mirror_zfs/module/zfs/dmu_objset.c

2993 lines
78 KiB
C
Raw Normal View History

2008-11-20 23:01:55 +03:00
/*
* CDDL HEADER START
*
* The contents of this file are subject to the terms of the
* Common Development and Distribution License (the "License").
* You may not use this file except in compliance with the License.
*
* You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
* or http://www.opensolaris.org/os/licensing.
* See the License for the specific language governing permissions
* and limitations under the License.
*
* When distributing Covered Code, include this CDDL HEADER in each
* file and include the License file at usr/src/OPENSOLARIS.LICENSE.
* If applicable, add the following below this CDDL HEADER, with the
* fields enclosed by brackets "[]" replaced with your own identifying
* information: Portions Copyright [yyyy] [name of copyright owner]
*
* CDDL HEADER END
*/
2008-11-20 23:01:55 +03:00
/*
* Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
* Copyright (c) 2012, 2018 by Delphix. All rights reserved.
* Copyright (c) 2013 by Saso Kiselkov. All rights reserved.
* Copyright (c) 2013, Joyent, Inc. All rights reserved.
* Copyright (c) 2014 Spectra Logic Corporation, All rights reserved.
* Copyright (c) 2015, STRATO AG, Inc. All rights reserved.
* Copyright (c) 2016 Actifio, Inc. All rights reserved.
* Copyright 2017 Nexenta Systems, Inc.
* Copyright (c) 2017 Open-E, Inc. All Rights Reserved.
* Copyright (c) 2018, loli10K <ezomori.nozomu@gmail.com>. All rights reserved.
Add zstd support to zfs This PR adds two new compression types, based on ZStandard: - zstd: A basic ZStandard compression algorithm Available compression. Levels for zstd are zstd-1 through zstd-19, where the compression increases with every level, but speed decreases. - zstd-fast: A faster version of the ZStandard compression algorithm zstd-fast is basically a "negative" level of zstd. The compression decreases with every level, but speed increases. Available compression levels for zstd-fast: - zstd-fast-1 through zstd-fast-10 - zstd-fast-20 through zstd-fast-100 (in increments of 10) - zstd-fast-500 and zstd-fast-1000 For more information check the man page. Implementation details: Rather than treat each level of zstd as a different algorithm (as was done historically with gzip), the block pointer `enum zio_compress` value is simply zstd for all levels, including zstd-fast, since they all use the same decompression function. The compress= property (a 64bit unsigned integer) uses the lower 7 bits to store the compression algorithm (matching the number of bits used in a block pointer, as the 8th bit was borrowed for embedded block pointers). The upper bits are used to store the compression level. It is necessary to be able to determine what compression level was used when later reading a block back, so the concept used in LZ4, where the first 32bits of the on-disk value are the size of the compressed data (since the allocation is rounded up to the nearest ashift), was extended, and we store the version of ZSTD and the level as well as the compressed size. This value is returned when decompressing a block, so that if the block needs to be recompressed (L2ARC, nop-write, etc), that the same parameters will be used to result in the matching checksum. All of the internal ZFS code ( `arc_buf_hdr_t`, `objset_t`, `zio_prop_t`, etc.) uses the separated _compress and _complevel variables. Only the properties ZAP contains the combined/bit-shifted value. The combined value is split when the compression_changed_cb() callback is called, and sets both objset members (os_compress and os_complevel). The userspace tools all use the combined/bit-shifted value. Additional notes: zdb can now also decode the ZSTD compression header (flag -Z) and inspect the size, version and compression level saved in that header. For each record, if it is ZSTD compressed, the parameters of the decoded compression header get printed. ZSTD is included with all current tests and new tests are added as-needed. Per-dataset feature flags now get activated when the property is set. If a compression algorithm requires a feature flag, zfs activates the feature when the property is set, rather than waiting for the first block to be born. This is currently only used by zstd but can be extended as needed. Portions-Sponsored-By: The FreeBSD Foundation Co-authored-by: Allan Jude <allanjude@freebsd.org> Co-authored-by: Brian Behlendorf <behlendorf1@llnl.gov> Co-authored-by: Sebastian Gottschall <s.gottschall@dd-wrt.com> Co-authored-by: Kjeld Schouten-Lebbing <kjeld@schouten-lebbing.nl> Co-authored-by: Michael Niewöhner <foss@mniewoehner.de> Signed-off-by: Allan Jude <allan@klarasystems.com> Signed-off-by: Allan Jude <allanjude@freebsd.org> Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov> Signed-off-by: Sebastian Gottschall <s.gottschall@dd-wrt.com> Signed-off-by: Kjeld Schouten-Lebbing <kjeld@schouten-lebbing.nl> Signed-off-by: Michael Niewöhner <foss@mniewoehner.de> Closes #6247 Closes #9024 Closes #10277 Closes #10278
2020-08-18 20:10:17 +03:00
* Copyright (c) 2019, Klara Inc.
* Copyright (c) 2019, Allan Jude
2008-11-20 23:01:55 +03:00
*/
/* Portions Copyright 2010 Robert Milkowski */
2008-11-20 23:01:55 +03:00
#include <sys/cred.h>
#include <sys/zfs_context.h>
#include <sys/dmu_objset.h>
#include <sys/dsl_dir.h>
#include <sys/dsl_dataset.h>
#include <sys/dsl_prop.h>
#include <sys/dsl_pool.h>
#include <sys/dsl_synctask.h>
#include <sys/dsl_deleg.h>
#include <sys/dnode.h>
#include <sys/dbuf.h>
#include <sys/zvol.h>
#include <sys/dmu_tx.h>
#include <sys/zap.h>
#include <sys/zil.h>
#include <sys/dmu_impl.h>
#include <sys/zfs_ioctl.h>
#include <sys/sa.h>
#include <sys/zfs_onexit.h>
#include <sys/dsl_destroy.h>
#include <sys/vdev.h>
OpenZFS 7614, 9064 - zfs device evacuation/removal OpenZFS 7614 - zfs device evacuation/removal OpenZFS 9064 - remove_mirror should wait for device removal to complete This project allows top-level vdevs to be removed from the storage pool with "zpool remove", reducing the total amount of storage in the pool. This operation copies all allocated regions of the device to be removed onto other devices, recording the mapping from old to new location. After the removal is complete, read and free operations to the removed (now "indirect") vdev must be remapped and performed at the new location on disk. The indirect mapping table is kept in memory whenever the pool is loaded, so there is minimal performance overhead when doing operations on the indirect vdev. The size of the in-memory mapping table will be reduced when its entries become "obsolete" because they are no longer used by any block pointers in the pool. An entry becomes obsolete when all the blocks that use it are freed. An entry can also become obsolete when all the snapshots that reference it are deleted, and the block pointers that reference it have been "remapped" in all filesystems/zvols (and clones). Whenever an indirect block is written, all the block pointers in it will be "remapped" to their new (concrete) locations if possible. This process can be accelerated by using the "zfs remap" command to proactively rewrite all indirect blocks that reference indirect (removed) vdevs. Note that when a device is removed, we do not verify the checksum of the data that is copied. This makes the process much faster, but if it were used on redundant vdevs (i.e. mirror or raidz vdevs), it would be possible to copy the wrong data, when we have the correct data on e.g. the other side of the mirror. At the moment, only mirrors and simple top-level vdevs can be removed and no removal is allowed if any of the top-level vdevs are raidz. Porting Notes: * Avoid zero-sized kmem_alloc() in vdev_compact_children(). The device evacuation code adds a dependency that vdev_compact_children() be able to properly empty the vdev_child array by setting it to NULL and zeroing vdev_children. Under Linux, kmem_alloc() and related functions return a sentinel pointer rather than NULL for zero-sized allocations. * Remove comment regarding "mpt" driver where zfs_remove_max_segment is initialized to SPA_MAXBLOCKSIZE. Change zfs_condense_indirect_commit_entry_delay_ticks to zfs_condense_indirect_commit_entry_delay_ms for consistency with most other tunables in which delays are specified in ms. * ZTS changes: Use set_tunable rather than mdb Use zpool sync as appropriate Use sync_pool instead of sync Kill jobs during test_removal_with_operation to allow unmount/export Don't add non-disk names such as "mirror" or "raidz" to $DISKS Use $TEST_BASE_DIR instead of /tmp Increase HZ from 100 to 1000 which is more common on Linux removal_multiple_indirection.ksh Reduce iterations in order to not time out on the code coverage builders. removal_resume_export: Functionally, the test case is correct but there exists a race where the kernel thread hasn't been fully started yet and is not visible. Wait for up to 1 second for the removal thread to be started before giving up on it. Also, increase the amount of data copied in order that the removal not finish before the export has a chance to fail. * MMP compatibility, the concept of concrete versus non-concrete devices has slightly changed the semantics of vdev_writeable(). Update mmp_random_leaf_impl() accordingly. * Updated dbuf_remap() to handle the org.zfsonlinux:large_dnode pool feature which is not supported by OpenZFS. * Added support for new vdev removal tracepoints. * Test cases removal_with_zdb and removal_condense_export have been intentionally disabled. When run manually they pass as intended, but when running in the automated test environment they produce unreliable results on the latest Fedora release. They may work better once the upstream pool import refectoring is merged into ZoL at which point they will be re-enabled. Authored by: Matthew Ahrens <mahrens@delphix.com> Reviewed-by: Alex Reece <alex@delphix.com> Reviewed-by: George Wilson <george.wilson@delphix.com> Reviewed-by: John Kennedy <john.kennedy@delphix.com> Reviewed-by: Prakash Surya <prakash.surya@delphix.com> Reviewed by: Richard Laager <rlaager@wiktel.com> Reviewed by: Tim Chase <tim@chase2k.com> Reviewed by: Brian Behlendorf <behlendorf1@llnl.gov> Approved by: Garrett D'Amore <garrett@damore.org> Ported-by: Tim Chase <tim@chase2k.com> Signed-off-by: Tim Chase <tim@chase2k.com> OpenZFS-issue: https://www.illumos.org/issues/7614 OpenZFS-commit: https://github.com/openzfs/openzfs/commit/f539f1eb Closes #6900
2016-09-22 19:30:13 +03:00
#include <sys/zfeature.h>
Add `zfs allow` and `zfs unallow` support ZFS allows for specific permissions to be delegated to normal users with the `zfs allow` and `zfs unallow` commands. In addition, non- privileged users should be able to run all of the following commands: * zpool [list | iostat | status | get] * zfs [list | get] Historically this functionality was not available on Linux. In order to add it the secpolicy_* functions needed to be implemented and mapped to the equivalent Linux capability. Only then could the permissions on the `/dev/zfs` be relaxed and the internal ZFS permission checks used. Even with this change some limitations remain. Under Linux only the root user is allowed to modify the namespace (unless it's a private namespace). This means the mount, mountpoint, canmount, unmount, and remount delegations cannot be supported with the existing code. It may be possible to add this functionality in the future. This functionality was validated with the cli_user and delegation test cases from the ZFS Test Suite. These tests exhaustively verify each of the supported permissions which can be delegated and ensures only an authorized user can perform it. Two minor bug fixes were required for test-running.py. First, the Timer() object cannot be safely created in a `try:` block when there is an unconditional `finally` block which references it. Second, when running as a normal user also check for scripts using the both the .ksh and .sh suffixes. Finally, existing users who are simulating delegations by setting group permissions on the /dev/zfs device should revert that customization when updating to a version with this change. Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov> Signed-off-by: Tony Hutter <hutter2@llnl.gov> Closes #362 Closes #434 Closes #4100 Closes #4394 Closes #4410 Closes #4487
2016-06-07 19:16:52 +03:00
#include <sys/policy.h>
#include <sys/spa_impl.h>
#include <sys/dmu_recv.h>
Project Quota on ZFS Project quota is a new ZFS system space/object usage accounting and enforcement mechanism. Similar as user/group quota, project quota is another dimension of system quota. It bases on the new object attribute - project ID. Project ID is a numerical value to indicate to which project an object belongs. An object only can belong to one project though you (the object owner or privileged user) can change the object project ID via 'chattr -p' or 'zfs project [-s] -p' explicitly. The object also can inherit the project ID from its parent when created if the parent has the project inherit flag (that can be set via 'chattr +P' or 'zfs project -s [-p]'). By accounting the spaces/objects belong to the same project, we can know how many spaces/objects used by the project. And if we set the upper limit then we can control the spaces/objects that are consumed by such project. It is useful when multiple groups and users cooperate for the same project, or a user/group needs to participate in multiple projects. Support the following commands and functionalities: zfs set projectquota@project zfs set projectobjquota@project zfs get projectquota@project zfs get projectobjquota@project zfs get projectused@project zfs get projectobjused@project zfs projectspace zfs allow projectquota zfs allow projectobjquota zfs allow projectused zfs allow projectobjused zfs unallow projectquota zfs unallow projectobjquota zfs unallow projectused zfs unallow projectobjused chattr +/-P chattr -p project_id lsattr -p This patch also supports tree quota based on the project quota via "zfs project" commands set as following: zfs project [-d|-r] <file|directory ...> zfs project -C [-k] [-r] <file|directory ...> zfs project -c [-0] [-d|-r] [-p id] <file|directory ...> zfs project [-p id] [-r] [-s] <file|directory ...> For "df [-i] $DIR" command, if we set INHERIT (project ID) flag on the $DIR, then the proejct [obj]quota and [obj]used values for the $DIR's project ID will be shown as the total/free (avail) resource. Keep the same behavior as EXT4/XFS does. Reviewed-by: Andreas Dilger <andreas.dilger@intel.com> Reviewed-by Ned Bass <bass6@llnl.gov> Reviewed-by: Matthew Ahrens <mahrens@delphix.com> Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov> Signed-off-by: Fan Yong <fan.yong@intel.com> TEST_ZIMPORT_POOLS="zol-0.6.1 zol-0.6.2 master" Change-Id: Ib4f0544602e03fb61fd46a849d7ba51a6005693c Closes #6290
2018-02-14 01:54:54 +03:00
#include <sys/zfs_project.h>
OpenZFS 9330 - stack overflow when creating a deeply nested dataset Datasets that are deeply nested (~100 levels) are impractical. We just put a limit of 50 levels to newly created datasets. Existing datasets should work without a problem. The problem can be seen by attempting to create a dataset using the -p option with many levels: panic[cpu0]/thread=ffffff01cd282c20: BAD TRAP: type=8 (#df Double fault) rp=ffffffff fffffffffbc3aa60 unix:die+100 () fffffffffbc3ab70 unix:trap+157d () ffffff00083d7020 unix:_patch_xrstorq_rbx+196 () ffffff00083d7050 zfs:dbuf_rele+2e () ... ffffff00083d7080 zfs:dsl_dir_close+32 () ffffff00083d70b0 zfs:dsl_dir_evict+30 () ffffff00083d70d0 zfs:dbuf_evict_user+4a () ffffff00083d7100 zfs:dbuf_rele_and_unlock+87 () ffffff00083d7130 zfs:dbuf_rele+2e () ... The block above repeats once per directory in the ... ... create -p command, working towards the root ... ffffff00083db9f0 zfs:dsl_dataset_drop_ref+19 () ffffff00083dba20 zfs:dsl_dataset_rele+42 () ffffff00083dba70 zfs:dmu_objset_prefetch+e4 () ffffff00083dbaa0 zfs:findfunc+23 () ffffff00083dbb80 zfs:dmu_objset_find_spa+38c () ffffff00083dbbc0 zfs:dmu_objset_find+40 () ffffff00083dbc20 zfs:zfs_ioc_snapshot_list_next+4b () ffffff00083dbcc0 zfs:zfsdev_ioctl+347 () ffffff00083dbd00 genunix:cdev_ioctl+45 () ffffff00083dbd40 specfs:spec_ioctl+5a () ffffff00083dbdc0 genunix:fop_ioctl+7b () ffffff00083dbec0 genunix:ioctl+18e () ffffff00083dbf10 unix:brand_sys_sysenter+1c9 () Porting notes: * Added zfs_max_dataset_nesting module option with documentation. * Updated zfs_rename_014_neg.ksh for Linux. * Increase the zfs.sh stack warning to 15K. Enough time has passed that 16K can be reasonably assumed to be the default value. It was increased in the 3.15 kernel released in June of 2014. Authored by: Serapheim Dimitropoulos <serapheim.dimitro@delphix.com> Reviewed by: John Kennedy <john.kennedy@delphix.com> Reviewed by: Matt Ahrens <matt@delphix.com> Ported-by: Brian Behlendorf <behlendorf1@llnl.gov> Approved by: Garrett D'Amore <garrett@damore.org> OpenZFS-issue: https://www.illumos.org/issues/9330 OpenZFS-commit: https://github.com/openzfs/openzfs/commit/757a75a Closes #7681
2016-09-12 18:15:20 +03:00
#include "zfs_namecheck.h"
/*
* Needed to close a window in dnode_move() that allows the objset to be freed
* before it can be safely accessed.
*/
krwlock_t os_lock;
/*
* Tunable to overwrite the maximum number of threads for the parallelization
* of dmu_objset_find_dp, needed to speed up the import of pools with many
* datasets.
* Default is 4 times the number of leaf vdevs.
*/
int dmu_find_threads = 0;
Backfill metadnode more intelligently Only attempt to backfill lower metadnode object numbers if at least 4096 objects have been freed since the last rescan, and at most once per transaction group. This avoids a pathology in dmu_object_alloc() that caused O(N^2) behavior for create-heavy workloads and substantially improves object creation rates. As summarized by @mahrens in #4636: "Normally, the object allocator simply checks to see if the next object is available. The slow calls happened when dmu_object_alloc() checks to see if it can backfill lower object numbers. This happens every time we move on to a new L1 indirect block (i.e. every 32 * 128 = 4096 objects). When re-checking lower object numbers, we use the on-disk fill count (blkptr_t:blk_fill) to quickly skip over indirect blocks that don’t have enough free dnodes (defined as an L2 with at least 393,216 of 524,288 dnodes free). Therefore, we may find that a block of dnodes has a low (or zero) fill count, and yet we can’t allocate any of its dnodes, because they've been allocated in memory but not yet written to disk. In this case we have to hold each of the dnodes and then notice that it has been allocated in memory. The end result is that allocating N objects in the same TXG can require CPU usage proportional to N^2." Add a tunable dmu_rescan_dnode_threshold to define the number of objects that must be freed before a rescan is performed. Don't bother to export this as a module option because testing doesn't show a compelling reason to change it. The vast majority of the performance gain comes from limit the rescan to at most once per TXG. Signed-off-by: Ned Bass <bass6@llnl.gov> Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
2016-05-17 04:02:29 +03:00
/*
* Backfill lower metadnode objects after this many have been freed.
* Backfilling negatively impacts object creation rates, so only do it
* if there are enough holes to fill.
*/
int dmu_rescan_dnode_threshold = 1 << DN_MAX_INDBLKSHIFT;
static char *upgrade_tag = "upgrade_tag";
static void dmu_objset_find_dp_cb(void *arg);
static void dmu_objset_upgrade(objset_t *os, dmu_objset_upgrade_cb_t cb);
static void dmu_objset_upgrade_stop(objset_t *os);
void
dmu_objset_init(void)
{
rw_init(&os_lock, NULL, RW_DEFAULT, NULL);
}
void
dmu_objset_fini(void)
{
rw_destroy(&os_lock);
}
2008-11-20 23:01:55 +03:00
spa_t *
dmu_objset_spa(objset_t *os)
{
return (os->os_spa);
2008-11-20 23:01:55 +03:00
}
zilog_t *
dmu_objset_zil(objset_t *os)
{
return (os->os_zil);
2008-11-20 23:01:55 +03:00
}
dsl_pool_t *
dmu_objset_pool(objset_t *os)
{
dsl_dataset_t *ds;
if ((ds = os->os_dsl_dataset) != NULL && ds->ds_dir)
2008-11-20 23:01:55 +03:00
return (ds->ds_dir->dd_pool);
else
return (spa_get_dsl(os->os_spa));
2008-11-20 23:01:55 +03:00
}
dsl_dataset_t *
dmu_objset_ds(objset_t *os)
{
return (os->os_dsl_dataset);
2008-11-20 23:01:55 +03:00
}
dmu_objset_type_t
dmu_objset_type(objset_t *os)
{
return (os->os_phys->os_type);
2008-11-20 23:01:55 +03:00
}
void
dmu_objset_name(objset_t *os, char *buf)
{
dsl_dataset_name(os->os_dsl_dataset, buf);
2008-11-20 23:01:55 +03:00
}
uint64_t
dmu_objset_id(objset_t *os)
{
dsl_dataset_t *ds = os->os_dsl_dataset;
2008-11-20 23:01:55 +03:00
return (ds ? ds->ds_object : 0);
}
Implement large_dnode pool feature Justification ------------- This feature adds support for variable length dnodes. Our motivation is to eliminate the overhead associated with using spill blocks. Spill blocks are used to store system attribute data (i.e. file metadata) that does not fit in the dnode's bonus buffer. By allowing a larger bonus buffer area the use of a spill block can be avoided. Spill blocks potentially incur an additional read I/O for every dnode in a dnode block. As a worst case example, reading 32 dnodes from a 16k dnode block and all of the spill blocks could issue 33 separate reads. Now suppose those dnodes have size 1024 and therefore don't need spill blocks. Then the worst case number of blocks read is reduced to from 33 to two--one per dnode block. In practice spill blocks may tend to be co-located on disk with the dnode blocks so the reduction in I/O would not be this drastic. In a badly fragmented pool, however, the improvement could be significant. ZFS-on-Linux systems that make heavy use of extended attributes would benefit from this feature. In particular, ZFS-on-Linux supports the xattr=sa dataset property which allows file extended attribute data to be stored in the dnode bonus buffer as an alternative to the traditional directory-based format. Workloads such as SELinux and the Lustre distributed filesystem often store enough xattr data to force spill bocks when xattr=sa is in effect. Large dnodes may therefore provide a performance benefit to such systems. Other use cases that may benefit from this feature include files with large ACLs and symbolic links with long target names. Furthermore, this feature may be desirable on other platforms in case future applications or features are developed that could make use of a larger bonus buffer area. Implementation -------------- The size of a dnode may be a multiple of 512 bytes up to the size of a dnode block (currently 16384 bytes). A dn_extra_slots field was added to the current on-disk dnode_phys_t structure to describe the size of the physical dnode on disk. The 8 bits for this field were taken from the zero filled dn_pad2 field. The field represents how many "extra" dnode_phys_t slots a dnode consumes in its dnode block. This convention results in a value of 0 for 512 byte dnodes which preserves on-disk format compatibility with older software. Similarly, the in-memory dnode_t structure has a new dn_num_slots field to represent the total number of dnode_phys_t slots consumed on disk. Thus dn->dn_num_slots is 1 greater than the corresponding dnp->dn_extra_slots. This difference in convention was adopted because, unlike on-disk structures, backward compatibility is not a concern for in-memory objects, so we used a more natural way to represent size for a dnode_t. The default size for newly created dnodes is determined by the value of a new "dnodesize" dataset property. By default the property is set to "legacy" which is compatible with older software. Setting the property to "auto" will allow the filesystem to choose the most suitable dnode size. Currently this just sets the default dnode size to 1k, but future code improvements could dynamically choose a size based on observed workload patterns. Dnodes of varying sizes can coexist within the same dataset and even within the same dnode block. For example, to enable automatically-sized dnodes, run # zfs set dnodesize=auto tank/fish The user can also specify literal values for the dnodesize property. These are currently limited to powers of two from 1k to 16k. The power-of-2 limitation is only for simplicity of the user interface. Internally the implementation can handle any multiple of 512 up to 16k, and consumers of the DMU API can specify any legal dnode value. The size of a new dnode is determined at object allocation time and stored as a new field in the znode in-memory structure. New DMU interfaces are added to allow the consumer to specify the dnode size that a newly allocated object should use. Existing interfaces are unchanged to avoid having to update every call site and to preserve compatibility with external consumers such as Lustre. The new interfaces names are given below. The versions of these functions that don't take a dnodesize parameter now just call the _dnsize() versions with a dnodesize of 0, which means use the legacy dnode size. New DMU interfaces: dmu_object_alloc_dnsize() dmu_object_claim_dnsize() dmu_object_reclaim_dnsize() New ZAP interfaces: zap_create_dnsize() zap_create_norm_dnsize() zap_create_flags_dnsize() zap_create_claim_norm_dnsize() zap_create_link_dnsize() The constant DN_MAX_BONUSLEN is renamed to DN_OLD_MAX_BONUSLEN. The spa_maxdnodesize() function should be used to determine the maximum bonus length for a pool. These are a few noteworthy changes to key functions: * The prototype for dnode_hold_impl() now takes a "slots" parameter. When the DNODE_MUST_BE_FREE flag is set, this parameter is used to ensure the hole at the specified object offset is large enough to hold the dnode being created. The slots parameter is also used to ensure a dnode does not span multiple dnode blocks. In both of these cases, if a failure occurs, ENOSPC is returned. Keep in mind, these failure cases are only possible when using DNODE_MUST_BE_FREE. If the DNODE_MUST_BE_ALLOCATED flag is set, "slots" must be 0. dnode_hold_impl() will check if the requested dnode is already consumed as an extra dnode slot by an large dnode, in which case it returns ENOENT. * The function dmu_object_alloc() advances to the next dnode block if dnode_hold_impl() returns an error for a requested object. This is because the beginning of the next dnode block is the only location it can safely assume to either be a hole or a valid starting point for a dnode. * dnode_next_offset_level() and other functions that iterate through dnode blocks may no longer use a simple array indexing scheme. These now use the current dnode's dn_num_slots field to advance to the next dnode in the block. This is to ensure we properly skip the current dnode's bonus area and don't interpret it as a valid dnode. zdb --- The zdb command was updated to display a dnode's size under the "dnsize" column when the object is dumped. For ZIL create log records, zdb will now display the slot count for the object. ztest ----- Ztest chooses a random dnodesize for every newly created object. The random distribution is more heavily weighted toward small dnodes to better simulate real-world datasets. Unused bonus buffer space is filled with non-zero values computed from the object number, dataset id, offset, and generation number. This helps ensure that the dnode traversal code properly skips the interior regions of large dnodes, and that these interior regions are not overwritten by data belonging to other dnodes. A new test visits each object in a dataset. It verifies that the actual dnode size matches what was stored in the ztest block tag when it was created. It also verifies that the unused bonus buffer space is filled with the expected data patterns. ZFS Test Suite -------------- Added six new large dnode-specific tests, and integrated the dnodesize property into existing tests for zfs allow and send/recv. Send/Receive ------------ ZFS send streams for datasets containing large dnodes cannot be received on pools that don't support the large_dnode feature. A send stream with large dnodes sets a DMU_BACKUP_FEATURE_LARGE_DNODE flag which will be unrecognized by an incompatible receiving pool so that the zfs receive will fail gracefully. While not implemented here, it may be possible to generate a backward-compatible send stream from a dataset containing large dnodes. The implementation may be tricky, however, because the send object record for a large dnode would need to be resized to a 512 byte dnode, possibly kicking in a spill block in the process. This means we would need to construct a new SA layout and possibly register it in the SA layout object. The SA layout is normally just sent as an ordinary object record. But if we are constructing new layouts while generating the send stream we'd have to build the SA layout object dynamically and send it at the end of the stream. For sending and receiving between pools that do support large dnodes, the drr_object send record type is extended with a new field to store the dnode slot count. This field was repurposed from unused padding in the structure. ZIL Replay ---------- The dnode slot count is stored in the uppermost 8 bits of the lr_foid field. The bits were unused as the object id is currently capped at 48 bits. Resizing Dnodes --------------- It should be possible to resize a dnode when it is dirtied if the current dnodesize dataset property differs from the dnode's size, but this functionality is not currently implemented. Clearly a dnode can only grow if there are sufficient contiguous unused slots in the dnode block, but it should always be possible to shrink a dnode. Growing dnodes may be useful to reduce fragmentation in a pool with many spill blocks in use. Shrinking dnodes may be useful to allow sending a dataset to a pool that doesn't support the large_dnode feature. Feature Reference Counting -------------------------- The reference count for the large_dnode pool feature tracks the number of datasets that have ever contained a dnode of size larger than 512 bytes. The first time a large dnode is created in a dataset the dataset is converted to an extensible dataset. This is a one-way operation and the only way to decrement the feature count is to destroy the dataset, even if the dataset no longer contains any large dnodes. The complexity of reference counting on a per-dnode basis was too high, so we chose to track it on a per-dataset basis similarly to the large_block feature. Signed-off-by: Ned Bass <bass6@llnl.gov> Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov> Closes #3542
2016-03-17 04:25:34 +03:00
uint64_t
dmu_objset_dnodesize(objset_t *os)
{
return (os->os_dnodesize);
}
zfs_sync_type_t
dmu_objset_syncprop(objset_t *os)
{
return (os->os_sync);
}
zfs_logbias_op_t
dmu_objset_logbias(objset_t *os)
{
return (os->os_logbias);
}
2008-11-20 23:01:55 +03:00
static void
checksum_changed_cb(void *arg, uint64_t newval)
{
objset_t *os = arg;
2008-11-20 23:01:55 +03:00
/*
* Inheritance should have been done by now.
*/
ASSERT(newval != ZIO_CHECKSUM_INHERIT);
os->os_checksum = zio_checksum_select(newval, ZIO_CHECKSUM_ON_VALUE);
2008-11-20 23:01:55 +03:00
}
static void
compression_changed_cb(void *arg, uint64_t newval)
{
objset_t *os = arg;
2008-11-20 23:01:55 +03:00
/*
* Inheritance and range checking should have been done by now.
*/
ASSERT(newval != ZIO_COMPRESS_INHERIT);
Add zstd support to zfs This PR adds two new compression types, based on ZStandard: - zstd: A basic ZStandard compression algorithm Available compression. Levels for zstd are zstd-1 through zstd-19, where the compression increases with every level, but speed decreases. - zstd-fast: A faster version of the ZStandard compression algorithm zstd-fast is basically a "negative" level of zstd. The compression decreases with every level, but speed increases. Available compression levels for zstd-fast: - zstd-fast-1 through zstd-fast-10 - zstd-fast-20 through zstd-fast-100 (in increments of 10) - zstd-fast-500 and zstd-fast-1000 For more information check the man page. Implementation details: Rather than treat each level of zstd as a different algorithm (as was done historically with gzip), the block pointer `enum zio_compress` value is simply zstd for all levels, including zstd-fast, since they all use the same decompression function. The compress= property (a 64bit unsigned integer) uses the lower 7 bits to store the compression algorithm (matching the number of bits used in a block pointer, as the 8th bit was borrowed for embedded block pointers). The upper bits are used to store the compression level. It is necessary to be able to determine what compression level was used when later reading a block back, so the concept used in LZ4, where the first 32bits of the on-disk value are the size of the compressed data (since the allocation is rounded up to the nearest ashift), was extended, and we store the version of ZSTD and the level as well as the compressed size. This value is returned when decompressing a block, so that if the block needs to be recompressed (L2ARC, nop-write, etc), that the same parameters will be used to result in the matching checksum. All of the internal ZFS code ( `arc_buf_hdr_t`, `objset_t`, `zio_prop_t`, etc.) uses the separated _compress and _complevel variables. Only the properties ZAP contains the combined/bit-shifted value. The combined value is split when the compression_changed_cb() callback is called, and sets both objset members (os_compress and os_complevel). The userspace tools all use the combined/bit-shifted value. Additional notes: zdb can now also decode the ZSTD compression header (flag -Z) and inspect the size, version and compression level saved in that header. For each record, if it is ZSTD compressed, the parameters of the decoded compression header get printed. ZSTD is included with all current tests and new tests are added as-needed. Per-dataset feature flags now get activated when the property is set. If a compression algorithm requires a feature flag, zfs activates the feature when the property is set, rather than waiting for the first block to be born. This is currently only used by zstd but can be extended as needed. Portions-Sponsored-By: The FreeBSD Foundation Co-authored-by: Allan Jude <allanjude@freebsd.org> Co-authored-by: Brian Behlendorf <behlendorf1@llnl.gov> Co-authored-by: Sebastian Gottschall <s.gottschall@dd-wrt.com> Co-authored-by: Kjeld Schouten-Lebbing <kjeld@schouten-lebbing.nl> Co-authored-by: Michael Niewöhner <foss@mniewoehner.de> Signed-off-by: Allan Jude <allan@klarasystems.com> Signed-off-by: Allan Jude <allanjude@freebsd.org> Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov> Signed-off-by: Sebastian Gottschall <s.gottschall@dd-wrt.com> Signed-off-by: Kjeld Schouten-Lebbing <kjeld@schouten-lebbing.nl> Signed-off-by: Michael Niewöhner <foss@mniewoehner.de> Closes #6247 Closes #9024 Closes #10277 Closes #10278
2020-08-18 20:10:17 +03:00
os->os_compress = zio_compress_select(os->os_spa,
ZIO_COMPRESS_ALGO(newval), ZIO_COMPRESS_ON);
os->os_complevel = zio_complevel_select(os->os_spa, os->os_compress,
ZIO_COMPRESS_LEVEL(newval), ZIO_COMPLEVEL_DEFAULT);
2008-11-20 23:01:55 +03:00
}
static void
copies_changed_cb(void *arg, uint64_t newval)
{
objset_t *os = arg;
2008-11-20 23:01:55 +03:00
/*
* Inheritance and range checking should have been done by now.
*/
ASSERT(newval > 0);
ASSERT(newval <= spa_max_replication(os->os_spa));
2008-11-20 23:01:55 +03:00
os->os_copies = newval;
}
static void
dedup_changed_cb(void *arg, uint64_t newval)
{
objset_t *os = arg;
spa_t *spa = os->os_spa;
enum zio_checksum checksum;
/*
* Inheritance should have been done by now.
*/
ASSERT(newval != ZIO_CHECKSUM_INHERIT);
checksum = zio_checksum_dedup_select(spa, newval, ZIO_CHECKSUM_OFF);
os->os_dedup_checksum = checksum & ZIO_CHECKSUM_MASK;
os->os_dedup_verify = !!(checksum & ZIO_CHECKSUM_VERIFY);
2008-11-20 23:01:55 +03:00
}
static void
primary_cache_changed_cb(void *arg, uint64_t newval)
{
objset_t *os = arg;
/*
* Inheritance and range checking should have been done by now.
*/
ASSERT(newval == ZFS_CACHE_ALL || newval == ZFS_CACHE_NONE ||
newval == ZFS_CACHE_METADATA);
os->os_primary_cache = newval;
}
static void
secondary_cache_changed_cb(void *arg, uint64_t newval)
{
objset_t *os = arg;
/*
* Inheritance and range checking should have been done by now.
*/
ASSERT(newval == ZFS_CACHE_ALL || newval == ZFS_CACHE_NONE ||
newval == ZFS_CACHE_METADATA);
os->os_secondary_cache = newval;
}
static void
sync_changed_cb(void *arg, uint64_t newval)
{
objset_t *os = arg;
/*
* Inheritance and range checking should have been done by now.
*/
ASSERT(newval == ZFS_SYNC_STANDARD || newval == ZFS_SYNC_ALWAYS ||
newval == ZFS_SYNC_DISABLED);
os->os_sync = newval;
if (os->os_zil)
zil_set_sync(os->os_zil, newval);
}
static void
redundant_metadata_changed_cb(void *arg, uint64_t newval)
{
objset_t *os = arg;
/*
* Inheritance and range checking should have been done by now.
*/
ASSERT(newval == ZFS_REDUNDANT_METADATA_ALL ||
newval == ZFS_REDUNDANT_METADATA_MOST);
os->os_redundant_metadata = newval;
}
Implement large_dnode pool feature Justification ------------- This feature adds support for variable length dnodes. Our motivation is to eliminate the overhead associated with using spill blocks. Spill blocks are used to store system attribute data (i.e. file metadata) that does not fit in the dnode's bonus buffer. By allowing a larger bonus buffer area the use of a spill block can be avoided. Spill blocks potentially incur an additional read I/O for every dnode in a dnode block. As a worst case example, reading 32 dnodes from a 16k dnode block and all of the spill blocks could issue 33 separate reads. Now suppose those dnodes have size 1024 and therefore don't need spill blocks. Then the worst case number of blocks read is reduced to from 33 to two--one per dnode block. In practice spill blocks may tend to be co-located on disk with the dnode blocks so the reduction in I/O would not be this drastic. In a badly fragmented pool, however, the improvement could be significant. ZFS-on-Linux systems that make heavy use of extended attributes would benefit from this feature. In particular, ZFS-on-Linux supports the xattr=sa dataset property which allows file extended attribute data to be stored in the dnode bonus buffer as an alternative to the traditional directory-based format. Workloads such as SELinux and the Lustre distributed filesystem often store enough xattr data to force spill bocks when xattr=sa is in effect. Large dnodes may therefore provide a performance benefit to such systems. Other use cases that may benefit from this feature include files with large ACLs and symbolic links with long target names. Furthermore, this feature may be desirable on other platforms in case future applications or features are developed that could make use of a larger bonus buffer area. Implementation -------------- The size of a dnode may be a multiple of 512 bytes up to the size of a dnode block (currently 16384 bytes). A dn_extra_slots field was added to the current on-disk dnode_phys_t structure to describe the size of the physical dnode on disk. The 8 bits for this field were taken from the zero filled dn_pad2 field. The field represents how many "extra" dnode_phys_t slots a dnode consumes in its dnode block. This convention results in a value of 0 for 512 byte dnodes which preserves on-disk format compatibility with older software. Similarly, the in-memory dnode_t structure has a new dn_num_slots field to represent the total number of dnode_phys_t slots consumed on disk. Thus dn->dn_num_slots is 1 greater than the corresponding dnp->dn_extra_slots. This difference in convention was adopted because, unlike on-disk structures, backward compatibility is not a concern for in-memory objects, so we used a more natural way to represent size for a dnode_t. The default size for newly created dnodes is determined by the value of a new "dnodesize" dataset property. By default the property is set to "legacy" which is compatible with older software. Setting the property to "auto" will allow the filesystem to choose the most suitable dnode size. Currently this just sets the default dnode size to 1k, but future code improvements could dynamically choose a size based on observed workload patterns. Dnodes of varying sizes can coexist within the same dataset and even within the same dnode block. For example, to enable automatically-sized dnodes, run # zfs set dnodesize=auto tank/fish The user can also specify literal values for the dnodesize property. These are currently limited to powers of two from 1k to 16k. The power-of-2 limitation is only for simplicity of the user interface. Internally the implementation can handle any multiple of 512 up to 16k, and consumers of the DMU API can specify any legal dnode value. The size of a new dnode is determined at object allocation time and stored as a new field in the znode in-memory structure. New DMU interfaces are added to allow the consumer to specify the dnode size that a newly allocated object should use. Existing interfaces are unchanged to avoid having to update every call site and to preserve compatibility with external consumers such as Lustre. The new interfaces names are given below. The versions of these functions that don't take a dnodesize parameter now just call the _dnsize() versions with a dnodesize of 0, which means use the legacy dnode size. New DMU interfaces: dmu_object_alloc_dnsize() dmu_object_claim_dnsize() dmu_object_reclaim_dnsize() New ZAP interfaces: zap_create_dnsize() zap_create_norm_dnsize() zap_create_flags_dnsize() zap_create_claim_norm_dnsize() zap_create_link_dnsize() The constant DN_MAX_BONUSLEN is renamed to DN_OLD_MAX_BONUSLEN. The spa_maxdnodesize() function should be used to determine the maximum bonus length for a pool. These are a few noteworthy changes to key functions: * The prototype for dnode_hold_impl() now takes a "slots" parameter. When the DNODE_MUST_BE_FREE flag is set, this parameter is used to ensure the hole at the specified object offset is large enough to hold the dnode being created. The slots parameter is also used to ensure a dnode does not span multiple dnode blocks. In both of these cases, if a failure occurs, ENOSPC is returned. Keep in mind, these failure cases are only possible when using DNODE_MUST_BE_FREE. If the DNODE_MUST_BE_ALLOCATED flag is set, "slots" must be 0. dnode_hold_impl() will check if the requested dnode is already consumed as an extra dnode slot by an large dnode, in which case it returns ENOENT. * The function dmu_object_alloc() advances to the next dnode block if dnode_hold_impl() returns an error for a requested object. This is because the beginning of the next dnode block is the only location it can safely assume to either be a hole or a valid starting point for a dnode. * dnode_next_offset_level() and other functions that iterate through dnode blocks may no longer use a simple array indexing scheme. These now use the current dnode's dn_num_slots field to advance to the next dnode in the block. This is to ensure we properly skip the current dnode's bonus area and don't interpret it as a valid dnode. zdb --- The zdb command was updated to display a dnode's size under the "dnsize" column when the object is dumped. For ZIL create log records, zdb will now display the slot count for the object. ztest ----- Ztest chooses a random dnodesize for every newly created object. The random distribution is more heavily weighted toward small dnodes to better simulate real-world datasets. Unused bonus buffer space is filled with non-zero values computed from the object number, dataset id, offset, and generation number. This helps ensure that the dnode traversal code properly skips the interior regions of large dnodes, and that these interior regions are not overwritten by data belonging to other dnodes. A new test visits each object in a dataset. It verifies that the actual dnode size matches what was stored in the ztest block tag when it was created. It also verifies that the unused bonus buffer space is filled with the expected data patterns. ZFS Test Suite -------------- Added six new large dnode-specific tests, and integrated the dnodesize property into existing tests for zfs allow and send/recv. Send/Receive ------------ ZFS send streams for datasets containing large dnodes cannot be received on pools that don't support the large_dnode feature. A send stream with large dnodes sets a DMU_BACKUP_FEATURE_LARGE_DNODE flag which will be unrecognized by an incompatible receiving pool so that the zfs receive will fail gracefully. While not implemented here, it may be possible to generate a backward-compatible send stream from a dataset containing large dnodes. The implementation may be tricky, however, because the send object record for a large dnode would need to be resized to a 512 byte dnode, possibly kicking in a spill block in the process. This means we would need to construct a new SA layout and possibly register it in the SA layout object. The SA layout is normally just sent as an ordinary object record. But if we are constructing new layouts while generating the send stream we'd have to build the SA layout object dynamically and send it at the end of the stream. For sending and receiving between pools that do support large dnodes, the drr_object send record type is extended with a new field to store the dnode slot count. This field was repurposed from unused padding in the structure. ZIL Replay ---------- The dnode slot count is stored in the uppermost 8 bits of the lr_foid field. The bits were unused as the object id is currently capped at 48 bits. Resizing Dnodes --------------- It should be possible to resize a dnode when it is dirtied if the current dnodesize dataset property differs from the dnode's size, but this functionality is not currently implemented. Clearly a dnode can only grow if there are sufficient contiguous unused slots in the dnode block, but it should always be possible to shrink a dnode. Growing dnodes may be useful to reduce fragmentation in a pool with many spill blocks in use. Shrinking dnodes may be useful to allow sending a dataset to a pool that doesn't support the large_dnode feature. Feature Reference Counting -------------------------- The reference count for the large_dnode pool feature tracks the number of datasets that have ever contained a dnode of size larger than 512 bytes. The first time a large dnode is created in a dataset the dataset is converted to an extensible dataset. This is a one-way operation and the only way to decrement the feature count is to destroy the dataset, even if the dataset no longer contains any large dnodes. The complexity of reference counting on a per-dnode basis was too high, so we chose to track it on a per-dataset basis similarly to the large_block feature. Signed-off-by: Ned Bass <bass6@llnl.gov> Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov> Closes #3542
2016-03-17 04:25:34 +03:00
static void
dnodesize_changed_cb(void *arg, uint64_t newval)
{
objset_t *os = arg;
switch (newval) {
case ZFS_DNSIZE_LEGACY:
os->os_dnodesize = DNODE_MIN_SIZE;
break;
case ZFS_DNSIZE_AUTO:
/*
* Choose a dnode size that will work well for most
* workloads if the user specified "auto". Future code
* improvements could dynamically select a dnode size
* based on observed workload patterns.
*/
os->os_dnodesize = DNODE_MIN_SIZE * 2;
break;
case ZFS_DNSIZE_1K:
case ZFS_DNSIZE_2K:
case ZFS_DNSIZE_4K:
case ZFS_DNSIZE_8K:
case ZFS_DNSIZE_16K:
os->os_dnodesize = newval;
break;
}
}
static void
smallblk_changed_cb(void *arg, uint64_t newval)
{
objset_t *os = arg;
/*
* Inheritance and range checking should have been done by now.
