mirror of
https://git.proxmox.com/git/mirror_zfs.git
synced 2024-12-31 21:39:36 +03:00
922 lines
28 KiB
C
922 lines
28 KiB
C
|
/*
|
||
|
* Implementation of the Skein hash function.
|
||
|
* Source code author: Doug Whiting, 2008.
|
||
|
* This algorithm and source code is released to the public domain.
|
||
|
*/
|
||
|
/* Copyright 2013 Doug Whiting. This code is released to the public domain. */
|
||
|
|
||
|
#define SKEIN_PORT_CODE /* instantiate any code in skein_port.h */
|
||
|
|
||
|
#include <sys/types.h>
|
||
|
#include <sys/note.h>
|
||
|
#include <sys/skein.h> /* get the Skein API definitions */
|
||
|
#include "skein_impl.h" /* get internal definitions */
|
||
|
|
||
|
/* External function to process blkCnt (nonzero) full block(s) of data. */
|
||
|
void Skein_256_Process_Block(Skein_256_Ctxt_t *ctx, const uint8_t *blkPtr,
|
||
|
size_t blkCnt, size_t byteCntAdd);
|
||
|
void Skein_512_Process_Block(Skein_512_Ctxt_t *ctx, const uint8_t *blkPtr,
|
||
|
size_t blkCnt, size_t byteCntAdd);
|
||
|
void Skein1024_Process_Block(Skein1024_Ctxt_t *ctx, const uint8_t *blkPtr,
|
||
|
size_t blkCnt, size_t byteCntAdd);
|
||
|
|
||
|
/* 256-bit Skein */
|
||
|
/* init the context for a straight hashing operation */
|
||
|
int
|
||
|
Skein_256_Init(Skein_256_Ctxt_t *ctx, size_t hashBitLen)
|
||
|
{
|
||
|
union {
|
||
|
uint8_t b[SKEIN_256_STATE_BYTES];
|
||
|
uint64_t w[SKEIN_256_STATE_WORDS];
|
||
|
} cfg; /* config block */
|
||
|
|
||
|
Skein_Assert(hashBitLen > 0, SKEIN_BAD_HASHLEN);
|
||
|
ctx->h.hashBitLen = hashBitLen; /* output hash bit count */
|
||
|
|
||
|
switch (hashBitLen) { /* use pre-computed values, where available */
|
||
|
#ifndef SKEIN_NO_PRECOMP
|
||
|
case 256:
|
||
|
bcopy(SKEIN_256_IV_256, ctx->X, sizeof (ctx->X));
|
||
|
break;
|
||
|
case 224:
|
||
|
bcopy(SKEIN_256_IV_224, ctx->X, sizeof (ctx->X));
|
||
|
break;
|
||
|
case 160:
|
||
|
bcopy(SKEIN_256_IV_160, ctx->X, sizeof (ctx->X));
|
||
|
break;
|
||
|
case 128:
|
||
|
bcopy(SKEIN_256_IV_128, ctx->X, sizeof (ctx->X));
|
||
|
break;
|
||
|
#endif
|
||
|
default:
|
||
|
/* here if there is no precomputed IV value available */
|
||
|
/*
|
||
|
* build/process the config block, type == CONFIG (could be
|
||
|
* precomputed)
|
||
|
*/
|
||
|
/* set tweaks: T0=0; T1=CFG | FINAL */
|
||
|
Skein_Start_New_Type(ctx, CFG_FINAL);
|
||
|
|
||
|
/* set the schema, version */
|
||
|
cfg.w[0] = Skein_Swap64(SKEIN_SCHEMA_VER);
|
||
|
/* hash result length in bits */
|
||
|
cfg.w[1] = Skein_Swap64(hashBitLen);
|
||
|
cfg.w[2] = Skein_Swap64(SKEIN_CFG_TREE_INFO_SEQUENTIAL);
|
||
|
/* zero pad config block */
|
||
|
bzero(&cfg.w[3], sizeof (cfg) - 3 * sizeof (cfg.w[0]));
|
||
|
|
||
|
/* compute the initial chaining values from config block */
|
||
|
/* zero the chaining variables */
|
||
|
bzero(ctx->X, sizeof (ctx->X));
|
||
|
Skein_256_Process_Block(ctx, cfg.b, 1, SKEIN_CFG_STR_LEN);
|
||
|
break;
|
||
|
}
|
||
|
/*
|
||
|
* The chaining vars ctx->X are now initialized for the given
|
||
|
* hashBitLen.
|
||
|
* Set up to process the data message portion of the hash (default)
|
||
|
*/
|
||
|
Skein_Start_New_Type(ctx, MSG); /* T0=0, T1= MSG type */
|
||
|
|
||
|
return (SKEIN_SUCCESS);
|
||
|
}
|
||
|
|
||
|
/* init the context for a MAC and/or tree hash operation */
|
||
|
/*
|
||
|
* [identical to Skein_256_Init() when keyBytes == 0 &&
|
||
|
* treeInfo == SKEIN_CFG_TREE_INFO_SEQUENTIAL]
|
||
|
*/
|
||
|
int
|
||
|
Skein_256_InitExt(Skein_256_Ctxt_t *ctx, size_t hashBitLen, uint64_t treeInfo,
|
||
|
const uint8_t *key, size_t keyBytes)
|
||
|
{
|
||
|
union {
|
||
|
uint8_t b[SKEIN_256_STATE_BYTES];
|
||
|
uint64_t w[SKEIN_256_STATE_WORDS];
|
||
|
} cfg; /* config block */
|
||
|
|
||
|
Skein_Assert(hashBitLen > 0, SKEIN_BAD_HASHLEN);
|
||
|
Skein_Assert(keyBytes == 0 || key != NULL, SKEIN_FAIL);
|
||
|
|
||
|
/* compute the initial chaining values ctx->X[], based on key */
|
||
|
if (keyBytes == 0) { /* is there a key? */
|
||
|
/* no key: use all zeroes as key for config block */
|
||
|
bzero(ctx->X, sizeof (ctx->X));
|
||
|
} else { /* here to pre-process a key */
|
||
|
|
||
|
Skein_assert(sizeof (cfg.b) >= sizeof (ctx->X));
|
||
|
/* do a mini-Init right here */
|
||
|
/* set output hash bit count = state size */
