry becomes obsolete when all the blocks that use it are freed. An entry can also become obsolete when all the snapshots that reference it are deleted, and the block pointers that reference it have been "remapped" in all filesystems/zvols (and clones). Whenever an indirect block is written, all the block pointers in it will be "remapped" to their new (concrete) locations if possible. This process can be accelerated by using the "zfs remap" command to proactively rewrite all indirect blocks that reference indirect (removed) vdevs. Note that when a device is removed, we do not verify the checksum of the data that is copied. This makes the process much faster, but if it were used on redundant vdevs (i.e. mirror or raidz vdevs), it would be possible to copy the wrong data, when we have the correct data on e.g. the other side of the mirror. At the moment, only mirrors and simple top-level vdevs can be removed and no removal is allowed if any of the top-level vdevs are raidz. Porting Notes: * Avoid zero-sized kmem_alloc() in vdev_compact_children(). The device evacuation code adds a dependency that vdev_compact_children() be able to properly empty the vdev_child array by setting it to NULL and zeroing vdev_children. Under Linux, kmem_alloc() and related functions return a sentinel pointer rather than NULL for zero-sized allocations. * Remove comment regarding "mpt" driver where zfs_remove_max_segment is initialized to SPA_MAXBLOCKSIZE. Change zfs_condense_indirect_commit_entry_delay_ticks to zfs_condense_indirect_commit_entry_delay_ms for consistency with most other tunables in which delays are specified in ms. * ZTS changes: Use set_tunable rather than mdb Use zpool sync as appropriate Use sync_pool instead of sync Kill jobs during test_removal_with_operation to allow unmount/export Don't add non-disk names such as "mirror" or "raidz" to $DISKS Use $TEST_BASE_DIR instead of /tmp Increase HZ from 100 to 1000 which is more common on Linux removal_multiple_indirection.ksh Reduce iterations in order to not time out on the code coverage builders. removal_resume_export: Functionally, the test case is correct but there exists a race where the kernel thread hasn't been fully started yet and is not visible. Wait for up to 1 second for the removal thread to be started before giving up on it. Also, increase the amount of data copied in order that the removal not finish before the export has a chance to fail. * MMP compatibility, the concept of concrete versus non-concrete devices has slightly changed the semantics of vdev_writeable(). Update mmp_random_leaf_impl() accordingly. * Updated dbuf_remap() to handle the org.zfsonlinux:large_dnode pool feature which is not supported by OpenZFS. * Added support for new vdev removal tracepoints. * Test cases removal_with_zdb and removal_condense_export have been intentionally disabled. When run manually they pass as intended, but when running in the automated test environment they produce unreliable results on the latest Fedora release. They may work better once the upstream pool import refectoring is merged into ZoL at which point they will be re-enabled. Authored by: Matthew Ahrens <mahrens@delphix.com> Reviewed-by: Alex Reece <alex@delphix.com> Reviewed-by: George Wilson <george.wilson@delphix.com> Reviewed-by: John Kennedy <john.kennedy@delphix.com> Reviewed-by: Prakash Surya <prakash.surya@delphix.com> Reviewed by: Richard Laager <rlaager@wiktel.com> Reviewed by: Tim Chase <tim@chase2k.com> Reviewed by: Brian Behlendorf <behlendorf1@llnl.gov> Approved by: Garrett D'Amore <garrett@damore.org> Ported-by: Tim Chase <tim@chase2k.com> Signed-off-by: Tim Chase <tim@chase2k.com> OpenZFS-issue: https://www.illumos.org/issues/7614 OpenZFS-commit: https://github.com/openzfs/openzfs/commit/f539f1eb Closes #6900
2016-09-22 19:30:13 +03:00
zio_t *spa_txg_zio[TXG_SIZE]; /* spa_sync() waits for this */
kmutex_t spa_suspend_lock; /* protects suspend_zio_root */
kcondvar_t spa_suspend_cv; /* notification of resume */
zio_suspend_reason_t spa_suspended; /* pool is suspended */
uint8_t spa_claiming; /* pool is doing zil_claim() */
boolean_t spa_is_root; /* pool is root */
int spa_minref; /* num refs when first opened */
2009-01-16 00:59:39 +03:00
int spa_mode; /* FREAD | FWRITE */
spa_log_state_t spa_log_state; /* log state */
2009-07-03 02:44:48 +04:00
uint64_t spa_autoexpand; /* lun expansion on/off */
ddt_t *spa_ddt[ZIO_CHECKSUM_FUNCTIONS]; /* in-core DDTs */
uint64_t spa_ddt_stat_object; /* DDT statistics */
uint64_t spa_dedup_dspace; /* Cache get_dedup_dspace() */
uint64_t spa_dedup_ditto; /* dedup ditto threshold */
uint64_t spa_dedup_checksum; /* default dedup checksum */
uint64_t spa_dspace; /* dspace in normal class */
kmutex_t spa_vdev_top_lock; /* dueling offline/remove */
kmutex_t spa_proc_lock; /* protects spa_proc* */
kcondvar_t spa_proc_cv; /* spa_proc_state transitions */
spa_proc_state_t spa_proc_state; /* see definition */
proc_t *spa_proc; /* "zpool-poolname" process */
uint64_t spa_did; /* if procp != p0, did of t1 */
boolean_t spa_autoreplace; /* autoreplace set in open */
int spa_vdev_locks; /* locks grabbed */
uint64_t spa_creation_version; /* version at pool creation */
uint64_t spa_prev_software_version; /* See ub_software_version */
uint64_t spa_feat_for_write_obj; /* required to write to pool */