*/
ASSERT(newval <= SPA_OLD_MAXBLOCKSIZE);
ASSERT(ISP2(newval));
os->os_zpl_special_smallblock = newval;
}
static void
logbias_changed_cb(void *arg, uint64_t newval)
{
objset_t *os = arg;
ASSERT(newval == ZFS_LOGBIAS_LATENCY ||
newval == ZFS_LOGBIAS_THROUGHPUT);
os->os_logbias = newval;
if (os->os_zil)
zil_set_logbias(os->os_zil, newval);
}
Illumos 5027 - zfs large block support 5027 zfs large block support Reviewed by: Alek Pinchuk <pinchuk.alek@gmail.com> Reviewed by: George Wilson <george.wilson@delphix.com> Reviewed by: Josef 'Jeff' Sipek <josef.sipek@nexenta.com> Reviewed by: Richard Elling <richard.elling@richardelling.com> Reviewed by: Saso Kiselkov <skiselkov.ml@gmail.com> Reviewed by: Brian Behlendorf <behlendorf1@llnl.gov> Approved by: Dan McDonald <danmcd@omniti.com> References: https://www.illumos.org/issues/5027 https://github.com/illumos/illumos-gate/commit/b515258 Porting Notes: * Included in this patch is a tiny ISP2() cleanup in zio_init() from Illumos 5255. * Unlike the upstream Illumos commit this patch does not impose an arbitrary 128K block size limit on volumes. Volumes, like filesystems, are limited by the zfs_max_recordsize=1M module option. * By default the maximum record size is limited to 1M by the module option zfs_max_recordsize. This value may be safely increased up to 16M which is the largest block size supported by the on-disk format. At the moment, 1M blocks clearly offer a significant performance improvement but the benefits of going beyond this for the majority of workloads are less clear. * The illumos version of this patch increased DMU_MAX_ACCESS to 32M. This was determined not to be large enough when using 16M blocks because the zfs_make_xattrdir() function will fail (EFBIG) when assigning a TX. This was immediately observed under Linux because all newly created files must have a security xattr created and that was failing. Therefore, we've set DMU_MAX_ACCESS to 64M. * On 32-bit platforms a hard limit of 1M is set for blocks due to the limited virtual address space. We should be able to relax this one the ABD patches are merged. Ported-by: Brian Behlendorf <behlendorf1@llnl.gov> Closes #354
2014-11-03 23:15:08 +03:00
static void
recordsize_changed_cb(void *arg, uint64_t newval)
{
objset_t *os = arg;
os->os_recordsize = newval;
}
2008-11-20 23:01:55 +03:00
void
dmu_objset_byteswap(void *buf, size_t size)
{
objset_phys_t *osp = buf;
Project Quota on ZFS Project quota is a new ZFS system space/object usage accounting and enforcement mechanism. Similar as user/group quota, project quota is another dimension of system quota. It bases on the new object attribute - project ID. Project ID is a numerical value to indicate to which project an object belongs. An object only can belong to one project though you (the object owner or privileged user) can change the object project ID via 'chattr -p' or 'zfs project [-s] -p' explicitly. The object also can inherit the project ID from its parent when created if the parent has the project inherit flag (that can be set via 'chattr +P' or 'zfs project -s [-p]'). By accounting the spaces/objects belong to the same project, we can know how many spaces/objects used by the project. And if we set the upper limit then we can control the spaces/objects that are consumed by such project. It is useful when multiple groups and users cooperate for the same project, or a user/group needs to participate in multiple projects. Support the following commands and functionalities: zfs set projectquota@project zfs set projectobjquota@project zfs get projectquota@project zfs get projectobjquota@project zfs get projectused@project zfs get projectobjused@project zfs projectspace zfs allow projectquota zfs allow projectobjquota zfs allow projectused zfs allow projectobjused zfs unallow projectquota zfs unallow projectobjquota zfs unallow projectused zfs unallow projectobjused chattr +/-P chattr -p project_id lsattr -p This patch also supports tree quota based on the project quota via "zfs project" commands set as following: zfs project [-d|-r] <file|directory ...> zfs project -C [-k] [-r] <file|directory ...> zfs project -c [-0] [-d|-r] [-p id] <file|directory ...> zfs project [-p id] [-r] [-s] <file|directory ...> For "df [-i] $DIR" command, if we set INHERIT (project ID) flag on the $DIR, then the proejct [obj]quota and [obj]used values for the $DIR's project ID will be shown as the total/free (avail) resource. Keep the same behavior as EXT4/XFS does. Reviewed-by: Andreas Dilger <andreas.dilger@intel.com> Reviewed-by Ned Bass <bass6@llnl.gov> Reviewed-by: Matthew Ahrens <mahrens@delphix.com> Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov> Signed-off-by: Fan Yong <fan.yong@intel.com> TEST_ZIMPORT_POOLS="zol-0.6.1 zol-0.6.2 master" Change-Id: Ib4f0544602e03fb61fd46a849d7ba51a6005693c Closes #6290
2018-02-14 01:54:54 +03:00
ASSERT(size == OBJSET_PHYS_SIZE_V1 || size == OBJSET_PHYS_SIZE_V2 ||
size == sizeof (objset_phys_t));
2008-11-20 23:01:55 +03:00
dnode_byteswap(&osp->os_meta_dnode);
byteswap_uint64_array(&osp->os_zil_header, sizeof (zil_header_t));
osp->os_type = BSWAP_64(osp->os_type);
2009-07-03 02:44:48 +04:00
osp->os_flags = BSWAP_64(osp->os_flags);
Project Quota on ZFS Project quota is a new ZFS system space/object usage accounting and enforcement mechanism. Similar as user/group quota, project quota is another dimension of system quota. It bases on the new object attribute - project ID. Project ID is a numerical value to indicate to which project an object belongs. An object only can belong to one project though you (the object owner or privileged user) can change the object project ID via 'chattr -p' or 'zfs project [-s] -p' explicitly. The object also can inherit the project ID from its parent when created if the parent has the project inherit flag (that can be set via 'chattr +P' or 'zfs project -s [-p]'). By accounting the spaces/objects belong to the same project, we can know how many spaces/objects used by the project. And if we set the upper limit then we can control the spaces/objects that are consumed by such project. It is useful when multiple groups and users cooperate for the same project, or a user/group needs to participate in multiple projects. Support the following commands and functionalities: zfs set projectquota@project zfs set projectobjquota@project zfs get projectquota@project zfs get projectobjquota@project zfs get projectused@project zfs get projectobjused@project zfs projectspace zfs allow projectquota zfs allow projectobjquota zfs allow projectused zfs allow projectobjused zfs unallow projectquota zfs unallow projectobjquota zfs unallow projectused zfs unallow projectobjused chattr +/-P chattr -p project_id lsattr -p This patch also supports tree quota based on the project quota via "zfs project" commands set as following: zfs project [-d|-r] <file|directory ...> zfs project -C [-k] [-r] <file|directory ...> zfs project -c [-0] [-d|-r] [-p id] <file|directory ...> zfs project [-p id] [-r] [-s] <file|directory ...> For "df [-i] $DIR" command, if we set INHERIT (project ID) flag on the $DIR, then the proejct [obj]quota and [obj]used values for the $DIR's project ID will be shown as the total/free (avail) resource. Keep the same behavior as EXT4/XFS does. Reviewed-by: Andreas Dilger <andreas.dilger@intel.com> Reviewed-by Ned Bass <bass6@llnl.gov> Reviewed-by: Matthew Ahrens <mahrens@delphix.com> Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov> Signed-off-by: Fan Yong <fan.yong@intel.com> TEST_ZIMPORT_POOLS="zol-0.6.1 zol-0.6.2 master" Change-Id: Ib4f0544602e03fb61fd46a849d7ba51a6005693c Closes #6290
2018-02-14 01:54:54 +03:00
if (size >= OBJSET_PHYS_SIZE_V2) {
2009-07-03 02:44:48 +04:00
dnode_byteswap(&osp->os_userused_dnode);
dnode_byteswap(&osp->os_groupused_dnode);
Project Quota on ZFS Project quota is a new ZFS system space/object usage accounting and enforcement mechanism. Similar as user/group quota, project quota is another dimension of system quota. It bases on the new object attribute - project ID. Project ID is a numerical value to indicate to which project an object belongs. An object only can belong to one project though you (the object owner or privileged user) can change the object project ID via 'chattr -p' or 'zfs project [-s] -p' explicitly. The object also can inherit the project ID from its parent when created if the parent has the project inherit flag (that can be set via 'chattr +P' or 'zfs project -s [-p]'). By accounting the spaces/objects belong to the same project, we can know how many spaces/objects used by the project. And if we set the upper limit then we can control the spaces/objects that are consumed by such project. It is useful when multiple groups and users cooperate for the same project, or a user/group needs to participate in multiple projects. Support the following commands and functionalities: zfs set projectquota@project zfs set projectobjquota@project zfs get projectquota@project zfs get projectobjquota@project zfs get projectused@project zfs get projectobjused@project zfs projectspace zfs allow projectquota zfs allow projectobjquota zfs allow projectused zfs allow projectobjused zfs unallow projectquota zfs unallow projectobjquota zfs unallow projectused zfs unallow projectobjused chattr +/-P chattr -p project_id lsattr -p This patch also supports tree quota based on the project quota via "zfs project" commands set as following: zfs project [-d|-r] <file|directory ...> zfs project -C [-k] [-r] <file|directory ...> zfs project -c [-0] [-d|-r] [-p id] <file|directory ...> zfs project [-p id] [-r] [-s] <file|directory ...> For "df [-i] $DIR" command, if we set INHERIT (project ID) flag on the $DIR, then the proejct [obj]quota and [obj]used values for the $DIR's project ID will be shown as the total/free (avail) resource. Keep the same behavior as EXT4/XFS does. Reviewed-by: Andreas Dilger <andreas.dilger@intel.com> Reviewed-by Ned Bass <bass6@llnl.gov> Reviewed-by: Matthew Ahrens <mahrens@delphix.com> Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov> Signed-off-by: Fan Yong <fan.yong@intel.com> TEST_ZIMPORT_POOLS="zol-0.6.1 zol-0.6.2 master" Change-Id: Ib4f0544602e03fb61fd46a849d7ba51a6005693c Closes #6290
2018-02-14 01:54:54 +03:00
if (size >= sizeof (objset_phys_t))
dnode_byteswap(&osp->os_projectused_dnode);
2009-07-03 02:44:48 +04:00
}
2008-11-20 23:01:55 +03:00
}
/*
* The hash is a CRC-based hash of the objset_t pointer and the object number.
*/
static uint64_t
dnode_hash(const objset_t *os, uint64_t obj)
{
uintptr_t osv = (uintptr_t)os;
uint64_t crc = -1ULL;
ASSERT(zfs_crc64_table[128] == ZFS_CRC64_POLY);
/*
* The low 6 bits of the pointer don't have much entropy, because
* the objset_t is larger than 2^6 bytes long.
*/
crc = (crc >> 8) ^ zfs_crc64_table[(crc ^ (osv >> 6)) & 0xFF];
crc = (crc >> 8) ^ zfs_crc64_table[(crc ^ (obj >> 0)) & 0xFF];
crc = (crc >> 8) ^ zfs_crc64_table[(crc ^ (obj >> 8)) & 0xFF];
crc = (crc >> 8) ^ zfs_crc64_table[(crc ^ (obj >> 16)) & 0xFF];
crc ^= (osv>>14) ^ (obj>>24);
return (crc);
}
static unsigned int
dnode_multilist_index_func(multilist_t *ml, void *obj)
{
dnode_t *dn = obj;
return (dnode_hash(dn->dn_objset, dn->dn_object) %
multilist_get_num_sublists(ml));
}
OpenZFS 7614, 9064 - zfs device evacuation/removal OpenZFS 7614 - zfs device evacuation/removal OpenZFS 9064 - remove_mirror should wait for device removal to complete This project allows top-level vdevs to be removed from the storage pool with "zpool remove", reducing the total amount of storage in the pool. This operation copies all allocated regions of the device to be removed onto other devices, recording the mapping from old to new location. After the removal is complete, read and free operations to the removed (now "indirect") vdev must be remapped and performed at the new location on disk. The indirect mapping table is kept in memory whenever the pool is loaded, so there is minimal performance overhead when doing operations on the indirect vdev. The size of the in-memory mapping table will be reduced when its entries become "obsolete" because they are no longer used by any block pointers in the pool. An entry becomes obsolete when all the blocks that use it are freed. An entry can also become obsolete when all the snapshots that reference it are deleted, and the block pointers that reference it have been "remapped" in all filesystems/zvols (and clones). Whenever an indirect block is written, all the block pointers in it will be "remapped" to their new (concrete) locations if possible. This process can be accelerated by using the "zfs remap" command to proactively rewrite all indirect blocks that reference indirect (removed) vdevs. Note that when a device is removed, we do not verify the checksum of the data that is copied. This makes the process much faster, but if it were used on redundant vdevs (i.e. mirror or raidz vdevs), it would be possible to copy the wrong data, when we have the correct data on e.g. the other side of the mirror. At the moment, only mirrors and simple top-level vdevs can be removed and no removal is allowed if any of the top-level vdevs are raidz. Porting Notes: * Avoid zero-sized kmem_alloc() in vdev_compact_children(). The device evacuation code adds a dependency that vdev_compact_children() be able to properly empty the vdev_child array by setting it to NULL and zeroing vdev_children. Under Linux, kmem_alloc() and related functions return a sentinel pointer rather than NULL for zero-sized allocations. * Remove comment regarding "mpt" driver where zfs_remove_max_segment is initialized to SPA_MAXBLOCKSIZE. Change zfs_condense_indirect_commit_entry_delay_ticks to zfs_condense_indirect_commit_entry_delay_ms for consistency with most other tunables in which delays are specified in ms. * ZTS changes: Use set_tunable rather than mdb Use zpool sync as appropriate Use sync_pool instead of sync Kill jobs during test_removal_with_operation to allow unmount/export Don't add non-disk names such as "mirror" or "raidz" to $DISKS Use $TEST_BASE_DIR instead of /tmp Increase HZ from 100 to 1000 which is more common on Linux removal_multiple_indirection.ksh Reduce iterations in order to not time out on the code coverage builders. removal_resume_export: Functionally, the test case is correct but there exists a race where the kernel thread hasn't been fully started yet and is not visible. Wait for up to 1 second for the removal thread to be started before giving up on it. Also, increase the amount of data copied in order that the removal not finish before the export has a chance to fail. * MMP compatibility, the concept of concrete versus non-concrete devices has slightly changed the semantics of vdev_writeable(). Update mmp_random_leaf_impl() accordingly. * Updated dbuf_remap() to handle the org.zfsonlinux:large_dnode pool feature which is not supported by OpenZFS. * Added support for new vdev removal tracepoints. * Test cases removal_with_zdb and removal_condense_export have been intentionally disabled. When run manually they pass as intended, but when running in the automated test environment they produce unreliable results on the latest Fedora release. They may work better once the upstream pool import refectoring is merged into ZoL at which point they will be re-enabled. Authored by: Matthew Ahrens <mahrens@delphix.com> Reviewed-by: Alex Reece <alex@delphix.com> Reviewed-by: George Wilson <george.wilson@delphix.com> Reviewed-by: John Kennedy <john.kennedy@delphix.com> Reviewed-by: Prakash Surya <prakash.surya@delphix.com> Reviewed by: Richard Laager <rlaager@wiktel.com> Reviewed by: Tim Chase <tim@chase2k.com> Reviewed by: Brian Behlendorf <behlendorf1@llnl.gov> Approved by: Garrett D'Amore <garrett@damore.org> Ported-by: Tim Chase <tim@chase2k.com> Signed-off-by: Tim Chase <tim@chase2k.com> OpenZFS-issue: https://www.illumos.org/issues/7614 OpenZFS-commit: https://github.com/openzfs/openzfs/commit/f539f1eb Closes #6900
2016-09-22 19:30:13 +03:00
/*
* Instantiates the objset_t in-memory structure corresponding to the
* objset_phys_t that's pointed to by the specified blkptr_t.
*/
2008-11-20 23:01:55 +03:00
int
dmu_objset_open_impl(spa_t *spa, dsl_dataset_t *ds, blkptr_t *bp,
objset_t **osp)
2008-11-20 23:01:55 +03:00
{
objset_t *os;
int i, err;
2008-11-20 23:01:55 +03:00
ASSERT(ds == NULL || MUTEX_HELD(&ds->ds_opening_lock));
Implement Redacted Send/Receive Redacted send/receive allows users to send subsets of their data to a target system. One possible use case for this feature is to not transmit sensitive information to a data warehousing, test/dev, or analytics environment. Another is to save space by not replicating unimportant data within a given dataset, for example in backup tools like zrepl. Redacted send/receive is a three-stage process. First, a clone (or clones) is made of the snapshot to be sent to the target. In this clone (or clones), all unnecessary or unwanted data is removed or modified. This clone is then snapshotted to create the "redaction snapshot" (or snapshots). Second, the new zfs redact command is used to create a redaction bookmark. The redaction bookmark stores the list of blocks in a snapshot that were modified by the redaction snapshot(s). Finally, the redaction bookmark is passed as a parameter to zfs send. When sending to the snapshot that was redacted, the redaction bookmark is used to filter out blocks that contain sensitive or unwanted information, and those blocks are not included in the send stream. When sending from the redaction bookmark, the blocks it contains are considered as candidate blocks in addition to those blocks in the destination snapshot that were modified since the creation_txg of the redaction bookmark. This step is necessary to allow the target to rehydrate data in the case where some blocks are accidentally or unnecessarily modified in the redaction snapshot. The changes to bookmarks to enable fast space estimation involve adding deadlists to bookmarks. There is also logic to manage the life cycles of these deadlists. The new size estimation process operates in cases where previously an accurate estimate could not be provided. In those cases, a send is performed where no data blocks are read, reducing the runtime significantly and providing a byte-accurate size estimate. Reviewed-by: Dan Kimmel <dan.kimmel@delphix.com> Reviewed-by: Matt Ahrens <mahrens@delphix.com> Reviewed-by: Prashanth Sreenivasa <pks@delphix.com> Reviewed-by: John Kennedy <john.kennedy@delphix.com> Reviewed-by: George Wilson <george.wilson@delphix.com> Reviewed-by: Chris Williamson <chris.williamson@delphix.com> Reviewed-by: Pavel Zhakarov <pavel.zakharov@delphix.com> Reviewed-by: Sebastien Roy <sebastien.roy@delphix.com> Reviewed-by: Prakash Surya <prakash.surya@delphix.com> Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov> Signed-off-by: Paul Dagnelie <pcd@delphix.com> Closes #7958
2019-06-19 19:48:13 +03:00
ASSERT(!BP_IS_REDACTED(bp));
2008-11-20 23:01:55 +03:00
dmu_objset_from_ds must be called with dp_config_rwlock held The normal lock order is that the dp_config_rwlock must be held before the ds_opening_lock. For example, dmu_objset_hold() does this. However, dmu_objset_open_impl() is called with the ds_opening_lock held, and if the dp_config_rwlock is not already held, it will attempt to acquire it. This may lead to deadlock, since the lock order is reversed. Looking at all the callers of dmu_objset_open_impl() (which is principally the callers of dmu_objset_from_ds()), almost all callers already have the dp_config_rwlock. However, there are a few places in the send and receive code paths that do not. For example: dsl_crypto_populate_key_nvlist, send_cb, dmu_recv_stream, receive_write_byref, redact_traverse_thread. This commit resolves the problem by requiring all callers ot dmu_objset_from_ds() to hold the dp_config_rwlock. In most cases, the code has been restructured such that we call dmu_objset_from_ds() earlier on in the send and receive processes, when we already have the dp_config_rwlock, and save the objset_t until we need it in the middle of the send or receive (similar to what we already do with the dsl_dataset_t). Thus we do not need to acquire the dp_config_rwlock in many new places. I also cleaned up code in dmu_redact_snap() and send_traverse_thread(). Reviewed-by: Paul Dagnelie <pcd@delphix.com> Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov> Reviewed-by: Paul Zuchowski <pzuchowski@datto.com> Signed-off-by: Matthew Ahrens <mahrens@delphix.com> Closes #9662 Closes #10115
2020-03-12 20:55:02 +03:00
/*
* We need the pool config lock to get properties.
*/
ASSERT(ds == NULL || dsl_pool_config_held(ds->ds_dir->dd_pool));
OpenZFS 7614, 9064 - zfs device evacuation/removal OpenZFS 7614 - zfs device evacuation/removal OpenZFS 9064 - remove_mirror should wait for device removal to complete This project allows top-level vdevs to be removed from the storage pool with "zpool remove", reducing the total amount of storage in the pool. This operation copies all allocated regions of the device to be removed onto other devices, recording the mapping from old to new location. After the removal is complete, read and free operations to the removed (now "indirect") vdev must be remapped and performed at the new location on disk. The indirect mapping table is kept in memory whenever the pool is loaded, so there is minimal performance overhead when doing operations on the indirect vdev. The size of the in-memory mapping table will be reduced when its entries become "obsolete" because they are no longer used by any block pointers in the pool. An entry becomes obsolete when all the blocks that use it are freed. An entry can also become obsolete when all the snapshots that reference it are deleted, and the block pointers that reference it have been "remapped" in all filesystems/zvols (and clones). Whenever an indirect block is written, all the block pointers in it will be "remapped" to their new (concrete) locations if possible. This process can be accelerated by using the "zfs remap" command to proactively rewrite all indirect blocks that reference indirect (removed) vdevs. Note that when a device is removed, we do not verify the checksum of the data that is copied. This makes the process much faster, but if it were used on redundant vdevs (i.e. mirror or raidz vdevs), it would be possible to copy the wrong data, when we have the correct data on e.g. the other side of the mirror. At the moment, only mirrors and simple top-level vdevs can be removed and no removal is allowed if any of the top-level vdevs are raidz. Porting Notes: * Avoid zero-sized kmem_alloc() in vdev_compact_children(). The device evacuation code adds a dependency that vdev_compact_children() be able to properly empty the vdev_child array by setting it to NULL and zeroing vdev_children. Under Linux, kmem_alloc() and related functions return a sentinel pointer rather than NULL for zero-sized allocations. * Remove comment regarding "mpt" driver where zfs_remove_max_segment is initialized to SPA_MAXBLOCKSIZE. Change zfs_condense_indirect_commit_entry_delay_ticks to zfs_condense_indirect_commit_entry_delay_ms for consistency with most other tunables in which delays are specified in ms. * ZTS changes: Use set_tunable rather than mdb Use zpool sync as appropriate Use sync_pool instead of sync Kill jobs during test_removal_with_operation to allow unmount/export Don't add non-disk names such as "mirror" or "raidz" to $DISKS Use $TEST_BASE_DIR instead of /tmp Increase HZ from 100 to 1000 which is more common on Linux removal_multiple_indirection.ksh Reduce iterations in order to not time out on the code coverage builders. removal_resume_export: Functionally, the test case is correct but there exists a race where the kernel thread hasn't been fully started yet and is not visible. Wait for up to 1 second for the removal thread to be started before giving up on it. Also, increase the amount of data copied in order that the removal not finish before the export has a chance to fail. * MMP compatibility, the concept of concrete versus non-concrete devices has slightly changed the semantics of vdev_writeable(). Update mmp_random_leaf_impl() accordingly. * Updated dbuf_remap() to handle the org.zfsonlinux:large_dnode pool feature which is not supported by OpenZFS. * Added support for new vdev removal tracepoints. * Test cases removal_with_zdb and removal_condense_export have been intentionally disabled. When run manually they pass as intended, but when running in the automated test environment they produce unreliable results on the latest Fedora release. They may work better once the upstream pool import refectoring is merged into ZoL at which point they will be re-enabled. Authored by: Matthew Ahrens <mahrens@delphix.com> Reviewed-by: Alex Reece <alex@delphix.com> Reviewed-by: George Wilson <george.wilson@delphix.com> Reviewed-by: John Kennedy <john.kennedy@delphix.com> Reviewed-by: Prakash Surya <prakash.surya@delphix.com> Reviewed by: Richard Laager <rlaager@wiktel.com> Reviewed by: Tim Chase <tim@chase2k.com> Reviewed by: Brian Behlendorf <behlendorf1@llnl.gov> Approved by: Garrett D'Amore <garrett@damore.org> Ported-by: Tim Chase <tim@chase2k.com> Signed-off-by: Tim Chase <tim@chase2k.com> OpenZFS-issue: https://www.illumos.org/issues/7614 OpenZFS-commit: https://github.com/openzfs/openzfs/commit/f539f1eb Closes #6900
2016-09-22 19:30:13 +03:00
/*
* The $ORIGIN dataset (if it exists) doesn't have an associated
* objset, so there's no reason to open it. The $ORIGIN dataset
* will not exist on pools older than SPA_VERSION_ORIGIN.
*/
if (ds != NULL && spa_get_dsl(spa) != NULL &&
spa_get_dsl(spa)->dp_origin_snap != NULL) {
ASSERT3P(ds->ds_dir, !=,
spa_get_dsl(spa)->dp_origin_snap->ds_dir);
}
os = kmem_zalloc(sizeof (objset_t), KM_SLEEP);
os->os_dsl_dataset = ds;
os->os_spa = spa;
os->os_rootbp = bp;
if (!BP_IS_HOLE(os->os_rootbp)) {
arc_flags_t aflags = ARC_FLAG_WAIT;
zbookmark_phys_t zb;
Project Quota on ZFS Project quota is a new ZFS system space/object usage accounting and enforcement mechanism. Similar as user/group quota, project quota is another dimension of system quota. It bases on the new object attribute - project ID. Project ID is a numerical value to indicate to which project an object belongs. An object only can belong to one project though you (the object owner or privileged user) can change the object project ID via 'chattr -p' or 'zfs project [-s] -p' explicitly. The object also can inherit the project ID from its parent when created if the parent has the project inherit flag (that can be set via 'chattr +P' or 'zfs project -s [-p]'). By accounting the spaces/objects belong to the same project, we can know how many spaces/objects used by the project. And if we set the upper limit then we can control the spaces/objects that are consumed by such project. It is useful when multiple groups and users cooperate for the same project, or a user/group needs to participate in multiple projects. Support the following commands and functionalities: zfs set projectquota@project zfs set projectobjquota@project zfs get projectquota@project zfs get projectobjquota@project zfs get projectused@project zfs get projectobjused@project zfs projectspace zfs allow projectquota zfs allow projectobjquota zfs allow projectused zfs allow projectobjused zfs unallow projectquota zfs unallow projectobjquota zfs unallow projectused zfs unallow projectobjused chattr +/-P chattr -p project_id lsattr -p This patch also supports tree quota based on the project quota via "zfs project" commands set as following: zfs project [-d|-r] <file|directory ...> zfs project -C [-k] [-r] <file|directory ...> zfs project -c [-0] [-d|-r] [-p id] <file|directory ...> zfs project [-p id] [-r] [-s] <file|directory ...> For "df [-i] $DIR" command, if we set INHERIT (project ID) flag on the $DIR, then the proejct [obj]quota and [obj]used values for the $DIR's project ID will be shown as the total/free (avail) resource. Keep the same behavior as EXT4/XFS does. Reviewed-by: Andreas Dilger <andreas.dilger@intel.com> Reviewed-by Ned Bass <bass6@llnl.gov> Reviewed-by: Matthew Ahrens <mahrens@delphix.com> Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov> Signed-off-by: Fan Yong <fan.yong@intel.com> TEST_ZIMPORT_POOLS="zol-0.6.1 zol-0.6.2 master" Change-Id: Ib4f0544602e03fb61fd46a849d7ba51a6005693c Closes #6290
2018-02-14 01:54:54 +03:00
int size;
Native Encryption for ZFS on Linux This change incorporates three major pieces: The first change is a keystore that manages wrapping and encryption keys for encrypted datasets. These commands mostly involve manipulating the new DSL Crypto Key ZAP Objects that live in the MOS. Each encrypted dataset has its own DSL Crypto Key that is protected with a user's key. This level of indirection allows users to change their keys without re-encrypting their entire datasets. The change implements the new subcommands "zfs load-key", "zfs unload-key" and "zfs change-key" which allow the user to manage their encryption keys and settings. In addition, several new flags and properties have been added to allow dataset creation and to make mounting and unmounting more convenient. The second piece of this patch provides the ability to encrypt, decyrpt, and authenticate protected datasets. Each object set maintains a Merkel tree of Message Authentication Codes that protect the lower layers, similarly to how checksums are maintained. This part impacts the zio layer, which handles the actual encryption and generation of MACs, as well as the ARC and DMU, which need to be able to handle encrypted buffers and protected data. The last addition is the ability to do raw, encrypted sends and receives. The idea here is to send raw encrypted and compressed data and receive it exactly as is on a backup system. This means that the dataset on the receiving system is protected using the same user key that is in use on the sending side. By doing so, datasets can be efficiently backed up to an untrusted system without fear of data being compromised. Reviewed by: Matthew Ahrens <mahrens@delphix.com> Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov> Reviewed-by: Jorgen Lundman <lundman@lundman.net> Signed-off-by: Tom Caputi <tcaputi@datto.com> Closes #494 Closes #5769
2017-08-14 20:36:48 +03:00
enum zio_flag zio_flags = ZIO_FLAG_CANFAIL;
SET_BOOKMARK(&zb, ds ? ds->ds_object : DMU_META_OBJSET,
ZB_ROOT_OBJECT, ZB_ROOT_LEVEL, ZB_ROOT_BLKID);
if (DMU_OS_IS_L2CACHEABLE(os))
aflags |= ARC_FLAG_L2CACHE;
2008-11-20 23:01:55 +03:00
Native Encryption for ZFS on Linux This change incorporates three major pieces: The first change is a keystore that manages wrapping and encryption keys for encrypted datasets. These commands mostly involve manipulating the new DSL Crypto Key ZAP Objects that live in the MOS. Each encrypted dataset has its own DSL Crypto Key that is protected with a user's key. This level of indirection allows users to change their keys without re-encrypting their entire datasets. The change implements the new subcommands "zfs load-key", "zfs unload-key" and "zfs change-key" which allow the user to manage their encryption keys and settings. In addition, several new flags and properties have been added to allow dataset creation and to make mounting and unmounting more convenient. The second piece of this patch provides the ability to encrypt, decyrpt, and authenticate protected datasets. Each object set maintains a Merkel tree of Message Authentication Codes that protect the lower layers, similarly to how checksums are maintained. This part impacts the zio layer, which handles the actual encryption and generation of MACs, as well as the ARC and DMU, which need to be able to handle encrypted buffers and protected data. The last addition is the ability to do raw, encrypted sends and receives. The idea here is to send raw encrypted and compressed data and receive it exactly as is on a backup system. This means that the dataset on the receiving system is protected using the same user key that is in use on the sending side. By doing so, datasets can be efficiently backed up to an untrusted system without fear of data being compromised. Reviewed by: Matthew Ahrens <mahrens@delphix.com> Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov> Reviewed-by: Jorgen Lundman <lundman@lundman.net> Signed-off-by: Tom Caputi <tcaputi@datto.com> Closes #494 Closes #5769
2017-08-14 20:36:48 +03:00
if (ds != NULL && ds->ds_dir->dd_crypto_obj != 0) {
ASSERT3U(BP_GET_COMPRESS(bp), ==, ZIO_COMPRESS_OFF);
ASSERT(BP_IS_AUTHENTICATED(bp));
zio_flags |= ZIO_FLAG_RAW;
}
dprintf_bp(os->os_rootbp, "reading %s", "");
err = arc_read(NULL, spa, os->os_rootbp,
arc_getbuf_func, &os->os_phys_buf,
Native Encryption for ZFS on Linux This change incorporates three major pieces: The first change is a keystore that manages wrapping and encryption keys for encrypted datasets. These commands mostly involve manipulating the new DSL Crypto Key ZAP Objects that live in the MOS. Each encrypted dataset has its own DSL Crypto Key that is protected with a user's key. This level of indirection allows users to change their keys without re-encrypting their entire datasets. The change implements the new subcommands "zfs load-key", "zfs unload-key" and "zfs change-key" which allow the user to manage their encryption keys and settings. In addition, several new flags and properties have been added to allow dataset creation and to make mounting and unmounting more convenient. The second piece of this patch provides the ability to encrypt, decyrpt, and authenticate protected datasets. Each object set maintains a Merkel tree of Message Authentication Codes that protect the lower layers, similarly to how checksums are maintained. This part impacts the zio layer, which handles the actual encryption and generation of MACs, as well as the ARC and DMU, which need to be able to handle encrypted buffers and protected data. The last addition is the ability to do raw, encrypted sends and receives. The idea here is to send raw encrypted and compressed data and receive it exactly as is on a backup system. This means that the dataset on the receiving system is protected using the same user key that is in use on the sending side. By doing so, datasets can be efficiently backed up to an untrusted system without fear of data being compromised. Reviewed by: Matthew Ahrens <mahrens@delphix.com> Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov> Reviewed-by: Jorgen Lundman <lundman@lundman.net> Signed-off-by: Tom Caputi <tcaputi@datto.com> Closes #494 Closes #5769
2017-08-14 20:36:48 +03:00
ZIO_PRIORITY_SYNC_READ, zio_flags, &aflags, &zb);
if (err != 0) {
kmem_free(os, sizeof (objset_t));
/* convert checksum errors into IO errors */
if (err == ECKSUM)
err = SET_ERROR(EIO);
2008-11-20 23:01:55 +03:00
return (err);
}
2009-07-03 02:44:48 +04:00
Project Quota on ZFS Project quota is a new ZFS system space/object usage accounting and enforcement mechanism. Similar as user/group quota, project quota is another dimension of system quota. It bases on the new object attribute - project ID. Project ID is a numerical value to indicate to which project an object belongs. An object only can belong to one project though you (the object owner or privileged user) can change the object project ID via 'chattr -p' or 'zfs project [-s] -p' explicitly. The object also can inherit the project ID from its parent when created if the parent has the project inherit flag (that can be set via 'chattr +P' or 'zfs project -s [-p]'). By accounting the spaces/objects belong to the same project, we can know how many spaces/objects used by the project. And if we set the upper limit then we can control the spaces/objects that are consumed by such project. It is useful when multiple groups and users cooperate for the same project, or a user/group needs to participate in multiple projects. Support the following commands and functionalities: zfs set projectquota@project zfs set projectobjquota@project zfs get projectquota@project zfs get projectobjquota@project zfs get projectused@project zfs get projectobjused@project zfs projectspace zfs allow projectquota zfs allow projectobjquota zfs allow projectused zfs allow projectobjused zfs unallow projectquota zfs unallow projectobjquota zfs unallow projectused zfs unallow projectobjused chattr +/-P chattr -p project_id lsattr -p This patch also supports tree quota based on the project quota via "zfs project" commands set as following: zfs project [-d|-r] <file|directory ...> zfs project -C [-k] [-r] <file|directory ...> zfs project -c [-0] [-d|-r] [-p id] <file|directory ...> zfs project [-p id] [-r] [-s] <file|directory ...> For "df [-i] $DIR" command, if we set INHERIT (project ID) flag on the $DIR, then the proejct [obj]quota and [obj]used values for the $DIR's project ID will be shown as the total/free (avail) resource. Keep the same behavior as EXT4/XFS does. Reviewed-by: Andreas Dilger <andreas.dilger@intel.com> Reviewed-by Ned Bass <bass6@llnl.gov> Reviewed-by: Matthew Ahrens <mahrens@delphix.com> Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov> Signed-off-by: Fan Yong <fan.yong@intel.com> TEST_ZIMPORT_POOLS="zol-0.6.1 zol-0.6.2 master" Change-Id: Ib4f0544602e03fb61fd46a849d7ba51a6005693c Closes #6290
2018-02-14 01:54:54 +03:00
if (spa_version(spa) < SPA_VERSION_USERSPACE)
size = OBJSET_PHYS_SIZE_V1;
else if (!spa_feature_is_enabled(spa,
SPA_FEATURE_PROJECT_QUOTA))
size = OBJSET_PHYS_SIZE_V2;
else
size = sizeof (objset_phys_t);
2009-07-03 02:44:48 +04:00
/* Increase the blocksize if we are permitted. */
Project Quota on ZFS Project quota is a new ZFS system space/object usage accounting and enforcement mechanism. Similar as user/group quota, project quota is another dimension of system quota. It bases on the new object attribute - project ID. Project ID is a numerical value to indicate to which project an object belongs. An object only can belong to one project though you (the object owner or privileged user) can change the object project ID via 'chattr -p' or 'zfs project [-s] -p' explicitly. The object also can inherit the project ID from its parent when created if the parent has the project inherit flag (that can be set via 'chattr +P' or 'zfs project -s [-p]'). By accounting the spaces/objects belong to the same project, we can know how many spaces/objects used by the project. And if we set the upper limit then we can control the spaces/objects that are consumed by such project. It is useful when multiple groups and users cooperate for the same project, or a user/group needs to participate in multiple projects. Support the following commands and functionalities: zfs set projectquota@project zfs set projectobjquota@project zfs get projectquota@project zfs get projectobjquota@project zfs get projectused@project zfs get projectobjused@project zfs projectspace zfs allow projectquota zfs allow projectobjquota zfs allow projectused zfs allow projectobjused zfs unallow projectquota zfs unallow projectobjquota zfs unallow projectused zfs unallow projectobjused chattr +/-P chattr -p project_id lsattr -p This patch also supports tree quota based on the project quota via "zfs project" commands set as following: zfs project [-d|-r] <file|directory ...> zfs project -C [-k] [-r] <file|directory ...> zfs project -c [-0] [-d|-r] [-p id] <file|directory ...> zfs project [-p id] [-r] [-s] <file|directory ...> For "df [-i] $DIR" command, if we set INHERIT (project ID) flag on the $DIR, then the proejct [obj]quota and [obj]used values for the $DIR's project ID will be shown as the total/free (avail) resource. Keep the same behavior as EXT4/XFS does. Reviewed-by: Andreas Dilger <andreas.dilger@intel.com> Reviewed-by Ned Bass <bass6@llnl.gov> Reviewed-by: Matthew Ahrens <mahrens@delphix.com> Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov> Signed-off-by: Fan Yong <fan.yong@intel.com> TEST_ZIMPORT_POOLS="zol-0.6.1 zol-0.6.2 master" Change-Id: Ib4f0544602e03fb61fd46a849d7ba51a6005693c Closes #6290
2018-02-14 01:54:54 +03:00
if (arc_buf_size(os->os_phys_buf) < size) {
arc_buf_t *buf = arc_alloc_buf(spa, &os->os_phys_buf,
Project Quota on ZFS Project quota is a new ZFS system space/object usage accounting and enforcement mechanism. Similar as user/group quota, project quota is another dimension of system quota. It bases on the new object attribute - project ID. Project ID is a numerical value to indicate to which project an object belongs. An object only can belong to one project though you (the object owner or privileged user) can change the object project ID via 'chattr -p' or 'zfs project [-s] -p' explicitly. The object also can inherit the project ID from its parent when created if the parent has the project inherit flag (that can be set via 'chattr +P' or 'zfs project -s [-p]'). By accounting the spaces/objects belong to the same project, we can know how many spaces/objects used by the project. And if we set the upper limit then we can control the spaces/objects that are consumed by such project. It is useful when multiple groups and users cooperate for the same project, or a user/group needs to participate in multiple projects. Support the following commands and functionalities: zfs set projectquota@project zfs set projectobjquota@project zfs get projectquota@project zfs get projectobjquota@project zfs get projectused@project zfs get projectobjused@project zfs projectspace zfs allow projectquota zfs allow projectobjquota zfs allow projectused zfs allow projectobjused zfs unallow projectquota zfs unallow projectobjquota zfs unallow projectused zfs unallow projectobjused chattr +/-P chattr -p project_id lsattr -p This patch also supports tree quota based on the project quota via "zfs project" commands set as following: zfs project [-d|-r] <file|directory ...> zfs project -C [-k] [-r] <file|directory ...> zfs project -c [-0] [-d|-r] [-p id] <file|directory ...> zfs project [-p id] [-r] [-s] <file|directory ...> For "df [-i] $DIR" command, if we set INHERIT (project ID) flag on the $DIR, then the proejct [obj]quota and [obj]used values for the $DIR's project ID will be shown as the total/free (avail) resource. Keep the same behavior as EXT4/XFS does. Reviewed-by: Andreas Dilger <andreas.dilger@intel.com> Reviewed-by Ned Bass <bass6@llnl.gov> Reviewed-by: Matthew Ahrens <mahrens@delphix.com> Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov> Signed-off-by: Fan Yong <fan.yong@intel.com> TEST_ZIMPORT_POOLS="zol-0.6.1 zol-0.6.2 master" Change-Id: Ib4f0544602e03fb61fd46a849d7ba51a6005693c Closes #6290
2018-02-14 01:54:54 +03:00
ARC_BUFC_METADATA, size);
bzero(buf->b_data, size);
bcopy(os->os_phys_buf->b_data, buf->b_data,
arc_buf_size(os->os_phys_buf));
OpenZFS 6950 - ARC should cache compressed data Authored by: George Wilson <george.wilson@delphix.com> Reviewed by: Prakash Surya <prakash.surya@delphix.com> Reviewed by: Dan Kimmel <dan.kimmel@delphix.com> Reviewed by: Matt Ahrens <mahrens@delphix.com> Reviewed by: Paul Dagnelie <pcd@delphix.com> Reviewed by: Tom Caputi <tcaputi@datto.com> Reviewed by: Brian Behlendorf <behlendorf1@llnl.gov> Ported by: David Quigley <david.quigley@intel.com> This review covers the reading and writing of compressed arc headers, sharing data between the arc_hdr_t and the arc_buf_t, and the implementation of a new dbuf cache to keep frequently access data uncompressed. I've added a new member to l1 arc hdr called b_pdata. The b_pdata always hangs off the arc_buf_hdr_t (if an L1 hdr is in use) and points to the physical block for that DVA. The physical block may or may not be compressed. If compressed arc is enabled and the block on-disk is compressed, then the b_pdata will match the block on-disk and remain compressed in memory. If the block on disk is not compressed, then neither will the b_pdata. Lastly, if compressed arc is disabled, then b_pdata will always be an uncompressed version of the on-disk block. Typically the arc will cache only the arc_buf_hdr_t and will aggressively evict any arc_buf_t's that are no longer referenced. This means that the arc will primarily have compressed blocks as the arc_buf_t's are considered overhead and are always uncompressed. When a consumer reads a block we first look to see if the arc_buf_hdr_t is cached. If the hdr is cached then we allocate a new arc_buf_t and decompress the b_pdata contents into the arc_buf_t's b_data. If the hdr already has a arc_buf_t, then we will allocate an additional arc_buf_t and bcopy the uncompressed contents from the first arc_buf_t to the new one. Writing to the compressed arc requires that we first discard the b_pdata since the physical block is about to be rewritten. The new data contents will be passed in via an arc_buf_t (uncompressed) and during the I/O pipeline stages we will copy the physical block contents to a newly allocated b_pdata. When an l2arc is inuse it will also take advantage of the b_pdata. Now the l2arc will always write the contents of b_pdata to the l2arc. This means that when compressed arc is enabled that the l2arc blocks are identical to those stored in the main data pool. This provides a significant advantage since we can leverage the bp's checksum when reading from the l2arc to determine if the contents are valid. If the compressed arc is disabled, then we must first transform the read block to look like the physical block in the main data pool before comparing the checksum and determining it's valid. OpenZFS-issue: https://www.illumos.org/issues/6950 OpenZFS-commit: https://github.com/openzfs/openzfs/commit/7fc10f0 Issue #5078
2016-06-02 07:04:53 +03:00
arc_buf_destroy(os->os_phys_buf, &os->os_phys_buf);
os->os_phys_buf = buf;
2009-07-03 02:44:48 +04:00
}
os->os_phys = os->os_phys_buf->b_data;
os->os_flags = os->os_phys->os_flags;
2008-11-20 23:01:55 +03:00
} else {
2009-07-03 02:44:48 +04:00
int size = spa_version(spa) >= SPA_VERSION_USERSPACE ?
Project Quota on ZFS Project quota is a new ZFS system space/object usage accounting and enforcement mechanism. Similar as user/group quota, project quota is another dimension of system quota. It bases on the new object attribute - project ID. Project ID is a numerical value to indicate to which project an object belongs. An object only can belong to one project though you (the object owner or privileged user) can change the object project ID via 'chattr -p' or 'zfs project [-s] -p' explicitly. The object also can inherit the project ID from its parent when created if the parent has the project inherit flag (that can be set via 'chattr +P' or 'zfs project -s [-p]'). By accounting the spaces/objects belong to the same project, we can know how many spaces/objects used by the project. And if we set the upper limit then we can control the spaces/objects that are consumed by such project. It is useful when multiple groups and users cooperate for the same project, or a user/group needs to participate in multiple projects. Support the following commands and functionalities: zfs set projectquota@project zfs set projectobjquota@project zfs get projectquota@project zfs get projectobjquota@project zfs get projectused@project zfs get projectobjused@project zfs projectspace zfs allow projectquota zfs allow projectobjquota zfs allow projectused zfs allow projectobjused zfs unallow projectquota zfs unallow projectobjquota zfs unallow projectused zfs unallow projectobjused chattr +/-P chattr -p project_id lsattr -p This patch also supports tree quota based on the project quota via "zfs project" commands set as following: zfs project [-d|-r] <file|directory ...> zfs project -C [-k] [-r] <file|directory ...> zfs project -c [-0] [-d|-r] [-p id] <file|directory ...> zfs project [-p id] [-r] [-s] <file|directory ...> For "df [-i] $DIR" command, if we set INHERIT (project ID) flag on the $DIR, then the proejct [obj]quota and [obj]used values for the $DIR's project ID will be shown as the total/free (avail) resource. Keep the same behavior as EXT4/XFS does. Reviewed-by: Andreas Dilger <andreas.dilger@intel.com> Reviewed-by Ned Bass <bass6@llnl.gov> Reviewed-by: Matthew Ahrens <mahrens@delphix.com> Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov> Signed-off-by: Fan Yong <fan.yong@intel.com> TEST_ZIMPORT_POOLS="zol-0.6.1 zol-0.6.2 master" Change-Id: Ib4f0544602e03fb61fd46a849d7ba51a6005693c Closes #6290
2018-02-14 01:54:54 +03:00
sizeof (objset_phys_t) : OBJSET_PHYS_SIZE_V1;
os->os_phys_buf = arc_alloc_buf(spa, &os->os_phys_buf,
ARC_BUFC_METADATA, size);
os->os_phys = os->os_phys_buf->b_data;
bzero(os->os_phys, size);
2008-11-20 23:01:55 +03:00
}
OpenZFS 9337 - zfs get all is slow due to uncached metadata This project's goal is to make read-heavy channel programs and zfs(1m) administrative commands faster by caching all the metadata that they will need in the dbuf layer. This will prevent the data from being evicted, so that any future call to i.e. zfs get all won't have to go to disk (very much). There are two parts: The dbuf_metadata_cache. We identify what to put into the cache based on the object type of each dbuf. Caching objset properties os {version,normalization,utf8only,casesensitivity} in the objset_t. The reason these needed to be cached is that although they are queried frequently, they aren't stored in a dbuf type which we can easily recognize and cache in the dbuf layer; instead, we have to explicitly store them. There's already existing infrastructure for maintaining cached properties in the objset setup code, so I simply used that. Performance Testing: - Disabled kmem_flags - Tuned dbuf_cache_max_bytes very low (128K) - Tuned zfs_arc_max very low (64M) Created test pool with 400 filesystems, and 100 snapshots per filesystem. Later on in testing, added 600 more filesystems (with no snapshots) to make sure scaling didn't look different between snapshots and filesystems. Results: | Test | Time (trunk / diff) | I/Os (trunk / diff) | +------------------------+---------------------+---------------------+ | zpool import | 0:05 / 0:06 | 12.9k / 12.9k | | zfs get all (uncached) | 1:36 / 0:53 | 16.7k / 5.7k | | zfs get all (cached) | 1:36 / 0:51 | 16.0k / 6.0k | Authored by: Matthew Ahrens <mahrens@delphix.com> Reviewed by: Prakash Surya <prakash.surya@delphix.com> Reviewed by: George Wilson <george.wilson@delphix.com> Reviewed by: Thomas Caputi <tcaputi@datto.com> Reviewed by: Brian Behlendorf <behlendorf1@llnl.gov> Approved by: Richard Lowe <richlowe@richlowe.net> Ported-by: Alek Pinchuk <apinchuk@datto.com> Signed-off-by: Alek Pinchuk <apinchuk@datto.com> OpenZFS-issue: https://illumos.org/issues/9337 OpenZFS-commit: https://github.com/openzfs/openzfs/commit/7dec52f Closes #7668
2018-07-10 20:49:50 +03:00
/*
* These properties will be filled in by the logic in zfs_get_zplprop()
* when they are queried for the first time.