|
||
|
ctx->h.hashBitLen = 8 * sizeof (ctx->X);
|
||
|
/* set tweaks: T0 = 0; T1 = KEY type */
|
||
|
Skein_Start_New_Type(ctx, KEY);
|
||
|
/* zero the initial chaining variables */
|
||
|
bzero(ctx->X, sizeof (ctx->X));
|
||
|
/* hash the key */
|
||
|
(void) Skein_256_Update(ctx, key, keyBytes);
|
||
|
/* put result into cfg.b[] */
|
||
|
(void) Skein_256_Final_Pad(ctx, cfg.b);
|
||
|
/* copy over into ctx->X[] */
|
||
|
bcopy(cfg.b, ctx->X, sizeof (cfg.b));
|
||
|
#if SKEIN_NEED_SWAP
|
||
|
{
|
||
|
uint_t i;
|
||
|
/* convert key bytes to context words */
|
||
|
for (i = 0; i < SKEIN_256_STATE_WORDS; i++)
|
||
|
ctx->X[i] = Skein_Swap64(ctx->X[i]);
|
||
|
}
|
||
|
#endif
|
||
|
}
|
||
|
/*
|
||
|
* build/process the config block, type == CONFIG (could be
|
||
|
* precomputed for each key)
|
||
|
*/
|
||
|
ctx->h.hashBitLen = hashBitLen; /* output hash bit count */
|
||
|
Skein_Start_New_Type(ctx, CFG_FINAL);
|
||
|
|
||
|
bzero(&cfg.w, sizeof (cfg.w)); /* pre-pad cfg.w[] with zeroes */
|
||
|
cfg.w[0] = Skein_Swap64(SKEIN_SCHEMA_VER);
|
||
|
cfg.w[1] = Skein_Swap64(hashBitLen); /* hash result length in bits */
|
||
|
/* tree hash config info (or SKEIN_CFG_TREE_INFO_SEQUENTIAL) */
|
||
|
cfg.w[2] = Skein_Swap64(treeInfo);
|
||
|
|
||
|
Skein_Show_Key(256, &ctx->h, key, keyBytes);
|
||
|
|
||
|
/* compute the initial chaining values from config block */
|
||
|
Skein_256_Process_Block(ctx, cfg.b, 1, SKEIN_CFG_STR_LEN);
|
||
|
|
||
|
/* The chaining vars ctx->X are now initialized */
|
||
|
/* Set up to process the data message portion of the hash (default) */
|
||
|
ctx->h.bCnt = 0; /* buffer b[] starts out empty */
|
||
|
Skein_Start_New_Type(ctx, MSG);
|
||
|
|
||
|
return (SKEIN_SUCCESS);
|
||
|
}
|
||
|
|
||
|
/* process the input bytes */
|
||
|
int
|
||
|
Skein_256_Update(Skein_256_Ctxt_t *ctx, const uint8_t *msg, size_t msgByteCnt)
|
||
|
{
|
||
|
size_t n;
|
||
|
|
||
|
/* catch uninitialized context */
|
||
|
Skein_Assert(ctx->h.bCnt <= SKEIN_256_BLOCK_BYTES, SKEIN_FAIL);
|
||
|
|
||
|
/* process full blocks, if any */
|
||
|
if (msgByteCnt + ctx->h.bCnt > SKEIN_256_BLOCK_BYTES) {
|
||
|
/* finish up any buffered message data */
|
||
|
if (ctx->h.bCnt) {
|
||
|
/* # bytes free in buffer b[] */
|
||
|
n = SKEIN_256_BLOCK_BYTES - ctx->h.bCnt;
|
||
|
if (n) {
|
||
|
/* check on our logic here */
|
||
|
Skein_assert(n < msgByteCnt);
|
||
|
bcopy(msg, &ctx->b[ctx->h.bCnt], n);
|
||
|
msgByteCnt -= n;
|
||
|
msg += n;
|
||
|
ctx->h.bCnt += n;
|
||
|
}
|
||
|
Skein_assert(ctx->h.bCnt == SKEIN_256_BLOCK_BYTES);
|
||
|
Skein_256_Process_Block(ctx, ctx->b, 1,
|
||
|
SKEIN_256_BLOCK_BYTES);
|
||
|
ctx->h.bCnt = 0;
|
||
|
}
|
||
|
/*
|
||
|
* now process any remaining full blocks, directly from input
|
||
|
* message data
|
||
|
*/
|
||
|
if (msgByteCnt > SKEIN_256_BLOCK_BYTES) {
|
||
|
/* number of full blocks to process */
|
||
|
n = (msgByteCnt - 1) / SKEIN_256_BLOCK_BYTES;
|
||
|
Skein_256_Process_Block(ctx, msg, n,
|
||
|
SKEIN_256_BLOCK_BYTES);
|
||
|
msgByteCnt -= n * SKEIN_256_BLOCK_BYTES;
|
||
|
msg += n * SKEIN_256_BLOCK_BYTES;
|
||
|
}
|
||
|
Skein_assert(ctx->h.bCnt == 0);
|
||
|
}
|
||
|
|
||
|
/* copy any remaining source message data bytes into b[] */
|
||
|
if (msgByteCnt) {
|
||
|
Skein_assert(msgByteCnt + ctx->h.bCnt <= SKEIN_256_BLOCK_BYTES);
|
||
|
bcopy(msg, &ctx->b[ctx->h.bCnt], msgByteCnt);
|
||
|
ctx->h.bCnt += msgByteCnt;
|
||
|
}
|
||
|
|
||
|
return (SKEIN_SUCCESS);
|
||
|
}
|
||
|
|
||
|
/* finalize the hash computation and output the result */
|
||
|
int
|
||
|
Skein_256_Final(Skein_256_Ctxt_t *ctx, uint8_t *hashVal)
|
||
|
{
|
||
|
size_t i, n, byteCnt;
|
||
|
uint64_t X[SKEIN_256_STATE_WORDS];
|
||
|
|
||
|
/* catch uninitialized context */
|
||
|
Skein_Assert(ctx->h.bCnt <= SKEIN_256_BLOCK_BYTES, SKEIN_FAIL);
|
||
|
|
||
|
ctx->h.T[1] |= SKEIN_T1_FLAG_FINAL; /* tag as the final block */
|
||
|
/* zero pad b[] if necessary */
|
||
|
if (ctx->h.bCnt < SKEIN_256_BLOCK_BYTES)
|
||
|
bzero(&ctx->b[ctx->h.bCnt],
|
||
|
SKEIN_256_BLOCK_BYTES - ctx->h.bCnt);
|
||
|
|
||
|
/* process the final block */
|
||
|
Skein_256_Process_Block(ctx, ctx->b, 1, ctx->h.bCnt);
|
||
|
|
||
|
/* now output the result */
|
||
|
/* total number of output bytes */
|
||
|
