mirror_zfs/cmd/zstream/zstream_dump.c

813 lines
23 KiB
C
Raw Normal View History

/*
* CDDL HEADER START
*
* The contents of this file are subject to the terms of the
* Common Development and Distribution License (the "License").
* You may not use this file except in compliance with the License.
*
* You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
* or http://www.opensolaris.org/os/licensing.
* See the License for the specific language governing permissions
* and limitations under the License.
*
* When distributing Covered Code, include this CDDL HEADER in each
* file and include the License file at usr/src/OPENSOLARIS.LICENSE.
* If applicable, add the following below this CDDL HEADER, with the
* fields enclosed by brackets "[]" replaced with your own identifying
* information: Portions Copyright [yyyy] [name of copyright owner]
*
* CDDL HEADER END
*/
/*
* Copyright 2010 Sun Microsystems, Inc. All rights reserved.
* Use is subject to license terms.
*
* Portions Copyright 2012 Martin Matuska <martin@matuska.org>
*/
/*
* Copyright (c) 2013, 2015 by Delphix. All rights reserved.
*/
#include <ctype.h>
#include <libnvpair.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <unistd.h>
#include <stddef.h>
#include <sys/dmu.h>
#include <sys/zfs_ioctl.h>
#include <sys/zio.h>
#include <zfs_fletcher.h>
Add `zstream redup` command to convert deduplicated send streams Deduplicated send and receive is deprecated. To ease migration to the new dedup-send-less world, the commit adds a `zstream redup` utility to convert deduplicated send streams to normal streams, so that they can continue to be received indefinitely. The new `zstream` command also replaces the functionality of `zstreamdump`, by way of the `zstream dump` subcommand. The `zstreamdump` command is replaced by a shell script which invokes `zstream dump`. The way that `zstream redup` works under the hood is that as we read the send stream, we build up a hash table which maps from `<GUID, object, offset> -> <file_offset>`. Whenever we see a WRITE record, we add a new entry to the hash table, which indicates where in the stream file to find the WRITE record for this block. (The key is `drr_toguid, drr_object, drr_offset`.) For entries other than WRITE_BYREF, we pass them through unchanged (except for the running checksum, which is recalculated). For WRITE_BYREF records, we change them to WRITE records. We find the referenced WRITE record by looking in the hash table (for the record with key `drr_refguid, drr_refobject, drr_refoffset`), and then reading the record header and payload from the specified offset in the stream file. This is why the stream can not be a pipe. The found WRITE record replaces the WRITE_BYREF record, with its `drr_toguid`, `drr_object`, and `drr_offset` fields changed to be the same as the WRITE_BYREF's (i.e. we are writing the same logical block, but with the data supplied by the previous WRITE record). This algorithm requires memory proportional to the number of WRITE records (same as `zfs send -D`), but the size per WRITE record is relatively low (40 bytes, vs. 72 for `zfs send -D`). A 1TB send stream with 8KB blocks (`recordsize=8k`) would use around 5GB of RAM to "redup". Reviewed-by: Jorgen Lundman <lundman@lundman.net> Reviewed-by: Paul Dagnelie <pcd@delphix.com> Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov> Signed-off-by: Matthew Ahrens <mahrens@delphix.com> Closes #10124 Closes #10156
2020-04-10 20:39:55 +03:00
#include "zstream.h"
/*
* If dump mode is enabled, the number of bytes to print per line
*/
#define BYTES_PER_LINE 16
/*
* If dump mode is enabled, the number of bytes to group together, separated
* by newlines or spaces
*/
#define DUMP_GROUPING 4
uint64_t total_stream_len = 0;
FILE *send_stream = 0;
boolean_t do_byteswap = B_FALSE;
boolean_t do_cksum = B_TRUE;
Illumos 5027 - zfs large block support 5027 zfs large block support Reviewed by: Alek Pinchuk <pinchuk.alek@gmail.com> Reviewed by: George Wilson <george.wilson@delphix.com> Reviewed by: Josef 'Jeff' Sipek <josef.sipek@nexenta.com> Reviewed by: Richard Elling <richard.elling@richardelling.com> Reviewed by: Saso Kiselkov <skiselkov.ml@gmail.com> Reviewed by: Brian Behlendorf <behlendorf1@llnl.gov> Approved by: Dan McDonald <danmcd@omniti.com> References: https://www.illumos.org/issues/5027 https://github.com/illumos/illumos-gate/commit/b515258 Porting Notes: * Included in this patch is a tiny ISP2() cleanup in zio_init() from Illumos 5255. * Unlike the upstream Illumos commit this patch does not impose an arbitrary 128K block size limit on volumes. Volumes, like filesystems, are limited by the zfs_max_recordsize=1M module option. * By default the maximum record size is limited to 1M by the module option zfs_max_recordsize. This value may be safely increased up to 16M which is the largest block size supported by the on-disk format. At the moment, 1M blocks clearly offer a significant performance improvement but the benefits of going beyond this for the majority of workloads are less clear. * The illumos version of this patch increased DMU_MAX_ACCESS to 32M. This was determined not to be large enough when using 16M blocks because the zfs_make_xattrdir() function will fail (EFBIG) when assigning a TX. This was immediately observed under Linux because all newly created files must have a security xattr created and that was failing. Therefore, we've set DMU_MAX_ACCESS to 64M. * On 32-bit platforms a hard limit of 1M is set for blocks due to the limited virtual address space. We should be able to relax this one the ABD patches are merged. Ported-by: Brian Behlendorf <behlendorf1@llnl.gov> Closes #354
2014-11-03 23:15:08 +03:00
static void *
safe_malloc(size_t size)
{
void *rv = malloc(size);
if (rv == NULL) {
(void) fprintf(stderr, "ERROR; failed to allocate %zu bytes\n",
size);
Illumos 5027 - zfs large block support 5027 zfs large block support Reviewed by: Alek Pinchuk <pinchuk.alek@gmail.com> Reviewed by: George Wilson <george.wilson@delphix.com> Reviewed by: Josef 'Jeff' Sipek <josef.sipek@nexenta.com> Reviewed by: Richard Elling <richard.elling@richardelling.com> Reviewed by: Saso Kiselkov <skiselkov.ml@gmail.com> Reviewed by: Brian Behlendorf <behlendorf1@llnl.gov> Approved by: Dan McDonald <danmcd@omniti.com> References: https://www.illumos.org/issues/5027 https://github.com/illumos/illumos-gate/commit/b515258 Porting Notes: * Included in this patch is a tiny ISP2() cleanup in zio_init() from Illumos 5255. * Unlike the upstream Illumos commit this patch does not impose an arbitrary 128K block size limit on volumes. Volumes, like filesystems, are limited by the zfs_max_recordsize=1M module option. * By default the maximum record size is limited to 1M by the module option zfs_max_recordsize. This value may be safely increased up to 16M which is the largest block size supported by the on-disk format. At the moment, 1M blocks clearly offer a significant performance improvement but the benefits of going beyond this for the majority of workloads are less clear. * The illumos version of this patch increased DMU_MAX_ACCESS to 32M. This was determined not to be large enough when using 16M blocks because the zfs_make_xattrdir() function will fail (EFBIG) when assigning a TX. This was immediately observed under Linux because all newly created files must have a security xattr created and that was failing. Therefore, we've set DMU_MAX_ACCESS to 64M. * On 32-bit platforms a hard limit of 1M is set for blocks due to the limited virtual address space. We should be able to relax this one the ABD patches are merged. Ported-by: Brian Behlendorf <behlendorf1@llnl.gov> Closes #354
2014-11-03 23:15:08 +03:00
abort();
}
return (rv);
}
/*
* ssread - send stream read.
*
* Read while computing incremental checksum
*/
static size_t
ssread(void *buf, size_t len, zio_cksum_t *cksum)
{
size_t outlen;
if ((outlen = fread(buf, len, 1, send_stream)) == 0)
return (0);
if (do_cksum) {
if (do_byteswap)
fletcher_4_incremental_byteswap(buf, len, cksum);
else
fletcher_4_incremental_native(buf, len, cksum);
}
total_stream_len += len;
return (outlen);
}
static size_t
read_hdr(dmu_replay_record_t *drr, zio_cksum_t *cksum)
{
ASSERT3U(offsetof(dmu_replay_record_t, drr_u.drr_checksum.drr_checksum),
==, sizeof (dmu_replay_record_t) - sizeof (zio_cksum_t));
size_t r = ssread(drr, sizeof (*drr) - sizeof (zio_cksum_t), cksum);
if (r == 0)
return (0);
zio_cksum_t saved_cksum = *cksum;
r = ssread(&drr->drr_u.drr_checksum.drr_checksum,
sizeof (zio_cksum_t), cksum);
if (r == 0)
return (0);
if (do_cksum &&
!ZIO_CHECKSUM_IS_ZERO(&drr->drr_u.drr_checksum.drr_checksum) &&
!ZIO_CHECKSUM_EQUAL(saved_cksum,
drr->drr_u.drr_checksum.drr_checksum)) {
fprintf(stderr, "invalid checksum\n");
(void) printf("Incorrect checksum in record header.\n");
(void) printf("Expected checksum = %llx/%llx/%llx/%llx\n",
(longlong_t)saved_cksum.zc_word[0],
(longlong_t)saved_cksum.zc_word[1],
(longlong_t)saved_cksum.zc_word[2],
(longlong_t)saved_cksum.zc_word[3]);
OpenZFS 2605, 6980, 6902 2605 want to resume interrupted zfs send Reviewed by: George Wilson <george.wilson@delphix.com> Reviewed by: Paul Dagnelie <pcd@delphix.com> Reviewed by: Richard Elling <Richard.Elling@RichardElling.com> Reviewed by: Xin Li <delphij@freebsd.org> Reviewed by: Arne Jansen <sensille@gmx.net> Approved by: Dan McDonald <danmcd@omniti.com> Ported-by: kernelOfTruth <kerneloftruth@gmail.com> Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov> OpenZFS-issue: https://www.illumos.org/issues/2605 OpenZFS-commit: https://github.com/openzfs/openzfs/commit/9c3fd12 6980 6902 causes zfs send to break due to 32-bit/64-bit struct mismatch Reviewed by: Paul Dagnelie <pcd@delphix.com> Reviewed by: George Wilson <george.wilson@delphix.com> Approved by: Robert Mustacchi <rm@joyent.com> Ported by: Brian Behlendorf <behlendorf1@llnl.gov> OpenZFS-issue: https://www.illumos.org/issues/6980 OpenZFS-commit: https://github.com/openzfs/openzfs/commit/ea4a67f Porting notes: - All rsend and snapshop tests enabled and updated for Linux. - Fix misuse of input argument in traverse_visitbp(). - Fix ISO C90 warnings and errors. - Fix gcc 'missing braces around initializer' in 'struct send_thread_arg to_arg =' warning. - Replace 4 argument fletcher_4_native() with 3 argument version, this change was made in OpenZFS 4185 which has not been ported. - Part of the sections for 'zfs receive' and 'zfs send' was rewritten and reordered to approximate upstream. - Fix mktree xattr creation, 'user.' prefix required. - Minor fixes to newly enabled test cases - Long holds for volumes allowed during receive for minor registration.
2016-01-07 00:22:48 +03:00
return (0);
}
return (sizeof (*drr));
}
/*
* Print part of a block in ASCII characters
*/
static void
print_ascii_block(char *subbuf, int length)
{
int i;
for (i = 0; i < length; i++) {
char char_print = isprint(subbuf[i]) ? subbuf[i] : '.';
if (i != 0 && i % DUMP_GROUPING == 0) {
(void) printf(" ");
}
(void) printf("%c", char_print);
}
(void) printf("\n");
}
/*
* print_block - Dump the contents of a modified block to STDOUT
*
* Assume that buf has capacity evenly divisible by BYTES_PER_LINE
*/
static void
print_block(char *buf, int length)
{
int i;
/*
* Start printing ASCII characters at a constant offset, after
* the hex prints. Leave 3 characters per byte on a line (2 digit
* hex number plus 1 space) plus spaces between characters and
* groupings.
*/
int ascii_start = BYTES_PER_LINE * 3 +
BYTES_PER_LINE / DUMP_GROUPING + 2;
for (i = 0; i < length; i += BYTES_PER_LINE) {
int j;
int this_line_length = MIN(BYTES_PER_LINE, length - i);
int print_offset = 0;
for (j = 0; j < this_line_length; j++) {
int buf_offset = i + j;
/*
* Separate every DUMP_GROUPING bytes by a space.