uint64_t spa_feat_for_read_obj; /* required to read from pool */
uint64_t spa_feat_desc_obj; /* Feature descriptions */
uint64_t spa_feat_enabled_txg_obj; /* Feature enabled txg */
kmutex_t spa_feat_stats_lock; /* protects spa_feat_stats */
nvlist_t *spa_feat_stats; /* Cache of enabled features */
/* cache feature refcounts */
uint64_t spa_feat_refcount_cache[SPA_FEATURES];
taskqid_t spa_deadman_tqid; /* Task id */
uint64_t spa_deadman_calls; /* number of deadman calls */
Illumos #4045 write throttle & i/o scheduler performance work 4045 zfs write throttle & i/o scheduler performance work 1. The ZFS i/o scheduler (vdev_queue.c) now divides i/os into 5 classes: sync read, sync write, async read, async write, and scrub/resilver. The scheduler issues a number of concurrent i/os from each class to the device. Once a class has been selected, an i/o is selected from this class using either an elevator algorithem (async, scrub classes) or FIFO (sync classes). The number of concurrent async write i/os is tuned dynamically based on i/o load, to achieve good sync i/o latency when there is not a high load of writes, and good write throughput when there is. See the block comment in vdev_queue.c (reproduced below) for more details. 2. The write throttle (dsl_pool_tempreserve_space() and txg_constrain_throughput()) is rewritten to produce much more consistent delays when under constant load. The new write throttle is based on the amount of dirty data, rather than guesses about future performance of the system. When there is a lot of dirty data, each transaction (e.g. write() syscall) will be delayed by the same small amount. This eliminates the "brick wall of wait" that the old write throttle could hit, causing all transactions to wait several seconds until the next txg opens. One of the keys to the new write throttle is decrementing the amount of dirty data as i/o completes, rather than at the end of spa_sync(). Note that the write throttle is only applied once the i/o scheduler is issuing the maximum number of outstanding async writes. See the block comments in dsl_pool.c and above dmu_tx_delay() (reproduced below) for more details. This diff has several other effects, including: * the commonly-tuned global variable zfs_vdev_max_pending has been removed; use per-class zfs_vdev_*_max_active values or zfs_vdev_max_active instead. * the size of each txg (meaning the amount of dirty data written, and thus the time it takes to write out) is now controlled differently. There is no longer an explicit time goal; the primary determinant is amount of dirty data. Systems that are under light or medium load will now often see that a txg is always syncing, but the impact to performance (e.g. read latency) is minimal. Tune zfs_dirty_data_max and zfs_dirty_data_sync to control this. * zio_taskq_batch_pct = 75 -- Only use 75% of all CPUs for compression, checksum, etc. This improves latency by not allowing these CPU-intensive tasks to consume all CPU (on machines with at least 4 CPU's; the percentage is rounded up). --matt APPENDIX: problems with the current i/o scheduler The current ZFS i/o scheduler (vdev_queue.c) is deadline based. The problem with this is that if there are always i/os pending, then certain classes of i/os can see very long delays. For example, if there are always synchronous reads outstanding, then no async writes will be serviced until they become "past due". One symptom of this situation is that each pass of the txg sync takes at least several seconds (typically 3 seconds). If many i/os become "past due" (their deadline is in the past), then we must service all of these overdue i/os before any new i/os. This happens when we enqueue a batch of async writes for the txg sync, with deadlines 2.5 seconds in the future. If we can't complete all the i/os in 2.5 seconds (e.g. because there were always reads pending), then these i/os will become past due. Now we must service all the "async" writes (which could be hundreds of megabytes) before we service any reads, introducing considerable latency to synchronous i/os (reads or ZIL writes). Notes on porting to ZFS on Linux: - zio_t gained new members io_physdone and io_phys_children. Because object caches in the Linux port call the constructor only once at allocation time, objects may contain residual data when retrieved from the cache. Therefore zio_create() was updated to zero out the two new fields. - vdev_mirror_pending() relied on the depth of the per-vdev pending queue (vq->vq_pending_tree) to select the least-busy leaf vdev to read from. This tree has been replaced by vq->vq_active_tree which is now used for the same purpose. - vdev_queue_init() used the value of zfs_vdev_max_pending to determine the number of vdev I/O buffers to pre-allocate. That global no longer exists, so we instead use the sum of the *_max_active values for each of the five I/O classes described above. - The Illumos implementation of dmu_tx_delay() delays a transaction by sleeping in condition variable embedded in the thread (curthread->t_delay_cv). We do not have an equivalent CV to use in Linux, so this change replaced the delay logic with a wrapper called zfs_sleep_until(). This wrapper could be adopted upstream and in other downstream ports to abstract away operating system-specific delay logic. - These tunables are added as module