2008-11-20 23:01:55 +03:00
|
|
|
|
/*
|
|
|
|
|
* CDDL HEADER START
|
|
|
|
|
*
|
|
|
|
|
* The contents of this file are subject to the terms of the
|
|
|
|
|
* Common Development and Distribution License (the "License").
|
|
|
|
|
* You may not use this file except in compliance with the License.
|
|
|
|
|
*
|
|
|
|
|
* You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
|
|
|
|
|
* or http://www.opensolaris.org/os/licensing.
|
|
|
|
|
* See the License for the specific language governing permissions
|
|
|
|
|
* and limitations under the License.
|
|
|
|
|
*
|
|
|
|
|
* When distributing Covered Code, include this CDDL HEADER in each
|
|
|
|
|
* file and include the License file at usr/src/OPENSOLARIS.LICENSE.
|
|
|
|
|
* If applicable, add the following below this CDDL HEADER, with the
|
|
|
|
|
* fields enclosed by brackets "[]" replaced with your own identifying
|
|
|
|
|
* information: Portions Copyright [yyyy] [name of copyright owner]
|
|
|
|
|
*
|
|
|
|
|
* CDDL HEADER END
|
|
|
|
|
*/
|
|
|
|
|
/*
|
2010-05-29 00:45:14 +04:00
|
|
|
|
* Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
|
Improve zfs receive performance with lightweight write
The performance of `zfs receive` can be bottlenecked on the CPU consumed
by the `receive_writer` thread, especially when receiving streams with
small compressed block sizes. Much of the CPU is spent creating and
destroying dbuf's and arc buf's, one for each `WRITE` record in the send
stream.
This commit introduces the concept of "lightweight writes", which allows
`zfs receive` to write to the DMU by providing an ABD, and instantiating
only a new type of `dbuf_dirty_record_t`. The dbuf and arc buf for this
"dirty leaf block" are not instantiated.
Because there is no dbuf with the dirty data, this mechanism doesn't
support reading from "lightweight-dirty" blocks (they would see the
on-disk state rather than the dirty data). Since the dedup-receive code
has been removed, `zfs receive` is write-only, so this works fine.
Because there are no arc bufs for the received data, the received data
is no longer cached in the ARC.
Testing a receive of a stream with average compressed block size of 4KB,
this commit improves performance by 50%, while also reducing CPU usage
by 50% of a CPU. On a per-block basis, CPU consumed by receive_writer()
and dbuf_evict() is now 1/7th (14%) of what it was.
Baseline: 450MB/s, CPU in receive_writer() 40% + dbuf_evict() 35%
New: 670MB/s, CPU in receive_writer() 17% + dbuf_evict() 0%
The code is also restructured in a few ways:
Added a `dr_dnode` field to the dbuf_dirty_record_t. This simplifies
some existing code that no longer needs `DB_DNODE_ENTER()` and related
routines. The new field is needed by the lightweight-type dirty record.
To ensure that the `dr_dnode` field remains valid until the dirty record
is freed, we have to ensure that the `dnode_move()` doesn't relocate the
dnode_t. To do this we keep a hold on the dnode until it's zio's have
completed. This is already done by the user-accounting code
(`userquota_updates_task()`), this commit extends that so that it always
keeps the dnode hold until zio completion (see `dnode_rele_task()`).
`dn_dirty_txg` was previously zeroed when the dnode was synced. This
was not necessary, since its meaning can be "when was this dnode last
dirtied". This change simplifies the new `dnode_rele_task()` code.
Removed some dead code related to `DRR_WRITE_BYREF` (dedup receive).
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Reviewed-by: Paul Dagnelie <pcd@delphix.com>
Reviewed-by: George Wilson <gwilson@delphix.com>
Signed-off-by: Matthew Ahrens <mahrens@delphix.com>
Closes #11105
2020-12-11 21:26:02 +03:00
|
|
|
|
* Copyright (c) 2011, 2020 by Delphix. All rights reserved.
|
2013-05-25 06:06:23 +04:00
|
|
|
|
* Copyright (c) 2013 Steven Hartland. All rights reserved.
|
2015-04-02 06:44:32 +03:00
|
|
|
|
* Copyright (c) 2014 Spectra Logic Corporation, All rights reserved.
|
2017-02-01 01:44:03 +03:00
|
|
|
|
* Copyright 2016 Nexenta Systems, Inc. All rights reserved.
|
2008-11-20 23:01:55 +03:00
|
|
|
|
*/
|
|
|
|
|
|
|
|
|
|
#include <sys/dsl_pool.h>
|
|
|
|
|
#include <sys/dsl_dataset.h>
|
2010-05-29 00:45:14 +04:00
|
|
|
|
#include <sys/dsl_prop.h>
|
2008-11-20 23:01:55 +03:00
|
|
|
|
#include <sys/dsl_dir.h>
|
|
|
|
|
#include <sys/dsl_synctask.h>
|
2010-05-29 00:45:14 +04:00
|
|
|
|
#include <sys/dsl_scan.h>
|
|
|
|
|
#include <sys/dnode.h>
|
2008-11-20 23:01:55 +03:00
|
|
|
|
#include <sys/dmu_tx.h>
|
|
|
|
|
#include <sys/dmu_objset.h>
|
|
|
|
|
#include <sys/arc.h>
|
|
|
|
|
#include <sys/zap.h>
|
|
|
|
|
#include <sys/zio.h>
|
|
|
|
|
#include <sys/zfs_context.h>
|
|
|
|
|
#include <sys/fs/zfs.h>
|
2008-12-03 23:09:06 +03:00
|
|
|
|
#include <sys/zfs_znode.h>
|
|
|
|
|
#include <sys/spa_impl.h>
|
2016-12-17 01:11:29 +03:00
|
|
|
|
#include <sys/vdev_impl.h>
|
|
|
|
|
#include <sys/metaslab_impl.h>
|
2012-12-14 03:24:15 +04:00
|
|
|
|
#include <sys/bptree.h>
|
|
|
|
|
#include <sys/zfeature.h>
|
2012-12-15 04:13:40 +04:00
|
|
|
|
#include <sys/zil_impl.h>
|
2013-09-04 16:00:57 +04:00
|
|
|
|
#include <sys/dsl_userhold.h>
|
Enable use of DTRACE_PROBE* macros in "spl" module
This change modifies some of the infrastructure for enabling the use of
the DTRACE_PROBE* macros, such that we can use tehm in the "spl" module.
Currently, when the DTRACE_PROBE* macros are used, they get expanded to
create new functions, and these dynamically generated functions become
part of the "zfs" module.
Since the "spl" module does not depend on the "zfs" module, the use of
DTRACE_PROBE* in the "spl" module would result in undefined symbols
being used in the "spl" module. Specifically, DTRACE_PROBE* would turn
into a function call, and the function being called would be a symbol
only contained in the "zfs" module; which results in a linker and/or
runtime error.
Thus, this change adds the necessary logic to the "spl" module, to
mirror the tracing functionality available to the "zfs" module. After
this change, we'll have a "trace_zfs.h" header file which defines the
probes available only to the "zfs" module, and a "trace_spl.h" header
file which defines the probes available only to the "spl" module.
Reviewed by: Brad Lewis <brad.lewis@delphix.com>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Prakash Surya <prakash.surya@delphix.com>
Closes #9525
2019-10-30 21:02:41 +03:00
|
|
|
|
#include <sys/trace_zfs.h>
|
Multi-modifier protection (MMP)
Add multihost=on|off pool property to control MMP. When enabled
a new thread writes uberblocks to the last slot in each label, at a
set frequency, to indicate to other hosts the pool is actively imported.
These uberblocks are the last synced uberblock with an updated
timestamp. Property defaults to off.
During tryimport, find the "best" uberblock (newest txg and timestamp)
repeatedly, checking for change in the found uberblock. Include the
results of the activity test in the config returned by tryimport.
These results are reported to user in "zpool import".
Allow the user to control the period between MMP writes, and the
duration of the activity test on import, via a new module parameter
zfs_multihost_interval. The period is specified in milliseconds. The
activity test duration is calculated from this value, and from the
mmp_delay in the "best" uberblock found initially.
Add a kstat interface to export statistics about Multiple Modifier
Protection (MMP) updates. Include the last synced txg number, the
timestamp, the delay since the last MMP update, the VDEV GUID, the VDEV
label that received the last MMP update, and the VDEV path. Abbreviated
output below.
$ cat /proc/spl/kstat/zfs/mypool/multihost
31 0 0x01 10 880 105092382393521 105144180101111
txg timestamp mmp_delay vdev_guid vdev_label vdev_path
20468 261337 250274925 68396651780 3 /dev/sda
20468 261339 252023374 6267402363293 1 /dev/sdc
20468 261340 252000858 6698080955233 1 /dev/sdx
20468 261341 251980635 783892869810 2 /dev/sdy
20468 261342 253385953 8923255792467 3 /dev/sdd
20468 261344 253336622 042125143176 0 /dev/sdab
20468 261345 253310522 1200778101278 2 /dev/sde
20468 261346 253286429 0950576198362 2 /dev/sdt
20468 261347 253261545 96209817917 3 /dev/sds
20468 261349 253238188 8555725937673 3 /dev/sdb
Add a new tunable zfs_multihost_history to specify the number of MMP
updates to store history for. By default it is set to zero meaning that
no MMP statistics are stored.
When using ztest to generate activity, for automated tests of the MMP
function, some test functions interfere with the test. For example, the
pool is exported to run zdb and then imported again. Add a new ztest
function, "-M", to alter ztest behavior to prevent this.
Add new tests to verify the new functionality. Tests provided by
Giuseppe Di Natale.
Reviewed by: Matthew Ahrens <mahrens@delphix.com>
Reviewed-by: Giuseppe Di Natale <dinatale2@llnl.gov>
Reviewed-by: Ned Bass <bass6@llnl.gov>
Reviewed-by: Andreas Dilger <andreas.dilger@intel.com>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Olaf Faaland <faaland1@llnl.gov>
Closes #745
Closes #6279
2017-07-08 06:20:35 +03:00
|
|
|
|
#include <sys/mmp.h>
|
2008-11-20 23:01:55 +03:00
|
|
|
|
|
Illumos #4045 write throttle & i/o scheduler performance work
4045 zfs write throttle & i/o scheduler performance work
1. The ZFS i/o scheduler (vdev_queue.c) now divides i/os into 5 classes: sync
read, sync write, async read, async write, and scrub/resilver. The scheduler
issues a number of concurrent i/os from each class to the device. Once a class
has been selected, an i/o is selected from this class using either an elevator
algorithem (async, scrub classes) or FIFO (sync classes). The number of
concurrent async write i/os is tuned dynamically based on i/o load, to achieve
good sync i/o latency when there is not a high load of writes, and good write
throughput when there is. See the block comment in vdev_queue.c (reproduced
below) for more details.
2. The write throttle (dsl_pool_tempreserve_space() and
txg_constrain_throughput()) is rewritten to produce much more consistent delays
when under constant load. The new write throttle is based on the amount of
dirty data, rather than guesses about future performance of the system. When
there is a lot of dirty data, each transaction (e.g. write() syscall) will be
delayed by the same small amount. This eliminates the "brick wall of wait"
that the old write throttle could hit, causing all transactions to wait several
seconds until the next txg opens. One of the keys to the new write throttle is
decrementing the amount of dirty data as i/o completes, rather than at the end
of spa_sync(). Note that the write throttle is only applied once the i/o
scheduler is issuing the maximum number of outstanding async writes. See the
block comments in dsl_pool.c and above dmu_tx_delay() (reproduced below) for
more details.
This diff has several other effects, including:
* the commonly-tuned global variable zfs_vdev_max_pending has been removed;
use per-class zfs_vdev_*_max_active values or zfs_vdev_max_active instead.
* the size of each txg (meaning the amount of dirty data written, and thus the
time it takes to write out) is now controlled differently. There is no longer
an explicit time goal; the primary determinant is amount of dirty data.
Systems that are under light or medium load will now often see that a txg is
always syncing, but the impact to performance (e.g. read latency) is minimal.
Tune zfs_dirty_data_max and zfs_dirty_data_sync to control this.
* zio_taskq_batch_pct = 75 -- Only use 75% of all CPUs for compression,
checksum, etc. This improves latency by not allowing these CPU-intensive tasks
to consume all CPU (on machines with at least 4 CPU's; the percentage is
rounded up).
--matt
APPENDIX: problems with the current i/o scheduler
The current ZFS i/o scheduler (vdev_queue.c) is deadline based. The problem
with this is that if there are always i/os pending, then certain classes of
i/os can see very long delays.
For example, if there are always synchronous reads outstanding, then no async
writes will be serviced until they become "past due". One symptom of this
situation is that each pass of the txg sync takes at least several seconds
(typically 3 seconds).
If many i/os become "past due" (their deadline is in the past), then we must
service all of these overdue i/os before any new i/os. This happens when we
enqueue a batch of async writes for the txg sync, with deadlines 2.5 seconds in
the future. If we can't complete all the i/os in 2.5 seconds (e.g. because
there were always reads pending), then these i/os will become past due. Now we
must service all the "async" writes (which could be hundreds of megabytes)
before we service any reads, introducing considerable latency to synchronous
i/os (reads or ZIL writes).
Notes on porting to ZFS on Linux:
- zio_t gained new members io_physdone and io_phys_children. Because
object caches in the Linux port call the constructor only once at
allocation time, objects may contain residual data when retrieved
from the cache. Therefore zio_create() was updated to zero out the two
new fields.
- vdev_mirror_pending() relied on the depth of the per-vdev pending queue
(vq->vq_pending_tree) to select the least-busy leaf vdev to read from.
This tree has been replaced by vq->vq_active_tree which is now used
for the same purpose.
- vdev_queue_init() used the value of zfs_vdev_max_pending to determine
the number of vdev I/O buffers to pre-allocate. That global no longer
exists, so we instead use the sum of the *_max_active values for each of
the five I/O classes described above.
- The Illumos implementation of dmu_tx_delay() delays a transaction by
sleeping in condition variable embedded in the thread
(curthread->t_delay_cv). We do not have an equivalent CV to use in
Linux, so this change replaced the delay logic with a wrapper called
zfs_sleep_until(). This wrapper could be adopted upstream and in other
downstream ports to abstract away operating system-specific delay logic.
- These tunables are added as module parameters, and descriptions added
to the zfs-module-parameters.5 man page.
spa_asize_inflation
zfs_deadman_synctime_ms
zfs_vdev_max_active
zfs_vdev_async_write_active_min_dirty_percent
zfs_vdev_async_write_active_max_dirty_percent
zfs_vdev_async_read_max_active
zfs_vdev_async_read_min_active
zfs_vdev_async_write_max_active
zfs_vdev_async_write_min_active
zfs_vdev_scrub_max_active
zfs_vdev_scrub_min_active
zfs_vdev_sync_read_max_active
zfs_vdev_sync_read_min_active
zfs_vdev_sync_write_max_active
zfs_vdev_sync_write_min_active
zfs_dirty_data_max_percent
zfs_delay_min_dirty_percent
zfs_dirty_data_max_max_percent
zfs_dirty_data_max
zfs_dirty_data_max_max
zfs_dirty_data_sync
zfs_delay_scale
The latter four have type unsigned long, whereas they are uint64_t in
Illumos. This accommodates Linux's module_param() supported types, but
means they may overflow on 32-bit architectures.
The values zfs_dirty_data_max and zfs_dirty_data_max_max are the most
likely to overflow on 32-bit systems, since they express physical RAM
sizes in bytes. In fact, Illumos initializes zfs_dirty_data_max_max to
2^32 which does overflow. To resolve that, this port instead initializes
it in arc_init() to 25% of physical RAM, and adds the tunable
zfs_dirty_data_max_max_percent to override that percentage. While this
solution doesn't completely avoid the overflow issue, it should be a
reasonable default for most systems, and the minority of affected
systems can work around the issue by overriding the defaults.
- Fixed reversed logic in comment above zfs_delay_scale declaration.
- Clarified comments in vdev_queue.c regarding when per-queue minimums take
effect.
- Replaced dmu_tx_write_limit in the dmu_tx kstat file
with dmu_tx_dirty_delay and dmu_tx_dirty_over_max. The first counts
how many times a transaction has been delayed because the pool dirty
data has exceeded zfs_delay_min_dirty_percent. The latter counts how
many times the pool dirty data has exceeded zfs_dirty_data_max (which
we expect to never happen).
- The original patch would have regressed the bug fixed in
zfsonlinux/zfs@c418410, which prevented users from setting the
zfs_vdev_aggregation_limit tuning larger than SPA_MAXBLOCKSIZE.
A similar fix is added to vdev_queue_aggregate().
- In vdev_queue_io_to_issue(), dynamically allocate 'zio_t search' on the
heap instead of the stack. In Linux we can't afford such large
structures on the stack.
Reviewed by: George Wilson <george.wilson@delphix.com>
Reviewed by: Adam Leventhal <ahl@delphix.com>
Reviewed by: Christopher Siden <christopher.siden@delphix.com>
Reviewed by: Ned Bass <bass6@llnl.gov>
Reviewed by: Brendan Gregg <brendan.gregg@joyent.com>
Approved by: Robert Mustacchi <rm@joyent.com>
References:
http://www.illumos.org/issues/4045
illumos/illumos-gate@69962b5647e4a8b9b14998733b765925381b727e
Ported-by: Ned Bass <bass6@llnl.gov>
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Closes #1913
2013-08-29 07:01:20 +04:00
|
|
|
|
/*
|
|
|
|
|
* ZFS Write Throttle
|
|
|
|
|
* ------------------
|
|
|
|
|
*
|
|
|
|
|
* ZFS must limit the rate of incoming writes to the rate at which it is able
|
|
|
|
|
* to sync data modifications to the backend storage. Throttling by too much
|
|
|
|
|
* creates an artificial limit; throttling by too little can only be sustained
|
|
|
|
|
* for short periods and would lead to highly lumpy performance. On a per-pool
|
|
|
|
|
* basis, ZFS tracks the amount of modified (dirty) data. As operations change
|
|
|
|
|
* data, the amount of dirty data increases; as ZFS syncs out data, the amount
|
|
|
|
|
* of dirty data decreases. When the amount of dirty data exceeds a
|
|
|
|
|
* predetermined threshold further modifications are blocked until the amount
|
|
|
|
|
* of dirty data decreases (as data is synced out).
|
|
|
|
|
*
|
|
|
|
|
* The limit on dirty data is tunable, and should be adjusted according to
|
|
|
|
|
* both the IO capacity and available memory of the system. The larger the
|
|
|
|
|
* window, the more ZFS is able to aggregate and amortize metadata (and data)
|
|
|
|
|
* changes. However, memory is a limited resource, and allowing for more dirty
|
|
|
|
|
* data comes at the cost of keeping other useful data in memory (for example
|
|
|
|
|
* ZFS data cached by the ARC).
|
|
|
|
|
*
|
|
|
|
|
* Implementation
|
|
|
|
|
*
|
|
|
|
|
* As buffers are modified dsl_pool_willuse_space() increments both the per-
|
|
|
|
|
* txg (dp_dirty_pertxg[]) and poolwide (dp_dirty_total) accounting of
|
|
|
|
|
* dirty space used; dsl_pool_dirty_space() decrements those values as data
|
|
|
|
|
* is synced out from dsl_pool_sync(). While only the poolwide value is
|
|
|
|
|
* relevant, the per-txg value is useful for debugging. The tunable
|
|
|
|
|
* zfs_dirty_data_max determines the dirty space limit. Once that value is
|
|
|
|
|
* exceeded, new writes are halted until space frees up.
|
|
|
|
|
*
|
2018-12-19 01:47:33 +03:00
|
|
|
|
* The zfs_dirty_data_sync_percent tunable dictates the threshold at which we
|
Illumos #4045 write throttle & i/o scheduler performance work
4045 zfs write throttle & i/o scheduler performance work
1. The ZFS i/o scheduler (vdev_queue.c) now divides i/os into 5 classes: sync
read, sync write, async read, async write, and scrub/resilver. The scheduler
issues a number of concurrent i/os from each class to the device. Once a class
has been selected, an i/o is selected from this class using either an elevator
algorithem (async, scrub classes) or FIFO (sync classes). The number of
concurrent async write i/os is tuned dynamically based on i/o load, to achieve
good sync i/o latency when there is not a high load of writes, and good write
throughput when there is. See the block comment in vdev_queue.c (reproduced
below) for more details.
2. The write throttle (dsl_pool_tempreserve_space() and
txg_constrain_throughput()) is rewritten to produce much more consistent delays
when under constant load. The new write throttle is based on the amount of
dirty data, rather than guesses about future performance of the system. When
there is a lot of dirty data, each transaction (e.g. write() syscall) will be
delayed by the same small amount. This eliminates the "brick wall of wait"
that the old write throttle could hit, causing all transactions to wait several
seconds until the next txg opens. One of the keys to the new write throttle is
decrementing the amount of dirty data as i/o completes, rather than at the end
of spa_sync(). Note that the write throttle is only applied once the i/o
scheduler is issuing the maximum number of outstanding async writes. See the
block comments in dsl_pool.c and above dmu_tx_delay() (reproduced below) for
more details.
This diff has several other effects, including:
* the commonly-tuned global variable zfs_vdev_max_pending has been removed;
use per-class zfs_vdev_*_max_active values or zfs_vdev_max_active instead.
* the size of each txg (meaning the amount of dirty data written, and thus the
time it takes to write out) is now controlled differently. There is no longer
an explicit time goal; the primary determinant is amount of dirty data.
Systems that are under light or medium load will now often see that a txg is
always syncing, but the impact to performance (e.g. read latency) is minimal.
Tune zfs_dirty_data_max and zfs_dirty_data_sync to control this.
* zio_taskq_batch_pct = 75 -- Only use 75% of all CPUs for compression,
checksum, etc. This improves latency by not allowing these CPU-intensive tasks
to consume all CPU (on machines with at least 4 CPU's; the percentage is
rounded up).
--matt
APPENDIX: problems with the current i/o scheduler
The current ZFS i/o scheduler (vdev_queue.c) is deadline based. The problem
with this is that if there are always i/os pending, then certain classes of
i/os can see very long delays.
For example, if there are always synchronous reads outstanding, then no async
writes will be serviced until they become "past due". One symptom of this
situation is that each pass of the txg sync takes at least several seconds
(typically 3 seconds).
If many i/os become "past due" (their deadline is in the past), then we must
service all of these overdue i/os before any new i/os. This happens when we
enqueue a batch of async writes for the txg sync, with deadlines 2.5 seconds in
the future. If we can't complete all the i/os in 2.5 seconds (e.g. because
there were always reads pending), then these i/os will become past due. Now we
must service all the "async" writes (which could be hundreds of megabytes)
before we service any reads, introducing considerable latency to synchronous
i/os (reads or ZIL writes).
Notes on porting to ZFS on Linux:
- zio_t gained new members io_physdone and io_phys_children. Because
object caches in the Linux port call the constructor only once at
allocation time, objects may contain residual data when retrieved
from the cache. Therefore zio_create() was updated to zero out the two
new fields.
- vdev_mirror_pending() relied on the depth of the per-vdev pending queue
(vq->vq_pending_tree) to select the least-busy leaf vdev to read from.
This tree has been replaced by vq->vq_active_tree which is now used
for the same purpose.
- vdev_queue_init() used the value of zfs_vdev_max_pending to determine
the number of vdev I/O buffers to pre-allocate. That global no longer
exists, so we instead use the sum of the *_max_active values for each of
the five I/O classes described above.
- The Illumos implementation of dmu_tx_delay() delays a transaction by
sleeping in condition variable embedded in the thread
(curthread->t_delay_cv). We do not have an equivalent CV to use in
Linux, so this change replaced the delay logic with a wrapper called
zfs_sleep_until(). This wrapper could be adopted upstream and in other
downstream ports to abstract away operating system-specific delay logic.
- These tunables are added as module parameters, and descriptions added
to the zfs-module-parameters.5 man page.
spa_asize_inflation
zfs_deadman_synctime_ms
zfs_vdev_max_active
zfs_vdev_async_write_active_min_dirty_percent
zfs_vdev_async_write_active_max_dirty_percent
zfs_vdev_async_read_max_active
zfs_vdev_async_read_min_active
zfs_vdev_async_write_max_active
zfs_vdev_async_write_min_active
zfs_vdev_scrub_max_active
zfs_vdev_scrub_min_active
zfs_vdev_sync_read_max_active
zfs_vdev_sync_read_min_active
zfs_vdev_sync_write_max_active
zfs_vdev_sync_write_min_active
zfs_dirty_data_max_percent
zfs_delay_min_dirty_percent
zfs_dirty_data_max_max_percent
zfs_dirty_data_max
zfs_dirty_data_max_max
zfs_dirty_data_sync
zfs_delay_scale
The latter four have type unsigned long, whereas they are uint64_t in
Illumos. This accommodates Linux's module_param() supported types, but
means they may overflow on 32-bit architectures.
The values zfs_dirty_data_max and zfs_dirty_data_max_max are the most
likely to overflow on 32-bit systems, since they express physical RAM
sizes in bytes. In fact, Illumos initializes zfs_dirty_data_max_max to
2^32 which does overflow. To resolve that, this port instead initializes
it in arc_init() to 25% of physical RAM, and adds the tunable
zfs_dirty_data_max_max_percent to override that percentage. While this
solution doesn't completely avoid the overflow issue, it should be a
reasonable default for most systems, and the minority of affected
systems can work around the issue by overriding the defaults.
- Fixed reversed logic in comment above zfs_delay_scale declaration.
- Clarified comments in vdev_queue.c regarding when per-queue minimums take
effect.
- Replaced dmu_tx_write_limit in the dmu_tx kstat file
with dmu_tx_dirty_delay and dmu_tx_dirty_over_max. The first counts
how many times a transaction has been delayed because the pool dirty
data has exceeded zfs_delay_min_dirty_percent. The latter counts how
many times the pool dirty data has exceeded zfs_dirty_data_max (which
we expect to never happen).
- The original patch would have regressed the bug fixed in
zfsonlinux/zfs@c418410, which prevented users from setting the
zfs_vdev_aggregation_limit tuning larger than SPA_MAXBLOCKSIZE.
A similar fix is added to vdev_queue_aggregate().
- In vdev_queue_io_to_issue(), dynamically allocate 'zio_t search' on the
heap instead of the stack. In Linux we can't afford such large
structures on the stack.
Reviewed by: George Wilson <george.wilson@delphix.com>
Reviewed by: Adam Leventhal <ahl@delphix.com>
Reviewed by: Christopher Siden <christopher.siden@delphix.com>
Reviewed by: Ned Bass <bass6@llnl.gov>
Reviewed by: Brendan Gregg <brendan.gregg@joyent.com>
Approved by: Robert Mustacchi <rm@joyent.com>
References:
http://www.illumos.org/issues/4045
illumos/illumos-gate@69962b5647e4a8b9b14998733b765925381b727e
Ported-by: Ned Bass <bass6@llnl.gov>
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Closes #1913
2013-08-29 07:01:20 +04:00
|
|
|
|
* ensure that there is a txg syncing (see the comment in txg.c for a full
|
|
|
|
|
* description of transaction group stages).
|
|
|
|
|
*
|
|
|
|
|
* The IO scheduler uses both the dirty space limit and current amount of
|
|
|
|
|
* dirty data as inputs. Those values affect the number of concurrent IOs ZFS
|
|
|
|
|
* issues. See the comment in vdev_queue.c for details of the IO scheduler.
|
|
|
|
|
*
|
|
|
|
|
* The delay is also calculated based on the amount of dirty data. See the
|
|
|
|
|
* comment above dmu_tx_delay() for details.
|
|
|
|
|
*/
|
|
|
|
|
|
|
|
|
|
/*
|
|
|
|
|
* zfs_dirty_data_max will be set to zfs_dirty_data_max_percent% of all memory,
|
|
|
|
|
* capped at zfs_dirty_data_max_max. It can also be overridden with a module
|
|
|
|
|
* parameter.
|
|
|
|
|
*/
|
|
|
|
|
unsigned long zfs_dirty_data_max = 0;
|
|
|
|
|
unsigned long zfs_dirty_data_max_max = 0;
|
|
|
|
|
int zfs_dirty_data_max_percent = 10;
|
|
|
|
|
int zfs_dirty_data_max_max_percent = 25;
|
2008-12-03 23:09:06 +03:00
|
|
|
|
|
Illumos #4045 write throttle & i/o scheduler performance work
4045 zfs write throttle & i/o scheduler performance work
1. The ZFS i/o scheduler (vdev_queue.c) now divides i/os into 5 classes: sync
read, sync write, async read, async write, and scrub/resilver. The scheduler
issues a number of concurrent i/os from each class to the device. Once a class
has been selected, an i/o is selected from this class using either an elevator
algorithem (async, scrub classes) or FIFO (sync classes). The number of
concurrent async write i/os is tuned dynamically based on i/o load, to achieve
good sync i/o latency when there is not a high load of writes, and good write
throughput when there is. See the block comment in vdev_queue.c (reproduced
below) for more details.
2. The write throttle (dsl_pool_tempreserve_space() and
txg_constrain_throughput()) is rewritten to produce much more consistent delays
when under constant load. The new write throttle is based on the amount of
dirty data, rather than guesses about future performance of the system. When
there is a lot of dirty data, each transaction (e.g. write() syscall) will be
delayed by the same small amount. This eliminates the "brick wall of wait"
that the old write throttle could hit, causing all transactions to wait several
seconds until the next txg opens. One of the keys to the new write throttle is
decrementing the amount of dirty data as i/o completes, rather than at the end
of spa_sync(). Note that the write throttle is only applied once the i/o
scheduler is issuing the maximum number of outstanding async writes. See the
block comments in dsl_pool.c and above dmu_tx_delay() (reproduced below) for
more details.
This diff has several other effects, including:
* the commonly-tuned global variable zfs_vdev_max_pending has been removed;
use per-class zfs_vdev_*_max_active values or zfs_vdev_max_active instead.
* the size of each txg (meaning the amount of dirty data written, and thus the
time it takes to write out) is now controlled differently. There is no longer
an explicit time goal; the primary determinant is amount of dirty data.
Systems that are under light or medium load will now often see that a txg is
always syncing, but the impact to performance (e.g. read latency) is minimal.
Tune zfs_dirty_data_max and zfs_dirty_data_sync to control this.
* zio_taskq_batch_pct = 75 -- Only use 75% of all CPUs for compression,
checksum, etc. This improves latency by not allowing these CPU-intensive tasks
to consume all CPU (on machines with at least 4 CPU's; the percentage is
rounded up).
--matt
APPENDIX: problems with the current i/o scheduler
The current ZFS i/o scheduler (vdev_queue.c) is deadline based. The problem
with this is that if there are always i/os pending, then certain classes of
i/os can see very long delays.
For example, if there are always synchronous reads outstanding, then no async
writes will be serviced until they become "past due". One symptom of this
situation is that each pass of the txg sync takes at least several seconds
(typically 3 seconds).
If many i/os become "past due" (their deadline is in the past), then we must
service all of these overdue i/os before any new i/os. This happens when we
enqueue a batch of async writes for the txg sync, with deadlines 2.5 seconds in
the future. If we can't complete all the i/os in 2.5 seconds (e.g. because
there were always reads pending), then these i/os will become past due. Now we
must service all the "async" writes (which could be hundreds of megabytes)
before we service any reads, introducing considerable latency to synchronous
i/os (reads or ZIL writes).
Notes on porting to ZFS on Linux:
- zio_t gained new members io_physdone and io_phys_children. Because
object caches in the Linux port call the constructor only once at
allocation time, objects may contain residual data when retrieved
from the cache. Therefore zio_create() was updated to zero out the two
new fields.
- vdev_mirror_pending() relied on the depth of the per-vdev pending queue
(vq->vq_pending_tree) to select the least-busy leaf vdev to read from.
This tree has been replaced by vq->vq_active_tree which is now used
for the same purpose.
- vdev_queue_init() used the value of zfs_vdev_max_pending to determine
the number of vdev I/O buffers to pre-allocate. That global no longer
exists, so we instead use the sum of the *_max_active values for each of
the five I/O classes described above.
- The Illumos implementation of dmu_tx_delay() delays a transaction by
sleeping in condition variable embedded in the thread
(curthread->t_delay_cv). We do not have an equivalent CV to use in
Linux, so this change replaced the delay logic with a wrapper called
zfs_sleep_until(). This wrapper could be adopted upstream and in other
downstream ports to abstract away operating system-specific delay logic.
- These tunables are added as module parameters, and descriptions added
to the zfs-module-parameters.5 man page.
spa_asize_inflation
zfs_deadman_synctime_ms
zfs_vdev_max_active
zfs_vdev_async_write_active_min_dirty_percent
zfs_vdev_async_write_active_max_dirty_percent
zfs_vdev_async_read_max_active
zfs_vdev_async_read_min_active
zfs_vdev_async_write_max_active
zfs_vdev_async_write_min_active
zfs_vdev_scrub_max_active
zfs_vdev_scrub_min_active
zfs_vdev_sync_read_max_active
zfs_vdev_sync_read_min_active
zfs_vdev_sync_write_max_active
zfs_vdev_sync_write_min_active
zfs_dirty_data_max_percent
zfs_delay_min_dirty_percent
zfs_dirty_data_max_max_percent
zfs_dirty_data_max
zfs_dirty_data_max_max
zfs_dirty_data_sync
zfs_delay_scale
The latter four have type unsigned long, whereas they are uint64_t in
Illumos. This accommodates Linux's module_param() supported types, but
means they may overflow on 32-bit architectures.
The values zfs_dirty_data_max and zfs_dirty_data_max_max are the most
likely to overflow on 32-bit systems, since they express physical RAM
sizes in bytes. In fact, Illumos initializes zfs_dirty_data_max_max to
2^32 which does overflow. To resolve that, this port instead initializes
it in arc_init() to 25% of physical RAM, and adds the tunable
zfs_dirty_data_max_max_percent to override that percentage. While this
solution doesn't completely avoid the overflow issue, it should be a
reasonable default for most systems, and the minority of affected
systems can work around the issue by overriding the defaults.
- Fixed reversed logic in comment above zfs_delay_scale declaration.
- Clarified comments in vdev_queue.c regarding when per-queue minimums take
effect.
- Replaced dmu_tx_write_limit in the dmu_tx kstat file
with dmu_tx_dirty_delay and dmu_tx_dirty_over_max. The first counts
how many times a transaction has been delayed because the pool dirty
data has exceeded zfs_delay_min_dirty_percent. The latter counts how
many times the pool dirty data has exceeded zfs_dirty_data_max (which
we expect to never happen).
- The original patch would have regressed the bug fixed in
zfsonlinux/zfs@c418410, which prevented users from setting the
zfs_vdev_aggregation_limit tuning larger than SPA_MAXBLOCKSIZE.
A similar fix is added to vdev_queue_aggregate().
- In vdev_queue_io_to_issue(), dynamically allocate 'zio_t search' on the
heap instead of the stack. In Linux we can't afford such large
structures on the stack.
Reviewed by: George Wilson <george.wilson@delphix.com>
Reviewed by: Adam Leventhal <ahl@delphix.com>
Reviewed by: Christopher Siden <christopher.siden@delphix.com>
Reviewed by: Ned Bass <bass6@llnl.gov>
Reviewed by: Brendan Gregg <brendan.gregg@joyent.com>
Approved by: Robert Mustacchi <rm@joyent.com>
References:
http://www.illumos.org/issues/4045
illumos/illumos-gate@69962b5647e4a8b9b14998733b765925381b727e
Ported-by: Ned Bass <bass6@llnl.gov>
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Closes #1913
2013-08-29 07:01:20 +04:00
|
|
|
|
/*
|
2017-12-13 02:46:58 +03:00
|
|
|
|
* If there's at least this much dirty data (as a percentage of
|
|
|
|
|
* zfs_dirty_data_max), push out a txg. This should be less than
|
|
|
|
|
* zfs_vdev_async_write_active_min_dirty_percent.
|
Illumos #4045 write throttle & i/o scheduler performance work
4045 zfs write throttle & i/o scheduler performance work
1. The ZFS i/o scheduler (vdev_queue.c) now divides i/os into 5 classes: sync
read, sync write, async read, async write, and scrub/resilver. The scheduler
issues a number of concurrent i/os from each class to the device. Once a class
has been selected, an i/o is selected from this class using either an elevator
algorithem (async, scrub classes) or FIFO (sync classes). The number of
concurrent async write i/os is tuned dynamically based on i/o load, to achieve
good sync i/o latency when there is not a high load of writes, and good write
throughput when there is. See the block comment in vdev_queue.c (reproduced
below) for more details.
2. The write throttle (dsl_pool_tempreserve_space() and
txg_constrain_throughput()) is rewritten to produce much more consistent delays
when under constant load. The new write throttle is based on the amount of
dirty data, rather than guesses about future performance of the system. When
there is a lot of dirty data, each transaction (e.g. write() syscall) will be
delayed by the same small amount. This eliminates the "brick wall of wait"
that the old write throttle could hit, causing all transactions to wait several
seconds until the next txg opens. One of the keys to the new write throttle is
decrementing the amount of dirty data as i/o completes, rather than at the end
of spa_sync(). Note that the write throttle is only applied once the i/o
scheduler is issuing the maximum number of outstanding async writes. See the
block comments in dsl_pool.c and above dmu_tx_delay() (reproduced below) for
more details.
This diff has several other effects, including:
* the commonly-tuned global variable zfs_vdev_max_pending has been removed;
use per-class zfs_vdev_*_max_active values or zfs_vdev_max_active instead.
* the size of each txg (meaning the amount of dirty data written, and thus the
time it takes to write out) is now controlled differently. There is no longer
an explicit time goal; the primary determinant is amount of dirty data.
Systems that are under light or medium load will now often see that a txg is
always syncing, but the impact to performance (e.g. read latency) is minimal.
Tune zfs_dirty_data_max and zfs_dirty_data_sync to control this.
* zio_taskq_batch_pct = 75 -- Only use 75% of all CPUs for compression,
checksum, etc. This improves latency by not allowing these CPU-intensive tasks
to consume all CPU (on machines with at least 4 CPU's; the percentage is
rounded up).
--matt
APPENDIX: problems with the current i/o scheduler
The current ZFS i/o scheduler (vdev_queue.c) is deadline based. The problem
with this is that if there are always i/os pending, then certain classes of
i/os can see very long delays.
For example, if there are always synchronous reads outstanding, then no async
writes will be serviced until they become "past due". One symptom of this
situation is that each pass of the txg sync takes at least several seconds
(typically 3 seconds).
If many i/os become "past due" (their deadline is in the past), then we must
service all of these overdue i/os before any new i/os. This happens when we
enqueue a batch of async writes for the txg sync, with deadlines 2.5 seconds in
the future. If we can't complete all the i/os in 2.5 seconds (e.g. because
there were always reads pending), then these i/os will become past due. Now we
must service all the "async" writes (which could be hundreds of megabytes)
before we service any reads, introducing considerable latency to synchronous
i/os (reads or ZIL writes).
Notes on porting to ZFS on Linux:
- zio_t gained new members io_physdone and io_phys_children. Because
object caches in the Linux port call the constructor only once at
allocation time, objects may contain residual data when retrieved
from the cache. Therefore zio_create() was updated to zero out the two
new fields.
- vdev_mirror_pending() relied on the depth of the per-vdev pending queue
(vq->vq_pending_tree) to select the least-busy leaf vdev to read from.
This tree has been replaced by vq->vq_active_tree which is now used
for the same purpose.
- vdev_queue_init() used the value of zfs_vdev_max_pending to determine
the number of vdev I/O buffers to pre-allocate. That global no longer
exists, so we instead use the sum of the *_max_active values for each of
the five I/O classes described above.
- The Illumos implementation of dmu_tx_delay() delays a transaction by
sleeping in condition variable embedded in the thread
(curthread->t_delay_cv). We do not have an equivalent CV to use in
Linux, so this change replaced the delay logic with a wrapper called
zfs_sleep_until(). This wrapper could be adopted upstream and in other
downstream ports to abstract away operating system-specific delay logic.
- These tunables are added as module parameters, and descriptions added
to the zfs-module-parameters.5 man page.
spa_asize_inflation
zfs_deadman_synctime_ms
zfs_vdev_max_active
zfs_vdev_async_write_active_min_dirty_percent
zfs_vdev_async_write_active_max_dirty_percent
zfs_vdev_async_read_max_active
zfs_vdev_async_read_min_active
zfs_vdev_async_write_max_active
zfs_vdev_async_write_min_active
zfs_vdev_scrub_max_active
zfs_vdev_scrub_min_active
zfs_vdev_sync_read_max_active
zfs_vdev_sync_read_min_active
zfs_vdev_sync_write_max_active
zfs_vdev_sync_write_min_active
zfs_dirty_data_max_percent
zfs_delay_min_dirty_percent
zfs_dirty_data_max_max_percent
zfs_dirty_data_max
zfs_dirty_data_max_max
zfs_dirty_data_sync
zfs_delay_scale
The latter four have type unsigned long, whereas they are uint64_t in
Illumos. This accommodates Linux's module_param() supported types, but
means they may overflow on 32-bit architectures.
The values zfs_dirty_data_max and zfs_dirty_data_max_max are the most
likely to overflow on 32-bit systems, since they express physical RAM
sizes in bytes. In fact, Illumos initializes zfs_dirty_data_max_max to
2^32 which does overflow. To resolve that, this port instead initializes
it in arc_init() to 25% of physical RAM, and adds the tunable
zfs_dirty_data_max_max_percent to override that percentage. While this
solution doesn't completely avoid the overflow issue, it should be a
reasonable default for most systems, and the minority of affected
systems can work around the issue by overriding the defaults.
- Fixed reversed logic in comment above zfs_delay_scale declaration.
- Clarified comments in vdev_queue.c regarding when per-queue minimums take
effect.
- Replaced dmu_tx_write_limit in the dmu_tx kstat file
with dmu_tx_dirty_delay and dmu_tx_dirty_over_max. The first counts
how many times a transaction has been delayed because the pool dirty
data has exceeded zfs_delay_min_dirty_percent. The latter counts how
many times the pool dirty data has exceeded zfs_dirty_data_max (which
we expect to never happen).
- The original patch would have regressed the bug fixed in
zfsonlinux/zfs@c418410, which prevented users from setting the
zfs_vdev_aggregation_limit tuning larger than SPA_MAXBLOCKSIZE.
A similar fix is added to vdev_queue_aggregate().
- In vdev_queue_io_to_issue(), dynamically allocate 'zio_t search' on the
heap instead of the stack. In Linux we can't afford such large
structures on the stack.
Reviewed by: George Wilson <george.wilson@delphix.com>
Reviewed by: Adam Leventhal <ahl@delphix.com>
Reviewed by: Christopher Siden <christopher.siden@delphix.com>
Reviewed by: Ned Bass <bass6@llnl.gov>
Reviewed by: Brendan Gregg <brendan.gregg@joyent.com>
Approved by: Robert Mustacchi <rm@joyent.com>
References:
http://www.illumos.org/issues/4045
illumos/illumos-gate@69962b5647e4a8b9b14998733b765925381b727e
Ported-by: Ned Bass <bass6@llnl.gov>
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Closes #1913
2013-08-29 07:01:20 +04:00
|
|
|
|
*/
|
2017-12-13 02:46:58 +03:00
|
|
|
|
int zfs_dirty_data_sync_percent = 20;
|
2008-11-20 23:01:55 +03:00
|
|
|
|
|
Illumos #4045 write throttle & i/o scheduler performance work
4045 zfs write throttle & i/o scheduler performance work
1. The ZFS i/o scheduler (vdev_queue.c) now divides i/os into 5 classes: sync
read, sync write, async read, async write, and scrub/resilver. The scheduler
issues a number of concurrent i/os from each class to the device. Once a class
has been selected, an i/o is selected from this class using either an elevator
algorithem (async, scrub classes) or FIFO (sync classes). The number of
concurrent async write i/os is tuned dynamically based on i/o load, to achieve
good sync i/o latency when there is not a high load of writes, and good write
throughput when there is. See the block comment in vdev_queue.c (reproduced
below) for more details.
2. The write throttle (dsl_pool_tempreserve_space() and
txg_constrain_throughput()) is rewritten to produce much more consistent delays
when under constant load. The new write throttle is based on the amount of
dirty data, rather than guesses about future performance of the system. When
there is a lot of dirty data, each transaction (e.g. write() syscall) will be
delayed by the same small amount. This eliminates the "brick wall of wait"
that the old write throttle could hit, causing all transactions to wait several
seconds until the next txg opens. One of the keys to the new write throttle is
decrementing the amount of dirty data as i/o completes, rather than at the end
of spa_sync(). Note that the write throttle is only applied once the i/o
scheduler is issuing the maximum number of outstanding async writes. See the
block comments in dsl_pool.c and above dmu_tx_delay() (reproduced below) for
more details.
This diff has several other effects, including:
* the commonly-tuned global variable zfs_vdev_max_pending has been removed;
use per-class zfs_vdev_*_max_active values or zfs_vdev_max_active instead.
* the size of each txg (meaning the amount of dirty data written, and thus the
time it takes to write out) is now controlled differently. There is no longer
an explicit time goal; the primary determinant is amount of dirty data.
Systems that are under light or medium load will now often see that a txg is
always syncing, but the impact to performance (e.g. read latency) is minimal.
Tune zfs_dirty_data_max and zfs_dirty_data_sync to control this.
* zio_taskq_batch_pct = 75 -- Only use 75% of all CPUs for compression,
checksum, etc. This improves latency by not allowing these CPU-intensive tasks
to consume all CPU (on machines with at least 4 CPU's; the percentage is
rounded up).
--matt
APPENDIX: problems with the current i/o scheduler
The current ZFS i/o scheduler (vdev_queue.c) is deadline based. The problem
with this is that if there are always i/os pending, then certain classes of
i/os can see very long delays.
For example, if there are always synchronous reads outstanding, then no async
writes will be serviced until they become "past due". One symptom of this
situation is that each pass of the txg sync takes at least several seconds
(typically 3 seconds).
If many i/os become "past due" (their deadline is in the past), then we must
service all of these overdue i/os before any new i/os. This happens when we
enqueue a batch of async writes for the txg sync, with deadlines 2.5 seconds in
the future. If we can't complete all the i/os in 2.5 seconds (e.g. because
there were always reads pending), then these i/os will become past due. Now we
must service all the "async" writes (which could be hundreds of megabytes)
before we service any reads, introducing considerable latency to synchronous
i/os (reads or ZIL writes).
Notes on porting to ZFS on Linux:
- zio_t gained new members io_physdone and io_phys_children. Because
object caches in the Linux port call the constructor only once at
allocation time, objects may contain residual data when retrieved
from the cache. Therefore zio_create() was updated to zero out the two
new fields.
- vdev_mirror_pending() relied on the depth of the per-vdev pending queue
(vq->vq_pending_tree) to select the least-busy leaf vdev to read from.
This tree has been replaced by vq->vq_active_tree which is now used
for the same purpose.
- vdev_queue_init() used the value of zfs_vdev_max_pending to determine
the number of vdev I/O buffers to pre-allocate. That global no longer
exists, so we instead use the sum of the *_max_active values for each of
the five I/O classes described above.
- The Illumos implementation of dmu_tx_delay() delays a transaction by
sleeping in condition variable embedded in the thread
(curthread->t_delay_cv). We do not have an equivalent CV to use in
Linux, so this change replaced the delay logic with a wrapper called
zfs_sleep_until(). This wrapper could be adopted upstream and in other
downstream ports to abstract away operating system-specific delay logic.
- These tunables are added as module parameters, and descriptions added
to the zfs-module-parameters.5 man page.
spa_asize_inflation
zfs_deadman_synctime_ms
zfs_vdev_max_active
zfs_vdev_async_write_active_min_dirty_percent
zfs_vdev_async_write_active_max_dirty_percent
zfs_vdev_async_read_max_active
zfs_vdev_async_read_min_active
zfs_vdev_async_write_max_active
zfs_vdev_async_write_min_active
zfs_vdev_scrub_max_active
zfs_vdev_scrub_min_active
zfs_vdev_sync_read_max_active
zfs_vdev_sync_read_min_active
zfs_vdev_sync_write_max_active
zfs_vdev_sync_write_min_active
zfs_dirty_data_max_percent
zfs_delay_min_dirty_percent
zfs_dirty_data_max_max_percent
zfs_dirty_data_max
zfs_dirty_data_max_max
zfs_dirty_data_sync
zfs_delay_scale
The latter four have type unsigned long, whereas they are uint64_t in
Illumos. This accommodates Linux's module_param() supported types, but
means they may overflow on 32-bit architectures.
The values zfs_dirty_data_max and zfs_dirty_data_max_max are the most
likely to overflow on 32-bit systems, since they express physical RAM
sizes in bytes. In fact, Illumos initializes zfs_dirty_data_max_max to
2^32 which does overflow. To resolve that, this port instead initializes
it in arc_init() to 25% of physical RAM, and adds the tunable
zfs_dirty_data_max_max_percent to override that percentage. While this
solution doesn't completely avoid the overflow issue, it should be a
reasonable default for most systems, and the minority of affected
systems can work around the issue by overriding the defaults.
- Fixed reversed logic in comment above zfs_delay_scale declaration.
- Clarified comments in vdev_queue.c regarding when per-queue minimums take
effect.
- Replaced dmu_tx_write_limit in the dmu_tx kstat file
with dmu_tx_dirty_delay and dmu_tx_dirty_over_max. The first counts
how many times a transaction has been delayed because the pool dirty
data has exceeded zfs_delay_min_dirty_percent. The latter counts how
many times the pool dirty data has exceeded zfs_dirty_data_max (which
we expect to never happen).
- The original patch would have regressed the bug fixed in
zfsonlinux/zfs@c418410, which prevented users from setting the
zfs_vdev_aggregation_limit tuning larger than SPA_MAXBLOCKSIZE.
A similar fix is added to vdev_queue_aggregate().
- In vdev_queue_io_to_issue(), dynamically allocate 'zio_t search' on the
heap instead of the stack. In Linux we can't afford such large
structures on the stack.
Reviewed by: George Wilson <george.wilson@delphix.com>
Reviewed by: Adam Leventhal <ahl@delphix.com>
Reviewed by: Christopher Siden <christopher.siden@delphix.com>
Reviewed by: Ned Bass <bass6@llnl.gov>
Reviewed by: Brendan Gregg <brendan.gregg@joyent.com>
Approved by: Robert Mustacchi <rm@joyent.com>
References:
http://www.illumos.org/issues/4045
illumos/illumos-gate@69962b5647e4a8b9b14998733b765925381b727e
Ported-by: Ned Bass <bass6@llnl.gov>
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Closes #1913
2013-08-29 07:01:20 +04:00
|
|
|
|
/*
|
|
|
|
|
* Once there is this amount of dirty data, the dmu_tx_delay() will kick in
|
|
|
|
|
* and delay each transaction.
|
|
|
|
|
* This value should be >= zfs_vdev_async_write_active_max_dirty_percent.
|
|
|
|
|
*/
|
|
|
|
|
int zfs_delay_min_dirty_percent = 60;
|
2008-12-03 23:09:06 +03:00
|
|
|
|
|
Illumos #4045 write throttle & i/o scheduler performance work
4045 zfs write throttle & i/o scheduler performance work
1. The ZFS i/o scheduler (vdev_queue.c) now divides i/os into 5 classes: sync
read, sync write, async read, async write, and scrub/resilver. The scheduler
issues a number of concurrent i/os from each class to the device. Once a class
has been selected, an i/o is selected from this class using either an elevator
algorithem (async, scrub classes) or FIFO (sync classes). The number of
concurrent async write i/os is tuned dynamically based on i/o load, to achieve
good sync i/o latency when there is not a high load of writes, and good write
throughput when there is. See the block comment in vdev_queue.c (reproduced
below) for more details.
2. The write throttle (dsl_pool_tempreserve_space() and
txg_constrain_throughput()) is rewritten to produce much more consistent delays
when under constant load. The new write throttle is based on the amount of
dirty data, rather than guesses about future performance of the system. When
there is a lot of dirty data, each transaction (e.g. write() syscall) will be
delayed by the same small amount. This eliminates the "brick wall of wait"
that the old write throttle could hit, causing all transactions to wait several
seconds until the next txg opens. One of the keys to the new write throttle is
decrementing the amount of dirty data as i/o completes, rather than at the end
of spa_sync(). Note that the write throttle is only applied once the i/o
scheduler is issuing the maximum number of outstanding async writes. See the
block comments in dsl_pool.c and above dmu_tx_delay() (reproduced below) for
more details.
This diff has several other effects, including:
* the commonly-tuned global variable zfs_vdev_max_pending has been removed;
use per-class zfs_vdev_*_max_active values or zfs_vdev_max_active instead.
* the size of each txg (meaning the amount of dirty data written, and thus the
time it takes to write out) is now controlled differently. There is no longer
an explicit time goal; the primary determinant is amount of dirty data.
Systems that are under light or medium load will now often see that a txg is
always syncing, but the impact to performance (e.g. read latency) is minimal.
Tune zfs_dirty_data_max and zfs_dirty_data_sync to control this.
* zio_taskq_batch_pct = 75 -- Only use 75% of all CPUs for compression,
checksum, etc. This improves latency by not allowing these CPU-intensive tasks
to consume all CPU (on machines with at least 4 CPU's; the percentage is
rounded up).
--matt
APPENDIX: problems with the current i/o scheduler
The current ZFS i/o scheduler (vdev_queue.c) is deadline based. The problem
with this is that if there are always i/os pending, then certain classes of
i/os can see very long delays.
For example, if there are always synchronous reads outstanding, then no async
writes will be serviced until they become "past due". One symptom of this
situation is that each pass of the txg sync takes at least several seconds
(typically 3 seconds).
If many i/os become "past due" (their deadline is in the past), then we must
service all of these overdue i/os before any new i/os. This happens when we
enqueue a batch of async writes for the txg sync, with deadlines 2.5 seconds in
the future. If we can't complete all the i/os in 2.5 seconds (e.g. because
there were always reads pending), then these i/os will become past due. Now we
must service all the "async" writes (which could be hundreds of megabytes)
before we service any reads, introducing considerable latency to synchronous
i/os (reads or ZIL writes).
Notes on porting to ZFS on Linux:
- zio_t gained new members io_physdone and io_phys_children. Because
object caches in the Linux port call the constructor only once at
allocation time, objects may contain residual data when retrieved
from the cache. Therefore zio_create() was updated to zero out the two
new fields.
- vdev_mirror_pending() relied on the depth of the per-vdev pending queue
(vq->vq_pending_tree) to select the least-busy leaf vdev to read from.
This tree has been replaced by vq->vq_active_tree which is now used
for the same purpose.
- vdev_queue_init() used the value of zfs_vdev_max_pending to determine
the number of vdev I/O buffers to pre-allocate. That global no longer
exists, so we instead use the sum of the *_max_active values for each of
the five I/O classes described above.
- The Illumos implementation of dmu_tx_delay() delays a transaction by
sleeping in condition variable embedded in the thread
(curthread->t_delay_cv). We do not have an equivalent CV to use in
Linux, so this change replaced the delay logic with a wrapper called
zfs_sleep_until(). This wrapper could be adopted upstream and in other
downstream ports to abstract away operating system-specific delay logic.