*/
if (buf_offset % DUMP_GROUPING == 0) {
print_offset += printf(" ");
}
/*
* Print the two-digit hex value for this byte.
*/
unsigned char hex_print = buf[buf_offset];
print_offset += printf("%02x ", hex_print);
}
(void) printf("%*s", ascii_start - print_offset, " ");
print_ascii_block(buf + i, this_line_length);
}
}
Native Encryption for ZFS on Linux This change incorporates three major pieces: The first change is a keystore that manages wrapping and encryption keys for encrypted datasets. These commands mostly involve manipulating the new DSL Crypto Key ZAP Objects that live in the MOS. Each encrypted dataset has its own DSL Crypto Key that is protected with a user's key. This level of indirection allows users to change their keys without re-encrypting their entire datasets. The change implements the new subcommands "zfs load-key", "zfs unload-key" and "zfs change-key" which allow the user to manage their encryption keys and settings. In addition, several new flags and properties have been added to allow dataset creation and to make mounting and unmounting more convenient. The second piece of this patch provides the ability to encrypt, decyrpt, and authenticate protected datasets. Each object set maintains a Merkel tree of Message Authentication Codes that protect the lower layers, similarly to how checksums are maintained. This part impacts the zio layer, which handles the actual encryption and generation of MACs, as well as the ARC and DMU, which need to be able to handle encrypted buffers and protected data. The last addition is the ability to do raw, encrypted sends and receives. The idea here is to send raw encrypted and compressed data and receive it exactly as is on a backup system. This means that the dataset on the receiving system is protected using the same user key that is in use on the sending side. By doing so, datasets can be efficiently backed up to an untrusted system without fear of data being compromised. Reviewed by: Matthew Ahrens <mahrens@delphix.com> Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov> Reviewed-by: Jorgen Lundman <lundman@lundman.net> Signed-off-by: Tom Caputi <tcaputi@datto.com> Closes #494 Closes #5769
2017-08-14 20:36:48 +03:00
/*
* Print an array of bytes to stdout as hexadecimal characters. str must
Native Encryption for ZFS on Linux This change incorporates three major pieces: The first change is a keystore that manages wrapping and encryption keys for encrypted datasets. These commands mostly involve manipulating the new DSL Crypto Key ZAP Objects that live in the MOS. Each encrypted dataset has its own DSL Crypto Key that is protected with a user's key. This level of indirection allows users to change their keys without re-encrypting their entire datasets. The change implements the new subcommands "zfs load-key", "zfs unload-key" and "zfs change-key" which allow the user to manage their encryption keys and settings. In addition, several new flags and properties have been added to allow dataset creation and to make mounting and unmounting more convenient. The second piece of this patch provides the ability to encrypt, decyrpt, and authenticate protected datasets. Each object set maintains a Merkel tree of Message Authentication Codes that protect the lower layers, similarly to how checksums are maintained. This part impacts the zio layer, which handles the actual encryption and generation of MACs, as well as the ARC and DMU, which need to be able to handle encrypted buffers and protected data. The last addition is the ability to do raw, encrypted sends and receives. The idea here is to send raw encrypted and compressed data and receive it exactly as is on a backup system. This means that the dataset on the receiving system is protected using the same user key that is in use on the sending side. By doing so, datasets can be efficiently backed up to an untrusted system without fear of data being compromised. Reviewed by: Matthew Ahrens <mahrens@delphix.com> Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov> Reviewed-by: Jorgen Lundman <lundman@lundman.net> Signed-off-by: Tom Caputi <tcaputi@datto.com> Closes #494 Closes #5769
2017-08-14 20:36:48 +03:00
* have buf_len * 2 + 1 bytes of space.
*/
static void
sprintf_bytes(char *str, uint8_t *buf, uint_t buf_len)
{
int i, n;
for (i = 0; i < buf_len; i++) {
n = sprintf(str, "%02x", buf[i] & 0xff);
str += n;
}
str[0] = '\0';
}
int
Add `zstream redup` command to convert deduplicated send streams Deduplicated send and receive is deprecated. To ease migration to the new dedup-send-less world, the commit adds a `zstream redup` utility to convert deduplicated send streams to normal streams, so that they can continue to be received indefinitely. The new `zstream` command also replaces the functionality of `zstreamdump`, by way of the `zstream dump` subcommand. The `zstreamdump` command is replaced by a shell script which invokes `zstream dump`. The way that `zstream redup` works under the hood is that as we read the send stream, we build up a hash table which maps from `<GUID, object, offset> -> <file_offset>`. Whenever we see a WRITE record, we add a new entry to the hash table, which indicates where in the stream file to find the WRITE record for this block. (The key is `drr_toguid, drr_object, drr_offset`.) For entries other than WRITE_BYREF, we pass them through unchanged (except for the running checksum, which is recalculated). For WRITE_BYREF records, we change them to WRITE records. We find the referenced WRITE record by looking in the hash table (for the record with key `drr_refguid, drr_refobject, drr_refoffset`), and then reading the record header and payload from the specified offset in the stream file. This is why the stream can not be a pipe. The found WRITE record replaces the WRITE_BYREF record, with its `drr_toguid`, `drr_object`, and `drr_offset` fields changed to be the same as the WRITE_BYREF's (i.e. we are writing the same logical block, but with the data supplied by the previous WRITE record). This algorithm requires memory proportional to the number of WRITE records (same as `zfs send -D`), but the size per WRITE record is relatively low (40 bytes, vs. 72 for `zfs send -D`). A 1TB send stream with 8KB blocks (`recordsize=8k`) would use around 5GB of RAM to "redup". Reviewed-by: Jorgen Lundman <lundman@lundman.net> Reviewed-by: Paul Dagnelie <pcd@delphix.com> Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov> Signed-off-by: Matthew Ahrens <mahrens@delphix.com> Closes #10124 Closes #10156
2020-04-10 20:39:55 +03:00
zstream_do_dump(int argc, char *argv[])
{
Illumos 5027 - zfs large block support 5027 zfs large block support Reviewed by: Alek Pinchuk <pinchuk.alek@gmail.com> Reviewed by: George Wilson <george.wilson@delphix.com> Reviewed by: Josef 'Jeff' Sipek <josef.sipek@nexenta.com> Reviewed by: Richard Elling <richard.elling@richardelling.com> Reviewed by: Saso Kiselkov <skiselkov.ml@gmail.com> Reviewed by: Brian Behlendorf <behlendorf1@llnl.gov> Approved by: Dan McDonald <danmcd@omniti.com> References: https://www.illumos.org/issues/5027 https://github.com/illumos/illumos-gate/commit/b515258 Porting Notes: * Included in this patch is a tiny ISP2() cleanup in zio_init() from Illumos 5255. * Unlike the upstream Illumos commit this patch does not impose an arbitrary 128K block size limit on volumes. Volumes, like filesystems, are limited by the zfs_max_recordsize=1M module option. * By default the maximum record size is limited to 1M by the module option zfs_max_recordsize. This value may be safely increased up to 16M which is the largest block size supported by the on-disk format. At the moment, 1M blocks clearly offer a significant performance improvement but the benefits of going beyond this for the majority of workloads are less clear. * The illumos version of this patch increased DMU_MAX_ACCESS to 32M. This was determined not to be large enough when using 16M blocks because the zfs_make_xattrdir() function will fail (EFBIG) when assigning a TX. This was immediately observed under Linux because all newly created files must have a security xattr created and that was failing. Therefore, we've set DMU_MAX_ACCESS to 64M. * On 32-bit platforms a hard limit of 1M is set for blocks due to the limited virtual address space. We should be able to relax this one the ABD patches are merged. Ported-by: Brian Behlendorf <behlendorf1@llnl.gov> Closes #354
2014-11-03 23:15:08 +03:00
char *buf = safe_malloc(SPA_MAXBLOCKSIZE);
uint64_t drr_record_count[DRR_NUMTYPES] = { 0 };
uint64_t total_payload_size = 0;
uint64_t total_overhead_size = 0;
uint64_t drr_byte_count[DRR_NUMTYPES] = { 0 };
Native Encryption for ZFS on Linux This change incorporates three major pieces: The first change is a keystore that manages wrapping and encryption keys for encrypted datasets. These commands mostly involve manipulating the new DSL Crypto Key ZAP Objects that live in the MOS. Each encrypted dataset has its own DSL Crypto Key that is protected with a user's key. This level of indirection allows users to change their keys without re-encrypting their entire datasets. The change implements the new subcommands "zfs load-key", "zfs unload-key" and "zfs change-key" which allow the user to manage their encryption keys and settings. In addition, several new flags and properties have been added to allow dataset creation and to make mounting and unmounting more convenient. The second piece of this patch provides the ability to encrypt, decyrpt, and authenticate protected datasets. Each object set maintains a Merkel tree of Message Authentication Codes that protect the lower layers, similarly to how checksums are maintained. This part impacts the zio layer, which handles the actual encryption and generation of MACs, as well as the ARC and DMU, which need to be able to handle encrypted buffers and protected data. The last addition is the ability to do raw, encrypted sends and receives. The idea here is to send raw encrypted and compressed data and receive it exactly as is on a backup system. This means that the dataset on the receiving system is protected using the same user key that is in use on the sending side. By doing so, datasets can be efficiently backed up to an untrusted system without fear of data being compromised. Reviewed by: Matthew Ahrens <mahrens@delphix.com> Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov> Reviewed-by: Jorgen Lundman <lundman@lundman.net> Signed-off-by: Tom Caputi <tcaputi@datto.com> Closes #494 Closes #5769
2017-08-14 20:36:48 +03:00
char salt[ZIO_DATA_SALT_LEN * 2 + 1];
char iv[ZIO_DATA_IV_LEN * 2 + 1];
char mac[ZIO_DATA_MAC_LEN * 2 + 1];
uint64_t total_records = 0;
Native Encryption for ZFS on Linux This change incorporates three major pieces: The first change is a keystore that manages wrapping and encryption keys for encrypted datasets. These commands mostly involve manipulating the new DSL Crypto Key ZAP Objects that live in the MOS. Each encrypted dataset has its own DSL Crypto Key that is protected with a user's key. This level of indirection allows users to change their keys without re-encrypting their entire datasets. The change implements the new subcommands "zfs load-key", "zfs unload-key" and "zfs change-key" which allow the user to manage their encryption keys and settings. In addition, several new flags and properties have been added to allow dataset creation and to make mounting and unmounting more convenient. The second piece of this patch provides the ability to encrypt, decyrpt, and authenticate protected datasets. Each object set maintains a Merkel tree of Message Authentication Codes that protect the lower layers, similarly to how checksums are maintained. This part impacts the zio layer, which handles the actual encryption and generation of MACs, as well as the ARC and DMU, which need to be able to handle encrypted buffers and protected data. The last addition is the ability to do raw, encrypted sends and receives. The idea here is to send raw encrypted and compressed data and receive it exactly as is on a backup system. This means that the dataset on the receiving system is protected using the same user key that is in use on the sending side. By doing so, datasets can be efficiently backed up to an untrusted system without fear of data being compromised. Reviewed by: Matthew Ahrens <mahrens@delphix.com> Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov> Reviewed-by: Jorgen Lundman <lundman@lundman.net> Signed-off-by: Tom Caputi <tcaputi@datto.com> Closes #494 Closes #5769
2017-08-14 20:36:48 +03:00
uint64_t payload_size;
dmu_replay_record_t thedrr;
dmu_replay_record_t *drr = &thedrr;
struct drr_begin *drrb = &thedrr.drr_u.drr_begin;
struct drr_end *drre = &thedrr.drr_u.drr_end;
struct drr_object *drro = &thedrr.drr_u.drr_object;
struct drr_freeobjects *drrfo = &thedrr.drr_u.drr_freeobjects;
struct drr_write *drrw = &thedrr.drr_u.drr_write;
struct drr_write_byref *drrwbr = &thedrr.drr_u.drr_write_byref;
struct drr_free *drrf = &thedrr.drr_u.drr_free;
struct drr_spill *drrs = &thedrr.drr_u.drr_spill;
struct drr_write_embedded *drrwe = &thedrr.drr_u.drr_write_embedded;