parameters, and descriptions added to the zfs-module-parameters.5 man page. spa_asize_inflation zfs_deadman_synctime_ms zfs_vdev_max_active zfs_vdev_async_write_active_min_dirty_percent zfs_vdev_async_write_active_max_dirty_percent zfs_vdev_async_read_max_active zfs_vdev_async_read_min_active zfs_vdev_async_write_max_active zfs_vdev_async_write_min_active zfs_vdev_scrub_max_active zfs_vdev_scrub_min_active zfs_vdev_sync_read_max_active zfs_vdev_sync_read_min_active zfs_vdev_sync_write_max_active zfs_vdev_sync_write_min_active zfs_dirty_data_max_percent zfs_delay_min_dirty_percent zfs_dirty_data_max_max_percent zfs_dirty_data_max zfs_dirty_data_max_max zfs_dirty_data_sync zfs_delay_scale The latter four have type unsigned long, whereas they are uint64_t in Illumos. This accommodates Linux's module_param() supported types, but means they may overflow on 32-bit architectures. The values zfs_dirty_data_max and zfs_dirty_data_max_max are the most likely to overflow on 32-bit systems, since they express physical RAM sizes in bytes. In fact, Illumos initializes zfs_dirty_data_max_max to 2^32 which does overflow. To resolve that, this port instead initializes it in arc_init() to 25% of physical RAM, and adds the tunable zfs_dirty_data_max_max_percent to override that percentage. While this solution doesn't completely avoid the overflow issue, it should be a reasonable default for most systems, and the minority of affected systems can work around the issue by overriding the defaults. - Fixed reversed logic in comment above zfs_delay_scale declaration. - Clarified comments in vdev_queue.c regarding when per-queue minimums take effect. - Replaced dmu_tx_write_limit in the dmu_tx kstat file with dmu_tx_dirty_delay and dmu_tx_dirty_over_max. The first counts how many times a transaction has been delayed because the pool dirty data has exceeded zfs_delay_min_dirty_percent. The latter counts how many times the pool dirty data has exceeded zfs_dirty_data_max (which we expect to never happen). - The original patch would have regressed the bug fixed in zfsonlinux/zfs@c418410, which prevented users from setting the zfs_vdev_aggregation_limit tuning larger than SPA_MAXBLOCKSIZE. A similar fix is added to vdev_queue_aggregate(). - In vdev_queue_io_to_issue(), dynamically allocate 'zio_t search' on the heap instead of the stack. In Linux we can't afford such large structures on the stack. Reviewed by: George Wilson <george.wilson@delphix.com> Reviewed by: Adam Leventhal <ahl@delphix.com> Reviewed by: Christopher Siden <christopher.siden@delphix.com> Reviewed by: Ned Bass <bass6@llnl.gov> Reviewed by: Brendan Gregg <brendan.gregg@joyent.com> Approved by: Robert Mustacchi <rm@joyent.com> References: http://www.illumos.org/issues/4045 illumos/illumos-gate@69962b5647e4a8b9b14998733b765925381b727e Ported-by: Ned Bass <bass6@llnl.gov> Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov> Closes #1913
2013-08-29 07:01:20 +04:00
hrtime_t spa_sync_starttime; /* starting time of spa_sync */
Extend deadman logic The intent of this patch is extend the existing deadman code such that it's flexible enough to be used by both ztest and on production systems. The proposed changes include: * Added a new `zfs_deadman_failmode` module option which is used to dynamically control the behavior of the deadman. It's loosely modeled after, but independant from, the pool failmode property. It can be set to wait, continue, or panic. * wait - Wait for the "hung" I/O (default) * continue - Attempt to recover from a "hung" I/O * panic - Panic the system * Added a new `zfs_deadman_ziotime_ms` module option which is analogous to `zfs_deadman_synctime_ms` except instead of applying to a pool TXG sync it applies to zio_wait(). A default value of 300s is used to define a "hung" zio. * The ztest deadman thread has been re-enabled by default, aligned with the upstream OpenZFS code, and then extended to terminate the process when it takes significantly longer to complete than expected. * The -G option was added to ztest to print the internal debug log when a fatal error is encountered. This same option was previously added to zdb in commit fa603f82. Update zloop.sh to unconditionally pass -G to obtain additional debugging. * The FM_EREPORT_ZFS_DELAY event which was previously posted when the deadman detect a "hung" pool has been replaced by a new dedicated FM_EREPORT_ZFS_DEADMAN event. * The proposed recovery logic attempts to restart a "hung" zio by calling zio_interrupt() on any outstanding leaf zios. We may want to further restrict this to zios in either the ZIO_STAGE_VDEV_IO_START or ZIO_STAGE_VDEV_IO_DONE stages. Calling zio_interrupt() is expected to only be useful for cases when an IO has been submitted to the physical device but for some reasonable the completion callback hasn't been called by the lower layers. This shouldn't be possible but has been observed and may be caused by kernel/driver bugs. * The 'zfs_deadman_synctime_ms' default value was reduced from 1000s to 600s. * Depending on how ztest fails there may be no cache file to move. This should not be considered fatal, collect the logs which are available and carry on. * Add deadman test cases for spa_deadman() and zio_wait(). * Increase default zfs_deadman_checktime_ms to 60s. Reviewed-by: Tim Chase <tim@chase2k.com> Reviewed by: Thomas Caputi <tcaputi@datto.com> Reviewed-by: Giuseppe Di Natale <dinatale2@llnl.gov> Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov> Closes #6999