byteCnt = (ctx->h.hashBitLen + 7) >> 3;
|
||
|
|
||
|
/* run Threefish in "counter mode" to generate output */
|
||
|
/* zero out b[], so it can hold the counter */
|
||
|
bzero(ctx->b, sizeof (ctx->b));
|
||
|
/* keep a local copy of counter mode "key" */
|
||
|
bcopy(ctx->X, X, sizeof (X));
|
||
|
for (i = 0; i * SKEIN_256_BLOCK_BYTES < byteCnt; i++) {
|
||
|
/* build the counter block */
|
||
|
uint64_t tmp = Skein_Swap64((uint64_t)i);
|
||
|
bcopy(&tmp, ctx->b, sizeof (tmp));
|
||
|
Skein_Start_New_Type(ctx, OUT_FINAL);
|
||
|
/* run "counter mode" */
|
||
|
Skein_256_Process_Block(ctx, ctx->b, 1, sizeof (uint64_t));
|
||
|
/* number of output bytes left to go */
|
||
|
n = byteCnt - i * SKEIN_256_BLOCK_BYTES;
|
||
|
if (n >= SKEIN_256_BLOCK_BYTES)
|
||
|
n = SKEIN_256_BLOCK_BYTES;
|
||
|
Skein_Put64_LSB_First(hashVal + i * SKEIN_256_BLOCK_BYTES,
|
||
|
ctx->X, n); /* "output" the ctr mode bytes */
|
||
|
Skein_Show_Final(256, &ctx->h, n,
|
||
|
hashVal + i * SKEIN_256_BLOCK_BYTES);
|
||
|
/* restore the counter mode key for next time */
|
||
|
bcopy(X, ctx->X, sizeof (X));
|
||
|
}
|
||
|
return (SKEIN_SUCCESS);
|
||
|
}
|
||
|
|
||
|
/* 512-bit Skein */
|
||
|
|
||
|
/* init the context for a straight hashing operation */
|
||
|
int
|
||
|
Skein_512_Init(Skein_512_Ctxt_t *ctx, size_t hashBitLen)
|
||
|
{
|
||
|
union {
|
||
|
uint8_t b[SKEIN_512_STATE_BYTES];
|
||
|
uint64_t w[SKEIN_512_STATE_WORDS];
|
||
|
} cfg; /* config block */
|
||
|
|
||
|
Skein_Assert(hashBitLen > 0, SKEIN_BAD_HASHLEN);
|
||
|
ctx->h.hashBitLen = hashBitLen; /* output hash bit count */
|
||
|
|
||
|
switch (hashBitLen) { /* use pre-computed values, where available */
|
||
|
#ifndef SKEIN_NO_PRECOMP
|
||
|
case 512:
|
||
|
bcopy(SKEIN_512_IV_512, ctx->X, sizeof (ctx->X));
|
||
|
break;
|
||
|
case 384:
|
||
|
bcopy(SKEIN_512_IV_384, ctx->X, sizeof (ctx->X));
|
||
|
break;
|
||
|
case 256:
|
||
|
bcopy(SKEIN_512_IV_256, ctx->X, sizeof (ctx->X));
|
||
|
break;
|
||
|
case 224:
|
||
|
bcopy(SKEIN_512_IV_224, ctx->X, sizeof (ctx->X));
|
||
|
break;
|
||
|
#endif
|
||
|
default:
|
||
|
/*
|
||
|
* here if there is no precomputed IV value available
|
||
|
* build/process the config block, type == CONFIG (could be
|
||
|
* precomputed)
|
||
|
*/
|
||
|
/* set tweaks: T0=0; T1=CFG | FINAL */
|
||
|
Skein_Start_New_Type(ctx, CFG_FINAL);
|
||
|
|
||
|
/* set the schema, version */
|
||
|
cfg.w[0] = Skein_Swap64(SKEIN_SCHEMA_VER);
|
||
|
/* hash result length in bits */
|
||
|
cfg.w[1] = Skein_Swap64(hashBitLen);
|
||
|
cfg.w[2] = Skein_Swap64(SKEIN_CFG_TREE_INFO_SEQUENTIAL);
|
||
|
/* zero pad config block */
|
||
|
bzero(&cfg.w[3], sizeof (cfg) - 3 * sizeof (cfg.w[0]));
|
||
|
|
||
|
/* compute the initial chaining values from config block */
|
||
|
/* zero the chaining variables */
|
||
|
bzero(ctx->X, sizeof (ctx->X));
|
||
|
Skein_512_Process_Block(ctx, cfg.b, 1, SKEIN_CFG_STR_LEN);
|
||
|
break;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* The chaining vars ctx->X are now initialized for the given
|
||
|
* hashBitLen. Set up to process the data message portion of the
|
||
|
* hash (default)
|
||
|
*/
|
||
|
Skein_Start_New_Type(ctx, MSG); /* T0=0, T1= MSG type */
|
||
|
|
||
|
return (SKEIN_SUCCESS);
|
||
|
}
|
||
|
|
||
|
/* init the context for a MAC and/or tree hash operation */
|
||
|
/*
|
||
|
* [identical to Skein_512_Init() when keyBytes == 0 &&
|
||
|
* treeInfo == SKEIN_CFG_TREE_INFO_SEQUENTIAL]
|
||
|
*/
|
||
|
int
|
||
|
Skein_512_InitExt(Skein_512_Ctxt_t *ctx, size_t hashBitLen, uint64_t treeInfo,
|
||
|
const uint8_t *key, size_t keyBytes)
|
||
|
{
|
||
|
union {
|
||
|
uint8_t b[SKEIN_512_STATE_BYTES];
|
||
|
uint64_t w[SKEIN_512_STATE_WORDS];
|
||
|
} cfg; /* config block */
|
||
|
|
||
|
Skein_Assert(hashBitLen > 0, SKEIN_BAD_HASHLEN);
|
||
|
Skein_Assert(keyBytes == 0 || key != NULL, SKEIN_FAIL);
|
||
|
|
||
|
/* compute the initial chaining values ctx->X[], based on key */
|
||
|
if (keyBytes == 0) { /* is there a key? */
|
||
|
/* no key: use all zeroes as key for config block */
|
||
|
bzero(ctx->X, sizeof (ctx->X));
|
||
|
} else { /* here to pre-process a key */
|
||
|
|
||
|
Skein_assert(sizeof (cfg.b) >= sizeof (ctx->X));
|
||
|
/* do a mini-Init right here */
|
||
|