Native Encryption for ZFS on Linux This change incorporates three major pieces: The first change is a keystore that manages wrapping and encryption keys for encrypted datasets. These commands mostly involve manipulating the new DSL Crypto Key ZAP Objects that live in the MOS. Each encrypted dataset has its own DSL Crypto Key that is protected with a user's key. This level of indirection allows users to change their keys without re-encrypting their entire datasets. The change implements the new subcommands "zfs load-key", "zfs unload-key" and "zfs change-key" which allow the user to manage their encryption keys and settings. In addition, several new flags and properties have been added to allow dataset creation and to make mounting and unmounting more convenient. The second piece of this patch provides the ability to encrypt, decyrpt, and authenticate protected datasets. Each object set maintains a Merkel tree of Message Authentication Codes that protect the lower layers, similarly to how checksums are maintained. This part impacts the zio layer, which handles the actual encryption and generation of MACs, as well as the ARC and DMU, which need to be able to handle encrypted buffers and protected data. The last addition is the ability to do raw, encrypted sends and receives. The idea here is to send raw encrypted and compressed data and receive it exactly as is on a backup system. This means that the dataset on the receiving system is protected using the same user key that is in use on the sending side. By doing so, datasets can be efficiently backed up to an untrusted system without fear of data being compromised. Reviewed by: Matthew Ahrens <mahrens@delphix.com> Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov> Reviewed-by: Jorgen Lundman <lundman@lundman.net> Signed-off-by: Tom Caputi <tcaputi@datto.com> Closes #494 Closes #5769
2017-08-14 20:36:48 +03:00
struct drr_object_range *drror = &thedrr.drr_u.drr_object_range;
Implement Redacted Send/Receive Redacted send/receive allows users to send subsets of their data to a target system. One possible use case for this feature is to not transmit sensitive information to a data warehousing, test/dev, or analytics environment. Another is to save space by not replicating unimportant data within a given dataset, for example in backup tools like zrepl. Redacted send/receive is a three-stage process. First, a clone (or clones) is made of the snapshot to be sent to the target. In this clone (or clones), all unnecessary or unwanted data is removed or modified. This clone is then snapshotted to create the "redaction snapshot" (or snapshots). Second, the new zfs redact command is used to create a redaction bookmark. The redaction bookmark stores the list of blocks in a snapshot that were modified by the redaction snapshot(s). Finally, the redaction bookmark is passed as a parameter to zfs send. When sending to the snapshot that was redacted, the redaction bookmark is used to filter out blocks that contain sensitive or unwanted information, and those blocks are not included in the send stream. When sending from the redaction bookmark, the blocks it contains are considered as candidate blocks in addition to those blocks in the destination snapshot that were modified since the creation_txg of the redaction bookmark. This step is necessary to allow the target to rehydrate data in the case where some blocks are accidentally or unnecessarily modified in the redaction snapshot. The changes to bookmarks to enable fast space estimation involve adding deadlists to bookmarks. There is also logic to manage the life cycles of these deadlists. The new size estimation process operates in cases where previously an accurate estimate could not be provided. In those cases, a send is performed where no data blocks are read, reducing the runtime significantly and providing a byte-accurate size estimate. Reviewed-by: Dan Kimmel <dan.kimmel@delphix.com> Reviewed-by: Matt Ahrens <mahrens@delphix.com> Reviewed-by: Prashanth Sreenivasa <pks@delphix.com> Reviewed-by: John Kennedy <john.kennedy@delphix.com> Reviewed-by: George Wilson <george.wilson@delphix.com> Reviewed-by: Chris Williamson <chris.williamson@delphix.com> Reviewed-by: Pavel Zhakarov <pavel.zakharov@delphix.com> Reviewed-by: Sebastien Roy <sebastien.roy@delphix.com> Reviewed-by: Prakash Surya <prakash.surya@delphix.com> Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov> Signed-off-by: Paul Dagnelie <pcd@delphix.com> Closes #7958
2019-06-19 19:48:13 +03:00
struct drr_redact *drrr = &thedrr.drr_u.drr_redact;
struct drr_checksum *drrc = &thedrr.drr_u.drr_checksum;
int c;
boolean_t verbose = B_FALSE;
boolean_t very_verbose = B_FALSE;
boolean_t first = B_TRUE;
/*
* dump flag controls whether the contents of any modified data blocks
* are printed to the console during processing of the stream. Warning:
* for large streams, this can obviously lead to massive prints.
*/
boolean_t dump = B_FALSE;
int err;
zio_cksum_t zc = { { 0 } };
zio_cksum_t pcksum = { { 0 } };
while ((c = getopt(argc, argv, ":vCd")) != -1) {
switch (c) {
case 'C':
do_cksum = B_FALSE;
break;
case 'v':
if (verbose)
very_verbose = B_TRUE;
verbose = B_TRUE;
break;
case 'd':
dump = B_TRUE;
verbose = B_TRUE;
very_verbose = B_TRUE;
break;
case ':':
(void) fprintf(stderr,
"missing argument for '%c' option\n", optopt);
Add `zstream redup` command to convert deduplicated send streams Deduplicated send and receive is deprecated. To ease migration to the new dedup-send-less world, the commit adds a `zstream redup` utility to convert deduplicated send streams to normal streams, so that they can continue to be received indefinitely. The new `zstream` command also replaces the functionality of `zstreamdump`, by way of the `zstream dump` subcommand. The `zstreamdump` command is replaced by a shell script which invokes `zstream dump`. The way that `zstream redup` works under the hood is that as we read the send stream, we build up a hash table which maps from `<GUID, object, offset> -> <file_offset>`. Whenever we see a WRITE record, we add a new entry to the hash table, which indicates where in the stream file to find the WRITE record for this block. (The key is `drr_toguid, drr_object, drr_offset`.) For entries other than WRITE_BYREF, we pass them through unchanged (except for the running checksum, which is recalculated). For WRITE_BYREF records, we change them to WRITE records. We find the referenced WRITE record by looking in the hash table (for the record with key `drr_refguid, drr_refobject, drr_refoffset`), and then reading the record header and payload from the specified offset in the stream file. This is why the stream can not be a pipe. The found WRITE record replaces the WRITE_BYREF record, with its `drr_toguid`, `drr_object`, and `drr_offset` fields changed to be the same as the WRITE_BYREF's (i.e. we are writing the same logical block, but with the data supplied by the previous WRITE record). This algorithm requires memory proportional to the number of WRITE records (same as `zfs send -D`), but the size per WRITE record is relatively low (40 bytes, vs. 72 for `zfs send -D`). A 1TB send stream with 8KB blocks (`recordsize=8k`) would use around 5GB of RAM to "redup". Reviewed-by: Jorgen Lundman <lundman@lundman.net> Reviewed-by: Paul Dagnelie <pcd@delphix.com> Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov> Signed-off-by: Matthew Ahrens <mahrens@delphix.com> Closes #10124 Closes #10156
2020-04-10 20:39:55 +03:00
zstream_usage();
break;
case '?':
(void) fprintf(stderr, "invalid option '%c'\n",
optopt);
Add `zstream redup` command to convert deduplicated send streams Deduplicated send and receive is deprecated. To ease migration to the new dedup-send-less world, the commit adds a `zstream redup` utility to convert deduplicated send streams to normal streams, so that they can continue to be received indefinitely. The new `zstream` command also replaces the functionality of `zstreamdump`, by way of the `zstream dump` subcommand. The `zstreamdump` command is replaced by a shell script which invokes `zstream dump`. The way that `zstream redup` works under the hood is that as we read the send stream, we build up a hash table which maps from `<GUID, object, offset> -> <file_offset>`. Whenever we see a WRITE record, we add a new entry to the hash table, which indicates where in the stream file to find the WRITE record for this block. (The key is `drr_toguid, drr_object, drr_offset`.) For entries other than WRITE_BYREF, we pass them through unchanged (except for the running checksum, which is recalculated). For WRITE_BYREF records, we change them to WRITE records. We find the referenced WRITE record by looking in the hash table (for the record with key `drr_refguid, drr_refobject, drr_refoffset`), and then reading the record header and payload from the specified offset in the stream file. This is why the stream can not be a pipe. The found WRITE record replaces the WRITE_BYREF record, with its `drr_toguid`, `drr_object`, and `drr_offset` fields changed to be the same as the WRITE_BYREF's (i.e. we are writing the same logical block, but with the data supplied by the previous WRITE record). This algorithm requires memory proportional to the number of WRITE records (same as `zfs send -D`), but the size per WRITE record is relatively low (40 bytes, vs. 72 for `zfs send -D`). A 1TB send stream with 8KB blocks (`recordsize=8k`) would use around 5GB of RAM to "redup". Reviewed-by: Jorgen Lundman <lundman@lundman.net> Reviewed-by: Paul Dagnelie <pcd@delphix.com> Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov> Signed-off-by: Matthew Ahrens <mahrens@delphix.com> Closes #10124 Closes #10156
2020-04-10 20:39:55 +03:00
zstream_usage();
break;
}
}
Add `zstream redup` command to convert deduplicated send streams Deduplicated send and receive is deprecated. To ease migration to the new dedup-send-less world, the commit adds a `zstream redup` utility to convert deduplicated send streams to normal streams, so that they can continue to be received indefinitely. The new `zstream` command also replaces the functionality of `zstreamdump`, by way of the `zstream dump` subcommand. The `zstreamdump` command is replaced by a shell script which invokes `zstream dump`. The way that `zstream redup` works under the hood is that as we read the send stream, we build up a hash table which maps from `<GUID, object, offset> -> <file_offset>`. Whenever we see a WRITE record, we add a new entry to the hash table, which indicates where in the stream file to find the WRITE record for this block. (The key is `drr_toguid, drr_object, drr_offset`.) For entries other than WRITE_BYREF, we pass them through unchanged (except for the running checksum, which is recalculated). For WRITE_BYREF records, we change them to WRITE records. We find the referenced WRITE record by looking in the hash table (for the record with key `drr_refguid, drr_refobject, drr_refoffset`), and then reading the record header and payload from the specified offset in the stream file. This is why the stream can not be a pipe. The found WRITE record replaces the WRITE_BYREF record, with its `drr_toguid`, `drr_object`, and `drr_offset` fields changed to be the same as the WRITE_BYREF's (i.e. we are writing the same logical block, but with the data supplied by the previous WRITE record). This algorithm requires memory proportional to the number of WRITE records (same as `zfs send -D`), but the size per WRITE record is relatively low (40 bytes, vs. 72 for `zfs send -D`). A 1TB send stream with 8KB blocks (`recordsize=8k`) would use around 5GB of RAM to "redup". Reviewed-by: Jorgen Lundman <lundman@lundman.net> Reviewed-by: Paul Dagnelie <pcd@delphix.com> Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov> Signed-off-by: Matthew Ahrens <mahrens@delphix.com> Closes #10124 Closes #10156
2020-04-10 20:39:55 +03:00
if (argc > optind) {
const char *filename = argv[optind];
send_stream = fopen(filename, "r");
if (send_stream == NULL) {
(void) fprintf(stderr,
"Error while opening file '%s': %s\n",
filename, strerror(errno));
exit(1);
}
} else {
if (isatty(STDIN_FILENO)) {
(void) fprintf(stderr,
"Error: The send stream is a binary format "
"and can not be read from a\n"
"terminal. Standard input must be redirected, "
"or a file must be\n"
"specified as a command-line argument.\n");
exit(1);
}
send_stream = stdin;
}
fletcher_4_init();
while (read_hdr(drr, &zc)) {
uint64_t featureflags = 0;
/*
* If this is the first DMU record being processed, check for
* the magic bytes and figure out the endian-ness based on them.
*/
if (first) {
if (drrb->drr_magic == BSWAP_64(DMU_BACKUP_MAGIC)) {
do_byteswap = B_TRUE;
if (do_cksum) {
ZIO_SET_CHECKSUM(&zc, 0, 0, 0, 0);
/*
* recalculate header checksum now
* that we know it needs to be
* byteswapped.
*/
fletcher_4_incremental_byteswap(drr,
sizeof (dmu_replay_record_t), &zc);
}
} else if (drrb->drr_magic != DMU_BACKUP_MAGIC) {
(void) fprintf(stderr, "Invalid stream "
"(bad magic number)\n");
exit(1);
}
first = B_FALSE;
}
if (do_byteswap) {
drr->drr_type = BSWAP_32(drr->drr_type);
drr->drr_payloadlen =
BSWAP_32(drr->drr_payloadlen);
}
/*
* At this point, the leading fields of the replay record
* (drr_type and drr_payloadlen) have been byte-swapped if
* necessary, but the rest of the data structure (the
* union of type-specific structures) is still in its
* original state.