2017-12-19 01:06:07 +03:00
uint64_t spa_deadman_synctime; /* deadman sync expiration */
uint64_t spa_deadman_ziotime; /* deadman zio expiration */
uint64_t spa_all_vdev_zaps; /* ZAP of per-vd ZAP obj #s */
spa_avz_action_t spa_avz_action; /* destroy/rebuild AVZ? */
Add TRIM support UNMAP/TRIM support is a frequently-requested feature to help prevent performance from degrading on SSDs and on various other SAN-like storage back-ends. By issuing UNMAP/TRIM commands for sectors which are no longer allocated the underlying device can often more efficiently manage itself. This TRIM implementation is modeled on the `zpool initialize` feature which writes a pattern to all unallocated space in the pool. The new `zpool trim` command uses the same vdev_xlate() code to calculate what sectors are unallocated, the same per- vdev TRIM thread model and locking, and the same basic CLI for a consistent user experience. The core difference is that instead of writing a pattern it will issue UNMAP/TRIM commands for those extents. The zio pipeline was updated to accommodate this by adding a new ZIO_TYPE_TRIM type and associated spa taskq. This new type makes is straight forward to add the platform specific TRIM/UNMAP calls to vdev_disk.c and vdev_file.c. These new ZIO_TYPE_TRIM zios are handled largely the same way as ZIO_TYPE_READs or ZIO_TYPE_WRITEs. This makes it possible to largely avoid changing the pipieline, one exception is that TRIM zio's may exceed the 16M block size limit since they contain no data. In addition to the manual `zpool trim` command, a background automatic TRIM was added and is controlled by the 'autotrim' property. It relies on the exact same infrastructure as the manual TRIM. However, instead of relying on the extents in a metaslab's ms_allocatable range tree, a ms_trim tree is kept per metaslab. When 'autotrim=on', ranges added back to the ms_allocatable tree are also added to the ms_free tree. The ms_free tree is then periodically consumed by an autotrim thread which systematically walks a top level vdev's metaslabs. Since the automatic TRIM will skip ranges it considers too small there is value in occasionally running a full `zpool trim`. This may occur when the freed blocks are small and not enough time was allowed to aggregate them. An automatic TRIM and a manual `zpool trim` may be run concurrently, in which case the automatic TRIM will yield to the manual TRIM. Reviewed-by: Jorgen Lundman <lundman@lundman.net> Reviewed-by: Tim Chase <tim@chase2k.com> Reviewed-by: Matt Ahrens <mahrens@delphix.com> Reviewed-by: George Wilson <george.wilson@delphix.com> Reviewed-by: Serapheim Dimitropoulos <serapheim@delphix.com> Contributions-by: Saso Kiselkov <saso.kiselkov@nexenta.com> Contributions-by: Tim Chase <tim@chase2k.com> Contributions-by: Chunwei Chen <tuxoko@gmail.com> Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov> Closes #8419 Closes #598
2019-03-29 19:13:20 +03:00
uint64_t spa_autotrim; /* automatic background trim? */
Add generic errata infrastructure From time to time it may be necessary to inform the pool administrator about an errata which impacts their pool. These errata will by shown to the administrator through the 'zpool status' and 'zpool import' output as appropriate. The errata must clearly describe the issue detected, how the pool is impacted, and what action should be taken to resolve the situation. Additional information for each errata will be provided at http://zfsonlinux.org/msg/ZFS-8000-ER. To accomplish the above this patch adds the required infrastructure to allow the kernel modules to notify the utilities that an errata has been detected. This is done through the ZPOOL_CONFIG_ERRATA uint64_t which has been added to the pool configuration nvlist. To add a new errata the following changes must be made: * A new errata identifier must be assigned by adding a new enum value to the zpool_errata_t type. New enums must be added to the end to preserve the existing ordering. * Code must be added to detect the issue. This does not strictly need to be done at pool import time but doing so will make the errata visible in 'zpool import' as well as 'zpool status'. Once detected the spa->spa_errata member should be set to the new enum. * If possible code should be added to clear the spa->spa_errata member once the errata has been resolved. * The show_import() and status_callback() functions must be updated to include an informational message describing the errata. This should include an action message describing what an administrator should do to address the errata. * The documentation at http://zfsonlinux.org/msg/ZFS-8000-ER must be updated to describe the errata. This space can be used to provide as much additional information as needed to fully describe the errata. A link to this documentation will be automatically generated in the output of 'zpool import' and 'zpool status'. Original-idea-by: Tim Chase <tim@chase2k.com> Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov> Signed-off-by: Tim Chase <tim@chase2k.com> Signed-off-by: Richard Yao <ryao@gentoo.or Issue #2094
2014-02-21 07:57:17 +04:00
uint64_t spa_errata; /* errata issues detected */