- These tunables are added as module parameters, and descriptions added
to the zfs-module-parameters.5 man page.
spa_asize_inflation
zfs_deadman_synctime_ms
zfs_vdev_max_active
zfs_vdev_async_write_active_min_dirty_percent
zfs_vdev_async_write_active_max_dirty_percent
zfs_vdev_async_read_max_active
zfs_vdev_async_read_min_active
zfs_vdev_async_write_max_active
zfs_vdev_async_write_min_active
zfs_vdev_scrub_max_active
zfs_vdev_scrub_min_active
zfs_vdev_sync_read_max_active
zfs_vdev_sync_read_min_active
zfs_vdev_sync_write_max_active
zfs_vdev_sync_write_min_active
zfs_dirty_data_max_percent
zfs_delay_min_dirty_percent
zfs_dirty_data_max_max_percent
zfs_dirty_data_max
zfs_dirty_data_max_max
zfs_dirty_data_sync
zfs_delay_scale
The latter four have type unsigned long, whereas they are uint64_t in
Illumos. This accommodates Linux's module_param() supported types, but
means they may overflow on 32-bit architectures.
The values zfs_dirty_data_max and zfs_dirty_data_max_max are the most
likely to overflow on 32-bit systems, since they express physical RAM
sizes in bytes. In fact, Illumos initializes zfs_dirty_data_max_max to
2^32 which does overflow. To resolve that, this port instead initializes
it in arc_init() to 25% of physical RAM, and adds the tunable
zfs_dirty_data_max_max_percent to override that percentage. While this
solution doesn't completely avoid the overflow issue, it should be a
reasonable default for most systems, and the minority of affected
systems can work around the issue by overriding the defaults.
- Fixed reversed logic in comment above zfs_delay_scale declaration.
- Clarified comments in vdev_queue.c regarding when per-queue minimums take
effect.
- Replaced dmu_tx_write_limit in the dmu_tx kstat file
with dmu_tx_dirty_delay and dmu_tx_dirty_over_max. The first counts
how many times a transaction has been delayed because the pool dirty
data has exceeded zfs_delay_min_dirty_percent. The latter counts how
many times the pool dirty data has exceeded zfs_dirty_data_max (which
we expect to never happen).
- The original patch would have regressed the bug fixed in
zfsonlinux/zfs@c418410, which prevented users from setting the
zfs_vdev_aggregation_limit tuning larger than SPA_MAXBLOCKSIZE.
A similar fix is added to vdev_queue_aggregate().
- In vdev_queue_io_to_issue(), dynamically allocate 'zio_t search' on the
heap instead of the stack. In Linux we can't afford such large
structures on the stack.
Reviewed by: George Wilson <george.wilson@delphix.com>
Reviewed by: Adam Leventhal <ahl@delphix.com>
Reviewed by: Christopher Siden <christopher.siden@delphix.com>
Reviewed by: Ned Bass <bass6@llnl.gov>
Reviewed by: Brendan Gregg <brendan.gregg@joyent.com>
Approved by: Robert Mustacchi <rm@joyent.com>
References:
http://www.illumos.org/issues/4045
illumos/illumos-gate@69962b5647e4a8b9b14998733b765925381b727e
Ported-by: Ned Bass <bass6@llnl.gov>
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Closes #1913
2013-08-29 07:01:20 +04:00
|
|
|
|
/*
|
|
|
|
|
* This controls how quickly the delay approaches infinity.
|
|
|
|
|
* Larger values cause it to delay more for a given amount of dirty data.
|
|
|
|
|
* Therefore larger values will cause there to be less dirty data for a
|
|
|
|
|
* given throughput.
|
|
|
|
|
*
|
|
|
|
|
* For the smoothest delay, this value should be about 1 billion divided
|
|
|
|
|
* by the maximum number of operations per second. This will smoothly
|
|
|
|
|
* handle between 10x and 1/10th this number.
|
|
|
|
|
*
|
|
|
|
|
* Note: zfs_delay_scale * zfs_dirty_data_max must be < 2^64, due to the
|
|
|
|
|
* multiply in dmu_tx_delay().
|
|
|
|
|
*/
|
|
|
|
|
unsigned long zfs_delay_scale = 1000 * 1000 * 1000 / 2000;
|
2008-12-03 23:09:06 +03:00
|
|
|
|
|
2017-03-21 04:36:00 +03:00
|
|
|
|
/*
|
|
|
|
|
* This determines the number of threads used by the dp_sync_taskq.
|
|
|
|
|
*/
|
|
|
|
|
int zfs_sync_taskq_batch_pct = 75;
|
|
|
|
|
|
2017-10-26 22:57:53 +03:00
|
|
|
|
/*
|
|
|
|
|
* These tunables determine the behavior of how zil_itxg_clean() is
|
|
|
|
|
* called via zil_clean() in the context of spa_sync(). When an itxg
|
|
|
|
|
* list needs to be cleaned, TQ_NOSLEEP will be used when dispatching.
|
|
|
|
|
* If the dispatch fails, the call to zil_itxg_clean() will occur
|
|
|
|
|
* synchronously in the context of spa_sync(), which can negatively
|
|
|
|
|
* impact the performance of spa_sync() (e.g. in the case of the itxg
|
|
|
|
|
* list having a large number of itxs that needs to be cleaned).
|
|
|
|
|
*
|
|
|
|
|
* Thus, these tunables can be used to manipulate the behavior of the
|
|
|
|
|
* taskq used by zil_clean(); they determine the number of taskq entries
|
|
|
|
|
* that are pre-populated when the taskq is first created (via the
|
|
|
|
|
* "zfs_zil_clean_taskq_minalloc" tunable) and the maximum number of
|
|
|
|
|
* taskq entries that are cached after an on-demand allocation (via the
|
|
|
|
|
* "zfs_zil_clean_taskq_maxalloc").
|
|
|
|
|
*
|
|
|
|
|
* The idea being, we want to try reasonably hard to ensure there will
|
|
|
|
|
* already be a taskq entry pre-allocated by the time that it is needed
|
|
|
|
|
* by zil_clean(). This way, we can avoid the possibility of an
|
|
|
|
|
* on-demand allocation of a new taskq entry from failing, which would
|
|
|
|
|
* result in zil_itxg_clean() being called synchronously from zil_clean()
|
|
|
|
|
* (which can adversely affect performance of spa_sync()).
|
|
|
|
|
*
|
|
|
|
|
* Additionally, the number of threads used by the taskq can be
|
|
|
|
|
* configured via the "zfs_zil_clean_taskq_nthr_pct" tunable.
|
|
|
|
|
*/
|
|
|
|
|
int zfs_zil_clean_taskq_nthr_pct = 100;
|
|
|
|
|
int zfs_zil_clean_taskq_minalloc = 1024;
|
|
|
|
|
int zfs_zil_clean_taskq_maxalloc = 1024 * 1024;
|
|
|
|
|
|
2010-05-29 00:45:14 +04:00
|
|
|
|
int
|
2008-12-03 23:09:06 +03:00
|
|
|
|
dsl_pool_open_special_dir(dsl_pool_t *dp, const char *name, dsl_dir_t **ddp)
|
2008-11-20 23:01:55 +03:00
|
|
|
|
{
|
|
|
|
|
uint64_t obj;
|
|
|
|
|
int err;
|
|
|
|
|
|
|
|
|
|
err = zap_lookup(dp->dp_meta_objset,
|
2015-04-01 18:14:34 +03:00
|
|
|
|
dsl_dir_phys(dp->dp_root_dir)->dd_child_dir_zapobj,
|
2008-12-03 23:09:06 +03:00
|
|
|
|
name, sizeof (obj), 1, &obj);
|
2008-11-20 23:01:55 +03:00
|
|
|
|
if (err)
|
|
|
|
|
return (err);
|
|
|
|
|
|
2013-09-04 16:00:57 +04:00
|
|
|
|
return (dsl_dir_hold_obj(dp, obj, name, dp, ddp));
|
2008-11-20 23:01:55 +03:00
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
static dsl_pool_t *
|
|
|
|
|
dsl_pool_open_impl(spa_t *spa, uint64_t txg)
|
|
|
|
|
{
|
|
|
|
|
dsl_pool_t *dp;
|
|
|
|
|
blkptr_t *bp = spa_get_rootblkptr(spa);
|
|
|
|
|
|
|
|
|
|
dp = kmem_zalloc(sizeof (dsl_pool_t), KM_SLEEP);
|
|
|
|
|
dp->dp_spa = spa;
|
|
|
|
|
dp->dp_meta_rootbp = *bp;
|
2013-09-04 16:00:57 +04:00
|
|
|
|
rrw_init(&dp->dp_config_rwlock, B_TRUE);
|
2008-11-20 23:01:55 +03:00
|
|
|
|
txg_init(dp, txg);
|
Multi-modifier protection (MMP)
Add multihost=on|off pool property to control MMP. When enabled
a new thread writes uberblocks to the last slot in each label, at a
set frequency, to indicate to other hosts the pool is actively imported.
These uberblocks are the last synced uberblock with an updated
timestamp. Property defaults to off.
During tryimport, find the "best" uberblock (newest txg and timestamp)
repeatedly, checking for change in the found uberblock. Include the
results of the activity test in the config returned by tryimport.
These results are reported to user in "zpool import".
Allow the user to control the period between MMP writes, and the
duration of the activity test on import, via a new module parameter
zfs_multihost_interval. The period is specified in milliseconds. The
activity test duration is calculated from this value, and from the
mmp_delay in the "best" uberblock found initially.
Add a kstat interface to export statistics about Multiple Modifier
Protection (MMP) updates. Include the last synced txg number, the
timestamp, the delay since the last MMP update, the VDEV GUID, the VDEV
label that received the last MMP update, and the VDEV path. Abbreviated
output below.
$ cat /proc/spl/kstat/zfs/mypool/multihost
31 0 0x01 10 880 105092382393521 105144180101111
txg timestamp mmp_delay vdev_guid vdev_label vdev_path
20468 261337 250274925 68396651780 3 /dev/sda
20468 261339 252023374 6267402363293 1 /dev/sdc
20468 261340 252000858 6698080955233 1 /dev/sdx
20468 261341 251980635 783892869810 2 /dev/sdy
20468 261342 253385953 8923255792467 3 /dev/sdd
20468 261344 253336622 042125143176 0 /dev/sdab
20468 261345 253310522 1200778101278 2 /dev/sde
20468 261346 253286429 0950576198362 2 /dev/sdt
20468 261347 253261545 96209817917 3 /dev/sds
20468 261349 253238188 8555725937673 3 /dev/sdb
Add a new tunable zfs_multihost_history to specify the number of MMP
updates to store history for. By default it is set to zero meaning that
no MMP statistics are stored.
When using ztest to generate activity, for automated tests of the MMP
function, some test functions interfere with the test. For example, the
pool is exported to run zdb and then imported again. Add a new ztest
function, "-M", to alter ztest behavior to prevent this.
Add new tests to verify the new functionality. Tests provided by
Giuseppe Di Natale.
Reviewed by: Matthew Ahrens <mahrens@delphix.com>
Reviewed-by: Giuseppe Di Natale <dinatale2@llnl.gov>
Reviewed-by: Ned Bass <bass6@llnl.gov>
Reviewed-by: Andreas Dilger <andreas.dilger@intel.com>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Olaf Faaland <faaland1@llnl.gov>
Closes #745
Closes #6279
2017-07-08 06:20:35 +03:00
|
|
|
|
mmp_init(spa);
|
2008-11-20 23:01:55 +03:00
|
|
|
|
|
2017-04-24 19:34:36 +03:00
|
|
|
|
txg_list_create(&dp->dp_dirty_datasets, spa,
|
2008-11-20 23:01:55 +03:00
|
|
|
|
offsetof(dsl_dataset_t, ds_dirty_link));
|
2017-04-24 19:34:36 +03:00
|
|
|
|
txg_list_create(&dp->dp_dirty_zilogs, spa,
|
2012-12-15 04:13:40 +04:00
|
|
|
|
offsetof(zilog_t, zl_dirty_link));
|
2017-04-24 19:34:36 +03:00
|
|
|
|
txg_list_create(&dp->dp_dirty_dirs, spa,
|
2008-11-20 23:01:55 +03:00
|
|
|
|
offsetof(dsl_dir_t, dd_dirty_link));
|
2017-04-24 19:34:36 +03:00
|
|
|
|
txg_list_create(&dp->dp_sync_tasks, spa,
|
2013-09-04 16:00:57 +04:00
|
|
|
|
offsetof(dsl_sync_task_t, dst_node));
|
2016-12-17 01:11:29 +03:00
|
|
|
|
txg_list_create(&dp->dp_early_sync_tasks, spa,
|
|
|
|
|
offsetof(dsl_sync_task_t, dst_node));
|
2008-11-20 23:01:55 +03:00
|
|
|
|
|
2017-03-21 04:36:00 +03:00
|
|
|
|
dp->dp_sync_taskq = taskq_create("dp_sync_taskq",
|
|
|
|
|
zfs_sync_taskq_batch_pct, minclsyspri, 1, INT_MAX,
|
|
|
|
|
TASKQ_THREADS_CPU_PCT);
|
|
|
|
|
|
2017-10-26 22:57:53 +03:00
|
|
|
|
dp->dp_zil_clean_taskq = taskq_create("dp_zil_clean_taskq",
|
|
|
|
|
zfs_zil_clean_taskq_nthr_pct, minclsyspri,
|
|
|
|
|
zfs_zil_clean_taskq_minalloc,
|
|
|
|
|
zfs_zil_clean_taskq_maxalloc,
|
|
|
|
|
TASKQ_PREPOPULATE | TASKQ_THREADS_CPU_PCT);
|
|
|
|
|
|
2008-11-20 23:01:55 +03:00
|
|
|
|
mutex_init(&dp->dp_lock, NULL, MUTEX_DEFAULT, NULL);
|
Illumos #4045 write throttle & i/o scheduler performance work
4045 zfs write throttle & i/o scheduler performance work
1. The ZFS i/o scheduler (vdev_queue.c) now divides i/os into 5 classes: sync
read, sync write, async read, async write, and scrub/resilver. The scheduler
issues a number of concurrent i/os from each class to the device. Once a class
has been selected, an i/o is selected from this class using either an elevator
algorithem (async, scrub classes) or FIFO (sync classes). The number of
concurrent async write i/os is tuned dynamically based on i/o load, to achieve
good sync i/o latency when there is not a high load of writes, and good write
throughput when there is. See the block comment in vdev_queue.c (reproduced
below) for more details.
2. The write throttle (dsl_pool_tempreserve_space() and
txg_constrain_throughput()) is rewritten to produce much more consistent delays
when under constant load. The new write throttle is based on the amount of
dirty data, rather than guesses about future performance of the system. When
there is a lot of dirty data, each transaction (e.g. write() syscall) will be
delayed by the same small amount. This eliminates the "brick wall of wait"
that the old write throttle could hit, causing all transactions to wait several
seconds until the next txg opens. One of the keys to the new write throttle is
decrementing the amount of dirty data as i/o completes, rather than at the end
of spa_sync(). Note that the write throttle is only applied once the i/o
scheduler is issuing the maximum number of outstanding async writes. See the
block comments in dsl_pool.c and above dmu_tx_delay() (reproduced below) for
more details.
This diff has several other effects, including:
* the commonly-tuned global variable zfs_vdev_max_pending has been removed;
use per-class zfs_vdev_*_max_active values or zfs_vdev_max_active instead.
* the size of each txg (meaning the amount of dirty data written, and thus the
time it takes to write out) is now controlled differently. There is no longer
an explicit time goal; the primary determinant is amount of dirty data.
Systems that are under light or medium load will now often see that a txg is
always syncing, but the impact to performance (e.g. read latency) is minimal.
Tune zfs_dirty_data_max and zfs_dirty_data_sync to control this.
* zio_taskq_batch_pct = 75 -- Only use 75% of all CPUs for compression,
checksum, etc. This improves latency by not allowing these CPU-intensive tasks
to consume all CPU (on machines with at least 4 CPU's; the percentage is
rounded up).
--matt
APPENDIX: problems with the current i/o scheduler
The current ZFS i/o scheduler (vdev_queue.c) is deadline based. The problem
with this is that if there are always i/os pending, then certain classes of
i/os can see very long delays.
For example, if there are always synchronous reads outstanding, then no async
writes will be serviced until they become "past due". One symptom of this
situation is that each pass of the txg sync takes at least several seconds
(typically 3 seconds).
If many i/os become "past due" (their deadline is in the past), then we must
service all of these overdue i/os before any new i/os. This happens when we
enqueue a batch of async writes for the txg sync, with deadlines 2.5 seconds in
the future. If we can't complete all the i/os in 2.5 seconds (e.g. because
there were always reads pending), then these i/os will become past due. Now we
must service all the "async" writes (which could be hundreds of megabytes)
before we service any reads, introducing considerable latency to synchronous
i/os (reads or ZIL writes).
Notes on porting to ZFS on Linux:
- zio_t gained new members io_physdone and io_phys_children. Because
object caches in the Linux port call the constructor only once at
allocation time, objects may contain residual data when retrieved
from the cache. Therefore zio_create() was updated to zero out the two
new fields.
- vdev_mirror_pending() relied on the depth of the per-vdev pending queue
(vq->vq_pending_tree) to select the least-busy leaf vdev to read from.
This tree has been replaced by vq->vq_active_tree which is now used
for the same purpose.
- vdev_queue_init() used the value of zfs_vdev_max_pending to determine
the number of vdev I/O buffers to pre-allocate. That global no longer
exists, so we instead use the sum of the *_max_active values for each of
the five I/O classes described above.
- The Illumos implementation of dmu_tx_delay() delays a transaction by
sleeping in condition variable embedded in the thread
(curthread->t_delay_cv). We do not have an equivalent CV to use in
Linux, so this change replaced the delay logic with a wrapper called
zfs_sleep_until(). This wrapper could be adopted upstream and in other
downstream ports to abstract away operating system-specific delay logic.
- These tunables are added as module parameters, and descriptions added
to the zfs-module-parameters.5 man page.
spa_asize_inflation
zfs_deadman_synctime_ms
zfs_vdev_max_active
zfs_vdev_async_write_active_min_dirty_percent
zfs_vdev_async_write_active_max_dirty_percent
zfs_vdev_async_read_max_active
zfs_vdev_async_read_min_active
zfs_vdev_async_write_max_active
zfs_vdev_async_write_min_active
zfs_vdev_scrub_max_active
zfs_vdev_scrub_min_active
zfs_vdev_sync_read_max_active
zfs_vdev_sync_read_min_active
zfs_vdev_sync_write_max_active
zfs_vdev_sync_write_min_active
zfs_dirty_data_max_percent
zfs_delay_min_dirty_percent
zfs_dirty_data_max_max_percent
zfs_dirty_data_max
zfs_dirty_data_max_max
zfs_dirty_data_sync
zfs_delay_scale
The latter four have type unsigned long, whereas they are uint64_t in
Illumos. This accommodates Linux's module_param() supported types, but
means they may overflow on 32-bit architectures.
The values zfs_dirty_data_max and zfs_dirty_data_max_max are the most
likely to overflow on 32-bit systems, since they express physical RAM
sizes in bytes. In fact, Illumos initializes zfs_dirty_data_max_max to
2^32 which does overflow. To resolve that, this port instead initializes
it in arc_init() to 25% of physical RAM, and adds the tunable
zfs_dirty_data_max_max_percent to override that percentage. While this
solution doesn't completely avoid the overflow issue, it should be a
reasonable default for most systems, and the minority of affected
systems can work around the issue by overriding the defaults.
- Fixed reversed logic in comment above zfs_delay_scale declaration.
- Clarified comments in vdev_queue.c regarding when per-queue minimums take
effect.
- Replaced dmu_tx_write_limit in the dmu_tx kstat file
with dmu_tx_dirty_delay and dmu_tx_dirty_over_max. The first counts
how many times a transaction has been delayed because the pool dirty
data has exceeded zfs_delay_min_dirty_percent. The latter counts how
many times the pool dirty data has exceeded zfs_dirty_data_max (which
we expect to never happen).
- The original patch would have regressed the bug fixed in
zfsonlinux/zfs@c418410, which prevented users from setting the
zfs_vdev_aggregation_limit tuning larger than SPA_MAXBLOCKSIZE.
A similar fix is added to vdev_queue_aggregate().
- In vdev_queue_io_to_issue(), dynamically allocate 'zio_t search' on the
heap instead of the stack. In Linux we can't afford such large
structures on the stack.
Reviewed by: George Wilson <george.wilson@delphix.com>
Reviewed by: Adam Leventhal <ahl@delphix.com>
Reviewed by: Christopher Siden <christopher.siden@delphix.com>
Reviewed by: Ned Bass <bass6@llnl.gov>
Reviewed by: Brendan Gregg <brendan.gregg@joyent.com>
Approved by: Robert Mustacchi <rm@joyent.com>
References:
http://www.illumos.org/issues/4045
illumos/illumos-gate@69962b5647e4a8b9b14998733b765925381b727e
Ported-by: Ned Bass <bass6@llnl.gov>
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Closes #1913
2013-08-29 07:01:20 +04:00
|
|
|
|
cv_init(&dp->dp_spaceavail_cv, NULL, CV_DEFAULT, NULL);
|
2008-11-20 23:01:55 +03:00
|
|
|
|
|
2020-12-11 01:09:23 +03:00
|
|
|
|
dp->dp_zrele_taskq = taskq_create("z_zrele", 100, defclsyspri,
|
|
|
|
|
boot_ncpus * 8, INT_MAX, TASKQ_PREPOPULATE | TASKQ_DYNAMIC |
|
|
|
|
|
TASKQ_THREADS_CPU_PCT);
|
2019-02-12 21:41:15 +03:00
|
|
|
|
dp->dp_unlinked_drain_taskq = taskq_create("z_unlinked_drain",
|
2020-12-11 01:09:23 +03:00
|
|
|
|
100, defclsyspri, boot_ncpus, INT_MAX,
|
|
|
|
|
TASKQ_PREPOPULATE | TASKQ_DYNAMIC | TASKQ_THREADS_CPU_PCT);
|
2009-07-03 02:44:48 +04:00
|
|
|
|
|
2008-11-20 23:01:55 +03:00
|
|
|
|
return (dp);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
int
|
2012-12-14 03:24:15 +04:00
|
|
|
|
dsl_pool_init(spa_t *spa, uint64_t txg, dsl_pool_t **dpp)
|
2008-11-20 23:01:55 +03:00
|
|
|
|
{
|
|
|
|
|
int err;
|
|
|
|
|
dsl_pool_t *dp = dsl_pool_open_impl(spa, txg);
|
2012-12-14 03:24:15 +04:00
|
|
|
|
|
2016-05-21 06:34:06 +03:00
|
|
|
|
/*
|
|
|
|
|
* Initialize the caller's dsl_pool_t structure before we actually open
|
|
|
|
|
* the meta objset. This is done because a self-healing write zio may
|
|
|
|
|
* be issued as part of dmu_objset_open_impl() and the spa needs its
|
|
|
|
|
* dsl_pool_t initialized in order to handle the write.
|
|
|
|
|
*/
|
|
|
|
|
*dpp = dp;
|
|
|
|
|
|
2012-12-14 03:24:15 +04:00
|
|
|
|
err = dmu_objset_open_impl(spa, NULL, &dp->dp_meta_rootbp,
|
|
|
|
|
&dp->dp_meta_objset);
|
2016-05-21 06:34:06 +03:00
|
|
|
|
if (err != 0) {
|
2012-12-14 03:24:15 +04:00
|
|
|
|
dsl_pool_close(dp);
|
2016-05-21 06:34:06 +03:00
|
|
|
|
*dpp = NULL;
|
|
|
|
|
}
|
2012-12-14 03:24:15 +04:00
|
|
|
|
|
|
|
|
|
return (err);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
int
|
|
|
|
|
dsl_pool_open(dsl_pool_t *dp)
|
|
|
|
|
{
|
|
|
|
|
int err;
|
2008-12-03 23:09:06 +03:00
|
|
|
|
dsl_dir_t *dd;
|
|
|
|
|
dsl_dataset_t *ds;
|
2010-05-29 00:45:14 +04:00
|
|
|
|
uint64_t obj;
|
2008-11-20 23:01:55 +03:00
|
|
|
|
|
2013-09-04 16:00:57 +04:00
|
|
|
|
rrw_enter(&dp->dp_config_rwlock, RW_WRITER, FTAG);
|
2008-11-20 23:01:55 +03:00
|
|
|
|
err = zap_lookup(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
|
|
|
|
|
DMU_POOL_ROOT_DATASET, sizeof (uint64_t), 1,
|
|
|
|
|
&dp->dp_root_dir_obj);
|
|
|
|
|
if (err)
|
|
|
|
|
goto out;
|
|
|
|
|
|
2013-09-04 16:00:57 +04:00
|
|
|
|
err = dsl_dir_hold_obj(dp, dp->dp_root_dir_obj,
|
2008-11-20 23:01:55 +03:00
|
|
|
|
NULL, dp, &dp->dp_root_dir);
|
|
|
|
|
if (err)
|
|
|
|
|
goto out;
|
|
|
|
|
|
2008-12-03 23:09:06 +03:00
|
|
|
|
err = dsl_pool_open_special_dir(dp, MOS_DIR_NAME, &dp->dp_mos_dir);
|
2008-11-20 23:01:55 +03:00
|
|
|
|
if (err)
|
|
|
|
|
goto out;
|
|
|
|
|
|
2012-12-14 03:24:15 +04:00
|
|
|
|
if (spa_version(dp->dp_spa) >= SPA_VERSION_ORIGIN) {
|
2008-12-03 23:09:06 +03:00
|
|
|
|
err = dsl_pool_open_special_dir(dp, ORIGIN_DIR_NAME, &dd);
|
|
|
|
|
if (err)
|
|
|
|
|
goto out;
|
2015-04-01 18:14:34 +03:00
|
|
|
|
err = dsl_dataset_hold_obj(dp,
|
|
|
|
|
dsl_dir_phys(dd)->dd_head_dataset_obj, FTAG, &ds);
|
2009-07-03 02:44:48 +04:00
|
|
|
|
if (err == 0) {
|
|
|
|
|
err = dsl_dataset_hold_obj(dp,
|
2015-04-01 18:14:34 +03:00
|
|
|
|
dsl_dataset_phys(ds)->ds_prev_snap_obj, dp,
|
2009-07-03 02:44:48 +04:00
|
|
|
|
&dp->dp_origin_snap);
|
|
|
|
|
dsl_dataset_rele(ds, FTAG);
|
|
|
|
|
}
|
2013-09-04 16:00:57 +04:00
|
|
|
|
dsl_dir_rele(dd, dp);
|
2008-12-03 23:09:06 +03:00
|
|
|
|
if (err)
|
|
|
|
|
goto out;
|
|
|
|
|
}
|
|
|
|
|
|
2012-12-14 03:24:15 +04:00
|
|
|
|
if (spa_version(dp->dp_spa) >= SPA_VERSION_DEADLISTS) {
|
2010-05-29 00:45:14 +04:00
|
|
|
|
err = dsl_pool_open_special_dir(dp, FREE_DIR_NAME,
|
|
|
|
|
&dp->dp_free_dir);
|
2008-12-03 23:09:06 +03:00
|
|
|
|
if (err)
|
|
|
|
|
goto out;
|
2010-05-29 00:45:14 +04:00
|
|
|
|
|
2008-12-03 23:09:06 +03:00
|
|
|
|
err = zap_lookup(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
|
2010-05-29 00:45:14 +04:00
|
|
|
|
DMU_POOL_FREE_BPOBJ, sizeof (uint64_t), 1, &obj);
|
2008-12-03 23:09:06 +03:00
|
|
|
|
if (err)
|
|
|
|
|
goto out;
|
2013-09-04 16:00:57 +04:00
|
|
|
|
VERIFY0(bpobj_open(&dp->dp_free_bpobj,
|
2010-05-29 00:45:14 +04:00
|
|
|
|
dp->dp_meta_objset, obj));
|
2008-12-03 23:09:06 +03:00
|
|
|
|
}
|
|
|
|
|
|
OpenZFS 7614, 9064 - zfs device evacuation/removal
OpenZFS 7614 - zfs device evacuation/removal
OpenZFS 9064 - remove_mirror should wait for device removal to complete
This project allows top-level vdevs to be removed from the storage pool
with "zpool remove", reducing the total amount of storage in the pool.
This operation copies all allocated regions of the device to be removed
onto other devices, recording the mapping from old to new location.
After the removal is complete, read and free operations to the removed
(now "indirect") vdev must be remapped and performed at the new location
on disk. The indirect mapping table is kept in memory whenever the pool
is loaded, so there is minimal performance overhead when doing operations
on the indirect vdev.
The size of the in-memory mapping table will be reduced when its entries
become "obsolete" because they are no longer used by any block pointers
in the pool. An entry becomes obsolete when all the blocks that use
it are freed. An entry can also become obsolete when all the snapshots
that reference it are deleted, and the block pointers that reference it
have been "remapped" in all filesystems/zvols (and clones). Whenever an
indirect block is written, all the block pointers in it will be "remapped"
to their new (concrete) locations if possible. This process can be
accelerated by using the "zfs remap" command to proactively rewrite all
indirect blocks that reference indirect (removed) vdevs.
Note that when a device is removed, we do not verify the checksum of
the data that is copied. This makes the process much faster, but if it
were used on redundant vdevs (i.e. mirror or raidz vdevs), it would be
possible to copy the wrong data, when we have the correct data on e.g.
the other side of the mirror.
At the moment, only mirrors and simple top-level vdevs can be removed
and no removal is allowed if any of the top-level vdevs are raidz.
Porting Notes:
* Avoid zero-sized kmem_alloc() in vdev_compact_children().
The device evacuation code adds a dependency that
vdev_compact_children() be able to properly empty the vdev_child
array by setting it to NULL and zeroing vdev_children. Under Linux,
kmem_alloc() and related functions return a sentinel pointer rather
than NULL for zero-sized allocations.
* Remove comment regarding "mpt" driver where zfs_remove_max_segment
is initialized to SPA_MAXBLOCKSIZE.
Change zfs_condense_indirect_commit_entry_delay_ticks to
zfs_condense_indirect_commit_entry_delay_ms for consistency with
most other tunables in which delays are specified in ms.
* ZTS changes:
Use set_tunable rather than mdb
Use zpool sync as appropriate
Use sync_pool instead of sync
Kill jobs during test_removal_with_operation to allow unmount/export
Don't add non-disk names such as "mirror" or "raidz" to $DISKS
Use $TEST_BASE_DIR instead of /tmp
Increase HZ from 100 to 1000 which is more common on Linux
removal_multiple_indirection.ksh
Reduce iterations in order to not time out on the code
coverage builders.
removal_resume_export:
Functionally, the test case is correct but there exists a race
where the kernel thread hasn't been fully started yet and is
not visible. Wait for up to 1 second for the removal thread
to be started before giving up on it. Also, increase the
amount of data copied in order that the removal not finish
before the export has a chance to fail.
* MMP compatibility, the concept of concrete versus non-concrete devices
has slightly changed the semantics of vdev_writeable(). Update
mmp_random_leaf_impl() accordingly.
* Updated dbuf_remap() to handle the org.zfsonlinux:large_dnode pool
feature which is not supported by OpenZFS.
* Added support for new vdev removal tracepoints.
* Test cases removal_with_zdb and removal_condense_export have been
intentionally disabled. When run manually they pass as intended,
but when running in the automated test environment they produce
unreliable results on the latest Fedora release.
They may work better once the upstream pool import refectoring is
merged into ZoL at which point they will be re-enabled.
Authored by: Matthew Ahrens <mahrens@delphix.com>
Reviewed-by: Alex Reece <alex@delphix.com>
Reviewed-by: George Wilson <george.wilson@delphix.com>
Reviewed-by: John Kennedy <john.kennedy@delphix.com>
Reviewed-by: Prakash Surya <prakash.surya@delphix.com>
Reviewed by: Richard Laager <rlaager@wiktel.com>
Reviewed by: Tim Chase <tim@chase2k.com>
Reviewed by: Brian Behlendorf <behlendorf1@llnl.gov>
Approved by: Garrett D'Amore <garrett@damore.org>
Ported-by: Tim Chase <tim@chase2k.com>
Signed-off-by: Tim Chase <tim@chase2k.com>
OpenZFS-issue: https://www.illumos.org/issues/7614
OpenZFS-commit: https://github.com/openzfs/openzfs/commit/f539f1eb
Closes #6900
2016-09-22 19:30:13 +03:00
|
|
|
|
if (spa_feature_is_active(dp->dp_spa, SPA_FEATURE_OBSOLETE_COUNTS)) {
|
|
|
|
|
err = zap_lookup(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
|
|
|
|
|
DMU_POOL_OBSOLETE_BPOBJ, sizeof (uint64_t), 1, &obj);
|
|
|
|
|
if (err == 0) {
|
|
|
|
|
VERIFY0(bpobj_open(&dp->dp_obsolete_bpobj,
|
|
|
|
|
dp->dp_meta_objset, obj));
|
|
|
|
|
} else if (err == ENOENT) {
|
|
|
|
|
/*
|
|
|
|
|
* We might not have created the remap bpobj yet.
|
|
|
|
|
*/
|
|
|
|
|
err = 0;
|
|
|
|
|
} else {
|
|
|
|
|
goto out;
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
2014-06-06 01:20:08 +04:00
|
|
|
|
/*
|
OpenZFS 7614, 9064 - zfs device evacuation/removal
OpenZFS 7614 - zfs device evacuation/removal
OpenZFS 9064 - remove_mirror should wait for device removal to complete
This project allows top-level vdevs to be removed from the storage pool
with "zpool remove", reducing the total amount of storage in the pool.
This operation copies all allocated regions of the device to be removed
onto other devices, recording the mapping from old to new location.
After the removal is complete, read and free operations to the removed
(now "indirect") vdev must be remapped and performed at the new location
on disk. The indirect mapping table is kept in memory whenever the pool
is loaded, so there is minimal performance overhead when doing operations
on the indirect vdev.
The size of the in-memory mapping table will be reduced when its entries
become "obsolete" because they are no longer used by any block pointers
in the pool. An entry becomes obsolete when all the blocks that use
it are freed. An entry can also become obsolete when all the snapshots
that reference it are deleted, and the block pointers that reference it
have been "remapped" in all filesystems/zvols (and clones). Whenever an
indirect block is written, all the block pointers in it will be "remapped"
to their new (concrete) locations if possible. This process can be
accelerated by using the "zfs remap" command to proactively rewrite all
indirect blocks that reference indirect (removed) vdevs.
Note that when a device is removed, we do not verify the checksum of
the data that is copied. This makes the process much faster, but if it
were used on redundant vdevs (i.e. mirror or raidz vdevs), it would be
possible to copy the wrong data, when we have the correct data on e.g.
the other side of the mirror.
At the moment, only mirrors and simple top-level vdevs can be removed
and no removal is allowed if any of the top-level vdevs are raidz.
Porting Notes:
* Avoid zero-sized kmem_alloc() in vdev_compact_children().
The device evacuation code adds a dependency that
vdev_compact_children() be able to properly empty the vdev_child
array by setting it to NULL and zeroing vdev_children. Under Linux,
kmem_alloc() and related functions return a sentinel pointer rather
than NULL for zero-sized allocations.
* Remove comment regarding "mpt" driver where zfs_remove_max_segment
is initialized to SPA_MAXBLOCKSIZE.
Change zfs_condense_indirect_commit_entry_delay_ticks to
zfs_condense_indirect_commit_entry_delay_ms for consistency with
most other tunables in which delays are specified in ms.
* ZTS changes:
Use set_tunable rather than mdb
Use zpool sync as appropriate
Use sync_pool instead of sync
Kill jobs during test_removal_with_operation to allow unmount/export
Don't add non-disk names such as "mirror" or "raidz" to $DISKS
Use $TEST_BASE_DIR instead of /tmp
Increase HZ from 100 to 1000 which is more common on Linux
removal_multiple_indirection.ksh
Reduce iterations in order to not time out on the code
coverage builders.
removal_resume_export:
Functionally, the test case is correct but there exists a race
where the kernel thread hasn't been fully started yet and is
not visible. Wait for up to 1 second for the removal thread
to be started before giving up on it. Also, increase the
amount of data copied in order that the removal not finish
before the export has a chance to fail.
* MMP compatibility, the concept of concrete versus non-concrete devices
has slightly changed the semantics of vdev_writeable(). Update
mmp_random_leaf_impl() accordingly.
* Updated dbuf_remap() to handle the org.zfsonlinux:large_dnode pool
feature which is not supported by OpenZFS.
* Added support for new vdev removal tracepoints.
* Test cases removal_with_zdb and removal_condense_export have been
intentionally disabled. When run manually they pass as intended,
but when running in the automated test environment they produce
unreliable results on the latest Fedora release.
They may work better once the upstream pool import refectoring is
merged into ZoL at which point they will be re-enabled.
Authored by: Matthew Ahrens <mahrens@delphix.com>
Reviewed-by: Alex Reece <alex@delphix.com>
Reviewed-by: George Wilson <george.wilson@delphix.com>
Reviewed-by: John Kennedy <john.kennedy@delphix.com>
Reviewed-by: Prakash Surya <prakash.surya@delphix.com>
Reviewed by: Richard Laager <rlaager@wiktel.com>
Reviewed by: Tim Chase <tim@chase2k.com>
Reviewed by: Brian Behlendorf <behlendorf1@llnl.gov>
Approved by: Garrett D'Amore <garrett@damore.org>
Ported-by: Tim Chase <tim@chase2k.com>
Signed-off-by: Tim Chase <tim@chase2k.com>
OpenZFS-issue: https://www.illumos.org/issues/7614
OpenZFS-commit: https://github.com/openzfs/openzfs/commit/f539f1eb
Closes #6900
2016-09-22 19:30:13 +03:00
|
|
|
|
* Note: errors ignored, because the these special dirs, used for
|
|
|
|
|
* space accounting, are only created on demand.
|
2014-06-06 01:20:08 +04:00
|
|
|
|
*/
|
|
|
|
|
(void) dsl_pool_open_special_dir(dp, LEAK_DIR_NAME,
|
|
|
|
|
&dp->dp_leak_dir);
|
|
|
|
|
|
2013-10-08 21:13:05 +04:00
|
|
|
|
if (spa_feature_is_active(dp->dp_spa, SPA_FEATURE_ASYNC_DESTROY)) {
|
2012-12-14 03:24:15 +04:00
|
|
|
|
err = zap_lookup(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
|
|
|
|
|
DMU_POOL_BPTREE_OBJ, sizeof (uint64_t), 1,
|
|
|
|
|
&dp->dp_bptree_obj);
|
|
|
|
|
if (err != 0)
|
|
|
|
|
goto out;
|
|
|
|
|
}
|
|
|
|
|
|
2013-10-08 21:13:05 +04:00
|
|
|
|
if (spa_feature_is_active(dp->dp_spa, SPA_FEATURE_EMPTY_BPOBJ)) {
|
2012-12-24 03:57:14 +04:00
|
|
|
|
err = zap_lookup(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
|
|
|
|
|
DMU_POOL_EMPTY_BPOBJ, sizeof (uint64_t), 1,
|
|
|
|
|
&dp->dp_empty_bpobj);
|
|
|
|
|
if (err != 0)
|
|
|
|
|
goto out;
|
|
|
|
|
}
|
|
|
|
|
|
2010-05-29 00:45:14 +04:00
|
|
|
|
err = zap_lookup(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
|
|
|
|
|
DMU_POOL_TMP_USERREFS, sizeof (uint64_t), 1,
|
|
|
|
|
&dp->dp_tmp_userrefs_obj);
|
|
|
|
|
if (err == ENOENT)
|
|
|
|
|
err = 0;
|
|
|
|
|
if (err)
|
|
|
|
|
goto out;
|
|
|
|
|
|
2012-12-14 03:24:15 +04:00
|
|
|
|
err = dsl_scan_init(dp, dp->dp_tx.tx_open_txg);
|
2010-05-29 00:45:14 +04:00
|
|
|
|
|
2008-11-20 23:01:55 +03:00
|
|
|
|
out:
|
2013-09-04 16:00:57 +04:00
|
|
|
|
rrw_exit(&dp->dp_config_rwlock, FTAG);
|
2008-11-20 23:01:55 +03:00
|
|
|
|
return (err);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
void
|
|
|
|
|
dsl_pool_close(dsl_pool_t *dp)
|
|
|
|
|
{
|
2008-12-03 23:09:06 +03:00
|
|
|
|
/*
|
Illumos #4045 write throttle & i/o scheduler performance work
4045 zfs write throttle & i/o scheduler performance work
1. The ZFS i/o scheduler (vdev_queue.c) now divides i/os into 5 classes: sync
read, sync write, async read, async write, and scrub/resilver. The scheduler
issues a number of concurrent i/os from each class to the device. Once a class
has been selected, an i/o is selected from this class using either an elevator
algorithem (async, scrub classes) or FIFO (sync classes). The number of
concurrent async write i/os is tuned dynamically based on i/o load, to achieve
good sync i/o latency when there is not a high load of writes, and good write
throughput when there is. See the block comment in vdev_queue.c (reproduced
below) for more details.
2. The write throttle (dsl_pool_tempreserve_space() and
txg_constrain_throughput()) is rewritten to produce much more consistent delays
when under constant load. The new write throttle is based on the amount of
dirty data, rather than guesses about future performance of the system. When
there is a lot of dirty data, each transaction (e.g. write() syscall) will be
delayed by the same small amount. This eliminates the "brick wall of wait"
that the old write throttle could hit, causing all transactions to wait several
seconds until the next txg opens. One of the keys to the new write throttle is
decrementing the amount of dirty data as i/o completes, rather than at the end
of spa_sync(). Note that the write throttle is only applied once the i/o
scheduler is issuing the maximum number of outstanding async writes. See the
block comments in dsl_pool.c and above dmu_tx_delay() (reproduced below) for
more details.
This diff has several other effects, including:
* the commonly-tuned global variable zfs_vdev_max_pending has been removed;
use per-class zfs_vdev_*_max_active values or zfs_vdev_max_active instead.
* the size of each txg (meaning the amount of dirty data written, and thus the
time it takes to write out) is now controlled differently. There is no longer
an explicit time goal; the primary determinant is amount of dirty data.
Systems that are under light or medium load will now often see that a txg is
always syncing, but the impact to performance (e.g. read latency) is minimal.
Tune zfs_dirty_data_max and zfs_dirty_data_sync to control this.
* zio_taskq_batch_pct = 75 -- Only use 75% of all CPUs for compression,
checksum, etc. This improves latency by not allowing these CPU-intensive tasks
to consume all CPU (on machines with at least 4 CPU's; the percentage is
rounded up).
--matt
APPENDIX: problems with the current i/o scheduler
The current ZFS i/o scheduler (vdev_queue.c) is deadline based. The problem
with this is that if there are always i/os pending, then certain classes of
i/os can see very long delays.
For example, if there are always synchronous reads outstanding, then no async
writes will be serviced until they become "past due". One symptom of this
situation is that each pass of the txg sync takes at least several seconds
(typically 3 seconds).
If many i/os become "past due" (their deadline is in the past), then we must
service all of these overdue i/os before any new i/os. This happens when we
enqueue a batch of async writes for the txg sync, with deadlines 2.5 seconds in
the future. If we can't complete all the i/os in 2.5 seconds (e.g. because
there were always reads pending), then these i/os will become past due. Now we
must service all the "async" writes (which could be hundreds of megabytes)
before we service any reads, introducing considerable latency to synchronous
i/os (reads or ZIL writes).
Notes on porting to ZFS on Linux:
- zio_t gained new members io_physdone and io_phys_children. Because
object caches in the Linux port call the constructor only once at
allocation time, objects may contain residual data when retrieved
from the cache. Therefore zio_create() was updated to zero out the two
new fields.
- vdev_mirror_pending() relied on the depth of the per-vdev pending queue
(vq->vq_pending_tree) to select the least-busy leaf vdev to read from.
This tree has been replaced by vq->vq_active_tree which is now used
for the same purpose.
- vdev_queue_init() used the value of zfs_vdev_max_pending to determine
the number of vdev I/O buffers to pre-allocate. That global no longer
exists, so we instead use the sum of the *_max_active values for each of
the five I/O classes described above.
- The Illumos implementation of dmu_tx_delay() delays a transaction by
sleeping in condition variable embedded in the thread
(curthread->t_delay_cv). We do not have an equivalent CV to use in
Linux, so this change replaced the delay logic with a wrapper called
zfs_sleep_until(). This wrapper could be adopted upstream and in other
downstream ports to abstract away operating system-specific delay logic.
- These tunables are added as module parameters, and descriptions added
to the zfs-module-parameters.5 man page.
spa_asize_inflation
zfs_deadman_synctime_ms
zfs_vdev_max_active
zfs_vdev_async_write_active_min_dirty_percent
zfs_vdev_async_write_active_max_dirty_percent
zfs_vdev_async_read_max_active
zfs_vdev_async_read_min_active
zfs_vdev_async_write_max_active
zfs_vdev_async_write_min_active
zfs_vdev_scrub_max_active
zfs_vdev_scrub_min_active
zfs_vdev_sync_read_max_active
zfs_vdev_sync_read_min_active
zfs_vdev_sync_write_max_active
zfs_vdev_sync_write_min_active
zfs_dirty_data_max_percent
zfs_delay_min_dirty_percent
zfs_dirty_data_max_max_percent
zfs_dirty_data_max
zfs_dirty_data_max_max
zfs_dirty_data_sync
zfs_delay_scale
The latter four have type unsigned long, whereas they are uint64_t in
Illumos. This accommodates Linux's module_param() supported types, but
means they may overflow on 32-bit architectures.
The values zfs_dirty_data_max and zfs_dirty_data_max_max are the most
likely to overflow on 32-bit systems, since they express physical RAM
sizes in bytes. In fact, Illumos initializes zfs_dirty_data_max_max to
2^32 which does overflow. To resolve that, this port instead initializes
it in arc_init() to 25% of physical RAM, and adds the tunable
zfs_dirty_data_max_max_percent to override that percentage. While this
solution doesn't completely avoid the overflow issue, it should be a
reasonable default for most systems, and the minority of affected
systems can work around the issue by overriding the defaults.
- Fixed reversed logic in comment above zfs_delay_scale declaration.
- Clarified comments in vdev_queue.c regarding when per-queue minimums take
effect.
- Replaced dmu_tx_write_limit in the dmu_tx kstat file
with dmu_tx_dirty_delay and dmu_tx_dirty_over_max. The first counts
how many times a transaction has been delayed because the pool dirty
data has exceeded zfs_delay_min_dirty_percent. The latter counts how
many times the pool dirty data has exceeded zfs_dirty_data_max (which
we expect to never happen).
- The original patch would have regressed the bug fixed in
zfsonlinux/zfs@c418410, which prevented users from setting the
zfs_vdev_aggregation_limit tuning larger than SPA_MAXBLOCKSIZE.
A similar fix is added to vdev_queue_aggregate().
- In vdev_queue_io_to_issue(), dynamically allocate 'zio_t search' on the
heap instead of the stack. In Linux we can't afford such large
structures on the stack.
Reviewed by: George Wilson <george.wilson@delphix.com>
Reviewed by: Adam Leventhal <ahl@delphix.com>
Reviewed by: Christopher Siden <christopher.siden@delphix.com>
Reviewed by: Ned Bass <bass6@llnl.gov>
Reviewed by: Brendan Gregg <brendan.gregg@joyent.com>
Approved by: Robert Mustacchi <rm@joyent.com>
References:
http://www.illumos.org/issues/4045
illumos/illumos-gate@69962b5647e4a8b9b14998733b765925381b727e
Ported-by: Ned Bass <bass6@llnl.gov>
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Closes #1913
2013-08-29 07:01:20 +04:00
|
|
|
|
* Drop our references from dsl_pool_open().
|
|
|
|
|
*
|
2008-12-03 23:09:06 +03:00
|
|
|
|
* Since we held the origin_snap from "syncing" context (which
|
|
|
|
|
* includes pool-opening context), it actually only got a "ref"
|
|
|
|
|
* and not a hold, so just drop that here.
|
|
|
|
|
*/
|
OpenZFS 7614, 9064 - zfs device evacuation/removal
OpenZFS 7614 - zfs device evacuation/removal
OpenZFS 9064 - remove_mirror should wait for device removal to complete
This project allows top-level vdevs to be removed from the storage pool
with "zpool remove", reducing the total amount of storage in the pool.
This operation copies all allocated regions of the device to be removed
onto other devices, recording the mapping from old to new location.
After the removal is complete, read and free operations to the removed
(now "indirect") vdev must be remapped and performed at the new location
on disk. The indirect mapping table is kept in memory whenever the pool
is loaded, so there is minimal performance overhead when doing operations
on the indirect vdev.
The size of the in-memory mapping table will be reduced when its entries
become "obsolete" because they are no longer used by any block pointers
in the pool. An entry becomes obsolete when all the blocks that use
it are freed. An entry can also become obsolete when all the snapshots
that reference it are deleted, and the block pointers that reference it
have been "remapped" in all filesystems/zvols (and clones). Whenever an
indirect block is written, all the block pointers in it will be "remapped"
to their new (concrete) locations if possible. This process can be
accelerated by using the "zfs remap" command to proactively rewrite all
indirect blocks that reference indirect (removed) vdevs.
Note that when a device is removed, we do not verify the checksum of
the data that is copied. This makes the process much faster, but if it
were used on redundant vdevs (i.e. mirror or raidz vdevs), it would be
possible to copy the wrong data, when we have the correct data on e.g.
the other side of the mirror.
At the moment, only mirrors and simple top-level vdevs can be removed
and no removal is allowed if any of the top-level vdevs are raidz.
Porting Notes:
* Avoid zero-sized kmem_alloc() in vdev_compact_children().
The device evacuation code adds a dependency that
vdev_compact_children() be able to properly empty the vdev_child
array by setting it to NULL and zeroing vdev_children. Under Linux,
kmem_alloc() and related functions return a sentinel pointer rather
than NULL for zero-sized allocations.
* Remove comment regarding "mpt" driver where zfs_remove_max_segment
is initialized to SPA_MAXBLOCKSIZE.
Change zfs_condense_indirect_commit_entry_delay_ticks to
zfs_condense_indirect_commit_entry_delay_ms for consistency with
most other tunables in which delays are specified in ms.
* ZTS changes:
Use set_tunable rather than mdb
Use zpool sync as appropriate
Use sync_pool instead of sync
Kill jobs during test_removal_with_operation to allow unmount/export
Don't add non-disk names such as "mirror" or "raidz" to $DISKS
Use $TEST_BASE_DIR instead of /tmp
Increase HZ from 100 to 1000 which is more common on Linux
removal_multiple_indirection.ksh
Reduce iterations in order to not time out on the code
coverage builders.
removal_resume_export:
Functionally, the test case is correct but there exists a race
where the kernel thread hasn't been fully started yet and is
not visible. Wait for up to 1 second for the removal thread
to be started before giving up on it. Also, increase the
amount of data copied in order that the removal not finish
before the export has a chance to fail.
* MMP compatibility, the concept of concrete versus non-concrete devices
has slightly changed the semantics of vdev_writeable(). Update
mmp_random_leaf_impl() accordingly.
* Updated dbuf_remap() to handle the org.zfsonlinux:large_dnode pool
feature which is not supported by OpenZFS.
* Added support for new vdev removal tracepoints.
* Test cases removal_with_zdb and removal_condense_export have been
intentionally disabled. When run manually they pass as intended,
but when running in the automated test environment they produce
unreliable results on the latest Fedora release.
They may work better once the upstream pool import refectoring is
merged into ZoL at which point they will be re-enabled.
Authored by: Matthew Ahrens <mahrens@delphix.com>
Reviewed-by: Alex Reece <alex@delphix.com>
Reviewed-by: George Wilson <george.wilson@delphix.com>
Reviewed-by: John Kennedy <john.kennedy@delphix.com>
Reviewed-by: Prakash Surya <prakash.surya@delphix.com>
Reviewed by: Richard Laager <rlaager@wiktel.com>
Reviewed by: Tim Chase <tim@chase2k.com>
Reviewed by: Brian Behlendorf <behlendorf1@llnl.gov>
Approved by: Garrett D'Amore <garrett@damore.org>
Ported-by: Tim Chase <tim@chase2k.com>
Signed-off-by: Tim Chase <tim@chase2k.com>
OpenZFS-issue: https://www.illumos.org/issues/7614
OpenZFS-commit: https://github.com/openzfs/openzfs/commit/f539f1eb
Closes #6900
2016-09-22 19:30:13 +03:00
|
|
|
|
if (dp->dp_origin_snap != NULL)
|
2013-09-04 16:00:57 +04:00
|
|
|
|
dsl_dataset_rele(dp->dp_origin_snap, dp);
|
OpenZFS 7614, 9064 - zfs device evacuation/removal
OpenZFS 7614 - zfs device evacuation/removal
OpenZFS 9064 - remove_mirror should wait for device removal to complete
This project allows top-level vdevs to be removed from the storage pool
with "zpool remove", reducing the total amount of storage in the pool.
This operation copies all allocated regions of the device to be removed
onto other devices, recording the mapping from old to new location.
After the removal is complete, read and free operations to the removed
(now "indirect") vdev must be remapped and performed at the new location
on disk. The indirect mapping table is kept in memory whenever the pool
is loaded, so there is minimal performance overhead when doing operations
on the indirect vdev.
The size of the in-memory mapping table will be reduced when its entries
become "obsolete" because they are no longer used by any block pointers
in the pool. An entry becomes obsolete when all the blocks that use
it are freed. An entry can also become obsolete when all the snapshots
that reference it are deleted, and the block pointers that reference it
have been "remapped" in all filesystems/zvols (and clones). Whenever an
indirect block is written, all the block pointers in it will be "remapped"
to their new (concrete) locations if possible. This process can be
accelerated by using the "zfs remap" command to proactively rewrite all
indirect blocks that reference indirect (removed) vdevs.
Note that when a device is removed, we do not verify the checksum of
the data that is copied. This makes the process much faster, but if it
were used on redundant vdevs (i.e. mirror or raidz vdevs), it would be
possible to copy the wrong data, when we have the correct data on e.g.
the other side of the mirror.
At the moment, only mirrors and simple top-level vdevs can be removed
and no removal is allowed if any of the top-level vdevs are raidz.
Porting Notes:
* Avoid zero-sized kmem_alloc() in vdev_compact_children().
The device evacuation code adds a dependency that
vdev_compact_children() be able to properly empty the vdev_child
array by setting it to NULL and zeroing vdev_children. Under Linux,
kmem_alloc() and related functions return a sentinel pointer rather
than NULL for zero-sized allocations.
* Remove comment regarding "mpt" driver where zfs_remove_max_segment
is initialized to SPA_MAXBLOCKSIZE.
Change zfs_condense_indirect_commit_entry_delay_ticks to
zfs_condense_indirect_commit_entry_delay_ms for consistency with
most other tunables in which delays are specified in ms.
* ZTS changes:
Use set_tunable rather than mdb
Use zpool sync as appropriate
Use sync_pool instead of sync
Kill jobs during test_removal_with_operation to allow unmount/export
Don't add non-disk names such as "mirror" or "raidz" to $DISKS
Use $TEST_BASE_DIR instead of /tmp
Increase HZ from 100 to 1000 which is more common on Linux
removal_multiple_indirection.ksh
Reduce iterations in order to not time out on the code
coverage builders.
removal_resume_export:
Functionally, the test case is correct but there exists a race
where the kernel thread hasn't been fully started yet and is
not visible. Wait for up to 1 second for the removal thread
to be started before giving up on it. Also, increase the
amount of data copied in order that the removal not finish
before the export has a chance to fail.
* MMP compatibility, the concept of concrete versus non-concrete devices
has slightly changed the semantics of vdev_writeable(). Update
mmp_random_leaf_impl() accordingly.
* Updated dbuf_remap() to handle the org.zfsonlinux:large_dnode pool
feature which is not supported by OpenZFS.