*/
if (drr->drr_type >= DRR_NUMTYPES) {
(void) printf("INVALID record found: type 0x%x\n",
drr->drr_type);
(void) printf("Aborting.\n");
exit(1);
}
drr_record_count[drr->drr_type]++;
total_overhead_size += sizeof (*drr);
total_records++;
payload_size = 0;
switch (drr->drr_type) {
case DRR_BEGIN:
if (do_byteswap) {
drrb->drr_magic = BSWAP_64(drrb->drr_magic);
drrb->drr_versioninfo =
BSWAP_64(drrb->drr_versioninfo);
drrb->drr_creation_time =
BSWAP_64(drrb->drr_creation_time);
drrb->drr_type = BSWAP_32(drrb->drr_type);
drrb->drr_flags = BSWAP_32(drrb->drr_flags);
drrb->drr_toguid = BSWAP_64(drrb->drr_toguid);
drrb->drr_fromguid =
BSWAP_64(drrb->drr_fromguid);
}
featureflags =
DMU_GET_FEATUREFLAGS(drrb->drr_versioninfo);
(void) printf("BEGIN record\n");
(void) printf("\thdrtype = %lld\n",
DMU_GET_STREAM_HDRTYPE(drrb->drr_versioninfo));
(void) printf("\tfeatures = %llx\n",
DMU_GET_FEATUREFLAGS(drrb->drr_versioninfo));
(void) printf("\tmagic = %llx\n",
(u_longlong_t)drrb->drr_magic);
(void) printf("\tcreation_time = %llx\n",
(u_longlong_t)drrb->drr_creation_time);
(void) printf("\ttype = %u\n", drrb->drr_type);
(void) printf("\tflags = 0x%x\n", drrb->drr_flags);
(void) printf("\ttoguid = %llx\n",
(u_longlong_t)drrb->drr_toguid);
(void) printf("\tfromguid = %llx\n",
(u_longlong_t)drrb->drr_fromguid);
(void) printf("\ttoname = %s\n", drrb->drr_toname);
(void) printf("\tpayloadlen = %u\n",
drr->drr_payloadlen);
if (verbose)
(void) printf("\n");
OpenZFS 2605, 6980, 6902 2605 want to resume interrupted zfs send Reviewed by: George Wilson <george.wilson@delphix.com> Reviewed by: Paul Dagnelie <pcd@delphix.com> Reviewed by: Richard Elling <Richard.Elling@RichardElling.com> Reviewed by: Xin Li <delphij@freebsd.org> Reviewed by: Arne Jansen <sensille@gmx.net> Approved by: Dan McDonald <danmcd@omniti.com> Ported-by: kernelOfTruth <kerneloftruth@gmail.com> Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov> OpenZFS-issue: https://www.illumos.org/issues/2605 OpenZFS-commit: https://github.com/openzfs/openzfs/commit/9c3fd12 6980 6902 causes zfs send to break due to 32-bit/64-bit struct mismatch Reviewed by: Paul Dagnelie <pcd@delphix.com> Reviewed by: George Wilson <george.wilson@delphix.com> Approved by: Robert Mustacchi <rm@joyent.com> Ported by: Brian Behlendorf <behlendorf1@llnl.gov> OpenZFS-issue: https://www.illumos.org/issues/6980 OpenZFS-commit: https://github.com/openzfs/openzfs/commit/ea4a67f Porting notes: - All rsend and snapshop tests enabled and updated for Linux. - Fix misuse of input argument in traverse_visitbp(). - Fix ISO C90 warnings and errors. - Fix gcc 'missing braces around initializer' in 'struct send_thread_arg to_arg =' warning. - Replace 4 argument fletcher_4_native() with 3 argument version, this change was made in OpenZFS 4185 which has not been ported. - Part of the sections for 'zfs receive' and 'zfs send' was rewritten and reordered to approximate upstream. - Fix mktree xattr creation, 'user.' prefix required. - Minor fixes to newly enabled test cases - Long holds for volumes allowed during receive for minor registration.
2016-01-07 00:22:48 +03:00
if (drr->drr_payloadlen != 0) {
nvlist_t *nv;
int sz = drr->drr_payloadlen;
Illumos 5027 - zfs large block support 5027 zfs large block support Reviewed by: Alek Pinchuk <pinchuk.alek@gmail.com> Reviewed by: George Wilson <george.wilson@delphix.com> Reviewed by: Josef 'Jeff' Sipek <josef.sipek@nexenta.com> Reviewed by: Richard Elling <richard.elling@richardelling.com> Reviewed by: Saso Kiselkov <skiselkov.ml@gmail.com> Reviewed by: Brian Behlendorf <behlendorf1@llnl.gov> Approved by: Dan McDonald <danmcd@omniti.com> References: https://www.illumos.org/issues/5027 https://github.com/illumos/illumos-gate/commit/b515258 Porting Notes: * Included in this patch is a tiny ISP2() cleanup in zio_init() from Illumos 5255. * Unlike the upstream Illumos commit this patch does not impose an arbitrary 128K block size limit on volumes. Volumes, like filesystems, are limited by the zfs_max_recordsize=1M module option. * By default the maximum record size is limited to 1M by the module option zfs_max_recordsize. This value may be safely increased up to 16M which is the largest block size supported by the on-disk format. At the moment, 1M blocks clearly offer a significant performance improvement but the benefits of going beyond this for the majority of workloads are less clear. * The illumos version of this patch increased DMU_MAX_ACCESS to 32M. This was determined not to be large enough when using 16M blocks because the zfs_make_xattrdir() function will fail (EFBIG) when assigning a TX. This was immediately observed under Linux because all newly created files must have a security xattr created and that was failing. Therefore, we've set DMU_MAX_ACCESS to 64M. * On 32-bit platforms a hard limit of 1M is set for blocks due to the limited virtual address space. We should be able to relax this one the ABD patches are merged. Ported-by: Brian Behlendorf <behlendorf1@llnl.gov> Closes #354
2014-11-03 23:15:08 +03:00
if (sz > SPA_MAXBLOCKSIZE) {
free(buf);
Illumos 5027 - zfs large block support 5027 zfs large block support Reviewed by: Alek Pinchuk <pinchuk.alek@gmail.com> Reviewed by: George Wilson <george.wilson@delphix.com> Reviewed by: Josef 'Jeff' Sipek <josef.sipek@nexenta.com> Reviewed by: Richard Elling <richard.elling@richardelling.com> Reviewed by: Saso Kiselkov <skiselkov.ml@gmail.com> Reviewed by: Brian Behlendorf <behlendorf1@llnl.gov> Approved by: Dan McDonald <danmcd@omniti.com> References: https://www.illumos.org/issues/5027 https://github.com/illumos/illumos-gate/commit/b515258 Porting Notes: * Included in this patch is a tiny ISP2() cleanup in zio_init() from Illumos 5255. * Unlike the upstream Illumos commit this patch does not impose an arbitrary 128K block size limit on volumes. Volumes, like filesystems, are limited by the zfs_max_recordsize=1M module option. * By default the maximum record size is limited to 1M by the module option zfs_max_recordsize. This value may be safely increased up to 16M which is the largest block size supported by the on-disk format. At the moment, 1M blocks clearly offer a significant performance improvement but the benefits of going beyond this for the majority of workloads are less clear. * The illumos version of this patch increased DMU_MAX_ACCESS to 32M. This was determined not to be large enough when using 16M blocks because the zfs_make_xattrdir() function will fail (EFBIG) when assigning a TX. This was immediately observed under Linux because all newly created files must have a security xattr created and that was failing. Therefore, we've set DMU_MAX_ACCESS to 64M. * On 32-bit platforms a hard limit of 1M is set for blocks due to the limited virtual address space. We should be able to relax this one the ABD patches are merged. Ported-by: Brian Behlendorf <behlendorf1@llnl.gov> Closes #354
2014-11-03 23:15:08 +03:00
buf = safe_malloc(sz);
}
(void) ssread(buf, sz, &zc);
if (ferror(send_stream))
perror("fread");
err = nvlist_unpack(buf, sz, &nv, 0);
if (err) {
perror(strerror(err));
} else {
nvlist_print(stdout, nv);
nvlist_free(nv);
}
payload_size = sz;
}
break;
case DRR_END:
if (do_byteswap) {
drre->drr_checksum.zc_word[0] =
BSWAP_64(drre->drr_checksum.zc_word[0]);
drre->drr_checksum.zc_word[1] =
BSWAP_64(drre->drr_checksum.zc_word[1]);
drre->drr_checksum.zc_word[2] =
BSWAP_64(drre->drr_checksum.zc_word[2]);
drre->drr_checksum.zc_word[3] =
BSWAP_64(drre->drr_checksum.zc_word[3]);
}
/*
* We compare against the *previous* checksum
* value, because the stored checksum is of
* everything before the DRR_END record.