*/
os->os_version = OBJSET_PROP_UNINITIALIZED;
os->os_normalization = OBJSET_PROP_UNINITIALIZED;
os->os_utf8only = OBJSET_PROP_UNINITIALIZED;
os->os_casesensitivity = OBJSET_PROP_UNINITIALIZED;
2008-11-20 23:01:55 +03:00
/*
* Note: the changed_cb will be called once before the register
* func returns, thus changing the checksum/compression from the
* default (fletcher2/off). Snapshots don't need to know about
* checksum/compression/copies.
2008-11-20 23:01:55 +03:00
*/
if (ds != NULL) {
Native Encryption for ZFS on Linux This change incorporates three major pieces: The first change is a keystore that manages wrapping and encryption keys for encrypted datasets. These commands mostly involve manipulating the new DSL Crypto Key ZAP Objects that live in the MOS. Each encrypted dataset has its own DSL Crypto Key that is protected with a user's key. This level of indirection allows users to change their keys without re-encrypting their entire datasets. The change implements the new subcommands "zfs load-key", "zfs unload-key" and "zfs change-key" which allow the user to manage their encryption keys and settings. In addition, several new flags and properties have been added to allow dataset creation and to make mounting and unmounting more convenient. The second piece of this patch provides the ability to encrypt, decyrpt, and authenticate protected datasets. Each object set maintains a Merkel tree of Message Authentication Codes that protect the lower layers, similarly to how checksums are maintained. This part impacts the zio layer, which handles the actual encryption and generation of MACs, as well as the ARC and DMU, which need to be able to handle encrypted buffers and protected data. The last addition is the ability to do raw, encrypted sends and receives. The idea here is to send raw encrypted and compressed data and receive it exactly as is on a backup system. This means that the dataset on the receiving system is protected using the same user key that is in use on the sending side. By doing so, datasets can be efficiently backed up to an untrusted system without fear of data being compromised. Reviewed by: Matthew Ahrens <mahrens@delphix.com> Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov> Reviewed-by: Jorgen Lundman <lundman@lundman.net> Signed-off-by: Tom Caputi <tcaputi@datto.com> Closes #494 Closes #5769
2017-08-14 20:36:48 +03:00
os->os_encrypted = (ds->ds_dir->dd_crypto_obj != 0);
err = dsl_prop_register(ds,
zfs_prop_to_name(ZFS_PROP_PRIMARYCACHE),
primary_cache_changed_cb, os);
if (err == 0) {
err = dsl_prop_register(ds,
zfs_prop_to_name(ZFS_PROP_SECONDARYCACHE),
secondary_cache_changed_cb, os);
}
if (!ds->ds_is_snapshot) {
if (err == 0) {
err = dsl_prop_register(ds,
zfs_prop_to_name(ZFS_PROP_CHECKSUM),
checksum_changed_cb, os);
}
if (err == 0) {
err = dsl_prop_register(ds,
zfs_prop_to_name(ZFS_PROP_COMPRESSION),
compression_changed_cb, os);
}
if (err == 0) {
err = dsl_prop_register(ds,
zfs_prop_to_name(ZFS_PROP_COPIES),
copies_changed_cb, os);
}
if (err == 0) {
err = dsl_prop_register(ds,
zfs_prop_to_name(ZFS_PROP_DEDUP),
dedup_changed_cb, os);
}
if (err == 0) {
err = dsl_prop_register(ds,
zfs_prop_to_name(ZFS_PROP_LOGBIAS),
logbias_changed_cb, os);
}
if (err == 0) {
err = dsl_prop_register(ds,
zfs_prop_to_name(ZFS_PROP_SYNC),
sync_changed_cb, os);
}
if (err == 0) {
err = dsl_prop_register(ds,
zfs_prop_to_name(
ZFS_PROP_REDUNDANT_METADATA),
redundant_metadata_changed_cb, os);
}
Illumos 5027 - zfs large block support 5027 zfs large block support Reviewed by: Alek Pinchuk <pinchuk.alek@gmail.com> Reviewed by: George Wilson <george.wilson@delphix.com> Reviewed by: Josef 'Jeff' Sipek <josef.sipek@nexenta.com> Reviewed by: Richard Elling <richard.elling@richardelling.com> Reviewed by: Saso Kiselkov <skiselkov.ml@gmail.com> Reviewed by: Brian Behlendorf <behlendorf1@llnl.gov> Approved by: Dan McDonald <danmcd@omniti.com> References: https://www.illumos.org/issues/5027 https://github.com/illumos/illumos-gate/commit/b515258 Porting Notes: * Included in this patch is a tiny ISP2() cleanup in zio_init() from Illumos 5255. * Unlike the upstream Illumos commit this patch does not impose an arbitrary 128K block size limit on volumes. Volumes, like filesystems, are limited by the zfs_max_recordsize=1M module option. * By default the maximum record size is limited to 1M by the module option zfs_max_recordsize. This value may be safely increased up to 16M which is the largest block size supported by the on-disk format. At the moment, 1M blocks clearly offer a significant performance improvement but the benefits of going beyond this for the majority of workloads are less clear. * The illumos version of this patch increased DMU_MAX_ACCESS to 32M. This was determined not to be large enough when using 16M blocks because the zfs_make_xattrdir() function will fail (EFBIG) when assigning a TX. This was immediately observed under Linux because all newly created files must have a security xattr created and that was failing. Therefore, we've set DMU_MAX_ACCESS to 64M. * On 32-bit platforms a hard limit of 1M is set for blocks due to the limited virtual address space. We should be able to relax this one the ABD patches are merged. Ported-by: Brian Behlendorf <behlendorf1@llnl.gov> Closes #354
2014-11-03 23:15:08 +03:00
if (err == 0) {
err = dsl_prop_register(ds,
zfs_prop_to_name(ZFS_PROP_RECORDSIZE),
recordsize_changed_cb, os);
}
Implement large_dnode pool feature Justification ------------- This feature adds support for variable length dnodes. Our motivation is to eliminate the overhead associated with using spill blocks. Spill blocks are used to store system attribute data (i.e. file metadata) that does not fit in the dnode's bonus buffer. By allowing a larger bonus buffer area the use of a spill block can be avoided. Spill blocks potentially incur an additional read I/O for every dnode in a dnode block. As a worst case example, reading 32 dnodes from a 16k dnode block and all of the spill blocks could issue 33 separate reads. Now suppose those dnodes have size 1024 and therefore don't need spill blocks. Then the worst case number of blocks read is reduced to from 33 to two--one per dnode block. In practice spill blocks may tend to be co-located on disk with the dnode blocks so the reduction in I/O would not be this drastic. In a badly fragmented pool, however, the improvement could be significant. ZFS-on-Linux systems that make heavy use of extended attributes would benefit from this feature. In particular, ZFS-on-Linux supports the xattr=sa dataset property which allows file extended attribute data to be stored in the dnode bonus buffer as an alternative to the traditional directory-based format. Workloads such as SELinux and the Lustre distributed filesystem often store enough xattr data to force spill bocks when xattr=sa is in effect. Large dnodes may therefore provide a performance benefit to such systems. Other use cases that may benefit from this feature include files with large ACLs and symbolic links with long target names. Furthermore, this feature may be desirable on other platforms in case future applications or features are developed that could make use of a larger bonus buffer area. Implementation -------------- The size of a dnode may be a multiple of 512 bytes up to the size of a dnode block (currently 16384 bytes). A dn_extra_slots field was added to the current on-disk dnode_phys_t structure to describe the size of the physical dnode on disk. The 8 bits for this field were taken from the zero filled dn_pad2 field. The field represents how many "extra" dnode_phys_t slots a dnode consumes in its dnode block. This convention results in a value of 0 for 512 byte dnodes which preserves on-disk format compatibility with older software. Similarly, the in-memory dnode_t structure has a new dn_num_slots field to represent the total number of dnode_phys_t slots consumed on disk. Thus dn->dn_num_slots is 1 greater than the corresponding dnp->dn_extra_slots. This difference in convention was adopted because, unlike on-disk structures, backward compatibility is not a concern for in-memory objects, so we used a more natural way to represent size for a dnode_t. The default size for newly created dnodes is determined by the value of a new "dnodesize" dataset property. By default the property is set to "legacy" which is compatible with older software. Setting the property to "auto" will allow the filesystem to choose the most suitable dnode size. Currently this just sets the default dnode size to 1k, but future code improvements could dynamically choose a size based on observed workload patterns. Dnodes of varying sizes can coexist within the same dataset and even within the same dnode block. For example, to enable automatically-sized dnodes, run # zfs set dnodesize=auto tank/fish The user can also specify literal values for the dnodesize property. These are currently limited to powers of two from 1k to 16k. The power-of-2 limitation is only for simplicity of the user interface. Internally the implementation can handle any multiple of 512 up to 16k, and consumers of the DMU API can specify any legal dnode value. The size of a new dnode is determined at object allocation time and stored as a new field in the znode in-memory structure. New DMU interfaces are added to allow the consumer to specify the dnode size that a newly allocated object should use. Existing interfaces are unchanged to avoid having to update every call site and to preserve compatibility with external consumers such as Lustre. The new interfaces names are given below. The versions of these functions that don't take a dnodesize parameter now just call the _dnsize() versions with a dnodesize of 0, which means use the legacy dnode size. New DMU interfaces: dmu_object_alloc_dnsize() dmu_object_claim_dnsize() dmu_object_reclaim_dnsize() New ZAP interfaces: zap_create_dnsize() zap_create_norm_dnsize() zap_create_flags_dnsize() zap_create_claim_norm_dnsize() zap_create_link_dnsize() The constant DN_MAX_BONUSLEN is renamed to DN_OLD_MAX_BONUSLEN. The spa_maxdnodesize() function should be used to determine the maximum bonus length for a pool. These are a few noteworthy changes to key functions: * The prototype for dnode_hold_impl() now takes a "slots" parameter. When the DNODE_MUST_BE_FREE flag is set, this parameter is used to ensure the hole at the specified object offset is large enough to hold the dnode being created. The slots parameter is also used to ensure a dnode does not span multiple dnode blocks. In both of these cases, if a failure occurs, ENOSPC is returned. Keep in mind, these failure cases are only possible when using DNODE_MUST_BE_FREE. If the DNODE_MUST_BE_ALLOCATED flag is set, "slots" must be 0. dnode_hold_impl() will check if the requested dnode is already consumed as an extra dnode slot by an large dnode, in which case it returns ENOENT. * The function dmu_object_alloc() advances to the next dnode block if dnode_hold_impl() returns an error for a requested object. This is because the beginning of the next dnode block is the only location it can safely assume to either be a hole or a valid starting point for a dnode. * dnode_next_offset_level() and other functions that iterate through dnode blocks may no longer use a simple array indexing scheme. These now use the current dnode's dn_num_slots field to advance to the next dnode in the block. This is to ensure we properly skip the current dnode's bonus area and don't interpret it as a valid dnode. zdb --- The zdb command was updated to display a dnode's size under the "dnsize" column when the object is dumped. For ZIL create log records, zdb will now display the slot count for the object. ztest ----- Ztest chooses a random dnodesize for every newly created object. The random distribution is more heavily weighted toward small dnodes to better simulate real-world datasets. Unused bonus buffer space is filled with non-zero values computed from the object number, dataset id, offset, and generation number. This helps ensure that the dnode traversal code properly skips the interior regions of large dnodes, and that these interior regions are not overwritten by data belonging to other dnodes. A new test visits each object in a dataset. It verifies that the actual dnode size matches what was stored in the ztest block tag when it was created. It also verifies that the unused bonus buffer space is filled with the expected data patterns. ZFS Test Suite -------------- Added six new large dnode-specific tests, and integrated the dnodesize property into existing tests for zfs allow and send/recv. Send/Receive ------------ ZFS send streams for datasets containing large dnodes cannot be received on pools that don't support the large_dnode feature. A send stream with large dnodes sets a DMU_BACKUP_FEATURE_LARGE_DNODE flag which will be unrecognized by an incompatible receiving pool so that the zfs receive will fail gracefully. While not implemented here, it may be possible to generate a backward-compatible send stream from a dataset containing large dnodes. The implementation may be tricky, however, because the send object record for a large dnode would need to be resized to a 512 byte dnode, possibly kicking in a spill block in the process. This means we would need to construct a new SA layout and possibly register it in the SA layout object. The SA layout is normally just sent as an ordinary object record. But if we are constructing new layouts while generating the send stream we'd have to build the SA layout object dynamically and send it at the end of the stream. For sending and receiving between pools that do support large dnodes, the drr_object send record type is extended with a new field to store the dnode slot count. This field was repurposed from unused padding in the structure. ZIL Replay ---------- The dnode slot count is stored in the uppermost 8 bits of the lr_foid field. The bits were unused as the object id is currently capped at 48 bits. Resizing Dnodes --------------- It should be possible to resize a dnode when it is dirtied if the current dnodesize dataset property differs from the dnode's size, but this functionality is not currently implemented. Clearly a dnode can only grow if there are sufficient contiguous unused slots in the dnode block, but it should always be possible to shrink a dnode. Growing dnodes may be useful to reduce fragmentation in a pool with many spill blocks in use. Shrinking dnodes may be useful to allow sending a dataset to a pool that doesn't support the large_dnode feature. Feature Reference Counting -------------------------- The reference count for the large_dnode pool feature tracks the number of datasets that have ever contained a dnode of size larger than 512 bytes. The first time a large dnode is created in a dataset the dataset is converted to an extensible dataset. This is a one-way operation and the only way to decrement the feature count is to destroy the dataset, even if the dataset no longer contains any large dnodes. The complexity of reference counting on a per-dnode basis was too high, so we chose to track it on a per-dataset basis similarly to the large_block feature. Signed-off-by: Ned Bass <bass6@llnl.gov> Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov> Closes #3542
2016-03-17 04:25:34 +03:00
if (err == 0) {
err = dsl_prop_register(ds,
zfs_prop_to_name(ZFS_PROP_DNODESIZE),
dnodesize_changed_cb, os);
}
if (err == 0) {
err = dsl_prop_register(ds,
zfs_prop_to_name(
ZFS_PROP_SPECIAL_SMALL_BLOCKS),
smallblk_changed_cb, os);
}
}
if (err != 0) {
OpenZFS 6950 - ARC should cache compressed data Authored by: George Wilson <george.wilson@delphix.com> Reviewed by: Prakash Surya <prakash.surya@delphix.com> Reviewed by: Dan Kimmel <dan.kimmel@delphix.com> Reviewed by: Matt Ahrens <mahrens@delphix.com> Reviewed by: Paul Dagnelie <pcd@delphix.com> Reviewed by: Tom Caputi <tcaputi@datto.com> Reviewed by: Brian Behlendorf <behlendorf1@llnl.gov> Ported by: David Quigley <david.quigley@intel.com> This review covers the reading and writing of compressed arc headers, sharing data between the arc_hdr_t and the arc_buf_t, and the implementation of a new dbuf cache to keep frequently access data uncompressed. I've added a new member to l1 arc hdr called b_pdata. The b_pdata always hangs off the arc_buf_hdr_t (if an L1 hdr is in use) and points to the physical block for that DVA. The physical block may or may not be compressed. If compressed arc is enabled and the block on-disk is compressed, then the b_pdata will match the block on-disk and remain compressed in memory. If the block on disk is not compressed, then neither will the b_pdata. Lastly, if compressed arc is disabled, then b_pdata will always be an uncompressed version of the on-disk block. Typically the arc will cache only the arc_buf_hdr_t and will aggressively evict any arc_buf_t's that are no longer referenced. This means that the arc will primarily have compressed blocks as the arc_buf_t's are considered overhead and are always uncompressed. When a consumer reads a block we first look to see if the arc_buf_hdr_t is cached. If the hdr is cached then we allocate a new arc_buf_t and decompress the b_pdata contents into the arc_buf_t's b_data. If the hdr already has a arc_buf_t, then we will allocate an additional arc_buf_t and bcopy the uncompressed contents from the first arc_buf_t to the new one. Writing to the compressed arc requires that we first discard the b_pdata since the physical block is about to be rewritten. The new data contents will be passed in via an arc_buf_t (uncompressed) and during the I/O pipeline stages we will copy the physical block contents to a newly allocated b_pdata. When an l2arc is inuse it will also take advantage of the b_pdata. Now the l2arc will always write the contents of b_pdata to the l2arc. This means that when compressed arc is enabled that the l2arc blocks are identical to those stored in the main data pool. This provides a significant advantage since we can leverage the bp's checksum when reading from the l2arc to determine if the contents are valid. If the compressed arc is disabled, then we must first transform the read block to look like the physical block in the main data pool before comparing the checksum and determining it's valid. OpenZFS-issue: https://www.illumos.org/issues/6950 OpenZFS-commit: https://github.com/openzfs/openzfs/commit/7fc10f0 Issue #5078
2016-06-02 07:04:53 +03:00
arc_buf_destroy(os->os_phys_buf, &os->os_phys_buf);
kmem_free(os, sizeof (objset_t));
2008-11-20 23:01:55 +03:00
return (err);
}
} else {
2008-11-20 23:01:55 +03:00
/* It's the meta-objset. */
os->os_checksum = ZIO_CHECKSUM_FLETCHER_4;
os->os_compress = ZIO_COMPRESS_ON;
Add zstd support to zfs This PR adds two new compression types, based on ZStandard: - zstd: A basic ZStandard compression algorithm Available compression. Levels for zstd are zstd-1 through zstd-19, where the compression increases with every level, but speed decreases. - zstd-fast: A faster version of the ZStandard compression algorithm zstd-fast is basically a "negative" level of zstd. The compression decreases with every level, but speed increases. Available compression levels for zstd-fast: - zstd-fast-1 through zstd-fast-10 - zstd-fast-20 through zstd-fast-100 (in increments of 10) - zstd-fast-500 and zstd-fast-1000 For more information check the man page. Implementation details: Rather than treat each level of zstd as a different algorithm (as was done historically with gzip), the block pointer `enum zio_compress` value is simply zstd for all levels, including zstd-fast, since they all use the same decompression function. The compress= property (a 64bit unsigned integer) uses the lower 7 bits to store the compression algorithm (matching the number of bits used in a block pointer, as the 8th bit was borrowed for embedded block pointers). The upper bits are used to store the compression level. It is necessary to be able to determine what compression level was used when later reading a block back, so the concept used in LZ4, where the first 32bits of the on-disk value are the size of the compressed data (since the allocation is rounded up to the nearest ashift), was extended, and we store the version of ZSTD and the level as well as the compressed size. This value is returned when decompressing a block, so that if the block needs to be recompressed (L2ARC, nop-write, etc), that the same parameters will be used to result in the matching checksum. All of the internal ZFS code ( `arc_buf_hdr_t`, `objset_t`, `zio_prop_t`, etc.) uses the separated _compress and _complevel variables. Only the properties ZAP contains the combined/bit-shifted value. The combined value is split when the compression_changed_cb() callback is called, and sets both objset members (os_compress and os_complevel). The userspace tools all use the combined/bit-shifted value. Additional notes: zdb can now also decode the ZSTD compression header (flag -Z) and inspect the size, version and compression level saved in that header. For each record, if it is ZSTD compressed, the parameters of the decoded compression header get printed. ZSTD is included with all current tests and new tests are added as-needed. Per-dataset feature flags now get activated when the property is set. If a compression algorithm requires a feature flag, zfs activates the feature when the property is set, rather than waiting for the first block to be born. This is currently only used by zstd but can be extended as needed. Portions-Sponsored-By: The FreeBSD Foundation Co-authored-by: Allan Jude <allanjude@freebsd.org> Co-authored-by: Brian Behlendorf <behlendorf1@llnl.gov> Co-authored-by: Sebastian Gottschall <s.gottschall@dd-wrt.com> Co-authored-by: Kjeld Schouten-Lebbing <kjeld@schouten-lebbing.nl> Co-authored-by: Michael Niewöhner <foss@mniewoehner.de> Signed-off-by: Allan Jude <allan@klarasystems.com> Signed-off-by: Allan Jude <allanjude@freebsd.org> Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov> Signed-off-by: Sebastian Gottschall <s.gottschall@dd-wrt.com> Signed-off-by: Kjeld Schouten-Lebbing <kjeld@schouten-lebbing.nl> Signed-off-by: Michael Niewöhner <foss@mniewoehner.de> Closes #6247 Closes #9024 Closes #10277 Closes #10278
2020-08-18 20:10:17 +03:00
os->os_complevel = ZIO_COMPLEVEL_DEFAULT;
Native Encryption for ZFS on Linux This change incorporates three major pieces: The first change is a keystore that manages wrapping and encryption keys for encrypted datasets. These commands mostly involve manipulating the new DSL Crypto Key ZAP Objects that live in the MOS. Each encrypted dataset has its own DSL Crypto Key that is protected with a user's key. This level of indirection allows users to change their keys without re-encrypting their entire datasets. The change implements the new subcommands "zfs load-key", "zfs unload-key" and "zfs change-key" which allow the user to manage their encryption keys and settings. In addition, several new flags and properties have been added to allow dataset creation and to make mounting and unmounting more convenient. The second piece of this patch provides the ability to encrypt, decyrpt, and authenticate protected datasets. Each object set maintains a Merkel tree of Message Authentication Codes that protect the lower layers, similarly to how checksums are maintained. This part impacts the zio layer, which handles the actual encryption and generation of MACs, as well as the ARC and DMU, which need to be able to handle encrypted buffers and protected data. The last addition is the ability to do raw, encrypted sends and receives. The idea here is to send raw encrypted and compressed data and receive it exactly as is on a backup system. This means that the dataset on the receiving system is protected using the same user key that is in use on the sending side. By doing so, datasets can be efficiently backed up to an untrusted system without fear of data being compromised. Reviewed by: Matthew Ahrens <mahrens@delphix.com> Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov> Reviewed-by: Jorgen Lundman <lundman@lundman.net> Signed-off-by: Tom Caputi <tcaputi@datto.com> Closes #494 Closes #5769
2017-08-14 20:36:48 +03:00
os->os_encrypted = B_FALSE;
os->os_copies = spa_max_replication(spa);
os->os_dedup_checksum = ZIO_CHECKSUM_OFF;
os->os_dedup_verify = B_FALSE;
os->os_logbias = ZFS_LOGBIAS_LATENCY;
os->os_sync = ZFS_SYNC_STANDARD;
os->os_primary_cache = ZFS_CACHE_ALL;
os->os_secondary_cache = ZFS_CACHE_ALL;
Implement large_dnode pool feature Justification ------------- This feature adds support for variable length dnodes. Our motivation is to eliminate the overhead associated with using spill blocks. Spill blocks are used to store system attribute data (i.e. file metadata) that does not fit in the dnode's bonus buffer. By allowing a larger bonus buffer area the use of a spill block can be avoided. Spill blocks potentially incur an additional read I/O for every dnode in a dnode block. As a worst case example, reading 32 dnodes from a 16k dnode block and all of the spill blocks could issue 33 separate reads. Now suppose those dnodes have size 1024 and therefore don't need spill blocks. Then the worst case number of blocks read is reduced to from 33 to two--one per dnode block. In practice spill blocks may tend to be co-located on disk with the dnode blocks so the reduction in I/O would not be this drastic. In a badly fragmented pool, however, the improvement could be significant. ZFS-on-Linux systems that make heavy use of extended attributes would benefit from this feature. In particular, ZFS-on-Linux supports the xattr=sa dataset property which allows file extended attribute data to be stored in the dnode bonus buffer as an alternative to the traditional directory-based format. Workloads such as SELinux and the Lustre distributed filesystem often store enough xattr data to force spill bocks when xattr=sa is in effect. Large dnodes may therefore provide a performance benefit to such systems. Other use cases that may benefit from this feature include files with large ACLs and symbolic links with long target names. Furthermore, this feature may be desirable on other platforms in case future applications or features are developed that could make use of a larger bonus buffer area. Implementation -------------- The size of a dnode may be a multiple of 512 bytes up to the size of a dnode block (currently 16384 bytes). A dn_extra_slots field was added to the current on-disk dnode_phys_t structure to describe the size of the physical dnode on disk. The 8 bits for this field were taken from the zero filled dn_pad2 field. The field represents how many "extra" dnode_phys_t slots a dnode consumes in its dnode block. This convention results in a value of 0 for 512 byte dnodes which preserves on-disk format compatibility with older software. Similarly, the in-memory dnode_t structure has a new dn_num_slots field to represent the total number of dnode_phys_t slots consumed on disk. Thus dn->dn_num_slots is 1 greater than the corresponding dnp->dn_extra_slots. This difference in convention was adopted because, unlike on-disk structures, backward compatibility is not a concern for in-memory objects, so we used a more natural way to represent size for a dnode_t. The default size for newly created dnodes is determined by the value of a new "dnodesize" dataset property. By default the property is set to "legacy" which is compatible with older software. Setting the property to "auto" will allow the filesystem to choose the most suitable dnode size. Currently this just sets the default dnode size to 1k, but future code improvements could dynamically choose a size based on observed workload patterns. Dnodes of varying sizes can coexist within the same dataset and even within the same dnode block. For example, to enable automatically-sized dnodes, run # zfs set dnodesize=auto tank/fish The user can also specify literal values for the dnodesize property. These are currently limited to powers of two from 1k to 16k. The power-of-2 limitation is only for simplicity of the user interface. Internally the implementation can handle any multiple of 512 up to 16k, and consumers of the DMU API can specify any legal dnode value. The size of a new dnode is determined at object allocation time and stored as a new field in the znode in-memory structure. New DMU interfaces are added to allow the consumer to specify the dnode size that a newly allocated object should use. Existing interfaces are unchanged to avoid having to update every call site and to preserve compatibility with external consumers such as Lustre. The new interfaces names are given below. The versions of these functions that don't take a dnodesize parameter now just call the _dnsize() versions with a dnodesize of 0, which means use the legacy dnode size. New DMU interfaces: dmu_object_alloc_dnsize() dmu_object_claim_dnsize() dmu_object_reclaim_dnsize() New ZAP interfaces: zap_create_dnsize() zap_create_norm_dnsize() zap_create_flags_dnsize() zap_create_claim_norm_dnsize() zap_create_link_dnsize() The constant DN_MAX_BONUSLEN is renamed to DN_OLD_MAX_BONUSLEN. The spa_maxdnodesize() function should be used to determine the maximum bonus length for a pool. These are a few noteworthy changes to key functions: * The prototype for dnode_hold_impl() now takes a "slots" parameter. When the DNODE_MUST_BE_FREE flag is set, this parameter is used to ensure the hole at the specified object offset is large enough to hold the dnode being created. The slots parameter is also used to ensure a dnode does not span multiple dnode blocks. In both of these cases, if a failure occurs, ENOSPC is returned. Keep in mind, these failure cases are only possible when using DNODE_MUST_BE_FREE. If the DNODE_MUST_BE_ALLOCATED flag is set, "slots" must be 0. dnode_hold_impl() will check if the requested dnode is already consumed as an extra dnode slot by an large dnode, in which case it returns ENOENT. * The function dmu_object_alloc() advances to the next dnode block if dnode_hold_impl() returns an error for a requested object. This is because the beginning of the next dnode block is the only location it can safely assume to either be a hole or a valid starting point for a dnode. * dnode_next_offset_level() and other functions that iterate through dnode blocks may no longer use a simple array indexing scheme. These now use the current dnode's dn_num_slots field to advance to the next dnode in the block. This is to ensure we properly skip the current dnode's bonus area and don't interpret it as a valid dnode. zdb --- The zdb command was updated to display a dnode's size under the "dnsize" column when the object is dumped. For ZIL create log records, zdb will now display the slot count for the object. ztest ----- Ztest chooses a random dnodesize for every newly created object. The random distribution is more heavily weighted toward small dnodes to better simulate real-world datasets. Unused bonus buffer space is filled with non-zero values computed from the object number, dataset id, offset, and generation number. This helps ensure that the dnode traversal code properly skips the interior regions of large dnodes, and that these interior regions are not overwritten by data belonging to other dnodes. A new test visits each object in a dataset. It verifies that the actual dnode size matches what was stored in the ztest block tag when it was created. It also verifies that the unused bonus buffer space is filled with the expected data patterns. ZFS Test Suite -------------- Added six new large dnode-specific tests, and integrated the dnodesize property into existing tests for zfs allow and send/recv. Send/Receive ------------ ZFS send streams for datasets containing large dnodes cannot be received on pools that don't support the large_dnode feature. A send stream with large dnodes sets a DMU_BACKUP_FEATURE_LARGE_DNODE flag which will be unrecognized by an incompatible receiving pool so that the zfs receive will fail gracefully. While not implemented here, it may be possible to generate a backward-compatible send stream from a dataset containing large dnodes. The implementation may be tricky, however, because the send object record for a large dnode would need to be resized to a 512 byte dnode, possibly kicking in a spill block in the process. This means we would need to construct a new SA layout and possibly register it in the SA layout object. The SA layout is normally just sent as an ordinary object record. But if we are constructing new layouts while generating the send stream we'd have to build the SA layout object dynamically and send it at the end of the stream. For sending and receiving between pools that do support large dnodes, the drr_object send record type is extended with a new field to store the dnode slot count. This field was repurposed from unused padding in the structure. ZIL Replay ---------- The dnode slot count is stored in the uppermost 8 bits of the lr_foid field. The bits were unused as the object id is currently capped at 48 bits. Resizing Dnodes --------------- It should be possible to resize a dnode when it is dirtied if the current dnodesize dataset property differs from the dnode's size, but this functionality is not currently implemented. Clearly a dnode can only grow if there are sufficient contiguous unused slots in the dnode block, but it should always be possible to shrink a dnode. Growing dnodes may be useful to reduce fragmentation in a pool with many spill blocks in use. Shrinking dnodes may be useful to allow sending a dataset to a pool that doesn't support the large_dnode feature. Feature Reference Counting -------------------------- The reference count for the large_dnode pool feature tracks the number of datasets that have ever contained a dnode of size larger than 512 bytes. The first time a large dnode is created in a dataset the dataset is converted to an extensible dataset. This is a one-way operation and the only way to decrement the feature count is to destroy the dataset, even if the dataset no longer contains any large dnodes. The complexity of reference counting on a per-dnode basis was too high, so we chose to track it on a per-dataset basis similarly to the large_block feature. Signed-off-by: Ned Bass <bass6@llnl.gov> Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov> Closes #3542
2016-03-17 04:25:34 +03:00
os->os_dnodesize = DNODE_MIN_SIZE;
2008-11-20 23:01:55 +03:00
}
if (ds == NULL || !ds->ds_is_snapshot)
os->os_zil_header = os->os_phys->os_zil_header;
os->os_zil = zil_alloc(os, &os->os_zil_header);
2008-11-20 23:01:55 +03:00
for (i = 0; i < TXG_SIZE; i++) {
os->os_dirty_dnodes[i] = multilist_create(sizeof (dnode_t),
offsetof(dnode_t, dn_dirty_link[i]),
dnode_multilist_index_func);
2008-11-20 23:01:55 +03:00
}
list_create(&os->os_dnodes, sizeof (dnode_t),
2008-11-20 23:01:55 +03:00
offsetof(dnode_t, dn_link));
list_create(&os->os_downgraded_dbufs, sizeof (dmu_buf_impl_t),
2008-11-20 23:01:55 +03:00
offsetof(dmu_buf_impl_t, db_link));
list_link_init(&os->os_evicting_node);
mutex_init(&os->os_lock, NULL, MUTEX_DEFAULT, NULL);
mutex_init(&os->os_userused_lock, NULL, MUTEX_DEFAULT, NULL);
mutex_init(&os->os_obj_lock, NULL, MUTEX_DEFAULT, NULL);
mutex_init(&os->os_user_ptr_lock, NULL, MUTEX_DEFAULT, NULL);
OpenZFS 8199 - multi-threaded dmu_object_alloc() dmu_object_alloc() is single-threaded, so when multiple threads are creating files in a single filesystem, they spend a lot of time waiting for the os_obj_lock. To improve performance of multi-threaded file creation, we must make dmu_object_alloc() typically not grab any filesystem-wide locks. The solution is to have a "next object to allocate" for each CPU. Each of these "next object"s is in a different block of the dnode object, so that concurrent allocation holds dnodes in different dbufs. When a thread's "next object" reaches the end of a chunk of objects (by default 4 blocks worth -- 128 dnodes), it will be reset to the per-objset os_obj_next, which will be increased by a chunk of objects (128). Only when manipulating the os_obj_next will we need to grab the os_obj_lock. This decreases lock contention dramatically, because each thread only needs to grab the os_obj_lock briefly, once per 128 allocations. This results in a 70% performance improvement to multi-threaded object creation (where each thread is creating objects in its own directory), from 67,000/sec to 115,000/sec, with 8 CPUs. Work sponsored by Intel Corp. Authored by: Matthew Ahrens <mahrens@delphix.com> Reviewed-by: Ned Bass <bass6@llnl.gov> Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov> Ported-by: Matthew Ahrens <mahrens@delphix.com> Signed-off-by: Matthew Ahrens <mahrens@delphix.com> OpenZFS-issue: https://www.illumos.org/issues/8199 OpenZFS-commit: https://github.com/openzfs/openzfs/pull/374 Closes #4703 Closes #6117
2016-05-13 07:16:36 +03:00
os->os_obj_next_percpu_len = boot_ncpus;
os->os_obj_next_percpu = kmem_zalloc(os->os_obj_next_percpu_len *
sizeof (os->os_obj_next_percpu[0]), KM_SLEEP);
dnode_special_open(os, &os->os_phys->os_meta_dnode,
DMU_META_DNODE_OBJECT, &os->os_meta_dnode);
Project Quota on ZFS Project quota is a new ZFS system space/object usage accounting and enforcement mechanism. Similar as user/group quota, project quota is another dimension of system quota. It bases on the new object attribute - project ID. Project ID is a numerical value to indicate to which project an object belongs. An object only can belong to one project though you (the object owner or privileged user) can change the object project ID via 'chattr -p' or 'zfs project [-s] -p' explicitly. The object also can inherit the project ID from its parent when created if the parent has the project inherit flag (that can be set via 'chattr +P' or 'zfs project -s [-p]'). By accounting the spaces/objects belong to the same project, we can know how many spaces/objects used by the project. And if we set the upper limit then we can control the spaces/objects that are consumed by such project. It is useful when multiple groups and users cooperate for the same project, or a user/group needs to participate in multiple projects. Support the following commands and functionalities: zfs set projectquota@project zfs set projectobjquota@project zfs get projectquota@project zfs get projectobjquota@project zfs get projectused@project zfs get projectobjused@project zfs projectspace zfs allow projectquota zfs allow projectobjquota zfs allow projectused zfs allow projectobjused zfs unallow projectquota zfs unallow projectobjquota zfs unallow projectused zfs unallow projectobjused chattr +/-P chattr -p project_id lsattr -p This patch also supports tree quota based on the project quota via "zfs project" commands set as following: zfs project [-d|-r] <file|directory ...> zfs project -C [-k] [-r] <file|directory ...> zfs project -c [-0] [-d|-r] [-p id] <file|directory ...> zfs project [-p id] [-r] [-s] <file|directory ...> For "df [-i] $DIR" command, if we set INHERIT (project ID) flag on the $DIR, then the proejct [obj]quota and [obj]used values for the $DIR's project ID will be shown as the total/free (avail) resource. Keep the same behavior as EXT4/XFS does. Reviewed-by: Andreas Dilger <andreas.dilger@intel.com> Reviewed-by Ned Bass <bass6@llnl.gov> Reviewed-by: Matthew Ahrens <mahrens@delphix.com> Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov> Signed-off-by: Fan Yong <fan.yong@intel.com> TEST_ZIMPORT_POOLS="zol-0.6.1 zol-0.6.2 master" Change-Id: Ib4f0544602e03fb61fd46a849d7ba51a6005693c Closes #6290
2018-02-14 01:54:54 +03:00
if (OBJSET_BUF_HAS_USERUSED(os->os_phys_buf)) {
dnode_special_open(os, &os->os_phys->os_userused_dnode,
DMU_USERUSED_OBJECT, &os->os_userused_dnode);
dnode_special_open(os, &os->os_phys->os_groupused_dnode,
DMU_GROUPUSED_OBJECT, &os->os_groupused_dnode);
Project Quota on ZFS Project quota is a new ZFS system space/object usage accounting and enforcement mechanism. Similar as user/group quota, project quota is another dimension of system quota. It bases on the new object attribute - project ID. Project ID is a numerical value to indicate to which project an object belongs. An object only can belong to one project though you (the object owner or privileged user) can change the object project ID via 'chattr -p' or 'zfs project [-s] -p' explicitly. The object also can inherit the project ID from its parent when created if the parent has the project inherit flag (that can be set via 'chattr +P' or 'zfs project -s [-p]'). By accounting the spaces/objects belong to the same project, we can know how many spaces/objects used by the project. And if we set the upper limit then we can control the spaces/objects that are consumed by such project. It is useful when multiple groups and users cooperate for the same project, or a user/group needs to participate in multiple projects. Support the following commands and functionalities: zfs set projectquota@project zfs set projectobjquota@project zfs get projectquota@project zfs get projectobjquota@project zfs get projectused@project zfs get projectobjused@project zfs projectspace zfs allow projectquota zfs allow projectobjquota zfs allow projectused zfs allow projectobjused zfs unallow projectquota zfs unallow projectobjquota zfs unallow projectused zfs unallow projectobjused chattr +/-P chattr -p project_id lsattr -p This patch also supports tree quota based on the project quota via "zfs project" commands set as following: zfs project [-d|-r] <file|directory ...> zfs project -C [-k] [-r] <file|directory ...> zfs project -c [-0] [-d|-r] [-p id] <file|directory ...> zfs project [-p id] [-r] [-s] <file|directory ...> For "df [-i] $DIR" command, if we set INHERIT (project ID) flag on the $DIR, then the proejct [obj]quota and [obj]used values for the $DIR's project ID will be shown as the total/free (avail) resource. Keep the same behavior as EXT4/XFS does. Reviewed-by: Andreas Dilger <andreas.dilger@intel.com> Reviewed-by Ned Bass <bass6@llnl.gov> Reviewed-by: Matthew Ahrens <mahrens@delphix.com> Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov> Signed-off-by: Fan Yong <fan.yong@intel.com> TEST_ZIMPORT_POOLS="zol-0.6.1 zol-0.6.2 master" Change-Id: Ib4f0544602e03fb61fd46a849d7ba51a6005693c Closes #6290
2018-02-14 01:54:54 +03:00
if (OBJSET_BUF_HAS_PROJECTUSED(os->os_phys_buf))
dnode_special_open(os,
&os->os_phys->os_projectused_dnode,
DMU_PROJECTUSED_OBJECT, &os->os_projectused_dnode);
2009-07-03 02:44:48 +04:00
}
2008-11-20 23:01:55 +03:00
mutex_init(&os->os_upgrade_lock, NULL, MUTEX_DEFAULT, NULL);
*osp = os;
2008-11-20 23:01:55 +03:00
return (0);
}
int
dmu_objset_from_ds(dsl_dataset_t *ds, objset_t **osp)
2008-11-20 23:01:55 +03:00
{
int err = 0;
2008-11-20 23:01:55 +03:00
OpenZFS 2605, 6980, 6902 2605 want to resume interrupted zfs send Reviewed by: George Wilson <george.wilson@delphix.com> Reviewed by: Paul Dagnelie <pcd@delphix.com> Reviewed by: Richard Elling <Richard.Elling@RichardElling.com> Reviewed by: Xin Li <delphij@freebsd.org> Reviewed by: Arne Jansen <sensille@gmx.net> Approved by: Dan McDonald <danmcd@omniti.com> Ported-by: kernelOfTruth <kerneloftruth@gmail.com> Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov> OpenZFS-issue: https://www.illumos.org/issues/2605 OpenZFS-commit: https://github.com/openzfs/openzfs/commit/9c3fd12 6980 6902 causes zfs send to break due to 32-bit/64-bit struct mismatch Reviewed by: Paul Dagnelie <pcd@delphix.com> Reviewed by: George Wilson <george.wilson@delphix.com> Approved by: Robert Mustacchi <rm@joyent.com> Ported by: Brian Behlendorf <behlendorf1@llnl.gov> OpenZFS-issue: https://www.illumos.org/issues/6980 OpenZFS-commit: https://github.com/openzfs/openzfs/commit/ea4a67f Porting notes: - All rsend and snapshop tests enabled and updated for Linux. - Fix misuse of input argument in traverse_visitbp(). - Fix ISO C90 warnings and errors. - Fix gcc 'missing braces around initializer' in 'struct send_thread_arg to_arg =' warning. - Replace 4 argument fletcher_4_native() with 3 argument version, this change was made in OpenZFS 4185 which has not been ported. - Part of the sections for 'zfs receive' and 'zfs send' was rewritten and reordered to approximate upstream. - Fix mktree xattr creation, 'user.' prefix required. - Minor fixes to newly enabled test cases - Long holds for volumes allowed during receive for minor registration.
2016-01-07 00:22:48 +03:00
/*
dmu_objset_from_ds must be called with dp_config_rwlock held The normal lock order is that the dp_config_rwlock must be held before the ds_opening_lock. For example, dmu_objset_hold() does this. However, dmu_objset_open_impl() is called with the ds_opening_lock held, and if the dp_config_rwlock is not already held, it will attempt to acquire it. This may lead to deadlock, since the lock order is reversed. Looking at all the callers of dmu_objset_open_impl() (which is principally the callers of dmu_objset_from_ds()), almost all callers already have the dp_config_rwlock. However, there are a few places in the send and receive code paths that do not. For example: dsl_crypto_populate_key_nvlist, send_cb, dmu_recv_stream, receive_write_byref, redact_traverse_thread. This commit resolves the problem by requiring all callers ot dmu_objset_from_ds() to hold the dp_config_rwlock. In most cases, the code has been restructured such that we call dmu_objset_from_ds() earlier on in the send and receive processes, when we already have the dp_config_rwlock, and save the objset_t until we need it in the middle of the send or receive (similar to what we already do with the dsl_dataset_t). Thus we do not need to acquire the dp_config_rwlock in many new places. I also cleaned up code in dmu_redact_snap() and send_traverse_thread(). Reviewed-by: Paul Dagnelie <pcd@delphix.com> Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov> Reviewed-by: Paul Zuchowski <pzuchowski@datto.com> Signed-off-by: Matthew Ahrens <mahrens@delphix.com> Closes #9662 Closes #10115
2020-03-12 20:55:02 +03:00
* We need the pool_config lock to manipulate the dsl_dataset_t.
* Even if the dataset is long-held, we need the pool_config lock
* to open the objset, as it needs to get properties.
OpenZFS 2605, 6980, 6902 2605 want to resume interrupted zfs send Reviewed by: George Wilson <george.wilson@delphix.com> Reviewed by: Paul Dagnelie <pcd@delphix.com> Reviewed by: Richard Elling <Richard.Elling@RichardElling.com> Reviewed by: Xin Li <delphij@freebsd.org> Reviewed by: Arne Jansen <sensille@gmx.net> Approved by: Dan McDonald <danmcd@omniti.com> Ported-by: kernelOfTruth <kerneloftruth@gmail.com> Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov> OpenZFS-issue: https://www.illumos.org/issues/2605 OpenZFS-commit: https://github.com/openzfs/openzfs/commit/9c3fd12 6980 6902 causes zfs send to break due to 32-bit/64-bit struct mismatch Reviewed by: Paul Dagnelie <pcd@delphix.com> Reviewed by: George Wilson <george.wilson@delphix.com> Approved by: Robert Mustacchi <rm@joyent.com> Ported by: Brian Behlendorf <behlendorf1@llnl.gov> OpenZFS-issue: https://www.illumos.org/issues/6980 OpenZFS-commit: https://github.com/openzfs/openzfs/commit/ea4a67f Porting notes: - All rsend and snapshop tests enabled and updated for Linux. - Fix misuse of input argument in traverse_visitbp(). - Fix ISO C90 warnings and errors. - Fix gcc 'missing braces around initializer' in 'struct send_thread_arg to_arg =' warning. - Replace 4 argument fletcher_4_native() with 3 argument version, this change was made in OpenZFS 4185 which has not been ported. - Part of the sections for 'zfs receive' and 'zfs send' was rewritten and reordered to approximate upstream. - Fix mktree xattr creation, 'user.' prefix required. - Minor fixes to newly enabled test cases - Long holds for volumes allowed during receive for minor registration.
2016-01-07 00:22:48 +03:00
*/
dmu_objset_from_ds must be called with dp_config_rwlock held The normal lock order is that the dp_config_rwlock must be held before the ds_opening_lock. For example, dmu_objset_hold() does this. However, dmu_objset_open_impl() is called with the ds_opening_lock held, and if the dp_config_rwlock is not already held, it will attempt to acquire it. This may lead to deadlock, since the lock order is reversed. Looking at all the callers of dmu_objset_open_impl() (which is principally the callers of dmu_objset_from_ds()), almost all callers already have the dp_config_rwlock. However, there are a few places in the send and receive code paths that do not. For example: dsl_crypto_populate_key_nvlist, send_cb, dmu_recv_stream, receive_write_byref, redact_traverse_thread. This commit resolves the problem by requiring all callers ot dmu_objset_from_ds() to hold the dp_config_rwlock. In most cases, the code has been restructured such that we call dmu_objset_from_ds() earlier on in the send and receive processes, when we already have the dp_config_rwlock, and save the objset_t until we need it in the middle of the send or receive (similar to what we already do with the dsl_dataset_t). Thus we do not need to acquire the dp_config_rwlock in many new places. I also cleaned up code in dmu_redact_snap() and send_traverse_thread(). Reviewed-by: Paul Dagnelie <pcd@delphix.com> Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov> Reviewed-by: Paul Zuchowski <pzuchowski@datto.com> Signed-off-by: Matthew Ahrens <mahrens@delphix.com> Closes #9662 Closes #10115
2020-03-12 20:55:02 +03:00
ASSERT(dsl_pool_config_held(ds->ds_dir->dd_pool));
OpenZFS 2605, 6980, 6902 2605 want to resume interrupted zfs send Reviewed by: George Wilson <george.wilson@delphix.com> Reviewed by: Paul Dagnelie <pcd@delphix.com> Reviewed by: Richard Elling <Richard.Elling@RichardElling.com> Reviewed by: Xin Li <delphij@freebsd.org> Reviewed by: Arne Jansen <sensille@gmx.net> Approved by: Dan McDonald <danmcd@omniti.com> Ported-by: kernelOfTruth <kerneloftruth@gmail.com> Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov> OpenZFS-issue: https://www.illumos.org/issues/2605 OpenZFS-commit: https://github.com/openzfs/openzfs/commit/9c3fd12 6980 6902 causes zfs send to break due to 32-bit/64-bit struct mismatch Reviewed by: Paul Dagnelie <pcd@delphix.com> Reviewed by: George Wilson <george.wilson@delphix.com> Approved by: Robert Mustacchi <rm@joyent.com> Ported by: Brian Behlendorf <behlendorf1@llnl.gov> OpenZFS-issue: https://www.illumos.org/issues/6980 OpenZFS-commit: https://github.com/openzfs/openzfs/commit/ea4a67f Porting notes: - All rsend and snapshop tests enabled and updated for Linux. - Fix misuse of input argument in traverse_visitbp(). - Fix ISO C90 warnings and errors. - Fix gcc 'missing braces around initializer' in 'struct send_thread_arg to_arg =' warning. - Replace 4 argument fletcher_4_native() with 3 argument version, this change was made in OpenZFS 4185 which has not been ported. - Part of the sections for 'zfs receive' and 'zfs send' was rewritten and reordered to approximate upstream. - Fix mktree xattr creation, 'user.' prefix required. - Minor fixes to newly enabled test cases - Long holds for volumes allowed during receive for minor registration.