* Added support for new vdev removal tracepoints.
* Test cases removal_with_zdb and removal_condense_export have been
intentionally disabled. When run manually they pass as intended,
but when running in the automated test environment they produce
unreliable results on the latest Fedora release.
They may work better once the upstream pool import refectoring is
merged into ZoL at which point they will be re-enabled.
Authored by: Matthew Ahrens <mahrens@delphix.com>
Reviewed-by: Alex Reece <alex@delphix.com>
Reviewed-by: George Wilson <george.wilson@delphix.com>
Reviewed-by: John Kennedy <john.kennedy@delphix.com>
Reviewed-by: Prakash Surya <prakash.surya@delphix.com>
Reviewed by: Richard Laager <rlaager@wiktel.com>
Reviewed by: Tim Chase <tim@chase2k.com>
Reviewed by: Brian Behlendorf <behlendorf1@llnl.gov>
Approved by: Garrett D'Amore <garrett@damore.org>
Ported-by: Tim Chase <tim@chase2k.com>
Signed-off-by: Tim Chase <tim@chase2k.com>
OpenZFS-issue: https://www.illumos.org/issues/7614
OpenZFS-commit: https://github.com/openzfs/openzfs/commit/f539f1eb
Closes #6900
2016-09-22 19:30:13 +03:00
|
|
|
|
if (dp->dp_mos_dir != NULL)
|
2013-09-04 16:00:57 +04:00
|
|
|
|
dsl_dir_rele(dp->dp_mos_dir, dp);
|
OpenZFS 7614, 9064 - zfs device evacuation/removal
OpenZFS 7614 - zfs device evacuation/removal
OpenZFS 9064 - remove_mirror should wait for device removal to complete
This project allows top-level vdevs to be removed from the storage pool
with "zpool remove", reducing the total amount of storage in the pool.
This operation copies all allocated regions of the device to be removed
onto other devices, recording the mapping from old to new location.
After the removal is complete, read and free operations to the removed
(now "indirect") vdev must be remapped and performed at the new location
on disk. The indirect mapping table is kept in memory whenever the pool
is loaded, so there is minimal performance overhead when doing operations
on the indirect vdev.
The size of the in-memory mapping table will be reduced when its entries
become "obsolete" because they are no longer used by any block pointers
in the pool. An entry becomes obsolete when all the blocks that use
it are freed. An entry can also become obsolete when all the snapshots
that reference it are deleted, and the block pointers that reference it
have been "remapped" in all filesystems/zvols (and clones). Whenever an
indirect block is written, all the block pointers in it will be "remapped"
to their new (concrete) locations if possible. This process can be
accelerated by using the "zfs remap" command to proactively rewrite all
indirect blocks that reference indirect (removed) vdevs.
Note that when a device is removed, we do not verify the checksum of
the data that is copied. This makes the process much faster, but if it
were used on redundant vdevs (i.e. mirror or raidz vdevs), it would be
possible to copy the wrong data, when we have the correct data on e.g.
the other side of the mirror.
At the moment, only mirrors and simple top-level vdevs can be removed
and no removal is allowed if any of the top-level vdevs are raidz.
Porting Notes:
* Avoid zero-sized kmem_alloc() in vdev_compact_children().
The device evacuation code adds a dependency that
vdev_compact_children() be able to properly empty the vdev_child
array by setting it to NULL and zeroing vdev_children. Under Linux,
kmem_alloc() and related functions return a sentinel pointer rather
than NULL for zero-sized allocations.
* Remove comment regarding "mpt" driver where zfs_remove_max_segment
is initialized to SPA_MAXBLOCKSIZE.
Change zfs_condense_indirect_commit_entry_delay_ticks to
zfs_condense_indirect_commit_entry_delay_ms for consistency with
most other tunables in which delays are specified in ms.
* ZTS changes:
Use set_tunable rather than mdb
Use zpool sync as appropriate
Use sync_pool instead of sync
Kill jobs during test_removal_with_operation to allow unmount/export
Don't add non-disk names such as "mirror" or "raidz" to $DISKS
Use $TEST_BASE_DIR instead of /tmp
Increase HZ from 100 to 1000 which is more common on Linux
removal_multiple_indirection.ksh
Reduce iterations in order to not time out on the code
coverage builders.
removal_resume_export:
Functionally, the test case is correct but there exists a race
where the kernel thread hasn't been fully started yet and is
not visible. Wait for up to 1 second for the removal thread
to be started before giving up on it. Also, increase the
amount of data copied in order that the removal not finish
before the export has a chance to fail.
* MMP compatibility, the concept of concrete versus non-concrete devices
has slightly changed the semantics of vdev_writeable(). Update
mmp_random_leaf_impl() accordingly.
* Updated dbuf_remap() to handle the org.zfsonlinux:large_dnode pool
feature which is not supported by OpenZFS.
* Added support for new vdev removal tracepoints.
* Test cases removal_with_zdb and removal_condense_export have been
intentionally disabled. When run manually they pass as intended,
but when running in the automated test environment they produce
unreliable results on the latest Fedora release.
They may work better once the upstream pool import refectoring is
merged into ZoL at which point they will be re-enabled.
Authored by: Matthew Ahrens <mahrens@delphix.com>
Reviewed-by: Alex Reece <alex@delphix.com>
Reviewed-by: George Wilson <george.wilson@delphix.com>
Reviewed-by: John Kennedy <john.kennedy@delphix.com>
Reviewed-by: Prakash Surya <prakash.surya@delphix.com>
Reviewed by: Richard Laager <rlaager@wiktel.com>
Reviewed by: Tim Chase <tim@chase2k.com>
Reviewed by: Brian Behlendorf <behlendorf1@llnl.gov>
Approved by: Garrett D'Amore <garrett@damore.org>
Ported-by: Tim Chase <tim@chase2k.com>
Signed-off-by: Tim Chase <tim@chase2k.com>
OpenZFS-issue: https://www.illumos.org/issues/7614
OpenZFS-commit: https://github.com/openzfs/openzfs/commit/f539f1eb
Closes #6900
2016-09-22 19:30:13 +03:00
|
|
|
|
if (dp->dp_free_dir != NULL)
|
2013-09-04 16:00:57 +04:00
|
|
|
|
dsl_dir_rele(dp->dp_free_dir, dp);
|
OpenZFS 7614, 9064 - zfs device evacuation/removal
OpenZFS 7614 - zfs device evacuation/removal
OpenZFS 9064 - remove_mirror should wait for device removal to complete
This project allows top-level vdevs to be removed from the storage pool
with "zpool remove", reducing the total amount of storage in the pool.
This operation copies all allocated regions of the device to be removed
onto other devices, recording the mapping from old to new location.
After the removal is complete, read and free operations to the removed
(now "indirect") vdev must be remapped and performed at the new location
on disk. The indirect mapping table is kept in memory whenever the pool
is loaded, so there is minimal performance overhead when doing operations
on the indirect vdev.
The size of the in-memory mapping table will be reduced when its entries
become "obsolete" because they are no longer used by any block pointers
in the pool. An entry becomes obsolete when all the blocks that use
it are freed. An entry can also become obsolete when all the snapshots
that reference it are deleted, and the block pointers that reference it
have been "remapped" in all filesystems/zvols (and clones). Whenever an
indirect block is written, all the block pointers in it will be "remapped"
to their new (concrete) locations if possible. This process can be
accelerated by using the "zfs remap" command to proactively rewrite all
indirect blocks that reference indirect (removed) vdevs.
Note that when a device is removed, we do not verify the checksum of
the data that is copied. This makes the process much faster, but if it
were used on redundant vdevs (i.e. mirror or raidz vdevs), it would be
possible to copy the wrong data, when we have the correct data on e.g.
the other side of the mirror.
At the moment, only mirrors and simple top-level vdevs can be removed
and no removal is allowed if any of the top-level vdevs are raidz.
Porting Notes:
* Avoid zero-sized kmem_alloc() in vdev_compact_children().
The device evacuation code adds a dependency that
vdev_compact_children() be able to properly empty the vdev_child
array by setting it to NULL and zeroing vdev_children. Under Linux,
kmem_alloc() and related functions return a sentinel pointer rather
than NULL for zero-sized allocations.
* Remove comment regarding "mpt" driver where zfs_remove_max_segment
is initialized to SPA_MAXBLOCKSIZE.
Change zfs_condense_indirect_commit_entry_delay_ticks to
zfs_condense_indirect_commit_entry_delay_ms for consistency with
most other tunables in which delays are specified in ms.
* ZTS changes:
Use set_tunable rather than mdb
Use zpool sync as appropriate
Use sync_pool instead of sync
Kill jobs during test_removal_with_operation to allow unmount/export
Don't add non-disk names such as "mirror" or "raidz" to $DISKS
Use $TEST_BASE_DIR instead of /tmp
Increase HZ from 100 to 1000 which is more common on Linux
removal_multiple_indirection.ksh
Reduce iterations in order to not time out on the code
coverage builders.
removal_resume_export:
Functionally, the test case is correct but there exists a race
where the kernel thread hasn't been fully started yet and is
not visible. Wait for up to 1 second for the removal thread
to be started before giving up on it. Also, increase the
amount of data copied in order that the removal not finish
before the export has a chance to fail.
* MMP compatibility, the concept of concrete versus non-concrete devices
has slightly changed the semantics of vdev_writeable(). Update
mmp_random_leaf_impl() accordingly.
* Updated dbuf_remap() to handle the org.zfsonlinux:large_dnode pool
feature which is not supported by OpenZFS.
* Added support for new vdev removal tracepoints.
* Test cases removal_with_zdb and removal_condense_export have been
intentionally disabled. When run manually they pass as intended,
but when running in the automated test environment they produce
unreliable results on the latest Fedora release.
They may work better once the upstream pool import refectoring is
merged into ZoL at which point they will be re-enabled.
Authored by: Matthew Ahrens <mahrens@delphix.com>
Reviewed-by: Alex Reece <alex@delphix.com>
Reviewed-by: George Wilson <george.wilson@delphix.com>
Reviewed-by: John Kennedy <john.kennedy@delphix.com>
Reviewed-by: Prakash Surya <prakash.surya@delphix.com>
Reviewed by: Richard Laager <rlaager@wiktel.com>
Reviewed by: Tim Chase <tim@chase2k.com>
Reviewed by: Brian Behlendorf <behlendorf1@llnl.gov>
Approved by: Garrett D'Amore <garrett@damore.org>
Ported-by: Tim Chase <tim@chase2k.com>
Signed-off-by: Tim Chase <tim@chase2k.com>
OpenZFS-issue: https://www.illumos.org/issues/7614
OpenZFS-commit: https://github.com/openzfs/openzfs/commit/f539f1eb
Closes #6900
2016-09-22 19:30:13 +03:00
|
|
|
|
if (dp->dp_leak_dir != NULL)
|
2014-06-06 01:20:08 +04:00
|
|
|
|
dsl_dir_rele(dp->dp_leak_dir, dp);
|
OpenZFS 7614, 9064 - zfs device evacuation/removal
OpenZFS 7614 - zfs device evacuation/removal
OpenZFS 9064 - remove_mirror should wait for device removal to complete
This project allows top-level vdevs to be removed from the storage pool
with "zpool remove", reducing the total amount of storage in the pool.
This operation copies all allocated regions of the device to be removed
onto other devices, recording the mapping from old to new location.
After the removal is complete, read and free operations to the removed
(now "indirect") vdev must be remapped and performed at the new location
on disk. The indirect mapping table is kept in memory whenever the pool
is loaded, so there is minimal performance overhead when doing operations
on the indirect vdev.
The size of the in-memory mapping table will be reduced when its entries
become "obsolete" because they are no longer used by any block pointers
in the pool. An entry becomes obsolete when all the blocks that use
it are freed. An entry can also become obsolete when all the snapshots
that reference it are deleted, and the block pointers that reference it
have been "remapped" in all filesystems/zvols (and clones). Whenever an
indirect block is written, all the block pointers in it will be "remapped"
to their new (concrete) locations if possible. This process can be
accelerated by using the "zfs remap" command to proactively rewrite all
indirect blocks that reference indirect (removed) vdevs.
Note that when a device is removed, we do not verify the checksum of
the data that is copied. This makes the process much faster, but if it
were used on redundant vdevs (i.e. mirror or raidz vdevs), it would be
possible to copy the wrong data, when we have the correct data on e.g.
the other side of the mirror.
At the moment, only mirrors and simple top-level vdevs can be removed
and no removal is allowed if any of the top-level vdevs are raidz.
Porting Notes:
* Avoid zero-sized kmem_alloc() in vdev_compact_children().
The device evacuation code adds a dependency that
vdev_compact_children() be able to properly empty the vdev_child
array by setting it to NULL and zeroing vdev_children. Under Linux,
kmem_alloc() and related functions return a sentinel pointer rather
than NULL for zero-sized allocations.
* Remove comment regarding "mpt" driver where zfs_remove_max_segment
is initialized to SPA_MAXBLOCKSIZE.
Change zfs_condense_indirect_commit_entry_delay_ticks to
zfs_condense_indirect_commit_entry_delay_ms for consistency with
most other tunables in which delays are specified in ms.
* ZTS changes:
Use set_tunable rather than mdb
Use zpool sync as appropriate
Use sync_pool instead of sync
Kill jobs during test_removal_with_operation to allow unmount/export
Don't add non-disk names such as "mirror" or "raidz" to $DISKS
Use $TEST_BASE_DIR instead of /tmp
Increase HZ from 100 to 1000 which is more common on Linux
removal_multiple_indirection.ksh
Reduce iterations in order to not time out on the code
coverage builders.
removal_resume_export:
Functionally, the test case is correct but there exists a race
where the kernel thread hasn't been fully started yet and is
not visible. Wait for up to 1 second for the removal thread
to be started before giving up on it. Also, increase the
amount of data copied in order that the removal not finish
before the export has a chance to fail.
* MMP compatibility, the concept of concrete versus non-concrete devices
has slightly changed the semantics of vdev_writeable(). Update
mmp_random_leaf_impl() accordingly.
* Updated dbuf_remap() to handle the org.zfsonlinux:large_dnode pool
feature which is not supported by OpenZFS.
* Added support for new vdev removal tracepoints.
* Test cases removal_with_zdb and removal_condense_export have been
intentionally disabled. When run manually they pass as intended,
but when running in the automated test environment they produce
unreliable results on the latest Fedora release.
They may work better once the upstream pool import refectoring is
merged into ZoL at which point they will be re-enabled.
Authored by: Matthew Ahrens <mahrens@delphix.com>
Reviewed-by: Alex Reece <alex@delphix.com>
Reviewed-by: George Wilson <george.wilson@delphix.com>
Reviewed-by: John Kennedy <john.kennedy@delphix.com>
Reviewed-by: Prakash Surya <prakash.surya@delphix.com>
Reviewed by: Richard Laager <rlaager@wiktel.com>
Reviewed by: Tim Chase <tim@chase2k.com>
Reviewed by: Brian Behlendorf <behlendorf1@llnl.gov>
Approved by: Garrett D'Amore <garrett@damore.org>
Ported-by: Tim Chase <tim@chase2k.com>
Signed-off-by: Tim Chase <tim@chase2k.com>
OpenZFS-issue: https://www.illumos.org/issues/7614
OpenZFS-commit: https://github.com/openzfs/openzfs/commit/f539f1eb
Closes #6900
2016-09-22 19:30:13 +03:00
|
|
|
|
if (dp->dp_root_dir != NULL)
|
2013-09-04 16:00:57 +04:00
|
|
|
|
dsl_dir_rele(dp->dp_root_dir, dp);
|
2008-11-20 23:01:55 +03:00
|
|
|
|
|
2010-05-29 00:45:14 +04:00
|
|
|
|
bpobj_close(&dp->dp_free_bpobj);
|
OpenZFS 7614, 9064 - zfs device evacuation/removal
OpenZFS 7614 - zfs device evacuation/removal
OpenZFS 9064 - remove_mirror should wait for device removal to complete
This project allows top-level vdevs to be removed from the storage pool
with "zpool remove", reducing the total amount of storage in the pool.
This operation copies all allocated regions of the device to be removed
onto other devices, recording the mapping from old to new location.
After the removal is complete, read and free operations to the removed
(now "indirect") vdev must be remapped and performed at the new location
on disk. The indirect mapping table is kept in memory whenever the pool
is loaded, so there is minimal performance overhead when doing operations
on the indirect vdev.
The size of the in-memory mapping table will be reduced when its entries
become "obsolete" because they are no longer used by any block pointers
in the pool. An entry becomes obsolete when all the blocks that use
it are freed. An entry can also become obsolete when all the snapshots
that reference it are deleted, and the block pointers that reference it
have been "remapped" in all filesystems/zvols (and clones). Whenever an
indirect block is written, all the block pointers in it will be "remapped"
to their new (concrete) locations if possible. This process can be
accelerated by using the "zfs remap" command to proactively rewrite all
indirect blocks that reference indirect (removed) vdevs.
Note that when a device is removed, we do not verify the checksum of
the data that is copied. This makes the process much faster, but if it
were used on redundant vdevs (i.e. mirror or raidz vdevs), it would be
possible to copy the wrong data, when we have the correct data on e.g.
the other side of the mirror.
At the moment, only mirrors and simple top-level vdevs can be removed
and no removal is allowed if any of the top-level vdevs are raidz.
Porting Notes:
* Avoid zero-sized kmem_alloc() in vdev_compact_children().
The device evacuation code adds a dependency that
vdev_compact_children() be able to properly empty the vdev_child
array by setting it to NULL and zeroing vdev_children. Under Linux,
kmem_alloc() and related functions return a sentinel pointer rather
than NULL for zero-sized allocations.
* Remove comment regarding "mpt" driver where zfs_remove_max_segment
is initialized to SPA_MAXBLOCKSIZE.
Change zfs_condense_indirect_commit_entry_delay_ticks to
zfs_condense_indirect_commit_entry_delay_ms for consistency with
most other tunables in which delays are specified in ms.
* ZTS changes:
Use set_tunable rather than mdb
Use zpool sync as appropriate
Use sync_pool instead of sync
Kill jobs during test_removal_with_operation to allow unmount/export
Don't add non-disk names such as "mirror" or "raidz" to $DISKS
Use $TEST_BASE_DIR instead of /tmp
Increase HZ from 100 to 1000 which is more common on Linux
removal_multiple_indirection.ksh
Reduce iterations in order to not time out on the code
coverage builders.
removal_resume_export:
Functionally, the test case is correct but there exists a race
where the kernel thread hasn't been fully started yet and is
not visible. Wait for up to 1 second for the removal thread
to be started before giving up on it. Also, increase the
amount of data copied in order that the removal not finish
before the export has a chance to fail.
* MMP compatibility, the concept of concrete versus non-concrete devices
has slightly changed the semantics of vdev_writeable(). Update
mmp_random_leaf_impl() accordingly.
* Updated dbuf_remap() to handle the org.zfsonlinux:large_dnode pool
feature which is not supported by OpenZFS.
* Added support for new vdev removal tracepoints.
* Test cases removal_with_zdb and removal_condense_export have been
intentionally disabled. When run manually they pass as intended,
but when running in the automated test environment they produce
unreliable results on the latest Fedora release.
They may work better once the upstream pool import refectoring is
merged into ZoL at which point they will be re-enabled.
Authored by: Matthew Ahrens <mahrens@delphix.com>
Reviewed-by: Alex Reece <alex@delphix.com>
Reviewed-by: George Wilson <george.wilson@delphix.com>
Reviewed-by: John Kennedy <john.kennedy@delphix.com>
Reviewed-by: Prakash Surya <prakash.surya@delphix.com>
Reviewed by: Richard Laager <rlaager@wiktel.com>
Reviewed by: Tim Chase <tim@chase2k.com>
Reviewed by: Brian Behlendorf <behlendorf1@llnl.gov>
Approved by: Garrett D'Amore <garrett@damore.org>
Ported-by: Tim Chase <tim@chase2k.com>
Signed-off-by: Tim Chase <tim@chase2k.com>
OpenZFS-issue: https://www.illumos.org/issues/7614
OpenZFS-commit: https://github.com/openzfs/openzfs/commit/f539f1eb
Closes #6900
2016-09-22 19:30:13 +03:00
|
|
|
|
bpobj_close(&dp->dp_obsolete_bpobj);
|
2010-05-29 00:45:14 +04:00
|
|
|
|
|
2008-11-20 23:01:55 +03:00
|
|
|
|
/* undo the dmu_objset_open_impl(mos) from dsl_pool_open() */
|
OpenZFS 7614, 9064 - zfs device evacuation/removal
OpenZFS 7614 - zfs device evacuation/removal
OpenZFS 9064 - remove_mirror should wait for device removal to complete
This project allows top-level vdevs to be removed from the storage pool
with "zpool remove", reducing the total amount of storage in the pool.
This operation copies all allocated regions of the device to be removed
onto other devices, recording the mapping from old to new location.
After the removal is complete, read and free operations to the removed
(now "indirect") vdev must be remapped and performed at the new location
on disk. The indirect mapping table is kept in memory whenever the pool
is loaded, so there is minimal performance overhead when doing operations
on the indirect vdev.
The size of the in-memory mapping table will be reduced when its entries
become "obsolete" because they are no longer used by any block pointers
in the pool. An entry becomes obsolete when all the blocks that use
it are freed. An entry can also become obsolete when all the snapshots
that reference it are deleted, and the block pointers that reference it
have been "remapped" in all filesystems/zvols (and clones). Whenever an
indirect block is written, all the block pointers in it will be "remapped"
to their new (concrete) locations if possible. This process can be
accelerated by using the "zfs remap" command to proactively rewrite all
indirect blocks that reference indirect (removed) vdevs.
Note that when a device is removed, we do not verify the checksum of
the data that is copied. This makes the process much faster, but if it
were used on redundant vdevs (i.e. mirror or raidz vdevs), it would be
possible to copy the wrong data, when we have the correct data on e.g.
the other side of the mirror.
At the moment, only mirrors and simple top-level vdevs can be removed
and no removal is allowed if any of the top-level vdevs are raidz.
Porting Notes:
* Avoid zero-sized kmem_alloc() in vdev_compact_children().
The device evacuation code adds a dependency that
vdev_compact_children() be able to properly empty the vdev_child
array by setting it to NULL and zeroing vdev_children. Under Linux,
kmem_alloc() and related functions return a sentinel pointer rather
than NULL for zero-sized allocations.
* Remove comment regarding "mpt" driver where zfs_remove_max_segment
is initialized to SPA_MAXBLOCKSIZE.
Change zfs_condense_indirect_commit_entry_delay_ticks to
zfs_condense_indirect_commit_entry_delay_ms for consistency with
most other tunables in which delays are specified in ms.
* ZTS changes:
Use set_tunable rather than mdb
Use zpool sync as appropriate
Use sync_pool instead of sync
Kill jobs during test_removal_with_operation to allow unmount/export
Don't add non-disk names such as "mirror" or "raidz" to $DISKS
Use $TEST_BASE_DIR instead of /tmp
Increase HZ from 100 to 1000 which is more common on Linux
removal_multiple_indirection.ksh
Reduce iterations in order to not time out on the code
coverage builders.
removal_resume_export:
Functionally, the test case is correct but there exists a race
where the kernel thread hasn't been fully started yet and is
not visible. Wait for up to 1 second for the removal thread
to be started before giving up on it. Also, increase the
amount of data copied in order that the removal not finish
before the export has a chance to fail.
* MMP compatibility, the concept of concrete versus non-concrete devices
has slightly changed the semantics of vdev_writeable(). Update
mmp_random_leaf_impl() accordingly.
* Updated dbuf_remap() to handle the org.zfsonlinux:large_dnode pool
feature which is not supported by OpenZFS.
* Added support for new vdev removal tracepoints.
* Test cases removal_with_zdb and removal_condense_export have been
intentionally disabled. When run manually they pass as intended,
but when running in the automated test environment they produce
unreliable results on the latest Fedora release.
They may work better once the upstream pool import refectoring is
merged into ZoL at which point they will be re-enabled.
Authored by: Matthew Ahrens <mahrens@delphix.com>
Reviewed-by: Alex Reece <alex@delphix.com>
Reviewed-by: George Wilson <george.wilson@delphix.com>
Reviewed-by: John Kennedy <john.kennedy@delphix.com>
Reviewed-by: Prakash Surya <prakash.surya@delphix.com>
Reviewed by: Richard Laager <rlaager@wiktel.com>
Reviewed by: Tim Chase <tim@chase2k.com>
Reviewed by: Brian Behlendorf <behlendorf1@llnl.gov>
Approved by: Garrett D'Amore <garrett@damore.org>
Ported-by: Tim Chase <tim@chase2k.com>
Signed-off-by: Tim Chase <tim@chase2k.com>
OpenZFS-issue: https://www.illumos.org/issues/7614
OpenZFS-commit: https://github.com/openzfs/openzfs/commit/f539f1eb
Closes #6900
2016-09-22 19:30:13 +03:00
|
|
|
|
if (dp->dp_meta_objset != NULL)
|
2010-05-29 00:45:14 +04:00
|
|
|
|
dmu_objset_evict(dp->dp_meta_objset);
|
2008-11-20 23:01:55 +03:00
|
|
|
|
|
|
|
|
|
txg_list_destroy(&dp->dp_dirty_datasets);
|
2012-12-15 04:13:40 +04:00
|
|
|
|
txg_list_destroy(&dp->dp_dirty_zilogs);
|
2010-05-29 00:45:14 +04:00
|
|
|
|
txg_list_destroy(&dp->dp_sync_tasks);
|
2016-12-17 01:11:29 +03:00
|
|
|
|
txg_list_destroy(&dp->dp_early_sync_tasks);
|
2008-11-20 23:01:55 +03:00
|
|
|
|
txg_list_destroy(&dp->dp_dirty_dirs);
|
|
|
|
|
|
2017-10-26 22:57:53 +03:00
|
|
|
|
taskq_destroy(dp->dp_zil_clean_taskq);
|
2017-03-21 04:36:00 +03:00
|
|
|
|
taskq_destroy(dp->dp_sync_taskq);
|
|
|
|
|
|
2015-01-13 06:52:19 +03:00
|
|
|
|
/*
|
|
|
|
|
* We can't set retry to TRUE since we're explicitly specifying
|
|
|
|
|
* a spa to flush. This is good enough; any missed buffers for
|
|
|
|
|
* this spa won't cause trouble, and they'll eventually fall
|
|
|
|
|
* out of the ARC just like any other unused buffer.
|
|
|
|
|
*/
|
|
|
|
|
arc_flush(dp->dp_spa, FALSE);
|
|
|
|
|
|
Multi-modifier protection (MMP)
Add multihost=on|off pool property to control MMP. When enabled
a new thread writes uberblocks to the last slot in each label, at a
set frequency, to indicate to other hosts the pool is actively imported.
These uberblocks are the last synced uberblock with an updated
timestamp. Property defaults to off.
During tryimport, find the "best" uberblock (newest txg and timestamp)
repeatedly, checking for change in the found uberblock. Include the
results of the activity test in the config returned by tryimport.
These results are reported to user in "zpool import".
Allow the user to control the period between MMP writes, and the
duration of the activity test on import, via a new module parameter
zfs_multihost_interval. The period is specified in milliseconds. The
activity test duration is calculated from this value, and from the
mmp_delay in the "best" uberblock found initially.
Add a kstat interface to export statistics about Multiple Modifier
Protection (MMP) updates. Include the last synced txg number, the
timestamp, the delay since the last MMP update, the VDEV GUID, the VDEV
label that received the last MMP update, and the VDEV path. Abbreviated
output below.
$ cat /proc/spl/kstat/zfs/mypool/multihost
31 0 0x01 10 880 105092382393521 105144180101111
txg timestamp mmp_delay vdev_guid vdev_label vdev_path
20468 261337 250274925 68396651780 3 /dev/sda
20468 261339 252023374 6267402363293 1 /dev/sdc
20468 261340 252000858 6698080955233 1 /dev/sdx
20468 261341 251980635 783892869810 2 /dev/sdy
20468 261342 253385953 8923255792467 3 /dev/sdd
20468 261344 253336622 042125143176 0 /dev/sdab
20468 261345 253310522 1200778101278 2 /dev/sde
20468 261346 253286429 0950576198362 2 /dev/sdt
20468 261347 253261545 96209817917 3 /dev/sds
20468 261349 253238188 8555725937673 3 /dev/sdb
Add a new tunable zfs_multihost_history to specify the number of MMP
updates to store history for. By default it is set to zero meaning that
no MMP statistics are stored.
When using ztest to generate activity, for automated tests of the MMP
function, some test functions interfere with the test. For example, the
pool is exported to run zdb and then imported again. Add a new ztest
function, "-M", to alter ztest behavior to prevent this.
Add new tests to verify the new functionality. Tests provided by
Giuseppe Di Natale.
Reviewed by: Matthew Ahrens <mahrens@delphix.com>
Reviewed-by: Giuseppe Di Natale <dinatale2@llnl.gov>
Reviewed-by: Ned Bass <bass6@llnl.gov>
Reviewed-by: Andreas Dilger <andreas.dilger@intel.com>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Olaf Faaland <faaland1@llnl.gov>
Closes #745
Closes #6279
2017-07-08 06:20:35 +03:00
|
|
|
|
mmp_fini(dp->dp_spa);
|
2008-11-20 23:01:55 +03:00
|
|
|
|
txg_fini(dp);
|
2010-05-29 00:45:14 +04:00
|
|
|
|
dsl_scan_fini(dp);
|
2015-04-02 06:44:32 +03:00
|
|
|
|
dmu_buf_user_evict_wait();
|
|
|
|
|
|
2013-09-04 16:00:57 +04:00
|
|
|
|
rrw_destroy(&dp->dp_config_rwlock);
|
2008-11-20 23:01:55 +03:00
|
|
|
|
mutex_destroy(&dp->dp_lock);
|
2016-11-26 23:30:44 +03:00
|
|
|
|
cv_destroy(&dp->dp_spaceavail_cv);
|
2019-02-12 21:41:15 +03:00
|
|
|
|
taskq_destroy(dp->dp_unlinked_drain_taskq);
|
2019-12-11 22:53:57 +03:00
|
|
|
|
taskq_destroy(dp->dp_zrele_taskq);
|
OpenZFS 7614, 9064 - zfs device evacuation/removal
OpenZFS 7614 - zfs device evacuation/removal
OpenZFS 9064 - remove_mirror should wait for device removal to complete
This project allows top-level vdevs to be removed from the storage pool
with "zpool remove", reducing the total amount of storage in the pool.
This operation copies all allocated regions of the device to be removed
onto other devices, recording the mapping from old to new location.
After the removal is complete, read and free operations to the removed
(now "indirect") vdev must be remapped and performed at the new location
on disk. The indirect mapping table is kept in memory whenever the pool
is loaded, so there is minimal performance overhead when doing operations
on the indirect vdev.
The size of the in-memory mapping table will be reduced when its entries
become "obsolete" because they are no longer used by any block pointers
in the pool. An entry becomes obsolete when all the blocks that use
it are freed. An entry can also become obsolete when all the snapshots
that reference it are deleted, and the block pointers that reference it
have been "remapped" in all filesystems/zvols (and clones). Whenever an
indirect block is written, all the block pointers in it will be "remapped"
to their new (concrete) locations if possible. This process can be
accelerated by using the "zfs remap" command to proactively rewrite all
indirect blocks that reference indirect (removed) vdevs.
Note that when a device is removed, we do not verify the checksum of
the data that is copied. This makes the process much faster, but if it
were used on redundant vdevs (i.e. mirror or raidz vdevs), it would be
possible to copy the wrong data, when we have the correct data on e.g.
the other side of the mirror.
At the moment, only mirrors and simple top-level vdevs can be removed
and no removal is allowed if any of the top-level vdevs are raidz.
Porting Notes:
* Avoid zero-sized kmem_alloc() in vdev_compact_children().
The device evacuation code adds a dependency that
vdev_compact_children() be able to properly empty the vdev_child
array by setting it to NULL and zeroing vdev_children. Under Linux,
kmem_alloc() and related functions return a sentinel pointer rather
than NULL for zero-sized allocations.
* Remove comment regarding "mpt" driver where zfs_remove_max_segment
is initialized to SPA_MAXBLOCKSIZE.
Change zfs_condense_indirect_commit_entry_delay_ticks to
zfs_condense_indirect_commit_entry_delay_ms for consistency with
most other tunables in which delays are specified in ms.
* ZTS changes:
Use set_tunable rather than mdb
Use zpool sync as appropriate
Use sync_pool instead of sync
Kill jobs during test_removal_with_operation to allow unmount/export
Don't add non-disk names such as "mirror" or "raidz" to $DISKS
Use $TEST_BASE_DIR instead of /tmp
Increase HZ from 100 to 1000 which is more common on Linux
removal_multiple_indirection.ksh
Reduce iterations in order to not time out on the code
coverage builders.
removal_resume_export:
Functionally, the test case is correct but there exists a race
where the kernel thread hasn't been fully started yet and is
not visible. Wait for up to 1 second for the removal thread
to be started before giving up on it. Also, increase the
amount of data copied in order that the removal not finish
before the export has a chance to fail.
* MMP compatibility, the concept of concrete versus non-concrete devices
has slightly changed the semantics of vdev_writeable(). Update
mmp_random_leaf_impl() accordingly.
* Updated dbuf_remap() to handle the org.zfsonlinux:large_dnode pool
feature which is not supported by OpenZFS.
* Added support for new vdev removal tracepoints.
* Test cases removal_with_zdb and removal_condense_export have been
intentionally disabled. When run manually they pass as intended,
but when running in the automated test environment they produce
unreliable results on the latest Fedora release.
They may work better once the upstream pool import refectoring is
merged into ZoL at which point they will be re-enabled.
Authored by: Matthew Ahrens <mahrens@delphix.com>
Reviewed-by: Alex Reece <alex@delphix.com>
Reviewed-by: George Wilson <george.wilson@delphix.com>
Reviewed-by: John Kennedy <john.kennedy@delphix.com>
Reviewed-by: Prakash Surya <prakash.surya@delphix.com>
Reviewed by: Richard Laager <rlaager@wiktel.com>
Reviewed by: Tim Chase <tim@chase2k.com>
Reviewed by: Brian Behlendorf <behlendorf1@llnl.gov>
Approved by: Garrett D'Amore <garrett@damore.org>
Ported-by: Tim Chase <tim@chase2k.com>
Signed-off-by: Tim Chase <tim@chase2k.com>
OpenZFS-issue: https://www.illumos.org/issues/7614
OpenZFS-commit: https://github.com/openzfs/openzfs/commit/f539f1eb
Closes #6900
2016-09-22 19:30:13 +03:00
|
|
|
|
if (dp->dp_blkstats != NULL) {
|
2017-11-16 04:27:01 +03:00
|
|
|
|
mutex_destroy(&dp->dp_blkstats->zab_lock);
|
2014-11-21 03:09:39 +03:00
|
|
|
|
vmem_free(dp->dp_blkstats, sizeof (zfs_all_blkstats_t));
|
2017-11-16 04:27:01 +03:00
|
|
|
|
}
|
2008-11-20 23:01:55 +03:00
|
|
|
|
kmem_free(dp, sizeof (dsl_pool_t));
|
|
|
|
|
}
|
|
|
|
|
|
OpenZFS 7614, 9064 - zfs device evacuation/removal
OpenZFS 7614 - zfs device evacuation/removal
OpenZFS 9064 - remove_mirror should wait for device removal to complete
This project allows top-level vdevs to be removed from the storage pool
with "zpool remove", reducing the total amount of storage in the pool.
This operation copies all allocated regions of the device to be removed
onto other devices, recording the mapping from old to new location.
After the removal is complete, read and free operations to the removed
(now "indirect") vdev must be remapped and performed at the new location
on disk. The indirect mapping table is kept in memory whenever the pool
is loaded, so there is minimal performance overhead when doing operations
on the indirect vdev.
The size of the in-memory mapping table will be reduced when its entries
become "obsolete" because they are no longer used by any block pointers
in the pool. An entry becomes obsolete when all the blocks that use
it are freed. An entry can also become obsolete when all the snapshots
that reference it are deleted, and the block pointers that reference it
have been "remapped" in all filesystems/zvols (and clones). Whenever an
indirect block is written, all the block pointers in it will be "remapped"
to their new (concrete) locations if possible. This process can be
accelerated by using the "zfs remap" command to proactively rewrite all
indirect blocks that reference indirect (removed) vdevs.
Note that when a device is removed, we do not verify the checksum of
the data that is copied. This makes the process much faster, but if it
were used on redundant vdevs (i.e. mirror or raidz vdevs), it would be
possible to copy the wrong data, when we have the correct data on e.g.
the other side of the mirror.
At the moment, only mirrors and simple top-level vdevs can be removed
and no removal is allowed if any of the top-level vdevs are raidz.
Porting Notes:
* Avoid zero-sized kmem_alloc() in vdev_compact_children().
The device evacuation code adds a dependency that
vdev_compact_children() be able to properly empty the vdev_child
array by setting it to NULL and zeroing vdev_children. Under Linux,
kmem_alloc() and related functions return a sentinel pointer rather
than NULL for zero-sized allocations.
* Remove comment regarding "mpt" driver where zfs_remove_max_segment
is initialized to SPA_MAXBLOCKSIZE.
Change zfs_condense_indirect_commit_entry_delay_ticks to
zfs_condense_indirect_commit_entry_delay_ms for consistency with
most other tunables in which delays are specified in ms.
* ZTS changes:
Use set_tunable rather than mdb
Use zpool sync as appropriate
Use sync_pool instead of sync
Kill jobs during test_removal_with_operation to allow unmount/export
Don't add non-disk names such as "mirror" or "raidz" to $DISKS
Use $TEST_BASE_DIR instead of /tmp
Increase HZ from 100 to 1000 which is more common on Linux
removal_multiple_indirection.ksh
Reduce iterations in order to not time out on the code
coverage builders.
removal_resume_export:
Functionally, the test case is correct but there exists a race
where the kernel thread hasn't been fully started yet and is
not visible. Wait for up to 1 second for the removal thread
to be started before giving up on it. Also, increase the
amount of data copied in order that the removal not finish
before the export has a chance to fail.
* MMP compatibility, the concept of concrete versus non-concrete devices
has slightly changed the semantics of vdev_writeable(). Update
mmp_random_leaf_impl() accordingly.
* Updated dbuf_remap() to handle the org.zfsonlinux:large_dnode pool
feature which is not supported by OpenZFS.
* Added support for new vdev removal tracepoints.
* Test cases removal_with_zdb and removal_condense_export have been
intentionally disabled. When run manually they pass as intended,
but when running in the automated test environment they produce
unreliable results on the latest Fedora release.
They may work better once the upstream pool import refectoring is
merged into ZoL at which point they will be re-enabled.
Authored by: Matthew Ahrens <mahrens@delphix.com>
Reviewed-by: Alex Reece <alex@delphix.com>
Reviewed-by: George Wilson <george.wilson@delphix.com>
Reviewed-by: John Kennedy <john.kennedy@delphix.com>
Reviewed-by: Prakash Surya <prakash.surya@delphix.com>
Reviewed by: Richard Laager <rlaager@wiktel.com>
Reviewed by: Tim Chase <tim@chase2k.com>
Reviewed by: Brian Behlendorf <behlendorf1@llnl.gov>
Approved by: Garrett D'Amore <garrett@damore.org>
Ported-by: Tim Chase <tim@chase2k.com>
Signed-off-by: Tim Chase <tim@chase2k.com>
OpenZFS-issue: https://www.illumos.org/issues/7614
OpenZFS-commit: https://github.com/openzfs/openzfs/commit/f539f1eb
Closes #6900
2016-09-22 19:30:13 +03:00
|
|
|
|
void
|
|
|
|
|
dsl_pool_create_obsolete_bpobj(dsl_pool_t *dp, dmu_tx_t *tx)
|
|
|
|
|
{
|
|
|
|
|
uint64_t obj;
|
|
|
|
|
/*
|
|
|
|
|
* Currently, we only create the obsolete_bpobj where there are
|
|
|
|
|
* indirect vdevs with referenced mappings.
|
|
|
|
|
*/
|
|
|
|
|
ASSERT(spa_feature_is_active(dp->dp_spa, SPA_FEATURE_DEVICE_REMOVAL));
|
|
|
|
|
/* create and open the obsolete_bpobj */
|
|
|
|
|
obj = bpobj_alloc(dp->dp_meta_objset, SPA_OLD_MAXBLOCKSIZE, tx);
|
|
|
|
|
VERIFY0(bpobj_open(&dp->dp_obsolete_bpobj, dp->dp_meta_objset, obj));
|
|
|
|
|
VERIFY0(zap_add(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
|
|
|
|
|
DMU_POOL_OBSOLETE_BPOBJ, sizeof (uint64_t), 1, &obj, tx));
|
|
|
|
|
spa_feature_incr(dp->dp_spa, SPA_FEATURE_OBSOLETE_COUNTS, tx);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
void
|
|
|
|
|
dsl_pool_destroy_obsolete_bpobj(dsl_pool_t *dp, dmu_tx_t *tx)
|
|
|
|
|
{
|
|
|
|
|
spa_feature_decr(dp->dp_spa, SPA_FEATURE_OBSOLETE_COUNTS, tx);
|
|
|
|
|
VERIFY0(zap_remove(dp->dp_meta_objset,
|
|
|
|
|
DMU_POOL_DIRECTORY_OBJECT,
|
|
|
|
|
DMU_POOL_OBSOLETE_BPOBJ, tx));
|
|
|
|
|
bpobj_free(dp->dp_meta_objset,
|
|
|
|
|
dp->dp_obsolete_bpobj.bpo_object, tx);
|
|
|
|
|
bpobj_close(&dp->dp_obsolete_bpobj);
|
|
|
|
|
}
|
|
|
|
|
|
2008-11-20 23:01:55 +03:00
|
|
|
|
dsl_pool_t *
|
2021-12-12 18:06:44 +03:00
|
|
|
|
dsl_pool_create(spa_t *spa, nvlist_t *zplprops __attribute__((unused)),
|
|
|
|
|
dsl_crypto_params_t *dcp, uint64_t txg)
|
2008-11-20 23:01:55 +03:00
|
|
|
|
{
|
|
|
|
|
int err;
|
|
|
|
|
dsl_pool_t *dp = dsl_pool_open_impl(spa, txg);
|
|
|
|
|
dmu_tx_t *tx = dmu_tx_create_assigned(dp, txg);
|
2019-01-18 22:14:01 +03:00
|
|
|
|
#ifdef _KERNEL
|
|
|
|
|
objset_t *os;
|
|
|
|
|
#else
|
|
|
|
|
objset_t *os __attribute__((unused));
|
|
|
|
|
#endif
|
2008-12-03 23:09:06 +03:00
|
|
|
|
dsl_dataset_t *ds;
|
2010-05-29 00:45:14 +04:00
|
|
|
|
uint64_t obj;
|
2008-12-03 23:09:06 +03:00
|
|
|
|
|
2013-09-04 16:00:57 +04:00
|
|
|
|
rrw_enter(&dp->dp_config_rwlock, RW_WRITER, FTAG);
|
|
|
|
|
|
2008-12-03 23:09:06 +03:00
|
|
|
|
/* create and open the MOS (meta-objset) */
|
2010-05-29 00:45:14 +04:00
|
|
|
|
dp->dp_meta_objset = dmu_objset_create_impl(spa,
|
|
|
|
|
NULL, &dp->dp_meta_rootbp, DMU_OST_META, tx);
|
Native Encryption for ZFS on Linux
This change incorporates three major pieces:
The first change is a keystore that manages wrapping
and encryption keys for encrypted datasets. These
commands mostly involve manipulating the new
DSL Crypto Key ZAP Objects that live in the MOS. Each
encrypted dataset has its own DSL Crypto Key that is
protected with a user's key. This level of indirection
allows users to change their keys without re-encrypting
their entire datasets. The change implements the new
subcommands "zfs load-key", "zfs unload-key" and
"zfs change-key" which allow the user to manage their
encryption keys and settings. In addition, several new
flags and properties have been added to allow dataset
creation and to make mounting and unmounting more
convenient.
The second piece of this patch provides the ability to
encrypt, decyrpt, and authenticate protected datasets.
Each object set maintains a Merkel tree of Message
Authentication Codes that protect the lower layers,
similarly to how checksums are maintained. This part
impacts the zio layer, which handles the actual
encryption and generation of MACs, as well as the ARC
and DMU, which need to be able to handle encrypted
buffers and protected data.
The last addition is the ability to do raw, encrypted
sends and receives. The idea here is to send raw
encrypted and compressed data and receive it exactly
as is on a backup system. This means that the dataset
on the receiving system is protected using the same
user key that is in use on the sending side. By doing
so, datasets can be efficiently backed up to an
untrusted system without fear of data being
compromised.
Reviewed by: Matthew Ahrens <mahrens@delphix.com>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Reviewed-by: Jorgen Lundman <lundman@lundman.net>
Signed-off-by: Tom Caputi <tcaputi@datto.com>
Closes #494
Closes #5769
2017-08-14 20:36:48 +03:00
|
|
|
|
spa->spa_meta_objset = dp->dp_meta_objset;
|
2008-11-20 23:01:55 +03:00
|
|
|
|
|
|
|
|
|
/* create the pool directory */
|
|
|
|
|
err = zap_create_claim(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
|
|
|
|
|
DMU_OT_OBJECT_DIRECTORY, DMU_OT_NONE, 0, tx);
|
2013-05-11 01:17:03 +04:00
|
|
|
|
ASSERT0(err);
|
2008-11-20 23:01:55 +03:00
|
|
|
|
|
2010-05-29 00:45:14 +04:00
|
|
|
|
/* Initialize scan structures */
|
2013-09-04 16:00:57 +04:00
|
|
|
|
VERIFY0(dsl_scan_init(dp, txg));
|
2010-05-29 00:45:14 +04:00
|
|
|
|
|
2008-11-20 23:01:55 +03:00
|
|
|
|
/* create and open the root dir */
|
2008-12-03 23:09:06 +03:00
|
|
|
|
dp->dp_root_dir_obj = dsl_dir_create_sync(dp, NULL, NULL, tx);
|
2013-09-04 16:00:57 +04:00
|
|
|
|
VERIFY0(dsl_dir_hold_obj(dp, dp->dp_root_dir_obj,
|
2008-11-20 23:01:55 +03:00
|
|
|
|
NULL, dp, &dp->dp_root_dir));
|
|
|
|
|
|
|
|
|
|
/* create and open the meta-objset dir */
|
2008-12-03 23:09:06 +03:00
|
|
|
|
(void) dsl_dir_create_sync(dp, dp->dp_root_dir, MOS_DIR_NAME, tx);
|
2013-09-04 16:00:57 +04:00
|
|
|
|
VERIFY0(dsl_pool_open_special_dir(dp,
|
2008-12-03 23:09:06 +03:00
|
|
|
|
MOS_DIR_NAME, &dp->dp_mos_dir));
|
|
|
|
|
|
2010-05-29 00:45:14 +04:00
|
|
|
|
if (spa_version(spa) >= SPA_VERSION_DEADLISTS) {
|
|
|
|
|
/* create and open the free dir */
|
|
|
|
|
(void) dsl_dir_create_sync(dp, dp->dp_root_dir,
|
|
|
|
|
FREE_DIR_NAME, tx);
|
2013-09-04 16:00:57 +04:00
|
|
|
|
VERIFY0(dsl_pool_open_special_dir(dp,
|
2010-05-29 00:45:14 +04:00
|
|
|
|
FREE_DIR_NAME, &dp->dp_free_dir));
|
|
|
|
|
|
|
|
|
|
/* create and open the free_bplist */
|
2014-11-03 23:15:08 +03:00
|
|
|
|
obj = bpobj_alloc(dp->dp_meta_objset, SPA_OLD_MAXBLOCKSIZE, tx);
|
2010-05-29 00:45:14 +04:00
|
|
|
|
VERIFY(zap_add(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
|
|
|
|
|
DMU_POOL_FREE_BPOBJ, sizeof (uint64_t), 1, &obj, tx) == 0);
|
2013-09-04 16:00:57 +04:00
|
|
|
|
VERIFY0(bpobj_open(&dp->dp_free_bpobj,
|
2010-05-29 00:45:14 +04:00
|
|
|
|
dp->dp_meta_objset, obj));
|
|
|
|
|
}
|
|
|
|
|
|
2008-12-03 23:09:06 +03:00
|
|
|
|
if (spa_version(spa) >= SPA_VERSION_DSL_SCRUB)
|
|
|
|
|
dsl_pool_create_origin(dp, tx);
|
|
|
|
|
|
Native Encryption for ZFS on Linux
This change incorporates three major pieces:
The first change is a keystore that manages wrapping
and encryption keys for encrypted datasets. These
commands mostly involve manipulating the new
DSL Crypto Key ZAP Objects that live in the MOS. Each
encrypted dataset has its own DSL Crypto Key that is
protected with a user's key. This level of indirection
allows users to change their keys without re-encrypting
their entire datasets. The change implements the new
subcommands "zfs load-key", "zfs unload-key" and
"zfs change-key" which allow the user to manage their
encryption keys and settings. In addition, several new
flags and properties have been added to allow dataset
creation and to make mounting and unmounting more
convenient.
The second piece of this patch provides the ability to
encrypt, decyrpt, and authenticate protected datasets.
Each object set maintains a Merkel tree of Message
Authentication Codes that protect the lower layers,
similarly to how checksums are maintained. This part
impacts the zio layer, which handles the actual
encryption and generation of MACs, as well as the ARC
and DMU, which need to be able to handle encrypted
buffers and protected data.
The last addition is the ability to do raw, encrypted
sends and receives. The idea here is to send raw
encrypted and compressed data and receive it exactly
as is on a backup system. This means that the dataset
on the receiving system is protected using the same
user key that is in use on the sending side. By doing
so, datasets can be efficiently backed up to an
untrusted system without fear of data being
compromised.
Reviewed by: Matthew Ahrens <mahrens@delphix.com>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Reviewed-by: Jorgen Lundman <lundman@lundman.net>
Signed-off-by: Tom Caputi <tcaputi@datto.com>
Closes #494
Closes #5769
2017-08-14 20:36:48 +03:00
|
|
|
|
/*
|
|
|
|
|
* Some features may be needed when creating the root dataset, so we
|
|
|
|
|
* create the feature objects here.
|
|
|
|
|
*/
|
|
|
|
|
if (spa_version(spa) >= SPA_VERSION_FEATURES)
|
|
|
|
|
spa_feature_create_zap_objects(spa, tx);
|
|
|
|
|
|
|
|
|
|
if (dcp != NULL && dcp->cp_crypt != ZIO_CRYPT_OFF &&
|
|
|
|
|
dcp->cp_crypt != ZIO_CRYPT_INHERIT)
|
|
|
|
|
spa_feature_enable(spa, SPA_FEATURE_ENCRYPTION, tx);
|
|
|
|
|
|
2008-12-03 23:09:06 +03:00
|
|
|
|
/* create the root dataset */
|
Native Encryption for ZFS on Linux
This change incorporates three major pieces:
The first change is a keystore that manages wrapping
and encryption keys for encrypted datasets. These
commands mostly involve manipulating the new
DSL Crypto Key ZAP Objects that live in the MOS. Each
encrypted dataset has its own DSL Crypto Key that is
protected with a user's key. This level of indirection
allows users to change their keys without re-encrypting
their entire datasets. The change implements the new
subcommands "zfs load-key", "zfs unload-key" and
"zfs change-key" which allow the user to manage their
encryption keys and settings. In addition, several new
flags and properties have been added to allow dataset
creation and to make mounting and unmounting more
convenient.
The second piece of this patch provides the ability to
encrypt, decyrpt, and authenticate protected datasets.
Each object set maintains a Merkel tree of Message
Authentication Codes that protect the lower layers,
similarly to how checksums are maintained. This part
impacts the zio layer, which handles the actual
encryption and generation of MACs, as well as the ARC
and DMU, which need to be able to handle encrypted
buffers and protected data.
The last addition is the ability to do raw, encrypted
sends and receives. The idea here is to send raw
encrypted and compressed data and receive it exactly
as is on a backup system. This means that the dataset
on the receiving system is protected using the same
user key that is in use on the sending side. By doing
so, datasets can be efficiently backed up to an
untrusted system without fear of data being
compromised.
Reviewed by: Matthew Ahrens <mahrens@delphix.com>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Reviewed-by: Jorgen Lundman <lundman@lundman.net>
Signed-off-by: Tom Caputi <tcaputi@datto.com>
Closes #494
Closes #5769
2017-08-14 20:36:48 +03:00
|
|
|
|
obj = dsl_dataset_create_sync_dd(dp->dp_root_dir, NULL, dcp, 0, tx);
|
2008-12-03 23:09:06 +03:00
|
|
|
|
|
|
|
|
|
/* create the root objset */
|
2018-10-03 19:47:11 +03:00
|
|
|
|
VERIFY0(dsl_dataset_hold_obj_flags(dp, obj,
|
|
|
|
|
DS_HOLD_FLAG_DECRYPT, FTAG, &ds));
|
2019-01-18 22:14:01 +03:00
|
|
|
|
rrw_enter(&ds->ds_bp_rwlock, RW_READER, FTAG);
|
|
|
|
|
os = dmu_objset_create_impl(dp->dp_spa, ds,
|
|
|
|
|
dsl_dataset_get_blkptr(ds), DMU_OST_ZFS, tx);
|
|
|
|
|
rrw_exit(&ds->ds_bp_rwlock, FTAG);
|
2008-12-03 23:09:06 +03:00
|
|
|
|
#ifdef _KERNEL
|
2019-01-18 22:14:01 +03:00
|
|
|
|
zfs_create_fs(os, kcred, zplprops, tx);
|
2008-12-03 23:09:06 +03:00
|
|
|
|
#endif
|
2018-10-03 19:47:11 +03:00
|
|
|
|
dsl_dataset_rele_flags(ds, DS_HOLD_FLAG_DECRYPT, FTAG);
|
2008-11-20 23:01:55 +03:00
|
|
|
|
|
|
|
|
|
dmu_tx_commit(tx);
|
|
|
|
|
|
2013-09-04 16:00:57 +04:00
|
|
|
|
rrw_exit(&dp->dp_config_rwlock, FTAG);
|
|
|
|
|
|
2008-11-20 23:01:55 +03:00
|
|
|
|
return (dp);
|
|
|
|
|
}
|
|
|
|
|
|
2012-12-15 04:13:40 +04:00
|
|
|
|
/*
|
|
|
|
|
* Account for the meta-objset space in its placeholder dsl_dir.
|
|
|
|
|
*/
|
|
|
|
|
void
|
|
|
|
|
dsl_pool_mos_diduse_space(dsl_pool_t *dp,
|
|
|
|
|
int64_t used, int64_t comp, int64_t uncomp)
|
|
|
|
|
{
|
|
|
|
|
ASSERT3U(comp, ==, uncomp); /* it's all metadata */
|
|
|
|
|
mutex_enter(&dp->dp_lock);
|
|
|
|
|
dp->dp_mos_used_delta += used;
|
|
|
|
|
dp->dp_mos_compressed_delta += comp;
|
|
|
|
|
dp->dp_mos_uncompressed_delta += uncomp;
|
|
|
|
|
mutex_exit(&dp->dp_lock);
|
|
|
|
|
}
|
|
|
|
|
|
Illumos #4045 write throttle & i/o scheduler performance work
4045 zfs write throttle & i/o scheduler performance work
1. The ZFS i/o scheduler (vdev_queue.c) now divides i/os into 5 classes: sync
read, sync write, async read, async write, and scrub/resilver. The scheduler
issues a number of concurrent i/os from each class to the device. Once a class
has been selected, an i/o is selected from this class using either an elevator
algorithem (async, scrub classes) or FIFO (sync classes). The number of
concurrent async write i/os is tuned dynamically based on i/o load, to achieve
good sync i/o latency when there is not a high load of writes, and good write
throughput when there is. See the block comment in vdev_queue.c (reproduced
below) for more details.