*/
if (do_cksum && !ZIO_CHECKSUM_EQUAL(drre->drr_checksum,
pcksum)) {
(void) printf("Expected checksum differs from "
"checksum in stream.\n");
(void) printf("Expected checksum = "
"%llx/%llx/%llx/%llx\n",
(long long unsigned int)pcksum.zc_word[0],
(long long unsigned int)pcksum.zc_word[1],
(long long unsigned int)pcksum.zc_word[2],
(long long unsigned int)pcksum.zc_word[3]);
}
(void) printf("END checksum = %llx/%llx/%llx/%llx\n",
(long long unsigned int)
drre->drr_checksum.zc_word[0],
(long long unsigned int)
drre->drr_checksum.zc_word[1],
(long long unsigned int)
drre->drr_checksum.zc_word[2],
(long long unsigned int)
drre->drr_checksum.zc_word[3]);
ZIO_SET_CHECKSUM(&zc, 0, 0, 0, 0);
break;
case DRR_OBJECT:
if (do_byteswap) {
drro->drr_object = BSWAP_64(drro->drr_object);
drro->drr_type = BSWAP_32(drro->drr_type);
drro->drr_bonustype =
BSWAP_32(drro->drr_bonustype);
drro->drr_blksz = BSWAP_32(drro->drr_blksz);
drro->drr_bonuslen =
BSWAP_32(drro->drr_bonuslen);
Native Encryption for ZFS on Linux This change incorporates three major pieces: The first change is a keystore that manages wrapping and encryption keys for encrypted datasets. These commands mostly involve manipulating the new DSL Crypto Key ZAP Objects that live in the MOS. Each encrypted dataset has its own DSL Crypto Key that is protected with a user's key. This level of indirection allows users to change their keys without re-encrypting their entire datasets. The change implements the new subcommands "zfs load-key", "zfs unload-key" and "zfs change-key" which allow the user to manage their encryption keys and settings. In addition, several new flags and properties have been added to allow dataset creation and to make mounting and unmounting more convenient. The second piece of this patch provides the ability to encrypt, decyrpt, and authenticate protected datasets. Each object set maintains a Merkel tree of Message Authentication Codes that protect the lower layers, similarly to how checksums are maintained. This part impacts the zio layer, which handles the actual encryption and generation of MACs, as well as the ARC and DMU, which need to be able to handle encrypted buffers and protected data. The last addition is the ability to do raw, encrypted sends and receives. The idea here is to send raw encrypted and compressed data and receive it exactly as is on a backup system. This means that the dataset on the receiving system is protected using the same user key that is in use on the sending side. By doing so, datasets can be efficiently backed up to an untrusted system without fear of data being compromised. Reviewed by: Matthew Ahrens <mahrens@delphix.com> Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov> Reviewed-by: Jorgen Lundman <lundman@lundman.net> Signed-off-by: Tom Caputi <tcaputi@datto.com> Closes #494 Closes #5769
2017-08-14 20:36:48 +03:00
drro->drr_raw_bonuslen =
BSWAP_32(drro->drr_raw_bonuslen);
drro->drr_toguid = BSWAP_64(drro->drr_toguid);
Encryption Stability and On-Disk Format Fixes The on-disk format for encrypted datasets protects not only the encrypted and authenticated blocks themselves, but also the order and interpretation of these blocks. In order to make this work while maintaining the ability to do raw sends, the indirect bps maintain a secure checksum of all the MACs in the block below it along with a few other fields that determine how the data is interpreted. Unfortunately, the current on-disk format erroneously includes some fields which are not portable and thus cannot support raw sends. It is not possible to easily work around this issue due to a separate and much smaller bug which causes indirect blocks for encrypted dnodes to not be compressed, which conflicts with the previous bug. In addition, the current code generates incompatible on-disk formats on big endian and little endian systems due to an issue with how block pointers are authenticated. Finally, raw send streams do not currently include dn_maxblkid when sending both the metadnode and normal dnodes which are needed in order to ensure that we are correctly maintaining the portable objset MAC. This patch zero's out the offending fields when computing the bp MAC and ensures that these MACs are always calculated in little endian order (regardless of the host system's byte order). This patch also registers an errata for the old on-disk format, which we detect by adding a "version" field to newly created DSL Crypto Keys. We allow datasets without a version (version 0) to only be mounted for read so that they can easily be migrated. We also now include dn_maxblkid in raw send streams to ensure the MAC can be maintained correctly. This patch also contains minor bug fixes and cleanups. Reviewed-by: Jorgen Lundman <lundman@lundman.net> Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov> Reviewed by: Matthew Ahrens <mahrens@delphix.com> Signed-off-by: Tom Caputi <tcaputi@datto.com> Closes #6845 Closes #6864 Closes #7052
2017-11-08 22:12:59 +03:00
drro->drr_maxblkid =
BSWAP_64(drro->drr_maxblkid);
}
Native Encryption for ZFS on Linux This change incorporates three major pieces: The first change is a keystore that manages wrapping and encryption keys for encrypted datasets. These commands mostly involve manipulating the new DSL Crypto Key ZAP Objects that live in the MOS. Each encrypted dataset has its own DSL Crypto Key that is protected with a user's key. This level of indirection allows users to change their keys without re-encrypting their entire datasets. The change implements the new subcommands "zfs load-key", "zfs unload-key" and "zfs change-key" which allow the user to manage their encryption keys and settings. In addition, several new flags and properties have been added to allow dataset creation and to make mounting and unmounting more convenient. The second piece of this patch provides the ability to encrypt, decyrpt, and authenticate protected datasets. Each object set maintains a Merkel tree of Message Authentication Codes that protect the lower layers, similarly to how checksums are maintained. This part impacts the zio layer, which handles the actual encryption and generation of MACs, as well as the ARC and DMU, which need to be able to handle encrypted buffers and protected data. The last addition is the ability to do raw, encrypted sends and receives. The idea here is to send raw encrypted and compressed data and receive it exactly as is on a backup system. This means that the dataset on the receiving system is protected using the same user key that is in use on the sending side. By doing so, datasets can be efficiently backed up to an untrusted system without fear of data being compromised. Reviewed by: Matthew Ahrens <mahrens@delphix.com> Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov> Reviewed-by: Jorgen Lundman <lundman@lundman.net> Signed-off-by: Tom Caputi <tcaputi@datto.com> Closes #494 Closes #5769
2017-08-14 20:36:48 +03:00
if (featureflags & DMU_BACKUP_FEATURE_RAW &&
drro->drr_bonuslen > drro->drr_raw_bonuslen) {
(void) fprintf(stderr,
"Warning: Object %llu has bonuslen = "
"%u > raw_bonuslen = %u\n\n",
(u_longlong_t)drro->drr_object,
drro->drr_bonuslen, drro->drr_raw_bonuslen);
}
Native Encryption for ZFS on Linux This change incorporates three major pieces: The first change is a keystore that manages wrapping and encryption keys for encrypted datasets. These commands mostly involve manipulating the new DSL Crypto Key ZAP Objects that live in the MOS. Each encrypted dataset has its own DSL Crypto Key that is protected with a user's key. This level of indirection allows users to change their keys without re-encrypting their entire datasets. The change implements the new subcommands "zfs load-key", "zfs unload-key" and "zfs change-key" which allow the user to manage their encryption keys and settings. In addition, several new flags and properties have been added to allow dataset creation and to make mounting and unmounting more convenient. The second piece of this patch provides the ability to encrypt, decyrpt, and authenticate protected datasets. Each object set maintains a Merkel tree of Message Authentication Codes that protect the lower layers, similarly to how checksums are maintained. This part impacts the zio layer, which handles the actual encryption and generation of MACs, as well as the ARC and DMU, which need to be able to handle encrypted buffers and protected data. The last addition is the ability to do raw, encrypted sends and receives. The idea here is to send raw encrypted and compressed data and receive it exactly as is on a backup system. This means that the dataset on the receiving system is protected using the same user key that is in use on the sending side. By doing so, datasets can be efficiently backed up to an untrusted system without fear of data being compromised. Reviewed by: Matthew Ahrens <mahrens@delphix.com> Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov> Reviewed-by: Jorgen Lundman <lundman@lundman.net> Signed-off-by: Tom Caputi <tcaputi@datto.com> Closes #494 Closes #5769
2017-08-14 20:36:48 +03:00
payload_size = DRR_OBJECT_PAYLOAD_SIZE(drro);
if (verbose) {
(void) printf("OBJECT object = %llu type = %u "
"bonustype = %u blksz = %u bonuslen = %u "
Native Encryption for ZFS on Linux This change incorporates three major pieces: The first change is a keystore that manages wrapping and encryption keys for encrypted datasets. These commands mostly involve manipulating the new DSL Crypto Key ZAP Objects that live in the MOS. Each encrypted dataset has its own DSL Crypto Key that is protected with a user's key. This level of indirection allows users to change their keys without re-encrypting their entire datasets. The change implements the new subcommands "zfs load-key", "zfs unload-key" and "zfs change-key" which allow the user to manage their encryption keys and settings. In addition, several new flags and properties have been added to allow dataset creation and to make mounting and unmounting more convenient. The second piece of this patch provides the ability to encrypt, decyrpt, and authenticate protected datasets. Each object set maintains a Merkel tree of Message Authentication Codes that protect the lower layers, similarly to how checksums are maintained. This part impacts the zio layer, which handles the actual encryption and generation of MACs, as well as the ARC and DMU, which need to be able to handle encrypted buffers and protected data. The last addition is the ability to do raw, encrypted sends and receives. The idea here is to send raw encrypted and compressed data and receive it exactly as is on a backup system. This means that the dataset on the receiving system is protected using the same user key that is in use on the sending side. By doing so, datasets can be efficiently backed up to an untrusted system without fear of data being compromised. Reviewed by: Matthew Ahrens <mahrens@delphix.com> Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov> Reviewed-by: Jorgen Lundman <lundman@lundman.net> Signed-off-by: Tom Caputi <tcaputi@datto.com> Closes #494 Closes #5769
2017-08-14 20:36:48 +03:00
"dn_slots = %u raw_bonuslen = %u "
Encryption Stability and On-Disk Format Fixes The on-disk format for encrypted datasets protects not only the encrypted and authenticated blocks themselves, but also the order and interpretation of these blocks. In order to make this work while maintaining the ability to do raw sends, the indirect bps maintain a secure checksum of all the MACs in the block below it along with a few other fields that determine how the data is interpreted. Unfortunately, the current on-disk format erroneously includes some fields which are not portable and thus cannot support raw sends. It is not possible to easily work around this issue due to a separate and much smaller bug which causes indirect blocks for encrypted dnodes to not be compressed, which conflicts with the previous bug. In addition, the current code generates incompatible on-disk formats on big endian and little endian systems due to an issue with how block pointers are authenticated. Finally, raw send streams do not currently include dn_maxblkid when sending both the metadnode and normal dnodes which are needed in order to ensure that we are correctly maintaining the portable objset MAC. This patch zero's out the offending fields when computing the bp MAC and ensures that these MACs are always calculated in little endian order (regardless of the host system's byte order). This patch also registers an errata for the old on-disk format, which we detect by adding a "version" field to newly created DSL Crypto Keys. We allow datasets without a version (version 0) to only be mounted for read so that they can easily be migrated. We also now include dn_maxblkid in raw send streams to ensure the MAC can be maintained correctly. This patch also contains minor bug fixes and cleanups. Reviewed-by: Jorgen Lundman <lundman@lundman.net> Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov> Reviewed by: Matthew Ahrens <mahrens@delphix.com> Signed-off-by: Tom Caputi <tcaputi@datto.com> Closes #6845 Closes #6864 Closes #7052
2017-11-08 22:12:59 +03:00
"flags = %u maxblkid = %llu "
"indblkshift = %u nlevels = %u "
Native Encryption for ZFS on Linux This change incorporates three major pieces: The first change is a keystore that manages wrapping and encryption keys for encrypted datasets. These commands mostly involve manipulating the new DSL Crypto Key ZAP Objects that live in the MOS. Each encrypted dataset has its own DSL Crypto Key that is protected with a user's key. This level of indirection allows users to change their keys without re-encrypting their entire datasets. The change implements the new subcommands "zfs load-key", "zfs unload-key" and "zfs change-key" which allow the user to manage their encryption keys and settings. In addition, several new flags and properties have been added to allow dataset creation and to make mounting and unmounting more convenient. The second piece of this patch provides the ability to encrypt, decyrpt, and authenticate protected datasets. Each object set maintains a Merkel tree of Message Authentication Codes that protect the lower layers, similarly to how checksums are maintained. This part impacts the zio layer, which handles the actual encryption and generation of MACs, as well as the ARC and DMU, which need to be able to handle encrypted buffers and protected data. The last addition is the ability to do raw, encrypted sends and receives. The idea here is to send raw encrypted and compressed data and receive it exactly as is on a backup system. This means that the dataset on the receiving system is protected using the same user key that is in use on the sending side. By doing so, datasets can be efficiently backed up to an untrusted system without fear of data being compromised. Reviewed by: Matthew Ahrens <mahrens@delphix.com> Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov> Reviewed-by: Jorgen Lundman <lundman@lundman.net> Signed-off-by: Tom Caputi <tcaputi@datto.com> Closes #494 Closes #5769