2016-01-07 00:22:48 +03:00
2008-11-20 23:01:55 +03:00
mutex_enter(&ds->ds_opening_lock);
if (ds->ds_objset == NULL) {
objset_t *os;
rrw_enter(&ds->ds_bp_rwlock, RW_READER, FTAG);
2008-11-20 23:01:55 +03:00
err = dmu_objset_open_impl(dsl_dataset_get_spa(ds),
ds, dsl_dataset_get_blkptr(ds), &os);
rrw_exit(&ds->ds_bp_rwlock, FTAG);
if (err == 0) {
mutex_enter(&ds->ds_lock);
ASSERT(ds->ds_objset == NULL);
ds->ds_objset = os;
mutex_exit(&ds->ds_lock);
}
2008-11-20 23:01:55 +03:00
}
*osp = ds->ds_objset;
2008-11-20 23:01:55 +03:00
mutex_exit(&ds->ds_opening_lock);
return (err);
2008-11-20 23:01:55 +03:00
}
/*
* Holds the pool while the objset is held. Therefore only one objset
* can be held at a time.
*/
2008-11-20 23:01:55 +03:00
int
Native Encryption for ZFS on Linux This change incorporates three major pieces: The first change is a keystore that manages wrapping and encryption keys for encrypted datasets. These commands mostly involve manipulating the new DSL Crypto Key ZAP Objects that live in the MOS. Each encrypted dataset has its own DSL Crypto Key that is protected with a user's key. This level of indirection allows users to change their keys without re-encrypting their entire datasets. The change implements the new subcommands "zfs load-key", "zfs unload-key" and "zfs change-key" which allow the user to manage their encryption keys and settings. In addition, several new flags and properties have been added to allow dataset creation and to make mounting and unmounting more convenient. The second piece of this patch provides the ability to encrypt, decyrpt, and authenticate protected datasets. Each object set maintains a Merkel tree of Message Authentication Codes that protect the lower layers, similarly to how checksums are maintained. This part impacts the zio layer, which handles the actual encryption and generation of MACs, as well as the ARC and DMU, which need to be able to handle encrypted buffers and protected data. The last addition is the ability to do raw, encrypted sends and receives. The idea here is to send raw encrypted and compressed data and receive it exactly as is on a backup system. This means that the dataset on the receiving system is protected using the same user key that is in use on the sending side. By doing so, datasets can be efficiently backed up to an untrusted system without fear of data being compromised. Reviewed by: Matthew Ahrens <mahrens@delphix.com> Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov> Reviewed-by: Jorgen Lundman <lundman@lundman.net> Signed-off-by: Tom Caputi <tcaputi@datto.com> Closes #494 Closes #5769
2017-08-14 20:36:48 +03:00
dmu_objset_hold_flags(const char *name, boolean_t decrypt, void *tag,
objset_t **osp)
2008-11-20 23:01:55 +03:00
{
dsl_pool_t *dp;
dsl_dataset_t *ds;
2008-11-20 23:01:55 +03:00
int err;
Native Encryption for ZFS on Linux This change incorporates three major pieces: The first change is a keystore that manages wrapping and encryption keys for encrypted datasets. These commands mostly involve manipulating the new DSL Crypto Key ZAP Objects that live in the MOS. Each encrypted dataset has its own DSL Crypto Key that is protected with a user's key. This level of indirection allows users to change their keys without re-encrypting their entire datasets. The change implements the new subcommands "zfs load-key", "zfs unload-key" and "zfs change-key" which allow the user to manage their encryption keys and settings. In addition, several new flags and properties have been added to allow dataset creation and to make mounting and unmounting more convenient. The second piece of this patch provides the ability to encrypt, decyrpt, and authenticate protected datasets. Each object set maintains a Merkel tree of Message Authentication Codes that protect the lower layers, similarly to how checksums are maintained. This part impacts the zio layer, which handles the actual encryption and generation of MACs, as well as the ARC and DMU, which need to be able to handle encrypted buffers and protected data. The last addition is the ability to do raw, encrypted sends and receives. The idea here is to send raw encrypted and compressed data and receive it exactly as is on a backup system. This means that the dataset on the receiving system is protected using the same user key that is in use on the sending side. By doing so, datasets can be efficiently backed up to an untrusted system without fear of data being compromised. Reviewed by: Matthew Ahrens <mahrens@delphix.com> Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov> Reviewed-by: Jorgen Lundman <lundman@lundman.net> Signed-off-by: Tom Caputi <tcaputi@datto.com> Closes #494 Closes #5769
2017-08-14 20:36:48 +03:00
ds_hold_flags_t flags = (decrypt) ? DS_HOLD_FLAG_DECRYPT : 0;
2008-11-20 23:01:55 +03:00
err = dsl_pool_hold(name, tag, &dp);
if (err != 0)
return (err);
Native Encryption for ZFS on Linux This change incorporates three major pieces: The first change is a keystore that manages wrapping and encryption keys for encrypted datasets. These commands mostly involve manipulating the new DSL Crypto Key ZAP Objects that live in the MOS. Each encrypted dataset has its own DSL Crypto Key that is protected with a user's key. This level of indirection allows users to change their keys without re-encrypting their entire datasets. The change implements the new subcommands "zfs load-key", "zfs unload-key" and "zfs change-key" which allow the user to manage their encryption keys and settings. In addition, several new flags and properties have been added to allow dataset creation and to make mounting and unmounting more convenient. The second piece of this patch provides the ability to encrypt, decyrpt, and authenticate protected datasets. Each object set maintains a Merkel tree of Message Authentication Codes that protect the lower layers, similarly to how checksums are maintained. This part impacts the zio layer, which handles the actual encryption and generation of MACs, as well as the ARC and DMU, which need to be able to handle encrypted buffers and protected data. The last addition is the ability to do raw, encrypted sends and receives. The idea here is to send raw encrypted and compressed data and receive it exactly as is on a backup system. This means that the dataset on the receiving system is protected using the same user key that is in use on the sending side. By doing so, datasets can be efficiently backed up to an untrusted system without fear of data being compromised. Reviewed by: Matthew Ahrens <mahrens@delphix.com> Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov> Reviewed-by: Jorgen Lundman <lundman@lundman.net> Signed-off-by: Tom Caputi <tcaputi@datto.com> Closes #494 Closes #5769
2017-08-14 20:36:48 +03:00
err = dsl_dataset_hold_flags(dp, name, flags, tag, &ds);
if (err != 0) {
dsl_pool_rele(dp, tag);
return (err);
}
err = dmu_objset_from_ds(ds, osp);
if (err != 0) {
dsl_dataset_rele(ds, tag);
dsl_pool_rele(dp, tag);
}
2008-11-20 23:01:55 +03:00
return (err);
}
Native Encryption for ZFS on Linux This change incorporates three major pieces: The first change is a keystore that manages wrapping and encryption keys for encrypted datasets. These commands mostly involve manipulating the new DSL Crypto Key ZAP Objects that live in the MOS. Each encrypted dataset has its own DSL Crypto Key that is protected with a user's key. This level of indirection allows users to change their keys without re-encrypting their entire datasets. The change implements the new subcommands "zfs load-key", "zfs unload-key" and "zfs change-key" which allow the user to manage their encryption keys and settings. In addition, several new flags and properties have been added to allow dataset creation and to make mounting and unmounting more convenient. The second piece of this patch provides the ability to encrypt, decyrpt, and authenticate protected datasets. Each object set maintains a Merkel tree of Message Authentication Codes that protect the lower layers, similarly to how checksums are maintained. This part impacts the zio layer, which handles the actual encryption and generation of MACs, as well as the ARC and DMU, which need to be able to handle encrypted buffers and protected data. The last addition is the ability to do raw, encrypted sends and receives. The idea here is to send raw encrypted and compressed data and receive it exactly as is on a backup system. This means that the dataset on the receiving system is protected using the same user key that is in use on the sending side. By doing so, datasets can be efficiently backed up to an untrusted system without fear of data being compromised. Reviewed by: Matthew Ahrens <mahrens@delphix.com> Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov> Reviewed-by: Jorgen Lundman <lundman@lundman.net> Signed-off-by: Tom Caputi <tcaputi@datto.com> Closes #494 Closes #5769
2017-08-14 20:36:48 +03:00
int
dmu_objset_hold(const char *name, void *tag, objset_t **osp)
{
return (dmu_objset_hold_flags(name, B_FALSE, tag, osp));
}
static int
dmu_objset_own_impl(dsl_dataset_t *ds, dmu_objset_type_t type,
Native Encryption for ZFS on Linux This change incorporates three major pieces: The first change is a keystore that manages wrapping and encryption keys for encrypted datasets. These commands mostly involve manipulating the new DSL Crypto Key ZAP Objects that live in the MOS. Each encrypted dataset has its own DSL Crypto Key that is protected with a user's key. This level of indirection allows users to change their keys without re-encrypting their entire datasets. The change implements the new subcommands "zfs load-key", "zfs unload-key" and "zfs change-key" which allow the user to manage their encryption keys and settings. In addition, several new flags and properties have been added to allow dataset creation and to make mounting and unmounting more convenient. The second piece of this patch provides the ability to encrypt, decyrpt, and authenticate protected datasets. Each object set maintains a Merkel tree of Message Authentication Codes that protect the lower layers, similarly to how checksums are maintained. This part impacts the zio layer, which handles the actual encryption and generation of MACs, as well as the ARC and DMU, which need to be able to handle encrypted buffers and protected data. The last addition is the ability to do raw, encrypted sends and receives. The idea here is to send raw encrypted and compressed data and receive it exactly as is on a backup system. This means that the dataset on the receiving system is protected using the same user key that is in use on the sending side. By doing so, datasets can be efficiently backed up to an untrusted system without fear of data being compromised. Reviewed by: Matthew Ahrens <mahrens@delphix.com> Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov> Reviewed-by: Jorgen Lundman <lundman@lundman.net> Signed-off-by: Tom Caputi <tcaputi@datto.com> Closes #494 Closes #5769
2017-08-14 20:36:48 +03:00
boolean_t readonly, boolean_t decrypt, void *tag, objset_t **osp)
{
int err;
err = dmu_objset_from_ds(ds, osp);
if (err != 0) {
Native Encryption for ZFS on Linux This change incorporates three major pieces: The first change is a keystore that manages wrapping and encryption keys for encrypted datasets. These commands mostly involve manipulating the new DSL Crypto Key ZAP Objects that live in the MOS. Each encrypted dataset has its own DSL Crypto Key that is protected with a user's key. This level of indirection allows users to change their keys without re-encrypting their entire datasets. The change implements the new subcommands "zfs load-key", "zfs unload-key" and "zfs change-key" which allow the user to manage their encryption keys and settings. In addition, several new flags and properties have been added to allow dataset creation and to make mounting and unmounting more convenient. The second piece of this patch provides the ability to encrypt, decyrpt, and authenticate protected datasets. Each object set maintains a Merkel tree of Message Authentication Codes that protect the lower layers, similarly to how checksums are maintained. This part impacts the zio layer, which handles the actual encryption and generation of MACs, as well as the ARC and DMU, which need to be able to handle encrypted buffers and protected data. The last addition is the ability to do raw, encrypted sends and receives. The idea here is to send raw encrypted and compressed data and receive it exactly as is on a backup system. This means that the dataset on the receiving system is protected using the same user key that is in use on the sending side. By doing so, datasets can be efficiently backed up to an untrusted system without fear of data being compromised. Reviewed by: Matthew Ahrens <mahrens@delphix.com> Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov> Reviewed-by: Jorgen Lundman <lundman@lundman.net> Signed-off-by: Tom Caputi <tcaputi@datto.com> Closes #494 Closes #5769
2017-08-14 20:36:48 +03:00
return (err);
} else if (type != DMU_OST_ANY && type != (*osp)->os_phys->os_type) {
return (SET_ERROR(EINVAL));
} else if (!readonly && dsl_dataset_is_snapshot(ds)) {
return (SET_ERROR(EROFS));
Encryption Stability and On-Disk Format Fixes The on-disk format for encrypted datasets protects not only the encrypted and authenticated blocks themselves, but also the order and interpretation of these blocks. In order to make this work while maintaining the ability to do raw sends, the indirect bps maintain a secure checksum of all the MACs in the block below it along with a few other fields that determine how the data is interpreted. Unfortunately, the current on-disk format erroneously includes some fields which are not portable and thus cannot support raw sends. It is not possible to easily work around this issue due to a separate and much smaller bug which causes indirect blocks for encrypted dnodes to not be compressed, which conflicts with the previous bug. In addition, the current code generates incompatible on-disk formats on big endian and little endian systems due to an issue with how block pointers are authenticated. Finally, raw send streams do not currently include dn_maxblkid when sending both the metadnode and normal dnodes which are needed in order to ensure that we are correctly maintaining the portable objset MAC. This patch zero's out the offending fields when computing the bp MAC and ensures that these MACs are always calculated in little endian order (regardless of the host system's byte order). This patch also registers an errata for the old on-disk format, which we detect by adding a "version" field to newly created DSL Crypto Keys. We allow datasets without a version (version 0) to only be mounted for read so that they can easily be migrated. We also now include dn_maxblkid in raw send streams to ensure the MAC can be maintained correctly. This patch also contains minor bug fixes and cleanups. Reviewed-by: Jorgen Lundman <lundman@lundman.net> Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov> Reviewed by: Matthew Ahrens <mahrens@delphix.com> Signed-off-by: Tom Caputi <tcaputi@datto.com> Closes #6845 Closes #6864 Closes #7052
2017-11-08 22:12:59 +03:00
} else if (!readonly && decrypt &&
dsl_dir_incompatible_encryption_version(ds->ds_dir)) {
return (SET_ERROR(EROFS));
}
Native Encryption for ZFS on Linux This change incorporates three major pieces: The first change is a keystore that manages wrapping and encryption keys for encrypted datasets. These commands mostly involve manipulating the new DSL Crypto Key ZAP Objects that live in the MOS. Each encrypted dataset has its own DSL Crypto Key that is protected with a user's key. This level of indirection allows users to change their keys without re-encrypting their entire datasets. The change implements the new subcommands "zfs load-key", "zfs unload-key" and "zfs change-key" which allow the user to manage their encryption keys and settings. In addition, several new flags and properties have been added to allow dataset creation and to make mounting and unmounting more convenient. The second piece of this patch provides the ability to encrypt, decyrpt, and authenticate protected datasets. Each object set maintains a Merkel tree of Message Authentication Codes that protect the lower layers, similarly to how checksums are maintained. This part impacts the zio layer, which handles the actual encryption and generation of MACs, as well as the ARC and DMU, which need to be able to handle encrypted buffers and protected data. The last addition is the ability to do raw, encrypted sends and receives. The idea here is to send raw encrypted and compressed data and receive it exactly as is on a backup system. This means that the dataset on the receiving system is protected using the same user key that is in use on the sending side. By doing so, datasets can be efficiently backed up to an untrusted system without fear of data being compromised. Reviewed by: Matthew Ahrens <mahrens@delphix.com> Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov> Reviewed-by: Jorgen Lundman <lundman@lundman.net> Signed-off-by: Tom Caputi <tcaputi@datto.com> Closes #494 Closes #5769
2017-08-14 20:36:48 +03:00
/* if we are decrypting, we can now check MACs in os->os_phys_buf */
if (decrypt && arc_is_unauthenticated((*osp)->os_phys_buf)) {
zbookmark_phys_t zb;
SET_BOOKMARK(&zb, ds->ds_object, ZB_ROOT_OBJECT,
ZB_ROOT_LEVEL, ZB_ROOT_BLKID);
Native Encryption for ZFS on Linux This change incorporates three major pieces: The first change is a keystore that manages wrapping and encryption keys for encrypted datasets. These commands mostly involve manipulating the new DSL Crypto Key ZAP Objects that live in the MOS. Each encrypted dataset has its own DSL Crypto Key that is protected with a user's key. This level of indirection allows users to change their keys without re-encrypting their entire datasets. The change implements the new subcommands "zfs load-key", "zfs unload-key" and "zfs change-key" which allow the user to manage their encryption keys and settings. In addition, several new flags and properties have been added to allow dataset creation and to make mounting and unmounting more convenient. The second piece of this patch provides the ability to encrypt, decyrpt, and authenticate protected datasets. Each object set maintains a Merkel tree of Message Authentication Codes that protect the lower layers, similarly to how checksums are maintained. This part impacts the zio layer, which handles the actual encryption and generation of MACs, as well as the ARC and DMU, which need to be able to handle encrypted buffers and protected data. The last addition is the ability to do raw, encrypted sends and receives. The idea here is to send raw encrypted and compressed data and receive it exactly as is on a backup system. This means that the dataset on the receiving system is protected using the same user key that is in use on the sending side. By doing so, datasets can be efficiently backed up to an untrusted system without fear of data being compromised. Reviewed by: Matthew Ahrens <mahrens@delphix.com> Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov> Reviewed-by: Jorgen Lundman <lundman@lundman.net> Signed-off-by: Tom Caputi <tcaputi@datto.com> Closes #494 Closes #5769
2017-08-14 20:36:48 +03:00
err = arc_untransform((*osp)->os_phys_buf, (*osp)->os_spa,
&zb, B_FALSE);
Native Encryption for ZFS on Linux This change incorporates three major pieces: The first change is a keystore that manages wrapping and encryption keys for encrypted datasets. These commands mostly involve manipulating the new DSL Crypto Key ZAP Objects that live in the MOS. Each encrypted dataset has its own DSL Crypto Key that is protected with a user's key. This level of indirection allows users to change their keys without re-encrypting their entire datasets. The change implements the new subcommands "zfs load-key", "zfs unload-key" and "zfs change-key" which allow the user to manage their encryption keys and settings. In addition, several new flags and properties have been added to allow dataset creation and to make mounting and unmounting more convenient. The second piece of this patch provides the ability to encrypt, decyrpt, and authenticate protected datasets. Each object set maintains a Merkel tree of Message Authentication Codes that protect the lower layers, similarly to how checksums are maintained. This part impacts the zio layer, which handles the actual encryption and generation of MACs, as well as the ARC and DMU, which need to be able to handle encrypted buffers and protected data. The last addition is the ability to do raw, encrypted sends and receives. The idea here is to send raw encrypted and compressed data and receive it exactly as is on a backup system. This means that the dataset on the receiving system is protected using the same user key that is in use on the sending side. By doing so, datasets can be efficiently backed up to an untrusted system without fear of data being compromised. Reviewed by: Matthew Ahrens <mahrens@delphix.com> Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov> Reviewed-by: Jorgen Lundman <lundman@lundman.net> Signed-off-by: Tom Caputi <tcaputi@datto.com> Closes #494 Closes #5769
2017-08-14 20:36:48 +03:00
if (err != 0)
return (err);
ASSERT0(arc_is_unauthenticated((*osp)->os_phys_buf));
}
return (0);
}
/*
* dsl_pool must not be held when this is called.
* Upon successful return, there will be a longhold on the dataset,
* and the dsl_pool will not be held.
*/
2008-11-20 23:01:55 +03:00
int
dmu_objset_own(const char *name, dmu_objset_type_t type,
Native Encryption for ZFS on Linux This change incorporates three major pieces: The first change is a keystore that manages wrapping and encryption keys for encrypted datasets. These commands mostly involve manipulating the new DSL Crypto Key ZAP Objects that live in the MOS. Each encrypted dataset has its own DSL Crypto Key that is protected with a user's key. This level of indirection allows users to change their keys without re-encrypting their entire datasets. The change implements the new subcommands "zfs load-key", "zfs unload-key" and "zfs change-key" which allow the user to manage their encryption keys and settings. In addition, several new flags and properties have been added to allow dataset creation and to make mounting and unmounting more convenient. The second piece of this patch provides the ability to encrypt, decyrpt, and authenticate protected datasets. Each object set maintains a Merkel tree of Message Authentication Codes that protect the lower layers, similarly to how checksums are maintained. This part impacts the zio layer, which handles the actual encryption and generation of MACs, as well as the ARC and DMU, which need to be able to handle encrypted buffers and protected data. The last addition is the ability to do raw, encrypted sends and receives. The idea here is to send raw encrypted and compressed data and receive it exactly as is on a backup system. This means that the dataset on the receiving system is protected using the same user key that is in use on the sending side. By doing so, datasets can be efficiently backed up to an untrusted system without fear of data being compromised. Reviewed by: Matthew Ahrens <mahrens@delphix.com> Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov> Reviewed-by: Jorgen Lundman <lundman@lundman.net> Signed-off-by: Tom Caputi <tcaputi@datto.com> Closes #494 Closes #5769
2017-08-14 20:36:48 +03:00
boolean_t readonly, boolean_t decrypt, void *tag, objset_t **osp)
2008-11-20 23:01:55 +03:00
{
dsl_pool_t *dp;
2008-11-20 23:01:55 +03:00
dsl_dataset_t *ds;
int err;
Native Encryption for ZFS on Linux This change incorporates three major pieces: The first change is a keystore that manages wrapping and encryption keys for encrypted datasets. These commands mostly involve manipulating the new DSL Crypto Key ZAP Objects that live in the MOS. Each encrypted dataset has its own DSL Crypto Key that is protected with a user's key. This level of indirection allows users to change their keys without re-encrypting their entire datasets. The change implements the new subcommands "zfs load-key", "zfs unload-key" and "zfs change-key" which allow the user to manage their encryption keys and settings. In addition, several new flags and properties have been added to allow dataset creation and to make mounting and unmounting more convenient. The second piece of this patch provides the ability to encrypt, decyrpt, and authenticate protected datasets. Each object set maintains a Merkel tree of Message Authentication Codes that protect the lower layers, similarly to how checksums are maintained. This part impacts the zio layer, which handles the actual encryption and generation of MACs, as well as the ARC and DMU, which need to be able to handle encrypted buffers and protected data. The last addition is the ability to do raw, encrypted sends and receives. The idea here is to send raw encrypted and compressed data and receive it exactly as is on a backup system. This means that the dataset on the receiving system is protected using the same user key that is in use on the sending side. By doing so, datasets can be efficiently backed up to an untrusted system without fear of data being compromised. Reviewed by: Matthew Ahrens <mahrens@delphix.com> Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov> Reviewed-by: Jorgen Lundman <lundman@lundman.net> Signed-off-by: Tom Caputi <tcaputi@datto.com> Closes #494 Closes #5769
2017-08-14 20:36:48 +03:00
ds_hold_flags_t flags = (decrypt) ? DS_HOLD_FLAG_DECRYPT : 0;
2008-11-20 23:01:55 +03:00
err = dsl_pool_hold(name, FTAG, &dp);
if (err != 0)
return (err);
Native Encryption for ZFS on Linux This change incorporates three major pieces: The first change is a keystore that manages wrapping and encryption keys for encrypted datasets. These commands mostly involve manipulating the new DSL Crypto Key ZAP Objects that live in the MOS. Each encrypted dataset has its own DSL Crypto Key that is protected with a user's key. This level of indirection allows users to change their keys without re-encrypting their entire datasets. The change implements the new subcommands "zfs load-key", "zfs unload-key" and "zfs change-key" which allow the user to manage their encryption keys and settings. In addition, several new flags and properties have been added to allow dataset creation and to make mounting and unmounting more convenient. The second piece of this patch provides the ability to encrypt, decyrpt, and authenticate protected datasets. Each object set maintains a Merkel tree of Message Authentication Codes that protect the lower layers, similarly to how checksums are maintained. This part impacts the zio layer, which handles the actual encryption and generation of MACs, as well as the ARC and DMU, which need to be able to handle encrypted buffers and protected data. The last addition is the ability to do raw, encrypted sends and receives. The idea here is to send raw encrypted and compressed data and receive it exactly as is on a backup system. This means that the dataset on the receiving system is protected using the same user key that is in use on the sending side. By doing so, datasets can be efficiently backed up to an untrusted system without fear of data being compromised. Reviewed by: Matthew Ahrens <mahrens@delphix.com> Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov> Reviewed-by: Jorgen Lundman <lundman@lundman.net> Signed-off-by: Tom Caputi <tcaputi@datto.com> Closes #494 Closes #5769
2017-08-14 20:36:48 +03:00
err = dsl_dataset_own(dp, name, flags, tag, &ds);
if (err != 0) {
dsl_pool_rele(dp, FTAG);
2008-11-20 23:01:55 +03:00
return (err);
}
Native Encryption for ZFS on Linux This change incorporates three major pieces: The first change is a keystore that manages wrapping and encryption keys for encrypted datasets. These commands mostly involve manipulating the new DSL Crypto Key ZAP Objects that live in the MOS. Each encrypted dataset has its own DSL Crypto Key that is protected with a user's key. This level of indirection allows users to change their keys without re-encrypting their entire datasets. The change implements the new subcommands "zfs load-key", "zfs unload-key" and "zfs change-key" which allow the user to manage their encryption keys and settings. In addition, several new flags and properties have been added to allow dataset creation and to make mounting and unmounting more convenient. The second piece of this patch provides the ability to encrypt, decyrpt, and authenticate protected datasets. Each object set maintains a Merkel tree of Message Authentication Codes that protect the lower layers, similarly to how checksums are maintained. This part impacts the zio layer, which handles the actual encryption and generation of MACs, as well as the ARC and DMU, which need to be able to handle encrypted buffers and protected data. The last addition is the ability to do raw, encrypted sends and receives. The idea here is to send raw encrypted and compressed data and receive it exactly as is on a backup system. This means that the dataset on the receiving system is protected using the same user key that is in use on the sending side. By doing so, datasets can be efficiently backed up to an untrusted system without fear of data being compromised. Reviewed by: Matthew Ahrens <mahrens@delphix.com> Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov> Reviewed-by: Jorgen Lundman <lundman@lundman.net> Signed-off-by: Tom Caputi <tcaputi@datto.com> Closes #494 Closes #5769
2017-08-14 20:36:48 +03:00
err = dmu_objset_own_impl(ds, type, readonly, decrypt, tag, osp);
if (err != 0) {
dsl_dataset_disown(ds, flags, tag);
dsl_pool_rele(dp, FTAG);
return (err);
}
/*
* User accounting requires the dataset to be decrypted and rw.
* We also don't begin user accounting during claiming to help
* speed up pool import times and to keep this txg reserved
* completely for recovery work.
*/
Project Quota on ZFS Project quota is a new ZFS system space/object usage accounting and enforcement mechanism. Similar as user/group quota, project quota is another dimension of system quota. It bases on the new object attribute - project ID. Project ID is a numerical value to indicate to which project an object belongs. An object only can belong to one project though you (the object owner or privileged user) can change the object project ID via 'chattr -p' or 'zfs project [-s] -p' explicitly. The object also can inherit the project ID from its parent when created if the parent has the project inherit flag (that can be set via 'chattr +P' or 'zfs project -s [-p]'). By accounting the spaces/objects belong to the same project, we can know how many spaces/objects used by the project. And if we set the upper limit then we can control the spaces/objects that are consumed by such project. It is useful when multiple groups and users cooperate for the same project, or a user/group needs to participate in multiple projects. Support the following commands and functionalities: zfs set projectquota@project zfs set projectobjquota@project zfs get projectquota@project zfs get projectobjquota@project zfs get projectused@project zfs get projectobjused@project zfs projectspace zfs allow projectquota zfs allow projectobjquota zfs allow projectused zfs allow projectobjused zfs unallow projectquota zfs unallow projectobjquota zfs unallow projectused zfs unallow projectobjused chattr +/-P chattr -p project_id lsattr -p This patch also supports tree quota based on the project quota via "zfs project" commands set as following: zfs project [-d|-r] <file|directory ...> zfs project -C [-k] [-r] <file|directory ...> zfs project -c [-0] [-d|-r] [-p id] <file|directory ...> zfs project [-p id] [-r] [-s] <file|directory ...> For "df [-i] $DIR" command, if we set INHERIT (project ID) flag on the $DIR, then the proejct [obj]quota and [obj]used values for the $DIR's project ID will be shown as the total/free (avail) resource. Keep the same behavior as EXT4/XFS does. Reviewed-by: Andreas Dilger <andreas.dilger@intel.com> Reviewed-by Ned Bass <bass6@llnl.gov> Reviewed-by: Matthew Ahrens <mahrens@delphix.com> Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov> Signed-off-by: Fan Yong <fan.yong@intel.com> TEST_ZIMPORT_POOLS="zol-0.6.1 zol-0.6.2 master" Change-Id: Ib4f0544602e03fb61fd46a849d7ba51a6005693c Closes #6290
2018-02-14 01:54:54 +03:00
if ((dmu_objset_userobjspace_upgradable(*osp) ||
dmu_objset_projectquota_upgradable(*osp)) &&
!readonly && !dp->dp_spa->spa_claiming &&
(ds->ds_dir->dd_crypto_obj == 0 || decrypt))
Project Quota on ZFS Project quota is a new ZFS system space/object usage accounting and enforcement mechanism. Similar as user/group quota, project quota is another dimension of system quota. It bases on the new object attribute - project ID. Project ID is a numerical value to indicate to which project an object belongs. An object only can belong to one project though you (the object owner or privileged user) can change the object project ID via 'chattr -p' or 'zfs project [-s] -p' explicitly. The object also can inherit the project ID from its parent when created if the parent has the project inherit flag (that can be set via 'chattr +P' or 'zfs project -s [-p]'). By accounting the spaces/objects belong to the same project, we can know how many spaces/objects used by the project. And if we set the upper limit then we can control the spaces/objects that are consumed by such project. It is useful when multiple groups and users cooperate for the same project, or a user/group needs to participate in multiple projects. Support the following commands and functionalities: zfs set projectquota@project zfs set projectobjquota@project zfs get projectquota@project zfs get projectobjquota@project zfs get projectused@project zfs get projectobjused@project zfs projectspace zfs allow projectquota zfs allow projectobjquota zfs allow projectused zfs allow projectobjused zfs unallow projectquota zfs unallow projectobjquota zfs unallow projectused zfs unallow projectobjused chattr +/-P chattr -p project_id lsattr -p This patch also supports tree quota based on the project quota via "zfs project" commands set as following: zfs project [-d|-r] <file|directory ...> zfs project -C [-k] [-r] <file|directory ...> zfs project -c [-0] [-d|-r] [-p id] <file|directory ...> zfs project [-p id] [-r] [-s] <file|directory ...> For "df [-i] $DIR" command, if we set INHERIT (project ID) flag on the $DIR, then the proejct [obj]quota and [obj]used values for the $DIR's project ID will be shown as the total/free (avail) resource. Keep the same behavior as EXT4/XFS does. Reviewed-by: Andreas Dilger <andreas.dilger@intel.com> Reviewed-by Ned Bass <bass6@llnl.gov> Reviewed-by: Matthew Ahrens <mahrens@delphix.com> Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov> Signed-off-by: Fan Yong <fan.yong@intel.com> TEST_ZIMPORT_POOLS="zol-0.6.1 zol-0.6.2 master" Change-Id: Ib4f0544602e03fb61fd46a849d7ba51a6005693c Closes #6290
2018-02-14 01:54:54 +03:00
dmu_objset_id_quota_upgrade(*osp);
dsl_pool_rele(dp, FTAG);
Native Encryption for ZFS on Linux This change incorporates three major pieces: The first change is a keystore that manages wrapping and encryption keys for encrypted datasets. These commands mostly involve manipulating the new DSL Crypto Key ZAP Objects that live in the MOS. Each encrypted dataset has its own DSL Crypto Key that is protected with a user's key. This level of indirection allows users to change their keys without re-encrypting their entire datasets. The change implements the new subcommands "zfs load-key", "zfs unload-key" and "zfs change-key" which allow the user to manage their encryption keys and settings. In addition, several new flags and properties have been added to allow dataset creation and to make mounting and unmounting more convenient. The second piece of this patch provides the ability to encrypt, decyrpt, and authenticate protected datasets. Each object set maintains a Merkel tree of Message Authentication Codes that protect the lower layers, similarly to how checksums are maintained. This part impacts the zio layer, which handles the actual encryption and generation of MACs, as well as the ARC and DMU, which need to be able to handle encrypted buffers and protected data. The last addition is the ability to do raw, encrypted sends and receives. The idea here is to send raw encrypted and compressed data and receive it exactly as is on a backup system. This means that the dataset on the receiving system is protected using the same user key that is in use on the sending side. By doing so, datasets can be efficiently backed up to an untrusted system without fear of data being compromised. Reviewed by: Matthew Ahrens <mahrens@delphix.com> Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov> Reviewed-by: Jorgen Lundman <lundman@lundman.net> Signed-off-by: Tom Caputi <tcaputi@datto.com> Closes #494 Closes #5769
2017-08-14 20:36:48 +03:00
return (0);
2008-11-20 23:01:55 +03:00
}
int
dmu_objset_own_obj(dsl_pool_t *dp, uint64_t obj, dmu_objset_type_t type,
Native Encryption for ZFS on Linux This change incorporates three major pieces: The first change is a keystore that manages wrapping and encryption keys for encrypted datasets. These commands mostly involve manipulating the new DSL Crypto Key ZAP Objects that live in the MOS. Each encrypted dataset has its own DSL Crypto Key that is protected with a user's key. This level of indirection allows users to change their keys without re-encrypting their entire datasets. The change implements the new subcommands "zfs load-key", "zfs unload-key" and "zfs change-key" which allow the user to manage their encryption keys and settings. In addition, several new flags and properties have been added to allow dataset creation and to make mounting and unmounting more convenient. The second piece of this patch provides the ability to encrypt, decyrpt, and authenticate protected datasets. Each object set maintains a Merkel tree of Message Authentication Codes that protect the lower layers, similarly to how checksums are maintained. This part impacts the zio layer, which handles the actual encryption and generation of MACs, as well as the ARC and DMU, which need to be able to handle encrypted buffers and protected data. The last addition is the ability to do raw, encrypted sends and receives. The idea here is to send raw encrypted and compressed data and receive it exactly as is on a backup system. This means that the dataset on the receiving system is protected using the same user key that is in use on the sending side. By doing so, datasets can be efficiently backed up to an untrusted system without fear of data being compromised. Reviewed by: Matthew Ahrens <mahrens@delphix.com> Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov> Reviewed-by: Jorgen Lundman <lundman@lundman.net> Signed-off-by: Tom Caputi <tcaputi@datto.com> Closes #494 Closes #5769
2017-08-14 20:36:48 +03:00
boolean_t readonly, boolean_t decrypt, void *tag, objset_t **osp)
{
dsl_dataset_t *ds;
int err;
Native Encryption for ZFS on Linux This change incorporates three major pieces: The first change is a keystore that manages wrapping and encryption keys for encrypted datasets. These commands mostly involve manipulating the new DSL Crypto Key ZAP Objects that live in the MOS. Each encrypted dataset has its own DSL Crypto Key that is protected with a user's key. This level of indirection allows users to change their keys without re-encrypting their entire datasets. The change implements the new subcommands "zfs load-key", "zfs unload-key" and "zfs change-key" which allow the user to manage their encryption keys and settings. In addition, several new flags and properties have been added to allow dataset creation and to make mounting and unmounting more convenient. The second piece of this patch provides the ability to encrypt, decyrpt, and authenticate protected datasets. Each object set maintains a Merkel tree of Message Authentication Codes that protect the lower layers, similarly to how checksums are maintained. This part impacts the zio layer, which handles the actual encryption and generation of MACs, as well as the ARC and DMU, which need to be able to handle encrypted buffers and protected data. The last addition is the ability to do raw, encrypted sends and receives. The idea here is to send raw encrypted and compressed data and receive it exactly as is on a backup system. This means that the dataset on the receiving system is protected using the same user key that is in use on the sending side. By doing so, datasets can be efficiently backed up to an untrusted system without fear of data being compromised. Reviewed by: Matthew Ahrens <mahrens@delphix.com> Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov> Reviewed-by: Jorgen Lundman <lundman@lundman.net> Signed-off-by: Tom Caputi <tcaputi@datto.com> Closes #494 Closes #5769
2017-08-14 20:36:48 +03:00
ds_hold_flags_t flags = (decrypt) ? DS_HOLD_FLAG_DECRYPT : 0;
Native Encryption for ZFS on Linux This change incorporates three major pieces: The first change is a keystore that manages wrapping and encryption keys for encrypted datasets. These commands mostly involve manipulating the new DSL Crypto Key ZAP Objects that live in the MOS. Each encrypted dataset has its own DSL Crypto Key that is protected with a user's key. This level of indirection allows users to change their keys without re-encrypting their entire datasets. The change implements the new subcommands "zfs load-key", "zfs unload-key" and "zfs change-key" which allow the user to manage their encryption keys and settings. In addition, several new flags and properties have been added to allow dataset creation and to make mounting and unmounting more convenient. The second piece of this patch provides the ability to encrypt, decyrpt, and authenticate protected datasets. Each object set maintains a Merkel tree of Message Authentication Codes that protect the lower layers, similarly to how checksums are maintained. This part impacts the zio layer, which handles the actual encryption and generation of MACs, as well as the ARC and DMU, which need to be able to handle encrypted buffers and protected data. The last addition is the ability to do raw, encrypted sends and receives. The idea here is to send raw encrypted and compressed data and receive it exactly as is on a backup system. This means that the dataset on the receiving system is protected using the same user key that is in use on the sending side. By doing so, datasets can be efficiently backed up to an untrusted system without fear of data being compromised. Reviewed by: Matthew Ahrens <mahrens@delphix.com> Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov> Reviewed-by: Jorgen Lundman <lundman@lundman.net> Signed-off-by: Tom Caputi <tcaputi@datto.com> Closes #494 Closes #5769
2017-08-14 20:36:48 +03:00
err = dsl_dataset_own_obj(dp, obj, flags, tag, &ds);
if (err != 0)
return (err);
Native Encryption for ZFS on Linux This change incorporates three major pieces: The first change is a keystore that manages wrapping and encryption keys for encrypted datasets. These commands mostly involve manipulating the new DSL Crypto Key ZAP Objects that live in the MOS. Each encrypted dataset has its own DSL Crypto Key that is protected with a user's key. This level of indirection allows users to change their keys without re-encrypting their entire datasets. The change implements the new subcommands "zfs load-key", "zfs unload-key" and "zfs change-key" which allow the user to manage their encryption keys and settings. In addition, several new flags and properties have been added to allow dataset creation and to make mounting and unmounting more convenient. The second piece of this patch provides the ability to encrypt, decyrpt, and authenticate protected datasets. Each object set maintains a Merkel tree of Message Authentication Codes that protect the lower layers, similarly to how checksums are maintained. This part impacts the zio layer, which handles the actual encryption and generation of MACs, as well as the ARC and DMU, which need to be able to handle encrypted buffers and protected data. The last addition is the ability to do raw, encrypted sends and receives. The idea here is to send raw encrypted and compressed data and receive it exactly as is on a backup system. This means that the dataset on the receiving system is protected using the same user key that is in use on the sending side. By doing so, datasets can be efficiently backed up to an untrusted system without fear of data being compromised. Reviewed by: Matthew Ahrens <mahrens@delphix.com> Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov> Reviewed-by: Jorgen Lundman <lundman@lundman.net> Signed-off-by: Tom Caputi <tcaputi@datto.com> Closes #494 Closes #5769
2017-08-14 20:36:48 +03:00
err = dmu_objset_own_impl(ds, type, readonly, decrypt, tag, osp);
if (err != 0) {
dsl_dataset_disown(ds, flags, tag);
return (err);
}
return (0);
}
2008-11-20 23:01:55 +03:00
void
Native Encryption for ZFS on Linux This change incorporates three major pieces: The first change is a keystore that manages wrapping and encryption keys for encrypted datasets. These commands mostly involve manipulating the new DSL Crypto Key ZAP Objects that live in the MOS. Each encrypted dataset has its own DSL Crypto Key that is protected with a user's key. This level of indirection allows users to change their keys without re-encrypting their entire datasets. The change implements the new subcommands "zfs load-key", "zfs unload-key" and "zfs change-key" which allow the user to manage their encryption keys and settings. In addition, several new flags and properties have been added to allow dataset creation and to make mounting and unmounting more convenient. The second piece of this patch provides the ability to encrypt, decyrpt, and authenticate protected datasets. Each object set maintains a Merkel tree of Message Authentication Codes that protect the lower layers, similarly to how checksums are maintained. This part impacts the zio layer, which handles the actual encryption and generation of MACs, as well as the ARC and DMU, which need to be able to handle encrypted buffers and protected data. The last addition is the ability to do raw, encrypted sends and receives. The idea here is to send raw encrypted and compressed data and receive it exactly as is on a backup system. This means that the dataset on the receiving system is protected using the same user key that is in use on the sending side. By doing so, datasets can be efficiently backed up to an untrusted system without fear of data being compromised. Reviewed by: Matthew Ahrens <mahrens@delphix.com> Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov> Reviewed-by: Jorgen Lundman <lundman@lundman.net> Signed-off-by: Tom Caputi <tcaputi@datto.com> Closes #494 Closes #5769
2017-08-14 20:36:48 +03:00
dmu_objset_rele_flags(objset_t *os, boolean_t decrypt, void *tag)
2008-11-20 23:01:55 +03:00
{
Native Encryption for ZFS on Linux This change incorporates three major pieces: The first change is a keystore that manages wrapping and encryption keys for encrypted datasets. These commands mostly involve manipulating the new DSL Crypto Key ZAP Objects that live in the MOS. Each encrypted dataset has its own DSL Crypto Key that is protected with a user's key. This level of indirection allows users to change their keys without re-encrypting their entire datasets. The change implements the new subcommands "zfs load-key", "zfs unload-key" and "zfs change-key" which allow the user to manage their encryption keys and settings. In addition, several new flags and properties have been added to allow dataset creation and to make mounting and unmounting more convenient. The second piece of this patch provides the ability to encrypt, decyrpt, and authenticate protected datasets. Each object set maintains a Merkel tree of Message Authentication Codes that protect the lower layers, similarly to how checksums are maintained. This part impacts the zio layer, which handles the actual encryption and generation of MACs, as well as the ARC and DMU, which need to be able to handle encrypted buffers and protected data. The last addition is the ability to do raw, encrypted sends and receives. The idea here is to send raw encrypted and compressed data and receive it exactly as is on a backup system. This means that the dataset on the receiving system is protected using the same user key that is in use on the sending side. By doing so, datasets can be efficiently backed up to an untrusted system without fear of data being compromised. Reviewed by: Matthew Ahrens <mahrens@delphix.com> Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov> Reviewed-by: Jorgen Lundman <lundman@lundman.net> Signed-off-by: Tom Caputi <tcaputi@datto.com> Closes #494 Closes #5769
2017-08-14 20:36:48 +03:00
ds_hold_flags_t flags = (decrypt) ? DS_HOLD_FLAG_DECRYPT : 0;
dsl_pool_t *dp = dmu_objset_pool(os);
Native Encryption for ZFS on Linux This change incorporates three major pieces: The first change is a keystore that manages wrapping and encryption keys for encrypted datasets. These commands mostly involve manipulating the new DSL Crypto Key ZAP Objects that live in the MOS. Each encrypted dataset has its own DSL Crypto Key that is protected with a user's key. This level of indirection allows users to change their keys without re-encrypting their entire datasets. The change implements the new subcommands "zfs load-key", "zfs unload-key" and "zfs change-key" which allow the user to manage their encryption keys and settings. In addition, several new flags and properties have been added to allow dataset creation and to make mounting and unmounting more convenient. The second piece of this patch provides the ability to encrypt, decyrpt, and authenticate protected datasets. Each object set maintains a Merkel tree of Message Authentication Codes that protect the lower layers, similarly to how checksums are maintained. This part impacts the zio layer, which handles the actual encryption and generation of MACs, as well as the ARC and DMU, which need to be able to handle encrypted buffers and protected data. The last addition is the ability to do raw, encrypted sends and receives. The idea here is to send raw encrypted and compressed data and receive it exactly as is on a backup system. This means that the dataset on the receiving system is protected using the same user key that is in use on the sending side. By doing so, datasets can be efficiently backed up to an untrusted system without fear of data being compromised. Reviewed by: Matthew Ahrens <mahrens@delphix.com> Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov> Reviewed-by: Jorgen Lundman <lundman@lundman.net> Signed-off-by: Tom Caputi <tcaputi@datto.com> Closes #494 Closes #5769
2017-08-14 20:36:48 +03:00
dsl_dataset_rele_flags(os->os_dsl_dataset, flags, tag);
dsl_pool_rele(dp, tag);
}
Native Encryption for ZFS on Linux This change incorporates three major pieces: The first change is a keystore that manages wrapping and encryption keys for encrypted datasets. These commands mostly involve manipulating the new DSL Crypto Key ZAP Objects that live in the MOS. Each encrypted dataset has its own DSL Crypto Key that is protected with a user's key. This level of indirection allows users to change their keys without re-encrypting their entire datasets. The change implements the new subcommands "zfs load-key", "zfs unload-key" and "zfs change-key" which allow the user to manage their encryption keys and settings. In addition, several new flags and properties have been added to allow dataset creation and to make mounting and unmounting more convenient. The second piece of this patch provides the ability to encrypt, decyrpt, and authenticate protected datasets. Each object set maintains a Merkel tree of Message Authentication Codes that protect the lower layers, similarly to how checksums are maintained. This part impacts the zio layer, which handles the actual encryption and generation of MACs, as well as the ARC and DMU, which need to be able to handle encrypted buffers and protected data. The last addition is the ability to do raw, encrypted sends and receives. The idea here is to send raw encrypted and compressed data and receive it exactly as is on a backup system. This means that the dataset on the receiving system is protected using the same user key that is in use on the sending side. By doing so, datasets can be efficiently backed up to an untrusted system without fear of data being compromised. Reviewed by: Matthew Ahrens <mahrens@delphix.com> Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov> Reviewed-by: Jorgen Lundman <lundman@lundman.net> Signed-off-by: Tom Caputi <tcaputi@datto.com> Closes #494 Closes #5769
2017-08-14 20:36:48 +03:00
void
dmu_objset_rele(objset_t *os, void *tag)
{
dmu_objset_rele_flags(os, B_FALSE, tag);
}
/*
* When we are called, os MUST refer to an objset associated with a dataset
* that is owned by 'tag'; that is, is held and long held by 'tag' and ds_owner
* == tag. We will then release and reacquire ownership of the dataset while
* holding the pool config_rwlock to avoid intervening namespace or ownership
* changes may occur.