2. The write throttle (dsl_pool_tempreserve_space() and
txg_constrain_throughput()) is rewritten to produce much more consistent delays
when under constant load. The new write throttle is based on the amount of
dirty data, rather than guesses about future performance of the system. When
there is a lot of dirty data, each transaction (e.g. write() syscall) will be
delayed by the same small amount. This eliminates the "brick wall of wait"
that the old write throttle could hit, causing all transactions to wait several
seconds until the next txg opens. One of the keys to the new write throttle is
decrementing the amount of dirty data as i/o completes, rather than at the end
of spa_sync(). Note that the write throttle is only applied once the i/o
scheduler is issuing the maximum number of outstanding async writes. See the
block comments in dsl_pool.c and above dmu_tx_delay() (reproduced below) for
more details.
This diff has several other effects, including:
* the commonly-tuned global variable zfs_vdev_max_pending has been removed;
use per-class zfs_vdev_*_max_active values or zfs_vdev_max_active instead.
* the size of each txg (meaning the amount of dirty data written, and thus the
time it takes to write out) is now controlled differently. There is no longer
an explicit time goal; the primary determinant is amount of dirty data.
Systems that are under light or medium load will now often see that a txg is
always syncing, but the impact to performance (e.g. read latency) is minimal.
Tune zfs_dirty_data_max and zfs_dirty_data_sync to control this.
* zio_taskq_batch_pct = 75 -- Only use 75% of all CPUs for compression,
checksum, etc. This improves latency by not allowing these CPU-intensive tasks
to consume all CPU (on machines with at least 4 CPU's; the percentage is
rounded up).
--matt
APPENDIX: problems with the current i/o scheduler
The current ZFS i/o scheduler (vdev_queue.c) is deadline based. The problem
with this is that if there are always i/os pending, then certain classes of
i/os can see very long delays.
For example, if there are always synchronous reads outstanding, then no async
writes will be serviced until they become "past due". One symptom of this
situation is that each pass of the txg sync takes at least several seconds
(typically 3 seconds).
If many i/os become "past due" (their deadline is in the past), then we must
service all of these overdue i/os before any new i/os. This happens when we
enqueue a batch of async writes for the txg sync, with deadlines 2.5 seconds in
the future. If we can't complete all the i/os in 2.5 seconds (e.g. because
there were always reads pending), then these i/os will become past due. Now we
must service all the "async" writes (which could be hundreds of megabytes)
before we service any reads, introducing considerable latency to synchronous
i/os (reads or ZIL writes).
Notes on porting to ZFS on Linux:
- zio_t gained new members io_physdone and io_phys_children. Because
object caches in the Linux port call the constructor only once at
allocation time, objects may contain residual data when retrieved
from the cache. Therefore zio_create() was updated to zero out the two
new fields.
- vdev_mirror_pending() relied on the depth of the per-vdev pending queue
(vq->vq_pending_tree) to select the least-busy leaf vdev to read from.
This tree has been replaced by vq->vq_active_tree which is now used
for the same purpose.
- vdev_queue_init() used the value of zfs_vdev_max_pending to determine
the number of vdev I/O buffers to pre-allocate. That global no longer
exists, so we instead use the sum of the *_max_active values for each of
the five I/O classes described above.
- The Illumos implementation of dmu_tx_delay() delays a transaction by
sleeping in condition variable embedded in the thread
(curthread->t_delay_cv). We do not have an equivalent CV to use in
Linux, so this change replaced the delay logic with a wrapper called
zfs_sleep_until(). This wrapper could be adopted upstream and in other
downstream ports to abstract away operating system-specific delay logic.
- These tunables are added as module parameters, and descriptions added
to the zfs-module-parameters.5 man page.
spa_asize_inflation
zfs_deadman_synctime_ms
zfs_vdev_max_active
zfs_vdev_async_write_active_min_dirty_percent
zfs_vdev_async_write_active_max_dirty_percent
zfs_vdev_async_read_max_active
zfs_vdev_async_read_min_active
zfs_vdev_async_write_max_active
zfs_vdev_async_write_min_active
zfs_vdev_scrub_max_active
zfs_vdev_scrub_min_active
zfs_vdev_sync_read_max_active
zfs_vdev_sync_read_min_active
zfs_vdev_sync_write_max_active
zfs_vdev_sync_write_min_active
zfs_dirty_data_max_percent
zfs_delay_min_dirty_percent
zfs_dirty_data_max_max_percent
zfs_dirty_data_max
zfs_dirty_data_max_max
zfs_dirty_data_sync
zfs_delay_scale
The latter four have type unsigned long, whereas they are uint64_t in
Illumos. This accommodates Linux's module_param() supported types, but
means they may overflow on 32-bit architectures.
The values zfs_dirty_data_max and zfs_dirty_data_max_max are the most
likely to overflow on 32-bit systems, since they express physical RAM
sizes in bytes. In fact, Illumos initializes zfs_dirty_data_max_max to
2^32 which does overflow. To resolve that, this port instead initializes
it in arc_init() to 25% of physical RAM, and adds the tunable
zfs_dirty_data_max_max_percent to override that percentage. While this
solution doesn't completely avoid the overflow issue, it should be a
reasonable default for most systems, and the minority of affected
systems can work around the issue by overriding the defaults.
- Fixed reversed logic in comment above zfs_delay_scale declaration.
- Clarified comments in vdev_queue.c regarding when per-queue minimums take
effect.
- Replaced dmu_tx_write_limit in the dmu_tx kstat file
with dmu_tx_dirty_delay and dmu_tx_dirty_over_max. The first counts
how many times a transaction has been delayed because the pool dirty
data has exceeded zfs_delay_min_dirty_percent. The latter counts how
many times the pool dirty data has exceeded zfs_dirty_data_max (which
we expect to never happen).
- The original patch would have regressed the bug fixed in
zfsonlinux/zfs@c418410, which prevented users from setting the
zfs_vdev_aggregation_limit tuning larger than SPA_MAXBLOCKSIZE.
A similar fix is added to vdev_queue_aggregate().
- In vdev_queue_io_to_issue(), dynamically allocate 'zio_t search' on the
heap instead of the stack. In Linux we can't afford such large
structures on the stack.
Reviewed by: George Wilson <george.wilson@delphix.com>
Reviewed by: Adam Leventhal <ahl@delphix.com>
Reviewed by: Christopher Siden <christopher.siden@delphix.com>
Reviewed by: Ned Bass <bass6@llnl.gov>
Reviewed by: Brendan Gregg <brendan.gregg@joyent.com>
Approved by: Robert Mustacchi <rm@joyent.com>
References:
http://www.illumos.org/issues/4045
illumos/illumos-gate@69962b5647e4a8b9b14998733b765925381b727e
Ported-by: Ned Bass <bass6@llnl.gov>
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Closes #1913
2013-08-29 07:01:20 +04:00
|
|
|
|
static void
|
|
|
|
|
dsl_pool_sync_mos(dsl_pool_t *dp, dmu_tx_t *tx)
|
|
|
|
|
{
|
|
|
|
|
zio_t *zio = zio_root(dp->dp_spa, NULL, NULL, ZIO_FLAG_MUSTSUCCEED);
|
|
|
|
|
dmu_objset_sync(dp->dp_meta_objset, zio, tx);
|
|
|
|
|
VERIFY0(zio_wait(zio));
|
Improve zfs receive performance with lightweight write
The performance of `zfs receive` can be bottlenecked on the CPU consumed
by the `receive_writer` thread, especially when receiving streams with
small compressed block sizes. Much of the CPU is spent creating and
destroying dbuf's and arc buf's, one for each `WRITE` record in the send
stream.
This commit introduces the concept of "lightweight writes", which allows
`zfs receive` to write to the DMU by providing an ABD, and instantiating
only a new type of `dbuf_dirty_record_t`. The dbuf and arc buf for this
"dirty leaf block" are not instantiated.
Because there is no dbuf with the dirty data, this mechanism doesn't
support reading from "lightweight-dirty" blocks (they would see the
on-disk state rather than the dirty data). Since the dedup-receive code
has been removed, `zfs receive` is write-only, so this works fine.
Because there are no arc bufs for the received data, the received data
is no longer cached in the ARC.
Testing a receive of a stream with average compressed block size of 4KB,
this commit improves performance by 50%, while also reducing CPU usage
by 50% of a CPU. On a per-block basis, CPU consumed by receive_writer()
and dbuf_evict() is now 1/7th (14%) of what it was.
Baseline: 450MB/s, CPU in receive_writer() 40% + dbuf_evict() 35%
New: 670MB/s, CPU in receive_writer() 17% + dbuf_evict() 0%
The code is also restructured in a few ways:
Added a `dr_dnode` field to the dbuf_dirty_record_t. This simplifies
some existing code that no longer needs `DB_DNODE_ENTER()` and related
routines. The new field is needed by the lightweight-type dirty record.
To ensure that the `dr_dnode` field remains valid until the dirty record
is freed, we have to ensure that the `dnode_move()` doesn't relocate the
dnode_t. To do this we keep a hold on the dnode until it's zio's have
completed. This is already done by the user-accounting code
(`userquota_updates_task()`), this commit extends that so that it always
keeps the dnode hold until zio completion (see `dnode_rele_task()`).
`dn_dirty_txg` was previously zeroed when the dnode was synced. This
was not necessary, since its meaning can be "when was this dnode last
dirtied". This change simplifies the new `dnode_rele_task()` code.
Removed some dead code related to `DRR_WRITE_BYREF` (dedup receive).
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Reviewed-by: Paul Dagnelie <pcd@delphix.com>
Reviewed-by: George Wilson <gwilson@delphix.com>
Signed-off-by: Matthew Ahrens <mahrens@delphix.com>
Closes #11105
2020-12-11 21:26:02 +03:00
|
|
|
|
dmu_objset_sync_done(dp->dp_meta_objset, tx);
|
|
|
|
|
taskq_wait(dp->dp_sync_taskq);
|
2021-06-10 19:42:31 +03:00
|
|
|
|
multilist_destroy(&dp->dp_meta_objset->os_synced_dnodes);
|
Improve zfs receive performance with lightweight write
The performance of `zfs receive` can be bottlenecked on the CPU consumed
by the `receive_writer` thread, especially when receiving streams with
small compressed block sizes. Much of the CPU is spent creating and
destroying dbuf's and arc buf's, one for each `WRITE` record in the send
stream.
This commit introduces the concept of "lightweight writes", which allows
`zfs receive` to write to the DMU by providing an ABD, and instantiating
only a new type of `dbuf_dirty_record_t`. The dbuf and arc buf for this
"dirty leaf block" are not instantiated.
Because there is no dbuf with the dirty data, this mechanism doesn't
support reading from "lightweight-dirty" blocks (they would see the
on-disk state rather than the dirty data). Since the dedup-receive code
has been removed, `zfs receive` is write-only, so this works fine.
Because there are no arc bufs for the received data, the received data
is no longer cached in the ARC.
Testing a receive of a stream with average compressed block size of 4KB,
this commit improves performance by 50%, while also reducing CPU usage
by 50% of a CPU. On a per-block basis, CPU consumed by receive_writer()
and dbuf_evict() is now 1/7th (14%) of what it was.
Baseline: 450MB/s, CPU in receive_writer() 40% + dbuf_evict() 35%
New: 670MB/s, CPU in receive_writer() 17% + dbuf_evict() 0%
The code is also restructured in a few ways:
Added a `dr_dnode` field to the dbuf_dirty_record_t. This simplifies
some existing code that no longer needs `DB_DNODE_ENTER()` and related
routines. The new field is needed by the lightweight-type dirty record.
To ensure that the `dr_dnode` field remains valid until the dirty record
is freed, we have to ensure that the `dnode_move()` doesn't relocate the
dnode_t. To do this we keep a hold on the dnode until it's zio's have
completed. This is already done by the user-accounting code
(`userquota_updates_task()`), this commit extends that so that it always
keeps the dnode hold until zio completion (see `dnode_rele_task()`).
`dn_dirty_txg` was previously zeroed when the dnode was synced. This
was not necessary, since its meaning can be "when was this dnode last
dirtied". This change simplifies the new `dnode_rele_task()` code.
Removed some dead code related to `DRR_WRITE_BYREF` (dedup receive).
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Reviewed-by: Paul Dagnelie <pcd@delphix.com>
Reviewed-by: George Wilson <gwilson@delphix.com>
Signed-off-by: Matthew Ahrens <mahrens@delphix.com>
Closes #11105
2020-12-11 21:26:02 +03:00
|
|
|
|
|
Illumos #4045 write throttle & i/o scheduler performance work
4045 zfs write throttle & i/o scheduler performance work
1. The ZFS i/o scheduler (vdev_queue.c) now divides i/os into 5 classes: sync
read, sync write, async read, async write, and scrub/resilver. The scheduler
issues a number of concurrent i/os from each class to the device. Once a class
has been selected, an i/o is selected from this class using either an elevator
algorithem (async, scrub classes) or FIFO (sync classes). The number of
concurrent async write i/os is tuned dynamically based on i/o load, to achieve
good sync i/o latency when there is not a high load of writes, and good write
throughput when there is. See the block comment in vdev_queue.c (reproduced
below) for more details.
2. The write throttle (dsl_pool_tempreserve_space() and
txg_constrain_throughput()) is rewritten to produce much more consistent delays
when under constant load. The new write throttle is based on the amount of
dirty data, rather than guesses about future performance of the system. When
there is a lot of dirty data, each transaction (e.g. write() syscall) will be
delayed by the same small amount. This eliminates the "brick wall of wait"
that the old write throttle could hit, causing all transactions to wait several
seconds until the next txg opens. One of the keys to the new write throttle is
decrementing the amount of dirty data as i/o completes, rather than at the end
of spa_sync(). Note that the write throttle is only applied once the i/o
scheduler is issuing the maximum number of outstanding async writes. See the
block comments in dsl_pool.c and above dmu_tx_delay() (reproduced below) for
more details.
This diff has several other effects, including:
* the commonly-tuned global variable zfs_vdev_max_pending has been removed;
use per-class zfs_vdev_*_max_active values or zfs_vdev_max_active instead.
* the size of each txg (meaning the amount of dirty data written, and thus the
time it takes to write out) is now controlled differently. There is no longer
an explicit time goal; the primary determinant is amount of dirty data.
Systems that are under light or medium load will now often see that a txg is
always syncing, but the impact to performance (e.g. read latency) is minimal.
Tune zfs_dirty_data_max and zfs_dirty_data_sync to control this.
* zio_taskq_batch_pct = 75 -- Only use 75% of all CPUs for compression,
checksum, etc. This improves latency by not allowing these CPU-intensive tasks
to consume all CPU (on machines with at least 4 CPU's; the percentage is
rounded up).
--matt
APPENDIX: problems with the current i/o scheduler
The current ZFS i/o scheduler (vdev_queue.c) is deadline based. The problem
with this is that if there are always i/os pending, then certain classes of
i/os can see very long delays.
For example, if there are always synchronous reads outstanding, then no async
writes will be serviced until they become "past due". One symptom of this
situation is that each pass of the txg sync takes at least several seconds
(typically 3 seconds).
If many i/os become "past due" (their deadline is in the past), then we must
service all of these overdue i/os before any new i/os. This happens when we
enqueue a batch of async writes for the txg sync, with deadlines 2.5 seconds in
the future. If we can't complete all the i/os in 2.5 seconds (e.g. because
there were always reads pending), then these i/os will become past due. Now we
must service all the "async" writes (which could be hundreds of megabytes)
before we service any reads, introducing considerable latency to synchronous
i/os (reads or ZIL writes).
Notes on porting to ZFS on Linux:
- zio_t gained new members io_physdone and io_phys_children. Because
object caches in the Linux port call the constructor only once at
allocation time, objects may contain residual data when retrieved
from the cache. Therefore zio_create() was updated to zero out the two
new fields.
- vdev_mirror_pending() relied on the depth of the per-vdev pending queue
(vq->vq_pending_tree) to select the least-busy leaf vdev to read from.
This tree has been replaced by vq->vq_active_tree which is now used
for the same purpose.
- vdev_queue_init() used the value of zfs_vdev_max_pending to determine
the number of vdev I/O buffers to pre-allocate. That global no longer
exists, so we instead use the sum of the *_max_active values for each of
the five I/O classes described above.
- The Illumos implementation of dmu_tx_delay() delays a transaction by
sleeping in condition variable embedded in the thread
(curthread->t_delay_cv). We do not have an equivalent CV to use in
Linux, so this change replaced the delay logic with a wrapper called
zfs_sleep_until(). This wrapper could be adopted upstream and in other
downstream ports to abstract away operating system-specific delay logic.
- These tunables are added as module parameters, and descriptions added
to the zfs-module-parameters.5 man page.
spa_asize_inflation
zfs_deadman_synctime_ms
zfs_vdev_max_active
zfs_vdev_async_write_active_min_dirty_percent
zfs_vdev_async_write_active_max_dirty_percent
zfs_vdev_async_read_max_active
zfs_vdev_async_read_min_active
zfs_vdev_async_write_max_active
zfs_vdev_async_write_min_active
zfs_vdev_scrub_max_active
zfs_vdev_scrub_min_active
zfs_vdev_sync_read_max_active
zfs_vdev_sync_read_min_active
zfs_vdev_sync_write_max_active
zfs_vdev_sync_write_min_active
zfs_dirty_data_max_percent
zfs_delay_min_dirty_percent
zfs_dirty_data_max_max_percent
zfs_dirty_data_max
zfs_dirty_data_max_max
zfs_dirty_data_sync
zfs_delay_scale
The latter four have type unsigned long, whereas they are uint64_t in
Illumos. This accommodates Linux's module_param() supported types, but
means they may overflow on 32-bit architectures.
The values zfs_dirty_data_max and zfs_dirty_data_max_max are the most
likely to overflow on 32-bit systems, since they express physical RAM
sizes in bytes. In fact, Illumos initializes zfs_dirty_data_max_max to
2^32 which does overflow. To resolve that, this port instead initializes
it in arc_init() to 25% of physical RAM, and adds the tunable
zfs_dirty_data_max_max_percent to override that percentage. While this
solution doesn't completely avoid the overflow issue, it should be a
reasonable default for most systems, and the minority of affected
systems can work around the issue by overriding the defaults.
- Fixed reversed logic in comment above zfs_delay_scale declaration.
- Clarified comments in vdev_queue.c regarding when per-queue minimums take
effect.
- Replaced dmu_tx_write_limit in the dmu_tx kstat file
with dmu_tx_dirty_delay and dmu_tx_dirty_over_max. The first counts
how many times a transaction has been delayed because the pool dirty
data has exceeded zfs_delay_min_dirty_percent. The latter counts how
many times the pool dirty data has exceeded zfs_dirty_data_max (which
we expect to never happen).
- The original patch would have regressed the bug fixed in
zfsonlinux/zfs@c418410, which prevented users from setting the
zfs_vdev_aggregation_limit tuning larger than SPA_MAXBLOCKSIZE.
A similar fix is added to vdev_queue_aggregate().
- In vdev_queue_io_to_issue(), dynamically allocate 'zio_t search' on the
heap instead of the stack. In Linux we can't afford such large
structures on the stack.
Reviewed by: George Wilson <george.wilson@delphix.com>
Reviewed by: Adam Leventhal <ahl@delphix.com>
Reviewed by: Christopher Siden <christopher.siden@delphix.com>
Reviewed by: Ned Bass <bass6@llnl.gov>
Reviewed by: Brendan Gregg <brendan.gregg@joyent.com>
Approved by: Robert Mustacchi <rm@joyent.com>
References:
http://www.illumos.org/issues/4045
illumos/illumos-gate@69962b5647e4a8b9b14998733b765925381b727e
Ported-by: Ned Bass <bass6@llnl.gov>
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Closes #1913
2013-08-29 07:01:20 +04:00
|
|
|
|
dprintf_bp(&dp->dp_meta_rootbp, "meta objset rootbp is %s", "");
|
|
|
|
|
spa_set_rootblkptr(dp->dp_spa, &dp->dp_meta_rootbp);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
static void
|
|
|
|
|
dsl_pool_dirty_delta(dsl_pool_t *dp, int64_t delta)
|
|
|
|
|
{
|
|
|
|
|
ASSERT(MUTEX_HELD(&dp->dp_lock));
|
|
|
|
|
|
|
|
|
|
if (delta < 0)
|
|
|
|
|
ASSERT3U(-delta, <=, dp->dp_dirty_total);
|
|
|
|
|
|
|
|
|
|
dp->dp_dirty_total += delta;
|
|
|
|
|
|
|
|
|
|
/*
|
|
|
|
|
* Note: we signal even when increasing dp_dirty_total.
|
|
|
|
|
* This ensures forward progress -- each thread wakes the next waiter.
|
|
|
|
|
*/
|
2017-04-07 23:52:26 +03:00
|
|
|
|
if (dp->dp_dirty_total < zfs_dirty_data_max)
|
Illumos #4045 write throttle & i/o scheduler performance work
4045 zfs write throttle & i/o scheduler performance work
1. The ZFS i/o scheduler (vdev_queue.c) now divides i/os into 5 classes: sync
read, sync write, async read, async write, and scrub/resilver. The scheduler
issues a number of concurrent i/os from each class to the device. Once a class
has been selected, an i/o is selected from this class using either an elevator
algorithem (async, scrub classes) or FIFO (sync classes). The number of
concurrent async write i/os is tuned dynamically based on i/o load, to achieve
good sync i/o latency when there is not a high load of writes, and good write
throughput when there is. See the block comment in vdev_queue.c (reproduced
below) for more details.
2. The write throttle (dsl_pool_tempreserve_space() and
txg_constrain_throughput()) is rewritten to produce much more consistent delays
when under constant load. The new write throttle is based on the amount of
dirty data, rather than guesses about future performance of the system. When
there is a lot of dirty data, each transaction (e.g. write() syscall) will be
delayed by the same small amount. This eliminates the "brick wall of wait"
that the old write throttle could hit, causing all transactions to wait several
seconds until the next txg opens. One of the keys to the new write throttle is
decrementing the amount of dirty data as i/o completes, rather than at the end
of spa_sync(). Note that the write throttle is only applied once the i/o
scheduler is issuing the maximum number of outstanding async writes. See the
block comments in dsl_pool.c and above dmu_tx_delay() (reproduced below) for
more details.
This diff has several other effects, including:
* the commonly-tuned global variable zfs_vdev_max_pending has been removed;
use per-class zfs_vdev_*_max_active values or zfs_vdev_max_active instead.
* the size of each txg (meaning the amount of dirty data written, and thus the
time it takes to write out) is now controlled differently. There is no longer
an explicit time goal; the primary determinant is amount of dirty data.
Systems that are under light or medium load will now often see that a txg is
always syncing, but the impact to performance (e.g. read latency) is minimal.
Tune zfs_dirty_data_max and zfs_dirty_data_sync to control this.
* zio_taskq_batch_pct = 75 -- Only use 75% of all CPUs for compression,
checksum, etc. This improves latency by not allowing these CPU-intensive tasks
to consume all CPU (on machines with at least 4 CPU's; the percentage is
rounded up).
--matt
APPENDIX: problems with the current i/o scheduler
The current ZFS i/o scheduler (vdev_queue.c) is deadline based. The problem
with this is that if there are always i/os pending, then certain classes of
i/os can see very long delays.
For example, if there are always synchronous reads outstanding, then no async
writes will be serviced until they become "past due". One symptom of this
situation is that each pass of the txg sync takes at least several seconds
(typically 3 seconds).
If many i/os become "past due" (their deadline is in the past), then we must
service all of these overdue i/os before any new i/os. This happens when we
enqueue a batch of async writes for the txg sync, with deadlines 2.5 seconds in
the future. If we can't complete all the i/os in 2.5 seconds (e.g. because
there were always reads pending), then these i/os will become past due. Now we
must service all the "async" writes (which could be hundreds of megabytes)
before we service any reads, introducing considerable latency to synchronous
i/os (reads or ZIL writes).
Notes on porting to ZFS on Linux:
- zio_t gained new members io_physdone and io_phys_children. Because
object caches in the Linux port call the constructor only once at
allocation time, objects may contain residual data when retrieved
from the cache. Therefore zio_create() was updated to zero out the two
new fields.
- vdev_mirror_pending() relied on the depth of the per-vdev pending queue
(vq->vq_pending_tree) to select the least-busy leaf vdev to read from.
This tree has been replaced by vq->vq_active_tree which is now used
for the same purpose.
- vdev_queue_init() used the value of zfs_vdev_max_pending to determine
the number of vdev I/O buffers to pre-allocate. That global no longer
exists, so we instead use the sum of the *_max_active values for each of
the five I/O classes described above.
- The Illumos implementation of dmu_tx_delay() delays a transaction by
sleeping in condition variable embedded in the thread
(curthread->t_delay_cv). We do not have an equivalent CV to use in
Linux, so this change replaced the delay logic with a wrapper called
zfs_sleep_until(). This wrapper could be adopted upstream and in other
downstream ports to abstract away operating system-specific delay logic.
- These tunables are added as module parameters, and descriptions added
to the zfs-module-parameters.5 man page.
spa_asize_inflation
zfs_deadman_synctime_ms
zfs_vdev_max_active
zfs_vdev_async_write_active_min_dirty_percent
zfs_vdev_async_write_active_max_dirty_percent
zfs_vdev_async_read_max_active
zfs_vdev_async_read_min_active
zfs_vdev_async_write_max_active
zfs_vdev_async_write_min_active
zfs_vdev_scrub_max_active
zfs_vdev_scrub_min_active
zfs_vdev_sync_read_max_active
zfs_vdev_sync_read_min_active
zfs_vdev_sync_write_max_active
zfs_vdev_sync_write_min_active
zfs_dirty_data_max_percent
zfs_delay_min_dirty_percent
zfs_dirty_data_max_max_percent
zfs_dirty_data_max
zfs_dirty_data_max_max
zfs_dirty_data_sync
zfs_delay_scale
The latter four have type unsigned long, whereas they are uint64_t in
Illumos. This accommodates Linux's module_param() supported types, but
means they may overflow on 32-bit architectures.
The values zfs_dirty_data_max and zfs_dirty_data_max_max are the most
likely to overflow on 32-bit systems, since they express physical RAM
sizes in bytes. In fact, Illumos initializes zfs_dirty_data_max_max to
2^32 which does overflow. To resolve that, this port instead initializes
it in arc_init() to 25% of physical RAM, and adds the tunable
zfs_dirty_data_max_max_percent to override that percentage. While this
solution doesn't completely avoid the overflow issue, it should be a
reasonable default for most systems, and the minority of affected
systems can work around the issue by overriding the defaults.
- Fixed reversed logic in comment above zfs_delay_scale declaration.
- Clarified comments in vdev_queue.c regarding when per-queue minimums take
effect.
- Replaced dmu_tx_write_limit in the dmu_tx kstat file
with dmu_tx_dirty_delay and dmu_tx_dirty_over_max. The first counts
how many times a transaction has been delayed because the pool dirty
data has exceeded zfs_delay_min_dirty_percent. The latter counts how
many times the pool dirty data has exceeded zfs_dirty_data_max (which
we expect to never happen).
- The original patch would have regressed the bug fixed in
zfsonlinux/zfs@c418410, which prevented users from setting the
zfs_vdev_aggregation_limit tuning larger than SPA_MAXBLOCKSIZE.
A similar fix is added to vdev_queue_aggregate().
- In vdev_queue_io_to_issue(), dynamically allocate 'zio_t search' on the
heap instead of the stack. In Linux we can't afford such large
structures on the stack.
Reviewed by: George Wilson <george.wilson@delphix.com>
Reviewed by: Adam Leventhal <ahl@delphix.com>
Reviewed by: Christopher Siden <christopher.siden@delphix.com>
Reviewed by: Ned Bass <bass6@llnl.gov>
Reviewed by: Brendan Gregg <brendan.gregg@joyent.com>
Approved by: Robert Mustacchi <rm@joyent.com>
References:
http://www.illumos.org/issues/4045
illumos/illumos-gate@69962b5647e4a8b9b14998733b765925381b727e
Ported-by: Ned Bass <bass6@llnl.gov>
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Closes #1913
2013-08-29 07:01:20 +04:00
|
|
|
|
cv_signal(&dp->dp_spaceavail_cv);
|
|
|
|
|
}
|
|
|
|
|
|
2016-12-17 01:11:29 +03:00
|
|
|
|
#ifdef ZFS_DEBUG
|
|
|
|
|
static boolean_t
|
|
|
|
|
dsl_early_sync_task_verify(dsl_pool_t *dp, uint64_t txg)
|
|
|
|
|
{
|
|
|
|
|
spa_t *spa = dp->dp_spa;
|
|
|
|
|
vdev_t *rvd = spa->spa_root_vdev;
|
|
|
|
|
|
|
|
|
|
for (uint64_t c = 0; c < rvd->vdev_children; c++) {
|
|
|
|
|
vdev_t *vd = rvd->vdev_child[c];
|
|
|
|
|
txg_list_t *tl = &vd->vdev_ms_list;
|
|
|
|
|
metaslab_t *ms;
|
|
|
|
|
|
|
|
|
|
for (ms = txg_list_head(tl, TXG_CLEAN(txg)); ms;
|
|
|
|
|
ms = txg_list_next(tl, ms, TXG_CLEAN(txg))) {
|
|
|
|
|
VERIFY(range_tree_is_empty(ms->ms_freeing));
|
|
|
|
|
VERIFY(range_tree_is_empty(ms->ms_checkpointing));
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
return (B_TRUE);
|
|
|
|
|
}
|
|
|
|
|
#endif
|
|
|
|
|
|
2008-11-20 23:01:55 +03:00
|
|
|
|
void
|
|
|
|
|
dsl_pool_sync(dsl_pool_t *dp, uint64_t txg)
|
|
|
|
|
{
|
|
|
|
|
zio_t *zio;
|
|
|
|
|
dmu_tx_t *tx;
|
|
|
|
|
dsl_dir_t *dd;
|
|
|
|
|
dsl_dataset_t *ds;
|
2010-05-29 00:45:14 +04:00
|
|
|
|
objset_t *mos = dp->dp_meta_objset;
|
2012-12-15 04:13:40 +04:00
|
|
|
|
list_t synced_datasets;
|
|
|
|
|
|
|
|
|
|
list_create(&synced_datasets, sizeof (dsl_dataset_t),
|
|
|
|
|
offsetof(dsl_dataset_t, ds_synced_link));
|
2008-11-20 23:01:55 +03:00
|
|
|
|
|
|
|
|
|
tx = dmu_tx_create_assigned(dp, txg);
|
|
|
|
|
|
2016-12-17 01:11:29 +03:00
|
|
|
|
/*
|
|
|
|
|
* Run all early sync tasks before writing out any dirty blocks.
|
|
|
|
|
* For more info on early sync tasks see block comment in
|
|
|
|
|
* dsl_early_sync_task().
|
|
|
|
|
*/
|
|
|
|
|
if (!txg_list_empty(&dp->dp_early_sync_tasks, txg)) {
|
|
|
|
|
dsl_sync_task_t *dst;
|
|
|
|
|
|
|
|
|
|
ASSERT3U(spa_sync_pass(dp->dp_spa), ==, 1);
|
|
|
|
|
while ((dst =
|
|
|
|
|
txg_list_remove(&dp->dp_early_sync_tasks, txg)) != NULL) {
|
|
|
|
|
ASSERT(dsl_early_sync_task_verify(dp, txg));
|
|
|
|
|
dsl_sync_task_sync(dst, tx);
|
|
|
|
|
}
|
|
|
|
|
ASSERT(dsl_early_sync_task_verify(dp, txg));
|
|
|
|
|
}
|
|
|
|
|
|
Illumos #4045 write throttle & i/o scheduler performance work
4045 zfs write throttle & i/o scheduler performance work
1. The ZFS i/o scheduler (vdev_queue.c) now divides i/os into 5 classes: sync
read, sync write, async read, async write, and scrub/resilver. The scheduler
issues a number of concurrent i/os from each class to the device. Once a class
has been selected, an i/o is selected from this class using either an elevator
algorithem (async, scrub classes) or FIFO (sync classes). The number of
concurrent async write i/os is tuned dynamically based on i/o load, to achieve
good sync i/o latency when there is not a high load of writes, and good write
throughput when there is. See the block comment in vdev_queue.c (reproduced
below) for more details.
2. The write throttle (dsl_pool_tempreserve_space() and
txg_constrain_throughput()) is rewritten to produce much more consistent delays
when under constant load. The new write throttle is based on the amount of
dirty data, rather than guesses about future performance of the system. When
there is a lot of dirty data, each transaction (e.g. write() syscall) will be
delayed by the same small amount. This eliminates the "brick wall of wait"
that the old write throttle could hit, causing all transactions to wait several
seconds until the next txg opens. One of the keys to the new write throttle is
decrementing the amount of dirty data as i/o completes, rather than at the end
of spa_sync(). Note that the write throttle is only applied once the i/o
scheduler is issuing the maximum number of outstanding async writes. See the
block comments in dsl_pool.c and above dmu_tx_delay() (reproduced below) for
more details.
This diff has several other effects, including:
* the commonly-tuned global variable zfs_vdev_max_pending has been removed;
use per-class zfs_vdev_*_max_active values or zfs_vdev_max_active instead.
* the size of each txg (meaning the amount of dirty data written, and thus the
time it takes to write out) is now controlled differently. There is no longer
an explicit time goal; the primary determinant is amount of dirty data.
Systems that are under light or medium load will now often see that a txg is
always syncing, but the impact to performance (e.g. read latency) is minimal.
Tune zfs_dirty_data_max and zfs_dirty_data_sync to control this.
* zio_taskq_batch_pct = 75 -- Only use 75% of all CPUs for compression,
checksum, etc. This improves latency by not allowing these CPU-intensive tasks
to consume all CPU (on machines with at least 4 CPU's; the percentage is
rounded up).
--matt
APPENDIX: problems with the current i/o scheduler
The current ZFS i/o scheduler (vdev_queue.c) is deadline based. The problem
with this is that if there are always i/os pending, then certain classes of
i/os can see very long delays.
For example, if there are always synchronous reads outstanding, then no async
writes will be serviced until they become "past due". One symptom of this
situation is that each pass of the txg sync takes at least several seconds
(typically 3 seconds).
If many i/os become "past due" (their deadline is in the past), then we must
service all of these overdue i/os before any new i/os. This happens when we
enqueue a batch of async writes for the txg sync, with deadlines 2.5 seconds in
the future. If we can't complete all the i/os in 2.5 seconds (e.g. because
there were always reads pending), then these i/os will become past due. Now we
must service all the "async" writes (which could be hundreds of megabytes)
before we service any reads, introducing considerable latency to synchronous
i/os (reads or ZIL writes).
Notes on porting to ZFS on Linux:
- zio_t gained new members io_physdone and io_phys_children. Because
object caches in the Linux port call the constructor only once at
allocation time, objects may contain residual data when retrieved
from the cache. Therefore zio_create() was updated to zero out the two
new fields.
- vdev_mirror_pending() relied on the depth of the per-vdev pending queue
(vq->vq_pending_tree) to select the least-busy leaf vdev to read from.
This tree has been replaced by vq->vq_active_tree which is now used
for the same purpose.
- vdev_queue_init() used the value of zfs_vdev_max_pending to determine
the number of vdev I/O buffers to pre-allocate. That global no longer
exists, so we instead use the sum of the *_max_active values for each of
the five I/O classes described above.
- The Illumos implementation of dmu_tx_delay() delays a transaction by
sleeping in condition variable embedded in the thread
(curthread->t_delay_cv). We do not have an equivalent CV to use in
Linux, so this change replaced the delay logic with a wrapper called
zfs_sleep_until(). This wrapper could be adopted upstream and in other
downstream ports to abstract away operating system-specific delay logic.
- These tunables are added as module parameters, and descriptions added
to the zfs-module-parameters.5 man page.
spa_asize_inflation
zfs_deadman_synctime_ms
zfs_vdev_max_active
zfs_vdev_async_write_active_min_dirty_percent
zfs_vdev_async_write_active_max_dirty_percent
zfs_vdev_async_read_max_active
zfs_vdev_async_read_min_active
zfs_vdev_async_write_max_active
zfs_vdev_async_write_min_active
zfs_vdev_scrub_max_active
zfs_vdev_scrub_min_active
zfs_vdev_sync_read_max_active
zfs_vdev_sync_read_min_active
zfs_vdev_sync_write_max_active
zfs_vdev_sync_write_min_active
zfs_dirty_data_max_percent
zfs_delay_min_dirty_percent
zfs_dirty_data_max_max_percent
zfs_dirty_data_max
zfs_dirty_data_max_max
zfs_dirty_data_sync
zfs_delay_scale
The latter four have type unsigned long, whereas they are uint64_t in
Illumos. This accommodates Linux's module_param() supported types, but
means they may overflow on 32-bit architectures.
The values zfs_dirty_data_max and zfs_dirty_data_max_max are the most
likely to overflow on 32-bit systems, since they express physical RAM
sizes in bytes. In fact, Illumos initializes zfs_dirty_data_max_max to
2^32 which does overflow. To resolve that, this port instead initializes
it in arc_init() to 25% of physical RAM, and adds the tunable
zfs_dirty_data_max_max_percent to override that percentage. While this
solution doesn't completely avoid the overflow issue, it should be a
reasonable default for most systems, and the minority of affected
systems can work around the issue by overriding the defaults.
- Fixed reversed logic in comment above zfs_delay_scale declaration.
- Clarified comments in vdev_queue.c regarding when per-queue minimums take
effect.
- Replaced dmu_tx_write_limit in the dmu_tx kstat file
with dmu_tx_dirty_delay and dmu_tx_dirty_over_max. The first counts
how many times a transaction has been delayed because the pool dirty
data has exceeded zfs_delay_min_dirty_percent. The latter counts how
many times the pool dirty data has exceeded zfs_dirty_data_max (which
we expect to never happen).
- The original patch would have regressed the bug fixed in
zfsonlinux/zfs@c418410, which prevented users from setting the
zfs_vdev_aggregation_limit tuning larger than SPA_MAXBLOCKSIZE.
A similar fix is added to vdev_queue_aggregate().
- In vdev_queue_io_to_issue(), dynamically allocate 'zio_t search' on the
heap instead of the stack. In Linux we can't afford such large
structures on the stack.
Reviewed by: George Wilson <george.wilson@delphix.com>
Reviewed by: Adam Leventhal <ahl@delphix.com>
Reviewed by: Christopher Siden <christopher.siden@delphix.com>
Reviewed by: Ned Bass <bass6@llnl.gov>
Reviewed by: Brendan Gregg <brendan.gregg@joyent.com>
Approved by: Robert Mustacchi <rm@joyent.com>
References:
http://www.illumos.org/issues/4045
illumos/illumos-gate@69962b5647e4a8b9b14998733b765925381b727e
Ported-by: Ned Bass <bass6@llnl.gov>
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Closes #1913
2013-08-29 07:01:20 +04:00
|
|
|
|
/*
|
|
|
|
|
* Write out all dirty blocks of dirty datasets.
|
|
|
|
|
*/
|
2008-11-20 23:01:55 +03:00
|
|
|
|
zio = zio_root(dp->dp_spa, NULL, NULL, ZIO_FLAG_MUSTSUCCEED);
|
Illumos #4045 write throttle & i/o scheduler performance work
4045 zfs write throttle & i/o scheduler performance work
1. The ZFS i/o scheduler (vdev_queue.c) now divides i/os into 5 classes: sync
read, sync write, async read, async write, and scrub/resilver. The scheduler
issues a number of concurrent i/os from each class to the device. Once a class
has been selected, an i/o is selected from this class using either an elevator
algorithem (async, scrub classes) or FIFO (sync classes). The number of
concurrent async write i/os is tuned dynamically based on i/o load, to achieve
good sync i/o latency when there is not a high load of writes, and good write
throughput when there is. See the block comment in vdev_queue.c (reproduced
below) for more details.
2. The write throttle (dsl_pool_tempreserve_space() and
txg_constrain_throughput()) is rewritten to produce much more consistent delays
when under constant load. The new write throttle is based on the amount of
dirty data, rather than guesses about future performance of the system. When
there is a lot of dirty data, each transaction (e.g. write() syscall) will be
delayed by the same small amount. This eliminates the "brick wall of wait"
that the old write throttle could hit, causing all transactions to wait several
seconds until the next txg opens. One of the keys to the new write throttle is
decrementing the amount of dirty data as i/o completes, rather than at the end
of spa_sync(). Note that the write throttle is only applied once the i/o
scheduler is issuing the maximum number of outstanding async writes. See the
block comments in dsl_pool.c and above dmu_tx_delay() (reproduced below) for
more details.
This diff has several other effects, including:
* the commonly-tuned global variable zfs_vdev_max_pending has been removed;
use per-class zfs_vdev_*_max_active values or zfs_vdev_max_active instead.
* the size of each txg (meaning the amount of dirty data written, and thus the
time it takes to write out) is now controlled differently. There is no longer
an explicit time goal; the primary determinant is amount of dirty data.
Systems that are under light or medium load will now often see that a txg is
always syncing, but the impact to performance (e.g. read latency) is minimal.
Tune zfs_dirty_data_max and zfs_dirty_data_sync to control this.
* zio_taskq_batch_pct = 75 -- Only use 75% of all CPUs for compression,
checksum, etc. This improves latency by not allowing these CPU-intensive tasks
to consume all CPU (on machines with at least 4 CPU's; the percentage is
rounded up).
--matt
APPENDIX: problems with the current i/o scheduler
The current ZFS i/o scheduler (vdev_queue.c) is deadline based. The problem
with this is that if there are always i/os pending, then certain classes of
i/os can see very long delays.
For example, if there are always synchronous reads outstanding, then no async
writes will be serviced until they become "past due". One symptom of this
situation is that each pass of the txg sync takes at least several seconds
(typically 3 seconds).
If many i/os become "past due" (their deadline is in the past), then we must
service all of these overdue i/os before any new i/os. This happens when we
enqueue a batch of async writes for the txg sync, with deadlines 2.5 seconds in
the future. If we can't complete all the i/os in 2.5 seconds (e.g. because
there were always reads pending), then these i/os will become past due. Now we
must service all the "async" writes (which could be hundreds of megabytes)
before we service any reads, introducing considerable latency to synchronous
i/os (reads or ZIL writes).
Notes on porting to ZFS on Linux:
- zio_t gained new members io_physdone and io_phys_children. Because
object caches in the Linux port call the constructor only once at
allocation time, objects may contain residual data when retrieved
from the cache. Therefore zio_create() was updated to zero out the two
new fields.
- vdev_mirror_pending() relied on the depth of the per-vdev pending queue
(vq->vq_pending_tree) to select the least-busy leaf vdev to read from.
This tree has been replaced by vq->vq_active_tree which is now used
for the same purpose.
- vdev_queue_init() used the value of zfs_vdev_max_pending to determine
the number of vdev I/O buffers to pre-allocate. That global no longer
exists, so we instead use the sum of the *_max_active values for each of
the five I/O classes described above.
- The Illumos implementation of dmu_tx_delay() delays a transaction by
sleeping in condition variable embedded in the thread
(curthread->t_delay_cv). We do not have an equivalent CV to use in
Linux, so this change replaced the delay logic with a wrapper called
zfs_sleep_until(). This wrapper could be adopted upstream and in other
downstream ports to abstract away operating system-specific delay logic.
- These tunables are added as module parameters, and descriptions added
to the zfs-module-parameters.5 man page.
spa_asize_inflation
zfs_deadman_synctime_ms
zfs_vdev_max_active
zfs_vdev_async_write_active_min_dirty_percent
zfs_vdev_async_write_active_max_dirty_percent
zfs_vdev_async_read_max_active
zfs_vdev_async_read_min_active
zfs_vdev_async_write_max_active
zfs_vdev_async_write_min_active
zfs_vdev_scrub_max_active
zfs_vdev_scrub_min_active
zfs_vdev_sync_read_max_active
zfs_vdev_sync_read_min_active
zfs_vdev_sync_write_max_active
zfs_vdev_sync_write_min_active
zfs_dirty_data_max_percent
zfs_delay_min_dirty_percent
zfs_dirty_data_max_max_percent
zfs_dirty_data_max
zfs_dirty_data_max_max
zfs_dirty_data_sync
zfs_delay_scale
The latter four have type unsigned long, whereas they are uint64_t in
Illumos. This accommodates Linux's module_param() supported types, but
means they may overflow on 32-bit architectures.
The values zfs_dirty_data_max and zfs_dirty_data_max_max are the most
likely to overflow on 32-bit systems, since they express physical RAM
sizes in bytes. In fact, Illumos initializes zfs_dirty_data_max_max to
2^32 which does overflow. To resolve that, this port instead initializes
it in arc_init() to 25% of physical RAM, and adds the tunable
zfs_dirty_data_max_max_percent to override that percentage. While this
solution doesn't completely avoid the overflow issue, it should be a
reasonable default for most systems, and the minority of affected
systems can work around the issue by overriding the defaults.
- Fixed reversed logic in comment above zfs_delay_scale declaration.
- Clarified comments in vdev_queue.c regarding when per-queue minimums take
effect.
- Replaced dmu_tx_write_limit in the dmu_tx kstat file
with dmu_tx_dirty_delay and dmu_tx_dirty_over_max. The first counts
how many times a transaction has been delayed because the pool dirty
data has exceeded zfs_delay_min_dirty_percent. The latter counts how
many times the pool dirty data has exceeded zfs_dirty_data_max (which
we expect to never happen).
- The original patch would have regressed the bug fixed in
zfsonlinux/zfs@c418410, which prevented users from setting the
zfs_vdev_aggregation_limit tuning larger than SPA_MAXBLOCKSIZE.
A similar fix is added to vdev_queue_aggregate().
- In vdev_queue_io_to_issue(), dynamically allocate 'zio_t search' on the
heap instead of the stack. In Linux we can't afford such large
structures on the stack.
Reviewed by: George Wilson <george.wilson@delphix.com>
Reviewed by: Adam Leventhal <ahl@delphix.com>
Reviewed by: Christopher Siden <christopher.siden@delphix.com>
Reviewed by: Ned Bass <bass6@llnl.gov>
Reviewed by: Brendan Gregg <brendan.gregg@joyent.com>
Approved by: Robert Mustacchi <rm@joyent.com>
References:
http://www.illumos.org/issues/4045
illumos/illumos-gate@69962b5647e4a8b9b14998733b765925381b727e
Ported-by: Ned Bass <bass6@llnl.gov>
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Closes #1913
2013-08-29 07:01:20 +04:00
|
|
|
|
while ((ds = txg_list_remove(&dp->dp_dirty_datasets, txg)) != NULL) {
|
2009-07-03 02:44:48 +04:00
|
|
|
|
/*
|
|
|
|
|
* We must not sync any non-MOS datasets twice, because
|
|
|
|
|
* we may have taken a snapshot of them. However, we
|
|
|
|
|
* may sync newly-created datasets on pass 2.
|
|
|
|
|
*/
|
|
|
|
|
ASSERT(!list_link_active(&ds->ds_synced_link));
|
2012-12-15 04:13:40 +04:00
|
|
|
|
list_insert_tail(&synced_datasets, ds);
|
2008-11-20 23:01:55 +03:00
|
|
|
|
dsl_dataset_sync(ds, zio, tx);
|
|
|
|
|
}
|
Illumos #4045 write throttle & i/o scheduler performance work
4045 zfs write throttle & i/o scheduler performance work
1. The ZFS i/o scheduler (vdev_queue.c) now divides i/os into 5 classes: sync
read, sync write, async read, async write, and scrub/resilver. The scheduler
issues a number of concurrent i/os from each class to the device. Once a class
has been selected, an i/o is selected from this class using either an elevator
algorithem (async, scrub classes) or FIFO (sync classes). The number of
concurrent async write i/os is tuned dynamically based on i/o load, to achieve
good sync i/o latency when there is not a high load of writes, and good write
throughput when there is. See the block comment in vdev_queue.c (reproduced
below) for more details.
2. The write throttle (dsl_pool_tempreserve_space() and
txg_constrain_throughput()) is rewritten to produce much more consistent delays
when under constant load. The new write throttle is based on the amount of
dirty data, rather than guesses about future performance of the system. When
there is a lot of dirty data, each transaction (e.g. write() syscall) will be
delayed by the same small amount. This eliminates the "brick wall of wait"
that the old write throttle could hit, causing all transactions to wait several
seconds until the next txg opens. One of the keys to the new write throttle is
decrementing the amount of dirty data as i/o completes, rather than at the end
of spa_sync(). Note that the write throttle is only applied once the i/o
scheduler is issuing the maximum number of outstanding async writes. See the
block comments in dsl_pool.c and above dmu_tx_delay() (reproduced below) for
more details.
This diff has several other effects, including:
* the commonly-tuned global variable zfs_vdev_max_pending has been removed;
use per-class zfs_vdev_*_max_active values or zfs_vdev_max_active instead.
* the size of each txg (meaning the amount of dirty data written, and thus the
time it takes to write out) is now controlled differently. There is no longer
an explicit time goal; the primary determinant is amount of dirty data.
Systems that are under light or medium load will now often see that a txg is
always syncing, but the impact to performance (e.g. read latency) is minimal.
Tune zfs_dirty_data_max and zfs_dirty_data_sync to control this.
* zio_taskq_batch_pct = 75 -- Only use 75% of all CPUs for compression,
checksum, etc. This improves latency by not allowing these CPU-intensive tasks
to consume all CPU (on machines with at least 4 CPU's; the percentage is
rounded up).
--matt
APPENDIX: problems with the current i/o scheduler
The current ZFS i/o scheduler (vdev_queue.c) is deadline based. The problem
with this is that if there are always i/os pending, then certain classes of
i/os can see very long delays.
For example, if there are always synchronous reads outstanding, then no async
writes will be serviced until they become "past due". One symptom of this
situation is that each pass of the txg sync takes at least several seconds
(typically 3 seconds).
If many i/os become "past due" (their deadline is in the past), then we must
service all of these overdue i/os before any new i/os. This happens when we
enqueue a batch of async writes for the txg sync, with deadlines 2.5 seconds in
the future. If we can't complete all the i/os in 2.5 seconds (e.g. because
there were always reads pending), then these i/os will become past due. Now we
must service all the "async" writes (which could be hundreds of megabytes)
before we service any reads, introducing considerable latency to synchronous
i/os (reads or ZIL writes).
Notes on porting to ZFS on Linux:
- zio_t gained new members io_physdone and io_phys_children. Because
object caches in the Linux port call the constructor only once at
allocation time, objects may contain residual data when retrieved
from the cache. Therefore zio_create() was updated to zero out the two
new fields.
- vdev_mirror_pending() relied on the depth of the per-vdev pending queue
(vq->vq_pending_tree) to select the least-busy leaf vdev to read from.
This tree has been replaced by vq->vq_active_tree which is now used
for the same purpose.
- vdev_queue_init() used the value of zfs_vdev_max_pending to determine
the number of vdev I/O buffers to pre-allocate. That global no longer
exists, so we instead use the sum of the *_max_active values for each of
the five I/O classes described above.
- The Illumos implementation of dmu_tx_delay() delays a transaction by
sleeping in condition variable embedded in the thread
(curthread->t_delay_cv). We do not have an equivalent CV to use in
Linux, so this change replaced the delay logic with a wrapper called
zfs_sleep_until(). This wrapper could be adopted upstream and in other
downstream ports to abstract away operating system-specific delay logic.
- These tunables are added as module parameters, and descriptions added
to the zfs-module-parameters.5 man page.
spa_asize_inflation
zfs_deadman_synctime_ms
zfs_vdev_max_active
zfs_vdev_async_write_active_min_dirty_percent
zfs_vdev_async_write_active_max_dirty_percent
zfs_vdev_async_read_max_active
zfs_vdev_async_read_min_active
zfs_vdev_async_write_max_active
zfs_vdev_async_write_min_active
zfs_vdev_scrub_max_active
zfs_vdev_scrub_min_active
zfs_vdev_sync_read_max_active
zfs_vdev_sync_read_min_active
zfs_vdev_sync_write_max_active
zfs_vdev_sync_write_min_active
zfs_dirty_data_max_percent
zfs_delay_min_dirty_percent
zfs_dirty_data_max_max_percent
zfs_dirty_data_max
zfs_dirty_data_max_max
zfs_dirty_data_sync
zfs_delay_scale
The latter four have type unsigned long, whereas they are uint64_t in
Illumos. This accommodates Linux's module_param() supported types, but
means they may overflow on 32-bit architectures.
The values zfs_dirty_data_max and zfs_dirty_data_max_max are the most
likely to overflow on 32-bit systems, since they express physical RAM
sizes in bytes. In fact, Illumos initializes zfs_dirty_data_max_max to
2^32 which does overflow. To resolve that, this port instead initializes
it in arc_init() to 25% of physical RAM, and adds the tunable
zfs_dirty_data_max_max_percent to override that percentage. While this
solution doesn't completely avoid the overflow issue, it should be a
reasonable default for most systems, and the minority of affected
systems can work around the issue by overriding the defaults.
- Fixed reversed logic in comment above zfs_delay_scale declaration.
- Clarified comments in vdev_queue.c regarding when per-queue minimums take
effect.
- Replaced dmu_tx_write_limit in the dmu_tx kstat file
with dmu_tx_dirty_delay and dmu_tx_dirty_over_max. The first counts
how many times a transaction has been delayed because the pool dirty
data has exceeded zfs_delay_min_dirty_percent. The latter counts how
many times the pool dirty data has exceeded zfs_dirty_data_max (which
we expect to never happen).
- The original patch would have regressed the bug fixed in
zfsonlinux/zfs@c418410, which prevented users from setting the
zfs_vdev_aggregation_limit tuning larger than SPA_MAXBLOCKSIZE.
A similar fix is added to vdev_queue_aggregate().
- In vdev_queue_io_to_issue(), dynamically allocate 'zio_t search' on the
heap instead of the stack. In Linux we can't afford such large
structures on the stack.
Reviewed by: George Wilson <george.wilson@delphix.com>
Reviewed by: Adam Leventhal <ahl@delphix.com>
Reviewed by: Christopher Siden <christopher.siden@delphix.com>
Reviewed by: Ned Bass <bass6@llnl.gov>
Reviewed by: Brendan Gregg <brendan.gregg@joyent.com>
Approved by: Robert Mustacchi <rm@joyent.com>
References:
http://www.illumos.org/issues/4045
illumos/illumos-gate@69962b5647e4a8b9b14998733b765925381b727e
Ported-by: Ned Bass <bass6@llnl.gov>
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Closes #1913
2013-08-29 07:01:20 +04:00
|
|
|
|
VERIFY0(zio_wait(zio));
|
2009-07-03 02:44:48 +04:00
|
|
|
|
|
2017-02-01 01:44:03 +03:00
|
|
|
|
/*
|
|
|
|
|
* Update the long range free counter after
|
|
|
|
|
* we're done syncing user data
|
|
|
|
|
*/
|
|
|
|
|
mutex_enter(&dp->dp_lock);
|
|
|
|
|
ASSERT(spa_sync_pass(dp->dp_spa) == 1 ||
|
|
|
|
|
dp->dp_long_free_dirty_pertxg[txg & TXG_MASK] == 0);
|
|
|
|
|
dp->dp_long_free_dirty_pertxg[txg & TXG_MASK] = 0;
|
|
|
|
|
mutex_exit(&dp->dp_lock);
|
|
|
|
|
|
2012-12-15 04:13:40 +04:00
|
|
|
|
/*
|
|
|
|
|
* After the data blocks have been written (ensured by the zio_wait()
|
2018-02-14 01:54:54 +03:00
|
|
|
|
* above), update the user/group/project space accounting. This happens
|
2017-03-21 04:36:00 +03:00
|
|
|
|
* in tasks dispatched to dp_sync_taskq, so wait for them before
|
|
|
|
|
* continuing.
|
2012-12-15 04:13:40 +04:00
|
|
|
|
*/
|
Illumos #4045 write throttle & i/o scheduler performance work
4045 zfs write throttle & i/o scheduler performance work
1. The ZFS i/o scheduler (vdev_queue.c) now divides i/os into 5 classes: sync
read, sync write, async read, async write, and scrub/resilver. The scheduler
issues a number of concurrent i/os from each class to the device. Once a class
has been selected, an i/o is selected from this class using either an elevator
algorithem (async, scrub classes) or FIFO (sync classes). The number of
concurrent async write i/os is tuned dynamically based on i/o load, to achieve
good sync i/o latency when there is not a high load of writes, and good write
throughput when there is. See the block comment in vdev_queue.c (reproduced
below) for more details.