2017-08-14 20:36:48 +03:00
"nblkptr = %u\n",
(u_longlong_t)drro->drr_object,
drro->drr_type,
drro->drr_bonustype,
drro->drr_blksz,
drro->drr_bonuslen,
Native Encryption for ZFS on Linux This change incorporates three major pieces: The first change is a keystore that manages wrapping and encryption keys for encrypted datasets. These commands mostly involve manipulating the new DSL Crypto Key ZAP Objects that live in the MOS. Each encrypted dataset has its own DSL Crypto Key that is protected with a user's key. This level of indirection allows users to change their keys without re-encrypting their entire datasets. The change implements the new subcommands "zfs load-key", "zfs unload-key" and "zfs change-key" which allow the user to manage their encryption keys and settings. In addition, several new flags and properties have been added to allow dataset creation and to make mounting and unmounting more convenient. The second piece of this patch provides the ability to encrypt, decyrpt, and authenticate protected datasets. Each object set maintains a Merkel tree of Message Authentication Codes that protect the lower layers, similarly to how checksums are maintained. This part impacts the zio layer, which handles the actual encryption and generation of MACs, as well as the ARC and DMU, which need to be able to handle encrypted buffers and protected data. The last addition is the ability to do raw, encrypted sends and receives. The idea here is to send raw encrypted and compressed data and receive it exactly as is on a backup system. This means that the dataset on the receiving system is protected using the same user key that is in use on the sending side. By doing so, datasets can be efficiently backed up to an untrusted system without fear of data being compromised. Reviewed by: Matthew Ahrens <mahrens@delphix.com> Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov> Reviewed-by: Jorgen Lundman <lundman@lundman.net> Signed-off-by: Tom Caputi <tcaputi@datto.com> Closes #494 Closes #5769
2017-08-14 20:36:48 +03:00
drro->drr_dn_slots,
drro->drr_raw_bonuslen,
drro->drr_flags,
Encryption Stability and On-Disk Format Fixes The on-disk format for encrypted datasets protects not only the encrypted and authenticated blocks themselves, but also the order and interpretation of these blocks. In order to make this work while maintaining the ability to do raw sends, the indirect bps maintain a secure checksum of all the MACs in the block below it along with a few other fields that determine how the data is interpreted. Unfortunately, the current on-disk format erroneously includes some fields which are not portable and thus cannot support raw sends. It is not possible to easily work around this issue due to a separate and much smaller bug which causes indirect blocks for encrypted dnodes to not be compressed, which conflicts with the previous bug. In addition, the current code generates incompatible on-disk formats on big endian and little endian systems due to an issue with how block pointers are authenticated. Finally, raw send streams do not currently include dn_maxblkid when sending both the metadnode and normal dnodes which are needed in order to ensure that we are correctly maintaining the portable objset MAC. This patch zero's out the offending fields when computing the bp MAC and ensures that these MACs are always calculated in little endian order (regardless of the host system's byte order). This patch also registers an errata for the old on-disk format, which we detect by adding a "version" field to newly created DSL Crypto Keys. We allow datasets without a version (version 0) to only be mounted for read so that they can easily be migrated. We also now include dn_maxblkid in raw send streams to ensure the MAC can be maintained correctly. This patch also contains minor bug fixes and cleanups. Reviewed-by: Jorgen Lundman <lundman@lundman.net> Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov> Reviewed by: Matthew Ahrens <mahrens@delphix.com> Signed-off-by: Tom Caputi <tcaputi@datto.com> Closes #6845 Closes #6864 Closes #7052
2017-11-08 22:12:59 +03:00
(u_longlong_t)drro->drr_maxblkid,
Native Encryption for ZFS on Linux This change incorporates three major pieces: The first change is a keystore that manages wrapping and encryption keys for encrypted datasets. These commands mostly involve manipulating the new DSL Crypto Key ZAP Objects that live in the MOS. Each encrypted dataset has its own DSL Crypto Key that is protected with a user's key. This level of indirection allows users to change their keys without re-encrypting their entire datasets. The change implements the new subcommands "zfs load-key", "zfs unload-key" and "zfs change-key" which allow the user to manage their encryption keys and settings. In addition, several new flags and properties have been added to allow dataset creation and to make mounting and unmounting more convenient. The second piece of this patch provides the ability to encrypt, decyrpt, and authenticate protected datasets. Each object set maintains a Merkel tree of Message Authentication Codes that protect the lower layers, similarly to how checksums are maintained. This part impacts the zio layer, which handles the actual encryption and generation of MACs, as well as the ARC and DMU, which need to be able to handle encrypted buffers and protected data. The last addition is the ability to do raw, encrypted sends and receives. The idea here is to send raw encrypted and compressed data and receive it exactly as is on a backup system. This means that the dataset on the receiving system is protected using the same user key that is in use on the sending side. By doing so, datasets can be efficiently backed up to an untrusted system without fear of data being compromised. Reviewed by: Matthew Ahrens <mahrens@delphix.com> Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov> Reviewed-by: Jorgen Lundman <lundman@lundman.net> Signed-off-by: Tom Caputi <tcaputi@datto.com> Closes #494 Closes #5769
2017-08-14 20:36:48 +03:00
drro->drr_indblkshift,
drro->drr_nlevels,
drro->drr_nblkptr);
}
if (drro->drr_bonuslen > 0) {
Native Encryption for ZFS on Linux This change incorporates three major pieces: The first change is a keystore that manages wrapping and encryption keys for encrypted datasets. These commands mostly involve manipulating the new DSL Crypto Key ZAP Objects that live in the MOS. Each encrypted dataset has its own DSL Crypto Key that is protected with a user's key. This level of indirection allows users to change their keys without re-encrypting their entire datasets. The change implements the new subcommands "zfs load-key", "zfs unload-key" and "zfs change-key" which allow the user to manage their encryption keys and settings. In addition, several new flags and properties have been added to allow dataset creation and to make mounting and unmounting more convenient. The second piece of this patch provides the ability to encrypt, decyrpt, and authenticate protected datasets. Each object set maintains a Merkel tree of Message Authentication Codes that protect the lower layers, similarly to how checksums are maintained. This part impacts the zio layer, which handles the actual encryption and generation of MACs, as well as the ARC and DMU, which need to be able to handle encrypted buffers and protected data. The last addition is the ability to do raw, encrypted sends and receives. The idea here is to send raw encrypted and compressed data and receive it exactly as is on a backup system. This means that the dataset on the receiving system is protected using the same user key that is in use on the sending side. By doing so, datasets can be efficiently backed up to an untrusted system without fear of data being compromised. Reviewed by: Matthew Ahrens <mahrens@delphix.com> Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov> Reviewed-by: Jorgen Lundman <lundman@lundman.net> Signed-off-by: Tom Caputi <tcaputi@datto.com> Closes #494 Closes #5769
2017-08-14 20:36:48 +03:00
(void) ssread(buf, payload_size, &zc);
if (dump)
print_block(buf, payload_size);
}
break;
case DRR_FREEOBJECTS:
if (do_byteswap) {
drrfo->drr_firstobj =
BSWAP_64(drrfo->drr_firstobj);
drrfo->drr_numobjs =
BSWAP_64(drrfo->drr_numobjs);
drrfo->drr_toguid = BSWAP_64(drrfo->drr_toguid);
}
if (verbose) {
(void) printf("FREEOBJECTS firstobj = %llu "
"numobjs = %llu\n",
(u_longlong_t)drrfo->drr_firstobj,
(u_longlong_t)drrfo->drr_numobjs);
}
break;
case DRR_WRITE:
if (do_byteswap) {
drrw->drr_object = BSWAP_64(drrw->drr_object);
drrw->drr_type = BSWAP_32(drrw->drr_type);
drrw->drr_offset = BSWAP_64(drrw->drr_offset);
drrw->drr_logical_size =
BSWAP_64(drrw->drr_logical_size);
drrw->drr_toguid = BSWAP_64(drrw->drr_toguid);
drrw->drr_key.ddk_prop =
BSWAP_64(drrw->drr_key.ddk_prop);
drrw->drr_compressed_size =
BSWAP_64(drrw->drr_compressed_size);
}
Native Encryption for ZFS on Linux This change incorporates three major pieces: The first change is a keystore that manages wrapping and encryption keys for encrypted datasets. These commands mostly involve manipulating the new DSL Crypto Key ZAP Objects that live in the MOS. Each encrypted dataset has its own DSL Crypto Key that is protected with a user's key. This level of indirection allows users to change their keys without re-encrypting their entire datasets. The change implements the new subcommands "zfs load-key", "zfs unload-key" and "zfs change-key" which allow the user to manage their encryption keys and settings. In addition, several new flags and properties have been added to allow dataset creation and to make mounting and unmounting more convenient. The second piece of this patch provides the ability to encrypt, decyrpt, and authenticate protected datasets. Each object set maintains a Merkel tree of Message Authentication Codes that protect the lower layers, similarly to how checksums are maintained. This part impacts the zio layer, which handles the actual encryption and generation of MACs, as well as the ARC and DMU, which need to be able to handle encrypted buffers and protected data. The last addition is the ability to do raw, encrypted sends and receives. The idea here is to send raw encrypted and compressed data and receive it exactly as is on a backup system. This means that the dataset on the receiving system is protected using the same user key that is in use on the sending side. By doing so, datasets can be efficiently backed up to an untrusted system without fear of data being compromised. Reviewed by: Matthew Ahrens <mahrens@delphix.com> Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov> Reviewed-by: Jorgen Lundman <lundman@lundman.net> Signed-off-by: Tom Caputi <tcaputi@datto.com> Closes #494 Closes #5769
2017-08-14 20:36:48 +03:00
payload_size = DRR_WRITE_PAYLOAD_SIZE(drrw);
/*
* If this is verbose and/or dump output,
* print info on the modified block
*/
if (verbose) {
Native Encryption for ZFS on Linux This change incorporates three major pieces: The first change is a keystore that manages wrapping and encryption keys for encrypted datasets. These commands mostly involve manipulating the new DSL Crypto Key ZAP Objects that live in the MOS. Each encrypted dataset has its own DSL Crypto Key that is protected with a user's key. This level of indirection allows users to change their keys without re-encrypting their entire datasets. The change implements the new subcommands "zfs load-key", "zfs unload-key" and "zfs change-key" which allow the user to manage their encryption keys and settings. In addition, several new flags and properties have been added to allow dataset creation and to make mounting and unmounting more convenient. The second piece of this patch provides the ability to encrypt, decyrpt, and authenticate protected datasets. Each object set maintains a Merkel tree of Message Authentication Codes that protect the lower layers, similarly to how checksums are maintained. This part impacts the zio layer, which handles the actual encryption and generation of MACs, as well as the ARC and DMU, which need to be able to handle encrypted buffers and protected data. The last addition is the ability to do raw, encrypted sends and receives. The idea here is to send raw encrypted and compressed data and receive it exactly as is on a backup system. This means that the dataset on the receiving system is protected using the same user key that is in use on the sending side. By doing so, datasets can be efficiently backed up to an untrusted system without fear of data being compromised. Reviewed by: Matthew Ahrens <mahrens@delphix.com> Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov> Reviewed-by: Jorgen Lundman <lundman@lundman.net> Signed-off-by: Tom Caputi <tcaputi@datto.com> Closes #494 Closes #5769
2017-08-14 20:36:48 +03:00
sprintf_bytes(salt, drrw->drr_salt,
ZIO_DATA_SALT_LEN);
sprintf_bytes(iv, drrw->drr_iv,
ZIO_DATA_IV_LEN);
sprintf_bytes(mac, drrw->drr_mac,
ZIO_DATA_MAC_LEN);
(void) printf("WRITE object = %llu type = %u "
"checksum type = %u compression type = %u "
"flags = %u offset = %llu "