/* set output hash bit count = state size */
|
||
|
ctx->h.hashBitLen = 8 * sizeof (ctx->X);
|
||
|
/* set tweaks: T0 = 0; T1 = KEY type */
|
||
|
Skein_Start_New_Type(ctx, KEY);
|
||
|
/* zero the initial chaining variables */
|
||
|
bzero(ctx->X, sizeof (ctx->X));
|
||
|
(void) Skein_512_Update(ctx, key, keyBytes); /* hash the key */
|
||
|
/* put result into cfg.b[] */
|
||
|
(void) Skein_512_Final_Pad(ctx, cfg.b);
|
||
|
/* copy over into ctx->X[] */
|
||
|
bcopy(cfg.b, ctx->X, sizeof (cfg.b));
|
||
|
#if SKEIN_NEED_SWAP
|
||
|
{
|
||
|
uint_t i;
|
||
|
/* convert key bytes to context words */
|
||
|
for (i = 0; i < SKEIN_512_STATE_WORDS; i++)
|
||
|
ctx->X[i] = Skein_Swap64(ctx->X[i]);
|
||
|
}
|
||
|
#endif
|
||
|
}
|
||
|
/*
|
||
|
* build/process the config block, type == CONFIG (could be
|
||
|
* precomputed for each key)
|
||
|
*/
|
||
|
ctx->h.hashBitLen = hashBitLen; /* output hash bit count */
|
||
|
Skein_Start_New_Type(ctx, CFG_FINAL);
|
||
|
|
||
|
bzero(&cfg.w, sizeof (cfg.w)); /* pre-pad cfg.w[] with zeroes */
|
||
|
cfg.w[0] = Skein_Swap64(SKEIN_SCHEMA_VER);
|
||
|
cfg.w[1] = Skein_Swap64(hashBitLen); /* hash result length in bits */
|
||
|
/* tree hash config info (or SKEIN_CFG_TREE_INFO_SEQUENTIAL) */
|
||
|
cfg.w[2] = Skein_Swap64(treeInfo);
|
||
|
|
||
|
Skein_Show_Key(512, &ctx->h, key, keyBytes);
|
||
|
|
||
|
/* compute the initial chaining values from config block */
|
||
|
Skein_512_Process_Block(ctx, cfg.b, 1, SKEIN_CFG_STR_LEN);
|
||
|
|
||
|
/* The chaining vars ctx->X are now initialized */
|
||
|
/* Set up to process the data message portion of the hash (default) */
|
||
|
ctx->h.bCnt = 0; /* buffer b[] starts out empty */
|
||
|
Skein_Start_New_Type(ctx, MSG);
|
||
|
|
||
|
return (SKEIN_SUCCESS);
|
||
|
}
|
||
|
|
||
|
/* process the input bytes */
|
||
|
int
|
||
|
Skein_512_Update(Skein_512_Ctxt_t *ctx, const uint8_t *msg, size_t msgByteCnt)
|
||
|
{
|
||
|
size_t n;
|
||
|
|
||
|
/* catch uninitialized context */
|
||
|
Skein_Assert(ctx->h.bCnt <= SKEIN_512_BLOCK_BYTES, SKEIN_FAIL);
|
||
|
|
||
|
/* process full blocks, if any */
|
||
|
if (msgByteCnt + ctx->h.bCnt > SKEIN_512_BLOCK_BYTES) {
|
||
|
/* finish up any buffered message data */
|
||
|
if (ctx->h.bCnt) {
|
||
|
/* # bytes free in buffer b[] */
|
||
|
n = SKEIN_512_BLOCK_BYTES - ctx->h.bCnt;
|
||
|
if (n) {
|
||
|
/* check on our logic here */
|
||
|
Skein_assert(n < msgByteCnt);
|
||
|
bcopy(msg, &ctx->b[ctx->h.bCnt], n);
|
||
|
msgByteCnt -= n;
|
||
|
msg += n;
|
||
|
ctx->h.bCnt += n;
|
||
|
}
|
||
|
Skein_assert(ctx->h.bCnt == SKEIN_512_BLOCK_BYTES);
|
||
|
Skein_512_Process_Block(ctx, ctx->b, 1,
|
||
|
SKEIN_512_BLOCK_BYTES);
|
||
|
ctx->h.bCnt = 0;
|
||
|
}
|
||
|
/*
|
||
|
* now process any remaining full blocks, directly from input
|
||
|
* message data
|
||
|
*/
|
||
|
if (msgByteCnt > SKEIN_512_BLOCK_BYTES) {
|
||
|
/* number of full blocks to process */
|
||
|
n = (msgByteCnt - 1) / SKEIN_512_BLOCK_BYTES;
|
||
|
Skein_512_Process_Block(ctx, msg, n,
|
||
|
SKEIN_512_BLOCK_BYTES);
|
||
|
msgByteCnt -= n * SKEIN_512_BLOCK_BYTES;
|
||
|
msg += n * SKEIN_512_BLOCK_BYTES;
|
||
|
}
|
||
|
Skein_assert(ctx->h.bCnt == 0);
|
||
|
}
|
||
|
|
||
|
/* copy any remaining source message data bytes into b[] */
|
||
|
if (msgByteCnt) {
|
||
|
Skein_assert(msgByteCnt + ctx->h.bCnt <= SKEIN_512_BLOCK_BYTES);
|
||
|
bcopy(msg, &ctx->b[ctx->h.bCnt], msgByteCnt);
|
||
|
ctx->h.bCnt += msgByteCnt;
|
||
|
}
|
||
|
|
||
|
return (SKEIN_SUCCESS);
|
||
|
}
|
||
|
|
||
|
/* finalize the hash computation and output the result */
|
||
|
int
|
||
|
Skein_512_Final(Skein_512_Ctxt_t *ctx, uint8_t *hashVal)
|
||
|
{
|
||
|
size_t i, n, byteCnt;
|
||
|
uint64_t X[SKEIN_512_STATE_WORDS];
|
||
|
|
||
|
/* catch uninitialized context */
|
||
|
Skein_Assert(ctx->h.bCnt <= SKEIN_512_BLOCK_BYTES, SKEIN_FAIL);
|
||
|
|
||
|
ctx->h.T[1] |= SKEIN_T1_FLAG_FINAL; /* tag as the final block */
|
||
|
/* zero pad b[] if necessary */
|
||
|
if (ctx->h.bCnt < SKEIN_512_BLOCK_BYTES)
|
||
|
bzero(&ctx->b[ctx->h.bCnt],
|
||
|
SKEIN_512_BLOCK_BYTES - ctx->h.bCnt);
|
||
|
|
||
|
/* process the final block */
|
||
|
Skein_512_Process_Block(ctx, ctx->b, 1, ctx->h.bCnt);
|
||
|
|
||
|
/* now output the result */
|
||
|
/* total number of output bytes */