2. The write throttle (dsl_pool_tempreserve_space() and
txg_constrain_throughput()) is rewritten to produce much more consistent delays
when under constant load. The new write throttle is based on the amount of
dirty data, rather than guesses about future performance of the system. When
there is a lot of dirty data, each transaction (e.g. write() syscall) will be
delayed by the same small amount. This eliminates the "brick wall of wait"
that the old write throttle could hit, causing all transactions to wait several
seconds until the next txg opens. One of the keys to the new write throttle is
decrementing the amount of dirty data as i/o completes, rather than at the end
of spa_sync(). Note that the write throttle is only applied once the i/o
scheduler is issuing the maximum number of outstanding async writes. See the
block comments in dsl_pool.c and above dmu_tx_delay() (reproduced below) for
more details.
This diff has several other effects, including:
* the commonly-tuned global variable zfs_vdev_max_pending has been removed;
use per-class zfs_vdev_*_max_active values or zfs_vdev_max_active instead.
* the size of each txg (meaning the amount of dirty data written, and thus the
time it takes to write out) is now controlled differently. There is no longer
an explicit time goal; the primary determinant is amount of dirty data.
Systems that are under light or medium load will now often see that a txg is
always syncing, but the impact to performance (e.g. read latency) is minimal.
Tune zfs_dirty_data_max and zfs_dirty_data_sync to control this.
* zio_taskq_batch_pct = 75 -- Only use 75% of all CPUs for compression,
checksum, etc. This improves latency by not allowing these CPU-intensive tasks
to consume all CPU (on machines with at least 4 CPU's; the percentage is
rounded up).
--matt
APPENDIX: problems with the current i/o scheduler
The current ZFS i/o scheduler (vdev_queue.c) is deadline based. The problem
with this is that if there are always i/os pending, then certain classes of
i/os can see very long delays.
For example, if there are always synchronous reads outstanding, then no async
writes will be serviced until they become "past due". One symptom of this
situation is that each pass of the txg sync takes at least several seconds
(typically 3 seconds).
If many i/os become "past due" (their deadline is in the past), then we must
service all of these overdue i/os before any new i/os. This happens when we
enqueue a batch of async writes for the txg sync, with deadlines 2.5 seconds in
the future. If we can't complete all the i/os in 2.5 seconds (e.g. because
there were always reads pending), then these i/os will become past due. Now we
must service all the "async" writes (which could be hundreds of megabytes)
before we service any reads, introducing considerable latency to synchronous
i/os (reads or ZIL writes).
Notes on porting to ZFS on Linux:
- zio_t gained new members io_physdone and io_phys_children. Because
object caches in the Linux port call the constructor only once at
allocation time, objects may contain residual data when retrieved
from the cache. Therefore zio_create() was updated to zero out the two
new fields.
- vdev_mirror_pending() relied on the depth of the per-vdev pending queue
(vq->vq_pending_tree) to select the least-busy leaf vdev to read from.
This tree has been replaced by vq->vq_active_tree which is now used
for the same purpose.
- vdev_queue_init() used the value of zfs_vdev_max_pending to determine
the number of vdev I/O buffers to pre-allocate. That global no longer
exists, so we instead use the sum of the *_max_active values for each of
the five I/O classes described above.
- The Illumos implementation of dmu_tx_delay() delays a transaction by
sleeping in condition variable embedded in the thread
(curthread->t_delay_cv). We do not have an equivalent CV to use in
Linux, so this change replaced the delay logic with a wrapper called
zfs_sleep_until(). This wrapper could be adopted upstream and in other
downstream ports to abstract away operating system-specific delay logic.
- These tunables are added as module parameters, and descriptions added
to the zfs-module-parameters.5 man page.
spa_asize_inflation
zfs_deadman_synctime_ms
zfs_vdev_max_active
zfs_vdev_async_write_active_min_dirty_percent
zfs_vdev_async_write_active_max_dirty_percent
zfs_vdev_async_read_max_active
zfs_vdev_async_read_min_active
zfs_vdev_async_write_max_active
zfs_vdev_async_write_min_active
zfs_vdev_scrub_max_active
zfs_vdev_scrub_min_active
zfs_vdev_sync_read_max_active
zfs_vdev_sync_read_min_active
zfs_vdev_sync_write_max_active
zfs_vdev_sync_write_min_active
zfs_dirty_data_max_percent
zfs_delay_min_dirty_percent
zfs_dirty_data_max_max_percent
zfs_dirty_data_max
zfs_dirty_data_max_max
zfs_dirty_data_sync
zfs_delay_scale
The latter four have type unsigned long, whereas they are uint64_t in
Illumos. This accommodates Linux's module_param() supported types, but
means they may overflow on 32-bit architectures.
The values zfs_dirty_data_max and zfs_dirty_data_max_max are the most
likely to overflow on 32-bit systems, since they express physical RAM
sizes in bytes. In fact, Illumos initializes zfs_dirty_data_max_max to
2^32 which does overflow. To resolve that, this port instead initializes
it in arc_init() to 25% of physical RAM, and adds the tunable
zfs_dirty_data_max_max_percent to override that percentage. While this
solution doesn't completely avoid the overflow issue, it should be a
reasonable default for most systems, and the minority of affected
systems can work around the issue by overriding the defaults.
- Fixed reversed logic in comment above zfs_delay_scale declaration.
- Clarified comments in vdev_queue.c regarding when per-queue minimums take
effect.
- Replaced dmu_tx_write_limit in the dmu_tx kstat file
with dmu_tx_dirty_delay and dmu_tx_dirty_over_max. The first counts
how many times a transaction has been delayed because the pool dirty
data has exceeded zfs_delay_min_dirty_percent. The latter counts how
many times the pool dirty data has exceeded zfs_dirty_data_max (which
we expect to never happen).
- The original patch would have regressed the bug fixed in
zfsonlinux/zfs@c418410, which prevented users from setting the
zfs_vdev_aggregation_limit tuning larger than SPA_MAXBLOCKSIZE.
A similar fix is added to vdev_queue_aggregate().
- In vdev_queue_io_to_issue(), dynamically allocate 'zio_t search' on the
heap instead of the stack. In Linux we can't afford such large
structures on the stack.
Reviewed by: George Wilson <george.wilson@delphix.com>
Reviewed by: Adam Leventhal <ahl@delphix.com>
Reviewed by: Christopher Siden <christopher.siden@delphix.com>
Reviewed by: Ned Bass <bass6@llnl.gov>
Reviewed by: Brendan Gregg <brendan.gregg@joyent.com>
Approved by: Robert Mustacchi <rm@joyent.com>
References:
http://www.illumos.org/issues/4045
illumos/illumos-gate@69962b5647e4a8b9b14998733b765925381b727e
Ported-by: Ned Bass <bass6@llnl.gov>
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Closes #1913
2013-08-29 07:01:20 +04:00
|
|
|
|
for (ds = list_head(&synced_datasets); ds != NULL;
|
|
|
|
|
ds = list_next(&synced_datasets, ds)) {
|
Improve zfs receive performance with lightweight write
The performance of `zfs receive` can be bottlenecked on the CPU consumed
by the `receive_writer` thread, especially when receiving streams with
small compressed block sizes. Much of the CPU is spent creating and
destroying dbuf's and arc buf's, one for each `WRITE` record in the send
stream.
This commit introduces the concept of "lightweight writes", which allows
`zfs receive` to write to the DMU by providing an ABD, and instantiating
only a new type of `dbuf_dirty_record_t`. The dbuf and arc buf for this
"dirty leaf block" are not instantiated.
Because there is no dbuf with the dirty data, this mechanism doesn't
support reading from "lightweight-dirty" blocks (they would see the
on-disk state rather than the dirty data). Since the dedup-receive code
has been removed, `zfs receive` is write-only, so this works fine.
Because there are no arc bufs for the received data, the received data
is no longer cached in the ARC.
Testing a receive of a stream with average compressed block size of 4KB,
this commit improves performance by 50%, while also reducing CPU usage
by 50% of a CPU. On a per-block basis, CPU consumed by receive_writer()
and dbuf_evict() is now 1/7th (14%) of what it was.
Baseline: 450MB/s, CPU in receive_writer() 40% + dbuf_evict() 35%
New: 670MB/s, CPU in receive_writer() 17% + dbuf_evict() 0%
The code is also restructured in a few ways:
Added a `dr_dnode` field to the dbuf_dirty_record_t. This simplifies
some existing code that no longer needs `DB_DNODE_ENTER()` and related
routines. The new field is needed by the lightweight-type dirty record.
To ensure that the `dr_dnode` field remains valid until the dirty record
is freed, we have to ensure that the `dnode_move()` doesn't relocate the
dnode_t. To do this we keep a hold on the dnode until it's zio's have
completed. This is already done by the user-accounting code
(`userquota_updates_task()`), this commit extends that so that it always
keeps the dnode hold until zio completion (see `dnode_rele_task()`).
`dn_dirty_txg` was previously zeroed when the dnode was synced. This
was not necessary, since its meaning can be "when was this dnode last
dirtied". This change simplifies the new `dnode_rele_task()` code.
Removed some dead code related to `DRR_WRITE_BYREF` (dedup receive).
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Reviewed-by: Paul Dagnelie <pcd@delphix.com>
Reviewed-by: George Wilson <gwilson@delphix.com>
Signed-off-by: Matthew Ahrens <mahrens@delphix.com>
Closes #11105
2020-12-11 21:26:02 +03:00
|
|
|
|
dmu_objset_sync_done(ds->ds_objset, tx);
|
Illumos #4045 write throttle & i/o scheduler performance work
4045 zfs write throttle & i/o scheduler performance work
1. The ZFS i/o scheduler (vdev_queue.c) now divides i/os into 5 classes: sync
read, sync write, async read, async write, and scrub/resilver. The scheduler
issues a number of concurrent i/os from each class to the device. Once a class
has been selected, an i/o is selected from this class using either an elevator
algorithem (async, scrub classes) or FIFO (sync classes). The number of
concurrent async write i/os is tuned dynamically based on i/o load, to achieve
good sync i/o latency when there is not a high load of writes, and good write
throughput when there is. See the block comment in vdev_queue.c (reproduced
below) for more details.
2. The write throttle (dsl_pool_tempreserve_space() and
txg_constrain_throughput()) is rewritten to produce much more consistent delays
when under constant load. The new write throttle is based on the amount of
dirty data, rather than guesses about future performance of the system. When
there is a lot of dirty data, each transaction (e.g. write() syscall) will be
delayed by the same small amount. This eliminates the "brick wall of wait"
that the old write throttle could hit, causing all transactions to wait several
seconds until the next txg opens. One of the keys to the new write throttle is
decrementing the amount of dirty data as i/o completes, rather than at the end
of spa_sync(). Note that the write throttle is only applied once the i/o
scheduler is issuing the maximum number of outstanding async writes. See the
block comments in dsl_pool.c and above dmu_tx_delay() (reproduced below) for
more details.
This diff has several other effects, including:
* the commonly-tuned global variable zfs_vdev_max_pending has been removed;
use per-class zfs_vdev_*_max_active values or zfs_vdev_max_active instead.
* the size of each txg (meaning the amount of dirty data written, and thus the
time it takes to write out) is now controlled differently. There is no longer
an explicit time goal; the primary determinant is amount of dirty data.
Systems that are under light or medium load will now often see that a txg is
always syncing, but the impact to performance (e.g. read latency) is minimal.
Tune zfs_dirty_data_max and zfs_dirty_data_sync to control this.
* zio_taskq_batch_pct = 75 -- Only use 75% of all CPUs for compression,
checksum, etc. This improves latency by not allowing these CPU-intensive tasks
to consume all CPU (on machines with at least 4 CPU's; the percentage is
rounded up).
--matt
APPENDIX: problems with the current i/o scheduler
The current ZFS i/o scheduler (vdev_queue.c) is deadline based. The problem
with this is that if there are always i/os pending, then certain classes of
i/os can see very long delays.
For example, if there are always synchronous reads outstanding, then no async
writes will be serviced until they become "past due". One symptom of this
situation is that each pass of the txg sync takes at least several seconds
(typically 3 seconds).
If many i/os become "past due" (their deadline is in the past), then we must
service all of these overdue i/os before any new i/os. This happens when we
enqueue a batch of async writes for the txg sync, with deadlines 2.5 seconds in
the future. If we can't complete all the i/os in 2.5 seconds (e.g. because
there were always reads pending), then these i/os will become past due. Now we
must service all the "async" writes (which could be hundreds of megabytes)
before we service any reads, introducing considerable latency to synchronous
i/os (reads or ZIL writes).
Notes on porting to ZFS on Linux:
- zio_t gained new members io_physdone and io_phys_children. Because
object caches in the Linux port call the constructor only once at
allocation time, objects may contain residual data when retrieved
from the cache. Therefore zio_create() was updated to zero out the two
new fields.
- vdev_mirror_pending() relied on the depth of the per-vdev pending queue
(vq->vq_pending_tree) to select the least-busy leaf vdev to read from.
This tree has been replaced by vq->vq_active_tree which is now used
for the same purpose.
- vdev_queue_init() used the value of zfs_vdev_max_pending to determine
the number of vdev I/O buffers to pre-allocate. That global no longer
exists, so we instead use the sum of the *_max_active values for each of
the five I/O classes described above.
- The Illumos implementation of dmu_tx_delay() delays a transaction by
sleeping in condition variable embedded in the thread
(curthread->t_delay_cv). We do not have an equivalent CV to use in
Linux, so this change replaced the delay logic with a wrapper called
zfs_sleep_until(). This wrapper could be adopted upstream and in other
downstream ports to abstract away operating system-specific delay logic.
- These tunables are added as module parameters, and descriptions added
to the zfs-module-parameters.5 man page.
spa_asize_inflation
zfs_deadman_synctime_ms
zfs_vdev_max_active
zfs_vdev_async_write_active_min_dirty_percent
zfs_vdev_async_write_active_max_dirty_percent
zfs_vdev_async_read_max_active
zfs_vdev_async_read_min_active
zfs_vdev_async_write_max_active
zfs_vdev_async_write_min_active
zfs_vdev_scrub_max_active
zfs_vdev_scrub_min_active
zfs_vdev_sync_read_max_active
zfs_vdev_sync_read_min_active
zfs_vdev_sync_write_max_active
zfs_vdev_sync_write_min_active
zfs_dirty_data_max_percent
zfs_delay_min_dirty_percent
zfs_dirty_data_max_max_percent
zfs_dirty_data_max
zfs_dirty_data_max_max
zfs_dirty_data_sync
zfs_delay_scale
The latter four have type unsigned long, whereas they are uint64_t in
Illumos. This accommodates Linux's module_param() supported types, but
means they may overflow on 32-bit architectures.
The values zfs_dirty_data_max and zfs_dirty_data_max_max are the most
likely to overflow on 32-bit systems, since they express physical RAM
sizes in bytes. In fact, Illumos initializes zfs_dirty_data_max_max to
2^32 which does overflow. To resolve that, this port instead initializes
it in arc_init() to 25% of physical RAM, and adds the tunable
zfs_dirty_data_max_max_percent to override that percentage. While this
solution doesn't completely avoid the overflow issue, it should be a
reasonable default for most systems, and the minority of affected
systems can work around the issue by overriding the defaults.
- Fixed reversed logic in comment above zfs_delay_scale declaration.
- Clarified comments in vdev_queue.c regarding when per-queue minimums take
effect.
- Replaced dmu_tx_write_limit in the dmu_tx kstat file
with dmu_tx_dirty_delay and dmu_tx_dirty_over_max. The first counts
how many times a transaction has been delayed because the pool dirty
data has exceeded zfs_delay_min_dirty_percent. The latter counts how
many times the pool dirty data has exceeded zfs_dirty_data_max (which
we expect to never happen).
- The original patch would have regressed the bug fixed in
zfsonlinux/zfs@c418410, which prevented users from setting the
zfs_vdev_aggregation_limit tuning larger than SPA_MAXBLOCKSIZE.
A similar fix is added to vdev_queue_aggregate().
- In vdev_queue_io_to_issue(), dynamically allocate 'zio_t search' on the
heap instead of the stack. In Linux we can't afford such large
structures on the stack.
Reviewed by: George Wilson <george.wilson@delphix.com>
Reviewed by: Adam Leventhal <ahl@delphix.com>
Reviewed by: Christopher Siden <christopher.siden@delphix.com>
Reviewed by: Ned Bass <bass6@llnl.gov>
Reviewed by: Brendan Gregg <brendan.gregg@joyent.com>
Approved by: Robert Mustacchi <rm@joyent.com>
References:
http://www.illumos.org/issues/4045
illumos/illumos-gate@69962b5647e4a8b9b14998733b765925381b727e
Ported-by: Ned Bass <bass6@llnl.gov>
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Closes #1913
2013-08-29 07:01:20 +04:00
|
|
|
|
}
|
2017-03-21 04:36:00 +03:00
|
|
|
|
taskq_wait(dp->dp_sync_taskq);
|
2009-07-03 02:44:48 +04:00
|
|
|
|
|
|
|
|
|
/*
|
|
|
|
|
* Sync the datasets again to push out the changes due to
|
2010-05-29 00:45:14 +04:00
|
|
|
|
* userspace updates. This must be done before we process the
|
2012-12-15 04:13:40 +04:00
|
|
|
|
* sync tasks, so that any snapshots will have the correct
|
|
|
|
|
* user accounting information (and we won't get confused
|
|
|
|
|
* about which blocks are part of the snapshot).
|
2009-07-03 02:44:48 +04:00
|
|
|
|
*/
|
|
|
|
|
zio = zio_root(dp->dp_spa, NULL, NULL, ZIO_FLAG_MUSTSUCCEED);
|
Illumos #4045 write throttle & i/o scheduler performance work
4045 zfs write throttle & i/o scheduler performance work
1. The ZFS i/o scheduler (vdev_queue.c) now divides i/os into 5 classes: sync
read, sync write, async read, async write, and scrub/resilver. The scheduler
issues a number of concurrent i/os from each class to the device. Once a class
has been selected, an i/o is selected from this class using either an elevator
algorithem (async, scrub classes) or FIFO (sync classes). The number of
concurrent async write i/os is tuned dynamically based on i/o load, to achieve
good sync i/o latency when there is not a high load of writes, and good write
throughput when there is. See the block comment in vdev_queue.c (reproduced
below) for more details.
2. The write throttle (dsl_pool_tempreserve_space() and
txg_constrain_throughput()) is rewritten to produce much more consistent delays
when under constant load. The new write throttle is based on the amount of
dirty data, rather than guesses about future performance of the system. When
there is a lot of dirty data, each transaction (e.g. write() syscall) will be
delayed by the same small amount. This eliminates the "brick wall of wait"
that the old write throttle could hit, causing all transactions to wait several
seconds until the next txg opens. One of the keys to the new write throttle is
decrementing the amount of dirty data as i/o completes, rather than at the end
of spa_sync(). Note that the write throttle is only applied once the i/o
scheduler is issuing the maximum number of outstanding async writes. See the
block comments in dsl_pool.c and above dmu_tx_delay() (reproduced below) for
more details.
This diff has several other effects, including:
* the commonly-tuned global variable zfs_vdev_max_pending has been removed;
use per-class zfs_vdev_*_max_active values or zfs_vdev_max_active instead.
* the size of each txg (meaning the amount of dirty data written, and thus the
time it takes to write out) is now controlled differently. There is no longer
an explicit time goal; the primary determinant is amount of dirty data.
Systems that are under light or medium load will now often see that a txg is
always syncing, but the impact to performance (e.g. read latency) is minimal.
Tune zfs_dirty_data_max and zfs_dirty_data_sync to control this.
* zio_taskq_batch_pct = 75 -- Only use 75% of all CPUs for compression,
checksum, etc. This improves latency by not allowing these CPU-intensive tasks
to consume all CPU (on machines with at least 4 CPU's; the percentage is
rounded up).
--matt
APPENDIX: problems with the current i/o scheduler
The current ZFS i/o scheduler (vdev_queue.c) is deadline based. The problem
with this is that if there are always i/os pending, then certain classes of
i/os can see very long delays.
For example, if there are always synchronous reads outstanding, then no async
writes will be serviced until they become "past due". One symptom of this
situation is that each pass of the txg sync takes at least several seconds
(typically 3 seconds).
If many i/os become "past due" (their deadline is in the past), then we must
service all of these overdue i/os before any new i/os. This happens when we
enqueue a batch of async writes for the txg sync, with deadlines 2.5 seconds in
the future. If we can't complete all the i/os in 2.5 seconds (e.g. because
there were always reads pending), then these i/os will become past due. Now we
must service all the "async" writes (which could be hundreds of megabytes)
before we service any reads, introducing considerable latency to synchronous
i/os (reads or ZIL writes).
Notes on porting to ZFS on Linux:
- zio_t gained new members io_physdone and io_phys_children. Because
object caches in the Linux port call the constructor only once at
allocation time, objects may contain residual data when retrieved
from the cache. Therefore zio_create() was updated to zero out the two
new fields.
- vdev_mirror_pending() relied on the depth of the per-vdev pending queue
(vq->vq_pending_tree) to select the least-busy leaf vdev to read from.
This tree has been replaced by vq->vq_active_tree which is now used
for the same purpose.
- vdev_queue_init() used the value of zfs_vdev_max_pending to determine
the number of vdev I/O buffers to pre-allocate. That global no longer
exists, so we instead use the sum of the *_max_active values for each of
the five I/O classes described above.
- The Illumos implementation of dmu_tx_delay() delays a transaction by
sleeping in condition variable embedded in the thread
(curthread->t_delay_cv). We do not have an equivalent CV to use in
Linux, so this change replaced the delay logic with a wrapper called
zfs_sleep_until(). This wrapper could be adopted upstream and in other
downstream ports to abstract away operating system-specific delay logic.
- These tunables are added as module parameters, and descriptions added
to the zfs-module-parameters.5 man page.
spa_asize_inflation
zfs_deadman_synctime_ms
zfs_vdev_max_active
zfs_vdev_async_write_active_min_dirty_percent
zfs_vdev_async_write_active_max_dirty_percent
zfs_vdev_async_read_max_active
zfs_vdev_async_read_min_active
zfs_vdev_async_write_max_active
zfs_vdev_async_write_min_active
zfs_vdev_scrub_max_active
zfs_vdev_scrub_min_active
zfs_vdev_sync_read_max_active
zfs_vdev_sync_read_min_active
zfs_vdev_sync_write_max_active
zfs_vdev_sync_write_min_active
zfs_dirty_data_max_percent
zfs_delay_min_dirty_percent
zfs_dirty_data_max_max_percent
zfs_dirty_data_max
zfs_dirty_data_max_max
zfs_dirty_data_sync
zfs_delay_scale
The latter four have type unsigned long, whereas they are uint64_t in
Illumos. This accommodates Linux's module_param() supported types, but
means they may overflow on 32-bit architectures.
The values zfs_dirty_data_max and zfs_dirty_data_max_max are the most
likely to overflow on 32-bit systems, since they express physical RAM
sizes in bytes. In fact, Illumos initializes zfs_dirty_data_max_max to
2^32 which does overflow. To resolve that, this port instead initializes
it in arc_init() to 25% of physical RAM, and adds the tunable
zfs_dirty_data_max_max_percent to override that percentage. While this
solution doesn't completely avoid the overflow issue, it should be a
reasonable default for most systems, and the minority of affected
systems can work around the issue by overriding the defaults.
- Fixed reversed logic in comment above zfs_delay_scale declaration.
- Clarified comments in vdev_queue.c regarding when per-queue minimums take
effect.
- Replaced dmu_tx_write_limit in the dmu_tx kstat file
with dmu_tx_dirty_delay and dmu_tx_dirty_over_max. The first counts
how many times a transaction has been delayed because the pool dirty
data has exceeded zfs_delay_min_dirty_percent. The latter counts how
many times the pool dirty data has exceeded zfs_dirty_data_max (which
we expect to never happen).
- The original patch would have regressed the bug fixed in
zfsonlinux/zfs@c418410, which prevented users from setting the
zfs_vdev_aggregation_limit tuning larger than SPA_MAXBLOCKSIZE.
A similar fix is added to vdev_queue_aggregate().
- In vdev_queue_io_to_issue(), dynamically allocate 'zio_t search' on the
heap instead of the stack. In Linux we can't afford such large
structures on the stack.
Reviewed by: George Wilson <george.wilson@delphix.com>
Reviewed by: Adam Leventhal <ahl@delphix.com>
Reviewed by: Christopher Siden <christopher.siden@delphix.com>
Reviewed by: Ned Bass <bass6@llnl.gov>
Reviewed by: Brendan Gregg <brendan.gregg@joyent.com>
Approved by: Robert Mustacchi <rm@joyent.com>
References:
http://www.illumos.org/issues/4045
illumos/illumos-gate@69962b5647e4a8b9b14998733b765925381b727e
Ported-by: Ned Bass <bass6@llnl.gov>
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Closes #1913
2013-08-29 07:01:20 +04:00
|
|
|
|
while ((ds = txg_list_remove(&dp->dp_dirty_datasets, txg)) != NULL) {
|
2018-10-03 19:47:11 +03:00
|
|
|
|
objset_t *os = ds->ds_objset;
|
|
|
|
|
|
2009-07-03 02:44:48 +04:00
|
|
|
|
ASSERT(list_link_active(&ds->ds_synced_link));
|
|
|
|
|
dmu_buf_rele(ds->ds_dbuf, ds);
|
|
|
|
|
dsl_dataset_sync(ds, zio, tx);
|
2018-10-03 19:47:11 +03:00
|
|
|
|
|
|
|
|
|
/*
|
|
|
|
|
* Release any key mappings created by calls to
|
|
|
|
|
* dsl_dataset_dirty() from the userquota accounting
|
|
|
|
|
* code paths.
|
|
|
|
|
*/
|
|
|
|
|
if (os->os_encrypted && !os->os_raw_receive &&
|
|
|
|
|
!os->os_next_write_raw[txg & TXG_MASK]) {
|
|
|
|
|
ASSERT3P(ds->ds_key_mapping, !=, NULL);
|
|
|
|
|
key_mapping_rele(dp->dp_spa, ds->ds_key_mapping, ds);
|
|
|
|
|
}
|
2009-07-03 02:44:48 +04:00
|
|
|
|
}
|
Illumos #4045 write throttle & i/o scheduler performance work
4045 zfs write throttle & i/o scheduler performance work
1. The ZFS i/o scheduler (vdev_queue.c) now divides i/os into 5 classes: sync
read, sync write, async read, async write, and scrub/resilver. The scheduler
issues a number of concurrent i/os from each class to the device. Once a class
has been selected, an i/o is selected from this class using either an elevator
algorithem (async, scrub classes) or FIFO (sync classes). The number of
concurrent async write i/os is tuned dynamically based on i/o load, to achieve
good sync i/o latency when there is not a high load of writes, and good write
throughput when there is. See the block comment in vdev_queue.c (reproduced
below) for more details.
2. The write throttle (dsl_pool_tempreserve_space() and
txg_constrain_throughput()) is rewritten to produce much more consistent delays
when under constant load. The new write throttle is based on the amount of
dirty data, rather than guesses about future performance of the system. When
there is a lot of dirty data, each transaction (e.g. write() syscall) will be
delayed by the same small amount. This eliminates the "brick wall of wait"
that the old write throttle could hit, causing all transactions to wait several
seconds until the next txg opens. One of the keys to the new write throttle is
decrementing the amount of dirty data as i/o completes, rather than at the end
of spa_sync(). Note that the write throttle is only applied once the i/o
scheduler is issuing the maximum number of outstanding async writes. See the
block comments in dsl_pool.c and above dmu_tx_delay() (reproduced below) for
more details.
This diff has several other effects, including:
* the commonly-tuned global variable zfs_vdev_max_pending has been removed;
use per-class zfs_vdev_*_max_active values or zfs_vdev_max_active instead.
* the size of each txg (meaning the amount of dirty data written, and thus the
time it takes to write out) is now controlled differently. There is no longer
an explicit time goal; the primary determinant is amount of dirty data.
Systems that are under light or medium load will now often see that a txg is
always syncing, but the impact to performance (e.g. read latency) is minimal.
Tune zfs_dirty_data_max and zfs_dirty_data_sync to control this.
* zio_taskq_batch_pct = 75 -- Only use 75% of all CPUs for compression,
checksum, etc. This improves latency by not allowing these CPU-intensive tasks
to consume all CPU (on machines with at least 4 CPU's; the percentage is
rounded up).
--matt
APPENDIX: problems with the current i/o scheduler
The current ZFS i/o scheduler (vdev_queue.c) is deadline based. The problem
with this is that if there are always i/os pending, then certain classes of
i/os can see very long delays.
For example, if there are always synchronous reads outstanding, then no async
writes will be serviced until they become "past due". One symptom of this
situation is that each pass of the txg sync takes at least several seconds
(typically 3 seconds).
If many i/os become "past due" (their deadline is in the past), then we must
service all of these overdue i/os before any new i/os. This happens when we
enqueue a batch of async writes for the txg sync, with deadlines 2.5 seconds in
the future. If we can't complete all the i/os in 2.5 seconds (e.g. because
there were always reads pending), then these i/os will become past due. Now we
must service all the "async" writes (which could be hundreds of megabytes)
before we service any reads, introducing considerable latency to synchronous
i/os (reads or ZIL writes).
Notes on porting to ZFS on Linux:
- zio_t gained new members io_physdone and io_phys_children. Because
object caches in the Linux port call the constructor only once at
allocation time, objects may contain residual data when retrieved
from the cache. Therefore zio_create() was updated to zero out the two
new fields.
- vdev_mirror_pending() relied on the depth of the per-vdev pending queue
(vq->vq_pending_tree) to select the least-busy leaf vdev to read from.
This tree has been replaced by vq->vq_active_tree which is now used
for the same purpose.
- vdev_queue_init() used the value of zfs_vdev_max_pending to determine
the number of vdev I/O buffers to pre-allocate. That global no longer
exists, so we instead use the sum of the *_max_active values for each of
the five I/O classes described above.
- The Illumos implementation of dmu_tx_delay() delays a transaction by
sleeping in condition variable embedded in the thread
(curthread->t_delay_cv). We do not have an equivalent CV to use in
Linux, so this change replaced the delay logic with a wrapper called
zfs_sleep_until(). This wrapper could be adopted upstream and in other
downstream ports to abstract away operating system-specific delay logic.
- These tunables are added as module parameters, and descriptions added
to the zfs-module-parameters.5 man page.
spa_asize_inflation
zfs_deadman_synctime_ms
zfs_vdev_max_active
zfs_vdev_async_write_active_min_dirty_percent
zfs_vdev_async_write_active_max_dirty_percent
zfs_vdev_async_read_max_active
zfs_vdev_async_read_min_active
zfs_vdev_async_write_max_active
zfs_vdev_async_write_min_active
zfs_vdev_scrub_max_active
zfs_vdev_scrub_min_active
zfs_vdev_sync_read_max_active
zfs_vdev_sync_read_min_active
zfs_vdev_sync_write_max_active
zfs_vdev_sync_write_min_active
zfs_dirty_data_max_percent
zfs_delay_min_dirty_percent
zfs_dirty_data_max_max_percent
zfs_dirty_data_max
zfs_dirty_data_max_max
zfs_dirty_data_sync
zfs_delay_scale
The latter four have type unsigned long, whereas they are uint64_t in
Illumos. This accommodates Linux's module_param() supported types, but
means they may overflow on 32-bit architectures.
The values zfs_dirty_data_max and zfs_dirty_data_max_max are the most
likely to overflow on 32-bit systems, since they express physical RAM
sizes in bytes. In fact, Illumos initializes zfs_dirty_data_max_max to
2^32 which does overflow. To resolve that, this port instead initializes
it in arc_init() to 25% of physical RAM, and adds the tunable
zfs_dirty_data_max_max_percent to override that percentage. While this
solution doesn't completely avoid the overflow issue, it should be a
reasonable default for most systems, and the minority of affected
systems can work around the issue by overriding the defaults.
- Fixed reversed logic in comment above zfs_delay_scale declaration.
- Clarified comments in vdev_queue.c regarding when per-queue minimums take
effect.
- Replaced dmu_tx_write_limit in the dmu_tx kstat file
with dmu_tx_dirty_delay and dmu_tx_dirty_over_max. The first counts
how many times a transaction has been delayed because the pool dirty
data has exceeded zfs_delay_min_dirty_percent. The latter counts how
many times the pool dirty data has exceeded zfs_dirty_data_max (which
we expect to never happen).
- The original patch would have regressed the bug fixed in
zfsonlinux/zfs@c418410, which prevented users from setting the
zfs_vdev_aggregation_limit tuning larger than SPA_MAXBLOCKSIZE.
A similar fix is added to vdev_queue_aggregate().
- In vdev_queue_io_to_issue(), dynamically allocate 'zio_t search' on the
heap instead of the stack. In Linux we can't afford such large
structures on the stack.
Reviewed by: George Wilson <george.wilson@delphix.com>
Reviewed by: Adam Leventhal <ahl@delphix.com>
Reviewed by: Christopher Siden <christopher.siden@delphix.com>
Reviewed by: Ned Bass <bass6@llnl.gov>
Reviewed by: Brendan Gregg <brendan.gregg@joyent.com>
Approved by: Robert Mustacchi <rm@joyent.com>
References:
http://www.illumos.org/issues/4045
illumos/illumos-gate@69962b5647e4a8b9b14998733b765925381b727e
Ported-by: Ned Bass <bass6@llnl.gov>
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Closes #1913
2013-08-29 07:01:20 +04:00
|
|
|
|
VERIFY0(zio_wait(zio));
|
2009-07-03 02:44:48 +04:00
|
|
|
|
|
2010-05-29 00:45:14 +04:00
|
|
|
|
/*
|
2012-12-15 04:13:40 +04:00
|
|
|
|
* Now that the datasets have been completely synced, we can
|
|
|
|
|
* clean up our in-memory structures accumulated while syncing:
|
|
|
|
|
*
|
2019-07-26 20:54:14 +03:00
|
|
|
|
* - move dead blocks from the pending deadlist and livelists
|
|
|
|
|
* to the on-disk versions
|
2012-12-15 04:13:40 +04:00
|
|
|
|
* - release hold from dsl_dataset_dirty()
|
2018-10-03 19:47:11 +03:00
|
|
|
|
* - release key mapping hold from dsl_dataset_dirty()
|
2010-05-29 00:45:14 +04:00
|
|
|
|
*/
|
Illumos #4045 write throttle & i/o scheduler performance work
4045 zfs write throttle & i/o scheduler performance work
1. The ZFS i/o scheduler (vdev_queue.c) now divides i/os into 5 classes: sync
read, sync write, async read, async write, and scrub/resilver. The scheduler
issues a number of concurrent i/os from each class to the device. Once a class
has been selected, an i/o is selected from this class using either an elevator
algorithem (async, scrub classes) or FIFO (sync classes). The number of
concurrent async write i/os is tuned dynamically based on i/o load, to achieve
good sync i/o latency when there is not a high load of writes, and good write
throughput when there is. See the block comment in vdev_queue.c (reproduced
below) for more details.
2. The write throttle (dsl_pool_tempreserve_space() and
txg_constrain_throughput()) is rewritten to produce much more consistent delays
when under constant load. The new write throttle is based on the amount of
dirty data, rather than guesses about future performance of the system. When
there is a lot of dirty data, each transaction (e.g. write() syscall) will be
delayed by the same small amount. This eliminates the "brick wall of wait"
that the old write throttle could hit, causing all transactions to wait several
seconds until the next txg opens. One of the keys to the new write throttle is
decrementing the amount of dirty data as i/o completes, rather than at the end
of spa_sync(). Note that the write throttle is only applied once the i/o
scheduler is issuing the maximum number of outstanding async writes. See the
block comments in dsl_pool.c and above dmu_tx_delay() (reproduced below) for
more details.
This diff has several other effects, including:
* the commonly-tuned global variable zfs_vdev_max_pending has been removed;
use per-class zfs_vdev_*_max_active values or zfs_vdev_max_active instead.
* the size of each txg (meaning the amount of dirty data written, and thus the
time it takes to write out) is now controlled differently. There is no longer
an explicit time goal; the primary determinant is amount of dirty data.
Systems that are under light or medium load will now often see that a txg is
always syncing, but the impact to performance (e.g. read latency) is minimal.
Tune zfs_dirty_data_max and zfs_dirty_data_sync to control this.
* zio_taskq_batch_pct = 75 -- Only use 75% of all CPUs for compression,
checksum, etc. This improves latency by not allowing these CPU-intensive tasks
to consume all CPU (on machines with at least 4 CPU's; the percentage is
rounded up).
--matt
APPENDIX: problems with the current i/o scheduler
The current ZFS i/o scheduler (vdev_queue.c) is deadline based. The problem
with this is that if there are always i/os pending, then certain classes of
i/os can see very long delays.
For example, if there are always synchronous reads outstanding, then no async
writes will be serviced until they become "past due". One symptom of this
situation is that each pass of the txg sync takes at least several seconds
(typically 3 seconds).
If many i/os become "past due" (their deadline is in the past), then we must
service all of these overdue i/os before any new i/os. This happens when we
enqueue a batch of async writes for the txg sync, with deadlines 2.5 seconds in
the future. If we can't complete all the i/os in 2.5 seconds (e.g. because
there were always reads pending), then these i/os will become past due. Now we
must service all the "async" writes (which could be hundreds of megabytes)
before we service any reads, introducing considerable latency to synchronous
i/os (reads or ZIL writes).
Notes on porting to ZFS on Linux:
- zio_t gained new members io_physdone and io_phys_children. Because
object caches in the Linux port call the constructor only once at
allocation time, objects may contain residual data when retrieved
from the cache. Therefore zio_create() was updated to zero out the two
new fields.
- vdev_mirror_pending() relied on the depth of the per-vdev pending queue
(vq->vq_pending_tree) to select the least-busy leaf vdev to read from.
This tree has been replaced by vq->vq_active_tree which is now used
for the same purpose.
- vdev_queue_init() used the value of zfs_vdev_max_pending to determine
the number of vdev I/O buffers to pre-allocate. That global no longer
exists, so we instead use the sum of the *_max_active values for each of
the five I/O classes described above.
- The Illumos implementation of dmu_tx_delay() delays a transaction by
sleeping in condition variable embedded in the thread
(curthread->t_delay_cv). We do not have an equivalent CV to use in
Linux, so this change replaced the delay logic with a wrapper called
zfs_sleep_until(). This wrapper could be adopted upstream and in other
downstream ports to abstract away operating system-specific delay logic.
- These tunables are added as module parameters, and descriptions added
to the zfs-module-parameters.5 man page.
spa_asize_inflation
zfs_deadman_synctime_ms
zfs_vdev_max_active
zfs_vdev_async_write_active_min_dirty_percent
zfs_vdev_async_write_active_max_dirty_percent
zfs_vdev_async_read_max_active
zfs_vdev_async_read_min_active
zfs_vdev_async_write_max_active
zfs_vdev_async_write_min_active
zfs_vdev_scrub_max_active
zfs_vdev_scrub_min_active
zfs_vdev_sync_read_max_active
zfs_vdev_sync_read_min_active
zfs_vdev_sync_write_max_active
zfs_vdev_sync_write_min_active
zfs_dirty_data_max_percent
zfs_delay_min_dirty_percent
zfs_dirty_data_max_max_percent
zfs_dirty_data_max
zfs_dirty_data_max_max
zfs_dirty_data_sync
zfs_delay_scale
The latter four have type unsigned long, whereas they are uint64_t in
Illumos. This accommodates Linux's module_param() supported types, but
means they may overflow on 32-bit architectures.
The values zfs_dirty_data_max and zfs_dirty_data_max_max are the most
likely to overflow on 32-bit systems, since they express physical RAM
sizes in bytes. In fact, Illumos initializes zfs_dirty_data_max_max to
2^32 which does overflow. To resolve that, this port instead initializes
it in arc_init() to 25% of physical RAM, and adds the tunable
zfs_dirty_data_max_max_percent to override that percentage. While this
solution doesn't completely avoid the overflow issue, it should be a
reasonable default for most systems, and the minority of affected
systems can work around the issue by overriding the defaults.
- Fixed reversed logic in comment above zfs_delay_scale declaration.
- Clarified comments in vdev_queue.c regarding when per-queue minimums take
effect.
- Replaced dmu_tx_write_limit in the dmu_tx kstat file
with dmu_tx_dirty_delay and dmu_tx_dirty_over_max. The first counts
how many times a transaction has been delayed because the pool dirty
data has exceeded zfs_delay_min_dirty_percent. The latter counts how
many times the pool dirty data has exceeded zfs_dirty_data_max (which
we expect to never happen).
- The original patch would have regressed the bug fixed in
zfsonlinux/zfs@c418410, which prevented users from setting the
zfs_vdev_aggregation_limit tuning larger than SPA_MAXBLOCKSIZE.
A similar fix is added to vdev_queue_aggregate().
- In vdev_queue_io_to_issue(), dynamically allocate 'zio_t search' on the
heap instead of the stack. In Linux we can't afford such large
structures on the stack.
Reviewed by: George Wilson <george.wilson@delphix.com>
Reviewed by: Adam Leventhal <ahl@delphix.com>
Reviewed by: Christopher Siden <christopher.siden@delphix.com>
Reviewed by: Ned Bass <bass6@llnl.gov>
Reviewed by: Brendan Gregg <brendan.gregg@joyent.com>
Approved by: Robert Mustacchi <rm@joyent.com>
References:
http://www.illumos.org/issues/4045
illumos/illumos-gate@69962b5647e4a8b9b14998733b765925381b727e
Ported-by: Ned Bass <bass6@llnl.gov>
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Closes #1913
2013-08-29 07:01:20 +04:00
|
|
|
|
while ((ds = list_remove_head(&synced_datasets)) != NULL) {
|
2018-10-03 19:47:11 +03:00
|
|
|
|
objset_t *os = ds->ds_objset;
|
|
|
|
|
|
|
|
|
|
if (os->os_encrypted && !os->os_raw_receive &&
|
|
|
|
|
!os->os_next_write_raw[txg & TXG_MASK]) {
|
|
|
|
|
ASSERT3P(ds->ds_key_mapping, !=, NULL);
|
|
|
|
|
key_mapping_rele(dp->dp_spa, ds->ds_key_mapping, ds);
|
|
|
|
|
}
|
|
|
|
|
|
2016-11-22 02:09:54 +03:00
|
|
|
|
dsl_dataset_sync_done(ds, tx);
|
2010-05-29 00:45:14 +04:00
|
|
|
|
}
|
|
|
|
|
|
Illumos #4045 write throttle & i/o scheduler performance work
4045 zfs write throttle & i/o scheduler performance work
1. The ZFS i/o scheduler (vdev_queue.c) now divides i/os into 5 classes: sync
read, sync write, async read, async write, and scrub/resilver. The scheduler
issues a number of concurrent i/os from each class to the device. Once a class
has been selected, an i/o is selected from this class using either an elevator
algorithem (async, scrub classes) or FIFO (sync classes). The number of
concurrent async write i/os is tuned dynamically based on i/o load, to achieve
good sync i/o latency when there is not a high load of writes, and good write
throughput when there is. See the block comment in vdev_queue.c (reproduced
below) for more details.
2. The write throttle (dsl_pool_tempreserve_space() and
txg_constrain_throughput()) is rewritten to produce much more consistent delays
when under constant load. The new write throttle is based on the amount of
dirty data, rather than guesses about future performance of the system. When
there is a lot of dirty data, each transaction (e.g. write() syscall) will be
delayed by the same small amount. This eliminates the "brick wall of wait"
that the old write throttle could hit, causing all transactions to wait several
seconds until the next txg opens. One of the keys to the new write throttle is
decrementing the amount of dirty data as i/o completes, rather than at the end
of spa_sync(). Note that the write throttle is only applied once the i/o
scheduler is issuing the maximum number of outstanding async writes. See the
block comments in dsl_pool.c and above dmu_tx_delay() (reproduced below) for
more details.
This diff has several other effects, including:
* the commonly-tuned global variable zfs_vdev_max_pending has been removed;
use per-class zfs_vdev_*_max_active values or zfs_vdev_max_active instead.
* the size of each txg (meaning the amount of dirty data written, and thus the
time it takes to write out) is now controlled differently. There is no longer
an explicit time goal; the primary determinant is amount of dirty data.
Systems that are under light or medium load will now often see that a txg is
always syncing, but the impact to performance (e.g. read latency) is minimal.
Tune zfs_dirty_data_max and zfs_dirty_data_sync to control this.
* zio_taskq_batch_pct = 75 -- Only use 75% of all CPUs for compression,
checksum, etc. This improves latency by not allowing these CPU-intensive tasks
to consume all CPU (on machines with at least 4 CPU's; the percentage is
rounded up).
--matt
APPENDIX: problems with the current i/o scheduler
The current ZFS i/o scheduler (vdev_queue.c) is deadline based. The problem
with this is that if there are always i/os pending, then certain classes of
i/os can see very long delays.
For example, if there are always synchronous reads outstanding, then no async
writes will be serviced until they become "past due". One symptom of this
situation is that each pass of the txg sync takes at least several seconds
(typically 3 seconds).
If many i/os become "past due" (their deadline is in the past), then we must
service all of these overdue i/os before any new i/os. This happens when we
enqueue a batch of async writes for the txg sync, with deadlines 2.5 seconds in
the future. If we can't complete all the i/os in 2.5 seconds (e.g. because
there were always reads pending), then these i/os will become past due. Now we
must service all the "async" writes (which could be hundreds of megabytes)
before we service any reads, introducing considerable latency to synchronous
i/os (reads or ZIL writes).
Notes on porting to ZFS on Linux:
- zio_t gained new members io_physdone and io_phys_children. Because
object caches in the Linux port call the constructor only once at
allocation time, objects may contain residual data when retrieved
from the cache. Therefore zio_create() was updated to zero out the two
new fields.
- vdev_mirror_pending() relied on the depth of the per-vdev pending queue
(vq->vq_pending_tree) to select the least-busy leaf vdev to read from.
This tree has been replaced by vq->vq_active_tree which is now used
for the same purpose.
- vdev_queue_init() used the value of zfs_vdev_max_pending to determine
the number of vdev I/O buffers to pre-allocate. That global no longer
exists, so we instead use the sum of the *_max_active values for each of
the five I/O classes described above.
- The Illumos implementation of dmu_tx_delay() delays a transaction by
sleeping in condition variable embedded in the thread
(curthread->t_delay_cv). We do not have an equivalent CV to use in
Linux, so this change replaced the delay logic with a wrapper called
zfs_sleep_until(). This wrapper could be adopted upstream and in other
downstream ports to abstract away operating system-specific delay logic.
- These tunables are added as module parameters, and descriptions added
to the zfs-module-parameters.5 man page.
spa_asize_inflation
zfs_deadman_synctime_ms
zfs_vdev_max_active
zfs_vdev_async_write_active_min_dirty_percent
zfs_vdev_async_write_active_max_dirty_percent
zfs_vdev_async_read_max_active
zfs_vdev_async_read_min_active
zfs_vdev_async_write_max_active
zfs_vdev_async_write_min_active
zfs_vdev_scrub_max_active
zfs_vdev_scrub_min_active
zfs_vdev_sync_read_max_active
zfs_vdev_sync_read_min_active
zfs_vdev_sync_write_max_active
zfs_vdev_sync_write_min_active
zfs_dirty_data_max_percent
zfs_delay_min_dirty_percent
zfs_dirty_data_max_max_percent
zfs_dirty_data_max
zfs_dirty_data_max_max
zfs_dirty_data_sync
zfs_delay_scale
The latter four have type unsigned long, whereas they are uint64_t in
Illumos. This accommodates Linux's module_param() supported types, but
means they may overflow on 32-bit architectures.
The values zfs_dirty_data_max and zfs_dirty_data_max_max are the most
likely to overflow on 32-bit systems, since they express physical RAM
sizes in bytes. In fact, Illumos initializes zfs_dirty_data_max_max to
2^32 which does overflow. To resolve that, this port instead initializes
it in arc_init() to 25% of physical RAM, and adds the tunable
zfs_dirty_data_max_max_percent to override that percentage. While this
solution doesn't completely avoid the overflow issue, it should be a
reasonable default for most systems, and the minority of affected
systems can work around the issue by overriding the defaults.
- Fixed reversed logic in comment above zfs_delay_scale declaration.
- Clarified comments in vdev_queue.c regarding when per-queue minimums take
effect.
- Replaced dmu_tx_write_limit in the dmu_tx kstat file
with dmu_tx_dirty_delay and dmu_tx_dirty_over_max. The first counts
how many times a transaction has been delayed because the pool dirty
data has exceeded zfs_delay_min_dirty_percent. The latter counts how
many times the pool dirty data has exceeded zfs_dirty_data_max (which
we expect to never happen).
- The original patch would have regressed the bug fixed in
zfsonlinux/zfs@c418410, which prevented users from setting the
zfs_vdev_aggregation_limit tuning larger than SPA_MAXBLOCKSIZE.
A similar fix is added to vdev_queue_aggregate().
- In vdev_queue_io_to_issue(), dynamically allocate 'zio_t search' on the
heap instead of the stack. In Linux we can't afford such large
structures on the stack.
Reviewed by: George Wilson <george.wilson@delphix.com>
Reviewed by: Adam Leventhal <ahl@delphix.com>
Reviewed by: Christopher Siden <christopher.siden@delphix.com>
Reviewed by: Ned Bass <bass6@llnl.gov>
Reviewed by: Brendan Gregg <brendan.gregg@joyent.com>
Approved by: Robert Mustacchi <rm@joyent.com>
References:
http://www.illumos.org/issues/4045
illumos/illumos-gate@69962b5647e4a8b9b14998733b765925381b727e
Ported-by: Ned Bass <bass6@llnl.gov>
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Closes #1913
2013-08-29 07:01:20 +04:00
|
|
|
|
while ((dd = txg_list_remove(&dp->dp_dirty_dirs, txg)) != NULL) {
|
2008-11-20 23:01:55 +03:00
|
|
|
|
dsl_dir_sync(dd, tx);
|
Illumos #4045 write throttle & i/o scheduler performance work
4045 zfs write throttle & i/o scheduler performance work
1. The ZFS i/o scheduler (vdev_queue.c) now divides i/os into 5 classes: sync
read, sync write, async read, async write, and scrub/resilver. The scheduler
issues a number of concurrent i/os from each class to the device. Once a class
has been selected, an i/o is selected from this class using either an elevator
algorithem (async, scrub classes) or FIFO (sync classes). The number of
concurrent async write i/os is tuned dynamically based on i/o load, to achieve
good sync i/o latency when there is not a high load of writes, and good write
throughput when there is. See the block comment in vdev_queue.c (reproduced
below) for more details.
2. The write throttle (dsl_pool_tempreserve_space() and
txg_constrain_throughput()) is rewritten to produce much more consistent delays
when under constant load. The new write throttle is based on the amount of
dirty data, rather than guesses about future performance of the system. When
there is a lot of dirty data, each transaction (e.g. write() syscall) will be
delayed by the same small amount. This eliminates the "brick wall of wait"
that the old write throttle could hit, causing all transactions to wait several
seconds until the next txg opens. One of the keys to the new write throttle is
decrementing the amount of dirty data as i/o completes, rather than at the end
of spa_sync(). Note that the write throttle is only applied once the i/o
scheduler is issuing the maximum number of outstanding async writes. See the
block comments in dsl_pool.c and above dmu_tx_delay() (reproduced below) for
more details.
This diff has several other effects, including:
* the commonly-tuned global variable zfs_vdev_max_pending has been removed;
use per-class zfs_vdev_*_max_active values or zfs_vdev_max_active instead.
* the size of each txg (meaning the amount of dirty data written, and thus the
time it takes to write out) is now controlled differently. There is no longer
an explicit time goal; the primary determinant is amount of dirty data.
Systems that are under light or medium load will now often see that a txg is
always syncing, but the impact to performance (e.g. read latency) is minimal.
Tune zfs_dirty_data_max and zfs_dirty_data_sync to control this.
* zio_taskq_batch_pct = 75 -- Only use 75% of all CPUs for compression,
checksum, etc. This improves latency by not allowing these CPU-intensive tasks
to consume all CPU (on machines with at least 4 CPU's; the percentage is
rounded up).
--matt
APPENDIX: problems with the current i/o scheduler
The current ZFS i/o scheduler (vdev_queue.c) is deadline based. The problem
with this is that if there are always i/os pending, then certain classes of
i/os can see very long delays.
For example, if there are always synchronous reads outstanding, then no async
writes will be serviced until they become "past due". One symptom of this
situation is that each pass of the txg sync takes at least several seconds
(typically 3 seconds).
If many i/os become "past due" (their deadline is in the past), then we must
service all of these overdue i/os before any new i/os. This happens when we
enqueue a batch of async writes for the txg sync, with deadlines 2.5 seconds in
the future. If we can't complete all the i/os in 2.5 seconds (e.g. because
there were always reads pending), then these i/os will become past due. Now we
must service all the "async" writes (which could be hundreds of megabytes)
before we service any reads, introducing considerable latency to synchronous
i/os (reads or ZIL writes).
Notes on porting to ZFS on Linux:
- zio_t gained new members io_physdone and io_phys_children. Because
object caches in the Linux port call the constructor only once at
allocation time, objects may contain residual data when retrieved
from the cache. Therefore zio_create() was updated to zero out the two
new fields.
- vdev_mirror_pending() relied on the depth of the per-vdev pending queue
(vq->vq_pending_tree) to select the least-busy leaf vdev to read from.
This tree has been replaced by vq->vq_active_tree which is now used
for the same purpose.
- vdev_queue_init() used the value of zfs_vdev_max_pending to determine
the number of vdev I/O buffers to pre-allocate. That global no longer
exists, so we instead use the sum of the *_max_active values for each of
the five I/O classes described above.
- The Illumos implementation of dmu_tx_delay() delays a transaction by
sleeping in condition variable embedded in the thread
(curthread->t_delay_cv). We do not have an equivalent CV to use in
Linux, so this change replaced the delay logic with a wrapper called
zfs_sleep_until(). This wrapper could be adopted upstream and in other
downstream ports to abstract away operating system-specific delay logic.