Native Encryption for ZFS on Linux This change incorporates three major pieces: The first change is a keystore that manages wrapping and encryption keys for encrypted datasets. These commands mostly involve manipulating the new DSL Crypto Key ZAP Objects that live in the MOS. Each encrypted dataset has its own DSL Crypto Key that is protected with a user's key. This level of indirection allows users to change their keys without re-encrypting their entire datasets. The change implements the new subcommands "zfs load-key", "zfs unload-key" and "zfs change-key" which allow the user to manage their encryption keys and settings. In addition, several new flags and properties have been added to allow dataset creation and to make mounting and unmounting more convenient. The second piece of this patch provides the ability to encrypt, decyrpt, and authenticate protected datasets. Each object set maintains a Merkel tree of Message Authentication Codes that protect the lower layers, similarly to how checksums are maintained. This part impacts the zio layer, which handles the actual encryption and generation of MACs, as well as the ARC and DMU, which need to be able to handle encrypted buffers and protected data. The last addition is the ability to do raw, encrypted sends and receives. The idea here is to send raw encrypted and compressed data and receive it exactly as is on a backup system. This means that the dataset on the receiving system is protected using the same user key that is in use on the sending side. By doing so, datasets can be efficiently backed up to an untrusted system without fear of data being compromised. Reviewed by: Matthew Ahrens <mahrens@delphix.com> Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov> Reviewed-by: Jorgen Lundman <lundman@lundman.net> Signed-off-by: Tom Caputi <tcaputi@datto.com> Closes #494 Closes #5769
2017-08-14 20:36:48 +03:00
"logical_size = %llu "
"compressed_size = %llu "
Native Encryption for ZFS on Linux This change incorporates three major pieces: The first change is a keystore that manages wrapping and encryption keys for encrypted datasets. These commands mostly involve manipulating the new DSL Crypto Key ZAP Objects that live in the MOS. Each encrypted dataset has its own DSL Crypto Key that is protected with a user's key. This level of indirection allows users to change their keys without re-encrypting their entire datasets. The change implements the new subcommands "zfs load-key", "zfs unload-key" and "zfs change-key" which allow the user to manage their encryption keys and settings. In addition, several new flags and properties have been added to allow dataset creation and to make mounting and unmounting more convenient. The second piece of this patch provides the ability to encrypt, decyrpt, and authenticate protected datasets. Each object set maintains a Merkel tree of Message Authentication Codes that protect the lower layers, similarly to how checksums are maintained. This part impacts the zio layer, which handles the actual encryption and generation of MACs, as well as the ARC and DMU, which need to be able to handle encrypted buffers and protected data. The last addition is the ability to do raw, encrypted sends and receives. The idea here is to send raw encrypted and compressed data and receive it exactly as is on a backup system. This means that the dataset on the receiving system is protected using the same user key that is in use on the sending side. By doing so, datasets can be efficiently backed up to an untrusted system without fear of data being compromised. Reviewed by: Matthew Ahrens <mahrens@delphix.com> Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov> Reviewed-by: Jorgen Lundman <lundman@lundman.net> Signed-off-by: Tom Caputi <tcaputi@datto.com> Closes #494 Closes #5769
2017-08-14 20:36:48 +03:00
"payload_size = %llu props = %llx "
"salt = %s iv = %s mac = %s\n",
(u_longlong_t)drrw->drr_object,
drrw->drr_type,
drrw->drr_checksumtype,
drrw->drr_compressiontype,
Native Encryption for ZFS on Linux This change incorporates three major pieces: The first change is a keystore that manages wrapping and encryption keys for encrypted datasets. These commands mostly involve manipulating the new DSL Crypto Key ZAP Objects that live in the MOS. Each encrypted dataset has its own DSL Crypto Key that is protected with a user's key. This level of indirection allows users to change their keys without re-encrypting their entire datasets. The change implements the new subcommands "zfs load-key", "zfs unload-key" and "zfs change-key" which allow the user to manage their encryption keys and settings. In addition, several new flags and properties have been added to allow dataset creation and to make mounting and unmounting more convenient. The second piece of this patch provides the ability to encrypt, decyrpt, and authenticate protected datasets. Each object set maintains a Merkel tree of Message Authentication Codes that protect the lower layers, similarly to how checksums are maintained. This part impacts the zio layer, which handles the actual encryption and generation of MACs, as well as the ARC and DMU, which need to be able to handle encrypted buffers and protected data. The last addition is the ability to do raw, encrypted sends and receives. The idea here is to send raw encrypted and compressed data and receive it exactly as is on a backup system. This means that the dataset on the receiving system is protected using the same user key that is in use on the sending side. By doing so, datasets can be efficiently backed up to an untrusted system without fear of data being compromised. Reviewed by: Matthew Ahrens <mahrens@delphix.com> Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov> Reviewed-by: Jorgen Lundman <lundman@lundman.net> Signed-off-by: Tom Caputi <tcaputi@datto.com> Closes #494 Closes #5769
2017-08-14 20:36:48 +03:00
drrw->drr_flags,
(u_longlong_t)drrw->drr_offset,
(u_longlong_t)drrw->drr_logical_size,
(u_longlong_t)drrw->drr_compressed_size,
(u_longlong_t)payload_size,
Native Encryption for ZFS on Linux This change incorporates three major pieces: The first change is a keystore that manages wrapping and encryption keys for encrypted datasets. These commands mostly involve manipulating the new DSL Crypto Key ZAP Objects that live in the MOS. Each encrypted dataset has its own DSL Crypto Key that is protected with a user's key. This level of indirection allows users to change their keys without re-encrypting their entire datasets. The change implements the new subcommands "zfs load-key", "zfs unload-key" and "zfs change-key" which allow the user to manage their encryption keys and settings. In addition, several new flags and properties have been added to allow dataset creation and to make mounting and unmounting more convenient. The second piece of this patch provides the ability to encrypt, decyrpt, and authenticate protected datasets. Each object set maintains a Merkel tree of Message Authentication Codes that protect the lower layers, similarly to how checksums are maintained. This part impacts the zio layer, which handles the actual encryption and generation of MACs, as well as the ARC and DMU, which need to be able to handle encrypted buffers and protected data. The last addition is the ability to do raw, encrypted sends and receives. The idea here is to send raw encrypted and compressed data and receive it exactly as is on a backup system. This means that the dataset on the receiving system is protected using the same user key that is in use on the sending side. By doing so, datasets can be efficiently backed up to an untrusted system without fear of data being compromised. Reviewed by: Matthew Ahrens <mahrens@delphix.com> Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov> Reviewed-by: Jorgen Lundman <lundman@lundman.net> Signed-off-by: Tom Caputi <tcaputi@datto.com> Closes #494 Closes #5769
2017-08-14 20:36:48 +03:00
(u_longlong_t)drrw->drr_key.ddk_prop,
salt,
iv,
mac);
}
/*
* Read the contents of the block in from STDIN to buf
*/
(void) ssread(buf, payload_size, &zc);
/*
* If in dump mode
*/
if (dump) {
print_block(buf, payload_size);
}
break;
case DRR_WRITE_BYREF:
if (do_byteswap) {
drrwbr->drr_object =
BSWAP_64(drrwbr->drr_object);
drrwbr->drr_offset =
BSWAP_64(drrwbr->drr_offset);
drrwbr->drr_length =
BSWAP_64(drrwbr->drr_length);
drrwbr->drr_toguid =
BSWAP_64(drrwbr->drr_toguid);
drrwbr->drr_refguid =
BSWAP_64(drrwbr->drr_refguid);
drrwbr->drr_refobject =
BSWAP_64(drrwbr->drr_refobject);
drrwbr->drr_refoffset =
BSWAP_64(drrwbr->drr_refoffset);
drrwbr->drr_key.ddk_prop =
BSWAP_64(drrwbr->drr_key.ddk_prop);
}
if (verbose) {
(void) printf("WRITE_BYREF object = %llu "
"checksum type = %u props = %llx "
"offset = %llu length = %llu "
"toguid = %llx refguid = %llx "
"refobject = %llu refoffset = %llu\n",
(u_longlong_t)drrwbr->drr_object,
drrwbr->drr_checksumtype,
(u_longlong_t)drrwbr->drr_key.ddk_prop,
(u_longlong_t)drrwbr->drr_offset,
(u_longlong_t)drrwbr->drr_length,
(u_longlong_t)drrwbr->drr_toguid,
(u_longlong_t)drrwbr->drr_refguid,
(u_longlong_t)drrwbr->drr_refobject,
(u_longlong_t)drrwbr->drr_refoffset);
}
break;
case DRR_FREE:
if (do_byteswap) {
drrf->drr_object = BSWAP_64(drrf->drr_object);
drrf->drr_offset = BSWAP_64(drrf->drr_offset);
drrf->drr_length = BSWAP_64(drrf->drr_length);
}
if (verbose) {
(void) printf("FREE object = %llu "
"offset = %llu length = %lld\n",
(u_longlong_t)drrf->drr_object,
(u_longlong_t)drrf->drr_offset,
(longlong_t)drrf->drr_length);
}
break;
case DRR_SPILL:
if (do_byteswap) {
drrs->drr_object = BSWAP_64(drrs->drr_object);
drrs->drr_length = BSWAP_64(drrs->drr_length);
Native Encryption for ZFS on Linux This change incorporates three major pieces: The first change is a keystore that manages wrapping and encryption keys for encrypted datasets. These commands mostly involve manipulating the new DSL Crypto Key ZAP Objects that live in the MOS. Each encrypted dataset has its own DSL Crypto Key that is protected with a user's key. This level of indirection allows users to change their keys without re-encrypting their entire datasets. The change implements the new subcommands "zfs load-key", "zfs unload-key" and "zfs change-key" which allow the user to manage their encryption keys and settings. In addition, several new flags and properties have been added to allow dataset creation and to make mounting and unmounting more convenient. The second piece of this patch provides the ability to encrypt, decyrpt, and authenticate protected datasets. Each object set maintains a Merkel tree of Message Authentication Codes that protect the lower layers, similarly to how checksums are maintained. This part impacts the zio layer, which handles the actual encryption and generation of MACs, as well as the ARC and DMU, which need to be able to handle encrypted buffers and protected data. The last addition is the ability to do raw, encrypted sends and receives. The idea here is to send raw encrypted and compressed data and receive it exactly as is on a backup system. This means that the dataset on the receiving system is protected using the same user key that is in use on the sending side. By doing so, datasets can be efficiently backed up to an untrusted system without fear of data being compromised. Reviewed by: Matthew Ahrens <mahrens@delphix.com> Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov> Reviewed-by: Jorgen Lundman <lundman@lundman.net> Signed-off-by: Tom Caputi <tcaputi@datto.com> Closes #494 Closes #5769
2017-08-14 20:36:48 +03:00
drrs->drr_compressed_size =
BSWAP_64(drrs->drr_compressed_size);
drrs->drr_type = BSWAP_32(drrs->drr_type);
}
payload_size = DRR_SPILL_PAYLOAD_SIZE(drrs);
if (verbose) {
Native Encryption for ZFS on Linux This change incorporates three major pieces: The first change is a keystore that manages wrapping and encryption keys for encrypted datasets. These commands mostly involve manipulating the new DSL Crypto Key ZAP Objects that live in the MOS. Each encrypted dataset has its own DSL Crypto Key that is protected with a user's key. This level of indirection allows users to change their keys without re-encrypting their entire datasets. The change implements the new subcommands "zfs load-key", "zfs unload-key" and "zfs change-key" which allow the user to manage their encryption keys and settings. In addition, several new flags and properties have been added to allow dataset creation and to make mounting and unmounting more convenient. The second piece of this patch provides the ability to encrypt, decyrpt, and authenticate protected datasets. Each object set maintains a Merkel tree of Message Authentication Codes that protect the lower layers, similarly to how checksums are maintained. This part impacts the zio layer, which handles the actual encryption and generation of MACs, as well as the ARC and DMU, which need to be able to handle encrypted buffers and protected data. The last addition is the ability to do raw, encrypted sends and receives. The idea here is to send raw encrypted and compressed data and receive it exactly as is on a backup system. This means that the dataset on the receiving system is protected using the same user key that is in use on the sending side. By doing so, datasets can be efficiently backed up to an untrusted system without fear of data being compromised. Reviewed by: Matthew Ahrens <mahrens@delphix.com> Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov> Reviewed-by: Jorgen Lundman <lundman@lundman.net> Signed-off-by: Tom Caputi <tcaputi@datto.com> Closes #494 Closes #5769
2017-08-14 20:36:48 +03:00
sprintf_bytes(salt, drrs->drr_salt,
ZIO_DATA_SALT_LEN);
sprintf_bytes(iv, drrs->drr_iv,
ZIO_DATA_IV_LEN);
sprintf_bytes(mac, drrs->drr_mac,
ZIO_DATA_MAC_LEN);
(void) printf("SPILL block for object = %llu "