*
* This exists solely to accommodate zfs_ioc_userspace_upgrade()'s desire to
* release the hold on its dataset and acquire a new one on the dataset of the
* same name so that it can be partially torn down and reconstructed.
*/
void
dmu_objset_refresh_ownership(dsl_dataset_t *ds, dsl_dataset_t **newds,
boolean_t decrypt, void *tag)
{
dsl_pool_t *dp;
char name[ZFS_MAX_DATASET_NAME_LEN];
VERIFY3P(ds, !=, NULL);
VERIFY3P(ds->ds_owner, ==, tag);
VERIFY(dsl_dataset_long_held(ds));
dsl_dataset_name(ds, name);
dp = ds->ds_dir->dd_pool;
dsl_pool_config_enter(dp, FTAG);
dsl_dataset_disown(ds, decrypt, tag);
Native Encryption for ZFS on Linux This change incorporates three major pieces: The first change is a keystore that manages wrapping and encryption keys for encrypted datasets. These commands mostly involve manipulating the new DSL Crypto Key ZAP Objects that live in the MOS. Each encrypted dataset has its own DSL Crypto Key that is protected with a user's key. This level of indirection allows users to change their keys without re-encrypting their entire datasets. The change implements the new subcommands "zfs load-key", "zfs unload-key" and "zfs change-key" which allow the user to manage their encryption keys and settings. In addition, several new flags and properties have been added to allow dataset creation and to make mounting and unmounting more convenient. The second piece of this patch provides the ability to encrypt, decyrpt, and authenticate protected datasets. Each object set maintains a Merkel tree of Message Authentication Codes that protect the lower layers, similarly to how checksums are maintained. This part impacts the zio layer, which handles the actual encryption and generation of MACs, as well as the ARC and DMU, which need to be able to handle encrypted buffers and protected data. The last addition is the ability to do raw, encrypted sends and receives. The idea here is to send raw encrypted and compressed data and receive it exactly as is on a backup system. This means that the dataset on the receiving system is protected using the same user key that is in use on the sending side. By doing so, datasets can be efficiently backed up to an untrusted system without fear of data being compromised. Reviewed by: Matthew Ahrens <mahrens@delphix.com> Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov> Reviewed-by: Jorgen Lundman <lundman@lundman.net> Signed-off-by: Tom Caputi <tcaputi@datto.com> Closes #494 Closes #5769
2017-08-14 20:36:48 +03:00
VERIFY0(dsl_dataset_own(dp, name,
(decrypt) ? DS_HOLD_FLAG_DECRYPT : 0, tag, newds));
dsl_pool_config_exit(dp, FTAG);
}
void
Native Encryption for ZFS on Linux This change incorporates three major pieces: The first change is a keystore that manages wrapping and encryption keys for encrypted datasets. These commands mostly involve manipulating the new DSL Crypto Key ZAP Objects that live in the MOS. Each encrypted dataset has its own DSL Crypto Key that is protected with a user's key. This level of indirection allows users to change their keys without re-encrypting their entire datasets. The change implements the new subcommands "zfs load-key", "zfs unload-key" and "zfs change-key" which allow the user to manage their encryption keys and settings. In addition, several new flags and properties have been added to allow dataset creation and to make mounting and unmounting more convenient. The second piece of this patch provides the ability to encrypt, decyrpt, and authenticate protected datasets. Each object set maintains a Merkel tree of Message Authentication Codes that protect the lower layers, similarly to how checksums are maintained. This part impacts the zio layer, which handles the actual encryption and generation of MACs, as well as the ARC and DMU, which need to be able to handle encrypted buffers and protected data. The last addition is the ability to do raw, encrypted sends and receives. The idea here is to send raw encrypted and compressed data and receive it exactly as is on a backup system. This means that the dataset on the receiving system is protected using the same user key that is in use on the sending side. By doing so, datasets can be efficiently backed up to an untrusted system without fear of data being compromised. Reviewed by: Matthew Ahrens <mahrens@delphix.com> Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov> Reviewed-by: Jorgen Lundman <lundman@lundman.net> Signed-off-by: Tom Caputi <tcaputi@datto.com> Closes #494 Closes #5769
2017-08-14 20:36:48 +03:00
dmu_objset_disown(objset_t *os, boolean_t decrypt, void *tag)
{
/*
* Stop upgrading thread
*/
dmu_objset_upgrade_stop(os);
Native Encryption for ZFS on Linux This change incorporates three major pieces: The first change is a keystore that manages wrapping and encryption keys for encrypted datasets. These commands mostly involve manipulating the new DSL Crypto Key ZAP Objects that live in the MOS. Each encrypted dataset has its own DSL Crypto Key that is protected with a user's key. This level of indirection allows users to change their keys without re-encrypting their entire datasets. The change implements the new subcommands "zfs load-key", "zfs unload-key" and "zfs change-key" which allow the user to manage their encryption keys and settings. In addition, several new flags and properties have been added to allow dataset creation and to make mounting and unmounting more convenient. The second piece of this patch provides the ability to encrypt, decyrpt, and authenticate protected datasets. Each object set maintains a Merkel tree of Message Authentication Codes that protect the lower layers, similarly to how checksums are maintained. This part impacts the zio layer, which handles the actual encryption and generation of MACs, as well as the ARC and DMU, which need to be able to handle encrypted buffers and protected data. The last addition is the ability to do raw, encrypted sends and receives. The idea here is to send raw encrypted and compressed data and receive it exactly as is on a backup system. This means that the dataset on the receiving system is protected using the same user key that is in use on the sending side. By doing so, datasets can be efficiently backed up to an untrusted system without fear of data being compromised. Reviewed by: Matthew Ahrens <mahrens@delphix.com> Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov> Reviewed-by: Jorgen Lundman <lundman@lundman.net> Signed-off-by: Tom Caputi <tcaputi@datto.com> Closes #494 Closes #5769
2017-08-14 20:36:48 +03:00
dsl_dataset_disown(os->os_dsl_dataset,
(decrypt) ? DS_HOLD_FLAG_DECRYPT : 0, tag);
2008-11-20 23:01:55 +03:00
}
void
2008-11-20 23:01:55 +03:00
dmu_objset_evict_dbufs(objset_t *os)
{
dnode_t *dn_marker;
2008-11-20 23:01:55 +03:00
dnode_t *dn;
dn_marker = kmem_alloc(sizeof (dnode_t), KM_SLEEP);
2008-11-20 23:01:55 +03:00
mutex_enter(&os->os_lock);
dn = list_head(&os->os_dnodes);
while (dn != NULL) {
/*
* Skip dnodes without holds. We have to do this dance
* because dnode_add_ref() only works if there is already a
* hold. If the dnode has no holds, then it has no dbufs.
*/
if (dnode_add_ref(dn, FTAG)) {
list_insert_after(&os->os_dnodes, dn, dn_marker);
mutex_exit(&os->os_lock);
2008-11-20 23:01:55 +03:00
dnode_evict_dbufs(dn);
dnode_rele(dn, FTAG);
2008-11-20 23:01:55 +03:00
mutex_enter(&os->os_lock);
dn = list_next(&os->os_dnodes, dn_marker);
list_remove(&os->os_dnodes, dn_marker);
} else {
dn = list_next(&os->os_dnodes, dn);
}
}
mutex_exit(&os->os_lock);
2008-11-20 23:01:55 +03:00
kmem_free(dn_marker, sizeof (dnode_t));
2008-11-20 23:01:55 +03:00
if (DMU_USERUSED_DNODE(os) != NULL) {
Project Quota on ZFS Project quota is a new ZFS system space/object usage accounting and enforcement mechanism. Similar as user/group quota, project quota is another dimension of system quota. It bases on the new object attribute - project ID. Project ID is a numerical value to indicate to which project an object belongs. An object only can belong to one project though you (the object owner or privileged user) can change the object project ID via 'chattr -p' or 'zfs project [-s] -p' explicitly. The object also can inherit the project ID from its parent when created if the parent has the project inherit flag (that can be set via 'chattr +P' or 'zfs project -s [-p]'). By accounting the spaces/objects belong to the same project, we can know how many spaces/objects used by the project. And if we set the upper limit then we can control the spaces/objects that are consumed by such project. It is useful when multiple groups and users cooperate for the same project, or a user/group needs to participate in multiple projects. Support the following commands and functionalities: zfs set projectquota@project zfs set projectobjquota@project zfs get projectquota@project zfs get projectobjquota@project zfs get projectused@project zfs get projectobjused@project zfs projectspace zfs allow projectquota zfs allow projectobjquota zfs allow projectused zfs allow projectobjused zfs unallow projectquota zfs unallow projectobjquota zfs unallow projectused zfs unallow projectobjused chattr +/-P chattr -p project_id lsattr -p This patch also supports tree quota based on the project quota via "zfs project" commands set as following: zfs project [-d|-r] <file|directory ...> zfs project -C [-k] [-r] <file|directory ...> zfs project -c [-0] [-d|-r] [-p id] <file|directory ...> zfs project [-p id] [-r] [-s] <file|directory ...> For "df [-i] $DIR" command, if we set INHERIT (project ID) flag on the $DIR, then the proejct [obj]quota and [obj]used values for the $DIR's project ID will be shown as the total/free (avail) resource. Keep the same behavior as EXT4/XFS does. Reviewed-by: Andreas Dilger <andreas.dilger@intel.com> Reviewed-by Ned Bass <bass6@llnl.gov> Reviewed-by: Matthew Ahrens <mahrens@delphix.com> Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov> Signed-off-by: Fan Yong <fan.yong@intel.com> TEST_ZIMPORT_POOLS="zol-0.6.1 zol-0.6.2 master" Change-Id: Ib4f0544602e03fb61fd46a849d7ba51a6005693c Closes #6290
2018-02-14 01:54:54 +03:00
if (DMU_PROJECTUSED_DNODE(os) != NULL)
dnode_evict_dbufs(DMU_PROJECTUSED_DNODE(os));
dnode_evict_dbufs(DMU_GROUPUSED_DNODE(os));
dnode_evict_dbufs(DMU_USERUSED_DNODE(os));
2008-11-20 23:01:55 +03:00
}
dnode_evict_dbufs(DMU_META_DNODE(os));
2008-11-20 23:01:55 +03:00
}
/*
* Objset eviction processing is split into into two pieces.
* The first marks the objset as evicting, evicts any dbufs that
* have a refcount of zero, and then queues up the objset for the
* second phase of eviction. Once os->os_dnodes has been cleared by
* dnode_buf_pageout()->dnode_destroy(), the second phase is executed.
* The second phase closes the special dnodes, dequeues the objset from
* the list of those undergoing eviction, and finally frees the objset.
*
* NOTE: Due to asynchronous eviction processing (invocation of
* dnode_buf_pageout()), it is possible for the meta dnode for the
* objset to have no holds even though os->os_dnodes is not empty.
*/
2008-11-20 23:01:55 +03:00
void
dmu_objset_evict(objset_t *os)
2008-11-20 23:01:55 +03:00
{
Illumos #2882, #2883, #2900 2882 implement libzfs_core 2883 changing "canmount" property to "on" should not always remount dataset 2900 "zfs snapshot" should be able to create multiple, arbitrary snapshots at once Reviewed by: George Wilson <george.wilson@delphix.com> Reviewed by: Chris Siden <christopher.siden@delphix.com> Reviewed by: Garrett D'Amore <garrett@damore.org> Reviewed by: Bill Pijewski <wdp@joyent.com> Reviewed by: Dan Kruchinin <dan.kruchinin@gmail.com> Approved by: Eric Schrock <Eric.Schrock@delphix.com> References: https://www.illumos.org/issues/2882 https://www.illumos.org/issues/2883 https://www.illumos.org/issues/2900 illumos/illumos-gate@4445fffbbb1ea25fd0e9ea68b9380dd7a6709025 Ported-by: Tim Chase <tim@chase2k.com> Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov> Closes #1293 Porting notes: WARNING: This patch changes the user/kernel ABI. That means that the zfs/zpool utilities built from master are NOT compatible with the 0.6.2 kernel modules. Ensure you load the matching kernel modules from master after updating the utilities. Otherwise the zfs/zpool commands will be unable to interact with your pool and you will see errors similar to the following: $ zpool list failed to read pool configuration: bad address no pools available $ zfs list no datasets available Add zvol minor device creation to the new zfs_snapshot_nvl function. Remove the logging of the "release" operation in dsl_dataset_user_release_sync(). The logging caused a null dereference because ds->ds_dir is zeroed in dsl_dataset_destroy_sync() and the logging functions try to get the ds name via the dsl_dataset_name() function. I've got no idea why this particular code would have worked in Illumos. This code has subsequently been completely reworked in Illumos commit 3b2aab1 (3464 zfs synctask code needs restructuring). Squash some "may be used uninitialized" warning/erorrs. Fix some printf format warnings for %lld and %llu. Apply a few spa_writeable() changes that were made to Illumos in illumos/illumos-gate.git@cd1c8b8 as part of the 3112, 3113, 3114 and 3115 fixes. Add a missing call to fnvlist_free(nvl) in log_internal() that was added in Illumos to fix issue 3085 but couldn't be ported to ZoL at the time (zfsonlinux/zfs@9e11c73) because it depended on future work.
2013-08-28 15:45:09 +04:00
dsl_dataset_t *ds = os->os_dsl_dataset;
for (int t = 0; t < TXG_SIZE; t++)
ASSERT(!dmu_objset_is_dirty(os, t));
2008-11-20 23:01:55 +03:00
if (ds)
dsl_prop_unregister_all(ds, os);
2008-11-20 23:01:55 +03:00
if (os->os_sa)
sa_tear_down(os);
dmu_objset_evict_dbufs(os);
2008-11-20 23:01:55 +03:00
mutex_enter(&os->os_lock);
spa_evicting_os_register(os->os_spa, os);
if (list_is_empty(&os->os_dnodes)) {
mutex_exit(&os->os_lock);
dmu_objset_evict_done(os);
} else {
mutex_exit(&os->os_lock);
}
Native Encryption for ZFS on Linux This change incorporates three major pieces: The first change is a keystore that manages wrapping and encryption keys for encrypted datasets. These commands mostly involve manipulating the new DSL Crypto Key ZAP Objects that live in the MOS. Each encrypted dataset has its own DSL Crypto Key that is protected with a user's key. This level of indirection allows users to change their keys without re-encrypting their entire datasets. The change implements the new subcommands "zfs load-key", "zfs unload-key" and "zfs change-key" which allow the user to manage their encryption keys and settings. In addition, several new flags and properties have been added to allow dataset creation and to make mounting and unmounting more convenient. The second piece of this patch provides the ability to encrypt, decyrpt, and authenticate protected datasets. Each object set maintains a Merkel tree of Message Authentication Codes that protect the lower layers, similarly to how checksums are maintained. This part impacts the zio layer, which handles the actual encryption and generation of MACs, as well as the ARC and DMU, which need to be able to handle encrypted buffers and protected data. The last addition is the ability to do raw, encrypted sends and receives. The idea here is to send raw encrypted and compressed data and receive it exactly as is on a backup system. This means that the dataset on the receiving system is protected using the same user key that is in use on the sending side. By doing so, datasets can be efficiently backed up to an untrusted system without fear of data being compromised. Reviewed by: Matthew Ahrens <mahrens@delphix.com> Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov> Reviewed-by: Jorgen Lundman <lundman@lundman.net> Signed-off-by: Tom Caputi <tcaputi@datto.com> Closes #494 Closes #5769
2017-08-14 20:36:48 +03:00
}
void
dmu_objset_evict_done(objset_t *os)
{
ASSERT3P(list_head(&os->os_dnodes), ==, NULL);
dnode_special_close(&os->os_meta_dnode);
if (DMU_USERUSED_DNODE(os)) {
Project Quota on ZFS Project quota is a new ZFS system space/object usage accounting and enforcement mechanism. Similar as user/group quota, project quota is another dimension of system quota. It bases on the new object attribute - project ID. Project ID is a numerical value to indicate to which project an object belongs. An object only can belong to one project though you (the object owner or privileged user) can change the object project ID via 'chattr -p' or 'zfs project [-s] -p' explicitly. The object also can inherit the project ID from its parent when created if the parent has the project inherit flag (that can be set via 'chattr +P' or 'zfs project -s [-p]'). By accounting the spaces/objects belong to the same project, we can know how many spaces/objects used by the project. And if we set the upper limit then we can control the spaces/objects that are consumed by such project. It is useful when multiple groups and users cooperate for the same project, or a user/group needs to participate in multiple projects. Support the following commands and functionalities: zfs set projectquota@project zfs set projectobjquota@project zfs get projectquota@project zfs get projectobjquota@project zfs get projectused@project zfs get projectobjused@project zfs projectspace zfs allow projectquota zfs allow projectobjquota zfs allow projectused zfs allow projectobjused zfs unallow projectquota zfs unallow projectobjquota zfs unallow projectused zfs unallow projectobjused chattr +/-P chattr -p project_id lsattr -p This patch also supports tree quota based on the project quota via "zfs project" commands set as following: zfs project [-d|-r] <file|directory ...> zfs project -C [-k] [-r] <file|directory ...> zfs project -c [-0] [-d|-r] [-p id] <file|directory ...> zfs project [-p id] [-r] [-s] <file|directory ...> For "df [-i] $DIR" command, if we set INHERIT (project ID) flag on the $DIR, then the proejct [obj]quota and [obj]used values for the $DIR's project ID will be shown as the total/free (avail) resource. Keep the same behavior as EXT4/XFS does. Reviewed-by: Andreas Dilger <andreas.dilger@intel.com> Reviewed-by Ned Bass <bass6@llnl.gov> Reviewed-by: Matthew Ahrens <mahrens@delphix.com> Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov> Signed-off-by: Fan Yong <fan.yong@intel.com> TEST_ZIMPORT_POOLS="zol-0.6.1 zol-0.6.2 master" Change-Id: Ib4f0544602e03fb61fd46a849d7ba51a6005693c Closes #6290
2018-02-14 01:54:54 +03:00
if (DMU_PROJECTUSED_DNODE(os))
dnode_special_close(&os->os_projectused_dnode);
dnode_special_close(&os->os_userused_dnode);
dnode_special_close(&os->os_groupused_dnode);
2009-07-03 02:44:48 +04:00
}
zil_free(os->os_zil);
OpenZFS 6950 - ARC should cache compressed data Authored by: George Wilson <george.wilson@delphix.com> Reviewed by: Prakash Surya <prakash.surya@delphix.com> Reviewed by: Dan Kimmel <dan.kimmel@delphix.com> Reviewed by: Matt Ahrens <mahrens@delphix.com> Reviewed by: Paul Dagnelie <pcd@delphix.com> Reviewed by: Tom Caputi <tcaputi@datto.com> Reviewed by: Brian Behlendorf <behlendorf1@llnl.gov> Ported by: David Quigley <david.quigley@intel.com> This review covers the reading and writing of compressed arc headers, sharing data between the arc_hdr_t and the arc_buf_t, and the implementation of a new dbuf cache to keep frequently access data uncompressed. I've added a new member to l1 arc hdr called b_pdata. The b_pdata always hangs off the arc_buf_hdr_t (if an L1 hdr is in use) and points to the physical block for that DVA. The physical block may or may not be compressed. If compressed arc is enabled and the block on-disk is compressed, then the b_pdata will match the block on-disk and remain compressed in memory. If the block on disk is not compressed, then neither will the b_pdata. Lastly, if compressed arc is disabled, then b_pdata will always be an uncompressed version of the on-disk block. Typically the arc will cache only the arc_buf_hdr_t and will aggressively evict any arc_buf_t's that are no longer referenced. This means that the arc will primarily have compressed blocks as the arc_buf_t's are considered overhead and are always uncompressed. When a consumer reads a block we first look to see if the arc_buf_hdr_t is cached. If the hdr is cached then we allocate a new arc_buf_t and decompress the b_pdata contents into the arc_buf_t's b_data. If the hdr already has a arc_buf_t, then we will allocate an additional arc_buf_t and bcopy the uncompressed contents from the first arc_buf_t to the new one. Writing to the compressed arc requires that we first discard the b_pdata since the physical block is about to be rewritten. The new data contents will be passed in via an arc_buf_t (uncompressed) and during the I/O pipeline stages we will copy the physical block contents to a newly allocated b_pdata. When an l2arc is inuse it will also take advantage of the b_pdata. Now the l2arc will always write the contents of b_pdata to the l2arc. This means that when compressed arc is enabled that the l2arc blocks are identical to those stored in the main data pool. This provides a significant advantage since we can leverage the bp's checksum when reading from the l2arc to determine if the contents are valid. If the compressed arc is disabled, then we must first transform the read block to look like the physical block in the main data pool before comparing the checksum and determining it's valid. OpenZFS-issue: https://www.illumos.org/issues/6950 OpenZFS-commit: https://github.com/openzfs/openzfs/commit/7fc10f0 Issue #5078
2016-06-02 07:04:53 +03:00
arc_buf_destroy(os->os_phys_buf, &os->os_phys_buf);
/*
* This is a barrier to prevent the objset from going away in
* dnode_move() until we can safely ensure that the objset is still in
* use. We consider the objset valid before the barrier and invalid
* after the barrier.
*/
rw_enter(&os_lock, RW_READER);
rw_exit(&os_lock);
OpenZFS 8199 - multi-threaded dmu_object_alloc() dmu_object_alloc() is single-threaded, so when multiple threads are creating files in a single filesystem, they spend a lot of time waiting for the os_obj_lock. To improve performance of multi-threaded file creation, we must make dmu_object_alloc() typically not grab any filesystem-wide locks. The solution is to have a "next object to allocate" for each CPU. Each of these "next object"s is in a different block of the dnode object, so that concurrent allocation holds dnodes in different dbufs. When a thread's "next object" reaches the end of a chunk of objects (by default 4 blocks worth -- 128 dnodes), it will be reset to the per-objset os_obj_next, which will be increased by a chunk of objects (128). Only when manipulating the os_obj_next will we need to grab the os_obj_lock. This decreases lock contention dramatically, because each thread only needs to grab the os_obj_lock briefly, once per 128 allocations. This results in a 70% performance improvement to multi-threaded object creation (where each thread is creating objects in its own directory), from 67,000/sec to 115,000/sec, with 8 CPUs. Work sponsored by Intel Corp. Authored by: Matthew Ahrens <mahrens@delphix.com> Reviewed-by: Ned Bass <bass6@llnl.gov> Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov> Ported-by: Matthew Ahrens <mahrens@delphix.com> Signed-off-by: Matthew Ahrens <mahrens@delphix.com> OpenZFS-issue: https://www.illumos.org/issues/8199 OpenZFS-commit: https://github.com/openzfs/openzfs/pull/374 Closes #4703 Closes #6117
2016-05-13 07:16:36 +03:00
kmem_free(os->os_obj_next_percpu,
os->os_obj_next_percpu_len * sizeof (os->os_obj_next_percpu[0]));
mutex_destroy(&os->os_lock);
mutex_destroy(&os->os_userused_lock);
mutex_destroy(&os->os_obj_lock);
mutex_destroy(&os->os_user_ptr_lock);
mutex_destroy(&os->os_upgrade_lock);
for (int i = 0; i < TXG_SIZE; i++) {
multilist_destroy(os->os_dirty_dnodes[i]);
}
spa_evicting_os_deregister(os->os_spa, os);
kmem_free(os, sizeof (objset_t));
}
2009-07-03 02:44:48 +04:00
inode_timespec_t
dmu_objset_snap_cmtime(objset_t *os)
{
return (dsl_dir_snap_cmtime(os->os_dsl_dataset->ds_dir));
2008-11-20 23:01:55 +03:00
}
objset_t *
Native Encryption for ZFS on Linux This change incorporates three major pieces: The first change is a keystore that manages wrapping and encryption keys for encrypted datasets. These commands mostly involve manipulating the new DSL Crypto Key ZAP Objects that live in the MOS. Each encrypted dataset has its own DSL Crypto Key that is protected with a user's key. This level of indirection allows users to change their keys without re-encrypting their entire datasets. The change implements the new subcommands "zfs load-key", "zfs unload-key" and "zfs change-key" which allow the user to manage their encryption keys and settings. In addition, several new flags and properties have been added to allow dataset creation and to make mounting and unmounting more convenient. The second piece of this patch provides the ability to encrypt, decyrpt, and authenticate protected datasets. Each object set maintains a Merkel tree of Message Authentication Codes that protect the lower layers, similarly to how checksums are maintained. This part impacts the zio layer, which handles the actual encryption and generation of MACs, as well as the ARC and DMU, which need to be able to handle encrypted buffers and protected data. The last addition is the ability to do raw, encrypted sends and receives. The idea here is to send raw encrypted and compressed data and receive it exactly as is on a backup system. This means that the dataset on the receiving system is protected using the same user key that is in use on the sending side. By doing so, datasets can be efficiently backed up to an untrusted system without fear of data being compromised. Reviewed by: Matthew Ahrens <mahrens@delphix.com> Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov> Reviewed-by: Jorgen Lundman <lundman@lundman.net> Signed-off-by: Tom Caputi <tcaputi@datto.com> Closes #494 Closes #5769
2017-08-14 20:36:48 +03:00
dmu_objset_create_impl_dnstats(spa_t *spa, dsl_dataset_t *ds, blkptr_t *bp,
dmu_objset_type_t type, int levels, int blksz, int ibs, dmu_tx_t *tx)
2008-11-20 23:01:55 +03:00
{
objset_t *os;
2008-11-20 23:01:55 +03:00
dnode_t *mdn;
ASSERT(dmu_tx_is_syncing(tx));
Native Encryption for ZFS on Linux This change incorporates three major pieces: The first change is a keystore that manages wrapping and encryption keys for encrypted datasets. These commands mostly involve manipulating the new DSL Crypto Key ZAP Objects that live in the MOS. Each encrypted dataset has its own DSL Crypto Key that is protected with a user's key. This level of indirection allows users to change their keys without re-encrypting their entire datasets. The change implements the new subcommands "zfs load-key", "zfs unload-key" and "zfs change-key" which allow the user to manage their encryption keys and settings. In addition, several new flags and properties have been added to allow dataset creation and to make mounting and unmounting more convenient. The second piece of this patch provides the ability to encrypt, decyrpt, and authenticate protected datasets. Each object set maintains a Merkel tree of Message Authentication Codes that protect the lower layers, similarly to how checksums are maintained. This part impacts the zio layer, which handles the actual encryption and generation of MACs, as well as the ARC and DMU, which need to be able to handle encrypted buffers and protected data. The last addition is the ability to do raw, encrypted sends and receives. The idea here is to send raw encrypted and compressed data and receive it exactly as is on a backup system. This means that the dataset on the receiving system is protected using the same user key that is in use on the sending side. By doing so, datasets can be efficiently backed up to an untrusted system without fear of data being compromised. Reviewed by: Matthew Ahrens <mahrens@delphix.com> Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov> Reviewed-by: Jorgen Lundman <lundman@lundman.net> Signed-off-by: Tom Caputi <tcaputi@datto.com> Closes #494 Closes #5769
2017-08-14 20:36:48 +03:00
if (blksz == 0)
blksz = DNODE_BLOCK_SIZE;
if (ibs == 0)
Native Encryption for ZFS on Linux This change incorporates three major pieces: The first change is a keystore that manages wrapping and encryption keys for encrypted datasets. These commands mostly involve manipulating the new DSL Crypto Key ZAP Objects that live in the MOS. Each encrypted dataset has its own DSL Crypto Key that is protected with a user's key. This level of indirection allows users to change their keys without re-encrypting their entire datasets. The change implements the new subcommands "zfs load-key", "zfs unload-key" and "zfs change-key" which allow the user to manage their encryption keys and settings. In addition, several new flags and properties have been added to allow dataset creation and to make mounting and unmounting more convenient. The second piece of this patch provides the ability to encrypt, decyrpt, and authenticate protected datasets. Each object set maintains a Merkel tree of Message Authentication Codes that protect the lower layers, similarly to how checksums are maintained. This part impacts the zio layer, which handles the actual encryption and generation of MACs, as well as the ARC and DMU, which need to be able to handle encrypted buffers and protected data. The last addition is the ability to do raw, encrypted sends and receives. The idea here is to send raw encrypted and compressed data and receive it exactly as is on a backup system. This means that the dataset on the receiving system is protected using the same user key that is in use on the sending side. By doing so, datasets can be efficiently backed up to an untrusted system without fear of data being compromised. Reviewed by: Matthew Ahrens <mahrens@delphix.com> Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov> Reviewed-by: Jorgen Lundman <lundman@lundman.net> Signed-off-by: Tom Caputi <tcaputi@datto.com> Closes #494 Closes #5769
2017-08-14 20:36:48 +03:00
ibs = DN_MAX_INDBLKSHIFT;
if (ds != NULL)
VERIFY0(dmu_objset_from_ds(ds, &os));
else
VERIFY0(dmu_objset_open_impl(spa, NULL, bp, &os));
mdn = DMU_META_DNODE(os);
2008-11-20 23:01:55 +03:00
Native Encryption for ZFS on Linux This change incorporates three major pieces: The first change is a keystore that manages wrapping and encryption keys for encrypted datasets. These commands mostly involve manipulating the new DSL Crypto Key ZAP Objects that live in the MOS. Each encrypted dataset has its own DSL Crypto Key that is protected with a user's key. This level of indirection allows users to change their keys without re-encrypting their entire datasets. The change implements the new subcommands "zfs load-key", "zfs unload-key" and "zfs change-key" which allow the user to manage their encryption keys and settings. In addition, several new flags and properties have been added to allow dataset creation and to make mounting and unmounting more convenient. The second piece of this patch provides the ability to encrypt, decyrpt, and authenticate protected datasets. Each object set maintains a Merkel tree of Message Authentication Codes that protect the lower layers, similarly to how checksums are maintained. This part impacts the zio layer, which handles the actual encryption and generation of MACs, as well as the ARC and DMU, which need to be able to handle encrypted buffers and protected data. The last addition is the ability to do raw, encrypted sends and receives. The idea here is to send raw encrypted and compressed data and receive it exactly as is on a backup system. This means that the dataset on the receiving system is protected using the same user key that is in use on the sending side. By doing so, datasets can be efficiently backed up to an untrusted system without fear of data being compromised. Reviewed by: Matthew Ahrens <mahrens@delphix.com> Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov> Reviewed-by: Jorgen Lundman <lundman@lundman.net> Signed-off-by: Tom Caputi <tcaputi@datto.com> Closes #494 Closes #5769
2017-08-14 20:36:48 +03:00
dnode_allocate(mdn, DMU_OT_DNODE, blksz, ibs, DMU_OT_NONE, 0,
DNODE_MIN_SLOTS, tx);
2008-11-20 23:01:55 +03:00
/*
* We don't want to have to increase the meta-dnode's nlevels
* later, because then we could do it in quiescing context while
2008-11-20 23:01:55 +03:00
* we are also accessing it in open context.
*
* This precaution is not necessary for the MOS (ds == NULL),
* because the MOS is only updated in syncing context.
* This is most fortunate: the MOS is the only objset that
* needs to be synced multiple times as spa_sync() iterates
* to convergence, so minimizing its dn_nlevels matters.
*/
if (ds != NULL) {
Native Encryption for ZFS on Linux This change incorporates three major pieces: The first change is a keystore that manages wrapping and encryption keys for encrypted datasets. These commands mostly involve manipulating the new DSL Crypto Key ZAP Objects that live in the MOS. Each encrypted dataset has its own DSL Crypto Key that is protected with a user's key. This level of indirection allows users to change their keys without re-encrypting their entire datasets. The change implements the new subcommands "zfs load-key", "zfs unload-key" and "zfs change-key" which allow the user to manage their encryption keys and settings. In addition, several new flags and properties have been added to allow dataset creation and to make mounting and unmounting more convenient. The second piece of this patch provides the ability to encrypt, decyrpt, and authenticate protected datasets. Each object set maintains a Merkel tree of Message Authentication Codes that protect the lower layers, similarly to how checksums are maintained. This part impacts the zio layer, which handles the actual encryption and generation of MACs, as well as the ARC and DMU, which need to be able to handle encrypted buffers and protected data. The last addition is the ability to do raw, encrypted sends and receives. The idea here is to send raw encrypted and compressed data and receive it exactly as is on a backup system. This means that the dataset on the receiving system is protected using the same user key that is in use on the sending side. By doing so, datasets can be efficiently backed up to an untrusted system without fear of data being compromised. Reviewed by: Matthew Ahrens <mahrens@delphix.com> Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov> Reviewed-by: Jorgen Lundman <lundman@lundman.net> Signed-off-by: Tom Caputi <tcaputi@datto.com> Closes #494 Closes #5769
2017-08-14 20:36:48 +03:00
if (levels == 0) {
levels = 1;
/*
* Determine the number of levels necessary for the
* meta-dnode to contain DN_MAX_OBJECT dnodes. Note
* that in order to ensure that we do not overflow
* 64 bits, there has to be a nlevels that gives us a
* number of blocks > DN_MAX_OBJECT but < 2^64.
* Therefore, (mdn->dn_indblkshift - SPA_BLKPTRSHIFT)
* (10) must be less than (64 - log2(DN_MAX_OBJECT))
* (16).
*/
while ((uint64_t)mdn->dn_nblkptr <<
(mdn->dn_datablkshift - DNODE_SHIFT + (levels - 1) *
(mdn->dn_indblkshift - SPA_BLKPTRSHIFT)) <
DN_MAX_OBJECT)
levels++;
}
2008-11-20 23:01:55 +03:00
mdn->dn_next_nlevels[tx->tx_txg & TXG_MASK] =
mdn->dn_nlevels = levels;
}
ASSERT(type != DMU_OST_NONE);
ASSERT(type != DMU_OST_ANY);
ASSERT(type < DMU_OST_NUMTYPES);
os->os_phys->os_type = type;
Native Encryption for ZFS on Linux This change incorporates three major pieces: The first change is a keystore that manages wrapping and encryption keys for encrypted datasets. These commands mostly involve manipulating the new DSL Crypto Key ZAP Objects that live in the MOS. Each encrypted dataset has its own DSL Crypto Key that is protected with a user's key. This level of indirection allows users to change their keys without re-encrypting their entire datasets. The change implements the new subcommands "zfs load-key", "zfs unload-key" and "zfs change-key" which allow the user to manage their encryption keys and settings. In addition, several new flags and properties have been added to allow dataset creation and to make mounting and unmounting more convenient. The second piece of this patch provides the ability to encrypt, decyrpt, and authenticate protected datasets. Each object set maintains a Merkel tree of Message Authentication Codes that protect the lower layers, similarly to how checksums are maintained. This part impacts the zio layer, which handles the actual encryption and generation of MACs, as well as the ARC and DMU, which need to be able to handle encrypted buffers and protected data. The last addition is the ability to do raw, encrypted sends and receives. The idea here is to send raw encrypted and compressed data and receive it exactly as is on a backup system. This means that the dataset on the receiving system is protected using the same user key that is in use on the sending side. By doing so, datasets can be efficiently backed up to an untrusted system without fear of data being compromised. Reviewed by: Matthew Ahrens <mahrens@delphix.com> Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov> Reviewed-by: Jorgen Lundman <lundman@lundman.net> Signed-off-by: Tom Caputi <tcaputi@datto.com> Closes #494 Closes #5769
2017-08-14 20:36:48 +03:00
/*
* Enable user accounting if it is enabled and this is not an
* encrypted receive.