- These tunables are added as module parameters, and descriptions added
to the zfs-module-parameters.5 man page.
spa_asize_inflation
zfs_deadman_synctime_ms
zfs_vdev_max_active
zfs_vdev_async_write_active_min_dirty_percent
zfs_vdev_async_write_active_max_dirty_percent
zfs_vdev_async_read_max_active
zfs_vdev_async_read_min_active
zfs_vdev_async_write_max_active
zfs_vdev_async_write_min_active
zfs_vdev_scrub_max_active
zfs_vdev_scrub_min_active
zfs_vdev_sync_read_max_active
zfs_vdev_sync_read_min_active
zfs_vdev_sync_write_max_active
zfs_vdev_sync_write_min_active
zfs_dirty_data_max_percent
zfs_delay_min_dirty_percent
zfs_dirty_data_max_max_percent
zfs_dirty_data_max
zfs_dirty_data_max_max
zfs_dirty_data_sync
zfs_delay_scale
The latter four have type unsigned long, whereas they are uint64_t in
Illumos. This accommodates Linux's module_param() supported types, but
means they may overflow on 32-bit architectures.
The values zfs_dirty_data_max and zfs_dirty_data_max_max are the most
likely to overflow on 32-bit systems, since they express physical RAM
sizes in bytes. In fact, Illumos initializes zfs_dirty_data_max_max to
2^32 which does overflow. To resolve that, this port instead initializes
it in arc_init() to 25% of physical RAM, and adds the tunable
zfs_dirty_data_max_max_percent to override that percentage. While this
solution doesn't completely avoid the overflow issue, it should be a
reasonable default for most systems, and the minority of affected
systems can work around the issue by overriding the defaults.
- Fixed reversed logic in comment above zfs_delay_scale declaration.
- Clarified comments in vdev_queue.c regarding when per-queue minimums take
effect.
- Replaced dmu_tx_write_limit in the dmu_tx kstat file
with dmu_tx_dirty_delay and dmu_tx_dirty_over_max. The first counts
how many times a transaction has been delayed because the pool dirty
data has exceeded zfs_delay_min_dirty_percent. The latter counts how
many times the pool dirty data has exceeded zfs_dirty_data_max (which
we expect to never happen).
- The original patch would have regressed the bug fixed in
zfsonlinux/zfs@c418410, which prevented users from setting the
zfs_vdev_aggregation_limit tuning larger than SPA_MAXBLOCKSIZE.
A similar fix is added to vdev_queue_aggregate().
- In vdev_queue_io_to_issue(), dynamically allocate 'zio_t search' on the
heap instead of the stack. In Linux we can't afford such large
structures on the stack.
Reviewed by: George Wilson <george.wilson@delphix.com>
Reviewed by: Adam Leventhal <ahl@delphix.com>
Reviewed by: Christopher Siden <christopher.siden@delphix.com>
Reviewed by: Ned Bass <bass6@llnl.gov>
Reviewed by: Brendan Gregg <brendan.gregg@joyent.com>
Approved by: Robert Mustacchi <rm@joyent.com>
References:
http://www.illumos.org/issues/4045
illumos/illumos-gate@69962b5647e4a8b9b14998733b765925381b727e
Ported-by: Ned Bass <bass6@llnl.gov>
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Closes #1913
2013-08-29 07:01:20 +04:00
|
|
|
|
}
|
2008-12-03 23:09:06 +03:00
|
|
|
|
|
2012-12-15 04:13:40 +04:00
|
|
|
|
/*
|
|
|
|
|
* The MOS's space is accounted for in the pool/$MOS
|
|
|
|
|
* (dp_mos_dir). We can't modify the mos while we're syncing
|
|
|
|
|
* it, so we remember the deltas and apply them here.
|
|
|
|
|
*/
|
|
|
|
|
if (dp->dp_mos_used_delta != 0 || dp->dp_mos_compressed_delta != 0 ||
|
|
|
|
|
dp->dp_mos_uncompressed_delta != 0) {
|
|
|
|
|
dsl_dir_diduse_space(dp->dp_mos_dir, DD_USED_HEAD,
|
|
|
|
|
dp->dp_mos_used_delta,
|
|
|
|
|
dp->dp_mos_compressed_delta,
|
|
|
|
|
dp->dp_mos_uncompressed_delta, tx);
|
|
|
|
|
dp->dp_mos_used_delta = 0;
|
|
|
|
|
dp->dp_mos_compressed_delta = 0;
|
|
|
|
|
dp->dp_mos_uncompressed_delta = 0;
|
|
|
|
|
}
|
|
|
|
|
|
Log Spacemap Project
= Motivation
At Delphix we've seen a lot of customer systems where fragmentation
is over 75% and random writes take a performance hit because a lot
of time is spend on I/Os that update on-disk space accounting metadata.
Specifically, we seen cases where 20% to 40% of sync time is spend
after sync pass 1 and ~30% of the I/Os on the system is spent updating
spacemaps.
The problem is that these pools have existed long enough that we've
touched almost every metaslab at least once, and random writes
scatter frees across all metaslabs every TXG, thus appending to
their spacemaps and resulting in many I/Os. To give an example,
assuming that every VDEV has 200 metaslabs and our writes fit within
a single spacemap block (generally 4K) we have 200 I/Os. Then if we
assume 2 levels of indirection, we need 400 additional I/Os and
since we are talking about metadata for which we keep 2 extra copies
for redundancy we need to triple that number, leading to a total of
1800 I/Os per VDEV every TXG.
We could try and decrease the number of metaslabs so we have less
I/Os per TXG but then each metaslab would cover a wider range on
disk and thus would take more time to be loaded in memory from disk.
In addition, after it's loaded, it's range tree would consume more
memory.
Another idea would be to just increase the spacemap block size
which would allow us to fit more entries within an I/O block
resulting in fewer I/Os per metaslab and a speedup in loading time.
The problem is still that we don't deal with the number of I/Os
going up as the number of metaslabs is increasing and the fact
is that we generally write a lot to a few metaslabs and a little
to the rest of them. Thus, just increasing the block size would
actually waste bandwidth because we won't be utilizing our bigger
block size.
= About this patch
This patch introduces the Log Spacemap project which provides the
solution to the above problem while taking into account all the
aforementioned tradeoffs. The details on how it achieves that can
be found in the references sections below and in the code (see
Big Theory Statement in spa_log_spacemap.c).
Even though the change is fairly constraint within the metaslab
and lower-level SPA codepaths, there is a side-change that is
user-facing. The change is that VDEV IDs from VDEV holes will no
longer be reused. To give some background and reasoning for this,
when a log device is removed and its VDEV structure was replaced
with a hole (or was compacted; if at the end of the vdev array),
its vdev_id could be reused by devices added after that. Now
with the pool-wide space maps recording the vdev ID, this behavior
can cause problems (e.g. is this entry referring to a segment in
the new vdev or the removed log?). Thus, to simplify things the
ID reuse behavior is gone and now vdev IDs for top-level vdevs
are truly unique within a pool.
= Testing
The illumos implementation of this feature has been used internally
for a year and has been in production for ~6 months. For this patch
specifically there don't seem to be any regressions introduced to
ZTS and I have been running zloop for a week without any related
problems.
= Performance Analysis (Linux Specific)
All performance results and analysis for illumos can be found in
the links of the references. Redoing the same experiments in Linux
gave similar results. Below are the specifics of the Linux run.
After the pool reached stable state the percentage of the time
spent in pass 1 per TXG was 64% on average for the stock bits
while the log spacemap bits stayed at 95% during the experiment
(graph: sdimitro.github.io/img/linux-lsm/PercOfSyncInPassOne.png).
Sync times per TXG were 37.6 seconds on average for the stock
bits and 22.7 seconds for the log spacemap bits (related graph:
sdimitro.github.io/img/linux-lsm/SyncTimePerTXG.png). As a result
the log spacemap bits were able to push more TXGs, which is also
the reason why all graphs quantified per TXG have more entries for
the log spacemap bits.
Another interesting aspect in terms of txg syncs is that the stock
bits had 22% of their TXGs reach sync pass 7, 55% reach sync pass 8,
and 20% reach 9. The log space map bits reached sync pass 4 in 79%
of their TXGs, sync pass 7 in 19%, and sync pass 8 at 1%. This
emphasizes the fact that not only we spend less time on metadata
but we also iterate less times to convergence in spa_sync() dirtying
objects.
[related graphs:
stock- sdimitro.github.io/img/linux-lsm/NumberOfPassesPerTXGStock.png
lsm- sdimitro.github.io/img/linux-lsm/NumberOfPassesPerTXGLSM.png]
Finally, the improvement in IOPs that the userland gains from the
change is approximately 40%. There is a consistent win in IOPS as
you can see from the graphs below but the absolute amount of
improvement that the log spacemap gives varies within each minute
interval.
sdimitro.github.io/img/linux-lsm/StockVsLog3Days.png
sdimitro.github.io/img/linux-lsm/StockVsLog10Hours.png
= Porting to Other Platforms
For people that want to port this commit to other platforms below
is a list of ZoL commits that this patch depends on:
Make zdb results for checkpoint tests consistent
db587941c5ff6dea01932bb78f70db63cf7f38ba
Update vdev_is_spacemap_addressable() for new spacemap encoding
419ba5914552c6185afbe1dd17b3ed4b0d526547
Simplify spa_sync by breaking it up to smaller functions
8dc2197b7b1e4d7ebc1420ea30e51c6541f1d834
Factor metaslab_load_wait() in metaslab_load()
b194fab0fb6caad18711abccaff3c69ad8b3f6d3
Rename range_tree_verify to range_tree_verify_not_present
df72b8bebe0ebac0b20e0750984bad182cb6564a
Change target size of metaslabs from 256GB to 16GB
c853f382db731e15a87512f4ef1101d14d778a55
zdb -L should skip leak detection altogether
21e7cf5da89f55ce98ec1115726b150e19eefe89
vs_alloc can underflow in L2ARC vdevs
7558997d2f808368867ca7e5234e5793446e8f3f
Simplify log vdev removal code
6c926f426a26ffb6d7d8e563e33fc176164175cb
Get rid of space_map_update() for ms_synced_length
425d3237ee88abc53d8522a7139c926d278b4b7f
Introduce auxiliary metaslab histograms
928e8ad47d3478a3d5d01f0dd6ae74a9371af65e
Error path in metaslab_load_impl() forgets to drop ms_sync_lock
8eef997679ba54547f7d361553d21b3291f41ae7
= References
Background, Motivation, and Internals of the Feature
- OpenZFS 2017 Presentation:
youtu.be/jj2IxRkl5bQ
- Slides:
slideshare.net/SerapheimNikolaosDim/zfs-log-spacemaps-project
Flushing Algorithm Internals & Performance Results
(Illumos Specific)
- Blogpost:
sdimitro.github.io/post/zfs-lsm-flushing/
- OpenZFS 2018 Presentation:
youtu.be/x6D2dHRjkxw
- Slides:
slideshare.net/SerapheimNikolaosDim/zfs-log-spacemap-flushing-algorithm
Upstream Delphix Issues:
DLPX-51539, DLPX-59659, DLPX-57783, DLPX-61438, DLPX-41227, DLPX-59320
DLPX-63385
Reviewed-by: Sean Eric Fagan <sef@ixsystems.com>
Reviewed-by: Matt Ahrens <matt@delphix.com>
Reviewed-by: George Wilson <gwilson@delphix.com>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Serapheim Dimitropoulos <serapheim@delphix.com>
Closes #8442
2019-07-16 20:11:49 +03:00
|
|
|
|
if (dmu_objset_is_dirty(mos, txg)) {
|
Illumos #4045 write throttle & i/o scheduler performance work
4045 zfs write throttle & i/o scheduler performance work
1. The ZFS i/o scheduler (vdev_queue.c) now divides i/os into 5 classes: sync
read, sync write, async read, async write, and scrub/resilver. The scheduler
issues a number of concurrent i/os from each class to the device. Once a class
has been selected, an i/o is selected from this class using either an elevator
algorithem (async, scrub classes) or FIFO (sync classes). The number of
concurrent async write i/os is tuned dynamically based on i/o load, to achieve
good sync i/o latency when there is not a high load of writes, and good write
throughput when there is. See the block comment in vdev_queue.c (reproduced
below) for more details.
2. The write throttle (dsl_pool_tempreserve_space() and
txg_constrain_throughput()) is rewritten to produce much more consistent delays
when under constant load. The new write throttle is based on the amount of
dirty data, rather than guesses about future performance of the system. When
there is a lot of dirty data, each transaction (e.g. write() syscall) will be
delayed by the same small amount. This eliminates the "brick wall of wait"
that the old write throttle could hit, causing all transactions to wait several
seconds until the next txg opens. One of the keys to the new write throttle is
decrementing the amount of dirty data as i/o completes, rather than at the end
of spa_sync(). Note that the write throttle is only applied once the i/o
scheduler is issuing the maximum number of outstanding async writes. See the
block comments in dsl_pool.c and above dmu_tx_delay() (reproduced below) for
more details.
This diff has several other effects, including:
* the commonly-tuned global variable zfs_vdev_max_pending has been removed;
use per-class zfs_vdev_*_max_active values or zfs_vdev_max_active instead.
* the size of each txg (meaning the amount of dirty data written, and thus the
time it takes to write out) is now controlled differently. There is no longer
an explicit time goal; the primary determinant is amount of dirty data.
Systems that are under light or medium load will now often see that a txg is
always syncing, but the impact to performance (e.g. read latency) is minimal.
Tune zfs_dirty_data_max and zfs_dirty_data_sync to control this.
* zio_taskq_batch_pct = 75 -- Only use 75% of all CPUs for compression,
checksum, etc. This improves latency by not allowing these CPU-intensive tasks
to consume all CPU (on machines with at least 4 CPU's; the percentage is
rounded up).
--matt
APPENDIX: problems with the current i/o scheduler
The current ZFS i/o scheduler (vdev_queue.c) is deadline based. The problem
with this is that if there are always i/os pending, then certain classes of
i/os can see very long delays.
For example, if there are always synchronous reads outstanding, then no async
writes will be serviced until they become "past due". One symptom of this
situation is that each pass of the txg sync takes at least several seconds
(typically 3 seconds).
If many i/os become "past due" (their deadline is in the past), then we must
service all of these overdue i/os before any new i/os. This happens when we
enqueue a batch of async writes for the txg sync, with deadlines 2.5 seconds in
the future. If we can't complete all the i/os in 2.5 seconds (e.g. because
there were always reads pending), then these i/os will become past due. Now we
must service all the "async" writes (which could be hundreds of megabytes)
before we service any reads, introducing considerable latency to synchronous
i/os (reads or ZIL writes).
Notes on porting to ZFS on Linux:
- zio_t gained new members io_physdone and io_phys_children. Because
object caches in the Linux port call the constructor only once at
allocation time, objects may contain residual data when retrieved
from the cache. Therefore zio_create() was updated to zero out the two
new fields.
- vdev_mirror_pending() relied on the depth of the per-vdev pending queue
(vq->vq_pending_tree) to select the least-busy leaf vdev to read from.
This tree has been replaced by vq->vq_active_tree which is now used
for the same purpose.
- vdev_queue_init() used the value of zfs_vdev_max_pending to determine
the number of vdev I/O buffers to pre-allocate. That global no longer
exists, so we instead use the sum of the *_max_active values for each of
the five I/O classes described above.
- The Illumos implementation of dmu_tx_delay() delays a transaction by
sleeping in condition variable embedded in the thread
(curthread->t_delay_cv). We do not have an equivalent CV to use in
Linux, so this change replaced the delay logic with a wrapper called
zfs_sleep_until(). This wrapper could be adopted upstream and in other
downstream ports to abstract away operating system-specific delay logic.
- These tunables are added as module parameters, and descriptions added
to the zfs-module-parameters.5 man page.
spa_asize_inflation
zfs_deadman_synctime_ms
zfs_vdev_max_active
zfs_vdev_async_write_active_min_dirty_percent
zfs_vdev_async_write_active_max_dirty_percent
zfs_vdev_async_read_max_active
zfs_vdev_async_read_min_active
zfs_vdev_async_write_max_active
zfs_vdev_async_write_min_active
zfs_vdev_scrub_max_active
zfs_vdev_scrub_min_active
zfs_vdev_sync_read_max_active
zfs_vdev_sync_read_min_active
zfs_vdev_sync_write_max_active
zfs_vdev_sync_write_min_active
zfs_dirty_data_max_percent
zfs_delay_min_dirty_percent
zfs_dirty_data_max_max_percent
zfs_dirty_data_max
zfs_dirty_data_max_max
zfs_dirty_data_sync
zfs_delay_scale
The latter four have type unsigned long, whereas they are uint64_t in
Illumos. This accommodates Linux's module_param() supported types, but
means they may overflow on 32-bit architectures.
The values zfs_dirty_data_max and zfs_dirty_data_max_max are the most
likely to overflow on 32-bit systems, since they express physical RAM
sizes in bytes. In fact, Illumos initializes zfs_dirty_data_max_max to
2^32 which does overflow. To resolve that, this port instead initializes
it in arc_init() to 25% of physical RAM, and adds the tunable
zfs_dirty_data_max_max_percent to override that percentage. While this
solution doesn't completely avoid the overflow issue, it should be a
reasonable default for most systems, and the minority of affected
systems can work around the issue by overriding the defaults.
- Fixed reversed logic in comment above zfs_delay_scale declaration.
- Clarified comments in vdev_queue.c regarding when per-queue minimums take
effect.
- Replaced dmu_tx_write_limit in the dmu_tx kstat file
with dmu_tx_dirty_delay and dmu_tx_dirty_over_max. The first counts
how many times a transaction has been delayed because the pool dirty
data has exceeded zfs_delay_min_dirty_percent. The latter counts how
many times the pool dirty data has exceeded zfs_dirty_data_max (which
we expect to never happen).
- The original patch would have regressed the bug fixed in
zfsonlinux/zfs@c418410, which prevented users from setting the
zfs_vdev_aggregation_limit tuning larger than SPA_MAXBLOCKSIZE.
A similar fix is added to vdev_queue_aggregate().
- In vdev_queue_io_to_issue(), dynamically allocate 'zio_t search' on the
heap instead of the stack. In Linux we can't afford such large
structures on the stack.
Reviewed by: George Wilson <george.wilson@delphix.com>
Reviewed by: Adam Leventhal <ahl@delphix.com>
Reviewed by: Christopher Siden <christopher.siden@delphix.com>
Reviewed by: Ned Bass <bass6@llnl.gov>
Reviewed by: Brendan Gregg <brendan.gregg@joyent.com>
Approved by: Robert Mustacchi <rm@joyent.com>
References:
http://www.illumos.org/issues/4045
illumos/illumos-gate@69962b5647e4a8b9b14998733b765925381b727e
Ported-by: Ned Bass <bass6@llnl.gov>
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Closes #1913
2013-08-29 07:01:20 +04:00
|
|
|
|
dsl_pool_sync_mos(dp, tx);
|
2008-11-20 23:01:55 +03:00
|
|
|
|
}
|
|
|
|
|
|
dmu_tx_wait() hang likely due to cv_signal() in dsl_pool_dirty_delta()
Even though the bug's writeup (Github issue #9136) is very detailed,
we still don't know exactly how we got to that state, thus I wasn't
able to reproduce the bug. That said, we can make an educated guess
combining the information on filled issue with the code.
From the fact that `dp_dirty_total` was 0 (which is less than
`zfs_dirty_data_max`) we know that there was one thread that set it to
0 and then signaled one of the waiters of `dp_spaceavail_cv` [see
`dsl_pool_dirty_delta()` which is also the only place that
`dp_dirty_total` is changed]. Thus, the only logical explaination
then for the bug being hit is that the waiter that just got awaken
didn't go through `dsl_pool_dirty_data()`. Given that this function
is only called by `dsl_pool_dirty_space()` or `dsl_pool_undirty_space()`
I can only think of two possible ways of the above scenario happening:
[1] The waiter didn't call into any of the two functions - which I
find highly unlikely (i.e. why wait on `dp_spaceavail_cv` to begin
with?).
[2] The waiter did call in one of the above function but it passed 0 as
the space/delta to be dirtied (or undirtied) and then the callee
returned immediately (e.g both `dsl_pool_dirty_space()` and
`dsl_pool_undirty_space()` return immediately when space is 0).
In any case and no matter how we got there, the easy fix would be to
just broadcast to all waiters whenever `dp_dirty_total` hits 0. That
said and given that we've never hit this before, it would make sense
to think more on why the above situation occured.
Attempting to mimic what Prakash was doing in the issue filed, I
created a dataset with `sync=always` and started doing contiguous
writes in a file within that dataset. I observed with DTrace that even
though we update the pool's dirty data accounting when we would dirty
stuff, the accounting wouldn't be decremented incrementally as we were
done with the ZIOs of those writes (the reason being that
`dbuf_write_physdone()` isn't be called as we go through the override
code paths, and thus `dsl_pool_undirty_space()` is never called). As a
result we'd have to wait until we get to `dsl_pool_sync()` where we
zero out all dirty data accounting for the pool and the current TXG's
metadata.
In addition, as Matt noted and I later verified, the same issue would
arise when using dedup.
In both cases (sync & dedup) we shouldn't have to wait until
`dsl_pool_sync()` zeros out the accounting data. According to the
comment in that part of the code, the reasons why we do the zeroing,
have nothing to do with what we observe:
````
/*
* We have written all of the accounted dirty data, so our
* dp_space_towrite should now be zero. However, some seldom-used
* code paths do not adhere to this (e.g. dbuf_undirty(), also
* rounding error in dbuf_write_physdone).
* Shore up the accounting of any dirtied space now.
*/
dsl_pool_undirty_space(dp, dp->dp_dirty_pertxg[txg & TXG_MASK], txg);
````
Ideally what we want to do is to undirty in the accounting exactly what
we dirty (I use the word ideally as we can still have rounding errors).
This would make the behavior of the system more clear and predictable.
Another interesting issue that I observed with DTrace was that we
wouldn't update any of the pool's dirty data accounting whenever we
would dirty and/or undirty MOS data. In addition, every time we would
change the size of a dbuf through `dbuf_new_size()` we wouldn't update
the accounted space dirtied in the appropriate dirty record, so when
ZIOs are done we would undirty less that we dirtied from the pool's
accounting point of view.
For the first two issues observed (sync & dedup) this patch ensures
that we still update the pool's accounting when we undirty data,
regardless of the write being physical or not.
For changes in the MOS, we first ensure to zero out the pool's dirty
data accounting in `dsl_pool_sync()` after we synced the MOS. Then we
can go ahead and enable the update of the pool's dirty data accounting
wheneve we change MOS data.
Another fix is that we now update the accounting explicitly for
counting errors in `dbuf_write_done()`.
Finally, `dbuf_new_size()` updates the accounted space of the
appropriate dirty record correctly now.
The problem is that we still don't know how the bug came up in the
issue filled. That said the issues fixed seem to be very relevant, so
instead of going with the broadcasting solution right away,
I decided to leave this patch as is.
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Reviewed-by: Prakash Surya <prakash.surya@delphix.com>
Signed-off-by: Serapheim Dimitropoulos <serapheim@delphix.com>
External-issue: DLPX-47285
Closes #9137
2019-08-16 02:53:53 +03:00
|
|
|
|
/*
|
|
|
|
|
* We have written all of the accounted dirty data, so our
|
|
|
|
|
* dp_space_towrite should now be zero. However, some seldom-used
|
|
|
|
|
* code paths do not adhere to this (e.g. dbuf_undirty()). Shore up
|
|
|
|
|
* the accounting of any dirtied space now.
|
|
|
|
|
*
|
|
|
|
|
* Note that, besides any dirty data from datasets, the amount of
|
|
|
|
|
* dirty data in the MOS is also accounted by the pool. Therefore,
|
|
|
|
|
* we want to do this cleanup after dsl_pool_sync_mos() so we don't
|
|
|
|
|
* attempt to update the accounting for the same dirty data twice.
|
|
|
|
|
* (i.e. at this point we only update the accounting for the space
|
|
|
|
|
* that we know that we "leaked").
|
|
|
|
|
*/
|
|
|
|
|
dsl_pool_undirty_space(dp, dp->dp_dirty_pertxg[txg & TXG_MASK], txg);
|
|
|
|
|
|
2012-12-15 04:13:40 +04:00
|
|
|
|
/*
|
|
|
|
|
* If we modify a dataset in the same txg that we want to destroy it,
|
|
|
|
|
* its dsl_dir's dd_dbuf will be dirty, and thus have a hold on it.
|
|
|
|
|
* dsl_dir_destroy_check() will fail if there are unexpected holds.
|
|
|
|
|
* Therefore, we want to sync the MOS (thus syncing the dd_dbuf
|
|
|
|
|
* and clearing the hold on it) before we process the sync_tasks.
|
|
|
|
|
* The MOS data dirtied by the sync_tasks will be synced on the next
|
|
|
|
|
* pass.
|
|
|
|
|
*/
|
|
|
|
|
if (!txg_list_empty(&dp->dp_sync_tasks, txg)) {
|
2013-09-04 16:00:57 +04:00
|
|
|
|
dsl_sync_task_t *dst;
|
2012-12-15 04:13:40 +04:00
|
|
|
|
/*
|
|
|
|
|
* No more sync tasks should have been added while we
|
|
|
|
|
* were syncing.
|
|
|
|
|
*/
|
Illumos #4045 write throttle & i/o scheduler performance work
4045 zfs write throttle & i/o scheduler performance work
1. The ZFS i/o scheduler (vdev_queue.c) now divides i/os into 5 classes: sync
read, sync write, async read, async write, and scrub/resilver. The scheduler
issues a number of concurrent i/os from each class to the device. Once a class
has been selected, an i/o is selected from this class using either an elevator
algorithem (async, scrub classes) or FIFO (sync classes). The number of
concurrent async write i/os is tuned dynamically based on i/o load, to achieve
good sync i/o latency when there is not a high load of writes, and good write
throughput when there is. See the block comment in vdev_queue.c (reproduced
below) for more details.
2. The write throttle (dsl_pool_tempreserve_space() and
txg_constrain_throughput()) is rewritten to produce much more consistent delays
when under constant load. The new write throttle is based on the amount of
dirty data, rather than guesses about future performance of the system. When
there is a lot of dirty data, each transaction (e.g. write() syscall) will be
delayed by the same small amount. This eliminates the "brick wall of wait"
that the old write throttle could hit, causing all transactions to wait several
seconds until the next txg opens. One of the keys to the new write throttle is
decrementing the amount of dirty data as i/o completes, rather than at the end
of spa_sync(). Note that the write throttle is only applied once the i/o
scheduler is issuing the maximum number of outstanding async writes. See the
block comments in dsl_pool.c and above dmu_tx_delay() (reproduced below) for
more details.
This diff has several other effects, including:
* the commonly-tuned global variable zfs_vdev_max_pending has been removed;
use per-class zfs_vdev_*_max_active values or zfs_vdev_max_active instead.
* the size of each txg (meaning the amount of dirty data written, and thus the
time it takes to write out) is now controlled differently. There is no longer
an explicit time goal; the primary determinant is amount of dirty data.
Systems that are under light or medium load will now often see that a txg is
always syncing, but the impact to performance (e.g. read latency) is minimal.
Tune zfs_dirty_data_max and zfs_dirty_data_sync to control this.
* zio_taskq_batch_pct = 75 -- Only use 75% of all CPUs for compression,
checksum, etc. This improves latency by not allowing these CPU-intensive tasks
to consume all CPU (on machines with at least 4 CPU's; the percentage is
rounded up).
--matt
APPENDIX: problems with the current i/o scheduler
The current ZFS i/o scheduler (vdev_queue.c) is deadline based. The problem
with this is that if there are always i/os pending, then certain classes of
i/os can see very long delays.
For example, if there are always synchronous reads outstanding, then no async
writes will be serviced until they become "past due". One symptom of this
situation is that each pass of the txg sync takes at least several seconds
(typically 3 seconds).
If many i/os become "past due" (their deadline is in the past), then we must
service all of these overdue i/os before any new i/os. This happens when we
enqueue a batch of async writes for the txg sync, with deadlines 2.5 seconds in
the future. If we can't complete all the i/os in 2.5 seconds (e.g. because
there were always reads pending), then these i/os will become past due. Now we
must service all the "async" writes (which could be hundreds of megabytes)
before we service any reads, introducing considerable latency to synchronous
i/os (reads or ZIL writes).
Notes on porting to ZFS on Linux:
- zio_t gained new members io_physdone and io_phys_children. Because
object caches in the Linux port call the constructor only once at
allocation time, objects may contain residual data when retrieved
from the cache. Therefore zio_create() was updated to zero out the two
new fields.
- vdev_mirror_pending() relied on the depth of the per-vdev pending queue
(vq->vq_pending_tree) to select the least-busy leaf vdev to read from.
This tree has been replaced by vq->vq_active_tree which is now used
for the same purpose.
- vdev_queue_init() used the value of zfs_vdev_max_pending to determine
the number of vdev I/O buffers to pre-allocate. That global no longer
exists, so we instead use the sum of the *_max_active values for each of
the five I/O classes described above.
- The Illumos implementation of dmu_tx_delay() delays a transaction by
sleeping in condition variable embedded in the thread
(curthread->t_delay_cv). We do not have an equivalent CV to use in
Linux, so this change replaced the delay logic with a wrapper called
zfs_sleep_until(). This wrapper could be adopted upstream and in other
downstream ports to abstract away operating system-specific delay logic.
- These tunables are added as module parameters, and descriptions added
to the zfs-module-parameters.5 man page.
spa_asize_inflation
zfs_deadman_synctime_ms
zfs_vdev_max_active
zfs_vdev_async_write_active_min_dirty_percent
zfs_vdev_async_write_active_max_dirty_percent
zfs_vdev_async_read_max_active
zfs_vdev_async_read_min_active
zfs_vdev_async_write_max_active
zfs_vdev_async_write_min_active
zfs_vdev_scrub_max_active
zfs_vdev_scrub_min_active
zfs_vdev_sync_read_max_active
zfs_vdev_sync_read_min_active
zfs_vdev_sync_write_max_active
zfs_vdev_sync_write_min_active
zfs_dirty_data_max_percent
zfs_delay_min_dirty_percent
zfs_dirty_data_max_max_percent
zfs_dirty_data_max
zfs_dirty_data_max_max
zfs_dirty_data_sync
zfs_delay_scale
The latter four have type unsigned long, whereas they are uint64_t in
Illumos. This accommodates Linux's module_param() supported types, but
means they may overflow on 32-bit architectures.
The values zfs_dirty_data_max and zfs_dirty_data_max_max are the most
likely to overflow on 32-bit systems, since they express physical RAM
sizes in bytes. In fact, Illumos initializes zfs_dirty_data_max_max to
2^32 which does overflow. To resolve that, this port instead initializes
it in arc_init() to 25% of physical RAM, and adds the tunable
zfs_dirty_data_max_max_percent to override that percentage. While this
solution doesn't completely avoid the overflow issue, it should be a
reasonable default for most systems, and the minority of affected
systems can work around the issue by overriding the defaults.
- Fixed reversed logic in comment above zfs_delay_scale declaration.
- Clarified comments in vdev_queue.c regarding when per-queue minimums take
effect.
- Replaced dmu_tx_write_limit in the dmu_tx kstat file
with dmu_tx_dirty_delay and dmu_tx_dirty_over_max. The first counts
how many times a transaction has been delayed because the pool dirty
data has exceeded zfs_delay_min_dirty_percent. The latter counts how
many times the pool dirty data has exceeded zfs_dirty_data_max (which
we expect to never happen).
- The original patch would have regressed the bug fixed in
zfsonlinux/zfs@c418410, which prevented users from setting the
zfs_vdev_aggregation_limit tuning larger than SPA_MAXBLOCKSIZE.
A similar fix is added to vdev_queue_aggregate().
- In vdev_queue_io_to_issue(), dynamically allocate 'zio_t search' on the
heap instead of the stack. In Linux we can't afford such large
structures on the stack.
Reviewed by: George Wilson <george.wilson@delphix.com>
Reviewed by: Adam Leventhal <ahl@delphix.com>
Reviewed by: Christopher Siden <christopher.siden@delphix.com>
Reviewed by: Ned Bass <bass6@llnl.gov>
Reviewed by: Brendan Gregg <brendan.gregg@joyent.com>
Approved by: Robert Mustacchi <rm@joyent.com>
References:
http://www.illumos.org/issues/4045
illumos/illumos-gate@69962b5647e4a8b9b14998733b765925381b727e
Ported-by: Ned Bass <bass6@llnl.gov>
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Closes #1913
2013-08-29 07:01:20 +04:00
|
|
|
|
ASSERT3U(spa_sync_pass(dp->dp_spa), ==, 1);
|
|
|
|
|
while ((dst = txg_list_remove(&dp->dp_sync_tasks, txg)) != NULL)
|
2013-09-04 16:00:57 +04:00
|
|
|
|
dsl_sync_task_sync(dst, tx);
|
2012-12-15 04:13:40 +04:00
|
|
|
|
}
|
|
|
|
|
|
2008-11-20 23:01:55 +03:00
|
|
|
|
dmu_tx_commit(tx);
|
2008-12-03 23:09:06 +03:00
|
|
|
|
|
Illumos #4045 write throttle & i/o scheduler performance work
4045 zfs write throttle & i/o scheduler performance work
1. The ZFS i/o scheduler (vdev_queue.c) now divides i/os into 5 classes: sync
read, sync write, async read, async write, and scrub/resilver. The scheduler
issues a number of concurrent i/os from each class to the device. Once a class
has been selected, an i/o is selected from this class using either an elevator
algorithem (async, scrub classes) or FIFO (sync classes). The number of
concurrent async write i/os is tuned dynamically based on i/o load, to achieve
good sync i/o latency when there is not a high load of writes, and good write
throughput when there is. See the block comment in vdev_queue.c (reproduced
below) for more details.
2. The write throttle (dsl_pool_tempreserve_space() and
txg_constrain_throughput()) is rewritten to produce much more consistent delays
when under constant load. The new write throttle is based on the amount of
dirty data, rather than guesses about future performance of the system. When
there is a lot of dirty data, each transaction (e.g. write() syscall) will be
delayed by the same small amount. This eliminates the "brick wall of wait"
that the old write throttle could hit, causing all transactions to wait several
seconds until the next txg opens. One of the keys to the new write throttle is
decrementing the amount of dirty data as i/o completes, rather than at the end
of spa_sync(). Note that the write throttle is only applied once the i/o
scheduler is issuing the maximum number of outstanding async writes. See the
block comments in dsl_pool.c and above dmu_tx_delay() (reproduced below) for
more details.
This diff has several other effects, including:
* the commonly-tuned global variable zfs_vdev_max_pending has been removed;
use per-class zfs_vdev_*_max_active values or zfs_vdev_max_active instead.
* the size of each txg (meaning the amount of dirty data written, and thus the
time it takes to write out) is now controlled differently. There is no longer
an explicit time goal; the primary determinant is amount of dirty data.
Systems that are under light or medium load will now often see that a txg is
always syncing, but the impact to performance (e.g. read latency) is minimal.
Tune zfs_dirty_data_max and zfs_dirty_data_sync to control this.
* zio_taskq_batch_pct = 75 -- Only use 75% of all CPUs for compression,
checksum, etc. This improves latency by not allowing these CPU-intensive tasks
to consume all CPU (on machines with at least 4 CPU's; the percentage is
rounded up).
--matt
APPENDIX: problems with the current i/o scheduler
The current ZFS i/o scheduler (vdev_queue.c) is deadline based. The problem
with this is that if there are always i/os pending, then certain classes of
i/os can see very long delays.
For example, if there are always synchronous reads outstanding, then no async
writes will be serviced until they become "past due". One symptom of this
situation is that each pass of the txg sync takes at least several seconds
(typically 3 seconds).
If many i/os become "past due" (their deadline is in the past), then we must
service all of these overdue i/os before any new i/os. This happens when we
enqueue a batch of async writes for the txg sync, with deadlines 2.5 seconds in
the future. If we can't complete all the i/os in 2.5 seconds (e.g. because
there were always reads pending), then these i/os will become past due. Now we
must service all the "async" writes (which could be hundreds of megabytes)
before we service any reads, introducing considerable latency to synchronous
i/os (reads or ZIL writes).
Notes on porting to ZFS on Linux:
- zio_t gained new members io_physdone and io_phys_children. Because
object caches in the Linux port call the constructor only once at
allocation time, objects may contain residual data when retrieved
from the cache. Therefore zio_create() was updated to zero out the two
new fields.
- vdev_mirror_pending() relied on the depth of the per-vdev pending queue
(vq->vq_pending_tree) to select the least-busy leaf vdev to read from.
This tree has been replaced by vq->vq_active_tree which is now used
for the same purpose.
- vdev_queue_init() used the value of zfs_vdev_max_pending to determine
the number of vdev I/O buffers to pre-allocate. That global no longer
exists, so we instead use the sum of the *_max_active values for each of
the five I/O classes described above.
- The Illumos implementation of dmu_tx_delay() delays a transaction by
sleeping in condition variable embedded in the thread
(curthread->t_delay_cv). We do not have an equivalent CV to use in
Linux, so this change replaced the delay logic with a wrapper called
zfs_sleep_until(). This wrapper could be adopted upstream and in other
downstream ports to abstract away operating system-specific delay logic.
- These tunables are added as module parameters, and descriptions added
to the zfs-module-parameters.5 man page.
spa_asize_inflation
zfs_deadman_synctime_ms
zfs_vdev_max_active
zfs_vdev_async_write_active_min_dirty_percent
zfs_vdev_async_write_active_max_dirty_percent
zfs_vdev_async_read_max_active
zfs_vdev_async_read_min_active
zfs_vdev_async_write_max_active
zfs_vdev_async_write_min_active
zfs_vdev_scrub_max_active
zfs_vdev_scrub_min_active
zfs_vdev_sync_read_max_active
zfs_vdev_sync_read_min_active
zfs_vdev_sync_write_max_active
zfs_vdev_sync_write_min_active
zfs_dirty_data_max_percent
zfs_delay_min_dirty_percent
zfs_dirty_data_max_max_percent
zfs_dirty_data_max
zfs_dirty_data_max_max
zfs_dirty_data_sync
zfs_delay_scale
The latter four have type unsigned long, whereas they are uint64_t in
Illumos. This accommodates Linux's module_param() supported types, but
means they may overflow on 32-bit architectures.
The values zfs_dirty_data_max and zfs_dirty_data_max_max are the most
likely to overflow on 32-bit systems, since they express physical RAM
sizes in bytes. In fact, Illumos initializes zfs_dirty_data_max_max to
2^32 which does overflow. To resolve that, this port instead initializes
it in arc_init() to 25% of physical RAM, and adds the tunable
zfs_dirty_data_max_max_percent to override that percentage. While this
solution doesn't completely avoid the overflow issue, it should be a
reasonable default for most systems, and the minority of affected
systems can work around the issue by overriding the defaults.
- Fixed reversed logic in comment above zfs_delay_scale declaration.
- Clarified comments in vdev_queue.c regarding when per-queue minimums take
effect.
- Replaced dmu_tx_write_limit in the dmu_tx kstat file
with dmu_tx_dirty_delay and dmu_tx_dirty_over_max. The first counts
how many times a transaction has been delayed because the pool dirty
data has exceeded zfs_delay_min_dirty_percent. The latter counts how
many times the pool dirty data has exceeded zfs_dirty_data_max (which
we expect to never happen).
- The original patch would have regressed the bug fixed in
zfsonlinux/zfs@c418410, which prevented users from setting the
zfs_vdev_aggregation_limit tuning larger than SPA_MAXBLOCKSIZE.
A similar fix is added to vdev_queue_aggregate().
- In vdev_queue_io_to_issue(), dynamically allocate 'zio_t search' on the
heap instead of the stack. In Linux we can't afford such large
structures on the stack.
Reviewed by: George Wilson <george.wilson@delphix.com>
Reviewed by: Adam Leventhal <ahl@delphix.com>
Reviewed by: Christopher Siden <christopher.siden@delphix.com>
Reviewed by: Ned Bass <bass6@llnl.gov>
Reviewed by: Brendan Gregg <brendan.gregg@joyent.com>
Approved by: Robert Mustacchi <rm@joyent.com>
References:
http://www.illumos.org/issues/4045
illumos/illumos-gate@69962b5647e4a8b9b14998733b765925381b727e
Ported-by: Ned Bass <bass6@llnl.gov>
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Closes #1913
2013-08-29 07:01:20 +04:00
|
|
|
|
DTRACE_PROBE2(dsl_pool_sync__done, dsl_pool_t *dp, dp, uint64_t, txg);
|
2008-11-20 23:01:55 +03:00
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
void
|
2010-05-29 00:45:14 +04:00
|
|
|
|
dsl_pool_sync_done(dsl_pool_t *dp, uint64_t txg)
|
2008-11-20 23:01:55 +03:00
|
|
|
|
{
|
2012-12-15 04:13:40 +04:00
|
|
|
|
zilog_t *zilog;
|
2008-11-20 23:01:55 +03:00
|
|
|
|
|
2016-11-06 06:43:56 +03:00
|
|
|
|
while ((zilog = txg_list_head(&dp->dp_dirty_zilogs, txg))) {
|
Illumos #4045 write throttle & i/o scheduler performance work
4045 zfs write throttle & i/o scheduler performance work
1. The ZFS i/o scheduler (vdev_queue.c) now divides i/os into 5 classes: sync
read, sync write, async read, async write, and scrub/resilver. The scheduler
issues a number of concurrent i/os from each class to the device. Once a class
has been selected, an i/o is selected from this class using either an elevator
algorithem (async, scrub classes) or FIFO (sync classes). The number of
concurrent async write i/os is tuned dynamically based on i/o load, to achieve
good sync i/o latency when there is not a high load of writes, and good write
throughput when there is. See the block comment in vdev_queue.c (reproduced
below) for more details.
2. The write throttle (dsl_pool_tempreserve_space() and
txg_constrain_throughput()) is rewritten to produce much more consistent delays
when under constant load. The new write throttle is based on the amount of
dirty data, rather than guesses about future performance of the system. When
there is a lot of dirty data, each transaction (e.g. write() syscall) will be
delayed by the same small amount. This eliminates the "brick wall of wait"
that the old write throttle could hit, causing all transactions to wait several
seconds until the next txg opens. One of the keys to the new write throttle is
decrementing the amount of dirty data as i/o completes, rather than at the end
of spa_sync(). Note that the write throttle is only applied once the i/o
scheduler is issuing the maximum number of outstanding async writes. See the
block comments in dsl_pool.c and above dmu_tx_delay() (reproduced below) for
more details.
This diff has several other effects, including:
* the commonly-tuned global variable zfs_vdev_max_pending has been removed;
use per-class zfs_vdev_*_max_active values or zfs_vdev_max_active instead.
* the size of each txg (meaning the amount of dirty data written, and thus the
time it takes to write out) is now controlled differently. There is no longer
an explicit time goal; the primary determinant is amount of dirty data.
Systems that are under light or medium load will now often see that a txg is
always syncing, but the impact to performance (e.g. read latency) is minimal.
Tune zfs_dirty_data_max and zfs_dirty_data_sync to control this.
* zio_taskq_batch_pct = 75 -- Only use 75% of all CPUs for compression,
checksum, etc. This improves latency by not allowing these CPU-intensive tasks
to consume all CPU (on machines with at least 4 CPU's; the percentage is
rounded up).
--matt
APPENDIX: problems with the current i/o scheduler
The current ZFS i/o scheduler (vdev_queue.c) is deadline based. The problem
with this is that if there are always i/os pending, then certain classes of
i/os can see very long delays.
For example, if there are always synchronous reads outstanding, then no async
writes will be serviced until they become "past due". One symptom of this
situation is that each pass of the txg sync takes at least several seconds
(typically 3 seconds).
If many i/os become "past due" (their deadline is in the past), then we must
service all of these overdue i/os before any new i/os. This happens when we
enqueue a batch of async writes for the txg sync, with deadlines 2.5 seconds in
the future. If we can't complete all the i/os in 2.5 seconds (e.g. because
there were always reads pending), then these i/os will become past due. Now we
must service all the "async" writes (which could be hundreds of megabytes)
before we service any reads, introducing considerable latency to synchronous
i/os (reads or ZIL writes).
Notes on porting to ZFS on Linux:
- zio_t gained new members io_physdone and io_phys_children. Because
object caches in the Linux port call the constructor only once at
allocation time, objects may contain residual data when retrieved
from the cache. Therefore zio_create() was updated to zero out the two
new fields.
- vdev_mirror_pending() relied on the depth of the per-vdev pending queue
(vq->vq_pending_tree) to select the least-busy leaf vdev to read from.
This tree has been replaced by vq->vq_active_tree which is now used
for the same purpose.
- vdev_queue_init() used the value of zfs_vdev_max_pending to determine
the number of vdev I/O buffers to pre-allocate. That global no longer
exists, so we instead use the sum of the *_max_active values for each of
the five I/O classes described above.
- The Illumos implementation of dmu_tx_delay() delays a transaction by
sleeping in condition variable embedded in the thread
(curthread->t_delay_cv). We do not have an equivalent CV to use in
Linux, so this change replaced the delay logic with a wrapper called
zfs_sleep_until(). This wrapper could be adopted upstream and in other
downstream ports to abstract away operating system-specific delay logic.
- These tunables are added as module parameters, and descriptions added
to the zfs-module-parameters.5 man page.
spa_asize_inflation
zfs_deadman_synctime_ms
zfs_vdev_max_active
zfs_vdev_async_write_active_min_dirty_percent
zfs_vdev_async_write_active_max_dirty_percent
zfs_vdev_async_read_max_active
zfs_vdev_async_read_min_active
zfs_vdev_async_write_max_active
zfs_vdev_async_write_min_active
zfs_vdev_scrub_max_active
zfs_vdev_scrub_min_active
zfs_vdev_sync_read_max_active
zfs_vdev_sync_read_min_active
zfs_vdev_sync_write_max_active
zfs_vdev_sync_write_min_active
zfs_dirty_data_max_percent
zfs_delay_min_dirty_percent
zfs_dirty_data_max_max_percent
zfs_dirty_data_max
zfs_dirty_data_max_max
zfs_dirty_data_sync
zfs_delay_scale
The latter four have type unsigned long, whereas they are uint64_t in
Illumos. This accommodates Linux's module_param() supported types, but
means they may overflow on 32-bit architectures.
The values zfs_dirty_data_max and zfs_dirty_data_max_max are the most
likely to overflow on 32-bit systems, since they express physical RAM
sizes in bytes. In fact, Illumos initializes zfs_dirty_data_max_max to
2^32 which does overflow. To resolve that, this port instead initializes
it in arc_init() to 25% of physical RAM, and adds the tunable
zfs_dirty_data_max_max_percent to override that percentage. While this
solution doesn't completely avoid the overflow issue, it should be a
reasonable default for most systems, and the minority of affected
systems can work around the issue by overriding the defaults.
- Fixed reversed logic in comment above zfs_delay_scale declaration.
- Clarified comments in vdev_queue.c regarding when per-queue minimums take
effect.
- Replaced dmu_tx_write_limit in the dmu_tx kstat file
with dmu_tx_dirty_delay and dmu_tx_dirty_over_max. The first counts
how many times a transaction has been delayed because the pool dirty
data has exceeded zfs_delay_min_dirty_percent. The latter counts how
many times the pool dirty data has exceeded zfs_dirty_data_max (which
we expect to never happen).
- The original patch would have regressed the bug fixed in
zfsonlinux/zfs@c418410, which prevented users from setting the
zfs_vdev_aggregation_limit tuning larger than SPA_MAXBLOCKSIZE.
A similar fix is added to vdev_queue_aggregate().
- In vdev_queue_io_to_issue(), dynamically allocate 'zio_t search' on the
heap instead of the stack. In Linux we can't afford such large
structures on the stack.
Reviewed by: George Wilson <george.wilson@delphix.com>
Reviewed by: Adam Leventhal <ahl@delphix.com>
Reviewed by: Christopher Siden <christopher.siden@delphix.com>
Reviewed by: Ned Bass <bass6@llnl.gov>
Reviewed by: Brendan Gregg <brendan.gregg@joyent.com>
Approved by: Robert Mustacchi <rm@joyent.com>
References:
http://www.illumos.org/issues/4045
illumos/illumos-gate@69962b5647e4a8b9b14998733b765925381b727e
Ported-by: Ned Bass <bass6@llnl.gov>
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Closes #1913
2013-08-29 07:01:20 +04:00
|
|
|
|
dsl_dataset_t *ds = dmu_objset_ds(zilog->zl_os);
|
2016-11-06 06:43:56 +03:00
|
|
|
|
/*
|
|
|
|
|
* We don't remove the zilog from the dp_dirty_zilogs
|
|
|
|
|
* list until after we've cleaned it. This ensures that
|
|
|
|
|
* callers of zilog_is_dirty() receive an accurate
|
|
|
|
|
* answer when they are racing with the spa sync thread.
|
|
|
|
|
*/
|
2012-12-15 04:13:40 +04:00
|
|
|
|
zil_clean(zilog, txg);
|
2016-11-06 06:43:56 +03:00
|
|
|
|
(void) txg_list_remove_this(&dp->dp_dirty_zilogs, zilog, txg);
|
2012-12-15 04:13:40 +04:00
|
|
|
|
ASSERT(!dmu_objset_is_dirty(zilog->zl_os, txg));
|
|
|
|
|
dmu_buf_rele(ds->ds_dbuf, zilog);
|
2008-11-20 23:01:55 +03:00
|
|
|
|
}
|
2010-05-29 00:45:14 +04:00
|
|
|
|
ASSERT(!dmu_objset_is_dirty(dp->dp_meta_objset, txg));
|
2008-11-20 23:01:55 +03:00
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/*
|
|
|
|
|
* TRUE if the current thread is the tx_sync_thread or if we
|
|
|
|
|
* are being called from SPA context during pool initialization.
|
|
|
|
|
*/
|
|
|
|
|
int
|
|
|
|
|
dsl_pool_sync_context(dsl_pool_t *dp)
|
|
|
|
|
{
|
|
|
|
|
return (curthread == dp->dp_tx.tx_sync_thread ||
|
2017-03-21 04:36:00 +03:00
|
|
|
|
spa_is_initializing(dp->dp_spa) ||
|
|
|
|
|
taskq_member(dp->dp_sync_taskq, curthread));
|
2008-11-20 23:01:55 +03:00
|
|
|
|
}
|
|
|
|
|
|
2016-12-17 01:11:29 +03:00
|
|
|
|
/*
|
|
|
|
|
* This function returns the amount of allocatable space in the pool
|
|
|
|
|
* minus whatever space is currently reserved by ZFS for specific
|
|
|
|
|
* purposes. Specifically:
|
|
|
|
|
*
|
|
|
|
|
* 1] Any reserved SLOP space
|
|
|
|
|
* 2] Any space used by the checkpoint
|
|
|
|
|
* 3] Any space used for deferred frees
|
|
|
|
|
*
|
|
|
|
|
* The latter 2 are especially important because they are needed to
|
|
|
|
|
* rectify the SPA's and DMU's different understanding of how much space
|
|
|
|
|
* is used. Now the DMU is aware of that extra space tracked by the SPA
|
|
|
|
|
* without having to maintain a separate special dir (e.g similar to
|
|
|
|
|
* $MOS, $FREEING, and $LEAKED).
|
|
|
|
|
*
|
|
|
|
|
* Note: By deferred frees here, we mean the frees that were deferred
|
|
|
|
|
* in spa_sync() after sync pass 1 (spa_deferred_bpobj), and not the
|
|
|
|
|
* segments placed in ms_defer trees during metaslab_sync_done().
|
|
|
|
|
*/
|
2008-11-20 23:01:55 +03:00
|
|
|
|
uint64_t
|
2016-12-17 01:11:29 +03:00
|
|
|
|
dsl_pool_adjustedsize(dsl_pool_t *dp, zfs_space_check_t slop_policy)
|
2008-11-20 23:01:55 +03:00
|
|
|
|
{
|
2016-12-17 01:11:29 +03:00
|
|
|
|
spa_t *spa = dp->dp_spa;
|
|
|
|
|
uint64_t space, resv, adjustedsize;
|
|
|
|
|
uint64_t spa_deferred_frees =
|
|
|
|
|
spa->spa_deferred_bpobj.bpo_phys->bpo_bytes;
|
|
|
|
|
|
|
|
|
|
space = spa_get_dspace(spa)
|
|
|
|
|
- spa_get_checkpoint_space(spa) - spa_deferred_frees;
|
|
|
|
|
resv = spa_get_slop_space(spa);
|
|
|
|
|
|
|
|
|
|
switch (slop_policy) {
|
|
|
|
|
case ZFS_SPACE_CHECK_NORMAL:
|
|
|
|
|
break;
|
|
|
|
|
case ZFS_SPACE_CHECK_RESERVED:
|
2008-11-20 23:01:55 +03:00
|
|
|
|
resv >>= 1;
|
2016-12-17 01:11:29 +03:00
|
|
|
|
break;
|
|
|
|
|
case ZFS_SPACE_CHECK_EXTRA_RESERVED:
|
|
|
|
|
resv >>= 2;
|
|
|
|
|
break;
|
|
|
|
|
case ZFS_SPACE_CHECK_NONE:
|
|
|
|
|
resv = 0;
|
|
|
|
|
break;
|
|
|
|
|
default:
|
|
|
|
|
panic("invalid slop policy value: %d", slop_policy);
|
|
|
|
|
break;
|
|
|
|
|
}
|
|
|
|
|
adjustedsize = (space >= resv) ? (space - resv) : 0;
|
2008-11-20 23:01:55 +03:00
|
|
|
|
|
2016-12-17 01:11:29 +03:00
|
|
|
|
return (adjustedsize);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
uint64_t
|
|
|
|
|
dsl_pool_unreserved_space(dsl_pool_t *dp, zfs_space_check_t slop_policy)
|
|
|
|
|
{
|
|
|
|
|
uint64_t poolsize = dsl_pool_adjustedsize(dp, slop_policy);
|
|
|
|
|
uint64_t deferred =
|
|
|
|
|
metaslab_class_get_deferred(spa_normal_class(dp->dp_spa));
|
|
|
|
|
uint64_t quota = (poolsize >= deferred) ? (poolsize - deferred) : 0;
|
|
|
|
|
return (quota);
|
2008-11-20 23:01:55 +03:00
|
|
|
|
}
|
|
|
|
|
|
2022-03-08 20:16:35 +03:00
|
|
|
|
uint64_t
|
|
|
|
|
dsl_pool_deferred_space(dsl_pool_t *dp)
|
|
|
|
|
{
|
|
|
|
|
return (metaslab_class_get_deferred(spa_normal_class(dp->dp_spa)));
|
|
|
|
|
}
|
|
|
|
|
|
Illumos #4045 write throttle & i/o scheduler performance work
4045 zfs write throttle & i/o scheduler performance work
1. The ZFS i/o scheduler (vdev_queue.c) now divides i/os into 5 classes: sync
read, sync write, async read, async write, and scrub/resilver. The scheduler
issues a number of concurrent i/os from each class to the device. Once a class
has been selected, an i/o is selected from this class using either an elevator
algorithem (async, scrub classes) or FIFO (sync classes). The number of
concurrent async write i/os is tuned dynamically based on i/o load, to achieve
good sync i/o latency when there is not a high load of writes, and good write
throughput when there is. See the block comment in vdev_queue.c (reproduced
below) for more details.
2. The write throttle (dsl_pool_tempreserve_space() and
txg_constrain_throughput()) is rewritten to produce much more consistent delays
when under constant load. The new write throttle is based on the amount of
dirty data, rather than guesses about future performance of the system. When
there is a lot of dirty data, each transaction (e.g. write() syscall) will be
delayed by the same small amount. This eliminates the "brick wall of wait"
that the old write throttle could hit, causing all transactions to wait several
seconds until the next txg opens. One of the keys to the new write throttle is
decrementing the amount of dirty data as i/o completes, rather than at the end
of spa_sync(). Note that the write throttle is only applied once the i/o
scheduler is issuing the maximum number of outstanding async writes. See the
block comments in dsl_pool.c and above dmu_tx_delay() (reproduced below) for
more details.