|
||
|
byteCnt = (ctx->h.hashBitLen + 7) >> 3;
|
||
|
|
||
|
/* run Threefish in "counter mode" to generate output */
|
||
|
/* zero out b[], so it can hold the counter */
|
||
|
bzero(ctx->b, sizeof (ctx->b));
|
||
|
/* keep a local copy of counter mode "key" */
|
||
|
bcopy(ctx->X, X, sizeof (X));
|
||
|
for (i = 0; i * SKEIN_512_BLOCK_BYTES < byteCnt; i++) {
|
||
|
/* build the counter block */
|
||
|
uint64_t tmp = Skein_Swap64((uint64_t)i);
|
||
|
bcopy(&tmp, ctx->b, sizeof (tmp));
|
||
|
Skein_Start_New_Type(ctx, OUT_FINAL);
|
||
|
/* run "counter mode" */
|
||
|
Skein_512_Process_Block(ctx, ctx->b, 1, sizeof (uint64_t));
|
||
|
/* number of output bytes left to go */
|
||
|
n = byteCnt - i * SKEIN_512_BLOCK_BYTES;
|
||
|
if (n >= SKEIN_512_BLOCK_BYTES)
|
||
|
n = SKEIN_512_BLOCK_BYTES;
|
||
|
Skein_Put64_LSB_First(hashVal + i * SKEIN_512_BLOCK_BYTES,
|
||
|
ctx->X, n); /* "output" the ctr mode bytes */
|
||
|
Skein_Show_Final(512, &ctx->h, n,
|
||
|
hashVal + i * SKEIN_512_BLOCK_BYTES);
|
||
|
/* restore the counter mode key for next time */
|
||
|
bcopy(X, ctx->X, sizeof (X));
|
||
|
}
|
||
|
return (SKEIN_SUCCESS);
|
||
|
}
|
||
|
|
||
|
/* 1024-bit Skein */
|
||
|
|
||
|
/* init the context for a straight hashing operation */
|
||
|
int
|
||
|
Skein1024_Init(Skein1024_Ctxt_t *ctx, size_t hashBitLen)
|
||
|
{
|
||
|
union {
|
||
|
uint8_t b[SKEIN1024_STATE_BYTES];
|
||
|
uint64_t w[SKEIN1024_STATE_WORDS];
|
||
|
} cfg; /* config block */
|
||
|
|
||
|
Skein_Assert(hashBitLen > 0, SKEIN_BAD_HASHLEN);
|
||
|
ctx->h.hashBitLen = hashBitLen; /* output hash bit count */
|
||
|
|
||
|
switch (hashBitLen) { /* use pre-computed values, where available */
|
||
|
#ifndef SKEIN_NO_PRECOMP
|
||
|
case 512:
|
||
|
bcopy(SKEIN1024_IV_512, ctx->X, sizeof (ctx->X));
|
||
|
break;
|
||
|
case 384:
|
||
|
bcopy(SKEIN1024_IV_384, ctx->X, sizeof (ctx->X));
|
||
|
break;
|
||
|
case 1024:
|
||
|
bcopy(SKEIN1024_IV_1024, ctx->X, sizeof (ctx->X));
|
||
|
break;
|
||
|
#endif
|
||
|
default:
|
||
|
/* here if there is no precomputed IV value available */
|
||
|
/*
|
||
|
* build/process the config block, type == CONFIG (could be
|
||
|
* precomputed)
|
||
|
*/
|
||
|
/* set tweaks: T0=0; T1=CFG | FINAL */
|
||
|
Skein_Start_New_Type(ctx, CFG_FINAL);
|
||
|
|
||
|
/* set the schema, version */
|
||
|
cfg.w[0] = Skein_Swap64(SKEIN_SCHEMA_VER);
|
||
|
/* hash result length in bits */
|
||
|
cfg.w[1] = Skein_Swap64(hashBitLen);
|
||
|
cfg.w[2] = Skein_Swap64(SKEIN_CFG_TREE_INFO_SEQUENTIAL);
|
||
|
/* zero pad config block */
|
||
|
bzero(&cfg.w[3], sizeof (cfg) - 3 * sizeof (cfg.w[0]));
|
||
|
|
||
|
/* compute the initial chaining values from config block */
|
||
|
/* zero the chaining variables */
|
||
|
bzero(ctx->X, sizeof (ctx->X));
|
||
|
Skein1024_Process_Block(ctx, cfg.b, 1, SKEIN_CFG_STR_LEN);
|
||
|
break;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* The chaining vars ctx->X are now initialized for the given
|
||
|
* hashBitLen. Set up to process the data message portion of the hash
|
||
|
* (default)
|
||
|
*/
|
||
|
Skein_Start_New_Type(ctx, MSG); /* T0=0, T1= MSG type */
|
||
|
|
||
|
return (SKEIN_SUCCESS);
|
||
|
}
|
||
|
|
||
|
/* init the context for a MAC and/or tree hash operation */
|
||
|
/*
|
||
|
* [identical to Skein1024_Init() when keyBytes == 0 &&
|
||
|
* treeInfo == SKEIN_CFG_TREE_INFO_SEQUENTIAL]
|
||
|
*/
|
||
|
int
|
||
|
Skein1024_InitExt(Skein1024_Ctxt_t *ctx, size_t hashBitLen, uint64_t treeInfo,
|
||
|
const uint8_t *key, size_t keyBytes)
|
||
|
{
|
||
|
union {
|
||
|
uint8_t b[SKEIN1024_STATE_BYTES];
|
||
|
uint64_t w[SKEIN1024_STATE_WORDS];
|
||
|
} cfg; /* config block */
|
||
|
|
||
|
Skein_Assert(hashBitLen > 0, SKEIN_BAD_HASHLEN);
|
||
|
Skein_Assert(keyBytes == 0 || key != NULL, SKEIN_FAIL);
|
||
|
|
||
|
/* compute the initial chaining values ctx->X[], based on key */
|
||
|
if (keyBytes == 0) { /* is there a key? */
|
||
|
/* no key: use all zeroes as key for config block */
|
||
|
bzero(ctx->X, sizeof (ctx->X));
|
||
|
} else { /* here to pre-process a key */
|
||
|
Skein_assert(sizeof (cfg.b) >= sizeof (ctx->X));
|
||
|
/* do a mini-Init right here */
|
||
|
/* set output hash bit count = state size */
|
||
|
ctx->h.hashBitLen = 8 * sizeof (ctx->X);