*/
if (dmu_objset_userused_enabled(os) &&
(!os->os_encrypted || !dmu_objset_is_receiving(os))) {
os->os_phys->os_flags |= OBJSET_FLAG_USERACCOUNTING_COMPLETE;
if (dmu_objset_userobjused_enabled(os)) {
ds->ds_feature_activation[
SPA_FEATURE_USEROBJ_ACCOUNTING] = (void *)B_TRUE;
os->os_phys->os_flags |=
OBJSET_FLAG_USEROBJACCOUNTING_COMPLETE;
}
Project Quota on ZFS Project quota is a new ZFS system space/object usage accounting and enforcement mechanism. Similar as user/group quota, project quota is another dimension of system quota. It bases on the new object attribute - project ID. Project ID is a numerical value to indicate to which project an object belongs. An object only can belong to one project though you (the object owner or privileged user) can change the object project ID via 'chattr -p' or 'zfs project [-s] -p' explicitly. The object also can inherit the project ID from its parent when created if the parent has the project inherit flag (that can be set via 'chattr +P' or 'zfs project -s [-p]'). By accounting the spaces/objects belong to the same project, we can know how many spaces/objects used by the project. And if we set the upper limit then we can control the spaces/objects that are consumed by such project. It is useful when multiple groups and users cooperate for the same project, or a user/group needs to participate in multiple projects. Support the following commands and functionalities: zfs set projectquota@project zfs set projectobjquota@project zfs get projectquota@project zfs get projectobjquota@project zfs get projectused@project zfs get projectobjused@project zfs projectspace zfs allow projectquota zfs allow projectobjquota zfs allow projectused zfs allow projectobjused zfs unallow projectquota zfs unallow projectobjquota zfs unallow projectused zfs unallow projectobjused chattr +/-P chattr -p project_id lsattr -p This patch also supports tree quota based on the project quota via "zfs project" commands set as following: zfs project [-d|-r] <file|directory ...> zfs project -C [-k] [-r] <file|directory ...> zfs project -c [-0] [-d|-r] [-p id] <file|directory ...> zfs project [-p id] [-r] [-s] <file|directory ...> For "df [-i] $DIR" command, if we set INHERIT (project ID) flag on the $DIR, then the proejct [obj]quota and [obj]used values for the $DIR's project ID will be shown as the total/free (avail) resource. Keep the same behavior as EXT4/XFS does. Reviewed-by: Andreas Dilger <andreas.dilger@intel.com> Reviewed-by Ned Bass <bass6@llnl.gov> Reviewed-by: Matthew Ahrens <mahrens@delphix.com> Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov> Signed-off-by: Fan Yong <fan.yong@intel.com> TEST_ZIMPORT_POOLS="zol-0.6.1 zol-0.6.2 master" Change-Id: Ib4f0544602e03fb61fd46a849d7ba51a6005693c Closes #6290
2018-02-14 01:54:54 +03:00
if (dmu_objset_projectquota_enabled(os)) {
ds->ds_feature_activation[
SPA_FEATURE_PROJECT_QUOTA] = (void *)B_TRUE;
Project Quota on ZFS Project quota is a new ZFS system space/object usage accounting and enforcement mechanism. Similar as user/group quota, project quota is another dimension of system quota. It bases on the new object attribute - project ID. Project ID is a numerical value to indicate to which project an object belongs. An object only can belong to one project though you (the object owner or privileged user) can change the object project ID via 'chattr -p' or 'zfs project [-s] -p' explicitly. The object also can inherit the project ID from its parent when created if the parent has the project inherit flag (that can be set via 'chattr +P' or 'zfs project -s [-p]'). By accounting the spaces/objects belong to the same project, we can know how many spaces/objects used by the project. And if we set the upper limit then we can control the spaces/objects that are consumed by such project. It is useful when multiple groups and users cooperate for the same project, or a user/group needs to participate in multiple projects. Support the following commands and functionalities: zfs set projectquota@project zfs set projectobjquota@project zfs get projectquota@project zfs get projectobjquota@project zfs get projectused@project zfs get projectobjused@project zfs projectspace zfs allow projectquota zfs allow projectobjquota zfs allow projectused zfs allow projectobjused zfs unallow projectquota zfs unallow projectobjquota zfs unallow projectused zfs unallow projectobjused chattr +/-P chattr -p project_id lsattr -p This patch also supports tree quota based on the project quota via "zfs project" commands set as following: zfs project [-d|-r] <file|directory ...> zfs project -C [-k] [-r] <file|directory ...> zfs project -c [-0] [-d|-r] [-p id] <file|directory ...> zfs project [-p id] [-r] [-s] <file|directory ...> For "df [-i] $DIR" command, if we set INHERIT (project ID) flag on the $DIR, then the proejct [obj]quota and [obj]used values for the $DIR's project ID will be shown as the total/free (avail) resource. Keep the same behavior as EXT4/XFS does. Reviewed-by: Andreas Dilger <andreas.dilger@intel.com> Reviewed-by Ned Bass <bass6@llnl.gov> Reviewed-by: Matthew Ahrens <mahrens@delphix.com> Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov> Signed-off-by: Fan Yong <fan.yong@intel.com> TEST_ZIMPORT_POOLS="zol-0.6.1 zol-0.6.2 master" Change-Id: Ib4f0544602e03fb61fd46a849d7ba51a6005693c Closes #6290
2018-02-14 01:54:54 +03:00
os->os_phys->os_flags |=
OBJSET_FLAG_PROJECTQUOTA_COMPLETE;
}
os->os_flags = os->os_phys->os_flags;
2009-07-03 02:44:48 +04:00
}
2008-11-20 23:01:55 +03:00
dsl_dataset_dirty(ds, tx);
return (os);
2008-11-20 23:01:55 +03:00
}
Native Encryption for ZFS on Linux This change incorporates three major pieces: The first change is a keystore that manages wrapping and encryption keys for encrypted datasets. These commands mostly involve manipulating the new DSL Crypto Key ZAP Objects that live in the MOS. Each encrypted dataset has its own DSL Crypto Key that is protected with a user's key. This level of indirection allows users to change their keys without re-encrypting their entire datasets. The change implements the new subcommands "zfs load-key", "zfs unload-key" and "zfs change-key" which allow the user to manage their encryption keys and settings. In addition, several new flags and properties have been added to allow dataset creation and to make mounting and unmounting more convenient. The second piece of this patch provides the ability to encrypt, decyrpt, and authenticate protected datasets. Each object set maintains a Merkel tree of Message Authentication Codes that protect the lower layers, similarly to how checksums are maintained. This part impacts the zio layer, which handles the actual encryption and generation of MACs, as well as the ARC and DMU, which need to be able to handle encrypted buffers and protected data. The last addition is the ability to do raw, encrypted sends and receives. The idea here is to send raw encrypted and compressed data and receive it exactly as is on a backup system. This means that the dataset on the receiving system is protected using the same user key that is in use on the sending side. By doing so, datasets can be efficiently backed up to an untrusted system without fear of data being compromised. Reviewed by: Matthew Ahrens <mahrens@delphix.com> Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov> Reviewed-by: Jorgen Lundman <lundman@lundman.net> Signed-off-by: Tom Caputi <tcaputi@datto.com> Closes #494 Closes #5769
2017-08-14 20:36:48 +03:00
/* called from dsl for meta-objset */
objset_t *
dmu_objset_create_impl(spa_t *spa, dsl_dataset_t *ds, blkptr_t *bp,
dmu_objset_type_t type, dmu_tx_t *tx)
{
return (dmu_objset_create_impl_dnstats(spa, ds, bp, type, 0, 0, 0, tx));
}
typedef struct dmu_objset_create_arg {
const char *doca_name;
cred_t *doca_cred;
filesystem_limit/snapshot_limit is incorrectly enforced against root The filesystem_limit and snapshot_limit properties limit the number of filesystems or snapshots that can be created below this dataset. According to the manpage, "The limit is not enforced if the user is allowed to change the limit." Two types of users are allowed to change the limit: 1. Those that have been delegated the `filesystem_limit` or `snapshot_limit` permission, e.g. with `zfs allow USER filesystem_limit DATASET`. This works properly. 2. A user with elevated system privileges (e.g. root). This does not work - the root user will incorrectly get an error when trying to create a snapshot/filesystem, if it exceeds the `_limit` property. The problem is that `priv_policy_ns()` does not work if the `cred_t` is not that of the current process. This happens when `dsl_enforce_ds_ss_limits()` is called in syncing context (as part of a sync task's check func) to determine the permissions of the corresponding user process. This commit fixes the issue by passing the `task_struct` (typedef'ed as a `proc_t`) to syncing context, and then using `has_capability()` to determine if that process is privileged. Note that we still need to pass the `cred_t` to syncing context so that we can check if the user was delegated this permission with `zfs allow`. This problem only impacts Linux. Wrappers are added to FreeBSD but it continues to use `priv_check_cred()`, which works on arbitrary `cred_t`. Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov> Reviewed-by: Ryan Moeller <ryan@ixsystems.com> Signed-off-by: Matthew Ahrens <mahrens@delphix.com> Closes #8226 Closes #10545
2020-07-12 03:18:02 +03:00
proc_t *doca_proc;
void (*doca_userfunc)(objset_t *os, void *arg,
cred_t *cr, dmu_tx_t *tx);
void *doca_userarg;
dmu_objset_type_t doca_type;
uint64_t doca_flags;
Native Encryption for ZFS on Linux This change incorporates three major pieces: The first change is a keystore that manages wrapping and encryption keys for encrypted datasets. These commands mostly involve manipulating the new DSL Crypto Key ZAP Objects that live in the MOS. Each encrypted dataset has its own DSL Crypto Key that is protected with a user's key. This level of indirection allows users to change their keys without re-encrypting their entire datasets. The change implements the new subcommands "zfs load-key", "zfs unload-key" and "zfs change-key" which allow the user to manage their encryption keys and settings. In addition, several new flags and properties have been added to allow dataset creation and to make mounting and unmounting more convenient. The second piece of this patch provides the ability to encrypt, decyrpt, and authenticate protected datasets. Each object set maintains a Merkel tree of Message Authentication Codes that protect the lower layers, similarly to how checksums are maintained. This part impacts the zio layer, which handles the actual encryption and generation of MACs, as well as the ARC and DMU, which need to be able to handle encrypted buffers and protected data. The last addition is the ability to do raw, encrypted sends and receives. The idea here is to send raw encrypted and compressed data and receive it exactly as is on a backup system. This means that the dataset on the receiving system is protected using the same user key that is in use on the sending side. By doing so, datasets can be efficiently backed up to an untrusted system without fear of data being compromised. Reviewed by: Matthew Ahrens <mahrens@delphix.com> Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov> Reviewed-by: Jorgen Lundman <lundman@lundman.net> Signed-off-by: Tom Caputi <tcaputi@datto.com> Closes #494 Closes #5769
2017-08-14 20:36:48 +03:00
dsl_crypto_params_t *doca_dcp;
} dmu_objset_create_arg_t;
2008-11-20 23:01:55 +03:00
/*ARGSUSED*/
static int
dmu_objset_create_check(void *arg, dmu_tx_t *tx)
2008-11-20 23:01:55 +03:00
{
dmu_objset_create_arg_t *doca = arg;
dsl_pool_t *dp = dmu_tx_pool(tx);
dsl_dir_t *pdd;
dsl_dataset_t *parentds;
objset_t *parentos;
const char *tail;
int error;
2008-11-20 23:01:55 +03:00
if (strchr(doca->doca_name, '@') != NULL)
return (SET_ERROR(EINVAL));
2008-11-20 23:01:55 +03:00
if (strlen(doca->doca_name) >= ZFS_MAX_DATASET_NAME_LEN)
return (SET_ERROR(ENAMETOOLONG));
OpenZFS 9330 - stack overflow when creating a deeply nested dataset Datasets that are deeply nested (~100 levels) are impractical. We just put a limit of 50 levels to newly created datasets. Existing datasets should work without a problem. The problem can be seen by attempting to create a dataset using the -p option with many levels: panic[cpu0]/thread=ffffff01cd282c20: BAD TRAP: type=8 (#df Double fault) rp=ffffffff fffffffffbc3aa60 unix:die+100 () fffffffffbc3ab70 unix:trap+157d () ffffff00083d7020 unix:_patch_xrstorq_rbx+196 () ffffff00083d7050 zfs:dbuf_rele+2e () ... ffffff00083d7080 zfs:dsl_dir_close+32 () ffffff00083d70b0 zfs:dsl_dir_evict+30 () ffffff00083d70d0 zfs:dbuf_evict_user+4a () ffffff00083d7100 zfs:dbuf_rele_and_unlock+87 () ffffff00083d7130 zfs:dbuf_rele+2e () ... The block above repeats once per directory in the ... ... create -p command, working towards the root ... ffffff00083db9f0 zfs:dsl_dataset_drop_ref+19 () ffffff00083dba20 zfs:dsl_dataset_rele+42 () ffffff00083dba70 zfs:dmu_objset_prefetch+e4 () ffffff00083dbaa0 zfs:findfunc+23 () ffffff00083dbb80 zfs:dmu_objset_find_spa+38c () ffffff00083dbbc0 zfs:dmu_objset_find+40 () ffffff00083dbc20 zfs:zfs_ioc_snapshot_list_next+4b () ffffff00083dbcc0 zfs:zfsdev_ioctl+347 () ffffff00083dbd00 genunix:cdev_ioctl+45 () ffffff00083dbd40 specfs:spec_ioctl+5a () ffffff00083dbdc0 genunix:fop_ioctl+7b () ffffff00083dbec0 genunix:ioctl+18e () ffffff00083dbf10 unix:brand_sys_sysenter+1c9 () Porting notes: * Added zfs_max_dataset_nesting module option with documentation. * Updated zfs_rename_014_neg.ksh for Linux. * Increase the zfs.sh stack warning to 15K. Enough time has passed that 16K can be reasonably assumed to be the default value. It was increased in the 3.15 kernel released in June of 2014. Authored by: Serapheim Dimitropoulos <serapheim.dimitro@delphix.com> Reviewed by: John Kennedy <john.kennedy@delphix.com> Reviewed by: Matt Ahrens <matt@delphix.com> Ported-by: Brian Behlendorf <behlendorf1@llnl.gov> Approved by: Garrett D'Amore <garrett@damore.org> OpenZFS-issue: https://www.illumos.org/issues/9330 OpenZFS-commit: https://github.com/openzfs/openzfs/commit/757a75a Closes #7681
2016-09-12 18:15:20 +03:00
if (dataset_nestcheck(doca->doca_name) != 0)
return (SET_ERROR(ENAMETOOLONG));
error = dsl_dir_hold(dp, doca->doca_name, FTAG, &pdd, &tail);
if (error != 0)
return (error);
if (tail == NULL) {
dsl_dir_rele(pdd, FTAG);
return (SET_ERROR(EEXIST));
2008-11-20 23:01:55 +03:00
}
Native Encryption for ZFS on Linux This change incorporates three major pieces: The first change is a keystore that manages wrapping and encryption keys for encrypted datasets. These commands mostly involve manipulating the new DSL Crypto Key ZAP Objects that live in the MOS. Each encrypted dataset has its own DSL Crypto Key that is protected with a user's key. This level of indirection allows users to change their keys without re-encrypting their entire datasets. The change implements the new subcommands "zfs load-key", "zfs unload-key" and "zfs change-key" which allow the user to manage their encryption keys and settings. In addition, several new flags and properties have been added to allow dataset creation and to make mounting and unmounting more convenient. The second piece of this patch provides the ability to encrypt, decyrpt, and authenticate protected datasets. Each object set maintains a Merkel tree of Message Authentication Codes that protect the lower layers, similarly to how checksums are maintained. This part impacts the zio layer, which handles the actual encryption and generation of MACs, as well as the ARC and DMU, which need to be able to handle encrypted buffers and protected data. The last addition is the ability to do raw, encrypted sends and receives. The idea here is to send raw encrypted and compressed data and receive it exactly as is on a backup system. This means that the dataset on the receiving system is protected using the same user key that is in use on the sending side. By doing so, datasets can be efficiently backed up to an untrusted system without fear of data being compromised. Reviewed by: Matthew Ahrens <mahrens@delphix.com> Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov> Reviewed-by: Jorgen Lundman <lundman@lundman.net> Signed-off-by: Tom Caputi <tcaputi@datto.com> Closes #494 Closes #5769
2017-08-14 20:36:48 +03:00
error = dmu_objset_create_crypt_check(pdd, doca->doca_dcp, NULL);
Native Encryption for ZFS on Linux This change incorporates three major pieces: The first change is a keystore that manages wrapping and encryption keys for encrypted datasets. These commands mostly involve manipulating the new DSL Crypto Key ZAP Objects that live in the MOS. Each encrypted dataset has its own DSL Crypto Key that is protected with a user's key. This level of indirection allows users to change their keys without re-encrypting their entire datasets. The change implements the new subcommands "zfs load-key", "zfs unload-key" and "zfs change-key" which allow the user to manage their encryption keys and settings. In addition, several new flags and properties have been added to allow dataset creation and to make mounting and unmounting more convenient. The second piece of this patch provides the ability to encrypt, decyrpt, and authenticate protected datasets. Each object set maintains a Merkel tree of Message Authentication Codes that protect the lower layers, similarly to how checksums are maintained. This part impacts the zio layer, which handles the actual encryption and generation of MACs, as well as the ARC and DMU, which need to be able to handle encrypted buffers and protected data. The last addition is the ability to do raw, encrypted sends and receives. The idea here is to send raw encrypted and compressed data and receive it exactly as is on a backup system. This means that the dataset on the receiving system is protected using the same user key that is in use on the sending side. By doing so, datasets can be efficiently backed up to an untrusted system without fear of data being compromised. Reviewed by: Matthew Ahrens <mahrens@delphix.com> Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov> Reviewed-by: Jorgen Lundman <lundman@lundman.net> Signed-off-by: Tom Caputi <tcaputi@datto.com> Closes #494 Closes #5769
2017-08-14 20:36:48 +03:00
if (error != 0) {
dsl_dir_rele(pdd, FTAG);
return (error);
}
error = dsl_fs_ss_limit_check(pdd, 1, ZFS_PROP_FILESYSTEM_LIMIT, NULL,
filesystem_limit/snapshot_limit is incorrectly enforced against root The filesystem_limit and snapshot_limit properties limit the number of filesystems or snapshots that can be created below this dataset. According to the manpage, "The limit is not enforced if the user is allowed to change the limit." Two types of users are allowed to change the limit: 1. Those that have been delegated the `filesystem_limit` or `snapshot_limit` permission, e.g. with `zfs allow USER filesystem_limit DATASET`. This works properly. 2. A user with elevated system privileges (e.g. root). This does not work - the root user will incorrectly get an error when trying to create a snapshot/filesystem, if it exceeds the `_limit` property. The problem is that `priv_policy_ns()` does not work if the `cred_t` is not that of the current process. This happens when `dsl_enforce_ds_ss_limits()` is called in syncing context (as part of a sync task's check func) to determine the permissions of the corresponding user process. This commit fixes the issue by passing the `task_struct` (typedef'ed as a `proc_t`) to syncing context, and then using `has_capability()` to determine if that process is privileged. Note that we still need to pass the `cred_t` to syncing context so that we can check if the user was delegated this permission with `zfs allow`. This problem only impacts Linux. Wrappers are added to FreeBSD but it continues to use `priv_check_cred()`, which works on arbitrary `cred_t`. Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov> Reviewed-by: Ryan Moeller <ryan@ixsystems.com> Signed-off-by: Matthew Ahrens <mahrens@delphix.com> Closes #8226 Closes #10545
2020-07-12 03:18:02 +03:00
doca->doca_cred, doca->doca_proc);
if (error != 0) {
dsl_dir_rele(pdd, FTAG);
return (error);
}
Native Encryption for ZFS on Linux This change incorporates three major pieces: The first change is a keystore that manages wrapping and encryption keys for encrypted datasets. These commands mostly involve manipulating the new DSL Crypto Key ZAP Objects that live in the MOS. Each encrypted dataset has its own DSL Crypto Key that is protected with a user's key. This level of indirection allows users to change their keys without re-encrypting their entire datasets. The change implements the new subcommands "zfs load-key", "zfs unload-key" and "zfs change-key" which allow the user to manage their encryption keys and settings. In addition, several new flags and properties have been added to allow dataset creation and to make mounting and unmounting more convenient. The second piece of this patch provides the ability to encrypt, decyrpt, and authenticate protected datasets. Each object set maintains a Merkel tree of Message Authentication Codes that protect the lower layers, similarly to how checksums are maintained. This part impacts the zio layer, which handles the actual encryption and generation of MACs, as well as the ARC and DMU, which need to be able to handle encrypted buffers and protected data. The last addition is the ability to do raw, encrypted sends and receives. The idea here is to send raw encrypted and compressed data and receive it exactly as is on a backup system. This means that the dataset on the receiving system is protected using the same user key that is in use on the sending side. By doing so, datasets can be efficiently backed up to an untrusted system without fear of data being compromised. Reviewed by: Matthew Ahrens <mahrens@delphix.com> Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov> Reviewed-by: Jorgen Lundman <lundman@lundman.net> Signed-off-by: Tom Caputi <tcaputi@datto.com> Closes #494 Closes #5769
2017-08-14 20:36:48 +03:00
/* can't create below anything but filesystems (eg. no ZVOLs) */
error = dsl_dataset_hold_obj(pdd->dd_pool,
dsl_dir_phys(pdd)->dd_head_dataset_obj, FTAG, &parentds);
if (error != 0) {
dsl_dir_rele(pdd, FTAG);
return (error);
}
error = dmu_objset_from_ds(parentds, &parentos);
if (error != 0) {
dsl_dataset_rele(parentds, FTAG);
dsl_dir_rele(pdd, FTAG);
return (error);
}
if (dmu_objset_type(parentos) != DMU_OST_ZFS) {
dsl_dataset_rele(parentds, FTAG);
dsl_dir_rele(pdd, FTAG);
return (SET_ERROR(ZFS_ERR_WRONG_PARENT));
}
dsl_dataset_rele(parentds, FTAG);
dsl_dir_rele(pdd, FTAG);
2008-11-20 23:01:55 +03:00
return (error);
2008-11-20 23:01:55 +03:00
}
static void
dmu_objset_create_sync(void *arg, dmu_tx_t *tx)
2008-11-20 23:01:55 +03:00
{
dmu_objset_create_arg_t *doca = arg;
dsl_pool_t *dp = dmu_tx_pool(tx);
spa_t *spa = dp->dp_spa;
dsl_dir_t *pdd;
const char *tail;
Illumos #2882, #2883, #2900 2882 implement libzfs_core 2883 changing "canmount" property to "on" should not always remount dataset 2900 "zfs snapshot" should be able to create multiple, arbitrary snapshots at once Reviewed by: George Wilson <george.wilson@delphix.com> Reviewed by: Chris Siden <christopher.siden@delphix.com> Reviewed by: Garrett D'Amore <garrett@damore.org> Reviewed by: Bill Pijewski <wdp@joyent.com> Reviewed by: Dan Kruchinin <dan.kruchinin@gmail.com> Approved by: Eric Schrock <Eric.Schrock@delphix.com> References: https://www.illumos.org/issues/2882 https://www.illumos.org/issues/2883 https://www.illumos.org/issues/2900 illumos/illumos-gate@4445fffbbb1ea25fd0e9ea68b9380dd7a6709025 Ported-by: Tim Chase <tim@chase2k.com> Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov> Closes #1293 Porting notes: WARNING: This patch changes the user/kernel ABI. That means that the zfs/zpool utilities built from master are NOT compatible with the 0.6.2 kernel modules. Ensure you load the matching kernel modules from master after updating the utilities. Otherwise the zfs/zpool commands will be unable to interact with your pool and you will see errors similar to the following: $ zpool list failed to read pool configuration: bad address no pools available $ zfs list no datasets available Add zvol minor device creation to the new zfs_snapshot_nvl function. Remove the logging of the "release" operation in dsl_dataset_user_release_sync(). The logging caused a null dereference because ds->ds_dir is zeroed in dsl_dataset_destroy_sync() and the logging functions try to get the ds name via the dsl_dataset_name() function. I've got no idea why this particular code would have worked in Illumos. This code has subsequently been completely reworked in Illumos commit 3b2aab1 (3464 zfs synctask code needs restructuring). Squash some "may be used uninitialized" warning/erorrs. Fix some printf format warnings for %lld and %llu. Apply a few spa_writeable() changes that were made to Illumos in illumos/illumos-gate.git@cd1c8b8 as part of the 3112, 3113, 3114 and 3115 fixes. Add a missing call to fnvlist_free(nvl) in log_internal() that was added in Illumos to fix issue 3085 but couldn't be ported to ZoL at the time (zfsonlinux/zfs@9e11c73) because it depended on future work.
2013-08-28 15:45:09 +04:00
dsl_dataset_t *ds;
uint64_t obj;
Illumos #2882, #2883, #2900 2882 implement libzfs_core 2883 changing "canmount" property to "on" should not always remount dataset 2900 "zfs snapshot" should be able to create multiple, arbitrary snapshots at once Reviewed by: George Wilson <george.wilson@delphix.com> Reviewed by: Chris Siden <christopher.siden@delphix.com> Reviewed by: Garrett D'Amore <garrett@damore.org> Reviewed by: Bill Pijewski <wdp@joyent.com> Reviewed by: Dan Kruchinin <dan.kruchinin@gmail.com> Approved by: Eric Schrock <Eric.Schrock@delphix.com> References: https://www.illumos.org/issues/2882 https://www.illumos.org/issues/2883 https://www.illumos.org/issues/2900 illumos/illumos-gate@4445fffbbb1ea25fd0e9ea68b9380dd7a6709025 Ported-by: Tim Chase <tim@chase2k.com> Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov> Closes #1293 Porting notes: WARNING: This patch changes the user/kernel ABI. That means that the zfs/zpool utilities built from master are NOT compatible with the 0.6.2 kernel modules. Ensure you load the matching kernel modules from master after updating the utilities. Otherwise the zfs/zpool commands will be unable to interact with your pool and you will see errors similar to the following: $ zpool list failed to read pool configuration: bad address no pools available $ zfs list no datasets available Add zvol minor device creation to the new zfs_snapshot_nvl function. Remove the logging of the "release" operation in dsl_dataset_user_release_sync(). The logging caused a null dereference because ds->ds_dir is zeroed in dsl_dataset_destroy_sync() and the logging functions try to get the ds name via the dsl_dataset_name() function. I've got no idea why this particular code would have worked in Illumos. This code has subsequently been completely reworked in Illumos commit 3b2aab1 (3464 zfs synctask code needs restructuring). Squash some "may be used uninitialized" warning/erorrs. Fix some printf format warnings for %lld and %llu. Apply a few spa_writeable() changes that were made to Illumos in illumos/illumos-gate.git@cd1c8b8 as part of the 3112, 3113, 3114 and 3115 fixes. Add a missing call to fnvlist_free(nvl) in log_internal() that was added in Illumos to fix issue 3085 but couldn't be ported to ZoL at the time (zfsonlinux/zfs@9e11c73) because it depended on future work.
2013-08-28 15:45:09 +04:00
blkptr_t *bp;
objset_t *os;
Native Encryption for ZFS on Linux This change incorporates three major pieces: The first change is a keystore that manages wrapping and encryption keys for encrypted datasets. These commands mostly involve manipulating the new DSL Crypto Key ZAP Objects that live in the MOS. Each encrypted dataset has its own DSL Crypto Key that is protected with a user's key. This level of indirection allows users to change their keys without re-encrypting their entire datasets. The change implements the new subcommands "zfs load-key", "zfs unload-key" and "zfs change-key" which allow the user to manage their encryption keys and settings. In addition, several new flags and properties have been added to allow dataset creation and to make mounting and unmounting more convenient. The second piece of this patch provides the ability to encrypt, decyrpt, and authenticate protected datasets. Each object set maintains a Merkel tree of Message Authentication Codes that protect the lower layers, similarly to how checksums are maintained. This part impacts the zio layer, which handles the actual encryption and generation of MACs, as well as the ARC and DMU, which need to be able to handle encrypted buffers and protected data. The last addition is the ability to do raw, encrypted sends and receives. The idea here is to send raw encrypted and compressed data and receive it exactly as is on a backup system. This means that the dataset on the receiving system is protected using the same user key that is in use on the sending side. By doing so, datasets can be efficiently backed up to an untrusted system without fear of data being compromised. Reviewed by: Matthew Ahrens <mahrens@delphix.com> Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov> Reviewed-by: Jorgen Lundman <lundman@lundman.net> Signed-off-by: Tom Caputi <tcaputi@datto.com> Closes #494 Closes #5769
2017-08-14 20:36:48 +03:00
zio_t *rzio;
2008-11-20 23:01:55 +03:00
VERIFY0(dsl_dir_hold(dp, doca->doca_name, FTAG, &pdd, &tail));
2008-11-20 23:01:55 +03:00
obj = dsl_dataset_create_sync(pdd, tail, NULL, doca->doca_flags,
Native Encryption for ZFS on Linux This change incorporates three major pieces: The first change is a keystore that manages wrapping and encryption keys for encrypted datasets. These commands mostly involve manipulating the new DSL Crypto Key ZAP Objects that live in the MOS. Each encrypted dataset has its own DSL Crypto Key that is protected with a user's key. This level of indirection allows users to change their keys without re-encrypting their entire datasets. The change implements the new subcommands "zfs load-key", "zfs unload-key" and "zfs change-key" which allow the user to manage their encryption keys and settings. In addition, several new flags and properties have been added to allow dataset creation and to make mounting and unmounting more convenient. The second piece of this patch provides the ability to encrypt, decyrpt, and authenticate protected datasets. Each object set maintains a Merkel tree of Message Authentication Codes that protect the lower layers, similarly to how checksums are maintained. This part impacts the zio layer, which handles the actual encryption and generation of MACs, as well as the ARC and DMU, which need to be able to handle encrypted buffers and protected data. The last addition is the ability to do raw, encrypted sends and receives. The idea here is to send raw encrypted and compressed data and receive it exactly as is on a backup system. This means that the dataset on the receiving system is protected using the same user key that is in use on the sending side. By doing so, datasets can be efficiently backed up to an untrusted system without fear of data being compromised. Reviewed by: Matthew Ahrens <mahrens@delphix.com> Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov> Reviewed-by: Jorgen Lundman <lundman@lundman.net> Signed-off-by: Tom Caputi <tcaputi@datto.com> Closes #494 Closes #5769
2017-08-14 20:36:48 +03:00
doca->doca_cred, doca->doca_dcp, tx);
2008-11-20 23:01:55 +03:00
Native Encryption for ZFS on Linux This change incorporates three major pieces: The first change is a keystore that manages wrapping and encryption keys for encrypted datasets. These commands mostly involve manipulating the new DSL Crypto Key ZAP Objects that live in the MOS. Each encrypted dataset has its own DSL Crypto Key that is protected with a user's key. This level of indirection allows users to change their keys without re-encrypting their entire datasets. The change implements the new subcommands "zfs load-key", "zfs unload-key" and "zfs change-key" which allow the user to manage their encryption keys and settings. In addition, several new flags and properties have been added to allow dataset creation and to make mounting and unmounting more convenient. The second piece of this patch provides the ability to encrypt, decyrpt, and authenticate protected datasets. Each object set maintains a Merkel tree of Message Authentication Codes that protect the lower layers, similarly to how checksums are maintained. This part impacts the zio layer, which handles the actual encryption and generation of MACs, as well as the ARC and DMU, which need to be able to handle encrypted buffers and protected data. The last addition is the ability to do raw, encrypted sends and receives. The idea here is to send raw encrypted and compressed data and receive it exactly as is on a backup system. This means that the dataset on the receiving system is protected using the same user key that is in use on the sending side. By doing so, datasets can be efficiently backed up to an untrusted system without fear of data being compromised. Reviewed by: Matthew Ahrens <mahrens@delphix.com> Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov> Reviewed-by: Jorgen Lundman <lundman@lundman.net> Signed-off-by: Tom Caputi <tcaputi@datto.com> Closes #494 Closes #5769
2017-08-14 20:36:48 +03:00
VERIFY0(dsl_dataset_hold_obj_flags(pdd->dd_pool, obj,
DS_HOLD_FLAG_DECRYPT, FTAG, &ds));
rrw_enter(&ds->ds_bp_rwlock, RW_READER, FTAG);
Illumos #2882, #2883, #2900 2882 implement libzfs_core 2883 changing "canmount" property to "on" should not always remount dataset 2900 "zfs snapshot" should be able to create multiple, arbitrary snapshots at once Reviewed by: George Wilson <george.wilson@delphix.com> Reviewed by: Chris Siden <christopher.siden@delphix.com> Reviewed by: Garrett D'Amore <garrett@damore.org> Reviewed by: Bill Pijewski <wdp@joyent.com> Reviewed by: Dan Kruchinin <dan.kruchinin@gmail.com> Approved by: Eric Schrock <Eric.Schrock@delphix.com> References: https://www.illumos.org/issues/2882 https://www.illumos.org/issues/2883 https://www.illumos.org/issues/2900 illumos/illumos-gate@4445fffbbb1ea25fd0e9ea68b9380dd7a6709025 Ported-by: Tim Chase <tim@chase2k.com> Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov> Closes #1293 Porting notes: WARNING: This patch changes the user/kernel ABI. That means that the zfs/zpool utilities built from master are NOT compatible with the 0.6.2 kernel modules. Ensure you load the matching kernel modules from master after updating the utilities. Otherwise the zfs/zpool commands will be unable to interact with your pool and you will see errors similar to the following: $ zpool list failed to read pool configuration: bad address no pools available $ zfs list no datasets available Add zvol minor device creation to the new zfs_snapshot_nvl function. Remove the logging of the "release" operation in dsl_dataset_user_release_sync(). The logging caused a null dereference because ds->ds_dir is zeroed in dsl_dataset_destroy_sync() and the logging functions try to get the ds name via the dsl_dataset_name() function. I've got no idea why this particular code would have worked in Illumos. This code has subsequently been completely reworked in Illumos commit 3b2aab1 (3464 zfs synctask code needs restructuring). Squash some "may be used uninitialized" warning/erorrs. Fix some printf format warnings for %lld and %llu. Apply a few spa_writeable() changes that were made to Illumos in illumos/illumos-gate.git@cd1c8b8 as part of the 3112, 3113, 3114 and 3115 fixes. Add a missing call to fnvlist_free(nvl) in log_internal() that was added in Illumos to fix issue 3085 but couldn't be ported to ZoL at the time (zfsonlinux/zfs@9e11c73) because it depended on future work.
2013-08-28 15:45:09 +04:00
bp = dsl_dataset_get_blkptr(ds);
os = dmu_objset_create_impl(spa, ds, bp, doca->doca_type, tx);
rrw_exit(&ds->ds_bp_rwlock, FTAG);
2008-11-20 23:01:55 +03:00
if (doca->doca_userfunc != NULL) {
doca->doca_userfunc(os, doca->doca_userarg,
doca->doca_cred, tx);
2008-11-20 23:01:55 +03:00
}
Native Encryption for ZFS on Linux This change incorporates three major pieces: The first change is a keystore that manages wrapping and encryption keys for encrypted datasets. These commands mostly involve manipulating the new DSL Crypto Key ZAP Objects that live in the MOS. Each encrypted dataset has its own DSL Crypto Key that is protected with a user's key. This level of indirection allows users to change their keys without re-encrypting their entire datasets. The change implements the new subcommands "zfs load-key", "zfs unload-key" and "zfs change-key" which allow the user to manage their encryption keys and settings. In addition, several new flags and properties have been added to allow dataset creation and to make mounting and unmounting more convenient. The second piece of this patch provides the ability to encrypt, decyrpt, and authenticate protected datasets. Each object set maintains a Merkel tree of Message Authentication Codes that protect the lower layers, similarly to how checksums are maintained. This part impacts the zio layer, which handles the actual encryption and generation of MACs, as well as the ARC and DMU, which need to be able to handle encrypted buffers and protected data. The last addition is the ability to do raw, encrypted sends and receives. The idea here is to send raw encrypted and compressed data and receive it exactly as is on a backup system. This means that the dataset on the receiving system is protected using the same user key that is in use on the sending side. By doing so, datasets can be efficiently backed up to an untrusted system without fear of data being compromised. Reviewed by: Matthew Ahrens <mahrens@delphix.com> Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov> Reviewed-by: Jorgen Lundman <lundman@lundman.net> Signed-off-by: Tom Caputi <tcaputi@datto.com> Closes #494 Closes #5769
2017-08-14 20:36:48 +03:00
/*
* The doca_userfunc() may write out some data that needs to be
Native Encryption for ZFS on Linux This change incorporates three major pieces: The first change is a keystore that manages wrapping and encryption keys for encrypted datasets. These commands mostly involve manipulating the new DSL Crypto Key ZAP Objects that live in the MOS. Each encrypted dataset has its own DSL Crypto Key that is protected with a user's key. This level of indirection allows users to change their keys without re-encrypting their entire datasets. The change implements the new subcommands "zfs load-key", "zfs unload-key" and "zfs change-key" which allow the user to manage their encryption keys and settings. In addition, several new flags and properties have been added to allow dataset creation and to make mounting and unmounting more convenient. The second piece of this patch provides the ability to encrypt, decyrpt, and authenticate protected datasets. Each object set maintains a Merkel tree of Message Authentication Codes that protect the lower layers, similarly to how checksums are maintained. This part impacts the zio layer, which handles the actual encryption and generation of MACs, as well as the ARC and DMU, which need to be able to handle encrypted buffers and protected data. The last addition is the ability to do raw, encrypted sends and receives. The idea here is to send raw encrypted and compressed data and receive it exactly as is on a backup system. This means that the dataset on the receiving system is protected using the same user key that is in use on the sending side. By doing so, datasets can be efficiently backed up to an untrusted system without fear of data being compromised. Reviewed by: Matthew Ahrens <mahrens@delphix.com> Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov> Reviewed-by: Jorgen Lundman <lundman@lundman.net> Signed-off-by: Tom Caputi <tcaputi@datto.com> Closes #494 Closes #5769
2017-08-14 20:36:48 +03:00
* encrypted if the dataset is encrypted (specifically the root
* directory). This data must be written out before the encryption
* key mapping is removed by dsl_dataset_rele_flags(). Force the
* I/O to occur immediately by invoking the relevant sections of
* dsl_pool_sync().
*/
if (os->os_encrypted) {
dsl_dataset_t *tmpds = NULL;
boolean_t need_sync_done = B_FALSE;
mutex_enter(&ds->ds_lock);
ds->ds_owner = FTAG;
mutex_exit(&ds->ds_lock);
rzio = zio_root(spa, NULL, NULL, ZIO_FLAG_MUSTSUCCEED);
tmpds = txg_list_remove_this(&dp->dp_dirty_datasets, ds,
tx->tx_txg);
Native Encryption for ZFS on Linux This change incorporates three major pieces: The first change is a keystore that manages wrapping and encryption keys for encrypted datasets. These commands mostly involve manipulating the new DSL Crypto Key ZAP Objects that live in the MOS. Each encrypted dataset has its own DSL Crypto Key that is protected with a user's key. This level of indirection allows users to change their keys without re-encrypting their entire datasets. The change implements the new subcommands "zfs load-key", "zfs unload-key" and "zfs change-key" which allow the user to manage their encryption keys and settings. In addition, several new flags and properties have been added to allow dataset creation and to make mounting and unmounting more convenient. The second piece of this patch provides the ability to encrypt, decyrpt, and authenticate protected datasets. Each object set maintains a Merkel tree of Message Authentication Codes that protect the lower layers, similarly to how checksums are maintained. This part impacts the zio layer, which handles the actual encryption and generation of MACs, as well as the ARC and DMU, which need to be able to handle encrypted buffers and protected data. The last addition is the ability to do raw, encrypted sends and receives. The idea here is to send raw encrypted and compressed data and receive it exactly as is on a backup system. This means that the dataset on the receiving system is protected using the same user key that is in use on the sending side. By doing so, datasets can be efficiently backed up to an untrusted system without fear of data being compromised. Reviewed by: Matthew Ahrens <mahrens@delphix.com> Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov> Reviewed-by: Jorgen Lundman <lundman@lundman.net> Signed-off-by: Tom Caputi <tcaputi@datto.com> Closes #494 Closes #5769
2017-08-14 20:36:48 +03:00
if (tmpds != NULL) {
dsl_dataset_sync(ds, rzio, tx);
need_sync_done = B_TRUE;
}
VERIFY0(zio_wait(rzio));
dmu_objset_do_userquota_updates(os, tx);
taskq_wait(dp->dp_sync_taskq);
if (txg_list_member(&dp->dp_dirty_datasets, ds, tx->tx_txg)) {
ASSERT3P(ds->ds_key_mapping, !=, NULL);
key_mapping_rele(spa, ds->ds_key_mapping, ds);
}
Native Encryption for ZFS on Linux This change incorporates three major pieces: The first change is a keystore that manages wrapping and encryption keys for encrypted datasets. These commands mostly involve manipulating the new DSL Crypto Key ZAP Objects that live in the MOS. Each encrypted dataset has its own DSL Crypto Key that is protected with a user's key. This level of indirection allows users to change their keys without re-encrypting their entire datasets. The change implements the new subcommands "zfs load-key", "zfs unload-key" and "zfs change-key" which allow the user to manage their encryption keys and settings. In addition, several new flags and properties have been added to allow dataset creation and to make mounting and unmounting more convenient. The second piece of this patch provides the ability to encrypt, decyrpt, and authenticate protected datasets. Each object set maintains a Merkel tree of Message Authentication Codes that protect the lower layers, similarly to how checksums are maintained. This part impacts the zio layer, which handles the actual encryption and generation of MACs, as well as the ARC and DMU, which need to be able to handle encrypted buffers and protected data. The last addition is the ability to do raw, encrypted sends and receives. The idea here is to send raw encrypted and compressed data and receive it exactly as is on a backup system. This means that the dataset on the receiving system is protected using the same user key that is in use on the sending side. By doing so, datasets can be efficiently backed up to an untrusted system without fear of data being compromised. Reviewed by: Matthew Ahrens <mahrens@delphix.com> Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov> Reviewed-by: Jorgen Lundman <lundman@lundman.net> Signed-off-by: Tom Caputi <tcaputi@datto.com> Closes #494 Closes #5769
2017-08-14 20:36:48 +03:00
rzio = zio_root(spa, NULL, NULL, ZIO_FLAG_MUSTSUCCEED);
tmpds = txg_list_remove_this(&dp->dp_dirty_datasets, ds,
tx->tx_txg);
Native Encryption for ZFS on Linux This change incorporates three major pieces: The first change is a keystore that manages wrapping and encryption keys for encrypted datasets. These commands mostly involve manipulating the new DSL Crypto Key ZAP Objects that live in the MOS. Each encrypted dataset has its own DSL Crypto Key that is protected with a user's key. This level of indirection allows users to change their keys without re-encrypting their entire datasets. The change implements the new subcommands "zfs load-key", "zfs unload-key" and "zfs change-key" which allow the user to manage their encryption keys and settings. In addition, several new flags and properties have been added to allow dataset creation and to make mounting and unmounting more convenient. The second piece of this patch provides the ability to encrypt, decyrpt, and authenticate protected datasets. Each object set maintains a Merkel tree of Message Authentication Codes that protect the lower layers, similarly to how checksums are maintained. This part impacts the zio layer, which handles the actual encryption and generation of MACs, as well as the ARC and DMU, which need to be able to handle encrypted buffers and protected data. The last addition is the ability to do raw, encrypted sends and receives. The idea here is to send raw encrypted and compressed data and receive it exactly as is on a backup system. This means that the dataset on the receiving system is protected using the same user key that is in use on the sending side. By doing so, datasets can be efficiently backed up to an untrusted system without fear of data being compromised. Reviewed by: Matthew Ahrens <mahrens@delphix.com> Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov> Reviewed-by: Jorgen Lundman <lundman@lundman.net> Signed-off-by: Tom Caputi <tcaputi@datto.com> Closes #494 Closes #5769
2017-08-14 20:36:48 +03:00
if (tmpds != NULL) {
dmu_buf_rele(ds->ds_dbuf, ds);
dsl_dataset_sync(ds, rzio, tx);
}
VERIFY0(zio_wait(rzio));
if (need_sync_done) {
ASSERT3P(ds->ds_key_mapping, !=, NULL);
key_mapping_rele(spa, ds->ds_key_mapping, ds);
Native Encryption for ZFS on Linux This change incorporates three major pieces: The first change is a keystore that manages wrapping and encryption keys for encrypted datasets. These commands mostly involve manipulating the new DSL Crypto Key ZAP Objects that live in the MOS. Each encrypted dataset has its own DSL Crypto Key that is protected with a user's key. This level of indirection allows users to change their keys without re-encrypting their entire datasets. The change implements the new subcommands "zfs load-key", "zfs unload-key" and "zfs change-key" which allow the user to manage their encryption keys and settings. In addition, several new flags and properties have been added to allow dataset creation and to make mounting and unmounting more convenient. The second piece of this patch provides the ability to encrypt, decyrpt, and authenticate protected datasets. Each object set maintains a Merkel tree of Message Authentication Codes that protect the lower layers, similarly to how checksums are maintained. This part impacts the zio layer, which handles the actual encryption and generation of MACs, as well as the ARC and DMU, which need to be able to handle encrypted buffers and protected data. The last addition is the ability to do raw, encrypted sends and receives. The idea here is to send raw encrypted and compressed data and receive it exactly as is on a backup system. This means that the dataset on the receiving system is protected using the same user key that is in use on the sending side. By doing so, datasets can be efficiently backed up to an untrusted system without fear of data being compromised. Reviewed by: Matthew Ahrens <mahrens@delphix.com> Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov> Reviewed-by: Jorgen Lundman <lundman@lundman.net> Signed-off-by: Tom Caputi <tcaputi@datto.com> Closes #494 Closes #5769
2017-08-14 20:36:48 +03:00
dsl_dataset_sync_done(ds, tx);
}
mutex_enter(&ds->ds_lock);
ds->ds_owner = NULL;
mutex_exit(&ds->ds_lock);
Native Encryption for ZFS on Linux This change incorporates three major pieces: The first change is a keystore that manages wrapping and encryption keys for encrypted datasets. These commands mostly involve manipulating the new DSL Crypto Key ZAP Objects that live in the MOS. Each encrypted dataset has its own DSL Crypto Key that is protected with a user's key. This level of indirection allows users to change their keys without re-encrypting their entire datasets. The change implements the new subcommands "zfs load-key", "zfs unload-key" and "zfs change-key" which allow the user to manage their encryption keys and settings. In addition, several new flags and properties have been added to allow dataset creation and to make mounting and unmounting more convenient. The second piece of this patch provides the ability to encrypt, decyrpt, and authenticate protected datasets. Each object set maintains a Merkel tree of Message Authentication Codes that protect the lower layers, similarly to how checksums are maintained. This part impacts the zio layer, which handles the actual encryption and generation of MACs, as well as the ARC and DMU, which need to be able to handle encrypted buffers and protected data. The last addition is the ability to do raw, encrypted sends and receives. The idea here is to send raw encrypted and compressed data and receive it exactly as is on a backup system. This means that the dataset on the receiving system is protected using the same user key that is in use on the sending side. By doing so, datasets can be efficiently backed up to an untrusted system without fear of data being compromised. Reviewed by: Matthew Ahrens <mahrens@delphix.com> Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov> Reviewed-by: Jorgen Lundman <lundman@lundman.net> Signed-off-by: Tom Caputi <tcaputi@datto.com> Closes #494 Closes #5769
2017-08-14 20:36:48 +03:00
}
spa_history_log_internal_ds(ds, "create", tx, " ");
Native Encryption for ZFS on Linux This change incorporates three major pieces: The first change is a keystore that manages wrapping and encryption keys for encrypted datasets. These commands mostly involve manipulating the new DSL Crypto Key ZAP Objects that live in the MOS. Each encrypted dataset has its own DSL Crypto Key that is protected with a user's key. This level of indirection allows users to change their keys without re-encrypting their entire datasets. The change implements the new subcommands "zfs load-key", "zfs unload-key" and "zfs change-key" which allow the user to manage their encryption keys and settings. In addition, several new flags and properties have been added to allow dataset creation and to make mounting and unmounting more convenient. The second piece of this patch provides the ability to encrypt, decyrpt, and authenticate protected datasets. Each object set maintains a Merkel tree of Message Authentication Codes that protect the lower layers, similarly to how checksums are maintained. This part impacts the zio layer, which handles the actual encryption and generation of MACs, as well as the ARC and DMU, which need to be able to handle encrypted buffers and protected data. The last addition is the ability to do raw, encrypted sends and receives. The idea here is to send raw encrypted and compressed data and receive it exactly as is on a backup system. This means that the dataset on the receiving system is protected using the same user key that is in use on the sending side. By doing so, datasets can be efficiently backed up to an untrusted system without fear of data being compromised. Reviewed by: Matthew Ahrens <mahrens@delphix.com> Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov> Reviewed-by: Jorgen Lundman <lundman@lundman.net> Signed-off-by: Tom Caputi <tcaputi@datto.com> Closes #494 Closes #5769
2017-08-14 20:36:48 +03:00
dsl_dataset_rele_flags(ds, DS_HOLD_FLAG_DECRYPT, FTAG);
dsl_dir_rele(pdd, FTAG);
2008-11-20 23:01:55 +03:00
}
int
dmu_objset_create(const char *name, dmu_objset_type_t type, uint64_t flags,
Native Encryption for ZFS on Linux This change incorporates three major pieces: The first change is a keystore that manages wrapping and encryption keys for encrypted datasets. These commands mostly involve manipulating the new DSL Crypto Key ZAP Objects that live in the MOS. Each encrypted dataset has its own DSL Crypto Key that is protected with a user's key. This level of indirection allows users to change their keys without re-encrypting their entire datasets. The change implements the new subcommands "zfs load-key", "zfs unload-key" and "zfs change-key" which allow the user to manage their encryption keys and settings. In addition, several new flags and properties have been added to allow dataset creation and to make mounting and unmounting more convenient. The second piece of this patch provides the ability to encrypt, decyrpt, and authenticate protected datasets. Each object set maintains a Merkel tree of Message Authentication Codes that protect the lower layers, similarly to how checksums are maintained. This part impacts the zio layer, which handles the actual encryption and generation of MACs, as well as the ARC and DMU, which need to be able to handle encrypted buffers and protected data. The last addition is the ability to do raw, encrypted sends and receives. The idea here is to send raw encrypted and compressed data and receive it exactly as is on a backup system. This means that the dataset on the receiving system is protected using the same user key that is in use on the sending side. By doing so, datasets can be efficiently backed up to an untrusted system without fear of data being compromised. Reviewed by: Matthew Ahrens <mahrens@delphix.com> Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov> Reviewed-by: Jorgen Lundman <lundman@lundman.net> Signed-off-by: Tom Caputi <tcaputi@datto.com> Closes #494 Closes #5769
2017-08-14 20:36:48 +03:00
dsl_crypto_params_t *dcp, dmu_objset_create_sync_func_t func, void *arg)
2008-11-20 23:01:55 +03:00
{
dmu_objset_create_arg_t doca;
Native Encryption for ZFS on Linux This change incorporates three major pieces: The first change is a keystore that manages wrapping and encryption keys for encrypted datasets. These commands mostly involve manipulating the new DSL Crypto Key ZAP Objects that live in the MOS. Each encrypted dataset has its own DSL Crypto Key that is protected with a user's key. This level of indirection allows users to change their keys without re-encrypting their entire datasets. The change implements the new subcommands "zfs load-key", "zfs unload-key" and "zfs change-key" which allow the user to manage their encryption keys and settings. In addition, several new flags and properties have been added to allow dataset creation and to make mounting and unmounting more convenient. The second piece of this patch provides the ability to encrypt, decyrpt, and authenticate protected datasets. Each object set maintains a Merkel tree of Message Authentication Codes that protect the lower layers, similarly to how checksums are maintained. This part impacts the zio layer, which handles the actual encryption and generation of MACs, as well as the ARC and DMU, which need to be able to handle encrypted buffers and protected data. The last addition is the ability to do raw, encrypted sends and receives. The idea here is to send raw encrypted and compressed data and receive it exactly as is on a backup system. This means that the dataset on the receiving system is protected using the same user key that is in use on the sending side. By doing so, datasets can be efficiently backed up to an untrusted system without fear of data being compromised. Reviewed by: Matthew Ahrens <mahrens@delphix.com> Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov> Reviewed-by: Jorgen Lundman <lundman@lundman.net> Signed-off-by: Tom Caputi <tcaputi@datto.com> Closes #494 Closes #5769
2017-08-14 20:36:48 +03:00
dsl_crypto_params_t tmp_dcp = { 0 };
2008-11-20 23:01:55 +03:00
doca.doca_name = name;
doca.doca_cred = CRED();
filesystem_limit/snapshot_limit is incorrectly enforced against root The filesystem_limit and snapshot_limit properties limit the number of filesystems or snapshots that can be created below this dataset. According to the manpage, "The limit is not enforced if the user is allowed to change the limit." Two types of users are allowed to change the limit: 1. Those that have been delegated the `filesystem_limit` or `snapshot_limit` permission, e.g. with `zfs allow USER filesystem_limit DATASET`. This works properly. 2. A user with elevated system privileges (e.g. root). This does not work - the root user will incorrectly get an error when trying to create a snapshot/filesystem, if it exceeds the `_limit` property. The problem is that `priv_policy_ns()` does not work if the `cred_t` is not that of the current process. This happens when `dsl_enforce_ds_ss_limits()` is called in syncing context (as part of a sync task's check func) to determine the permissions of the corresponding user process. This commit fixes the issue by passing the `task_struct` (typedef'ed as a `proc_t`) to syncing context, and then using `has_capability()` to determine if that process is privileged. Note that we still need to pass the `cred_t` to syncing context so that we can check if the user was delegated this permission with `zfs allow`. This problem only impacts Linux. Wrappers are added to FreeBSD but it continues to use `priv_check_cred()`, which works on arbitrary `cred_t`. Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov> Reviewed-by: Ryan Moeller <ryan@ixsystems.com> Signed-off-by: Matthew Ahrens <mahrens@delphix.com> Closes #8226 Closes #10545
2020-07-12 03:18:02 +03:00
doca.doca_proc = curproc;
doca.doca_flags = flags;
doca.doca_userfunc = func;
doca.doca_userarg = arg;
doca.doca_type = type;
2008-11-20 23:01:55 +03:00
Native Encryption for ZFS on Linux This change incorporates three major pieces: The first change is a keystore that manages wrapping and encryption keys for encrypted datasets. These commands mostly involve manipulating the new DSL Crypto Key ZAP Objects that live in the MOS. Each encrypted dataset has its own DSL Crypto Key that is protected with a user's key. This level of indirection allows users to change their keys without re-encrypting their entire datasets. The change implements the new subcommands "zfs load-key", "zfs unload-key" and "zfs change-key" which allow the user to manage their encryption keys and settings. In addition, several new flags and properties have been added to allow dataset creation and to make mounting and unmounting more convenient. The second piece of this patch provides the ability to encrypt, decyrpt, and authenticate protected datasets. Each object set maintains a Merkel tree of Message Authentication Codes that protect the lower layers, similarly to how checksums are maintained. This part impacts the zio layer, which handles the actual encryption and generation of MACs, as well as the ARC and DMU, which need to be able to handle encrypted buffers and protected data. The last addition is the ability to do raw, encrypted sends and receives. The idea here is to send raw encrypted and compressed data and receive it exactly as is on a backup system. This means that the dataset on the receiving system is protected using the same user key that is in use on the sending side. By doing so, datasets can be efficiently backed up to an untrusted system without fear of data being compromised. Reviewed by: Matthew Ahrens <mahrens@delphix.com> Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov> Reviewed-by: Jorgen Lundman <lundman@lundman.net> Signed-off-by: Tom Caputi <tcaputi@datto.com> Closes #494 Closes #5769
2017-08-14 20:36:48 +03:00
/*
* Some callers (mostly for testing) do not provide a dcp on their
* own but various code inside the sync task will require it to be
* allocated. Rather than adding NULL checks throughout this code
* or adding dummy dcp's to all of the callers we simply create a
* dummy one here and use that. This zero dcp will have the same
* effect as asking for inheritance of all encryption params.