Native Encryption for ZFS on Linux This change incorporates three major pieces: The first change is a keystore that manages wrapping and encryption keys for encrypted datasets. These commands mostly involve manipulating the new DSL Crypto Key ZAP Objects that live in the MOS. Each encrypted dataset has its own DSL Crypto Key that is protected with a user's key. This level of indirection allows users to change their keys without re-encrypting their entire datasets. The change implements the new subcommands "zfs load-key", "zfs unload-key" and "zfs change-key" which allow the user to manage their encryption keys and settings. In addition, several new flags and properties have been added to allow dataset creation and to make mounting and unmounting more convenient. The second piece of this patch provides the ability to encrypt, decyrpt, and authenticate protected datasets. Each object set maintains a Merkel tree of Message Authentication Codes that protect the lower layers, similarly to how checksums are maintained. This part impacts the zio layer, which handles the actual encryption and generation of MACs, as well as the ARC and DMU, which need to be able to handle encrypted buffers and protected data. The last addition is the ability to do raw, encrypted sends and receives. The idea here is to send raw encrypted and compressed data and receive it exactly as is on a backup system. This means that the dataset on the receiving system is protected using the same user key that is in use on the sending side. By doing so, datasets can be efficiently backed up to an untrusted system without fear of data being compromised. Reviewed by: Matthew Ahrens <mahrens@delphix.com> Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov> Reviewed-by: Jorgen Lundman <lundman@lundman.net> Signed-off-by: Tom Caputi <tcaputi@datto.com> Closes #494 Closes #5769
2017-08-14 20:36:48 +03:00
"length = %llu flags = %u "
"compression type = %u "
"compressed_size = %llu "
"payload_size = %llu "
Native Encryption for ZFS on Linux This change incorporates three major pieces: The first change is a keystore that manages wrapping and encryption keys for encrypted datasets. These commands mostly involve manipulating the new DSL Crypto Key ZAP Objects that live in the MOS. Each encrypted dataset has its own DSL Crypto Key that is protected with a user's key. This level of indirection allows users to change their keys without re-encrypting their entire datasets. The change implements the new subcommands "zfs load-key", "zfs unload-key" and "zfs change-key" which allow the user to manage their encryption keys and settings. In addition, several new flags and properties have been added to allow dataset creation and to make mounting and unmounting more convenient. The second piece of this patch provides the ability to encrypt, decyrpt, and authenticate protected datasets. Each object set maintains a Merkel tree of Message Authentication Codes that protect the lower layers, similarly to how checksums are maintained. This part impacts the zio layer, which handles the actual encryption and generation of MACs, as well as the ARC and DMU, which need to be able to handle encrypted buffers and protected data. The last addition is the ability to do raw, encrypted sends and receives. The idea here is to send raw encrypted and compressed data and receive it exactly as is on a backup system. This means that the dataset on the receiving system is protected using the same user key that is in use on the sending side. By doing so, datasets can be efficiently backed up to an untrusted system without fear of data being compromised. Reviewed by: Matthew Ahrens <mahrens@delphix.com> Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov> Reviewed-by: Jorgen Lundman <lundman@lundman.net> Signed-off-by: Tom Caputi <tcaputi@datto.com> Closes #494 Closes #5769
2017-08-14 20:36:48 +03:00
"salt = %s iv = %s mac = %s\n",
(u_longlong_t)drrs->drr_object,
(u_longlong_t)drrs->drr_length,
drrs->drr_flags,
drrs->drr_compressiontype,
(u_longlong_t)drrs->drr_compressed_size,
(u_longlong_t)payload_size,
Native Encryption for ZFS on Linux This change incorporates three major pieces: The first change is a keystore that manages wrapping and encryption keys for encrypted datasets. These commands mostly involve manipulating the new DSL Crypto Key ZAP Objects that live in the MOS. Each encrypted dataset has its own DSL Crypto Key that is protected with a user's key. This level of indirection allows users to change their keys without re-encrypting their entire datasets. The change implements the new subcommands "zfs load-key", "zfs unload-key" and "zfs change-key" which allow the user to manage their encryption keys and settings. In addition, several new flags and properties have been added to allow dataset creation and to make mounting and unmounting more convenient. The second piece of this patch provides the ability to encrypt, decyrpt, and authenticate protected datasets. Each object set maintains a Merkel tree of Message Authentication Codes that protect the lower layers, similarly to how checksums are maintained. This part impacts the zio layer, which handles the actual encryption and generation of MACs, as well as the ARC and DMU, which need to be able to handle encrypted buffers and protected data. The last addition is the ability to do raw, encrypted sends and receives. The idea here is to send raw encrypted and compressed data and receive it exactly as is on a backup system. This means that the dataset on the receiving system is protected using the same user key that is in use on the sending side. By doing so, datasets can be efficiently backed up to an untrusted system without fear of data being compromised. Reviewed by: Matthew Ahrens <mahrens@delphix.com> Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov> Reviewed-by: Jorgen Lundman <lundman@lundman.net> Signed-off-by: Tom Caputi <tcaputi@datto.com> Closes #494 Closes #5769
2017-08-14 20:36:48 +03:00
salt,
iv,
mac);
}
(void) ssread(buf, payload_size, &zc);
if (dump) {
print_block(buf, payload_size);
}
break;
case DRR_WRITE_EMBEDDED:
if (do_byteswap) {
drrwe->drr_object =
BSWAP_64(drrwe->drr_object);
drrwe->drr_offset =
BSWAP_64(drrwe->drr_offset);
drrwe->drr_length =
BSWAP_64(drrwe->drr_length);
drrwe->drr_toguid =
BSWAP_64(drrwe->drr_toguid);
drrwe->drr_lsize =
BSWAP_32(drrwe->drr_lsize);
drrwe->drr_psize =
BSWAP_32(drrwe->drr_psize);
}
if (verbose) {
(void) printf("WRITE_EMBEDDED object = %llu "
"offset = %llu length = %llu "
"toguid = %llx comp = %u etype = %u "
"lsize = %u psize = %u\n",
(u_longlong_t)drrwe->drr_object,
(u_longlong_t)drrwe->drr_offset,
(u_longlong_t)drrwe->drr_length,
(u_longlong_t)drrwe->drr_toguid,
drrwe->drr_compression,
drrwe->drr_etype,
drrwe->drr_lsize,
drrwe->drr_psize);
}
(void) ssread(buf,
P2ROUNDUP(drrwe->drr_psize, 8), &zc);
if (dump) {
print_block(buf,
P2ROUNDUP(drrwe->drr_psize, 8));
}
payload_size = P2ROUNDUP(drrwe->drr_psize, 8);
break;
Native Encryption for ZFS on Linux This change incorporates three major pieces: The first change is a keystore that manages wrapping and encryption keys for encrypted datasets. These commands mostly involve manipulating the new DSL Crypto Key ZAP Objects that live in the MOS. Each encrypted dataset has its own DSL Crypto Key that is protected with a user's key. This level of indirection allows users to change their keys without re-encrypting their entire datasets. The change implements the new subcommands "zfs load-key", "zfs unload-key" and "zfs change-key" which allow the user to manage their encryption keys and settings. In addition, several new flags and properties have been added to allow dataset creation and to make mounting and unmounting more convenient. The second piece of this patch provides the ability to encrypt, decyrpt, and authenticate protected datasets. Each object set maintains a Merkel tree of Message Authentication Codes that protect the lower layers, similarly to how checksums are maintained. This part impacts the zio layer, which handles the actual encryption and generation of MACs, as well as the ARC and DMU, which need to be able to handle encrypted buffers and protected data. The last addition is the ability to do raw, encrypted sends and receives. The idea here is to send raw encrypted and compressed data and receive it exactly as is on a backup system. This means that the dataset on the receiving system is protected using the same user key that is in use on the sending side. By doing so, datasets can be efficiently backed up to an untrusted system without fear of data being compromised. Reviewed by: Matthew Ahrens <mahrens@delphix.com> Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov> Reviewed-by: Jorgen Lundman <lundman@lundman.net> Signed-off-by: Tom Caputi <tcaputi@datto.com> Closes #494 Closes #5769
2017-08-14 20:36:48 +03:00
case DRR_OBJECT_RANGE:
if (do_byteswap) {
drror->drr_firstobj =
BSWAP_64(drror->drr_firstobj);
drror->drr_numslots =
BSWAP_64(drror->drr_numslots);
drror->drr_toguid = BSWAP_64(drror->drr_toguid);
}
if (verbose) {
sprintf_bytes(salt, drror->drr_salt,
ZIO_DATA_SALT_LEN);
sprintf_bytes(iv, drror->drr_iv,
ZIO_DATA_IV_LEN);
sprintf_bytes(mac, drror->drr_mac,
ZIO_DATA_MAC_LEN);
(void) printf("OBJECT_RANGE firstobj = %llu "
"numslots = %llu flags = %u "
"salt = %s iv = %s mac = %s\n",
(u_longlong_t)drror->drr_firstobj,
(u_longlong_t)drror->drr_numslots,
drror->drr_flags,
salt,
iv,
mac);
}
break;
Implement Redacted Send/Receive Redacted send/receive allows users to send subsets of their data to a target system. One possible use case for this feature is to not transmit sensitive information to a data warehousing, test/dev, or analytics environment. Another is to save space by not replicating unimportant data within a given dataset, for example in backup tools like zrepl. Redacted send/receive is a three-stage process. First, a clone (or clones) is made of the snapshot to be sent to the target. In this clone (or clones), all unnecessary or unwanted data is removed or modified. This clone is then snapshotted to create the "redaction snapshot" (or snapshots). Second, the new zfs redact command is used to create a redaction bookmark. The redaction bookmark stores the list of blocks in a snapshot that were modified by the redaction snapshot(s). Finally, the redaction bookmark is passed as a parameter to zfs send. When sending to the snapshot that was redacted, the redaction bookmark is used to filter out blocks that contain sensitive or unwanted information, and those blocks are not included in the send stream. When sending from the redaction bookmark, the blocks it contains are considered as candidate blocks in addition to those blocks in the destination snapshot that were modified since the creation_txg of the redaction bookmark. This step is necessary to allow the target to rehydrate data in the case where some blocks are accidentally or unnecessarily modified in the redaction snapshot. The changes to bookmarks to enable fast space estimation involve adding deadlists to bookmarks. There is also logic to manage the life cycles of these deadlists. The new size estimation process operates in cases where previously an accurate estimate could not be provided. In those cases, a send is performed where no data blocks are read, reducing the runtime significantly and providing a byte-accurate size estimate. Reviewed-by: Dan Kimmel <dan.kimmel@delphix.com> Reviewed-by: Matt Ahrens <mahrens@delphix.com> Reviewed-by: Prashanth Sreenivasa <pks@delphix.com> Reviewed-by: John Kennedy <john.kennedy@delphix.com> Reviewed-by: George Wilson <george.wilson@delphix.com> Reviewed-by: Chris Williamson <chris.williamson@delphix.com> Reviewed-by: Pavel Zhakarov <pavel.zakharov@delphix.com> Reviewed-by: Sebastien Roy <sebastien.roy@delphix.com> Reviewed-by: Prakash Surya <prakash.surya@delphix.com> Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov> Signed-off-by: Paul Dagnelie <pcd@delphix.com> Closes #7958
2019-06-19 19:48:13 +03:00
case DRR_REDACT:
if (do_byteswap) {
drrr->drr_object = BSWAP_64(drrr->drr_object);
drrr->drr_offset = BSWAP_64(drrr->drr_offset);
drrr->drr_length = BSWAP_64(drrr->drr_length);
drrr->drr_toguid = BSWAP_64(drrr->drr_toguid);
}
if (verbose) {
(void) printf("REDACT object = %llu offset = "
"%llu length = %llu\n",
(u_longlong_t)drrr->drr_object,
(u_longlong_t)drrr->drr_offset,
(u_longlong_t)drrr->drr_length);
}
break;
case DRR_NUMTYPES:
/* should never be reached */
exit(1);
}
if (drr->drr_type != DRR_BEGIN && very_verbose) {
(void) printf(" checksum = %llx/%llx/%llx/%llx\n",
(longlong_t)drrc->drr_checksum.zc_word[0],
(longlong_t)drrc->drr_checksum.zc_word[1],
(longlong_t)drrc->drr_checksum.zc_word[2],
(longlong_t)drrc->drr_checksum.zc_word[3]);
}
pcksum = zc;
drr_byte_count[drr->drr_type] += payload_size;
total_payload_size += payload_size;
}
free(buf);
fletcher_4_fini();
/* Print final summary */
(void) printf("SUMMARY:\n");
(void) printf("\tTotal DRR_BEGIN records = %lld (%llu bytes)\n",
(u_longlong_t)drr_record_count[DRR_BEGIN],
(u_longlong_t)drr_byte_count[DRR_BEGIN]);
(void) printf("\tTotal DRR_END records = %lld (%llu bytes)\n",
(u_longlong_t)drr_record_count[DRR_END],
(u_longlong_t)drr_byte_count[DRR_END]);
(void) printf("\tTotal DRR_OBJECT records = %lld (%llu bytes)\n",
(u_longlong_t)drr_record_count[DRR_OBJECT],
(u_longlong_t)drr_byte_count[DRR_OBJECT]);
(void) printf("\tTotal DRR_FREEOBJECTS records = %lld (%llu bytes)\n",
(u_longlong_t)drr_record_count[DRR_FREEOBJECTS],
(u_longlong_t)drr_byte_count[DRR_FREEOBJECTS]);
(void) printf("\tTotal DRR_WRITE records = %lld (%llu bytes)\n",
(u_longlong_t)drr_record_count[DRR_WRITE],
(u_longlong_t)drr_byte_count[DRR_WRITE]);
(void) printf("\tTotal DRR_WRITE_BYREF records = %lld (%llu bytes)\n",
(u_longlong_t)drr_record_count[DRR_WRITE_BYREF],
(u_longlong_t)drr_byte_count[DRR_WRITE_BYREF]);
(void) printf("\tTotal DRR_WRITE_EMBEDDED records = %lld (%llu "
"bytes)\n", (u_longlong_t)drr_record_count[DRR_WRITE_EMBEDDED],
(u_longlong_t)drr_byte_count[DRR_WRITE_EMBEDDED]);
(void) printf("\tTotal DRR_FREE records = %lld (%llu bytes)\n",
(u_longlong_t)drr_record_count[DRR_FREE],
(u_longlong_t)drr_byte_count[DRR_FREE]);
(void) printf("\tTotal DRR_SPILL records = %lld (%llu bytes)\n",
(u_longlong_t)drr_record_count[DRR_SPILL],
(u_longlong_t)drr_byte_count[DRR_SPILL]);
(void) printf("\tTotal records = %lld\n",
(u_longlong_t)total_records);
(void) printf("\tTotal payload size = %lld (0x%llx)\n",
(u_longlong_t)total_payload_size, (u_longlong_t)total_payload_size);
(void) printf("\tTotal header overhead = %lld (0x%llx)\n",
(u_longlong_t)total_overhead_size,
(u_longlong_t)total_overhead_size);
(void) printf("\tTotal stream length = %lld (0x%llx)\n",
(u_longlong_t)total_stream_len, (u_longlong_t)total_stream_len);
return (0);
}