|
||
|
/* set tweaks: T0 = 0; T1 = KEY type */
|
||
|
Skein_Start_New_Type(ctx, KEY);
|
||
|
/* zero the initial chaining variables */
|
||
|
bzero(ctx->X, sizeof (ctx->X));
|
||
|
(void) Skein1024_Update(ctx, key, keyBytes); /* hash the key */
|
||
|
/* put result into cfg.b[] */
|
||
|
(void) Skein1024_Final_Pad(ctx, cfg.b);
|
||
|
/* copy over into ctx->X[] */
|
||
|
bcopy(cfg.b, ctx->X, sizeof (cfg.b));
|
||
|
#if SKEIN_NEED_SWAP
|
||
|
{
|
||
|
uint_t i;
|
||
|
/* convert key bytes to context words */
|
||
|
for (i = 0; i < SKEIN1024_STATE_WORDS; i++)
|
||
|
ctx->X[i] = Skein_Swap64(ctx->X[i]);
|
||
|
}
|
||
|
#endif
|
||
|
}
|
||
|
/*
|
||
|
* build/process the config block, type == CONFIG (could be
|
||
|
* precomputed for each key)
|
||
|
*/
|
||
|
ctx->h.hashBitLen = hashBitLen; /* output hash bit count */
|
||
|
Skein_Start_New_Type(ctx, CFG_FINAL);
|
||
|
|
||
|
bzero(&cfg.w, sizeof (cfg.w)); /* pre-pad cfg.w[] with zeroes */
|
||
|
cfg.w[0] = Skein_Swap64(SKEIN_SCHEMA_VER);
|
||
|
/* hash result length in bits */
|
||
|
cfg.w[1] = Skein_Swap64(hashBitLen);
|
||
|
/* tree hash config info (or SKEIN_CFG_TREE_INFO_SEQUENTIAL) */
|
||
|
cfg.w[2] = Skein_Swap64(treeInfo);
|
||
|
|
||
|
Skein_Show_Key(1024, &ctx->h, key, keyBytes);
|
||
|
|
||
|
/* compute the initial chaining values from config block */
|
||
|
Skein1024_Process_Block(ctx, cfg.b, 1, SKEIN_CFG_STR_LEN);
|
||
|
|
||
|
/* The chaining vars ctx->X are now initialized */
|
||
|
/* Set up to process the data message portion of the hash (default) */
|
||
|
ctx->h.bCnt = 0; /* buffer b[] starts out empty */
|
||
|
Skein_Start_New_Type(ctx, MSG);
|
||
|
|
||
|
return (SKEIN_SUCCESS);
|
||
|
}
|
||
|
|
||
|
/* process the input bytes */
|
||
|
int
|
||
|
Skein1024_Update(Skein1024_Ctxt_t *ctx, const uint8_t *msg, size_t msgByteCnt)
|
||
|
{
|
||
|
size_t n;
|
||
|
|
||
|
/* catch uninitialized context */
|
||
|
Skein_Assert(ctx->h.bCnt <= SKEIN1024_BLOCK_BYTES, SKEIN_FAIL);
|
||
|
|
||
|
/* process full blocks, if any */
|
||
|
if (msgByteCnt + ctx->h.bCnt > SKEIN1024_BLOCK_BYTES) {
|
||
|
/* finish up any buffered message data */
|
||
|
if (ctx->h.bCnt) {
|
||
|
/* # bytes free in buffer b[] */
|
||
|
n = SKEIN1024_BLOCK_BYTES - ctx->h.bCnt;
|
||
|
if (n) {
|
||
|
/* check on our logic here */
|
||
|
Skein_assert(n < msgByteCnt);
|
||
|
bcopy(msg, &ctx->b[ctx->h.bCnt], n);
|
||
|
msgByteCnt -= n;
|
||
|
msg += n;
|
||
|
ctx->h.bCnt += n;
|
||
|
}
|
||
|
Skein_assert(ctx->h.bCnt == SKEIN1024_BLOCK_BYTES);
|
||
|
Skein1024_Process_Block(ctx, ctx->b, 1,
|
||
|
SKEIN1024_BLOCK_BYTES);
|
||
|
ctx->h.bCnt = 0;
|
||
|
}
|
||
|
/*
|
||
|
* now process any remaining full blocks, directly from
|
||
|
* input message data
|
||
|
*/
|
||
|
if (msgByteCnt > SKEIN1024_BLOCK_BYTES) {
|
||
|
/* number of full blocks to process */
|
||
|
n = (msgByteCnt - 1) / SKEIN1024_BLOCK_BYTES;
|
||
|
Skein1024_Process_Block(ctx, msg, n,
|
||
|
SKEIN1024_BLOCK_BYTES);
|
||
|
msgByteCnt -= n * SKEIN1024_BLOCK_BYTES;
|
||
|
msg += n * SKEIN1024_BLOCK_BYTES;
|
||
|
}
|
||
|
Skein_assert(ctx->h.bCnt == 0);
|
||
|
}
|
||
|
|
||
|
/* copy any remaining source message data bytes into b[] */
|
||
|
if (msgByteCnt) {
|
||
|
Skein_assert(msgByteCnt + ctx->h.bCnt <= SKEIN1024_BLOCK_BYTES);
|
||
|
bcopy(msg, &ctx->b[ctx->h.bCnt], msgByteCnt);
|
||
|
ctx->h.bCnt += msgByteCnt;
|
||
|
}
|
||
|
|
||
|
return (SKEIN_SUCCESS);
|
||
|
}
|
||
|
|
||
|
/* finalize the hash computation and output the result */
|
||
|
int
|
||
|
Skein1024_Final(Skein1024_Ctxt_t *ctx, uint8_t *hashVal)
|
||
|
{
|
||
|
size_t i, n, byteCnt;
|
||
|
uint64_t X[SKEIN1024_STATE_WORDS];
|
||
|
|
||
|
/* catch uninitialized context */
|
||
|
Skein_Assert(ctx->h.bCnt <= SKEIN1024_BLOCK_BYTES, SKEIN_FAIL);
|
||
|
|
||
|
ctx->h.T[1] |= SKEIN_T1_FLAG_FINAL; /* tag as the final block */
|
||
|
/* zero pad b[] if necessary */
|
||
|
if (ctx->h.bCnt < SKEIN1024_BLOCK_BYTES)
|
||
|
bzero(&ctx->b[ctx->h.bCnt],
|
||
|
SKEIN1024_BLOCK_BYTES - ctx->h.bCnt);
|
||
|
|
||
|
/* process the final block */
|
||
|
Skein1024_Process_Block(ctx, ctx->b, 1, ctx->h.bCnt);
|
||
|
|
||
|
/* now output the result */
|
||
|
/* total number of output bytes */
|
||
|
byteCnt = (ctx->h.hashBitLen + 7) >> 3;
|
||
|
|
||