This diff has several other effects, including:
* the commonly-tuned global variable zfs_vdev_max_pending has been removed;
use per-class zfs_vdev_*_max_active values or zfs_vdev_max_active instead.
* the size of each txg (meaning the amount of dirty data written, and thus the
time it takes to write out) is now controlled differently. There is no longer
an explicit time goal; the primary determinant is amount of dirty data.
Systems that are under light or medium load will now often see that a txg is
always syncing, but the impact to performance (e.g. read latency) is minimal.
Tune zfs_dirty_data_max and zfs_dirty_data_sync to control this.
* zio_taskq_batch_pct = 75 -- Only use 75% of all CPUs for compression,
checksum, etc. This improves latency by not allowing these CPU-intensive tasks
to consume all CPU (on machines with at least 4 CPU's; the percentage is
rounded up).
--matt
APPENDIX: problems with the current i/o scheduler
The current ZFS i/o scheduler (vdev_queue.c) is deadline based. The problem
with this is that if there are always i/os pending, then certain classes of
i/os can see very long delays.
For example, if there are always synchronous reads outstanding, then no async
writes will be serviced until they become "past due". One symptom of this
situation is that each pass of the txg sync takes at least several seconds
(typically 3 seconds).
If many i/os become "past due" (their deadline is in the past), then we must
service all of these overdue i/os before any new i/os. This happens when we
enqueue a batch of async writes for the txg sync, with deadlines 2.5 seconds in
the future. If we can't complete all the i/os in 2.5 seconds (e.g. because
there were always reads pending), then these i/os will become past due. Now we
must service all the "async" writes (which could be hundreds of megabytes)
before we service any reads, introducing considerable latency to synchronous
i/os (reads or ZIL writes).
Notes on porting to ZFS on Linux:
- zio_t gained new members io_physdone and io_phys_children. Because
object caches in the Linux port call the constructor only once at
allocation time, objects may contain residual data when retrieved
from the cache. Therefore zio_create() was updated to zero out the two
new fields.
- vdev_mirror_pending() relied on the depth of the per-vdev pending queue
(vq->vq_pending_tree) to select the least-busy leaf vdev to read from.
This tree has been replaced by vq->vq_active_tree which is now used
for the same purpose.
- vdev_queue_init() used the value of zfs_vdev_max_pending to determine
the number of vdev I/O buffers to pre-allocate. That global no longer
exists, so we instead use the sum of the *_max_active values for each of
the five I/O classes described above.
- The Illumos implementation of dmu_tx_delay() delays a transaction by
sleeping in condition variable embedded in the thread
(curthread->t_delay_cv). We do not have an equivalent CV to use in
Linux, so this change replaced the delay logic with a wrapper called
zfs_sleep_until(). This wrapper could be adopted upstream and in other
downstream ports to abstract away operating system-specific delay logic.
- These tunables are added as module parameters, and descriptions added
to the zfs-module-parameters.5 man page.
spa_asize_inflation
zfs_deadman_synctime_ms
zfs_vdev_max_active
zfs_vdev_async_write_active_min_dirty_percent
zfs_vdev_async_write_active_max_dirty_percent
zfs_vdev_async_read_max_active
zfs_vdev_async_read_min_active
zfs_vdev_async_write_max_active
zfs_vdev_async_write_min_active
zfs_vdev_scrub_max_active
zfs_vdev_scrub_min_active
zfs_vdev_sync_read_max_active
zfs_vdev_sync_read_min_active
zfs_vdev_sync_write_max_active
zfs_vdev_sync_write_min_active
zfs_dirty_data_max_percent
zfs_delay_min_dirty_percent
zfs_dirty_data_max_max_percent
zfs_dirty_data_max
zfs_dirty_data_max_max
zfs_dirty_data_sync
zfs_delay_scale
The latter four have type unsigned long, whereas they are uint64_t in
Illumos. This accommodates Linux's module_param() supported types, but
means they may overflow on 32-bit architectures.
The values zfs_dirty_data_max and zfs_dirty_data_max_max are the most
likely to overflow on 32-bit systems, since they express physical RAM
sizes in bytes. In fact, Illumos initializes zfs_dirty_data_max_max to
2^32 which does overflow. To resolve that, this port instead initializes
it in arc_init() to 25% of physical RAM, and adds the tunable
zfs_dirty_data_max_max_percent to override that percentage. While this
solution doesn't completely avoid the overflow issue, it should be a
reasonable default for most systems, and the minority of affected
systems can work around the issue by overriding the defaults.
- Fixed reversed logic in comment above zfs_delay_scale declaration.
- Clarified comments in vdev_queue.c regarding when per-queue minimums take
effect.
- Replaced dmu_tx_write_limit in the dmu_tx kstat file
with dmu_tx_dirty_delay and dmu_tx_dirty_over_max. The first counts
how many times a transaction has been delayed because the pool dirty
data has exceeded zfs_delay_min_dirty_percent. The latter counts how
many times the pool dirty data has exceeded zfs_dirty_data_max (which
we expect to never happen).
- The original patch would have regressed the bug fixed in
zfsonlinux/zfs@c418410, which prevented users from setting the
zfs_vdev_aggregation_limit tuning larger than SPA_MAXBLOCKSIZE.
A similar fix is added to vdev_queue_aggregate().
- In vdev_queue_io_to_issue(), dynamically allocate 'zio_t search' on the
heap instead of the stack. In Linux we can't afford such large
structures on the stack.
Reviewed by: George Wilson <george.wilson@delphix.com>
Reviewed by: Adam Leventhal <ahl@delphix.com>
Reviewed by: Christopher Siden <christopher.siden@delphix.com>
Reviewed by: Ned Bass <bass6@llnl.gov>
Reviewed by: Brendan Gregg <brendan.gregg@joyent.com>
Approved by: Robert Mustacchi <rm@joyent.com>
References:
http://www.illumos.org/issues/4045
illumos/illumos-gate@69962b5647e4a8b9b14998733b765925381b727e
Ported-by: Ned Bass <bass6@llnl.gov>
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Closes #1913
2013-08-29 07:01:20 +04:00
|
|
|
|
boolean_t
|
|
|
|
|
dsl_pool_need_dirty_delay(dsl_pool_t *dp)
|
2008-11-20 23:01:55 +03:00
|
|
|
|
{
|
Illumos #4045 write throttle & i/o scheduler performance work
4045 zfs write throttle & i/o scheduler performance work
1. The ZFS i/o scheduler (vdev_queue.c) now divides i/os into 5 classes: sync
read, sync write, async read, async write, and scrub/resilver. The scheduler
issues a number of concurrent i/os from each class to the device. Once a class
has been selected, an i/o is selected from this class using either an elevator
algorithem (async, scrub classes) or FIFO (sync classes). The number of
concurrent async write i/os is tuned dynamically based on i/o load, to achieve
good sync i/o latency when there is not a high load of writes, and good write
throughput when there is. See the block comment in vdev_queue.c (reproduced
below) for more details.
2. The write throttle (dsl_pool_tempreserve_space() and
txg_constrain_throughput()) is rewritten to produce much more consistent delays
when under constant load. The new write throttle is based on the amount of
dirty data, rather than guesses about future performance of the system. When
there is a lot of dirty data, each transaction (e.g. write() syscall) will be
delayed by the same small amount. This eliminates the "brick wall of wait"
that the old write throttle could hit, causing all transactions to wait several
seconds until the next txg opens. One of the keys to the new write throttle is
decrementing the amount of dirty data as i/o completes, rather than at the end
of spa_sync(). Note that the write throttle is only applied once the i/o
scheduler is issuing the maximum number of outstanding async writes. See the
block comments in dsl_pool.c and above dmu_tx_delay() (reproduced below) for
more details.
This diff has several other effects, including:
* the commonly-tuned global variable zfs_vdev_max_pending has been removed;
use per-class zfs_vdev_*_max_active values or zfs_vdev_max_active instead.
* the size of each txg (meaning the amount of dirty data written, and thus the
time it takes to write out) is now controlled differently. There is no longer
an explicit time goal; the primary determinant is amount of dirty data.
Systems that are under light or medium load will now often see that a txg is
always syncing, but the impact to performance (e.g. read latency) is minimal.
Tune zfs_dirty_data_max and zfs_dirty_data_sync to control this.
* zio_taskq_batch_pct = 75 -- Only use 75% of all CPUs for compression,
checksum, etc. This improves latency by not allowing these CPU-intensive tasks
to consume all CPU (on machines with at least 4 CPU's; the percentage is
rounded up).
--matt
APPENDIX: problems with the current i/o scheduler
The current ZFS i/o scheduler (vdev_queue.c) is deadline based. The problem
with this is that if there are always i/os pending, then certain classes of
i/os can see very long delays.
For example, if there are always synchronous reads outstanding, then no async
writes will be serviced until they become "past due". One symptom of this
situation is that each pass of the txg sync takes at least several seconds
(typically 3 seconds).
If many i/os become "past due" (their deadline is in the past), then we must
service all of these overdue i/os before any new i/os. This happens when we
enqueue a batch of async writes for the txg sync, with deadlines 2.5 seconds in
the future. If we can't complete all the i/os in 2.5 seconds (e.g. because
there were always reads pending), then these i/os will become past due. Now we
must service all the "async" writes (which could be hundreds of megabytes)
before we service any reads, introducing considerable latency to synchronous
i/os (reads or ZIL writes).
Notes on porting to ZFS on Linux:
- zio_t gained new members io_physdone and io_phys_children. Because
object caches in the Linux port call the constructor only once at
allocation time, objects may contain residual data when retrieved
from the cache. Therefore zio_create() was updated to zero out the two
new fields.
- vdev_mirror_pending() relied on the depth of the per-vdev pending queue
(vq->vq_pending_tree) to select the least-busy leaf vdev to read from.
This tree has been replaced by vq->vq_active_tree which is now used
for the same purpose.
- vdev_queue_init() used the value of zfs_vdev_max_pending to determine
the number of vdev I/O buffers to pre-allocate. That global no longer
exists, so we instead use the sum of the *_max_active values for each of
the five I/O classes described above.
- The Illumos implementation of dmu_tx_delay() delays a transaction by
sleeping in condition variable embedded in the thread
(curthread->t_delay_cv). We do not have an equivalent CV to use in
Linux, so this change replaced the delay logic with a wrapper called
zfs_sleep_until(). This wrapper could be adopted upstream and in other
downstream ports to abstract away operating system-specific delay logic.
- These tunables are added as module parameters, and descriptions added
to the zfs-module-parameters.5 man page.
spa_asize_inflation
zfs_deadman_synctime_ms
zfs_vdev_max_active
zfs_vdev_async_write_active_min_dirty_percent
zfs_vdev_async_write_active_max_dirty_percent
zfs_vdev_async_read_max_active
zfs_vdev_async_read_min_active
zfs_vdev_async_write_max_active
zfs_vdev_async_write_min_active
zfs_vdev_scrub_max_active
zfs_vdev_scrub_min_active
zfs_vdev_sync_read_max_active
zfs_vdev_sync_read_min_active
zfs_vdev_sync_write_max_active
zfs_vdev_sync_write_min_active
zfs_dirty_data_max_percent
zfs_delay_min_dirty_percent
zfs_dirty_data_max_max_percent
zfs_dirty_data_max
zfs_dirty_data_max_max
zfs_dirty_data_sync
zfs_delay_scale
The latter four have type unsigned long, whereas they are uint64_t in
Illumos. This accommodates Linux's module_param() supported types, but
means they may overflow on 32-bit architectures.
The values zfs_dirty_data_max and zfs_dirty_data_max_max are the most
likely to overflow on 32-bit systems, since they express physical RAM
sizes in bytes. In fact, Illumos initializes zfs_dirty_data_max_max to
2^32 which does overflow. To resolve that, this port instead initializes
it in arc_init() to 25% of physical RAM, and adds the tunable
zfs_dirty_data_max_max_percent to override that percentage. While this
solution doesn't completely avoid the overflow issue, it should be a
reasonable default for most systems, and the minority of affected
systems can work around the issue by overriding the defaults.
- Fixed reversed logic in comment above zfs_delay_scale declaration.
- Clarified comments in vdev_queue.c regarding when per-queue minimums take
effect.
- Replaced dmu_tx_write_limit in the dmu_tx kstat file
with dmu_tx_dirty_delay and dmu_tx_dirty_over_max. The first counts
how many times a transaction has been delayed because the pool dirty
data has exceeded zfs_delay_min_dirty_percent. The latter counts how
many times the pool dirty data has exceeded zfs_dirty_data_max (which
we expect to never happen).
- The original patch would have regressed the bug fixed in
zfsonlinux/zfs@c418410, which prevented users from setting the
zfs_vdev_aggregation_limit tuning larger than SPA_MAXBLOCKSIZE.
A similar fix is added to vdev_queue_aggregate().
- In vdev_queue_io_to_issue(), dynamically allocate 'zio_t search' on the
heap instead of the stack. In Linux we can't afford such large
structures on the stack.
Reviewed by: George Wilson <george.wilson@delphix.com>
Reviewed by: Adam Leventhal <ahl@delphix.com>
Reviewed by: Christopher Siden <christopher.siden@delphix.com>
Reviewed by: Ned Bass <bass6@llnl.gov>
Reviewed by: Brendan Gregg <brendan.gregg@joyent.com>
Approved by: Robert Mustacchi <rm@joyent.com>
References:
http://www.illumos.org/issues/4045
illumos/illumos-gate@69962b5647e4a8b9b14998733b765925381b727e
Ported-by: Ned Bass <bass6@llnl.gov>
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Closes #1913
2013-08-29 07:01:20 +04:00
|
|
|
|
uint64_t delay_min_bytes =
|
|
|
|
|
zfs_dirty_data_max * zfs_delay_min_dirty_percent / 100;
|
2017-12-13 02:46:58 +03:00
|
|
|
|
uint64_t dirty_min_bytes =
|
|
|
|
|
zfs_dirty_data_max * zfs_dirty_data_sync_percent / 100;
|
2019-08-01 00:53:39 +03:00
|
|
|
|
uint64_t dirty;
|
2008-11-20 23:01:55 +03:00
|
|
|
|
|
Illumos #4045 write throttle & i/o scheduler performance work
4045 zfs write throttle & i/o scheduler performance work
1. The ZFS i/o scheduler (vdev_queue.c) now divides i/os into 5 classes: sync
read, sync write, async read, async write, and scrub/resilver. The scheduler
issues a number of concurrent i/os from each class to the device. Once a class
has been selected, an i/o is selected from this class using either an elevator
algorithem (async, scrub classes) or FIFO (sync classes). The number of
concurrent async write i/os is tuned dynamically based on i/o load, to achieve
good sync i/o latency when there is not a high load of writes, and good write
throughput when there is. See the block comment in vdev_queue.c (reproduced
below) for more details.
2. The write throttle (dsl_pool_tempreserve_space() and
txg_constrain_throughput()) is rewritten to produce much more consistent delays
when under constant load. The new write throttle is based on the amount of
dirty data, rather than guesses about future performance of the system. When
there is a lot of dirty data, each transaction (e.g. write() syscall) will be
delayed by the same small amount. This eliminates the "brick wall of wait"
that the old write throttle could hit, causing all transactions to wait several
seconds until the next txg opens. One of the keys to the new write throttle is
decrementing the amount of dirty data as i/o completes, rather than at the end
of spa_sync(). Note that the write throttle is only applied once the i/o
scheduler is issuing the maximum number of outstanding async writes. See the
block comments in dsl_pool.c and above dmu_tx_delay() (reproduced below) for
more details.
This diff has several other effects, including:
* the commonly-tuned global variable zfs_vdev_max_pending has been removed;
use per-class zfs_vdev_*_max_active values or zfs_vdev_max_active instead.
* the size of each txg (meaning the amount of dirty data written, and thus the
time it takes to write out) is now controlled differently. There is no longer
an explicit time goal; the primary determinant is amount of dirty data.
Systems that are under light or medium load will now often see that a txg is
always syncing, but the impact to performance (e.g. read latency) is minimal.
Tune zfs_dirty_data_max and zfs_dirty_data_sync to control this.
* zio_taskq_batch_pct = 75 -- Only use 75% of all CPUs for compression,
checksum, etc. This improves latency by not allowing these CPU-intensive tasks
to consume all CPU (on machines with at least 4 CPU's; the percentage is
rounded up).
--matt
APPENDIX: problems with the current i/o scheduler
The current ZFS i/o scheduler (vdev_queue.c) is deadline based. The problem
with this is that if there are always i/os pending, then certain classes of
i/os can see very long delays.
For example, if there are always synchronous reads outstanding, then no async
writes will be serviced until they become "past due". One symptom of this
situation is that each pass of the txg sync takes at least several seconds
(typically 3 seconds).
If many i/os become "past due" (their deadline is in the past), then we must
service all of these overdue i/os before any new i/os. This happens when we
enqueue a batch of async writes for the txg sync, with deadlines 2.5 seconds in
the future. If we can't complete all the i/os in 2.5 seconds (e.g. because
there were always reads pending), then these i/os will become past due. Now we
must service all the "async" writes (which could be hundreds of megabytes)
before we service any reads, introducing considerable latency to synchronous
i/os (reads or ZIL writes).
Notes on porting to ZFS on Linux:
- zio_t gained new members io_physdone and io_phys_children. Because
object caches in the Linux port call the constructor only once at
allocation time, objects may contain residual data when retrieved
from the cache. Therefore zio_create() was updated to zero out the two
new fields.
- vdev_mirror_pending() relied on the depth of the per-vdev pending queue
(vq->vq_pending_tree) to select the least-busy leaf vdev to read from.
This tree has been replaced by vq->vq_active_tree which is now used
for the same purpose.
- vdev_queue_init() used the value of zfs_vdev_max_pending to determine
the number of vdev I/O buffers to pre-allocate. That global no longer
exists, so we instead use the sum of the *_max_active values for each of
the five I/O classes described above.
- The Illumos implementation of dmu_tx_delay() delays a transaction by
sleeping in condition variable embedded in the thread
(curthread->t_delay_cv). We do not have an equivalent CV to use in
Linux, so this change replaced the delay logic with a wrapper called
zfs_sleep_until(). This wrapper could be adopted upstream and in other
downstream ports to abstract away operating system-specific delay logic.
- These tunables are added as module parameters, and descriptions added
to the zfs-module-parameters.5 man page.
spa_asize_inflation
zfs_deadman_synctime_ms
zfs_vdev_max_active
zfs_vdev_async_write_active_min_dirty_percent
zfs_vdev_async_write_active_max_dirty_percent
zfs_vdev_async_read_max_active
zfs_vdev_async_read_min_active
zfs_vdev_async_write_max_active
zfs_vdev_async_write_min_active
zfs_vdev_scrub_max_active
zfs_vdev_scrub_min_active
zfs_vdev_sync_read_max_active
zfs_vdev_sync_read_min_active
zfs_vdev_sync_write_max_active
zfs_vdev_sync_write_min_active
zfs_dirty_data_max_percent
zfs_delay_min_dirty_percent
zfs_dirty_data_max_max_percent
zfs_dirty_data_max
zfs_dirty_data_max_max
zfs_dirty_data_sync
zfs_delay_scale
The latter four have type unsigned long, whereas they are uint64_t in
Illumos. This accommodates Linux's module_param() supported types, but
means they may overflow on 32-bit architectures.
The values zfs_dirty_data_max and zfs_dirty_data_max_max are the most
likely to overflow on 32-bit systems, since they express physical RAM
sizes in bytes. In fact, Illumos initializes zfs_dirty_data_max_max to
2^32 which does overflow. To resolve that, this port instead initializes
it in arc_init() to 25% of physical RAM, and adds the tunable
zfs_dirty_data_max_max_percent to override that percentage. While this
solution doesn't completely avoid the overflow issue, it should be a
reasonable default for most systems, and the minority of affected
systems can work around the issue by overriding the defaults.
- Fixed reversed logic in comment above zfs_delay_scale declaration.
- Clarified comments in vdev_queue.c regarding when per-queue minimums take
effect.
- Replaced dmu_tx_write_limit in the dmu_tx kstat file
with dmu_tx_dirty_delay and dmu_tx_dirty_over_max. The first counts
how many times a transaction has been delayed because the pool dirty
data has exceeded zfs_delay_min_dirty_percent. The latter counts how
many times the pool dirty data has exceeded zfs_dirty_data_max (which
we expect to never happen).
- The original patch would have regressed the bug fixed in
zfsonlinux/zfs@c418410, which prevented users from setting the
zfs_vdev_aggregation_limit tuning larger than SPA_MAXBLOCKSIZE.
A similar fix is added to vdev_queue_aggregate().
- In vdev_queue_io_to_issue(), dynamically allocate 'zio_t search' on the
heap instead of the stack. In Linux we can't afford such large
structures on the stack.
Reviewed by: George Wilson <george.wilson@delphix.com>
Reviewed by: Adam Leventhal <ahl@delphix.com>
Reviewed by: Christopher Siden <christopher.siden@delphix.com>
Reviewed by: Ned Bass <bass6@llnl.gov>
Reviewed by: Brendan Gregg <brendan.gregg@joyent.com>
Approved by: Robert Mustacchi <rm@joyent.com>
References:
http://www.illumos.org/issues/4045
illumos/illumos-gate@69962b5647e4a8b9b14998733b765925381b727e
Ported-by: Ned Bass <bass6@llnl.gov>
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Closes #1913
2013-08-29 07:01:20 +04:00
|
|
|
|
mutex_enter(&dp->dp_lock);
|
2019-08-01 00:53:39 +03:00
|
|
|
|
dirty = dp->dp_dirty_total;
|
Illumos #4045 write throttle & i/o scheduler performance work
4045 zfs write throttle & i/o scheduler performance work
1. The ZFS i/o scheduler (vdev_queue.c) now divides i/os into 5 classes: sync
read, sync write, async read, async write, and scrub/resilver. The scheduler
issues a number of concurrent i/os from each class to the device. Once a class
has been selected, an i/o is selected from this class using either an elevator
algorithem (async, scrub classes) or FIFO (sync classes). The number of
concurrent async write i/os is tuned dynamically based on i/o load, to achieve
good sync i/o latency when there is not a high load of writes, and good write
throughput when there is. See the block comment in vdev_queue.c (reproduced
below) for more details.
2. The write throttle (dsl_pool_tempreserve_space() and
txg_constrain_throughput()) is rewritten to produce much more consistent delays
when under constant load. The new write throttle is based on the amount of
dirty data, rather than guesses about future performance of the system. When
there is a lot of dirty data, each transaction (e.g. write() syscall) will be
delayed by the same small amount. This eliminates the "brick wall of wait"
that the old write throttle could hit, causing all transactions to wait several
seconds until the next txg opens. One of the keys to the new write throttle is
decrementing the amount of dirty data as i/o completes, rather than at the end
of spa_sync(). Note that the write throttle is only applied once the i/o
scheduler is issuing the maximum number of outstanding async writes. See the
block comments in dsl_pool.c and above dmu_tx_delay() (reproduced below) for
more details.
This diff has several other effects, including:
* the commonly-tuned global variable zfs_vdev_max_pending has been removed;
use per-class zfs_vdev_*_max_active values or zfs_vdev_max_active instead.
* the size of each txg (meaning the amount of dirty data written, and thus the
time it takes to write out) is now controlled differently. There is no longer
an explicit time goal; the primary determinant is amount of dirty data.
Systems that are under light or medium load will now often see that a txg is
always syncing, but the impact to performance (e.g. read latency) is minimal.
Tune zfs_dirty_data_max and zfs_dirty_data_sync to control this.
* zio_taskq_batch_pct = 75 -- Only use 75% of all CPUs for compression,
checksum, etc. This improves latency by not allowing these CPU-intensive tasks
to consume all CPU (on machines with at least 4 CPU's; the percentage is
rounded up).
--matt
APPENDIX: problems with the current i/o scheduler
The current ZFS i/o scheduler (vdev_queue.c) is deadline based. The problem
with this is that if there are always i/os pending, then certain classes of
i/os can see very long delays.
For example, if there are always synchronous reads outstanding, then no async
writes will be serviced until they become "past due". One symptom of this
situation is that each pass of the txg sync takes at least several seconds
(typically 3 seconds).
If many i/os become "past due" (their deadline is in the past), then we must
service all of these overdue i/os before any new i/os. This happens when we
enqueue a batch of async writes for the txg sync, with deadlines 2.5 seconds in
the future. If we can't complete all the i/os in 2.5 seconds (e.g. because
there were always reads pending), then these i/os will become past due. Now we
must service all the "async" writes (which could be hundreds of megabytes)
before we service any reads, introducing considerable latency to synchronous
i/os (reads or ZIL writes).
Notes on porting to ZFS on Linux:
- zio_t gained new members io_physdone and io_phys_children. Because
object caches in the Linux port call the constructor only once at
allocation time, objects may contain residual data when retrieved
from the cache. Therefore zio_create() was updated to zero out the two
new fields.
- vdev_mirror_pending() relied on the depth of the per-vdev pending queue
(vq->vq_pending_tree) to select the least-busy leaf vdev to read from.
This tree has been replaced by vq->vq_active_tree which is now used
for the same purpose.
- vdev_queue_init() used the value of zfs_vdev_max_pending to determine
the number of vdev I/O buffers to pre-allocate. That global no longer
exists, so we instead use the sum of the *_max_active values for each of
the five I/O classes described above.
- The Illumos implementation of dmu_tx_delay() delays a transaction by
sleeping in condition variable embedded in the thread
(curthread->t_delay_cv). We do not have an equivalent CV to use in
Linux, so this change replaced the delay logic with a wrapper called
zfs_sleep_until(). This wrapper could be adopted upstream and in other
downstream ports to abstract away operating system-specific delay logic.
- These tunables are added as module parameters, and descriptions added
to the zfs-module-parameters.5 man page.
spa_asize_inflation
zfs_deadman_synctime_ms
zfs_vdev_max_active
zfs_vdev_async_write_active_min_dirty_percent
zfs_vdev_async_write_active_max_dirty_percent
zfs_vdev_async_read_max_active
zfs_vdev_async_read_min_active
zfs_vdev_async_write_max_active
zfs_vdev_async_write_min_active
zfs_vdev_scrub_max_active
zfs_vdev_scrub_min_active
zfs_vdev_sync_read_max_active
zfs_vdev_sync_read_min_active
zfs_vdev_sync_write_max_active
zfs_vdev_sync_write_min_active
zfs_dirty_data_max_percent
zfs_delay_min_dirty_percent
zfs_dirty_data_max_max_percent
zfs_dirty_data_max
zfs_dirty_data_max_max
zfs_dirty_data_sync
zfs_delay_scale
The latter four have type unsigned long, whereas they are uint64_t in
Illumos. This accommodates Linux's module_param() supported types, but
means they may overflow on 32-bit architectures.
The values zfs_dirty_data_max and zfs_dirty_data_max_max are the most
likely to overflow on 32-bit systems, since they express physical RAM
sizes in bytes. In fact, Illumos initializes zfs_dirty_data_max_max to
2^32 which does overflow. To resolve that, this port instead initializes
it in arc_init() to 25% of physical RAM, and adds the tunable
zfs_dirty_data_max_max_percent to override that percentage. While this
solution doesn't completely avoid the overflow issue, it should be a
reasonable default for most systems, and the minority of affected
systems can work around the issue by overriding the defaults.
- Fixed reversed logic in comment above zfs_delay_scale declaration.
- Clarified comments in vdev_queue.c regarding when per-queue minimums take
effect.
- Replaced dmu_tx_write_limit in the dmu_tx kstat file
with dmu_tx_dirty_delay and dmu_tx_dirty_over_max. The first counts
how many times a transaction has been delayed because the pool dirty
data has exceeded zfs_delay_min_dirty_percent. The latter counts how
many times the pool dirty data has exceeded zfs_dirty_data_max (which
we expect to never happen).
- The original patch would have regressed the bug fixed in
zfsonlinux/zfs@c418410, which prevented users from setting the
zfs_vdev_aggregation_limit tuning larger than SPA_MAXBLOCKSIZE.
A similar fix is added to vdev_queue_aggregate().
- In vdev_queue_io_to_issue(), dynamically allocate 'zio_t search' on the
heap instead of the stack. In Linux we can't afford such large
structures on the stack.
Reviewed by: George Wilson <george.wilson@delphix.com>
Reviewed by: Adam Leventhal <ahl@delphix.com>
Reviewed by: Christopher Siden <christopher.siden@delphix.com>
Reviewed by: Ned Bass <bass6@llnl.gov>
Reviewed by: Brendan Gregg <brendan.gregg@joyent.com>
Approved by: Robert Mustacchi <rm@joyent.com>
References:
http://www.illumos.org/issues/4045
illumos/illumos-gate@69962b5647e4a8b9b14998733b765925381b727e
Ported-by: Ned Bass <bass6@llnl.gov>
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Closes #1913
2013-08-29 07:01:20 +04:00
|
|
|
|
mutex_exit(&dp->dp_lock);
|
2019-08-01 00:53:39 +03:00
|
|
|
|
if (dirty > dirty_min_bytes)
|
|
|
|
|
txg_kick(dp);
|
|
|
|
|
return (dirty > delay_min_bytes);
|
2008-11-20 23:01:55 +03:00
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
void
|
Illumos #4045 write throttle & i/o scheduler performance work
4045 zfs write throttle & i/o scheduler performance work
1. The ZFS i/o scheduler (vdev_queue.c) now divides i/os into 5 classes: sync
read, sync write, async read, async write, and scrub/resilver. The scheduler
issues a number of concurrent i/os from each class to the device. Once a class
has been selected, an i/o is selected from this class using either an elevator
algorithem (async, scrub classes) or FIFO (sync classes). The number of
concurrent async write i/os is tuned dynamically based on i/o load, to achieve
good sync i/o latency when there is not a high load of writes, and good write
throughput when there is. See the block comment in vdev_queue.c (reproduced
below) for more details.
2. The write throttle (dsl_pool_tempreserve_space() and
txg_constrain_throughput()) is rewritten to produce much more consistent delays
when under constant load. The new write throttle is based on the amount of
dirty data, rather than guesses about future performance of the system. When
there is a lot of dirty data, each transaction (e.g. write() syscall) will be
delayed by the same small amount. This eliminates the "brick wall of wait"
that the old write throttle could hit, causing all transactions to wait several
seconds until the next txg opens. One of the keys to the new write throttle is
decrementing the amount of dirty data as i/o completes, rather than at the end
of spa_sync(). Note that the write throttle is only applied once the i/o
scheduler is issuing the maximum number of outstanding async writes. See the
block comments in dsl_pool.c and above dmu_tx_delay() (reproduced below) for
more details.
This diff has several other effects, including:
* the commonly-tuned global variable zfs_vdev_max_pending has been removed;
use per-class zfs_vdev_*_max_active values or zfs_vdev_max_active instead.
* the size of each txg (meaning the amount of dirty data written, and thus the
time it takes to write out) is now controlled differently. There is no longer
an explicit time goal; the primary determinant is amount of dirty data.
Systems that are under light or medium load will now often see that a txg is
always syncing, but the impact to performance (e.g. read latency) is minimal.
Tune zfs_dirty_data_max and zfs_dirty_data_sync to control this.
* zio_taskq_batch_pct = 75 -- Only use 75% of all CPUs for compression,
checksum, etc. This improves latency by not allowing these CPU-intensive tasks
to consume all CPU (on machines with at least 4 CPU's; the percentage is
rounded up).
--matt
APPENDIX: problems with the current i/o scheduler
The current ZFS i/o scheduler (vdev_queue.c) is deadline based. The problem
with this is that if there are always i/os pending, then certain classes of
i/os can see very long delays.
For example, if there are always synchronous reads outstanding, then no async
writes will be serviced until they become "past due". One symptom of this
situation is that each pass of the txg sync takes at least several seconds
(typically 3 seconds).
If many i/os become "past due" (their deadline is in the past), then we must
service all of these overdue i/os before any new i/os. This happens when we
enqueue a batch of async writes for the txg sync, with deadlines 2.5 seconds in
the future. If we can't complete all the i/os in 2.5 seconds (e.g. because
there were always reads pending), then these i/os will become past due. Now we
must service all the "async" writes (which could be hundreds of megabytes)
before we service any reads, introducing considerable latency to synchronous
i/os (reads or ZIL writes).
Notes on porting to ZFS on Linux:
- zio_t gained new members io_physdone and io_phys_children. Because
object caches in the Linux port call the constructor only once at
allocation time, objects may contain residual data when retrieved
from the cache. Therefore zio_create() was updated to zero out the two
new fields.
- vdev_mirror_pending() relied on the depth of the per-vdev pending queue
(vq->vq_pending_tree) to select the least-busy leaf vdev to read from.
This tree has been replaced by vq->vq_active_tree which is now used
for the same purpose.
- vdev_queue_init() used the value of zfs_vdev_max_pending to determine
the number of vdev I/O buffers to pre-allocate. That global no longer
exists, so we instead use the sum of the *_max_active values for each of
the five I/O classes described above.
- The Illumos implementation of dmu_tx_delay() delays a transaction by
sleeping in condition variable embedded in the thread
(curthread->t_delay_cv). We do not have an equivalent CV to use in
Linux, so this change replaced the delay logic with a wrapper called
zfs_sleep_until(). This wrapper could be adopted upstream and in other
downstream ports to abstract away operating system-specific delay logic.
- These tunables are added as module parameters, and descriptions added
to the zfs-module-parameters.5 man page.
spa_asize_inflation
zfs_deadman_synctime_ms
zfs_vdev_max_active
zfs_vdev_async_write_active_min_dirty_percent
zfs_vdev_async_write_active_max_dirty_percent
zfs_vdev_async_read_max_active
zfs_vdev_async_read_min_active
zfs_vdev_async_write_max_active
zfs_vdev_async_write_min_active
zfs_vdev_scrub_max_active
zfs_vdev_scrub_min_active
zfs_vdev_sync_read_max_active
zfs_vdev_sync_read_min_active
zfs_vdev_sync_write_max_active
zfs_vdev_sync_write_min_active
zfs_dirty_data_max_percent
zfs_delay_min_dirty_percent
zfs_dirty_data_max_max_percent
zfs_dirty_data_max
zfs_dirty_data_max_max
zfs_dirty_data_sync
zfs_delay_scale
The latter four have type unsigned long, whereas they are uint64_t in
Illumos. This accommodates Linux's module_param() supported types, but
means they may overflow on 32-bit architectures.
The values zfs_dirty_data_max and zfs_dirty_data_max_max are the most
likely to overflow on 32-bit systems, since they express physical RAM
sizes in bytes. In fact, Illumos initializes zfs_dirty_data_max_max to
2^32 which does overflow. To resolve that, this port instead initializes
it in arc_init() to 25% of physical RAM, and adds the tunable
zfs_dirty_data_max_max_percent to override that percentage. While this
solution doesn't completely avoid the overflow issue, it should be a
reasonable default for most systems, and the minority of affected
systems can work around the issue by overriding the defaults.
- Fixed reversed logic in comment above zfs_delay_scale declaration.
- Clarified comments in vdev_queue.c regarding when per-queue minimums take
effect.
- Replaced dmu_tx_write_limit in the dmu_tx kstat file
with dmu_tx_dirty_delay and dmu_tx_dirty_over_max. The first counts
how many times a transaction has been delayed because the pool dirty
data has exceeded zfs_delay_min_dirty_percent. The latter counts how
many times the pool dirty data has exceeded zfs_dirty_data_max (which
we expect to never happen).
- The original patch would have regressed the bug fixed in
zfsonlinux/zfs@c418410, which prevented users from setting the
zfs_vdev_aggregation_limit tuning larger than SPA_MAXBLOCKSIZE.
A similar fix is added to vdev_queue_aggregate().
- In vdev_queue_io_to_issue(), dynamically allocate 'zio_t search' on the
heap instead of the stack. In Linux we can't afford such large
structures on the stack.
Reviewed by: George Wilson <george.wilson@delphix.com>
Reviewed by: Adam Leventhal <ahl@delphix.com>
Reviewed by: Christopher Siden <christopher.siden@delphix.com>
Reviewed by: Ned Bass <bass6@llnl.gov>
Reviewed by: Brendan Gregg <brendan.gregg@joyent.com>
Approved by: Robert Mustacchi <rm@joyent.com>
References:
http://www.illumos.org/issues/4045
illumos/illumos-gate@69962b5647e4a8b9b14998733b765925381b727e
Ported-by: Ned Bass <bass6@llnl.gov>
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Closes #1913
2013-08-29 07:01:20 +04:00
|
|
|
|
dsl_pool_dirty_space(dsl_pool_t *dp, int64_t space, dmu_tx_t *tx)
|
2008-11-20 23:01:55 +03:00
|
|
|
|
{
|
Illumos #4045 write throttle & i/o scheduler performance work
4045 zfs write throttle & i/o scheduler performance work
1. The ZFS i/o scheduler (vdev_queue.c) now divides i/os into 5 classes: sync
read, sync write, async read, async write, and scrub/resilver. The scheduler
issues a number of concurrent i/os from each class to the device. Once a class
has been selected, an i/o is selected from this class using either an elevator
algorithem (async, scrub classes) or FIFO (sync classes). The number of
concurrent async write i/os is tuned dynamically based on i/o load, to achieve
good sync i/o latency when there is not a high load of writes, and good write
throughput when there is. See the block comment in vdev_queue.c (reproduced
below) for more details.
2. The write throttle (dsl_pool_tempreserve_space() and
txg_constrain_throughput()) is rewritten to produce much more consistent delays
when under constant load. The new write throttle is based on the amount of
dirty data, rather than guesses about future performance of the system. When
there is a lot of dirty data, each transaction (e.g. write() syscall) will be
delayed by the same small amount. This eliminates the "brick wall of wait"
that the old write throttle could hit, causing all transactions to wait several
seconds until the next txg opens. One of the keys to the new write throttle is
decrementing the amount of dirty data as i/o completes, rather than at the end
of spa_sync(). Note that the write throttle is only applied once the i/o
scheduler is issuing the maximum number of outstanding async writes. See the
block comments in dsl_pool.c and above dmu_tx_delay() (reproduced below) for
more details.
This diff has several other effects, including:
* the commonly-tuned global variable zfs_vdev_max_pending has been removed;
use per-class zfs_vdev_*_max_active values or zfs_vdev_max_active instead.
* the size of each txg (meaning the amount of dirty data written, and thus the
time it takes to write out) is now controlled differently. There is no longer
an explicit time goal; the primary determinant is amount of dirty data.
Systems that are under light or medium load will now often see that a txg is
always syncing, but the impact to performance (e.g. read latency) is minimal.
Tune zfs_dirty_data_max and zfs_dirty_data_sync to control this.
* zio_taskq_batch_pct = 75 -- Only use 75% of all CPUs for compression,
checksum, etc. This improves latency by not allowing these CPU-intensive tasks
to consume all CPU (on machines with at least 4 CPU's; the percentage is
rounded up).
--matt
APPENDIX: problems with the current i/o scheduler
The current ZFS i/o scheduler (vdev_queue.c) is deadline based. The problem
with this is that if there are always i/os pending, then certain classes of
i/os can see very long delays.
For example, if there are always synchronous reads outstanding, then no async
writes will be serviced until they become "past due". One symptom of this
situation is that each pass of the txg sync takes at least several seconds
(typically 3 seconds).
If many i/os become "past due" (their deadline is in the past), then we must
service all of these overdue i/os before any new i/os. This happens when we
enqueue a batch of async writes for the txg sync, with deadlines 2.5 seconds in
the future. If we can't complete all the i/os in 2.5 seconds (e.g. because
there were always reads pending), then these i/os will become past due. Now we
must service all the "async" writes (which could be hundreds of megabytes)
before we service any reads, introducing considerable latency to synchronous
i/os (reads or ZIL writes).
Notes on porting to ZFS on Linux:
- zio_t gained new members io_physdone and io_phys_children. Because
object caches in the Linux port call the constructor only once at
allocation time, objects may contain residual data when retrieved
from the cache. Therefore zio_create() was updated to zero out the two
new fields.
- vdev_mirror_pending() relied on the depth of the per-vdev pending queue
(vq->vq_pending_tree) to select the least-busy leaf vdev to read from.
This tree has been replaced by vq->vq_active_tree which is now used
for the same purpose.
- vdev_queue_init() used the value of zfs_vdev_max_pending to determine
the number of vdev I/O buffers to pre-allocate. That global no longer
exists, so we instead use the sum of the *_max_active values for each of
the five I/O classes described above.
- The Illumos implementation of dmu_tx_delay() delays a transaction by
sleeping in condition variable embedded in the thread
(curthread->t_delay_cv). We do not have an equivalent CV to use in
Linux, so this change replaced the delay logic with a wrapper called
zfs_sleep_until(). This wrapper could be adopted upstream and in other
downstream ports to abstract away operating system-specific delay logic.
- These tunables are added as module parameters, and descriptions added
to the zfs-module-parameters.5 man page.
spa_asize_inflation
zfs_deadman_synctime_ms
zfs_vdev_max_active
zfs_vdev_async_write_active_min_dirty_percent
zfs_vdev_async_write_active_max_dirty_percent
zfs_vdev_async_read_max_active
zfs_vdev_async_read_min_active
zfs_vdev_async_write_max_active
zfs_vdev_async_write_min_active
zfs_vdev_scrub_max_active
zfs_vdev_scrub_min_active
zfs_vdev_sync_read_max_active
zfs_vdev_sync_read_min_active
zfs_vdev_sync_write_max_active
zfs_vdev_sync_write_min_active
zfs_dirty_data_max_percent
zfs_delay_min_dirty_percent
zfs_dirty_data_max_max_percent
zfs_dirty_data_max
zfs_dirty_data_max_max
zfs_dirty_data_sync
zfs_delay_scale
The latter four have type unsigned long, whereas they are uint64_t in
Illumos. This accommodates Linux's module_param() supported types, but
means they may overflow on 32-bit architectures.
The values zfs_dirty_data_max and zfs_dirty_data_max_max are the most
likely to overflow on 32-bit systems, since they express physical RAM
sizes in bytes. In fact, Illumos initializes zfs_dirty_data_max_max to
2^32 which does overflow. To resolve that, this port instead initializes
it in arc_init() to 25% of physical RAM, and adds the tunable
zfs_dirty_data_max_max_percent to override that percentage. While this
solution doesn't completely avoid the overflow issue, it should be a
reasonable default for most systems, and the minority of affected
systems can work around the issue by overriding the defaults.
- Fixed reversed logic in comment above zfs_delay_scale declaration.
- Clarified comments in vdev_queue.c regarding when per-queue minimums take
effect.
- Replaced dmu_tx_write_limit in the dmu_tx kstat file
with dmu_tx_dirty_delay and dmu_tx_dirty_over_max. The first counts
how many times a transaction has been delayed because the pool dirty
data has exceeded zfs_delay_min_dirty_percent. The latter counts how
many times the pool dirty data has exceeded zfs_dirty_data_max (which
we expect to never happen).
- The original patch would have regressed the bug fixed in
zfsonlinux/zfs@c418410, which prevented users from setting the
zfs_vdev_aggregation_limit tuning larger than SPA_MAXBLOCKSIZE.
A similar fix is added to vdev_queue_aggregate().
- In vdev_queue_io_to_issue(), dynamically allocate 'zio_t search' on the
heap instead of the stack. In Linux we can't afford such large
structures on the stack.
Reviewed by: George Wilson <george.wilson@delphix.com>
Reviewed by: Adam Leventhal <ahl@delphix.com>
Reviewed by: Christopher Siden <christopher.siden@delphix.com>
Reviewed by: Ned Bass <bass6@llnl.gov>
Reviewed by: Brendan Gregg <brendan.gregg@joyent.com>
Approved by: Robert Mustacchi <rm@joyent.com>
References:
http://www.illumos.org/issues/4045
illumos/illumos-gate@69962b5647e4a8b9b14998733b765925381b727e
Ported-by: Ned Bass <bass6@llnl.gov>
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Closes #1913
2013-08-29 07:01:20 +04:00
|
|
|
|
if (space > 0) {
|
|
|
|
|
mutex_enter(&dp->dp_lock);
|
|
|
|
|
dp->dp_dirty_pertxg[tx->tx_txg & TXG_MASK] += space;
|
|
|
|
|
dsl_pool_dirty_delta(dp, space);
|
|
|
|
|
mutex_exit(&dp->dp_lock);
|
|
|
|
|
}
|
2008-11-20 23:01:55 +03:00
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
void
|
Illumos #4045 write throttle & i/o scheduler performance work
4045 zfs write throttle & i/o scheduler performance work
1. The ZFS i/o scheduler (vdev_queue.c) now divides i/os into 5 classes: sync
read, sync write, async read, async write, and scrub/resilver. The scheduler
issues a number of concurrent i/os from each class to the device. Once a class
has been selected, an i/o is selected from this class using either an elevator
algorithem (async, scrub classes) or FIFO (sync classes). The number of
concurrent async write i/os is tuned dynamically based on i/o load, to achieve
good sync i/o latency when there is not a high load of writes, and good write
throughput when there is. See the block comment in vdev_queue.c (reproduced
below) for more details.
2. The write throttle (dsl_pool_tempreserve_space() and
txg_constrain_throughput()) is rewritten to produce much more consistent delays
when under constant load. The new write throttle is based on the amount of
dirty data, rather than guesses about future performance of the system. When
there is a lot of dirty data, each transaction (e.g. write() syscall) will be
delayed by the same small amount. This eliminates the "brick wall of wait"
that the old write throttle could hit, causing all transactions to wait several
seconds until the next txg opens. One of the keys to the new write throttle is
decrementing the amount of dirty data as i/o completes, rather than at the end
of spa_sync(). Note that the write throttle is only applied once the i/o
scheduler is issuing the maximum number of outstanding async writes. See the
block comments in dsl_pool.c and above dmu_tx_delay() (reproduced below) for
more details.
This diff has several other effects, including:
* the commonly-tuned global variable zfs_vdev_max_pending has been removed;
use per-class zfs_vdev_*_max_active values or zfs_vdev_max_active instead.
* the size of each txg (meaning the amount of dirty data written, and thus the
time it takes to write out) is now controlled differently. There is no longer
an explicit time goal; the primary determinant is amount of dirty data.
Systems that are under light or medium load will now often see that a txg is
always syncing, but the impact to performance (e.g. read latency) is minimal.
Tune zfs_dirty_data_max and zfs_dirty_data_sync to control this.
* zio_taskq_batch_pct = 75 -- Only use 75% of all CPUs for compression,
checksum, etc. This improves latency by not allowing these CPU-intensive tasks
to consume all CPU (on machines with at least 4 CPU's; the percentage is
rounded up).
--matt
APPENDIX: problems with the current i/o scheduler
The current ZFS i/o scheduler (vdev_queue.c) is deadline based. The problem
with this is that if there are always i/os pending, then certain classes of
i/os can see very long delays.
For example, if there are always synchronous reads outstanding, then no async
writes will be serviced until they become "past due". One symptom of this
situation is that each pass of the txg sync takes at least several seconds
(typically 3 seconds).
If many i/os become "past due" (their deadline is in the past), then we must
service all of these overdue i/os before any new i/os. This happens when we
enqueue a batch of async writes for the txg sync, with deadlines 2.5 seconds in
the future. If we can't complete all the i/os in 2.5 seconds (e.g. because
there were always reads pending), then these i/os will become past due. Now we
must service all the "async" writes (which could be hundreds of megabytes)
before we service any reads, introducing considerable latency to synchronous
i/os (reads or ZIL writes).
Notes on porting to ZFS on Linux:
- zio_t gained new members io_physdone and io_phys_children. Because
object caches in the Linux port call the constructor only once at
allocation time, objects may contain residual data when retrieved
from the cache. Therefore zio_create() was updated to zero out the two
new fields.
- vdev_mirror_pending() relied on the depth of the per-vdev pending queue
(vq->vq_pending_tree) to select the least-busy leaf vdev to read from.
This tree has been replaced by vq->vq_active_tree which is now used
for the same purpose.
- vdev_queue_init() used the value of zfs_vdev_max_pending to determine
the number of vdev I/O buffers to pre-allocate. That global no longer
exists, so we instead use the sum of the *_max_active values for each of
the five I/O classes described above.
- The Illumos implementation of dmu_tx_delay() delays a transaction by
sleeping in condition variable embedded in the thread
(curthread->t_delay_cv). We do not have an equivalent CV to use in
Linux, so this change replaced the delay logic with a wrapper called
zfs_sleep_until(). This wrapper could be adopted upstream and in other
downstream ports to abstract away operating system-specific delay logic.
- These tunables are added as module parameters, and descriptions added
to the zfs-module-parameters.5 man page.
spa_asize_inflation
zfs_deadman_synctime_ms
zfs_vdev_max_active
zfs_vdev_async_write_active_min_dirty_percent
zfs_vdev_async_write_active_max_dirty_percent
zfs_vdev_async_read_max_active
zfs_vdev_async_read_min_active
zfs_vdev_async_write_max_active
zfs_vdev_async_write_min_active
zfs_vdev_scrub_max_active
zfs_vdev_scrub_min_active
zfs_vdev_sync_read_max_active
zfs_vdev_sync_read_min_active
zfs_vdev_sync_write_max_active
zfs_vdev_sync_write_min_active
zfs_dirty_data_max_percent
zfs_delay_min_dirty_percent
zfs_dirty_data_max_max_percent
zfs_dirty_data_max
zfs_dirty_data_max_max
zfs_dirty_data_sync
zfs_delay_scale
The latter four have type unsigned long, whereas they are uint64_t in
Illumos. This accommodates Linux's module_param() supported types, but
means they may overflow on 32-bit architectures.
The values zfs_dirty_data_max and zfs_dirty_data_max_max are the most
likely to overflow on 32-bit systems, since they express physical RAM
sizes in bytes. In fact, Illumos initializes zfs_dirty_data_max_max to
2^32 which does overflow. To resolve that, this port instead initializes
it in arc_init() to 25% of physical RAM, and adds the tunable
zfs_dirty_data_max_max_percent to override that percentage. While this
solution doesn't completely avoid the overflow issue, it should be a
reasonable default for most systems, and the minority of affected
systems can work around the issue by overriding the defaults.
- Fixed reversed logic in comment above zfs_delay_scale declaration.
- Clarified comments in vdev_queue.c regarding when per-queue minimums take
effect.
- Replaced dmu_tx_write_limit in the dmu_tx kstat file
with dmu_tx_dirty_delay and dmu_tx_dirty_over_max. The first counts
how many times a transaction has been delayed because the pool dirty
data has exceeded zfs_delay_min_dirty_percent. The latter counts how
many times the pool dirty data has exceeded zfs_dirty_data_max (which
we expect to never happen).
- The original patch would have regressed the bug fixed in
zfsonlinux/zfs@c418410, which prevented users from setting the
zfs_vdev_aggregation_limit tuning larger than SPA_MAXBLOCKSIZE.
A similar fix is added to vdev_queue_aggregate().
- In vdev_queue_io_to_issue(), dynamically allocate 'zio_t search' on the
heap instead of the stack. In Linux we can't afford such large
structures on the stack.
Reviewed by: George Wilson <george.wilson@delphix.com>
Reviewed by: Adam Leventhal <ahl@delphix.com>
Reviewed by: Christopher Siden <christopher.siden@delphix.com>
Reviewed by: Ned Bass <bass6@llnl.gov>
Reviewed by: Brendan Gregg <brendan.gregg@joyent.com>
Approved by: Robert Mustacchi <rm@joyent.com>
References:
http://www.illumos.org/issues/4045
illumos/illumos-gate@69962b5647e4a8b9b14998733b765925381b727e
Ported-by: Ned Bass <bass6@llnl.gov>
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Closes #1913
2013-08-29 07:01:20 +04:00
|
|
|
|
dsl_pool_undirty_space(dsl_pool_t *dp, int64_t space, uint64_t txg)
|
2008-11-20 23:01:55 +03:00
|
|
|
|
{
|
Illumos #4045 write throttle & i/o scheduler performance work
4045 zfs write throttle & i/o scheduler performance work
1. The ZFS i/o scheduler (vdev_queue.c) now divides i/os into 5 classes: sync
read, sync write, async read, async write, and scrub/resilver. The scheduler
issues a number of concurrent i/os from each class to the device. Once a class
has been selected, an i/o is selected from this class using either an elevator
algorithem (async, scrub classes) or FIFO (sync classes). The number of
concurrent async write i/os is tuned dynamically based on i/o load, to achieve
good sync i/o latency when there is not a high load of writes, and good write
throughput when there is. See the block comment in vdev_queue.c (reproduced
below) for more details.
2. The write throttle (dsl_pool_tempreserve_space() and
txg_constrain_throughput()) is rewritten to produce much more consistent delays
when under constant load. The new write throttle is based on the amount of
dirty data, rather than guesses about future performance of the system. When
there is a lot of dirty data, each transaction (e.g. write() syscall) will be
delayed by the same small amount. This eliminates the "brick wall of wait"
that the old write throttle could hit, causing all transactions to wait several
seconds until the next txg opens. One of the keys to the new write throttle is
decrementing the amount of dirty data as i/o completes, rather than at the end
of spa_sync(). Note that the write throttle is only applied once the i/o
scheduler is issuing the maximum number of outstanding async writes. See the
block comments in dsl_pool.c and above dmu_tx_delay() (reproduced below) for
more details.
This diff has several other effects, including:
* the commonly-tuned global variable zfs_vdev_max_pending has been removed;
use per-class zfs_vdev_*_max_active values or zfs_vdev_max_active instead.
* the size of each txg (meaning the amount of dirty data written, and thus the
time it takes to write out) is now controlled differently. There is no longer
an explicit time goal; the primary determinant is amount of dirty data.
Systems that are under light or medium load will now often see that a txg is
always syncing, but the impact to performance (e.g. read latency) is minimal.
Tune zfs_dirty_data_max and zfs_dirty_data_sync to control this.
* zio_taskq_batch_pct = 75 -- Only use 75% of all CPUs for compression,
checksum, etc. This improves latency by not allowing these CPU-intensive tasks
to consume all CPU (on machines with at least 4 CPU's; the percentage is
rounded up).
--matt
APPENDIX: problems with the current i/o scheduler
The current ZFS i/o scheduler (vdev_queue.c) is deadline based. The problem
with this is that if there are always i/os pending, then certain classes of
i/os can see very long delays.
For example, if there are always synchronous reads outstanding, then no async
writes will be serviced until they become "past due". One symptom of this
situation is that each pass of the txg sync takes at least several seconds
(typically 3 seconds).
If many i/os become "past due" (their deadline is in the past), then we must
service all of these overdue i/os before any new i/os. This happens when we
enqueue a batch of async writes for the txg sync, with deadlines 2.5 seconds in
the future. If we can't complete all the i/os in 2.5 seconds (e.g. because
there were always reads pending), then these i/os will become past due. Now we
must service all the "async" writes (which could be hundreds of megabytes)
before we service any reads, introducing considerable latency to synchronous
i/os (reads or ZIL writes).
Notes on porting to ZFS on Linux:
- zio_t gained new members io_physdone and io_phys_children. Because
object caches in the Linux port call the constructor only once at
allocation time, objects may contain residual data when retrieved
from the cache. Therefore zio_create() was updated to zero out the two
new fields.
- vdev_mirror_pending() relied on the depth of the per-vdev pending queue
(vq->vq_pending_tree) to select the least-busy leaf vdev to read from.