Add visibility in to arc_read This change is an attempt to add visibility into the arc_read calls occurring on a system, in real time. To do this, a list was added to the in memory SPA data structure for a pool, with each element on the list corresponding to a call to arc_read. These entries are then exported through the kstat interface, which can then be interpreted in userspace. For each arc_read call, the following information is exported: * A unique identifier (uint64_t) * The time the entry was added to the list (hrtime_t) (*not* wall clock time; relative to the other entries on the list) * The objset ID (uint64_t) * The object number (uint64_t) * The indirection level (uint64_t) * The block ID (uint64_t) * The name of the function originating the arc_read call (char[24]) * The arc_flags from the arc_read call (uint32_t) * The PID of the reading thread (pid_t) * The command or name of thread originating read (char[16]) From this exported information one can see, in real time, exactly what is being read, what function is generating the read, and whether or not the read was found to be already cached. There is still some work to be done, but this should serve as a good starting point. Specifically, dbuf_read's are not accounted for in the currently exported information. Thus, a follow up patch should probably be added to export these calls that never call into arc_read (they only hit the dbuf hash table). In addition, it might be nice to create a utility similar to "arcstat.py" to digest the exported information and display it in a more readable format. Or perhaps, log the information and allow for it to be "replayed" at a later time. Signed-off-by: Prakash Surya <surya1@llnl.gov> Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
2013-09-07 03:09:05 +04:00
spa_stats_t spa_stats; /* assorted spa statistics */
Native Encryption for ZFS on Linux This change incorporates three major pieces: The first change is a keystore that manages wrapping and encryption keys for encrypted datasets. These commands mostly involve manipulating the new DSL Crypto Key ZAP Objects that live in the MOS. Each encrypted dataset has its own DSL Crypto Key that is protected with a user's key. This level of indirection allows users to change their keys without re-encrypting their entire datasets. The change implements the new subcommands "zfs load-key", "zfs unload-key" and "zfs change-key" which allow the user to manage their encryption keys and settings. In addition, several new flags and properties have been added to allow dataset creation and to make mounting and unmounting more convenient. The second piece of this patch provides the ability to encrypt, decyrpt, and authenticate protected datasets. Each object set maintains a Merkel tree of Message Authentication Codes that protect the lower layers, similarly to how checksums are maintained. This part impacts the zio layer, which handles the actual encryption and generation of MACs, as well as the ARC and DMU, which need to be able to handle encrypted buffers and protected data. The last addition is the ability to do raw, encrypted sends and receives. The idea here is to send raw encrypted and compressed data and receive it exactly as is on a backup system. This means that the dataset on the receiving system is protected using the same user key that is in use on the sending side. By doing so, datasets can be efficiently backed up to an untrusted system without fear of data being compromised. Reviewed by: Matthew Ahrens <mahrens@delphix.com> Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov> Reviewed-by: Jorgen Lundman <lundman@lundman.net> Signed-off-by: Tom Caputi <tcaputi@datto.com> Closes #494 Closes #5769
2017-08-14 20:36:48 +03:00
spa_keystore_t spa_keystore; /* loaded crypto keys */
/* arc_memory_throttle() parameters during low memory condition */
uint64_t spa_lowmem_page_load; /* memory load during txg */
uint64_t spa_lowmem_last_txg; /* txg window start */
hrtime_t spa_ccw_fail_time; /* Conf cache write fail time */
taskq_t *spa_zvol_taskq; /* Taskq for minor management */
taskq_t *spa_prefetch_taskq; /* Taskq for prefetch threads */
Multi-modifier protection (MMP) Add multihost=on|off pool property to control MMP. When enabled a new thread writes uberblocks to the last slot in each label, at a set frequency, to indicate to other hosts the pool is actively imported. These uberblocks are the last synced uberblock with an updated timestamp. Property defaults to off. During tryimport, find the "best" uberblock (newest txg and timestamp) repeatedly, checking for change in the found uberblock. Include the results of the activity test in the config returned by tryimport. These results are reported to user in "zpool import". Allow the user to control the period between MMP writes, and the duration of the activity test on import, via a new module parameter zfs_multihost_interval. The period is specified in milliseconds. The activity test duration is calculated from this value, and from the mmp_delay in the "best" uberblock found initially. Add a kstat interface to export statistics about Multiple Modifier Protection (MMP) updates. Include the last synced txg number, the timestamp, the delay since the last MMP update, the VDEV GUID, the VDEV label that received the last MMP update, and the VDEV path. Abbreviated output below. $ cat /proc/spl/kstat/zfs/mypool/multihost 31 0 0x01 10 880 105092382393521 105144180101111 txg timestamp mmp_delay vdev_guid vdev_label vdev_path 20468 261337 250274925 68396651780 3 /dev/sda 20468 261339 252023374 6267402363293 1 /dev/sdc 20468 261340 252000858 6698080955233 1 /dev/sdx 20468 261341 251980635 783892869810 2 /dev/sdy 20468 261342 253385953 8923255792467 3 /dev/sdd 20468 261344 253336622 042125143176 0 /dev/sdab 20468 261345 253310522 1200778101278 2 /dev/sde 20468 261346 253286429 0950576198362 2 /dev/sdt 20468 261347 253261545 96209817917 3 /dev/sds 20468 261349 253238188 8555725937673 3 /dev/sdb Add a new tunable zfs_multihost_history to specify the number of MMP updates to store history for. By default it is set to zero meaning that no MMP statistics are stored. When using ztest to generate activity, for automated tests of the MMP function, some test functions interfere with the test. For example, the pool is exported to run zdb and then imported again. Add a new ztest function, "-M", to alter ztest behavior to prevent this. Add new tests to verify the new functionality. Tests provided by Giuseppe Di Natale. Reviewed by: Matthew Ahrens <mahrens@delphix.com> Reviewed-by: Giuseppe Di Natale <dinatale2@llnl.gov> Reviewed-by: Ned Bass <bass6@llnl.gov> Reviewed-by: Andreas Dilger <andreas.dilger@intel.com> Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov> Signed-off-by: Olaf Faaland <faaland1@llnl.gov> Closes #745 Closes #6279
2017-07-08 06:20:35 +03:00
uint64_t spa_multihost; /* multihost aware (mmp) */
mmp_thread_t spa_mmp; /* multihost mmp thread */
MMP writes rotate over leaves Instead of choosing a leaf vdev quasi-randomly, by starting at the root vdev and randomly choosing children, rotate over leaves to issue MMP writes. This fixes an issue in a pool whose top-level vdevs have different numbers of leaves. The issue is that the frequency at which individual leaves are chosen for MMP writes is based not on the total number of leaves but based on how many siblings the leaves have. For example, in a pool like this: root-vdev +------+---------------+ vdev1 vdev2 | | | +------+-----+-----+----+ disk1 disk2 disk3 disk4 disk5 disk6 vdev1 and vdev2 will each be chosen 50% of the time. Every time vdev1 is chosen, disk1 will be chosen. However, every time vdev2 is chosen, disk2 is chosen 20% of the time. As a result, disk1 will be sent 5x as many MMP writes as disk2. This may create wear issues in the case of SSDs. It also reduces the effectiveness of MMP as it depends on the writes being evenly distributed for the case where some devices fail or are partitioned. The new code maintains a list of leaf vdevs in the pool. MMP records the last leaf used for an MMP write in mmp->mmp_last_leaf. To choose the next leaf, MMP starts at mmp->mmp_last_leaf and traverses the list, continuing from the head if the tail is reached. It stops when a suitable leaf is found or all leaves have been examined. Added a test to verify MMP write distribution is even. Reviewed-by: Tom Caputi <tcaputi@datto.com> Reviewed-by: Kash Pande <kash@tripleback.net> Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov> Reviewed-by: loli10K <ezomori.nozomu@gmail.com> Signed-off-by: Olaf Faaland <faaland1@llnl.gov> Closes #7953
2019-03-12 20:37:06 +03:00
list_t spa_leaf_list; /* list of leaf vdevs */
uint64_t spa_leaf_list_gen; /* track leaf_list changes */
Add visibility in to arc_read This change is an attempt to add visibility into the arc_read calls occurring on a system, in real time. To do this, a list was added to the in memory SPA data structure for a pool, with each element on the list corresponding to a call to arc_read. These entries are then exported through the kstat interface, which can then be interpreted in userspace. For each arc_read call, the following information is exported: * A unique identifier (uint64_t) * The time the entry was added to the list (hrtime_t) (*not* wall clock time; relative to the other entries on the list) * The objset ID (uint64_t) * The object number (uint64_t) * The indirection level (uint64_t) * The block ID (uint64_t) * The name of the function originating the arc_read call (char[24]) * The arc_flags from the arc_read call (uint32_t) * The PID of the reading thread (pid_t) * The command or name of thread originating read (char[16]) From this exported information one can see, in real time, exactly what is being read, what function is generating the read, and whether or not the read was found to be already cached. There is still some work to be done, but this should serve as a good starting point. Specifically, dbuf_read's are not accounted for in the currently exported information. Thus, a follow up patch should probably be added to export these calls that never call into arc_read (they only hit the dbuf hash table). In addition, it might be nice to create a utility similar to "arcstat.py" to digest the exported information and display it in a more readable format. Or perhaps, log the information and allow for it to be "replayed" at a later time. Signed-off-by: Prakash Surya <surya1@llnl.gov> Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
2013-09-07 03:09:05 +04:00
2008-11-20 23:01:55 +03:00
/*
* spa_refcount & spa_config_lock must be the last elements
* because zfs_refcount_t changes size based on compilation options.