|
/* run Threefish in "counter mode" to generate output */
|
||
|
/* zero out b[], so it can hold the counter */
|
||
|
bzero(ctx->b, sizeof (ctx->b));
|
||
|
/* keep a local copy of counter mode "key" */
|
||
|
bcopy(ctx->X, X, sizeof (X));
|
||
|
for (i = 0; i * SKEIN1024_BLOCK_BYTES < byteCnt; i++) {
|
||
|
/* build the counter block */
|
||
|
uint64_t tmp = Skein_Swap64((uint64_t)i);
|
||
|
bcopy(&tmp, ctx->b, sizeof (tmp));
|
||
|
Skein_Start_New_Type(ctx, OUT_FINAL);
|
||
|
/* run "counter mode" */
|
||
|
Skein1024_Process_Block(ctx, ctx->b, 1, sizeof (uint64_t));
|
||
|
/* number of output bytes left to go */
|
||
|
n = byteCnt - i * SKEIN1024_BLOCK_BYTES;
|
||
|
if (n >= SKEIN1024_BLOCK_BYTES)
|
||
|
n = SKEIN1024_BLOCK_BYTES;
|
||
|
Skein_Put64_LSB_First(hashVal + i * SKEIN1024_BLOCK_BYTES,
|
||
|
ctx->X, n); /* "output" the ctr mode bytes */
|
||
|
Skein_Show_Final(1024, &ctx->h, n,
|
||
|
hashVal + i * SKEIN1024_BLOCK_BYTES);
|
||
|
/* restore the counter mode key for next time */
|
||
|
bcopy(X, ctx->X, sizeof (X));
|
||
|
}
|
||
|
return (SKEIN_SUCCESS);
|
||
|
}
|
||
|
|
||
|
/* Functions to support MAC/tree hashing */
|
||
|
/* (this code is identical for Optimized and Reference versions) */
|
||
|
|
||
|
/* finalize the hash computation and output the block, no OUTPUT stage */
|
||
|
int
|
||
|
Skein_256_Final_Pad(Skein_256_Ctxt_t *ctx, uint8_t *hashVal)
|
||
|
{
|
||
|
/* catch uninitialized context */
|
||
|
Skein_Assert(ctx->h.bCnt <= SKEIN_256_BLOCK_BYTES, SKEIN_FAIL);
|
||
|
|
||
|
ctx->h.T[1] |= SKEIN_T1_FLAG_FINAL; /* tag as the final block */
|
||
|
/* zero pad b[] if necessary */
|
||
|
if (ctx->h.bCnt < SKEIN_256_BLOCK_BYTES)
|
||
|
bzero(&ctx->b[ctx->h.bCnt],
|
||
|
SKEIN_256_BLOCK_BYTES - ctx->h.bCnt);
|
||
|
/* process the final block */
|
||
|
Skein_256_Process_Block(ctx, ctx->b, 1, ctx->h.bCnt);
|
||
|
|
||
|
/* "output" the state bytes */
|
||
|
Skein_Put64_LSB_First(hashVal, ctx->X, SKEIN_256_BLOCK_BYTES);
|
||
|
|
||
|
return (SKEIN_SUCCESS);
|
||
|
}
|
||
|
|
||
|
/* finalize the hash computation and output the block, no OUTPUT stage */
|
||
|
int
|
||
|
Skein_512_Final_Pad(Skein_512_Ctxt_t *ctx, uint8_t *hashVal)
|
||
|
{
|
||
|
/* catch uninitialized context */
|
||
|
Skein_Assert(ctx->h.bCnt <= SKEIN_512_BLOCK_BYTES, SKEIN_FAIL);
|
||
|
|
||
|
ctx->h.T[1] |= SKEIN_T1_FLAG_FINAL; /* tag as the final block */
|
||
|
/* zero pad b[] if necessary */
|
||
|
if (ctx->h.bCnt < SKEIN_512_BLOCK_BYTES)
|
||
|
bzero(&ctx->b[ctx->h.bCnt],
|
||
|
SKEIN_512_BLOCK_BYTES - ctx->h.bCnt);
|
||
|
/* process the final block */
|
||
|
Skein_512_Process_Block(ctx, ctx->b, 1, ctx->h.bCnt);
|
||
|
|
||
|
/* "output" the state bytes */
|
||
|
Skein_Put64_LSB_First(hashVal, ctx->X, SKEIN_512_BLOCK_BYTES);
|
||
|
|
||
|
return (SKEIN_SUCCESS);
|
||
|
}
|
||
|
|
||
|
/* finalize the hash computation and output the block, no OUTPUT stage */
|
||
|
int
|
||
|
Skein1024_Final_Pad(Skein1024_Ctxt_t *ctx, uint8_t *hashVal)
|
||
|
{
|
||
|
/* catch uninitialized context */
|
||
|
Skein_Assert(ctx->h.bCnt <= SKEIN1024_BLOCK_BYTES, SKEIN_FAIL);
|
||
|
|
||
|
/* tag as the final block */
|
||
|
ctx->h.T[1] |= SKEIN_T1_FLAG_FINAL;
|
||
|
/* zero pad b[] if necessary */
|
||
|
if (ctx->h.bCnt < SKEIN1024_BLOCK_BYTES)
|
||
|
bzero(&ctx->b[ctx->h.bCnt],
|
||
|
SKEIN1024_BLOCK_BYTES - ctx->h.bCnt);
|
||
|
/* process the final block */
|
||
|
Skein1024_Process_Block(ctx, ctx->b, 1, ctx->h.bCnt);
|
||
|
|
||
|
/* "output" the state bytes */
|
||
|
Skein_Put64_LSB_First(hashVal, ctx->X, SKEIN1024_BLOCK_BYTES);
|
||
|
|
||
|
return (SKEIN_SUCCESS);
|
||
|
}
|
||
|
|
||
|
#if SKEIN_TREE_HASH
|
||
|
/* just do the OUTPUT stage */
|
||
|
int
|
||
|
Skein_256_Output(Skein_256_Ctxt_t *ctx, uint8_t *hashVal)
|
||
|
{
|
||
|
size_t i, n, byteCnt;
|
||
|
uint64_t X[SKEIN_256_STATE_WORDS];
|
||
|
|
||
|
/* catch uninitialized context */
|
||
|
Skein_Assert(ctx->h.bCnt <= SKEIN_256_BLOCK_BYTES, SKEIN_FAIL);
|
||
|
|
||
|
/* now output the result */
|
||
|
/* total number of output bytes */
|
||
|
byteCnt = (ctx->h.hashBitLen + 7) >> 3;
|
||
|
|
||
|
/* run Threefish in "counter mode" to generate output */
|
||
|
/* zero out b[], so it can hold the counter */
|
||
|
bzero(ctx->b, sizeof (ctx->b));
|
||