Native Encryption for ZFS on Linux This change incorporates three major pieces: The first change is a keystore that manages wrapping and encryption keys for encrypted datasets. These commands mostly involve manipulating the new DSL Crypto Key ZAP Objects that live in the MOS. Each encrypted dataset has its own DSL Crypto Key that is protected with a user's key. This level of indirection allows users to change their keys without re-encrypting their entire datasets. The change implements the new subcommands "zfs load-key", "zfs unload-key" and "zfs change-key" which allow the user to manage their encryption keys and settings. In addition, several new flags and properties have been added to allow dataset creation and to make mounting and unmounting more convenient. The second piece of this patch provides the ability to encrypt, decyrpt, and authenticate protected datasets. Each object set maintains a Merkel tree of Message Authentication Codes that protect the lower layers, similarly to how checksums are maintained. This part impacts the zio layer, which handles the actual encryption and generation of MACs, as well as the ARC and DMU, which need to be able to handle encrypted buffers and protected data. The last addition is the ability to do raw, encrypted sends and receives. The idea here is to send raw encrypted and compressed data and receive it exactly as is on a backup system. This means that the dataset on the receiving system is protected using the same user key that is in use on the sending side. By doing so, datasets can be efficiently backed up to an untrusted system without fear of data being compromised. Reviewed by: Matthew Ahrens <mahrens@delphix.com> Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov> Reviewed-by: Jorgen Lundman <lundman@lundman.net> Signed-off-by: Tom Caputi <tcaputi@datto.com> Closes #494 Closes #5769
2017-08-14 20:36:48 +03:00
*/
doca.doca_dcp = (dcp != NULL) ? dcp : &tmp_dcp;
async zvol minor node creation interferes with receive When we finish a zfs receive, dmu_recv_end_sync() calls zvol_create_minors(async=TRUE). This kicks off some other threads that create the minor device nodes (in /dev/zvol/poolname/...). These async threads call zvol_prefetch_minors_impl() and zvol_create_minor(), which both call dmu_objset_own(), which puts a "long hold" on the dataset. Since the zvol minor node creation is asynchronous, this can happen after the `ZFS_IOC_RECV[_NEW]` ioctl and `zfs receive` process have completed. After the first receive ioctl has completed, userland may attempt to do another receive into the same dataset (e.g. the next incremental stream). This second receive and the asynchronous minor node creation can interfere with one another in several different ways, because they both require exclusive access to the dataset: 1. When the second receive is finishing up, dmu_recv_end_check() does dsl_dataset_handoff_check(), which can fail with EBUSY if the async minor node creation already has a "long hold" on this dataset. This causes the 2nd receive to fail. 2. The async udev rule can fail if zvol_id and/or systemd-udevd try to open the device while the the second receive's async attempt at minor node creation owns the dataset (via zvol_prefetch_minors_impl). This causes the minor node (/dev/zd*) to exist, but the udev-generated /dev/zvol/... to not exist. 3. The async minor node creation can silently fail with EBUSY if the first receive's zvol_create_minor() trys to own the dataset while the second receive's zvol_prefetch_minors_impl already owns the dataset. To address these problems, this change synchronously creates the minor node. To avoid the lock ordering problems that the asynchrony was introduced to fix (see #3681), we create the minor nodes from open context, with no locks held, rather than from syncing contex as was originally done. Implementation notes: We generally do not need to traverse children or prefetch anything (e.g. when running the recv, snapshot, create, or clone subcommands of zfs). We only need recursion when importing/opening a pool and when loading encryption keys. The existing recursive, asynchronous, prefetching code is preserved for use in these cases. Channel programs may need to create zvol minor nodes, when creating a snapshot of a zvol with the snapdev property set. We figure out what snapshots are created when running the LUA program in syncing context. In this case we need to remember what snapshots were created, and then try to create their minor nodes from open context, after the LUA code has completed. There are additional zvol use cases that asynchronously own the dataset, which can cause similar problems. E.g. changing the volmode or snapdev properties. These are less problematic because they are not recursive and don't touch datasets that are not involved in the operation, there is still potential for interference with subsequent operations. In the future, these cases should be similarly converted to create the zvol minor node synchronously from open context. The async tasks of removing and renaming minors do not own the objset, so they do not have this problem. However, it may make sense to also convert these operations to happen synchronously from open context, in the future. Reviewed-by: Paul Dagnelie <pcd@delphix.com> Reviewed-by: Prakash Surya <prakash.surya@delphix.com> Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov> Signed-off-by: Matthew Ahrens <mahrens@delphix.com> External-issue: DLPX-65948 Closes #7863 Closes #9885
2020-02-03 20:33:14 +03:00
int rv = dsl_sync_task(name,
dmu_objset_create_check, dmu_objset_create_sync, &doca,
async zvol minor node creation interferes with receive When we finish a zfs receive, dmu_recv_end_sync() calls zvol_create_minors(async=TRUE). This kicks off some other threads that create the minor device nodes (in /dev/zvol/poolname/...). These async threads call zvol_prefetch_minors_impl() and zvol_create_minor(), which both call dmu_objset_own(), which puts a "long hold" on the dataset. Since the zvol minor node creation is asynchronous, this can happen after the `ZFS_IOC_RECV[_NEW]` ioctl and `zfs receive` process have completed. After the first receive ioctl has completed, userland may attempt to do another receive into the same dataset (e.g. the next incremental stream). This second receive and the asynchronous minor node creation can interfere with one another in several different ways, because they both require exclusive access to the dataset: 1. When the second receive is finishing up, dmu_recv_end_check() does dsl_dataset_handoff_check(), which can fail with EBUSY if the async minor node creation already has a "long hold" on this dataset. This causes the 2nd receive to fail. 2. The async udev rule can fail if zvol_id and/or systemd-udevd try to open the device while the the second receive's async attempt at minor node creation owns the dataset (via zvol_prefetch_minors_impl). This causes the minor node (/dev/zd*) to exist, but the udev-generated /dev/zvol/... to not exist. 3. The async minor node creation can silently fail with EBUSY if the first receive's zvol_create_minor() trys to own the dataset while the second receive's zvol_prefetch_minors_impl already owns the dataset. To address these problems, this change synchronously creates the minor node. To avoid the lock ordering problems that the asynchrony was introduced to fix (see #3681), we create the minor nodes from open context, with no locks held, rather than from syncing contex as was originally done. Implementation notes: We generally do not need to traverse children or prefetch anything (e.g. when running the recv, snapshot, create, or clone subcommands of zfs). We only need recursion when importing/opening a pool and when loading encryption keys. The existing recursive, asynchronous, prefetching code is preserved for use in these cases. Channel programs may need to create zvol minor nodes, when creating a snapshot of a zvol with the snapdev property set. We figure out what snapshots are created when running the LUA program in syncing context. In this case we need to remember what snapshots were created, and then try to create their minor nodes from open context, after the LUA code has completed. There are additional zvol use cases that asynchronously own the dataset, which can cause similar problems. E.g. changing the volmode or snapdev properties. These are less problematic because they are not recursive and don't touch datasets that are not involved in the operation, there is still potential for interference with subsequent operations. In the future, these cases should be similarly converted to create the zvol minor node synchronously from open context. The async tasks of removing and renaming minors do not own the objset, so they do not have this problem. However, it may make sense to also convert these operations to happen synchronously from open context, in the future. Reviewed-by: Paul Dagnelie <pcd@delphix.com> Reviewed-by: Prakash Surya <prakash.surya@delphix.com> Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov> Signed-off-by: Matthew Ahrens <mahrens@delphix.com> External-issue: DLPX-65948 Closes #7863 Closes #9885
2020-02-03 20:33:14 +03:00
6, ZFS_SPACE_CHECK_NORMAL);
if (rv == 0)
zvol_create_minor(name);
return (rv);
2008-11-20 23:01:55 +03:00
}
typedef struct dmu_objset_clone_arg {
const char *doca_clone;
const char *doca_origin;
cred_t *doca_cred;
filesystem_limit/snapshot_limit is incorrectly enforced against root The filesystem_limit and snapshot_limit properties limit the number of filesystems or snapshots that can be created below this dataset. According to the manpage, "The limit is not enforced if the user is allowed to change the limit." Two types of users are allowed to change the limit: 1. Those that have been delegated the `filesystem_limit` or `snapshot_limit` permission, e.g. with `zfs allow USER filesystem_limit DATASET`. This works properly. 2. A user with elevated system privileges (e.g. root). This does not work - the root user will incorrectly get an error when trying to create a snapshot/filesystem, if it exceeds the `_limit` property. The problem is that `priv_policy_ns()` does not work if the `cred_t` is not that of the current process. This happens when `dsl_enforce_ds_ss_limits()` is called in syncing context (as part of a sync task's check func) to determine the permissions of the corresponding user process. This commit fixes the issue by passing the `task_struct` (typedef'ed as a `proc_t`) to syncing context, and then using `has_capability()` to determine if that process is privileged. Note that we still need to pass the `cred_t` to syncing context so that we can check if the user was delegated this permission with `zfs allow`. This problem only impacts Linux. Wrappers are added to FreeBSD but it continues to use `priv_check_cred()`, which works on arbitrary `cred_t`. Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov> Reviewed-by: Ryan Moeller <ryan@ixsystems.com> Signed-off-by: Matthew Ahrens <mahrens@delphix.com> Closes #8226 Closes #10545
2020-07-12 03:18:02 +03:00
proc_t *doca_proc;
} dmu_objset_clone_arg_t;
/*ARGSUSED*/
static int
dmu_objset_clone_check(void *arg, dmu_tx_t *tx)
2008-11-20 23:01:55 +03:00
{
dmu_objset_clone_arg_t *doca = arg;
dsl_dir_t *pdd;
const char *tail;
int error;
dsl_dataset_t *origin;
dsl_pool_t *dp = dmu_tx_pool(tx);
2008-11-20 23:01:55 +03:00
if (strchr(doca->doca_clone, '@') != NULL)
return (SET_ERROR(EINVAL));
if (strlen(doca->doca_clone) >= ZFS_MAX_DATASET_NAME_LEN)
return (SET_ERROR(ENAMETOOLONG));
error = dsl_dir_hold(dp, doca->doca_clone, FTAG, &pdd, &tail);
if (error != 0)
return (error);
if (tail == NULL) {
dsl_dir_rele(pdd, FTAG);
return (SET_ERROR(EEXIST));
2008-11-20 23:01:55 +03:00
}
error = dsl_fs_ss_limit_check(pdd, 1, ZFS_PROP_FILESYSTEM_LIMIT, NULL,
filesystem_limit/snapshot_limit is incorrectly enforced against root The filesystem_limit and snapshot_limit properties limit the number of filesystems or snapshots that can be created below this dataset. According to the manpage, "The limit is not enforced if the user is allowed to change the limit." Two types of users are allowed to change the limit: 1. Those that have been delegated the `filesystem_limit` or `snapshot_limit` permission, e.g. with `zfs allow USER filesystem_limit DATASET`. This works properly. 2. A user with elevated system privileges (e.g. root). This does not work - the root user will incorrectly get an error when trying to create a snapshot/filesystem, if it exceeds the `_limit` property. The problem is that `priv_policy_ns()` does not work if the `cred_t` is not that of the current process. This happens when `dsl_enforce_ds_ss_limits()` is called in syncing context (as part of a sync task's check func) to determine the permissions of the corresponding user process. This commit fixes the issue by passing the `task_struct` (typedef'ed as a `proc_t`) to syncing context, and then using `has_capability()` to determine if that process is privileged. Note that we still need to pass the `cred_t` to syncing context so that we can check if the user was delegated this permission with `zfs allow`. This problem only impacts Linux. Wrappers are added to FreeBSD but it continues to use `priv_check_cred()`, which works on arbitrary `cred_t`. Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov> Reviewed-by: Ryan Moeller <ryan@ixsystems.com> Signed-off-by: Matthew Ahrens <mahrens@delphix.com> Closes #8226 Closes #10545
2020-07-12 03:18:02 +03:00
doca->doca_cred, doca->doca_proc);
if (error != 0) {
dsl_dir_rele(pdd, FTAG);
return (SET_ERROR(EDQUOT));
}
error = dsl_dataset_hold(dp, doca->doca_origin, FTAG, &origin);
Native Encryption for ZFS on Linux This change incorporates three major pieces: The first change is a keystore that manages wrapping and encryption keys for encrypted datasets. These commands mostly involve manipulating the new DSL Crypto Key ZAP Objects that live in the MOS. Each encrypted dataset has its own DSL Crypto Key that is protected with a user's key. This level of indirection allows users to change their keys without re-encrypting their entire datasets. The change implements the new subcommands "zfs load-key", "zfs unload-key" and "zfs change-key" which allow the user to manage their encryption keys and settings. In addition, several new flags and properties have been added to allow dataset creation and to make mounting and unmounting more convenient. The second piece of this patch provides the ability to encrypt, decyrpt, and authenticate protected datasets. Each object set maintains a Merkel tree of Message Authentication Codes that protect the lower layers, similarly to how checksums are maintained. This part impacts the zio layer, which handles the actual encryption and generation of MACs, as well as the ARC and DMU, which need to be able to handle encrypted buffers and protected data. The last addition is the ability to do raw, encrypted sends and receives. The idea here is to send raw encrypted and compressed data and receive it exactly as is on a backup system. This means that the dataset on the receiving system is protected using the same user key that is in use on the sending side. By doing so, datasets can be efficiently backed up to an untrusted system without fear of data being compromised. Reviewed by: Matthew Ahrens <mahrens@delphix.com> Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov> Reviewed-by: Jorgen Lundman <lundman@lundman.net> Signed-off-by: Tom Caputi <tcaputi@datto.com> Closes #494 Closes #5769
2017-08-14 20:36:48 +03:00
if (error != 0) {
dsl_dir_rele(pdd, FTAG);
return (error);
Native Encryption for ZFS on Linux This change incorporates three major pieces: The first change is a keystore that manages wrapping and encryption keys for encrypted datasets. These commands mostly involve manipulating the new DSL Crypto Key ZAP Objects that live in the MOS. Each encrypted dataset has its own DSL Crypto Key that is protected with a user's key. This level of indirection allows users to change their keys without re-encrypting their entire datasets. The change implements the new subcommands "zfs load-key", "zfs unload-key" and "zfs change-key" which allow the user to manage their encryption keys and settings. In addition, several new flags and properties have been added to allow dataset creation and to make mounting and unmounting more convenient. The second piece of this patch provides the ability to encrypt, decyrpt, and authenticate protected datasets. Each object set maintains a Merkel tree of Message Authentication Codes that protect the lower layers, similarly to how checksums are maintained. This part impacts the zio layer, which handles the actual encryption and generation of MACs, as well as the ARC and DMU, which need to be able to handle encrypted buffers and protected data. The last addition is the ability to do raw, encrypted sends and receives. The idea here is to send raw encrypted and compressed data and receive it exactly as is on a backup system. This means that the dataset on the receiving system is protected using the same user key that is in use on the sending side. By doing so, datasets can be efficiently backed up to an untrusted system without fear of data being compromised. Reviewed by: Matthew Ahrens <mahrens@delphix.com> Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov> Reviewed-by: Jorgen Lundman <lundman@lundman.net> Signed-off-by: Tom Caputi <tcaputi@datto.com> Closes #494 Closes #5769
2017-08-14 20:36:48 +03:00
}
/* You can only clone snapshots, not the head datasets. */
if (!origin->ds_is_snapshot) {
dsl_dataset_rele(origin, FTAG);
Native Encryption for ZFS on Linux This change incorporates three major pieces: The first change is a keystore that manages wrapping and encryption keys for encrypted datasets. These commands mostly involve manipulating the new DSL Crypto Key ZAP Objects that live in the MOS. Each encrypted dataset has its own DSL Crypto Key that is protected with a user's key. This level of indirection allows users to change their keys without re-encrypting their entire datasets. The change implements the new subcommands "zfs load-key", "zfs unload-key" and "zfs change-key" which allow the user to manage their encryption keys and settings. In addition, several new flags and properties have been added to allow dataset creation and to make mounting and unmounting more convenient. The second piece of this patch provides the ability to encrypt, decyrpt, and authenticate protected datasets. Each object set maintains a Merkel tree of Message Authentication Codes that protect the lower layers, similarly to how checksums are maintained. This part impacts the zio layer, which handles the actual encryption and generation of MACs, as well as the ARC and DMU, which need to be able to handle encrypted buffers and protected data. The last addition is the ability to do raw, encrypted sends and receives. The idea here is to send raw encrypted and compressed data and receive it exactly as is on a backup system. This means that the dataset on the receiving system is protected using the same user key that is in use on the sending side. By doing so, datasets can be efficiently backed up to an untrusted system without fear of data being compromised. Reviewed by: Matthew Ahrens <mahrens@delphix.com> Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov> Reviewed-by: Jorgen Lundman <lundman@lundman.net> Signed-off-by: Tom Caputi <tcaputi@datto.com> Closes #494 Closes #5769
2017-08-14 20:36:48 +03:00
dsl_dir_rele(pdd, FTAG);
return (SET_ERROR(EINVAL));
}
Native Encryption for ZFS on Linux This change incorporates three major pieces: The first change is a keystore that manages wrapping and encryption keys for encrypted datasets. These commands mostly involve manipulating the new DSL Crypto Key ZAP Objects that live in the MOS. Each encrypted dataset has its own DSL Crypto Key that is protected with a user's key. This level of indirection allows users to change their keys without re-encrypting their entire datasets. The change implements the new subcommands "zfs load-key", "zfs unload-key" and "zfs change-key" which allow the user to manage their encryption keys and settings. In addition, several new flags and properties have been added to allow dataset creation and to make mounting and unmounting more convenient. The second piece of this patch provides the ability to encrypt, decyrpt, and authenticate protected datasets. Each object set maintains a Merkel tree of Message Authentication Codes that protect the lower layers, similarly to how checksums are maintained. This part impacts the zio layer, which handles the actual encryption and generation of MACs, as well as the ARC and DMU, which need to be able to handle encrypted buffers and protected data. The last addition is the ability to do raw, encrypted sends and receives. The idea here is to send raw encrypted and compressed data and receive it exactly as is on a backup system. This means that the dataset on the receiving system is protected using the same user key that is in use on the sending side. By doing so, datasets can be efficiently backed up to an untrusted system without fear of data being compromised. Reviewed by: Matthew Ahrens <mahrens@delphix.com> Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov> Reviewed-by: Jorgen Lundman <lundman@lundman.net> Signed-off-by: Tom Caputi <tcaputi@datto.com> Closes #494 Closes #5769
2017-08-14 20:36:48 +03:00
dsl_dataset_rele(origin, FTAG);
Native Encryption for ZFS on Linux This change incorporates three major pieces: The first change is a keystore that manages wrapping and encryption keys for encrypted datasets. These commands mostly involve manipulating the new DSL Crypto Key ZAP Objects that live in the MOS. Each encrypted dataset has its own DSL Crypto Key that is protected with a user's key. This level of indirection allows users to change their keys without re-encrypting their entire datasets. The change implements the new subcommands "zfs load-key", "zfs unload-key" and "zfs change-key" which allow the user to manage their encryption keys and settings. In addition, several new flags and properties have been added to allow dataset creation and to make mounting and unmounting more convenient. The second piece of this patch provides the ability to encrypt, decyrpt, and authenticate protected datasets. Each object set maintains a Merkel tree of Message Authentication Codes that protect the lower layers, similarly to how checksums are maintained. This part impacts the zio layer, which handles the actual encryption and generation of MACs, as well as the ARC and DMU, which need to be able to handle encrypted buffers and protected data. The last addition is the ability to do raw, encrypted sends and receives. The idea here is to send raw encrypted and compressed data and receive it exactly as is on a backup system. This means that the dataset on the receiving system is protected using the same user key that is in use on the sending side. By doing so, datasets can be efficiently backed up to an untrusted system without fear of data being compromised. Reviewed by: Matthew Ahrens <mahrens@delphix.com> Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov> Reviewed-by: Jorgen Lundman <lundman@lundman.net> Signed-off-by: Tom Caputi <tcaputi@datto.com> Closes #494 Closes #5769
2017-08-14 20:36:48 +03:00
dsl_dir_rele(pdd, FTAG);
return (0);
2009-07-03 02:44:48 +04:00
}
2008-11-20 23:01:55 +03:00
static void
dmu_objset_clone_sync(void *arg, dmu_tx_t *tx)
2008-11-20 23:01:55 +03:00
{
dmu_objset_clone_arg_t *doca = arg;
dsl_pool_t *dp = dmu_tx_pool(tx);
dsl_dir_t *pdd;
const char *tail;
dsl_dataset_t *origin, *ds;
uint64_t obj;
char namebuf[ZFS_MAX_DATASET_NAME_LEN];
Illumos #2882, #2883, #2900 2882 implement libzfs_core 2883 changing "canmount" property to "on" should not always remount dataset 2900 "zfs snapshot" should be able to create multiple, arbitrary snapshots at once Reviewed by: George Wilson <george.wilson@delphix.com> Reviewed by: Chris Siden <christopher.siden@delphix.com> Reviewed by: Garrett D'Amore <garrett@damore.org> Reviewed by: Bill Pijewski <wdp@joyent.com> Reviewed by: Dan Kruchinin <dan.kruchinin@gmail.com> Approved by: Eric Schrock <Eric.Schrock@delphix.com> References: https://www.illumos.org/issues/2882 https://www.illumos.org/issues/2883 https://www.illumos.org/issues/2900 illumos/illumos-gate@4445fffbbb1ea25fd0e9ea68b9380dd7a6709025 Ported-by: Tim Chase <tim@chase2k.com> Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov> Closes #1293 Porting notes: WARNING: This patch changes the user/kernel ABI. That means that the zfs/zpool utilities built from master are NOT compatible with the 0.6.2 kernel modules. Ensure you load the matching kernel modules from master after updating the utilities. Otherwise the zfs/zpool commands will be unable to interact with your pool and you will see errors similar to the following: $ zpool list failed to read pool configuration: bad address no pools available $ zfs list no datasets available Add zvol minor device creation to the new zfs_snapshot_nvl function. Remove the logging of the "release" operation in dsl_dataset_user_release_sync(). The logging caused a null dereference because ds->ds_dir is zeroed in dsl_dataset_destroy_sync() and the logging functions try to get the ds name via the dsl_dataset_name() function. I've got no idea why this particular code would have worked in Illumos. This code has subsequently been completely reworked in Illumos commit 3b2aab1 (3464 zfs synctask code needs restructuring). Squash some "may be used uninitialized" warning/erorrs. Fix some printf format warnings for %lld and %llu. Apply a few spa_writeable() changes that were made to Illumos in illumos/illumos-gate.git@cd1c8b8 as part of the 3112, 3113, 3114 and 3115 fixes. Add a missing call to fnvlist_free(nvl) in log_internal() that was added in Illumos to fix issue 3085 but couldn't be ported to ZoL at the time (zfsonlinux/zfs@9e11c73) because it depended on future work.
2013-08-28 15:45:09 +04:00
VERIFY0(dsl_dir_hold(dp, doca->doca_clone, FTAG, &pdd, &tail));
VERIFY0(dsl_dataset_hold(dp, doca->doca_origin, FTAG, &origin));
Illumos #2882, #2883, #2900 2882 implement libzfs_core 2883 changing "canmount" property to "on" should not always remount dataset 2900 "zfs snapshot" should be able to create multiple, arbitrary snapshots at once Reviewed by: George Wilson <george.wilson@delphix.com> Reviewed by: Chris Siden <christopher.siden@delphix.com> Reviewed by: Garrett D'Amore <garrett@damore.org> Reviewed by: Bill Pijewski <wdp@joyent.com> Reviewed by: Dan Kruchinin <dan.kruchinin@gmail.com> Approved by: Eric Schrock <Eric.Schrock@delphix.com> References: https://www.illumos.org/issues/2882 https://www.illumos.org/issues/2883 https://www.illumos.org/issues/2900 illumos/illumos-gate@4445fffbbb1ea25fd0e9ea68b9380dd7a6709025 Ported-by: Tim Chase <tim@chase2k.com> Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov> Closes #1293 Porting notes: WARNING: This patch changes the user/kernel ABI. That means that the zfs/zpool utilities built from master are NOT compatible with the 0.6.2 kernel modules. Ensure you load the matching kernel modules from master after updating the utilities. Otherwise the zfs/zpool commands will be unable to interact with your pool and you will see errors similar to the following: $ zpool list failed to read pool configuration: bad address no pools available $ zfs list no datasets available Add zvol minor device creation to the new zfs_snapshot_nvl function. Remove the logging of the "release" operation in dsl_dataset_user_release_sync(). The logging caused a null dereference because ds->ds_dir is zeroed in dsl_dataset_destroy_sync() and the logging functions try to get the ds name via the dsl_dataset_name() function. I've got no idea why this particular code would have worked in Illumos. This code has subsequently been completely reworked in Illumos commit 3b2aab1 (3464 zfs synctask code needs restructuring). Squash some "may be used uninitialized" warning/erorrs. Fix some printf format warnings for %lld and %llu. Apply a few spa_writeable() changes that were made to Illumos in illumos/illumos-gate.git@cd1c8b8 as part of the 3112, 3113, 3114 and 3115 fixes. Add a missing call to fnvlist_free(nvl) in log_internal() that was added in Illumos to fix issue 3085 but couldn't be ported to ZoL at the time (zfsonlinux/zfs@9e11c73) because it depended on future work.
2013-08-28 15:45:09 +04:00
obj = dsl_dataset_create_sync(pdd, tail, origin, 0,
Native Encryption for ZFS on Linux This change incorporates three major pieces: The first change is a keystore that manages wrapping and encryption keys for encrypted datasets. These commands mostly involve manipulating the new DSL Crypto Key ZAP Objects that live in the MOS. Each encrypted dataset has its own DSL Crypto Key that is protected with a user's key. This level of indirection allows users to change their keys without re-encrypting their entire datasets. The change implements the new subcommands "zfs load-key", "zfs unload-key" and "zfs change-key" which allow the user to manage their encryption keys and settings. In addition, several new flags and properties have been added to allow dataset creation and to make mounting and unmounting more convenient. The second piece of this patch provides the ability to encrypt, decyrpt, and authenticate protected datasets. Each object set maintains a Merkel tree of Message Authentication Codes that protect the lower layers, similarly to how checksums are maintained. This part impacts the zio layer, which handles the actual encryption and generation of MACs, as well as the ARC and DMU, which need to be able to handle encrypted buffers and protected data. The last addition is the ability to do raw, encrypted sends and receives. The idea here is to send raw encrypted and compressed data and receive it exactly as is on a backup system. This means that the dataset on the receiving system is protected using the same user key that is in use on the sending side. By doing so, datasets can be efficiently backed up to an untrusted system without fear of data being compromised. Reviewed by: Matthew Ahrens <mahrens@delphix.com> Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov> Reviewed-by: Jorgen Lundman <lundman@lundman.net> Signed-off-by: Tom Caputi <tcaputi@datto.com> Closes #494 Closes #5769
2017-08-14 20:36:48 +03:00
doca->doca_cred, NULL, tx);
2008-11-20 23:01:55 +03:00
VERIFY0(dsl_dataset_hold_obj(pdd->dd_pool, obj, FTAG, &ds));
dsl_dataset_name(origin, namebuf);
spa_history_log_internal_ds(ds, "clone", tx,
"origin=%s (%llu)", namebuf, (u_longlong_t)origin->ds_object);
dsl_dataset_rele(ds, FTAG);
dsl_dataset_rele(origin, FTAG);
dsl_dir_rele(pdd, FTAG);
2008-11-20 23:01:55 +03:00
}
int
dmu_objset_clone(const char *clone, const char *origin)
2008-11-20 23:01:55 +03:00
{
dmu_objset_clone_arg_t doca;
2008-11-20 23:01:55 +03:00
doca.doca_clone = clone;
doca.doca_origin = origin;
doca.doca_cred = CRED();
filesystem_limit/snapshot_limit is incorrectly enforced against root The filesystem_limit and snapshot_limit properties limit the number of filesystems or snapshots that can be created below this dataset. According to the manpage, "The limit is not enforced if the user is allowed to change the limit." Two types of users are allowed to change the limit: 1. Those that have been delegated the `filesystem_limit` or `snapshot_limit` permission, e.g. with `zfs allow USER filesystem_limit DATASET`. This works properly. 2. A user with elevated system privileges (e.g. root). This does not work - the root user will incorrectly get an error when trying to create a snapshot/filesystem, if it exceeds the `_limit` property. The problem is that `priv_policy_ns()` does not work if the `cred_t` is not that of the current process. This happens when `dsl_enforce_ds_ss_limits()` is called in syncing context (as part of a sync task's check func) to determine the permissions of the corresponding user process. This commit fixes the issue by passing the `task_struct` (typedef'ed as a `proc_t`) to syncing context, and then using `has_capability()` to determine if that process is privileged. Note that we still need to pass the `cred_t` to syncing context so that we can check if the user was delegated this permission with `zfs allow`. This problem only impacts Linux. Wrappers are added to FreeBSD but it continues to use `priv_check_cred()`, which works on arbitrary `cred_t`. Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov> Reviewed-by: Ryan Moeller <ryan@ixsystems.com> Signed-off-by: Matthew Ahrens <mahrens@delphix.com> Closes #8226 Closes #10545
2020-07-12 03:18:02 +03:00
doca.doca_proc = curproc;
async zvol minor node creation interferes with receive When we finish a zfs receive, dmu_recv_end_sync() calls zvol_create_minors(async=TRUE). This kicks off some other threads that create the minor device nodes (in /dev/zvol/poolname/...). These async threads call zvol_prefetch_minors_impl() and zvol_create_minor(), which both call dmu_objset_own(), which puts a "long hold" on the dataset. Since the zvol minor node creation is asynchronous, this can happen after the `ZFS_IOC_RECV[_NEW]` ioctl and `zfs receive` process have completed. After the first receive ioctl has completed, userland may attempt to do another receive into the same dataset (e.g. the next incremental stream). This second receive and the asynchronous minor node creation can interfere with one another in several different ways, because they both require exclusive access to the dataset: 1. When the second receive is finishing up, dmu_recv_end_check() does dsl_dataset_handoff_check(), which can fail with EBUSY if the async minor node creation already has a "long hold" on this dataset. This causes the 2nd receive to fail. 2. The async udev rule can fail if zvol_id and/or systemd-udevd try to open the device while the the second receive's async attempt at minor node creation owns the dataset (via zvol_prefetch_minors_impl). This causes the minor node (/dev/zd*) to exist, but the udev-generated /dev/zvol/... to not exist. 3. The async minor node creation can silently fail with EBUSY if the first receive's zvol_create_minor() trys to own the dataset while the second receive's zvol_prefetch_minors_impl already owns the dataset. To address these problems, this change synchronously creates the minor node. To avoid the lock ordering problems that the asynchrony was introduced to fix (see #3681), we create the minor nodes from open context, with no locks held, rather than from syncing contex as was originally done. Implementation notes: We generally do not need to traverse children or prefetch anything (e.g. when running the recv, snapshot, create, or clone subcommands of zfs). We only need recursion when importing/opening a pool and when loading encryption keys. The existing recursive, asynchronous, prefetching code is preserved for use in these cases. Channel programs may need to create zvol minor nodes, when creating a snapshot of a zvol with the snapdev property set. We figure out what snapshots are created when running the LUA program in syncing context. In this case we need to remember what snapshots were created, and then try to create their minor nodes from open context, after the LUA code has completed. There are additional zvol use cases that asynchronously own the dataset, which can cause similar problems. E.g. changing the volmode or snapdev properties. These are less problematic because they are not recursive and don't touch datasets that are not involved in the operation, there is still potential for interference with subsequent operations. In the future, these cases should be similarly converted to create the zvol minor node synchronously from open context. The async tasks of removing and renaming minors do not own the objset, so they do not have this problem. However, it may make sense to also convert these operations to happen synchronously from open context, in the future. Reviewed-by: Paul Dagnelie <pcd@delphix.com> Reviewed-by: Prakash Surya <prakash.surya@delphix.com> Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov> Signed-off-by: Matthew Ahrens <mahrens@delphix.com> External-issue: DLPX-65948 Closes #7863 Closes #9885
2020-02-03 20:33:14 +03:00
int rv = dsl_sync_task(clone,
dmu_objset_clone_check, dmu_objset_clone_sync, &doca,
async zvol minor node creation interferes with receive When we finish a zfs receive, dmu_recv_end_sync() calls zvol_create_minors(async=TRUE). This kicks off some other threads that create the minor device nodes (in /dev/zvol/poolname/...). These async threads call zvol_prefetch_minors_impl() and zvol_create_minor(), which both call dmu_objset_own(), which puts a "long hold" on the dataset. Since the zvol minor node creation is asynchronous, this can happen after the `ZFS_IOC_RECV[_NEW]` ioctl and `zfs receive` process have completed. After the first receive ioctl has completed, userland may attempt to do another receive into the same dataset (e.g. the next incremental stream). This second receive and the asynchronous minor node creation can interfere with one another in several different ways, because they both require exclusive access to the dataset: 1. When the second receive is finishing up, dmu_recv_end_check() does dsl_dataset_handoff_check(), which can fail with EBUSY if the async minor node creation already has a "long hold" on this dataset. This causes the 2nd receive to fail. 2. The async udev rule can fail if zvol_id and/or systemd-udevd try to open the device while the the second receive's async attempt at minor node creation owns the dataset (via zvol_prefetch_minors_impl). This causes the minor node (/dev/zd*) to exist, but the udev-generated /dev/zvol/... to not exist. 3. The async minor node creation can silently fail with EBUSY if the first receive's zvol_create_minor() trys to own the dataset while the second receive's zvol_prefetch_minors_impl already owns the dataset. To address these problems, this change synchronously creates the minor node. To avoid the lock ordering problems that the asynchrony was introduced to fix (see #3681), we create the minor nodes from open context, with no locks held, rather than from syncing contex as was originally done. Implementation notes: We generally do not need to traverse children or prefetch anything (e.g. when running the recv, snapshot, create, or clone subcommands of zfs). We only need recursion when importing/opening a pool and when loading encryption keys. The existing recursive, asynchronous, prefetching code is preserved for use in these cases. Channel programs may need to create zvol minor nodes, when creating a snapshot of a zvol with the snapdev property set. We figure out what snapshots are created when running the LUA program in syncing context. In this case we need to remember what snapshots were created, and then try to create their minor nodes from open context, after the LUA code has completed. There are additional zvol use cases that asynchronously own the dataset, which can cause similar problems. E.g. changing the volmode or snapdev properties. These are less problematic because they are not recursive and don't touch datasets that are not involved in the operation, there is still potential for interference with subsequent operations. In the future, these cases should be similarly converted to create the zvol minor node synchronously from open context. The async tasks of removing and renaming minors do not own the objset, so they do not have this problem. However, it may make sense to also convert these operations to happen synchronously from open context, in the future. Reviewed-by: Paul Dagnelie <pcd@delphix.com> Reviewed-by: Prakash Surya <prakash.surya@delphix.com> Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov> Signed-off-by: Matthew Ahrens <mahrens@delphix.com> External-issue: DLPX-65948 Closes #7863 Closes #9885
2020-02-03 20:33:14 +03:00
6, ZFS_SPACE_CHECK_NORMAL);
if (rv == 0)
zvol_create_minor(clone);
return (rv);
Illumos #2882, #2883, #2900 2882 implement libzfs_core 2883 changing "canmount" property to "on" should not always remount dataset 2900 "zfs snapshot" should be able to create multiple, arbitrary snapshots at once Reviewed by: George Wilson <george.wilson@delphix.com> Reviewed by: Chris Siden <christopher.siden@delphix.com> Reviewed by: Garrett D'Amore <garrett@damore.org> Reviewed by: Bill Pijewski <wdp@joyent.com> Reviewed by: Dan Kruchinin <dan.kruchinin@gmail.com> Approved by: Eric Schrock <Eric.Schrock@delphix.com> References: https://www.illumos.org/issues/2882 https://www.illumos.org/issues/2883 https://www.illumos.org/issues/2900 illumos/illumos-gate@4445fffbbb1ea25fd0e9ea68b9380dd7a6709025 Ported-by: Tim Chase <tim@chase2k.com> Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov> Closes #1293 Porting notes: WARNING: This patch changes the user/kernel ABI. That means that the zfs/zpool utilities built from master are NOT compatible with the 0.6.2 kernel modules. Ensure you load the matching kernel modules from master after updating the utilities. Otherwise the zfs/zpool commands will be unable to interact with your pool and you will see errors similar to the following: $ zpool list failed to read pool configuration: bad address no pools available $ zfs list no datasets available Add zvol minor device creation to the new zfs_snapshot_nvl function. Remove the logging of the "release" operation in dsl_dataset_user_release_sync(). The logging caused a null dereference because ds->ds_dir is zeroed in dsl_dataset_destroy_sync() and the logging functions try to get the ds name via the dsl_dataset_name() function. I've got no idea why this particular code would have worked in Illumos. This code has subsequently been completely reworked in Illumos commit 3b2aab1 (3464 zfs synctask code needs restructuring). Squash some "may be used uninitialized" warning/erorrs. Fix some printf format warnings for %lld and %llu. Apply a few spa_writeable() changes that were made to Illumos in illumos/illumos-gate.git@cd1c8b8 as part of the 3112, 3113, 3114 and 3115 fixes. Add a missing call to fnvlist_free(nvl) in log_internal() that was added in Illumos to fix issue 3085 but couldn't be ported to ZoL at the time (zfsonlinux/zfs@9e11c73) because it depended on future work.
2013-08-28 15:45:09 +04:00
}
int
dmu_objset_snapshot_one(const char *fsname, const char *snapname)
{
int err;
char *longsnap = kmem_asprintf("%s@%s", fsname, snapname);
nvlist_t *snaps = fnvlist_alloc();
fnvlist_add_boolean(snaps, longsnap);
kmem_strfree(longsnap);
err = dsl_dataset_snapshot(snaps, NULL, NULL);
fnvlist_free(snaps);
Illumos #2882, #2883, #2900 2882 implement libzfs_core 2883 changing "canmount" property to "on" should not always remount dataset 2900 "zfs snapshot" should be able to create multiple, arbitrary snapshots at once Reviewed by: George Wilson <george.wilson@delphix.com> Reviewed by: Chris Siden <christopher.siden@delphix.com> Reviewed by: Garrett D'Amore <garrett@damore.org> Reviewed by: Bill Pijewski <wdp@joyent.com> Reviewed by: Dan Kruchinin <dan.kruchinin@gmail.com> Approved by: Eric Schrock <Eric.Schrock@delphix.com> References: https://www.illumos.org/issues/2882 https://www.illumos.org/issues/2883 https://www.illumos.org/issues/2900 illumos/illumos-gate@4445fffbbb1ea25fd0e9ea68b9380dd7a6709025 Ported-by: Tim Chase <tim@chase2k.com> Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov> Closes #1293 Porting notes: WARNING: This patch changes the user/kernel ABI. That means that the zfs/zpool utilities built from master are NOT compatible with the 0.6.2 kernel modules. Ensure you load the matching kernel modules from master after updating the utilities. Otherwise the zfs/zpool commands will be unable to interact with your pool and you will see errors similar to the following: $ zpool list failed to read pool configuration: bad address no pools available $ zfs list no datasets available Add zvol minor device creation to the new zfs_snapshot_nvl function. Remove the logging of the "release" operation in dsl_dataset_user_release_sync(). The logging caused a null dereference because ds->ds_dir is zeroed in dsl_dataset_destroy_sync() and the logging functions try to get the ds name via the dsl_dataset_name() function. I've got no idea why this particular code would have worked in Illumos. This code has subsequently been completely reworked in Illumos commit 3b2aab1 (3464 zfs synctask code needs restructuring). Squash some "may be used uninitialized" warning/erorrs. Fix some printf format warnings for %lld and %llu. Apply a few spa_writeable() changes that were made to Illumos in illumos/illumos-gate.git@cd1c8b8 as part of the 3112, 3113, 3114 and 3115 fixes. Add a missing call to fnvlist_free(nvl) in log_internal() that was added in Illumos to fix issue 3085 but couldn't be ported to ZoL at the time (zfsonlinux/zfs@9e11c73) because it depended on future work.
2013-08-28 15:45:09 +04:00
return (err);
}
static void
dmu_objset_upgrade_task_cb(void *data)
{
objset_t *os = data;
mutex_enter(&os->os_upgrade_lock);
os->os_upgrade_status = EINTR;
if (!os->os_upgrade_exit) {
mutex_exit(&os->os_upgrade_lock);
os->os_upgrade_status = os->os_upgrade_cb(os);
mutex_enter(&os->os_upgrade_lock);
}
os->os_upgrade_exit = B_TRUE;
os->os_upgrade_id = 0;
mutex_exit(&os->os_upgrade_lock);
dsl_dataset_long_rele(dmu_objset_ds(os), upgrade_tag);
}
static void
dmu_objset_upgrade(objset_t *os, dmu_objset_upgrade_cb_t cb)
{
if (os->os_upgrade_id != 0)
return;
ASSERT(dsl_pool_config_held(dmu_objset_pool(os)));
dsl_dataset_long_hold(dmu_objset_ds(os), upgrade_tag);
mutex_enter(&os->os_upgrade_lock);
if (os->os_upgrade_id == 0 && os->os_upgrade_status == 0) {
os->os_upgrade_exit = B_FALSE;
os->os_upgrade_cb = cb;
os->os_upgrade_id = taskq_dispatch(
os->os_spa->spa_upgrade_taskq,
dmu_objset_upgrade_task_cb, os, TQ_SLEEP);
if (os->os_upgrade_id == TASKQID_INVALID) {
dsl_dataset_long_rele(dmu_objset_ds(os), upgrade_tag);
os->os_upgrade_status = ENOMEM;
}
}
mutex_exit(&os->os_upgrade_lock);
}
static void
dmu_objset_upgrade_stop(objset_t *os)
{
mutex_enter(&os->os_upgrade_lock);
os->os_upgrade_exit = B_TRUE;
if (os->os_upgrade_id != 0) {
taskqid_t id = os->os_upgrade_id;
os->os_upgrade_id = 0;
mutex_exit(&os->os_upgrade_lock);
if ((taskq_cancel_id(os->os_spa->spa_upgrade_taskq, id)) == 0) {
dsl_dataset_long_rele(dmu_objset_ds(os), upgrade_tag);
}
txg_wait_synced(os->os_spa->spa_dsl_pool, 0);
} else {
mutex_exit(&os->os_upgrade_lock);
}
}
2008-11-20 23:01:55 +03:00
static void
dmu_objset_sync_dnodes(multilist_sublist_t *list, dmu_tx_t *tx)
2008-11-20 23:01:55 +03:00
{
dnode_t *dn;
while ((dn = multilist_sublist_head(list)) != NULL) {
2008-11-20 23:01:55 +03:00
ASSERT(dn->dn_object != DMU_META_DNODE_OBJECT);
ASSERT(dn->dn_dbuf->db_data_pending);
/*
2009-07-03 02:44:48 +04:00
* Initialize dn_zio outside dnode_sync() because the
Log Spacemap Project = Motivation At Delphix we've seen a lot of customer systems where fragmentation is over 75% and random writes take a performance hit because a lot of time is spend on I/Os that update on-disk space accounting metadata. Specifically, we seen cases where 20% to 40% of sync time is spend after sync pass 1 and ~30% of the I/Os on the system is spent updating spacemaps. The problem is that these pools have existed long enough that we've touched almost every metaslab at least once, and random writes scatter frees across all metaslabs every TXG, thus appending to their spacemaps and resulting in many I/Os. To give an example, assuming that every VDEV has 200 metaslabs and our writes fit within a single spacemap block (generally 4K) we have 200 I/Os. Then if we assume 2 levels of indirection, we need 400 additional I/Os and since we are talking about metadata for which we keep 2 extra copies for redundancy we need to triple that number, leading to a total of 1800 I/Os per VDEV every TXG. We could try and decrease the number of metaslabs so we have less I/Os per TXG but then each metaslab would cover a wider range on disk and thus would take more time to be loaded in memory from disk. In addition, after it's loaded, it's range tree would consume more memory. Another idea would be to just increase the spacemap block size which would allow us to fit more entries within an I/O block resulting in fewer I/Os per metaslab and a speedup in loading time. The problem is still that we don't deal with the number of I/Os going up as the number of metaslabs is increasing and the fact is that we generally write a lot to a few metaslabs and a little to the rest of them. Thus, just increasing the block size would actually waste bandwidth because we won't be utilizing our bigger block size. = About this patch This patch introduces the Log Spacemap project which provides the solution to the above problem while taking into account all the aforementioned tradeoffs. The details on how it achieves that can be found in the references sections below and in the code (see Big Theory Statement in spa_log_spacemap.c). Even though the change is fairly constraint within the metaslab and lower-level SPA codepaths, there is a side-change that is user-facing. The change is that VDEV IDs from VDEV holes will no longer be reused. To give some background and reasoning for this, when a log device is removed and its VDEV structure was replaced with a hole (or was compacted; if at the end of the vdev array), its vdev_id could be reused by devices added after that. Now with the pool-wide space maps recording the vdev ID, this behavior can cause problems (e.g. is this entry referring to a segment in the new vdev or the removed log?). Thus, to simplify things the ID reuse behavior is gone and now vdev IDs for top-level vdevs are truly unique within a pool. = Testing The illumos implementation of this feature has been used internally for a year and has been in production for ~6 months. For this patch specifically there don't seem to be any regressions introduced to ZTS and I have been running zloop for a week without any related problems. = Performance Analysis (Linux Specific) All performance results and analysis for illumos can be found in the links of the references. Redoing the same experiments in Linux gave similar results. Below are the specifics of the Linux run. After the pool reached stable state the percentage of the time spent in pass 1 per TXG was 64% on average for the stock bits while the log spacemap bits stayed at 95% during the experiment (graph: sdimitro.github.io/img/linux-lsm/PercOfSyncInPassOne.png). Sync times per TXG were 37.6 seconds on average for the stock bits and 22.7 seconds for the log spacemap bits (related graph: sdimitro.github.io/img/linux-lsm/SyncTimePerTXG.png). As a result the log spacemap bits were able to push more TXGs, which is also the reason why all graphs quantified per TXG have more entries for the log spacemap bits. Another interesting aspect in terms of txg syncs is that the stock bits had 22% of their TXGs reach sync pass 7, 55% reach sync pass 8, and 20% reach 9. The log space map bits reached sync pass 4 in 79% of their TXGs, sync pass 7 in 19%, and sync pass 8 at 1%. This emphasizes the fact that not only we spend less time on metadata but we also iterate less times to convergence in spa_sync() dirtying objects. [related graphs: stock- sdimitro.github.io/img/linux-lsm/NumberOfPassesPerTXGStock.png lsm- sdimitro.github.io/img/linux-lsm/NumberOfPassesPerTXGLSM.png] Finally, the improvement in IOPs that the userland gains from the change is approximately 40%. There is a consistent win in IOPS as you can see from the graphs below but the absolute amount of improvement that the log spacemap gives varies within each minute interval. sdimitro.github.io/img/linux-lsm/StockVsLog3Days.png sdimitro.github.io/img/linux-lsm/StockVsLog10Hours.png = Porting to Other Platforms For people that want to port this commit to other platforms below is a list of ZoL commits that this patch depends on: Make zdb results for checkpoint tests consistent db587941c5ff6dea01932bb78f70db63cf7f38ba Update vdev_is_spacemap_addressable() for new spacemap encoding 419ba5914552c6185afbe1dd17b3ed4b0d526547 Simplify spa_sync by breaking it up to smaller functions 8dc2197b7b1e4d7ebc1420ea30e51c6541f1d834 Factor metaslab_load_wait() in metaslab_load() b194fab0fb6caad18711abccaff3c69ad8b3f6d3 Rename range_tree_verify to range_tree_verify_not_present df72b8bebe0ebac0b20e0750984bad182cb6564a Change target size of metaslabs from 256GB to 16GB c853f382db731e15a87512f4ef1101d14d778a55 zdb -L should skip leak detection altogether 21e7cf5da89f55ce98ec1115726b150e19eefe89 vs_alloc can underflow in L2ARC vdevs 7558997d2f808368867ca7e5234e5793446e8f3f Simplify log vdev removal code 6c926f426a26ffb6d7d8e563e33fc176164175cb Get rid of space_map_update() for ms_synced_length 425d3237ee88abc53d8522a7139c926d278b4b7f Introduce auxiliary metaslab histograms 928e8ad47d3478a3d5d01f0dd6ae74a9371af65e Error path in metaslab_load_impl() forgets to drop ms_sync_lock 8eef997679ba54547f7d361553d21b3291f41ae7 = References Background, Motivation, and Internals of the Feature - OpenZFS 2017 Presentation: youtu.be/jj2IxRkl5bQ - Slides: slideshare.net/SerapheimNikolaosDim/zfs-log-spacemaps-project Flushing Algorithm Internals & Performance Results (Illumos Specific) - Blogpost: sdimitro.github.io/post/zfs-lsm-flushing/ - OpenZFS 2018 Presentation: youtu.be/x6D2dHRjkxw - Slides: slideshare.net/SerapheimNikolaosDim/zfs-log-spacemap-flushing-algorithm Upstream Delphix Issues: DLPX-51539, DLPX-59659, DLPX-57783, DLPX-61438, DLPX-41227, DLPX-59320 DLPX-63385 Reviewed-by: Sean Eric Fagan <sef@ixsystems.com> Reviewed-by: Matt Ahrens <matt@delphix.com> Reviewed-by: George Wilson <gwilson@delphix.com> Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov> Signed-off-by: Serapheim Dimitropoulos <serapheim@delphix.com> Closes #8442
2019-07-16 20:11:49 +03:00
* meta-dnode needs to set it outside dnode_sync().