2008-11-20 23:01:55 +03:00
* In order for the MDB module to function correctly, the other
* fields must remain in the same location.
*/
spa_config_lock_t spa_config_lock[SCL_LOCKS]; /* config changes */
zfs_refcount_t spa_refcount; /* number of opens */
taskq_t *spa_upgrade_taskq; /* taskq for upgrade jobs */
2008-11-20 23:01:55 +03:00
};
extern char *spa_config_path;
Illumos #3581 spa_zio_taskq[ZIO_TYPE_FREE][ZIO_TASKQ_ISSUE]->tq_lock contention 3581 spa_zio_taskq[ZIO_TYPE_FREE][ZIO_TASKQ_ISSUE]->tq_lock is piping hot Reviewed by: Matthew Ahrens <mahrens@delphix.com> Reviewed by: George Wilson <george.wilson@delphix.com> Reviewed by: Christopher Siden <christopher.siden@delphix.com> Reviewed by: Gordon Ross <gordon.ross@nexenta.com> Approved by: Richard Lowe <richlowe@richlowe.net> References: illumos/illumos-gate@ec94d32 https://illumos.org/issues/3581 Notes for Linux port: Earlier commit 08d08eb reduced contention on this taskq lock by simply reducing the number of z_fr_iss threads from 100 to one-per-CPU. We also optimized the taskq implementation in zfsonlinux/spl@3c6ed54. These changes significantly improved unlink performance to acceptable levels. This patch further reduces time spent spinning on this lock by randomly dispatching the work items over multiple independent task queues. The Illumos ZFS developers stated that this lock contention only arose after "3329 spa_sync() spends 10-20% of its time in spa_free_sync_cb()" was landed. It's not clear if 3329 affects the Linux port or not. I didn't see spa_free_sync_cb() show up in oprofile sessions while unlinking large files, but I may just not have used the right test case. I tested unlinking a 1 TB of data with and without the patch and didn't observe a meaningful difference in elapsed time. However, oprofile showed that the percent time spent in taskq_thread() was reduced from about 16% to about 5%. Aside from a possible slight performance benefit this may be worth landing if only for the sake of maintaining consistency with upstream. Ported-by: Ned Bass <bass6@llnl.gov> Closes #1327
2013-05-06 23:24:30 +04:00
extern void spa_taskq_dispatch_ent(spa_t *spa, zio_type_t t, zio_taskq_type_t q,
task_func_t *func, void *arg, uint_t flags, taskq_ent_t *ent);
extern void spa_taskq_dispatch_sync(spa_t *, zio_type_t t, zio_taskq_type_t q,
task_func_t *func, void *arg, uint_t flags);
OpenZFS 7614, 9064 - zfs device evacuation/removal OpenZFS 7614 - zfs device evacuation/removal OpenZFS 9064 - remove_mirror should wait for device removal to complete This project allows top-level vdevs to be removed from the storage pool with "zpool remove", reducing the total amount of storage in the pool. This operation copies all allocated regions of the device to be removed onto other devices, recording the mapping from old to new location. After the removal is complete, read and free operations to the removed (now "indirect") vdev must be remapped and performed at the new location on disk. The indirect mapping table is kept in memory whenever the pool is loaded, so there is minimal performance overhead when doing operations on the indirect vdev. The size of the in-memory mapping table will be reduced when its entries become "obsolete" because they are no longer used by any block pointers in the pool. An entry becomes obsolete when all the blocks that use it are freed. An entry can also become obsolete when all the snapshots that reference it are deleted, and the block pointers that reference it have been "remapped" in all filesystems/zvols (and clones). Whenever an indirect block is written, all the block pointers in it will be "remapped" to their new (concrete) locations if possible. This process can be accelerated by using the "zfs remap" command to proactively rewrite all indirect blocks that reference indirect (removed) vdevs. Note that when a device is removed, we do not verify the checksum of the data that is copied. This makes the process much faster, but if it were used on redundant vdevs (i.e. mirror or raidz vdevs), it would be possible to copy the wrong data, when we have the correct data on e.g. the other side of the mirror. At the moment, only mirrors and simple top-level vdevs can be removed and no removal is allowed if any of the top-level vdevs are raidz. Porting Notes: * Avoid zero-sized kmem_alloc() in vdev_compact_children(). The device evacuation code adds a dependency that vdev_compact_children() be able to properly empty the vdev_child array by setting it to NULL and zeroing vdev_children. Under Linux, kmem_alloc() and related functions return