|
/* keep a local copy of counter mode "key" */
|
||
|
bcopy(ctx->X, X, sizeof (X));
|
||
|
for (i = 0; i * SKEIN_256_BLOCK_BYTES < byteCnt; i++) {
|
||
|
/* build the counter block */
|
||
|
uint64_t tmp = Skein_Swap64((uint64_t)i);
|
||
|
bcopy(&tmp, ctx->b, sizeof (tmp));
|
||
|
Skein_Start_New_Type(ctx, OUT_FINAL);
|
||
|
/* run "counter mode" */
|
||
|
Skein_256_Process_Block(ctx, ctx->b, 1, sizeof (uint64_t));
|
||
|
/* number of output bytes left to go */
|
||
|
n = byteCnt - i * SKEIN_256_BLOCK_BYTES;
|
||
|
if (n >= SKEIN_256_BLOCK_BYTES)
|
||
|
n = SKEIN_256_BLOCK_BYTES;
|
||
|
Skein_Put64_LSB_First(hashVal + i * SKEIN_256_BLOCK_BYTES,
|
||
|
ctx->X, n); /* "output" the ctr mode bytes */
|
||
|
Skein_Show_Final(256, &ctx->h, n,
|
||
|
hashVal + i * SKEIN_256_BLOCK_BYTES);
|
||
|
/* restore the counter mode key for next time */
|
||
|
bcopy(X, ctx->X, sizeof (X));
|
||
|
}
|
||
|
return (SKEIN_SUCCESS);
|
||
|
}
|
||
|
|
||
|
/* just do the OUTPUT stage */
|
||
|
int
|
||
|
Skein_512_Output(Skein_512_Ctxt_t *ctx, uint8_t *hashVal)
|
||
|
{
|
||
|
size_t i, n, byteCnt;
|
||
|
uint64_t X[SKEIN_512_STATE_WORDS];
|
||
|
|
||
|
/* catch uninitialized context */
|
||
|
Skein_Assert(ctx->h.bCnt <= SKEIN_512_BLOCK_BYTES, SKEIN_FAIL);
|
||
|
|
||
|
/* now output the result */
|
||
|
/* total number of output bytes */
|
||
|
byteCnt = (ctx->h.hashBitLen + 7) >> 3;
|
||
|
|
||
|
/* run Threefish in "counter mode" to generate output */
|
||
|
/* zero out b[], so it can hold the counter */
|
||
|
bzero(ctx->b, sizeof (ctx->b));
|
||
|
/* keep a local copy of counter mode "key" */
|
||
|
bcopy(ctx->X, X, sizeof (X));
|
||
|
for (i = 0; i * SKEIN_512_BLOCK_BYTES < byteCnt; i++) {
|
||
|
/* build the counter block */
|
||
|
uint64_t tmp = Skein_Swap64((uint64_t)i);
|
||
|
bcopy(&tmp, ctx->b, sizeof (tmp));
|
||
|
Skein_Start_New_Type(ctx, OUT_FINAL);
|
||
|
/* run "counter mode" */
|
||
|
Skein_512_Process_Block(ctx, ctx->b, 1, sizeof (uint64_t));
|
||
|
/* number of output bytes left to go */
|
||
|
n = byteCnt - i * SKEIN_512_BLOCK_BYTES;
|
||
|
if (n >= SKEIN_512_BLOCK_BYTES)
|
||
|
n = SKEIN_512_BLOCK_BYTES;
|
||
|
Skein_Put64_LSB_First(hashVal + i * SKEIN_512_BLOCK_BYTES,
|
||
|
ctx->X, n); /* "output" the ctr mode bytes */
|
||
|
Skein_Show_Final(256, &ctx->h, n,
|
||
|
hashVal + i * SKEIN_512_BLOCK_BYTES);
|
||
|
/* restore the counter mode key for next time */
|
||
|
bcopy(X, ctx->X, sizeof (X));
|
||
|
}
|
||
|
return (SKEIN_SUCCESS);
|
||
|
}
|
||
|
|
||
|
/* just do the OUTPUT stage */
|
||
|
int
|
||
|
Skein1024_Output(Skein1024_Ctxt_t *ctx, uint8_t *hashVal)
|
||
|
{
|
||
|
size_t i, n, byteCnt;
|
||
|
uint64_t X[SKEIN1024_STATE_WORDS];
|
||
|
|
||
|
/* catch uninitialized context */
|
||
|
Skein_Assert(ctx->h.bCnt <= SKEIN1024_BLOCK_BYTES, SKEIN_FAIL);
|
||
|
|
||
|
/* now output the result */
|
||
|
/* total number of output bytes */
|
||
|
byteCnt = (ctx->h.hashBitLen + 7) >> 3;
|
||
|
|
||
|
/* run Threefish in "counter mode" to generate output */
|
||
|
/* zero out b[], so it can hold the counter */
|
||
|
bzero(ctx->b, sizeof (ctx->b));
|
||
|
/* keep a local copy of counter mode "key" */
|
||
|
bcopy(ctx->X, X, sizeof (X));
|
||
|
for (i = 0; i * SKEIN1024_BLOCK_BYTES < byteCnt; i++) {
|
||
|
/* build the counter block */
|
||
|
uint64_t tmp = Skein_Swap64((uint64_t)i);
|
||
|
bcopy(&tmp, ctx->b, sizeof (tmp));
|
||
|
Skein_Start_New_Type(ctx, OUT_FINAL);
|
||
|
/* run "counter mode" */
|
||
|
Skein1024_Process_Block(ctx, ctx->b, 1, sizeof (uint64_t));
|
||
|
/* number of output bytes left to go */
|
||
|
n = byteCnt - i * SKEIN1024_BLOCK_BYTES;
|
||
|
if (n >= SKEIN1024_BLOCK_BYTES)
|
||
|
n = SKEIN1024_BLOCK_BYTES;
|
||
|
Skein_Put64_LSB_First(hashVal + i * SKEIN1024_BLOCK_BYTES,
|
||
|
ctx->X, n); /* "output" the ctr mode bytes */
|
||
|
Skein_Show_Final(256, &ctx->h, n,
|
||
|
hashVal + i * SKEIN1024_BLOCK_BYTES);
|
||
|
/* restore the counter mode key for next time */
|
||
|
bcopy(X, ctx->X, sizeof (X));
|
||
|
}
|
||
|
return (SKEIN_SUCCESS);
|
||
|
}
|
||
|
#endif
|
||
|
|
||
|
#ifdef _KERNEL
|
||
|
EXPORT_SYMBOL(Skein_512_Init);
|
||
|
EXPORT_SYMBOL(Skein_512_InitExt);
|
||
|
EXPORT_SYMBOL(Skein_512_Update);
|
||
|
EXPORT_SYMBOL(Skein_512_Final);
|
||
|
#endif
|