This tree has been replaced by vq->vq_active_tree which is now used
for the same purpose.
- vdev_queue_init() used the value of zfs_vdev_max_pending to determine
the number of vdev I/O buffers to pre-allocate. That global no longer
exists, so we instead use the sum of the *_max_active values for each of
the five I/O classes described above.
- The Illumos implementation of dmu_tx_delay() delays a transaction by
sleeping in condition variable embedded in the thread
(curthread->t_delay_cv). We do not have an equivalent CV to use in
Linux, so this change replaced the delay logic with a wrapper called
zfs_sleep_until(). This wrapper could be adopted upstream and in other
downstream ports to abstract away operating system-specific delay logic.
- These tunables are added as module parameters, and descriptions added
to the zfs-module-parameters.5 man page.
spa_asize_inflation
zfs_deadman_synctime_ms
zfs_vdev_max_active
zfs_vdev_async_write_active_min_dirty_percent
zfs_vdev_async_write_active_max_dirty_percent
zfs_vdev_async_read_max_active
zfs_vdev_async_read_min_active
zfs_vdev_async_write_max_active
zfs_vdev_async_write_min_active
zfs_vdev_scrub_max_active
zfs_vdev_scrub_min_active
zfs_vdev_sync_read_max_active
zfs_vdev_sync_read_min_active
zfs_vdev_sync_write_max_active
zfs_vdev_sync_write_min_active
zfs_dirty_data_max_percent
zfs_delay_min_dirty_percent
zfs_dirty_data_max_max_percent
zfs_dirty_data_max
zfs_dirty_data_max_max
zfs_dirty_data_sync
zfs_delay_scale
The latter four have type unsigned long, whereas they are uint64_t in
Illumos. This accommodates Linux's module_param() supported types, but
means they may overflow on 32-bit architectures.
The values zfs_dirty_data_max and zfs_dirty_data_max_max are the most
likely to overflow on 32-bit systems, since they express physical RAM
sizes in bytes. In fact, Illumos initializes zfs_dirty_data_max_max to
2^32 which does overflow. To resolve that, this port instead initializes
it in arc_init() to 25% of physical RAM, and adds the tunable
zfs_dirty_data_max_max_percent to override that percentage. While this
solution doesn't completely avoid the overflow issue, it should be a
reasonable default for most systems, and the minority of affected
systems can work around the issue by overriding the defaults.
- Fixed reversed logic in comment above zfs_delay_scale declaration.
- Clarified comments in vdev_queue.c regarding when per-queue minimums take
effect.
- Replaced dmu_tx_write_limit in the dmu_tx kstat file
with dmu_tx_dirty_delay and dmu_tx_dirty_over_max. The first counts
how many times a transaction has been delayed because the pool dirty
data has exceeded zfs_delay_min_dirty_percent. The latter counts how
many times the pool dirty data has exceeded zfs_dirty_data_max (which
we expect to never happen).
- The original patch would have regressed the bug fixed in
zfsonlinux/zfs@c418410, which prevented users from setting the
zfs_vdev_aggregation_limit tuning larger than SPA_MAXBLOCKSIZE.
A similar fix is added to vdev_queue_aggregate().
- In vdev_queue_io_to_issue(), dynamically allocate 'zio_t search' on the
heap instead of the stack. In Linux we can't afford such large
structures on the stack.
Reviewed by: George Wilson <george.wilson@delphix.com>
Reviewed by: Adam Leventhal <ahl@delphix.com>
Reviewed by: Christopher Siden <christopher.siden@delphix.com>
Reviewed by: Ned Bass <bass6@llnl.gov>
Reviewed by: Brendan Gregg <brendan.gregg@joyent.com>
Approved by: Robert Mustacchi <rm@joyent.com>
References:
http://www.illumos.org/issues/4045
illumos/illumos-gate@69962b5647e4a8b9b14998733b765925381b727e
Ported-by: Ned Bass <bass6@llnl.gov>
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Closes #1913
2013-08-29 07:01:20 +04:00
|
|
|
|
ASSERT3S(space, >=, 0);
|
|
|
|
|
if (space == 0)
|
2008-11-20 23:01:55 +03:00
|
|
|
|
return;
|
|
|
|
|
|
Illumos #4045 write throttle & i/o scheduler performance work
4045 zfs write throttle & i/o scheduler performance work
1. The ZFS i/o scheduler (vdev_queue.c) now divides i/os into 5 classes: sync
read, sync write, async read, async write, and scrub/resilver. The scheduler
issues a number of concurrent i/os from each class to the device. Once a class
has been selected, an i/o is selected from this class using either an elevator
algorithem (async, scrub classes) or FIFO (sync classes). The number of
concurrent async write i/os is tuned dynamically based on i/o load, to achieve
good sync i/o latency when there is not a high load of writes, and good write
throughput when there is. See the block comment in vdev_queue.c (reproduced
below) for more details.
2. The write throttle (dsl_pool_tempreserve_space() and
txg_constrain_throughput()) is rewritten to produce much more consistent delays
when under constant load. The new write throttle is based on the amount of
dirty data, rather than guesses about future performance of the system. When
there is a lot of dirty data, each transaction (e.g. write() syscall) will be
delayed by the same small amount. This eliminates the "brick wall of wait"
that the old write throttle could hit, causing all transactions to wait several
seconds until the next txg opens. One of the keys to the new write throttle is
decrementing the amount of dirty data as i/o completes, rather than at the end
of spa_sync(). Note that the write throttle is only applied once the i/o
scheduler is issuing the maximum number of outstanding async writes. See the
block comments in dsl_pool.c and above dmu_tx_delay() (reproduced below) for
more details.
This diff has several other effects, including:
* the commonly-tuned global variable zfs_vdev_max_pending has been removed;
use per-class zfs_vdev_*_max_active values or zfs_vdev_max_active instead.
* the size of each txg (meaning the amount of dirty data written, and thus the
time it takes to write out) is now controlled differently. There is no longer
an explicit time goal; the primary determinant is amount of dirty data.
Systems that are under light or medium load will now often see that a txg is
always syncing, but the impact to performance (e.g. read latency) is minimal.
Tune zfs_dirty_data_max and zfs_dirty_data_sync to control this.
* zio_taskq_batch_pct = 75 -- Only use 75% of all CPUs for compression,
checksum, etc. This improves latency by not allowing these CPU-intensive tasks
to consume all CPU (on machines with at least 4 CPU's; the percentage is
rounded up).
--matt
APPENDIX: problems with the current i/o scheduler
The current ZFS i/o scheduler (vdev_queue.c) is deadline based. The problem
with this is that if there are always i/os pending, then certain classes of
i/os can see very long delays.
For example, if there are always synchronous reads outstanding, then no async
writes will be serviced until they become "past due". One symptom of this
situation is that each pass of the txg sync takes at least several seconds
(typically 3 seconds).
If many i/os become "past due" (their deadline is in the past), then we must
service all of these overdue i/os before any new i/os. This happens when we
enqueue a batch of async writes for the txg sync, with deadlines 2.5 seconds in
the future. If we can't complete all the i/os in 2.5 seconds (e.g. because
there were always reads pending), then these i/os will become past due. Now we
must service all the "async" writes (which could be hundreds of megabytes)
before we service any reads, introducing considerable latency to synchronous
i/os (reads or ZIL writes).
Notes on porting to ZFS on Linux:
- zio_t gained new members io_physdone and io_phys_children. Because
object caches in the Linux port call the constructor only once at
allocation time, objects may contain residual data when retrieved
from the cache. Therefore zio_create() was updated to zero out the two
new fields.
- vdev_mirror_pending() relied on the depth of the per-vdev pending queue
(vq->vq_pending_tree) to select the least-busy leaf vdev to read from.
This tree has been replaced by vq->vq_active_tree which is now used
for the same purpose.
- vdev_queue_init() used the value of zfs_vdev_max_pending to determine
the number of vdev I/O buffers to pre-allocate. That global no longer
exists, so we instead use the sum of the *_max_active values for each of
the five I/O classes described above.
- The Illumos implementation of dmu_tx_delay() delays a transaction by
sleeping in condition variable embedded in the thread
(curthread->t_delay_cv). We do not have an equivalent CV to use in
Linux, so this change replaced the delay logic with a wrapper called
zfs_sleep_until(). This wrapper could be adopted upstream and in other
downstream ports to abstract away operating system-specific delay logic.
- These tunables are added as module parameters, and descriptions added
to the zfs-module-parameters.5 man page.
spa_asize_inflation
zfs_deadman_synctime_ms
zfs_vdev_max_active
zfs_vdev_async_write_active_min_dirty_percent
zfs_vdev_async_write_active_max_dirty_percent
zfs_vdev_async_read_max_active
zfs_vdev_async_read_min_active
zfs_vdev_async_write_max_active
zfs_vdev_async_write_min_active
zfs_vdev_scrub_max_active
zfs_vdev_scrub_min_active
zfs_vdev_sync_read_max_active
zfs_vdev_sync_read_min_active
zfs_vdev_sync_write_max_active
zfs_vdev_sync_write_min_active
zfs_dirty_data_max_percent
zfs_delay_min_dirty_percent
zfs_dirty_data_max_max_percent
zfs_dirty_data_max
zfs_dirty_data_max_max
zfs_dirty_data_sync
zfs_delay_scale
The latter four have type unsigned long, whereas they are uint64_t in
Illumos. This accommodates Linux's module_param() supported types, but
means they may overflow on 32-bit architectures.
The values zfs_dirty_data_max and zfs_dirty_data_max_max are the most
likely to overflow on 32-bit systems, since they express physical RAM
sizes in bytes. In fact, Illumos initializes zfs_dirty_data_max_max to
2^32 which does overflow. To resolve that, this port instead initializes
it in arc_init() to 25% of physical RAM, and adds the tunable
zfs_dirty_data_max_max_percent to override that percentage. While this
solution doesn't completely avoid the overflow issue, it should be a
reasonable default for most systems, and the minority of affected
systems can work around the issue by overriding the defaults.
- Fixed reversed logic in comment above zfs_delay_scale declaration.
- Clarified comments in vdev_queue.c regarding when per-queue minimums take
effect.
- Replaced dmu_tx_write_limit in the dmu_tx kstat file
with dmu_tx_dirty_delay and dmu_tx_dirty_over_max. The first counts
how many times a transaction has been delayed because the pool dirty
data has exceeded zfs_delay_min_dirty_percent. The latter counts how
many times the pool dirty data has exceeded zfs_dirty_data_max (which
we expect to never happen).
- The original patch would have regressed the bug fixed in
zfsonlinux/zfs@c418410, which prevented users from setting the
zfs_vdev_aggregation_limit tuning larger than SPA_MAXBLOCKSIZE.
A similar fix is added to vdev_queue_aggregate().
- In vdev_queue_io_to_issue(), dynamically allocate 'zio_t search' on the
heap instead of the stack. In Linux we can't afford such large
structures on the stack.
Reviewed by: George Wilson <george.wilson@delphix.com>
Reviewed by: Adam Leventhal <ahl@delphix.com>
Reviewed by: Christopher Siden <christopher.siden@delphix.com>
Reviewed by: Ned Bass <bass6@llnl.gov>
Reviewed by: Brendan Gregg <brendan.gregg@joyent.com>
Approved by: Robert Mustacchi <rm@joyent.com>
References:
http://www.illumos.org/issues/4045
illumos/illumos-gate@69962b5647e4a8b9b14998733b765925381b727e
Ported-by: Ned Bass <bass6@llnl.gov>
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Closes #1913
2013-08-29 07:01:20 +04:00
|
|
|
|
mutex_enter(&dp->dp_lock);
|
|
|
|
|
if (dp->dp_dirty_pertxg[txg & TXG_MASK] < space) {
|
|
|
|
|
/* XXX writing something we didn't dirty? */
|
|
|
|
|
space = dp->dp_dirty_pertxg[txg & TXG_MASK];
|
2008-11-20 23:01:55 +03:00
|
|
|
|
}
|
Illumos #4045 write throttle & i/o scheduler performance work
4045 zfs write throttle & i/o scheduler performance work
1. The ZFS i/o scheduler (vdev_queue.c) now divides i/os into 5 classes: sync
read, sync write, async read, async write, and scrub/resilver. The scheduler
issues a number of concurrent i/os from each class to the device. Once a class
has been selected, an i/o is selected from this class using either an elevator
algorithem (async, scrub classes) or FIFO (sync classes). The number of
concurrent async write i/os is tuned dynamically based on i/o load, to achieve
good sync i/o latency when there is not a high load of writes, and good write
throughput when there is. See the block comment in vdev_queue.c (reproduced
below) for more details.
2. The write throttle (dsl_pool_tempreserve_space() and
txg_constrain_throughput()) is rewritten to produce much more consistent delays
when under constant load. The new write throttle is based on the amount of
dirty data, rather than guesses about future performance of the system. When
there is a lot of dirty data, each transaction (e.g. write() syscall) will be
delayed by the same small amount. This eliminates the "brick wall of wait"
that the old write throttle could hit, causing all transactions to wait several
seconds until the next txg opens. One of the keys to the new write throttle is
decrementing the amount of dirty data as i/o completes, rather than at the end
of spa_sync(). Note that the write throttle is only applied once the i/o
scheduler is issuing the maximum number of outstanding async writes. See the
block comments in dsl_pool.c and above dmu_tx_delay() (reproduced below) for
more details.
This diff has several other effects, including:
* the commonly-tuned global variable zfs_vdev_max_pending has been removed;
use per-class zfs_vdev_*_max_active values or zfs_vdev_max_active instead.
* the size of each txg (meaning the amount of dirty data written, and thus the
time it takes to write out) is now controlled differently. There is no longer
an explicit time goal; the primary determinant is amount of dirty data.
Systems that are under light or medium load will now often see that a txg is
always syncing, but the impact to performance (e.g. read latency) is minimal.
Tune zfs_dirty_data_max and zfs_dirty_data_sync to control this.
* zio_taskq_batch_pct = 75 -- Only use 75% of all CPUs for compression,
checksum, etc. This improves latency by not allowing these CPU-intensive tasks
to consume all CPU (on machines with at least 4 CPU's; the percentage is
rounded up).
--matt
APPENDIX: problems with the current i/o scheduler
The current ZFS i/o scheduler (vdev_queue.c) is deadline based. The problem
with this is that if there are always i/os pending, then certain classes of
i/os can see very long delays.
For example, if there are always synchronous reads outstanding, then no async
writes will be serviced until they become "past due". One symptom of this
situation is that each pass of the txg sync takes at least several seconds
(typically 3 seconds).
If many i/os become "past due" (their deadline is in the past), then we must
service all of these overdue i/os before any new i/os. This happens when we
enqueue a batch of async writes for the txg sync, with deadlines 2.5 seconds in
the future. If we can't complete all the i/os in 2.5 seconds (e.g. because
there were always reads pending), then these i/os will become past due. Now we
must service all the "async" writes (which could be hundreds of megabytes)
before we service any reads, introducing considerable latency to synchronous
i/os (reads or ZIL writes).
Notes on porting to ZFS on Linux:
- zio_t gained new members io_physdone and io_phys_children. Because
object caches in the Linux port call the constructor only once at
allocation time, objects may contain residual data when retrieved
from the cache. Therefore zio_create() was updated to zero out the two
new fields.
- vdev_mirror_pending() relied on the depth of the per-vdev pending queue
(vq->vq_pending_tree) to select the least-busy leaf vdev to read from.
This tree has been replaced by vq->vq_active_tree which is now used
for the same purpose.
- vdev_queue_init() used the value of zfs_vdev_max_pending to determine
the number of vdev I/O buffers to pre-allocate. That global no longer
exists, so we instead use the sum of the *_max_active values for each of
the five I/O classes described above.
- The Illumos implementation of dmu_tx_delay() delays a transaction by
sleeping in condition variable embedded in the thread
(curthread->t_delay_cv). We do not have an equivalent CV to use in
Linux, so this change replaced the delay logic with a wrapper called
zfs_sleep_until(). This wrapper could be adopted upstream and in other
downstream ports to abstract away operating system-specific delay logic.
- These tunables are added as module parameters, and descriptions added
to the zfs-module-parameters.5 man page.
spa_asize_inflation
zfs_deadman_synctime_ms
zfs_vdev_max_active
zfs_vdev_async_write_active_min_dirty_percent
zfs_vdev_async_write_active_max_dirty_percent
zfs_vdev_async_read_max_active
zfs_vdev_async_read_min_active
zfs_vdev_async_write_max_active
zfs_vdev_async_write_min_active
zfs_vdev_scrub_max_active
zfs_vdev_scrub_min_active
zfs_vdev_sync_read_max_active
zfs_vdev_sync_read_min_active
zfs_vdev_sync_write_max_active
zfs_vdev_sync_write_min_active
zfs_dirty_data_max_percent
zfs_delay_min_dirty_percent
zfs_dirty_data_max_max_percent
zfs_dirty_data_max
zfs_dirty_data_max_max
zfs_dirty_data_sync
zfs_delay_scale
The latter four have type unsigned long, whereas they are uint64_t in
Illumos. This accommodates Linux's module_param() supported types, but
means they may overflow on 32-bit architectures.
The values zfs_dirty_data_max and zfs_dirty_data_max_max are the most
likely to overflow on 32-bit systems, since they express physical RAM
sizes in bytes. In fact, Illumos initializes zfs_dirty_data_max_max to
2^32 which does overflow. To resolve that, this port instead initializes
it in arc_init() to 25% of physical RAM, and adds the tunable
zfs_dirty_data_max_max_percent to override that percentage. While this
solution doesn't completely avoid the overflow issue, it should be a
reasonable default for most systems, and the minority of affected
systems can work around the issue by overriding the defaults.
- Fixed reversed logic in comment above zfs_delay_scale declaration.
- Clarified comments in vdev_queue.c regarding when per-queue minimums take
effect.
- Replaced dmu_tx_write_limit in the dmu_tx kstat file
with dmu_tx_dirty_delay and dmu_tx_dirty_over_max. The first counts
how many times a transaction has been delayed because the pool dirty
data has exceeded zfs_delay_min_dirty_percent. The latter counts how
many times the pool dirty data has exceeded zfs_dirty_data_max (which
we expect to never happen).
- The original patch would have regressed the bug fixed in
zfsonlinux/zfs@c418410, which prevented users from setting the
zfs_vdev_aggregation_limit tuning larger than SPA_MAXBLOCKSIZE.
A similar fix is added to vdev_queue_aggregate().
- In vdev_queue_io_to_issue(), dynamically allocate 'zio_t search' on the
heap instead of the stack. In Linux we can't afford such large
structures on the stack.
Reviewed by: George Wilson <george.wilson@delphix.com>
Reviewed by: Adam Leventhal <ahl@delphix.com>
Reviewed by: Christopher Siden <christopher.siden@delphix.com>
Reviewed by: Ned Bass <bass6@llnl.gov>
Reviewed by: Brendan Gregg <brendan.gregg@joyent.com>
Approved by: Robert Mustacchi <rm@joyent.com>
References:
http://www.illumos.org/issues/4045
illumos/illumos-gate@69962b5647e4a8b9b14998733b765925381b727e
Ported-by: Ned Bass <bass6@llnl.gov>
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Closes #1913
2013-08-29 07:01:20 +04:00
|
|
|
|
ASSERT3U(dp->dp_dirty_pertxg[txg & TXG_MASK], >=, space);
|
|
|
|
|
dp->dp_dirty_pertxg[txg & TXG_MASK] -= space;
|
|
|
|
|
ASSERT3U(dp->dp_dirty_total, >=, space);
|
|
|
|
|
dsl_pool_dirty_delta(dp, -space);
|
|
|
|
|
mutex_exit(&dp->dp_lock);
|
2008-11-20 23:01:55 +03:00
|
|
|
|
}
|
2008-12-03 23:09:06 +03:00
|
|
|
|
|
|
|
|
|
/* ARGSUSED */
|
|
|
|
|
static int
|
2013-09-04 16:00:57 +04:00
|
|
|
|
upgrade_clones_cb(dsl_pool_t *dp, dsl_dataset_t *hds, void *arg)
|
2008-12-03 23:09:06 +03:00
|
|
|
|
{
|
|
|
|
|
dmu_tx_t *tx = arg;
|
|
|
|
|
dsl_dataset_t *ds, *prev = NULL;
|
|
|
|
|
int err;
|
|
|
|
|
|
2013-09-04 16:00:57 +04:00
|
|
|
|
err = dsl_dataset_hold_obj(dp, hds->ds_object, FTAG, &ds);
|
2008-12-03 23:09:06 +03:00
|
|
|
|
if (err)
|
|
|
|
|
return (err);
|
|
|
|
|
|
2015-04-01 18:14:34 +03:00
|
|
|
|
while (dsl_dataset_phys(ds)->ds_prev_snap_obj != 0) {
|
|
|
|
|
err = dsl_dataset_hold_obj(dp,
|
|
|
|
|
dsl_dataset_phys(ds)->ds_prev_snap_obj, FTAG, &prev);
|
2008-12-03 23:09:06 +03:00
|
|
|
|
if (err) {
|
|
|
|
|
dsl_dataset_rele(ds, FTAG);
|
|
|
|
|
return (err);
|
|
|
|
|
}
|
|
|
|
|
|
2015-04-01 18:14:34 +03:00
|
|
|
|
if (dsl_dataset_phys(prev)->ds_next_snap_obj != ds->ds_object)
|
2008-12-03 23:09:06 +03:00
|
|
|
|
break;
|
|
|
|
|
dsl_dataset_rele(ds, FTAG);
|
|
|
|
|
ds = prev;
|
|
|
|
|
prev = NULL;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
if (prev == NULL) {
|
|
|
|
|
prev = dp->dp_origin_snap;
|
|
|
|
|
|
|
|
|
|
/*
|
|
|
|
|
* The $ORIGIN can't have any data, or the accounting
|
|
|
|
|
* will be wrong.
|
|
|
|
|
*/
|
2017-01-27 22:43:42 +03:00
|
|
|
|
rrw_enter(&ds->ds_bp_rwlock, RW_READER, FTAG);
|
2015-04-01 18:14:34 +03:00
|
|
|
|
ASSERT0(dsl_dataset_phys(prev)->ds_bp.blk_birth);
|
2017-01-27 22:43:42 +03:00
|
|
|
|
rrw_exit(&ds->ds_bp_rwlock, FTAG);
|
2008-12-03 23:09:06 +03:00
|
|
|
|
|
|
|
|
|
/* The origin doesn't get attached to itself */
|
|
|
|
|
if (ds->ds_object == prev->ds_object) {
|
|
|
|
|
dsl_dataset_rele(ds, FTAG);
|
|
|
|
|
return (0);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
dmu_buf_will_dirty(ds->ds_dbuf, tx);
|
2015-04-01 18:14:34 +03:00
|
|
|
|
dsl_dataset_phys(ds)->ds_prev_snap_obj = prev->ds_object;
|
|
|
|
|
dsl_dataset_phys(ds)->ds_prev_snap_txg =
|
|
|
|
|
dsl_dataset_phys(prev)->ds_creation_txg;
|
2008-12-03 23:09:06 +03:00
|
|
|
|
|
|
|
|
|
dmu_buf_will_dirty(ds->ds_dir->dd_dbuf, tx);
|
2015-04-01 18:14:34 +03:00
|
|
|
|
dsl_dir_phys(ds->ds_dir)->dd_origin_obj = prev->ds_object;
|
2008-12-03 23:09:06 +03:00
|
|
|
|
|
|
|
|
|
dmu_buf_will_dirty(prev->ds_dbuf, tx);
|
2015-04-01 18:14:34 +03:00
|
|
|
|
dsl_dataset_phys(prev)->ds_num_children++;
|
2008-12-03 23:09:06 +03:00
|
|
|
|
|
2015-04-01 18:14:34 +03:00
|
|
|
|
if (dsl_dataset_phys(ds)->ds_next_snap_obj == 0) {
|
2008-12-03 23:09:06 +03:00
|
|
|
|
ASSERT(ds->ds_prev == NULL);
|
2013-09-04 16:00:57 +04:00
|
|
|
|
VERIFY0(dsl_dataset_hold_obj(dp,
|
2015-04-01 18:14:34 +03:00
|
|
|
|
dsl_dataset_phys(ds)->ds_prev_snap_obj,
|
|
|
|
|
ds, &ds->ds_prev));
|
2008-12-03 23:09:06 +03:00
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
2015-04-01 18:14:34 +03:00
|
|
|
|
ASSERT3U(dsl_dir_phys(ds->ds_dir)->dd_origin_obj, ==, prev->ds_object);
|
|
|
|
|
ASSERT3U(dsl_dataset_phys(ds)->ds_prev_snap_obj, ==, prev->ds_object);
|
2008-12-03 23:09:06 +03:00
|
|
|
|
|
2015-04-01 18:14:34 +03:00
|
|
|
|
if (dsl_dataset_phys(prev)->ds_next_clones_obj == 0) {
|
2010-05-29 00:45:14 +04:00
|
|
|
|
dmu_buf_will_dirty(prev->ds_dbuf, tx);
|
2015-04-01 18:14:34 +03:00
|
|
|
|
dsl_dataset_phys(prev)->ds_next_clones_obj =
|
2008-12-03 23:09:06 +03:00
|
|
|
|
zap_create(dp->dp_meta_objset,
|
|
|
|
|
DMU_OT_NEXT_CLONES, DMU_OT_NONE, 0, tx);
|
|
|
|
|
}
|
2013-09-04 16:00:57 +04:00
|
|
|
|
VERIFY0(zap_add_int(dp->dp_meta_objset,
|
2015-04-01 18:14:34 +03:00
|
|
|
|
dsl_dataset_phys(prev)->ds_next_clones_obj, ds->ds_object, tx));
|
2008-12-03 23:09:06 +03:00
|
|
|
|
|
|
|
|
|
dsl_dataset_rele(ds, FTAG);
|
|
|
|
|
if (prev != dp->dp_origin_snap)
|
|
|
|
|
dsl_dataset_rele(prev, FTAG);
|
|
|
|
|
return (0);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
void
|
|
|
|
|
dsl_pool_upgrade_clones(dsl_pool_t *dp, dmu_tx_t *tx)
|
|
|
|
|
{
|
|
|
|
|
ASSERT(dmu_tx_is_syncing(tx));
|
|
|
|
|
ASSERT(dp->dp_origin_snap != NULL);
|
|
|
|
|
|
2013-09-04 16:00:57 +04:00
|
|
|
|
VERIFY0(dmu_objset_find_dp(dp, dp->dp_root_dir_obj, upgrade_clones_cb,
|
2015-05-06 19:07:55 +03:00
|
|
|
|
tx, DS_FIND_CHILDREN | DS_FIND_SERIALIZE));
|
2010-05-29 00:45:14 +04:00
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* ARGSUSED */
|
|
|
|
|
static int
|
2013-09-04 16:00:57 +04:00
|
|
|
|
upgrade_dir_clones_cb(dsl_pool_t *dp, dsl_dataset_t *ds, void *arg)
|
2010-05-29 00:45:14 +04:00
|
|
|
|
{
|
|
|
|
|
dmu_tx_t *tx = arg;
|
|
|
|
|
objset_t *mos = dp->dp_meta_objset;
|
|
|
|
|
|
2015-04-01 18:14:34 +03:00
|
|
|
|
if (dsl_dir_phys(ds->ds_dir)->dd_origin_obj != 0) {
|
2010-05-29 00:45:14 +04:00
|
|
|
|
dsl_dataset_t *origin;
|
|
|
|
|
|
2013-09-04 16:00:57 +04:00
|
|
|
|
VERIFY0(dsl_dataset_hold_obj(dp,
|
2015-04-01 18:14:34 +03:00
|
|
|
|
dsl_dir_phys(ds->ds_dir)->dd_origin_obj, FTAG, &origin));
|
2010-05-29 00:45:14 +04:00
|
|
|
|
|
2015-04-01 18:14:34 +03:00
|
|
|
|
if (dsl_dir_phys(origin->ds_dir)->dd_clones == 0) {
|
2010-05-29 00:45:14 +04:00
|
|
|
|
dmu_buf_will_dirty(origin->ds_dir->dd_dbuf, tx);
|
2015-04-01 18:14:34 +03:00
|
|
|
|
dsl_dir_phys(origin->ds_dir)->dd_clones =
|
|
|
|
|
zap_create(mos, DMU_OT_DSL_CLONES, DMU_OT_NONE,
|
|
|
|
|
0, tx);
|
2010-05-29 00:45:14 +04:00
|
|
|
|
}
|
|
|
|
|
|
2013-09-04 16:00:57 +04:00
|
|
|
|
VERIFY0(zap_add_int(dp->dp_meta_objset,
|
2015-04-01 18:14:34 +03:00
|
|
|
|
dsl_dir_phys(origin->ds_dir)->dd_clones,
|
|
|
|
|
ds->ds_object, tx));
|
2010-05-29 00:45:14 +04:00
|
|
|
|
|
|
|
|
|
dsl_dataset_rele(origin, FTAG);
|
|
|
|
|
}
|
|
|
|
|
return (0);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
void
|
|
|
|
|
dsl_pool_upgrade_dir_clones(dsl_pool_t *dp, dmu_tx_t *tx)
|
|
|
|
|
{
|
|
|
|
|
uint64_t obj;
|
|
|
|
|
|
2010-08-26 20:52:39 +04:00
|
|
|
|
ASSERT(dmu_tx_is_syncing(tx));
|
|
|
|
|
|
2010-05-29 00:45:14 +04:00
|
|
|
|
(void) dsl_dir_create_sync(dp, dp->dp_root_dir, FREE_DIR_NAME, tx);
|
2013-09-04 16:00:57 +04:00
|
|
|
|
VERIFY0(dsl_pool_open_special_dir(dp,
|
2010-05-29 00:45:14 +04:00
|
|
|
|
FREE_DIR_NAME, &dp->dp_free_dir));
|
|
|
|
|
|
|
|
|
|
/*
|
|
|
|
|
* We can't use bpobj_alloc(), because spa_version() still
|
|
|
|
|
* returns the old version, and we need a new-version bpobj with
|
|
|
|
|
* subobj support. So call dmu_object_alloc() directly.
|
|
|
|
|
*/
|
|
|
|
|
obj = dmu_object_alloc(dp->dp_meta_objset, DMU_OT_BPOBJ,
|
2014-11-03 23:15:08 +03:00
|
|
|
|
SPA_OLD_MAXBLOCKSIZE, DMU_OT_BPOBJ_HDR, sizeof (bpobj_phys_t), tx);
|
2013-09-04 16:00:57 +04:00
|
|
|
|
VERIFY0(zap_add(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
|
2010-05-29 00:45:14 +04:00
|
|
|
|
DMU_POOL_FREE_BPOBJ, sizeof (uint64_t), 1, &obj, tx));
|
2013-09-04 16:00:57 +04:00
|
|
|
|
VERIFY0(bpobj_open(&dp->dp_free_bpobj, dp->dp_meta_objset, obj));
|
2010-05-29 00:45:14 +04:00
|
|
|
|
|
2013-09-04 16:00:57 +04:00
|
|
|
|
VERIFY0(dmu_objset_find_dp(dp, dp->dp_root_dir_obj,
|
2015-05-06 19:07:55 +03:00
|
|
|
|
upgrade_dir_clones_cb, tx, DS_FIND_CHILDREN | DS_FIND_SERIALIZE));
|
2008-12-03 23:09:06 +03:00
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
void
|
|
|
|
|
dsl_pool_create_origin(dsl_pool_t *dp, dmu_tx_t *tx)
|
|
|
|
|
{
|
|
|
|
|
uint64_t dsobj;
|
|
|
|
|
dsl_dataset_t *ds;
|
|
|
|
|
|
|
|
|
|
ASSERT(dmu_tx_is_syncing(tx));
|
|
|
|
|
ASSERT(dp->dp_origin_snap == NULL);
|
2013-09-04 16:00:57 +04:00
|
|
|
|
ASSERT(rrw_held(&dp->dp_config_rwlock, RW_WRITER));
|
2008-12-03 23:09:06 +03:00
|
|
|
|
|
|
|
|
|
/* create the origin dir, ds, & snap-ds */
|
|
|
|
|
dsobj = dsl_dataset_create_sync(dp->dp_root_dir, ORIGIN_DIR_NAME,
|
Native Encryption for ZFS on Linux
This change incorporates three major pieces:
The first change is a keystore that manages wrapping
and encryption keys for encrypted datasets. These
commands mostly involve manipulating the new
DSL Crypto Key ZAP Objects that live in the MOS. Each
encrypted dataset has its own DSL Crypto Key that is
protected with a user's key. This level of indirection
allows users to change their keys without re-encrypting
their entire datasets. The change implements the new
subcommands "zfs load-key", "zfs unload-key" and
"zfs change-key" which allow the user to manage their
encryption keys and settings. In addition, several new
flags and properties have been added to allow dataset
creation and to make mounting and unmounting more
convenient.
The second piece of this patch provides the ability to
encrypt, decyrpt, and authenticate protected datasets.
Each object set maintains a Merkel tree of Message
Authentication Codes that protect the lower layers,
similarly to how checksums are maintained. This part
impacts the zio layer, which handles the actual
encryption and generation of MACs, as well as the ARC
and DMU, which need to be able to handle encrypted
buffers and protected data.
The last addition is the ability to do raw, encrypted
sends and receives. The idea here is to send raw
encrypted and compressed data and receive it exactly
as is on a backup system. This means that the dataset
on the receiving system is protected using the same
user key that is in use on the sending side. By doing
so, datasets can be efficiently backed up to an
untrusted system without fear of data being
compromised.
Reviewed by: Matthew Ahrens <mahrens@delphix.com>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Reviewed-by: Jorgen Lundman <lundman@lundman.net>
Signed-off-by: Tom Caputi <tcaputi@datto.com>
Closes #494
Closes #5769
2017-08-14 20:36:48 +03:00
|
|
|
|
NULL, 0, kcred, NULL, tx);
|
2013-09-04 16:00:57 +04:00
|
|
|
|
VERIFY0(dsl_dataset_hold_obj(dp, dsobj, FTAG, &ds));
|
|
|
|
|
dsl_dataset_snapshot_sync_impl(ds, ORIGIN_DIR_NAME, tx);
|
2015-04-01 18:14:34 +03:00
|
|
|
|
VERIFY0(dsl_dataset_hold_obj(dp, dsl_dataset_phys(ds)->ds_prev_snap_obj,
|
2008-12-03 23:09:06 +03:00
|
|
|
|
dp, &dp->dp_origin_snap));
|
|
|
|
|
dsl_dataset_rele(ds, FTAG);
|
|
|
|
|
}
|
2009-07-03 02:44:48 +04:00
|
|
|
|
|
|
|
|
|
taskq_t *
|
2019-12-11 22:53:57 +03:00
|
|
|
|
dsl_pool_zrele_taskq(dsl_pool_t *dp)
|
2009-07-03 02:44:48 +04:00
|
|
|
|
{
|
2019-12-11 22:53:57 +03:00
|
|
|
|
return (dp->dp_zrele_taskq);
|
2009-07-03 02:44:48 +04:00
|
|
|
|
}
|
2010-05-29 00:45:14 +04:00
|
|
|
|
|
2019-02-12 21:41:15 +03:00
|
|
|
|
taskq_t *
|
|
|
|
|
dsl_pool_unlinked_drain_taskq(dsl_pool_t *dp)
|
|
|
|
|
{
|
|
|
|
|
return (dp->dp_unlinked_drain_taskq);
|
|
|
|
|
}
|
|
|
|
|
|
2010-05-29 00:45:14 +04:00
|
|
|
|
/*
|
|
|
|
|
* Walk through the pool-wide zap object of temporary snapshot user holds
|
|
|
|
|
* and release them.
|
|
|
|
|
*/
|
|
|
|
|
void
|
|
|
|
|
dsl_pool_clean_tmp_userrefs(dsl_pool_t *dp)
|
|
|
|
|
{
|
|
|
|
|
zap_attribute_t za;
|
|
|
|
|
zap_cursor_t zc;
|
|
|
|
|
objset_t *mos = dp->dp_meta_objset;
|
|
|
|
|
uint64_t zapobj = dp->dp_tmp_userrefs_obj;
|
2013-05-25 06:06:23 +04:00
|
|
|
|
nvlist_t *holds;
|
2010-05-29 00:45:14 +04:00
|
|
|
|
|
|
|
|
|
if (zapobj == 0)
|
|
|
|
|
return;
|
|
|
|
|
ASSERT(spa_version(dp->dp_spa) >= SPA_VERSION_USERREFS);
|
|
|
|
|
|
2013-05-25 06:06:23 +04:00
|
|
|
|
holds = fnvlist_alloc();
|
|
|
|
|
|
2010-05-29 00:45:14 +04:00
|
|
|
|
for (zap_cursor_init(&zc, mos, zapobj);
|
|
|
|
|
zap_cursor_retrieve(&zc, &za) == 0;
|
|
|
|
|
zap_cursor_advance(&zc)) {
|
|
|
|
|
char *htag;
|
2013-05-25 06:06:23 +04:00
|
|
|
|
nvlist_t *tags;
|
2010-05-29 00:45:14 +04:00
|
|
|
|
|
|
|
|
|
htag = strchr(za.za_name, '-');
|
|
|
|
|
*htag = '\0';
|
|
|
|
|
++htag;
|
2013-05-25 06:06:23 +04:00
|
|
|
|
if (nvlist_lookup_nvlist(holds, za.za_name, &tags) != 0) {
|
|
|
|
|
tags = fnvlist_alloc();
|
|
|
|
|
fnvlist_add_boolean(tags, htag);
|
|
|
|
|
fnvlist_add_nvlist(holds, za.za_name, tags);
|
|
|
|
|
fnvlist_free(tags);
|
|
|
|
|
} else {
|
|
|
|
|
fnvlist_add_boolean(tags, htag);
|
|
|
|
|
}
|
2010-05-29 00:45:14 +04:00
|
|
|
|
}
|
2013-05-25 06:06:23 +04:00
|
|
|
|
dsl_dataset_user_release_tmp(dp, holds);
|
|
|
|
|
fnvlist_free(holds);
|
2010-05-29 00:45:14 +04:00
|
|
|
|
zap_cursor_fini(&zc);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/*
|
|
|
|
|
* Create the pool-wide zap object for storing temporary snapshot holds.
|
|
|
|
|
*/
|
2020-06-15 21:30:37 +03:00
|
|
|
|
static void
|
2010-05-29 00:45:14 +04:00
|
|
|
|
dsl_pool_user_hold_create_obj(dsl_pool_t *dp, dmu_tx_t *tx)
|
|
|
|
|
{
|
|
|
|
|
objset_t *mos = dp->dp_meta_objset;
|
|
|
|
|
|
|
|
|
|
ASSERT(dp->dp_tmp_userrefs_obj == 0);
|
|
|
|
|
ASSERT(dmu_tx_is_syncing(tx));
|
|
|
|
|
|
2012-12-14 03:24:15 +04:00
|
|
|
|
dp->dp_tmp_userrefs_obj = zap_create_link(mos, DMU_OT_USERREFS,
|
|
|
|
|
DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_TMP_USERREFS, tx);
|
2010-05-29 00:45:14 +04:00
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
static int
|
|
|
|
|
dsl_pool_user_hold_rele_impl(dsl_pool_t *dp, uint64_t dsobj,
|
2013-09-04 16:00:57 +04:00
|
|
|
|
const char *tag, uint64_t now, dmu_tx_t *tx, boolean_t holding)
|
2010-05-29 00:45:14 +04:00
|
|
|
|
{
|
|
|
|
|
objset_t *mos = dp->dp_meta_objset;
|
|
|
|
|
uint64_t zapobj = dp->dp_tmp_userrefs_obj;
|
|
|
|
|
char *name;
|
|
|
|
|
int error;
|
|
|
|
|
|
|
|
|
|
ASSERT(spa_version(dp->dp_spa) >= SPA_VERSION_USERREFS);
|
|
|
|
|
ASSERT(dmu_tx_is_syncing(tx));
|
|
|
|
|
|
|
|
|
|
/*
|
|
|
|
|
* If the pool was created prior to SPA_VERSION_USERREFS, the
|
|
|
|
|
* zap object for temporary holds might not exist yet.
|
|
|
|
|
*/
|
|
|
|
|
if (zapobj == 0) {
|
|
|
|
|
if (holding) {
|
|
|
|
|
dsl_pool_user_hold_create_obj(dp, tx);
|
|
|
|
|
zapobj = dp->dp_tmp_userrefs_obj;
|
|
|
|
|
} else {
|
2013-03-08 22:41:28 +04:00
|
|
|
|
return (SET_ERROR(ENOENT));
|
2010-05-29 00:45:14 +04:00
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
name = kmem_asprintf("%llx-%s", (u_longlong_t)dsobj, tag);
|
|
|
|
|
if (holding)
|
2013-09-04 16:00:57 +04:00
|
|
|
|
error = zap_add(mos, zapobj, name, 8, 1, &now, tx);
|
2010-05-29 00:45:14 +04:00
|
|
|
|
else
|
|
|
|
|
error = zap_remove(mos, zapobj, name, tx);
|
2019-10-10 19:47:06 +03:00
|
|
|
|
kmem_strfree(name);
|
2010-05-29 00:45:14 +04:00
|
|
|
|
|
|
|
|
|
return (error);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/*
|
|
|
|
|
* Add a temporary hold for the given dataset object and tag.
|
|
|
|
|
*/
|
|
|
|
|
int
|
|
|
|
|
dsl_pool_user_hold(dsl_pool_t *dp, uint64_t dsobj, const char *tag,
|
2013-09-04 16:00:57 +04:00
|
|
|
|
uint64_t now, dmu_tx_t *tx)
|
2010-05-29 00:45:14 +04:00
|
|
|
|
{
|
|
|
|
|
return (dsl_pool_user_hold_rele_impl(dp, dsobj, tag, now, tx, B_TRUE));
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/*
|
|
|
|
|
* Release a temporary hold for the given dataset object and tag.
|
|
|
|
|
*/
|
|
|
|
|
int
|
|
|
|
|
dsl_pool_user_release(dsl_pool_t *dp, uint64_t dsobj, const char *tag,
|
|
|
|
|
dmu_tx_t *tx)
|
|
|
|
|
{
|
2013-09-04 16:00:57 +04:00
|
|
|
|
return (dsl_pool_user_hold_rele_impl(dp, dsobj, tag, 0,
|
2010-05-29 00:45:14 +04:00
|
|
|
|
tx, B_FALSE));
|
|
|
|
|
}
|
2011-05-04 02:09:28 +04:00
|
|
|
|
|
2013-09-04 16:00:57 +04:00
|
|
|
|
/*
|
|
|
|
|
* DSL Pool Configuration Lock
|
|
|
|
|
*
|
|
|
|
|
* The dp_config_rwlock protects against changes to DSL state (e.g. dataset
|
|
|
|
|
* creation / destruction / rename / property setting). It must be held for
|
|
|
|
|
* read to hold a dataset or dsl_dir. I.e. you must call
|
|
|
|
|
* dsl_pool_config_enter() or dsl_pool_hold() before calling
|
|
|
|
|
* dsl_{dataset,dir}_hold{_obj}. In most circumstances, the dp_config_rwlock
|
|
|
|
|
* must be held continuously until all datasets and dsl_dirs are released.
|
|
|
|
|
*
|
|
|
|
|
* The only exception to this rule is that if a "long hold" is placed on
|
|
|
|
|
* a dataset, then the dp_config_rwlock may be dropped while the dataset
|
|
|
|
|
* is still held. The long hold will prevent the dataset from being
|
|
|
|
|
* destroyed -- the destroy will fail with EBUSY. A long hold can be
|
|
|
|
|
* obtained by calling dsl_dataset_long_hold(), or by "owning" a dataset
|
|
|
|
|
* (by calling dsl_{dataset,objset}_{try}own{_obj}).
|
|
|
|
|
*
|
|
|
|
|
* Legitimate long-holders (including owners) should be long-running, cancelable
|
|
|
|
|
* tasks that should cause "zfs destroy" to fail. This includes DMU
|
|
|
|
|
* consumers (i.e. a ZPL filesystem being mounted or ZVOL being open),
|
|
|
|
|
* "zfs send", and "zfs diff". There are several other long-holders whose
|
|
|
|
|
* uses are suboptimal (e.g. "zfs promote", and zil_suspend()).
|
|
|
|
|
*
|
|
|
|
|
* The usual formula for long-holding would be:
|
|
|
|
|
* dsl_pool_hold()
|
|
|
|
|
* dsl_dataset_hold()
|
|
|
|
|
* ... perform checks ...
|
|
|
|
|
* dsl_dataset_long_hold()
|
|
|
|
|
* dsl_pool_rele()
|
|
|
|
|
* ... perform long-running task ...
|
|
|
|
|
* dsl_dataset_long_rele()
|
|
|
|
|
* dsl_dataset_rele()
|
|
|
|
|
*
|
|
|
|
|
* Note that when the long hold is released, the dataset is still held but
|
|
|
|
|
* the pool is not held. The dataset may change arbitrarily during this time
|
|
|
|
|
* (e.g. it could be destroyed). Therefore you shouldn't do anything to the
|
|
|
|
|
* dataset except release it.
|
|
|
|
|
*
|
2020-12-20 05:04:05 +03:00
|
|
|
|
* Operations generally fall somewhere into the following taxonomy:
|
|
|
|
|
*
|
|
|
|
|
* Read-Only Modifying
|
|
|
|
|
*
|
|
|
|
|
* Dataset Layer / MOS zfs get zfs destroy
|
|
|
|
|
*
|
|
|
|
|
* Individual Dataset read() write()
|
|
|
|
|
*
|
|
|
|
|
*
|
|
|
|
|
* Dataset Layer Operations
|
2013-09-04 16:00:57 +04:00
|
|
|
|
*
|
|
|
|
|
* Modifying operations should generally use dsl_sync_task(). The synctask
|
|
|
|
|
* infrastructure enforces proper locking strategy with respect to the
|
|
|
|
|
* dp_config_rwlock. See the comment above dsl_sync_task() for details.
|
|
|
|
|
*
|
|
|
|
|
* Read-only operations will manually hold the pool, then the dataset, obtain
|
|
|
|
|
* information from the dataset, then release the pool and dataset.
|
|
|
|
|
* dmu_objset_{hold,rele}() are convenience routines that also do the pool
|
|
|
|
|
* hold/rele.
|
2020-12-20 05:04:05 +03:00
|
|
|
|
*
|
|
|
|
|
*
|
|
|
|
|
* Operations On Individual Datasets
|
|
|
|
|
*
|
|
|
|
|
* Objects _within_ an objset should only be modified by the current 'owner'
|
|
|
|
|
* of the objset to prevent incorrect concurrent modification. Thus, use
|
|
|
|
|
* {dmu_objset,dsl_dataset}_own to mark some entity as the current owner,
|
|
|
|
|
* and fail with EBUSY if there is already an owner. The owner can then
|
|
|
|
|
* implement its own locking strategy, independent of the dataset layer's
|
|
|
|
|
* locking infrastructure.
|
|
|
|
|
* (E.g., the ZPL has its own set of locks to control concurrency. A regular
|
|
|
|
|
* vnop will not reach into the dataset layer).
|
|
|
|
|
*
|
|
|
|
|
* Ideally, objects would also only be read by the objset’s owner, so that we
|
|
|
|
|
* don’t observe state mid-modification.
|
|
|
|
|
* (E.g. the ZPL is creating a new object and linking it into a directory; if
|
|
|
|
|
* you don’t coordinate with the ZPL to hold ZPL-level locks, you could see an
|
|
|
|
|
* intermediate state. The ioctl level violates this but in pretty benign
|
|
|
|
|
* ways, e.g. reading the zpl props object.)
|
2013-09-04 16:00:57 +04:00
|
|
|
|
*/
|
|
|
|
|
|
|
|
|
|
int
|
|
|
|
|
dsl_pool_hold(const char *name, void *tag, dsl_pool_t **dp)
|
|
|
|
|
{
|
|
|
|
|
spa_t *spa;
|
|
|
|
|
int error;
|
|
|
|
|
|
|
|
|
|
error = spa_open(name, &spa, tag);
|
|
|
|
|
if (error == 0) {
|
|
|
|
|
*dp = spa_get_dsl(spa);
|
|
|
|
|
dsl_pool_config_enter(*dp, tag);
|
|
|
|
|
}
|
|
|
|
|
return (error);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
void
|
|
|
|
|
dsl_pool_rele(dsl_pool_t *dp, void *tag)
|
|
|
|
|
{
|
|
|
|
|
dsl_pool_config_exit(dp, tag);
|
|
|
|
|
spa_close(dp->dp_spa, tag);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
void
|
|
|
|
|
dsl_pool_config_enter(dsl_pool_t *dp, void *tag)
|
|
|
|
|
{
|
|
|
|
|
/*
|
|
|
|
|
* We use a "reentrant" reader-writer lock, but not reentrantly.
|
|
|
|
|
*
|
|
|
|
|
* The rrwlock can (with the track_all flag) track all reading threads,
|
|
|
|
|
* which is very useful for debugging which code path failed to release
|
|
|
|
|
* the lock, and for verifying that the *current* thread does hold
|
|
|
|
|
* the lock.
|
|
|
|
|
*
|
|
|
|
|
* (Unlike a rwlock, which knows that N threads hold it for
|
|
|
|
|
* read, but not *which* threads, so rw_held(RW_READER) returns TRUE
|
|
|
|
|
* if any thread holds it for read, even if this thread doesn't).
|
|
|
|
|
*/
|
|
|
|
|
ASSERT(!rrw_held(&dp->dp_config_rwlock, RW_READER));
|
|
|
|
|
rrw_enter(&dp->dp_config_rwlock, RW_READER, tag);
|
|
|
|
|
}
|
|
|
|
|
|
2015-07-02 18:58:17 +03:00
|
|
|
|
void
|
|
|
|
|
dsl_pool_config_enter_prio(dsl_pool_t *dp, void *tag)
|
|
|
|
|
{
|
|
|
|
|
ASSERT(!rrw_held(&dp->dp_config_rwlock, RW_READER));
|
|
|
|
|
rrw_enter_read_prio(&dp->dp_config_rwlock, tag);
|
|
|
|
|
}
|
|
|
|
|
|
2013-09-04 16:00:57 +04:00
|
|
|
|
void
|
|
|
|
|
dsl_pool_config_exit(dsl_pool_t *dp, void *tag)
|
|
|
|
|
{
|
|
|
|
|
rrw_exit(&dp->dp_config_rwlock, tag);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
boolean_t
|
|
|
|
|
dsl_pool_config_held(dsl_pool_t *dp)
|
|
|
|
|
{
|
|
|
|
|
return (RRW_LOCK_HELD(&dp->dp_config_rwlock));
|
|
|
|
|
}
|
|
|
|
|
|
2015-05-06 19:07:55 +03:00
|
|
|
|
boolean_t
|
|
|
|
|
dsl_pool_config_held_writer(dsl_pool_t *dp)
|
|
|
|
|
{
|
|
|
|
|
return (RRW_WRITE_HELD(&dp->dp_config_rwlock));
|
|
|
|
|
}
|
|
|
|
|
|
2013-10-01 03:29:37 +04:00
|
|
|
|
EXPORT_SYMBOL(dsl_pool_config_enter);
|
|
|
|
|
EXPORT_SYMBOL(dsl_pool_config_exit);
|
|
|
|
|
|
2016-12-12 21:46:26 +03:00
|
|
|
|
/* BEGIN CSTYLED */
|
2013-11-01 23:26:11 +04:00
|
|
|
|
/* zfs_dirty_data_max_percent only applied at module load in arc_init(). */
|
2019-09-06 00:49:49 +03:00
|
|
|
|
ZFS_MODULE_PARAM(zfs, zfs_, dirty_data_max_percent, INT, ZMOD_RD,
|
|
|
|
|
"Max percent of RAM allowed to be dirty");
|
2011-05-04 02:09:28 +04:00
|
|
|
|
|
2013-11-01 23:26:11 +04:00
|
|
|
|
/* zfs_dirty_data_max_max_percent only applied at module load in arc_init(). */
|
2019-09-06 00:49:49 +03:00
|
|
|
|
ZFS_MODULE_PARAM(zfs, zfs_, dirty_data_max_max_percent, INT, ZMOD_RD,
|
2013-11-01 23:26:11 +04:00
|
|
|
|
"zfs_dirty_data_max upper bound as % of RAM");
|
2011-05-04 02:09:28 +04:00
|
|
|
|
|
2019-09-06 00:49:49 +03:00
|
|
|
|
ZFS_MODULE_PARAM(zfs, zfs_, delay_min_dirty_percent, INT, ZMOD_RW,
|
|
|
|
|
"Transaction delay threshold");
|
2011-05-04 02:09:28 +04:00
|
|
|
|
|
2019-09-06 00:49:49 +03:00
|
|
|
|
ZFS_MODULE_PARAM(zfs, zfs_, dirty_data_max, ULONG, ZMOD_RW,
|
|
|
|
|
"Determines the dirty space limit");
|
2011-05-04 02:09:28 +04:00
|
|
|
|
|
2013-11-01 23:26:11 +04:00
|
|
|
|
/* zfs_dirty_data_max_max only applied at module load in arc_init(). */
|
2019-09-06 00:49:49 +03:00
|
|
|
|
ZFS_MODULE_PARAM(zfs, zfs_, dirty_data_max_max, ULONG, ZMOD_RD,
|
2013-11-01 23:26:11 +04:00
|
|
|
|
"zfs_dirty_data_max upper bound in bytes");
|
2011-05-04 02:09:28 +04:00
|
|
|
|
|
2019-09-06 00:49:49 +03:00
|
|
|
|
ZFS_MODULE_PARAM(zfs, zfs_, dirty_data_sync_percent, INT, ZMOD_RW,
|
|
|
|
|
"Dirty data txg sync threshold as a percentage of zfs_dirty_data_max");
|
2011-05-04 02:09:28 +04:00
|
|
|
|
|
2019-09-06 00:49:49 +03:00
|
|
|
|
ZFS_MODULE_PARAM(zfs, zfs_, delay_scale, ULONG, ZMOD_RW,
|
|
|
|
|
"How quickly delay approaches infinity");
|
2017-03-21 04:36:00 +03:00
|
|
|
|
|
2019-09-06 00:49:49 +03:00
|
|
|
|
ZFS_MODULE_PARAM(zfs, zfs_, sync_taskq_batch_pct, INT, ZMOD_RW,
|
|
|
|
|
"Max percent of CPUs that are used to sync dirty data");
|
2017-10-26 22:57:53 +03:00
|
|
|
|
|
2019-09-06 00:49:49 +03:00
|
|
|
|
ZFS_MODULE_PARAM(zfs_zil, zfs_zil_, clean_taskq_nthr_pct, INT, ZMOD_RW,
|
|
|
|
|
"Max percent of CPUs that are used per dp_sync_taskq");
|
2017-10-26 22:57:53 +03:00
|
|
|
|
|
2019-09-06 00:49:49 +03:00
|
|
|
|
ZFS_MODULE_PARAM(zfs_zil, zfs_zil_, clean_taskq_minalloc, INT, ZMOD_RW,
|
|
|
|
|
"Number of taskq entries that are pre-populated");
|
2017-10-26 22:57:53 +03:00
|
|
|
|
|
2019-09-06 00:49:49 +03:00
|
|
|
|
ZFS_MODULE_PARAM(zfs_zil, zfs_zil_, clean_taskq_maxalloc, INT, ZMOD_RW,
|
|
|
|
|
"Max number of taskq entries that are cached");
|
2016-12-12 21:46:26 +03:00
|
|
|
|
/* END CSTYLED */
|