a sentinel pointer rather than NULL for zero-sized allocations. * Remove comment regarding "mpt" driver where zfs_remove_max_segment is initialized to SPA_MAXBLOCKSIZE. Change zfs_condense_indirect_commit_entry_delay_ticks to zfs_condense_indirect_commit_entry_delay_ms for consistency with most other tunables in which delays are specified in ms. * ZTS changes: Use set_tunable rather than mdb Use zpool sync as appropriate Use sync_pool instead of sync Kill jobs during test_removal_with_operation to allow unmount/export Don't add non-disk names such as "mirror" or "raidz" to $DISKS Use $TEST_BASE_DIR instead of /tmp Increase HZ from 100 to 1000 which is more common on Linux removal_multiple_indirection.ksh Reduce iterations in order to not time out on the code coverage builders. removal_resume_export: Functionally, the test case is correct but there exists a race where the kernel thread hasn't been fully started yet and is not visible. Wait for up to 1 second for the removal thread to be started before giving up on it. Also, increase the amount of data copied in order that the removal not finish before the export has a chance to fail. * MMP compatibility, the concept of concrete versus non-concrete devices has slightly changed the semantics of vdev_writeable(). Update mmp_random_leaf_impl() accordingly. * Updated dbuf_remap() to handle the org.zfsonlinux:large_dnode pool feature which is not supported by OpenZFS. * Added support for new vdev removal tracepoints. * Test cases removal_with_zdb and removal_condense_export have been intentionally disabled. When run manually they pass as intended, but when running in the automated test environment they produce unreliable results on the latest Fedora release. They may work better once the upstream pool import refectoring is merged into ZoL at which point they will be re-enabled. Authored by: Matthew Ahrens <mahrens@delphix.com> Reviewed-by: Alex Reece <alex@delphix.com> Reviewed-by: George Wilson <george.wilson@delphix.com> Reviewed-by: John Kennedy <john.kennedy@delphix.com> Reviewed-by: Prakash Surya <prakash.surya@delphix.com> Reviewed by: Richard Laager <rlaager@wiktel.com> Reviewed by: Tim Chase <tim@chase2k.com> Reviewed by: Brian Behlendorf <behlendorf1@llnl.gov> Approved by: Garrett D'Amore <garrett@damore.org> Ported-by: Tim Chase <tim@chase2k.com> Signed-off-by: Tim Chase <tim@chase2k.com> OpenZFS-issue: https://www.illumos.org/issues/7614 OpenZFS-commit: https://github.com/openzfs/openzfs/commit/f539f1eb Closes #6900
2016-09-22 19:30:13 +03:00
extern void spa_load_spares(spa_t *spa);
extern void spa_load_l2cache(spa_t *spa);
extern sysevent_t *spa_event_create(spa_t *spa, vdev_t *vd, nvlist_t *hist_nvl,
const char *name);
extern void spa_event_post(sysevent_t *ev);
Illumos #3581 spa_zio_taskq[ZIO_TYPE_FREE][ZIO_TASKQ_ISSUE]->tq_lock contention 3581 spa_zio_taskq[ZIO_TYPE_FREE][ZIO_TASKQ_ISSUE]->tq_lock is piping hot Reviewed by: Matthew Ahrens <mahrens@delphix.com> Reviewed by: George Wilson <george.wilson@delphix.com> Reviewed by: Christopher Siden <christopher.siden@delphix.com> Reviewed by: Gordon Ross <gordon.ross@nexenta.com> Approved by: Richard Lowe <richlowe@richlowe.net> References: illumos/illumos-gate@ec94d32 https://illumos.org/issues/3581 Notes for Linux port: Earlier commit 08d08eb reduced contention on this taskq lock by simply reducing the number of z_fr_iss threads from 100 to one-per-CPU. We also optimized the taskq implementation in zfsonlinux/spl@3c6ed54. These changes significantly improved unlink performance to acceptable levels. This patch further reduces time spent spinning on this lock by randomly dispatching the work items over multiple independent task queues. The Illumos ZFS developers stated that this lock contention only arose after "3329 spa_sync() spends 10-20% of its time in spa_free_sync_cb()" was landed. It's not clear if 3329 affects the Linux port or not. I didn't see spa_free_sync_cb() show up in oprofile sessions while unlinking large files, but I may just not have used the right test case. I tested unlinking a 1 TB of data with and without the patch and didn't observe a meaningful difference in elapsed time. However, oprofile showed that the percent time spent in taskq_thread() was reduced from about 16% to about 5%. Aside from a possible slight performance benefit this may be worth landing if only for the sake of maintaining consistency with upstream. Ported-by: Ned Bass <bass6@llnl.gov> Closes #1327
2013-05-06 23:24:30 +04:00
2008-11-20 23:01:55 +03:00
#ifdef __cplusplus
}
#endif
#endif /* _SYS_SPA_IMPL_H */