2008-11-20 23:01:55 +03:00
*/
dn->dn_zio = dn->dn_dbuf->db_data_pending->dr_zio;
ASSERT(dn->dn_zio);
ASSERT3U(dn->dn_nlevels, <=, DN_MAX_LEVELS);
multilist_sublist_remove(list, dn);
2009-07-03 02:44:48 +04:00
/*
* If we are not doing useraccounting (os_synced_dnodes == NULL)
* we are done with this dnode for this txg. Unset dn_dirty_txg
* if later txgs aren't dirtying it so that future holders do
* not get a stale value. Otherwise, we will do this in
* userquota_updates_task() when processing has completely
* finished for this txg.
*/
multilist_t *newlist = dn->dn_objset->os_synced_dnodes;
if (newlist != NULL) {
2009-07-03 02:44:48 +04:00
(void) dnode_add_ref(dn, newlist);
multilist_insert(newlist, dn);
} else {
mutex_enter(&dn->dn_mtx);
if (dn->dn_dirty_txg == tx->tx_txg)
dn->dn_dirty_txg = 0;
mutex_exit(&dn->dn_mtx);
2009-07-03 02:44:48 +04:00
}
2008-11-20 23:01:55 +03:00
dnode_sync(dn, tx);
}
}
/* ARGSUSED */
static void
dmu_objset_write_ready(zio_t *zio, arc_buf_t *abuf, void *arg)
2008-11-20 23:01:55 +03:00
{
blkptr_t *bp = zio->io_bp;
objset_t *os = arg;
2008-11-20 23:01:55 +03:00
dnode_phys_t *dnp = &os->os_phys->os_meta_dnode;
Native Encryption for ZFS on Linux This change incorporates three major pieces: The first change is a keystore that manages wrapping and encryption keys for encrypted datasets. These commands mostly involve manipulating the new DSL Crypto Key ZAP Objects that live in the MOS. Each encrypted dataset has its own DSL Crypto Key that is protected with a user's key. This level of indirection allows users to change their keys without re-encrypting their entire datasets. The change implements the new subcommands "zfs load-key", "zfs unload-key" and "zfs change-key" which allow the user to manage their encryption keys and settings. In addition, several new flags and properties have been added to allow dataset creation and to make mounting and unmounting more convenient. The second piece of this patch provides the ability to encrypt, decyrpt, and authenticate protected datasets. Each object set maintains a Merkel tree of Message Authentication Codes that protect the lower layers, similarly to how checksums are maintained. This part impacts the zio layer, which handles the actual encryption and generation of MACs, as well as the ARC and DMU, which need to be able to handle encrypted buffers and protected data. The last addition is the ability to do raw, encrypted sends and receives. The idea here is to send raw encrypted and compressed data and receive it exactly as is on a backup system. This means that the dataset on the receiving system is protected using the same user key that is in use on the sending side. By doing so, datasets can be efficiently backed up to an untrusted system without fear of data being compromised. Reviewed by: Matthew Ahrens <mahrens@delphix.com> Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov> Reviewed-by: Jorgen Lundman <lundman@lundman.net> Signed-off-by: Tom Caputi <tcaputi@datto.com> Closes #494 Closes #5769
2017-08-14 20:36:48 +03:00
uint64_t fill = 0;
2008-11-20 23:01:55 +03:00
ASSERT(!BP_IS_EMBEDDED(bp));
ASSERT3U(BP_GET_TYPE(bp), ==, DMU_OT_OBJSET);
ASSERT0(BP_GET_LEVEL(bp));
2008-11-20 23:01:55 +03:00
/*
2009-07-03 02:44:48 +04:00
* Update rootbp fill count: it should be the number of objects
* allocated in the object set (not counting the "special"
* objects that are stored in the objset_phys_t -- the meta
Project Quota on ZFS Project quota is a new ZFS system space/object usage accounting and enforcement mechanism. Similar as user/group quota, project quota is another dimension of system quota. It bases on the new object attribute - project ID. Project ID is a numerical value to indicate to which project an object belongs. An object only can belong to one project though you (the object owner or privileged user) can change the object project ID via 'chattr -p' or 'zfs project [-s] -p' explicitly. The object also can inherit the project ID from its parent when created if the parent has the project inherit flag (that can be set via 'chattr +P' or 'zfs project -s [-p]'). By accounting the spaces/objects belong to the same project, we can know how many spaces/objects used by the project. And if we set the upper limit then we can control the spaces/objects that are consumed by such project. It is useful when multiple groups and users cooperate for the same project, or a user/group needs to participate in multiple projects. Support the following commands and functionalities: zfs set projectquota@project zfs set projectobjquota@project zfs get projectquota@project zfs get projectobjquota@project zfs get projectused@project zfs get projectobjused@project zfs projectspace zfs allow projectquota zfs allow projectobjquota zfs allow projectused zfs allow projectobjused zfs unallow projectquota zfs unallow projectobjquota zfs unallow projectused zfs unallow projectobjused chattr +/-P chattr -p project_id lsattr -p This patch also supports tree quota based on the project quota via "zfs project" commands set as following: zfs project [-d|-r] <file|directory ...> zfs project -C [-k] [-r] <file|directory ...> zfs project -c [-0] [-d|-r] [-p id] <file|directory ...> zfs project [-p id] [-r] [-s] <file|directory ...> For "df [-i] $DIR" command, if we set INHERIT (project ID) flag on the $DIR, then the proejct [obj]quota and [obj]used values for the $DIR's project ID will be shown as the total/free (avail) resource. Keep the same behavior as EXT4/XFS does. Reviewed-by: Andreas Dilger <andreas.dilger@intel.com> Reviewed-by Ned Bass <bass6@llnl.gov> Reviewed-by: Matthew Ahrens <mahrens@delphix.com> Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov> Signed-off-by: Fan Yong <fan.yong@intel.com> TEST_ZIMPORT_POOLS="zol-0.6.1 zol-0.6.2 master" Change-Id: Ib4f0544602e03fb61fd46a849d7ba51a6005693c Closes #6290
2018-02-14 01:54:54 +03:00
* dnode and user/group/project accounting objects).
2008-11-20 23:01:55 +03:00
*/
for (int i = 0; i < dnp->dn_nblkptr; i++)
Native Encryption for ZFS on Linux This change incorporates three major pieces: The first change is a keystore that manages wrapping and encryption keys for encrypted datasets. These commands mostly involve manipulating the new DSL Crypto Key ZAP Objects that live in the MOS. Each encrypted dataset has its own DSL Crypto Key that is protected with a user's key. This level of indirection allows users to change their keys without re-encrypting their entire datasets. The change implements the new subcommands "zfs load-key", "zfs unload-key" and "zfs change-key" which allow the user to manage their encryption keys and settings. In addition, several new flags and properties have been added to allow dataset creation and to make mounting and unmounting more convenient. The second piece of this patch provides the ability to encrypt, decyrpt, and authenticate protected datasets. Each object set maintains a Merkel tree of Message Authentication Codes that protect the lower layers, similarly to how checksums are maintained. This part impacts the zio layer, which handles the actual encryption and generation of MACs, as well as the ARC and DMU, which need to be able to handle encrypted buffers and protected data. The last addition is the ability to do raw, encrypted sends and receives. The idea here is to send raw encrypted and compressed data and receive it exactly as is on a backup system. This means that the dataset on the receiving system is protected using the same user key that is in use on the sending side. By doing so, datasets can be efficiently backed up to an untrusted system without fear of data being compromised. Reviewed by: Matthew Ahrens <mahrens@delphix.com> Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov> Reviewed-by: Jorgen Lundman <lundman@lundman.net> Signed-off-by: Tom Caputi <tcaputi@datto.com> Closes #494 Closes #5769
2017-08-14 20:36:48 +03:00
fill += BP_GET_FILL(&dnp->dn_blkptr[i]);
BP_SET_FILL(bp, fill);
if (os->os_dsl_dataset != NULL)
rrw_enter(&os->os_dsl_dataset->ds_bp_rwlock, RW_WRITER, FTAG);
*os->os_rootbp = *bp;
if (os->os_dsl_dataset != NULL)
rrw_exit(&os->os_dsl_dataset->ds_bp_rwlock, FTAG);
}
/* ARGSUSED */
static void
dmu_objset_write_done(zio_t *zio, arc_buf_t *abuf, void *arg)
{
blkptr_t *bp = zio->io_bp;
blkptr_t *bp_orig = &zio->io_bp_orig;
objset_t *os = arg;
2008-11-20 23:01:55 +03:00
if (zio->io_flags & ZIO_FLAG_IO_REWRITE) {
ASSERT(BP_EQUAL(bp, bp_orig));
} else {
dsl_dataset_t *ds = os->os_dsl_dataset;
dmu_tx_t *tx = os->os_synctx;
(void) dsl_dataset_block_kill(ds, bp_orig, tx, B_TRUE);
dsl_dataset_block_born(ds, bp, tx);
2008-11-20 23:01:55 +03:00
}
kmem_free(bp, sizeof (*bp));
2008-11-20 23:01:55 +03:00
}
typedef struct sync_dnodes_arg {
multilist_t *sda_list;
int sda_sublist_idx;
multilist_t *sda_newlist;
dmu_tx_t *sda_tx;
} sync_dnodes_arg_t;
static void
sync_dnodes_task(void *arg)
{
sync_dnodes_arg_t *sda = arg;
multilist_sublist_t *ms =
multilist_sublist_lock(sda->sda_list, sda->sda_sublist_idx);
dmu_objset_sync_dnodes(ms, sda->sda_tx);
multilist_sublist_unlock(ms);
kmem_free(sda, sizeof (*sda));
}
2008-11-20 23:01:55 +03:00
/* called from dsl */
void
dmu_objset_sync(objset_t *os, zio_t *pio, dmu_tx_t *tx)
2008-11-20 23:01:55 +03:00
{
int txgoff;
zbookmark_phys_t zb;
zio_prop_t zp;
2008-11-20 23:01:55 +03:00
zio_t *zio;
list_t *list;
dbuf_dirty_record_t *dr;
int num_sublists;
multilist_t *ml;
blkptr_t *blkptr_copy = kmem_alloc(sizeof (*os->os_rootbp), KM_SLEEP);
*blkptr_copy = *os->os_rootbp;
2008-11-20 23:01:55 +03:00
dprintf_ds(os->os_dsl_dataset, "txg=%llu\n", tx->tx_txg);
ASSERT(dmu_tx_is_syncing(tx));
/* XXX the write_done callback should really give us the tx... */
os->os_synctx = tx;
if (os->os_dsl_dataset == NULL) {
/*
* This is the MOS. If we have upgraded,
* spa_max_replication() could change, so reset
* os_copies here.
*/
os->os_copies = spa_max_replication(os->os_spa);
}
/*
* Create the root block IO
*/
SET_BOOKMARK(&zb, os->os_dsl_dataset ?
os->os_dsl_dataset->ds_object : DMU_META_OBJSET,
ZB_ROOT_OBJECT, ZB_ROOT_LEVEL, ZB_ROOT_BLKID);
arc_release(os->os_phys_buf, &os->os_phys_buf);
dmu_write_policy(os, NULL, 0, 0, &zp);
2009-07-03 02:44:48 +04:00
Native Encryption for ZFS on Linux This change incorporates three major pieces: The first change is a keystore that manages wrapping and encryption keys for encrypted datasets. These commands mostly involve manipulating the new DSL Crypto Key ZAP Objects that live in the MOS. Each encrypted dataset has its own DSL Crypto Key that is protected with a user's key. This level of indirection allows users to change their keys without re-encrypting their entire datasets. The change implements the new subcommands "zfs load-key", "zfs unload-key" and "zfs change-key" which allow the user to manage their encryption keys and settings. In addition, several new flags and properties have been added to allow dataset creation and to make mounting and unmounting more convenient. The second piece of this patch provides the ability to encrypt, decyrpt, and authenticate protected datasets. Each object set maintains a Merkel tree of Message Authentication Codes that protect the lower layers, similarly to how checksums are maintained. This part impacts the zio layer, which handles the actual encryption and generation of MACs, as well as the ARC and DMU, which need to be able to handle encrypted buffers and protected data. The last addition is the ability to do raw, encrypted sends and receives. The idea here is to send raw encrypted and compressed data and receive it exactly as is on a backup system. This means that the dataset on the receiving system is protected using the same user key that is in use on the sending side. By doing so, datasets can be efficiently backed up to an untrusted system without fear of data being compromised. Reviewed by: Matthew Ahrens <mahrens@delphix.com> Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov> Reviewed-by: Jorgen Lundman <lundman@lundman.net> Signed-off-by: Tom Caputi <tcaputi@datto.com> Closes #494 Closes #5769
2017-08-14 20:36:48 +03:00
/*
* If we are either claiming the ZIL or doing a raw receive, write
* out the os_phys_buf raw. Neither of these actions will effect the
* MAC at this point.
Native Encryption for ZFS on Linux This change incorporates three major pieces: The first change is a keystore that manages wrapping and encryption keys for encrypted datasets. These commands mostly involve manipulating the new DSL Crypto Key ZAP Objects that live in the MOS. Each encrypted dataset has its own DSL Crypto Key that is protected with a user's key. This level of indirection allows users to change their keys without re-encrypting their entire datasets. The change implements the new subcommands "zfs load-key", "zfs unload-key" and "zfs change-key" which allow the user to manage their encryption keys and settings. In addition, several new flags and properties have been added to allow dataset creation and to make mounting and unmounting more convenient. The second piece of this patch provides the ability to encrypt, decyrpt, and authenticate protected datasets. Each object set maintains a Merkel tree of Message Authentication Codes that protect the lower layers, similarly to how checksums are maintained. This part impacts the zio layer, which handles the actual encryption and generation of MACs, as well as the ARC and DMU, which need to be able to handle encrypted buffers and protected data. The last addition is the ability to do raw, encrypted sends and receives. The idea here is to send raw encrypted and compressed data and receive it exactly as is on a backup system. This means that the dataset on the receiving system is protected using the same user key that is in use on the sending side. By doing so, datasets can be efficiently backed up to an untrusted system without fear of data being compromised. Reviewed by: Matthew Ahrens <mahrens@delphix.com> Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov> Reviewed-by: Jorgen Lundman <lundman@lundman.net> Signed-off-by: Tom Caputi <tcaputi@datto.com> Closes #494 Closes #5769
2017-08-14 20:36:48 +03:00
*/
if (os->os_raw_receive ||
os->os_next_write_raw[tx->tx_txg & TXG_MASK]) {
Native Encryption for ZFS on Linux This change incorporates three major pieces: The first change is a keystore that manages wrapping and encryption keys for encrypted datasets. These commands mostly involve manipulating the new DSL Crypto Key ZAP Objects that live in the MOS. Each encrypted dataset has its own DSL Crypto Key that is protected with a user's key. This level of indirection allows users to change their keys without re-encrypting their entire datasets. The change implements the new subcommands "zfs load-key", "zfs unload-key" and "zfs change-key" which allow the user to manage their encryption keys and settings. In addition, several new flags and properties have been added to allow dataset creation and to make mounting and unmounting more convenient. The second piece of this patch provides the ability to encrypt, decyrpt, and authenticate protected datasets. Each object set maintains a Merkel tree of Message Authentication Codes that protect the lower layers, similarly to how checksums are maintained. This part impacts the zio layer, which handles the actual encryption and generation of MACs, as well as the ARC and DMU, which need to be able to handle encrypted buffers and protected data. The last addition is the ability to do raw, encrypted sends and receives. The idea here is to send raw encrypted and compressed data and receive it exactly as is on a backup system. This means that the dataset on the receiving system is protected using the same user key that is in use on the sending side. By doing so, datasets can be efficiently backed up to an untrusted system without fear of data being compromised. Reviewed by: Matthew Ahrens <mahrens@delphix.com> Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov> Reviewed-by: Jorgen Lundman <lundman@lundman.net> Signed-off-by: Tom Caputi <tcaputi@datto.com> Closes #494 Closes #5769
2017-08-14 20:36:48 +03:00
ASSERT(os->os_encrypted);
arc_convert_to_raw(os->os_phys_buf,
os->os_dsl_dataset->ds_object, ZFS_HOST_BYTEORDER,
DMU_OT_OBJSET, NULL, NULL, NULL);
}
zio = arc_write(pio, os->os_spa, tx->tx_txg,
blkptr_copy, os->os_phys_buf, DMU_OS_IS_L2CACHEABLE(os),
&zp, dmu_objset_write_ready, NULL, NULL, dmu_objset_write_done,
os, ZIO_PRIORITY_ASYNC_WRITE, ZIO_FLAG_MUSTSUCCEED, &zb);
2008-11-20 23:01:55 +03:00
/*
2009-07-03 02:44:48 +04:00
* Sync special dnodes - the parent IO for the sync is the root block
2008-11-20 23:01:55 +03:00
*/
DMU_META_DNODE(os)->dn_zio = zio;
dnode_sync(DMU_META_DNODE(os), tx);
2008-11-20 23:01:55 +03:00
2009-07-03 02:44:48 +04:00
os->os_phys->os_flags = os->os_flags;
if (DMU_USERUSED_DNODE(os) &&
DMU_USERUSED_DNODE(os)->dn_type != DMU_OT_NONE) {
DMU_USERUSED_DNODE(os)->dn_zio = zio;
dnode_sync(DMU_USERUSED_DNODE(os), tx);
DMU_GROUPUSED_DNODE(os)->dn_zio = zio;
dnode_sync(DMU_GROUPUSED_DNODE(os), tx);
2009-07-03 02:44:48 +04:00
}
Project Quota on ZFS Project quota is a new ZFS system space/object usage accounting and enforcement mechanism. Similar as user/group quota, project quota is another dimension of system quota. It bases on the new object attribute - project ID. Project ID is a numerical value to indicate to which project an object belongs. An object only can belong to one project though you (the object owner or privileged user) can change the object project ID via 'chattr -p' or 'zfs project [-s] -p' explicitly. The object also can inherit the project ID from its parent when created if the parent has the project inherit flag (that can be set via 'chattr +P' or 'zfs project -s [-p]'). By accounting the spaces/objects belong to the same project, we can know how many spaces/objects used by the project. And if we set the upper limit then we can control the spaces/objects that are consumed by such project. It is useful when multiple groups and users cooperate for the same project, or a user/group needs to participate in multiple projects. Support the following commands and functionalities: zfs set projectquota@project zfs set projectobjquota@project zfs get projectquota@project zfs get projectobjquota@project zfs get projectused@project zfs get projectobjused@project zfs projectspace zfs allow projectquota zfs allow projectobjquota zfs allow projectused zfs allow projectobjused zfs unallow projectquota zfs unallow projectobjquota zfs unallow projectused zfs unallow projectobjused chattr +/-P chattr -p project_id lsattr -p This patch also supports tree quota based on the project quota via "zfs project" commands set as following: zfs project [-d|-r] <file|directory ...> zfs project -C [-k] [-r] <file|directory ...> zfs project -c [-0] [-d|-r] [-p id] <file|directory ...> zfs project [-p id] [-r] [-s] <file|directory ...> For "df [-i] $DIR" command, if we set INHERIT (project ID) flag on the $DIR, then the proejct [obj]quota and [obj]used values for the $DIR's project ID will be shown as the total/free (avail) resource. Keep the same behavior as EXT4/XFS does. Reviewed-by: Andreas Dilger <andreas.dilger@intel.com> Reviewed-by Ned Bass <bass6@llnl.gov> Reviewed-by: Matthew Ahrens <mahrens@delphix.com> Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov> Signed-off-by: Fan Yong <fan.yong@intel.com> TEST_ZIMPORT_POOLS="zol-0.6.1 zol-0.6.2 master" Change-Id: Ib4f0544602e03fb61fd46a849d7ba51a6005693c Closes #6290
2018-02-14 01:54:54 +03:00
if (DMU_PROJECTUSED_DNODE(os) &&
DMU_PROJECTUSED_DNODE(os)->dn_type != DMU_OT_NONE) {
DMU_PROJECTUSED_DNODE(os)->dn_zio = zio;
dnode_sync(DMU_PROJECTUSED_DNODE(os), tx);
}
2008-11-20 23:01:55 +03:00
txgoff = tx->tx_txg & TXG_MASK;
Native Encryption for ZFS on Linux This change incorporates three major pieces: The first change is a keystore that manages wrapping and encryption keys for encrypted datasets. These commands mostly involve manipulating the new DSL Crypto Key ZAP Objects that live in the MOS. Each encrypted dataset has its own DSL Crypto Key that is protected with a user's key. This level of indirection allows users to change their keys without re-encrypting their entire datasets. The change implements the new subcommands "zfs load-key", "zfs unload-key" and "zfs change-key" which allow the user to manage their encryption keys and settings. In addition, several new flags and properties have been added to allow dataset creation and to make mounting and unmounting more convenient. The second piece of this patch provides the ability to encrypt, decyrpt, and authenticate protected datasets. Each object set maintains a Merkel tree of Message Authentication Codes that protect the lower layers, similarly to how checksums are maintained. This part impacts the zio layer, which handles the actual encryption and generation of MACs, as well as the ARC and DMU, which need to be able to handle encrypted buffers and protected data. The last addition is the ability to do raw, encrypted sends and receives. The idea here is to send raw encrypted and compressed data and receive it exactly as is on a backup system. This means that the dataset on the receiving system is protected using the same user key that is in use on the sending side. By doing so, datasets can be efficiently backed up to an untrusted system without fear of data being compromised. Reviewed by: Matthew Ahrens <mahrens@delphix.com> Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov> Reviewed-by: Jorgen Lundman <lundman@lundman.net> Signed-off-by: Tom Caputi <tcaputi@datto.com> Closes #494 Closes #5769
2017-08-14 20:36:48 +03:00
if (dmu_objset_userused_enabled(os) &&
(!os->os_encrypted || !dmu_objset_is_receiving(os))) {
2009-07-03 02:44:48 +04:00
/*
* We must create the list here because it uses the
* dn_dirty_link[] of this txg. But it may already
* exist because we call dsl_dataset_sync() twice per txg.
2009-07-03 02:44:48 +04:00
*/
if (os->os_synced_dnodes == NULL) {
os->os_synced_dnodes =
multilist_create(sizeof (dnode_t),
offsetof(dnode_t, dn_dirty_link[txgoff]),
dnode_multilist_index_func);
} else {
ASSERT3U(os->os_synced_dnodes->ml_offset, ==,
offsetof(dnode_t, dn_dirty_link[txgoff]));
}
2009-07-03 02:44:48 +04:00
}
ml = os->os_dirty_dnodes[txgoff];
num_sublists = multilist_get_num_sublists(ml);
for (int i = 0; i < num_sublists; i++) {
if (multilist_sublist_is_empty_idx(ml, i))
continue;
sync_dnodes_arg_t *sda = kmem_alloc(sizeof (*sda), KM_SLEEP);
sda->sda_list = ml;
sda->sda_sublist_idx = i;
sda->sda_tx = tx;
(void) taskq_dispatch(dmu_objset_pool(os)->dp_sync_taskq,
sync_dnodes_task, sda, 0);
/* callback frees sda */
}
taskq_wait(dmu_objset_pool(os)->dp_sync_taskq);
2008-11-20 23:01:55 +03:00
list = &DMU_META_DNODE(os)->dn_dirty_records[txgoff];
while ((dr = list_head(list)) != NULL) {
ASSERT0(dr->dr_dbuf->db_level);
2008-11-20 23:01:55 +03:00
list_remove(list, dr);
zio_nowait(dr->dr_zio);
2008-11-20 23:01:55 +03:00
}
Backfill metadnode more intelligently Only attempt to backfill lower metadnode object numbers if at least 4096 objects have been freed since the last rescan, and at most once per transaction group. This avoids a pathology in dmu_object_alloc() that caused O(N^2) behavior for create-heavy workloads and substantially improves object creation rates. As summarized by @mahrens in #4636: "Normally, the object allocator simply checks to see if the next object is available. The slow calls happened when dmu_object_alloc() checks to see if it can backfill lower object numbers. This happens every time we move on to a new L1 indirect block (i.e. every 32 * 128 = 4096 objects). When re-checking lower object numbers, we use the on-disk fill count (blkptr_t:blk_fill) to quickly skip over indirect blocks that don’t have enough free dnodes (defined as an L2 with at least 393,216 of 524,288 dnodes free). Therefore, we may find that a block of dnodes has a low (or zero) fill count, and yet we can’t allocate any of its dnodes, because they've been allocated in memory but not yet written to disk. In this case we have to hold each of the dnodes and then notice that it has been allocated in memory. The end result is that allocating N objects in the same TXG can require CPU usage proportional to N^2." Add a tunable dmu_rescan_dnode_threshold to define the number of objects that must be freed before a rescan is performed. Don't bother to export this as a module option because testing doesn't show a compelling reason to change it. The vast majority of the performance gain comes from limit the rescan to at most once per TXG. Signed-off-by: Ned Bass <bass6@llnl.gov> Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
2016-05-17 04:02:29 +03:00
/* Enable dnode backfill if enough objects have been freed. */
if (os->os_freed_dnodes >= dmu_rescan_dnode_threshold) {
os->os_rescan_dnodes = B_TRUE;
os->os_freed_dnodes = 0;
}
2008-11-20 23:01:55 +03:00
/*
* Free intent log blocks up to this tx.
*/
zil_sync(os->os_zil, tx);
os->os_phys->os_zil_header = os->os_zil_header;
2008-11-20 23:01:55 +03:00
zio_nowait(zio);
}
boolean_t
dmu_objset_is_dirty(objset_t *os, uint64_t txg)
{
return (!multilist_is_empty(os->os_dirty_dnodes[txg & TXG_MASK]));
}
File incorrectly zeroed when receiving incremental stream that toggles -L Background: By increasing the recordsize property above the default of 128KB, a filesystem may have "large" blocks. By default, a send stream of such a filesystem does not contain large WRITE records, instead it decreases objects' block sizes to 128KB and splits the large blocks into 128KB blocks, allowing the large-block filesystem to be received by a system that does not support the `large_blocks` feature. A send stream generated by `zfs send -L` (or `--large-block`) preserves the large block size on the receiving system, by using large WRITE records. When receiving an incremental send stream for a filesystem with large blocks, if the send stream's -L flag was toggled, a bug is encountered in which the file's contents are incorrectly zeroed out. The contents of any blocks that were not modified by this send stream will be lost. "Toggled" means that the previous send used `-L`, but this incremental does not use `-L` (-L to no-L); or that the previous send did not use `-L`, but this incremental does use `-L` (no-L to -L). Changes: This commit addresses the problem with several changes to the semantics of zfs send/receive: 1. "-L to no-L" incrementals are rejected. If the previous send used `-L`, but this incremental does not use `-L`, the `zfs receive` will fail with this error message: incremental send stream requires -L (--large-block), to match previous receive. 2. "no-L to -L" incrementals are handled correctly, preserving the smaller (128KB) block size of any already-received files that used large blocks on the sending system but were split by `zfs send` without the `-L` flag. 3. A new send stream format flag is added, `SWITCH_TO_LARGE_BLOCKS`. This feature indicates that we can correctly handle "no-L to -L" incrementals. This flag is currently not set on any send streams. In the future, we intend for incremental send streams of snapshots that have large blocks to use `-L` by default, and these streams will also have the `SWITCH_TO_LARGE_BLOCKS` feature set. This ensures that streams from the default use of `zfs send` won't encounter the bug mentioned above, because they can't be received by software with the bug. Implementation notes: To facilitate accessing the ZPL's generation number, `zfs_space_delta_cb()` has been renamed to `zpl_get_file_info()` and restructured to fill in a struct with ZPL-specific info including owner and generation. In the "no-L to -L" case, if this is a compressed send stream (from `zfs send -cL`), large WRITE records that are being written to small (128KB) blocksize files need to be decompressed so that they can be written split up into multiple blocks. The zio pipeline will recompress each smaller block individually. A new test case, `send-L_toggle`, is added, which tests the "no-L to -L" case and verifies that we get an error for the "-L to no-L" case. Reviewed-by: Paul Dagnelie <pcd@delphix.com> Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov> Signed-off-by: Matthew Ahrens <mahrens@delphix.com> Closes #6224 Closes #10383
2020-06-09 20:41:01 +03:00
static file_info_cb_t *file_cbs[DMU_OST_NUMTYPES];
2009-07-03 02:44:48 +04:00
void
File incorrectly zeroed when receiving incremental stream that toggles -L Background: By increasing the recordsize property above the default of 128KB, a filesystem may have "large" blocks. By default, a send stream of such a filesystem does not contain large WRITE records, instead it decreases objects' block sizes to 128KB and splits the large blocks into 128KB blocks, allowing the large-block filesystem to be received by a system that does not support the `large_blocks` feature. A send stream generated by `zfs send -L` (or `--large-block`) preserves the large block size on the receiving system, by using large WRITE records. When receiving an incremental send stream for a filesystem with large blocks, if the send stream's -L flag was toggled, a bug is encountered in which the file's contents are incorrectly zeroed out. The contents of any blocks that were not modified by this send stream will be lost. "Toggled" means that the previous send used `-L`, but this incremental does not use `-L` (-L to no-L); or that the previous send did not use `-L`, but this incremental does use `-L` (no-L to -L). Changes: This commit addresses the problem with several changes to the semantics of zfs send/receive: 1. "-L to no-L" incrementals are rejected. If the previous send used `-L`, but this incremental does not use `-L`, the `zfs receive` will fail with this error message: incremental send stream requires -L (--large-block), to match previous receive. 2. "no-L to -L" incrementals are handled correctly, preserving the smaller (128KB) block size of any already-received files that used large blocks on the sending system but were split by `zfs send` without the `-L` flag. 3. A new send stream format flag is added, `SWITCH_TO_LARGE_BLOCKS`. This feature indicates that we can correctly handle "no-L to -L" incrementals. This flag is currently not set on any send streams. In the future, we intend for incremental send streams of snapshots that have large blocks to use `-L` by default, and these streams will also have the `SWITCH_TO_LARGE_BLOCKS` feature set. This ensures that streams from the default use of `zfs send` won't encounter the bug mentioned above, because they can't be received by software with the bug. Implementation notes: To facilitate accessing the ZPL's generation number, `zfs_space_delta_cb()` has been renamed to `zpl_get_file_info()` and restructured to fill in a struct with ZPL-specific info including owner and generation. In the "no-L to -L" case, if this is a compressed send stream (from `zfs send -cL`), large WRITE records that are being written to small (128KB) blocksize files need to be decompressed so that they can be written split up into multiple blocks. The zio pipeline will recompress each smaller block individually. A new test case, `send-L_toggle`, is added, which tests the "no-L to -L" case and verifies that we get an error for the "-L to no-L" case. Reviewed-by: Paul Dagnelie <pcd@delphix.com> Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov> Signed-off-by: Matthew Ahrens <mahrens@delphix.com> Closes #6224 Closes #10383
2020-06-09 20:41:01 +03:00
dmu_objset_register_type(dmu_objset_type_t ost, file_info_cb_t *cb)
2009-07-03 02:44:48 +04:00
{
File incorrectly zeroed when receiving incremental stream that toggles -L Background: By increasing the recordsize property above the default of 128KB, a filesystem may have "large" blocks. By default, a send stream of such a filesystem does not contain large WRITE records, instead it decreases objects' block sizes to 128KB and splits the large blocks into 128KB blocks, allowing the large-block filesystem to be received by a system that does not support the `large_blocks` feature. A send stream generated by `zfs send -L` (or `--large-block`) preserves the large block size on the receiving system, by using large WRITE records. When receiving an incremental send stream for a filesystem with large blocks, if the send stream's -L flag was toggled, a bug is encountered in which the file's contents are incorrectly zeroed out. The contents of any blocks that were not modified by this send stream will be lost. "Toggled" means that the previous send used `-L`, but this incremental does not use `-L` (-L to no-L); or that the previous send did not use `-L`, but this incremental does use `-L` (no-L to -L). Changes: This commit addresses the problem with several changes to the semantics of zfs send/receive: 1. "-L to no-L" incrementals are rejected. If the previous send used `-L`, but this incremental does not use `-L`, the `zfs receive` will fail with this error message: incremental send stream requires -L (--large-block), to match previous receive. 2. "no-L to -L" incrementals are handled correctly, preserving the smaller (128KB) block size of any already-received files that used large blocks on the sending system but were split by `zfs send` without the `-L` flag. 3. A new send stream format flag is added, `SWITCH_TO_LARGE_BLOCKS`. This feature indicates that we can correctly handle "no-L to -L" incrementals. This flag is currently not set on any send streams. In the future, we intend for incremental send streams of snapshots that have large blocks to use `-L` by default, and these streams will also have the `SWITCH_TO_LARGE_BLOCKS` feature set. This ensures that streams from the default use of `zfs send` won't encounter the bug mentioned above, because they can't be received by software with the bug. Implementation notes: To facilitate accessing the ZPL's generation number, `zfs_space_delta_cb()` has been renamed to `zpl_get_file_info()` and restructured to fill in a struct with ZPL-specific info including owner and generation. In the "no-L to -L" case, if this is a compressed send stream (from `zfs send -cL`), large WRITE records that are being written to small (128KB) blocksize files need to be decompressed so that they can be written split up into multiple blocks. The zio pipeline will recompress each smaller block individually. A new test case, `send-L_toggle`, is added, which tests the "no-L to -L" case and verifies that we get an error for the "-L to no-L" case. Reviewed-by: Paul Dagnelie <pcd@delphix.com> Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov> Signed-off-by: Matthew Ahrens <mahrens@delphix.com> Closes #6224 Closes #10383
2020-06-09 20:41:01 +03:00
file_cbs[ost] = cb;
}
int
dmu_get_file_info(objset_t *os, dmu_object_type_t bonustype, const void *data,
zfs_file_info_t *zfi)
{
file_info_cb_t *cb = file_cbs[os->os_phys->os_type];
if (cb == NULL)
return (EINVAL);
return (cb(bonustype, data, zfi));
2009-07-03 02:44:48 +04:00
}
boolean_t
dmu_objset_userused_enabled(objset_t *os)
2009-07-03 02:44:48 +04:00
{
return (spa_version(os->os_spa) >= SPA_VERSION_USERSPACE &&
File incorrectly zeroed when receiving incremental stream that toggles -L Background: By increasing the recordsize property above the default of 128KB, a filesystem may have "large" blocks. By default, a send stream of such a filesystem does not contain large WRITE records, instead it decreases objects' block sizes to 128KB and splits the large blocks into 128KB blocks, allowing the large-block filesystem to be received by a system that does not support the `large_blocks` feature. A send stream generated by `zfs send -L` (or `--large-block`) preserves the large block size on the receiving system, by using large WRITE records. When receiving an incremental send stream for a filesystem with large blocks, if the send stream's -L flag was toggled, a bug is encountered in which the file's contents are incorrectly zeroed out. The contents of any blocks that were not modified by this send stream will be lost. "Toggled" means that the previous send used `-L`, but this incremental does not use `-L` (-L to no-L); or that the previous send did not use `-L`, but this incremental does use `-L` (no-L to -L). Changes: This commit addresses the problem with several changes to the semantics of zfs send/receive: 1. "-L to no-L" incrementals are rejected. If the previous send used `-L`, but this incremental does not use `-L`, the `zfs receive` will fail with this error message: incremental send stream requires -L (--large-block), to match previous receive. 2. "no-L to -L" incrementals are handled correctly, preserving the smaller (128KB) block size of any already-received files that used large blocks on the sending system but were split by `zfs send` without the `-L` flag. 3. A new send stream format flag is added, `SWITCH_TO_LARGE_BLOCKS`. This feature indicates that we can correctly handle "no-L to -L" incrementals. This flag is currently not set on any send streams. In the future, we intend for incremental send streams of snapshots that have large blocks to use `-L` by default, and these streams will also have the `SWITCH_TO_LARGE_BLOCKS` feature set. This ensures that streams from the default use of `zfs send` won't encounter the bug mentioned above, because they can't be received by software with the bug. Implementation notes: To facilitate accessing the ZPL's generation number, `zfs_space_delta_cb()` has been renamed to `zpl_get_file_info()` and restructured to fill in a struct with ZPL-specific info including owner and generation. In the "no-L to -L" case, if this is a compressed send stream (from `zfs send -cL`), large WRITE records that are being written to small (128KB) blocksize files need to be decompressed so that they can be written split up into multiple blocks. The zio pipeline will recompress each smaller block individually. A new test case, `send-L_toggle`, is added, which tests the "no-L to -L" case and verifies that we get an error for the "-L to no-L" case. Reviewed-by: Paul Dagnelie <pcd@delphix.com> Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov> Signed-off-by: Matthew Ahrens <mahrens@delphix.com> Closes #6224 Closes #10383
2020-06-09 20:41:01 +03:00
file_cbs[os->os_phys->os_type] != NULL &&
DMU_USERUSED_DNODE(os) != NULL);
2009-07-03 02:44:48 +04:00
}
boolean_t
dmu_objset_userobjused_enabled(objset_t *os)
{
return (dmu_objset_userused_enabled(os) &&
spa_feature_is_enabled(os->os_spa, SPA_FEATURE_USEROBJ_ACCOUNTING));
}
Project Quota on ZFS Project quota is a new ZFS system space/object usage accounting and enforcement mechanism. Similar as user/group quota, project quota is another dimension of system quota. It bases on the new object attribute - project ID. Project ID is a numerical value to indicate to which project an object belongs. An object only can belong to one project though you (the object owner or privileged user) can change the object project ID via 'chattr -p' or 'zfs project [-s] -p' explicitly. The object also can inherit the project ID from its parent when created if the parent has the project inherit flag (that can be set via 'chattr +P' or 'zfs project -s [-p]'). By accounting the spaces/objects belong to the same project, we can know how many spaces/objects used by the project. And if we set the upper limit then we can control the spaces/objects that are consumed by such project. It is useful when multiple groups and users cooperate for the same project, or a user/group needs to participate in multiple projects. Support the following commands and functionalities: zfs set projectquota@project zfs set projectobjquota@project zfs get projectquota@project zfs get projectobjquota@project zfs get projectused@project zfs get projectobjused@project zfs projectspace zfs allow projectquota zfs allow projectobjquota zfs allow projectused zfs allow projectobjused zfs unallow projectquota zfs unallow projectobjquota zfs unallow projectused zfs unallow projectobjused chattr +/-P chattr -p project_id lsattr -p This patch also supports tree quota based on the project quota via "zfs project" commands set as following: zfs project [-d|-r] <file|directory ...> zfs project -C [-k] [-r] <file|directory ...> zfs project -c [-0] [-d|-r] [-p id] <file|directory ...> zfs project [-p id] [-r] [-s] <file|directory ...> For "df [-i] $DIR" command, if we set INHERIT (project ID) flag on the $DIR, then the proejct [obj]quota and [obj]used values for the $DIR's project ID will be shown as the total/free (avail) resource. Keep the same behavior as EXT4/XFS does. Reviewed-by: Andreas Dilger <andreas.dilger@intel.com> Reviewed-by Ned Bass <bass6@llnl.gov> Reviewed-by: Matthew Ahrens <mahrens@delphix.com> Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov> Signed-off-by: Fan Yong <fan.yong@intel.com> TEST_ZIMPORT_POOLS="zol-0.6.1 zol-0.6.2 master" Change-Id: Ib4f0544602e03fb61fd46a849d7ba51a6005693c Closes #6290
2018-02-14 01:54:54 +03:00
boolean_t
dmu_objset_projectquota_enabled(objset_t *os)
{
File incorrectly zeroed when receiving incremental stream that toggles -L Background: By increasing the recordsize property above the default of 128KB, a filesystem may have "large" blocks. By default, a send stream of such a filesystem does not contain large WRITE records, instead it decreases objects' block sizes to 128KB and splits the large blocks into 128KB blocks, allowing the large-block filesystem to be received by a system that does not support the `large_blocks` feature. A send stream generated by `zfs send -L` (or `--large-block`) preserves the large block size on the receiving system, by using large WRITE records. When receiving an incremental send stream for a filesystem with large blocks, if the send stream's -L flag was toggled, a bug is encountered in which the file's contents are incorrectly zeroed out. The contents of any blocks that were not modified by this send stream will be lost. "Toggled" means that the previous send used `-L`, but this incremental does not use `-L` (-L to no-L); or that the previous send did not use `-L`, but this incremental does use `-L` (no-L to -L). Changes: This commit addresses the problem with several changes to the semantics of zfs send/receive: 1. "-L to no-L" incrementals are rejected. If the previous send used `-L`, but this incremental does not use `-L`, the `zfs receive` will fail with this error message: incremental send stream requires -L (--large-block), to match previous receive. 2. "no-L to -L" incrementals are handled correctly, preserving the smaller (128KB) block size of any already-received files that used large blocks on the sending system but were split by `zfs send` without the `-L` flag. 3. A new send stream format flag is added, `SWITCH_TO_LARGE_BLOCKS`. This feature indicates that we can correctly handle "no-L to -L" incrementals. This flag is currently not set on any send streams. In the future, we intend for incremental send streams of snapshots that have large blocks to use `-L` by default, and these streams will also have the `SWITCH_TO_LARGE_BLOCKS` feature set. This ensures that streams from the default use of `zfs send` won't encounter the bug mentioned above, because they can't be received by software with the bug. Implementation notes: To facilitate accessing the ZPL's generation number, `zfs_space_delta_cb()` has been renamed to `zpl_get_file_info()` and restructured to fill in a struct with ZPL-specific info including owner and generation. In the "no-L to -L" case, if this is a compressed send stream (from `zfs send -cL`), large WRITE records that are being written to small (128KB) blocksize files need to be decompressed so that they can be written split up into multiple blocks. The zio pipeline will recompress each smaller block individually. A new test case, `send-L_toggle`, is added, which tests the "no-L to -L" case and verifies that we get an error for the "-L to no-L" case. Reviewed-by: Paul Dagnelie <pcd@delphix.com> Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov> Signed-off-by: Matthew Ahrens <mahrens@delphix.com> Closes #6224 Closes #10383
2020-06-09 20:41:01 +03:00
return (file_cbs[os->os_phys->os_type] != NULL &&
Project Quota on ZFS Project quota is a new ZFS system space/object usage accounting and enforcement mechanism. Similar as user/group quota, project quota is another dimension of system quota. It bases on the new object attribute - project ID. Project ID is a numerical value to indicate to which project an object belongs. An object only can belong to one project though you (the object owner or privileged user) can change the object project ID via 'chattr -p' or 'zfs project [-s] -p' explicitly. The object also can inherit the project ID from its parent when created if the parent has the project inherit flag (that can be set via 'chattr +P' or 'zfs project -s [-p]'). By accounting the spaces/objects belong to the same project, we can know how many spaces/objects used by the project. And if we set the upper limit then we can control the spaces/objects that are consumed by such project. It is useful when multiple groups and users cooperate for the same project, or a user/group needs to participate in multiple projects. Support the following commands and functionalities: zfs set projectquota@project zfs set projectobjquota@project zfs get projectquota@project zfs get projectobjquota@project zfs get projectused@project zfs get projectobjused@project zfs projectspace zfs allow projectquota zfs allow projectobjquota zfs allow projectused zfs allow projectobjused zfs unallow projectquota zfs unallow projectobjquota zfs unallow projectused zfs unallow projectobjused chattr +/-P chattr -p project_id lsattr -p This patch also supports tree quota based on the project quota via "zfs project" commands set as following: zfs project [-d|-r] <file|directory ...> zfs project -C [-k] [-r] <file|directory ...> zfs project -c [-0] [-d|-r] [-p id] <file|directory ...> zfs project [-p id] [-r] [-s] <file|directory ...> For "df [-i] $DIR" command, if we set INHERIT (project ID) flag on the $DIR, then the proejct [obj]quota and [obj]used values for the $DIR's project ID will be shown as the total/free (avail) resource. Keep the same behavior as EXT4/XFS does. Reviewed-by: Andreas Dilger <andreas.dilger@intel.com> Reviewed-by Ned Bass <bass6@llnl.gov> Reviewed-by: Matthew Ahrens <mahrens@delphix.com> Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov> Signed-off-by: Fan Yong <fan.yong@intel.com> TEST_ZIMPORT_POOLS="zol-0.6.1 zol-0.6.2 master" Change-Id: Ib4f0544602e03fb61fd46a849d7ba51a6005693c Closes #6290
2018-02-14 01:54:54 +03:00
DMU_PROJECTUSED_DNODE(os) != NULL &&
spa_feature_is_enabled(os->os_spa, SPA_FEATURE_PROJECT_QUOTA));
}
OpenZFS 6988 spa_sync() spends half its time in dmu_objset_do_userquota_updates Using a benchmark which creates 2 million files in one TXG, I observe that the thread running spa_sync() is on CPU almost the entire time we are syncing, and therefore can be a performance bottleneck. About 50% of the time in spa_sync() is in dmu_objset_do_userquota_updates(). The problem is that dmu_objset_do_userquota_updates() calls zap_increment_int(DMU_USERUSED_OBJECT) once for every file that was modified (or created). In this benchmark, all the files are owned by the same user/group, so all 2 million calls to zap_increment_int() are modifying the same entry in the zap. The same issue exists for the DMU_GROUPUSED_OBJECT. We should keep an in-memory map from user to space delta while we are syncing, and when we finish, iterate over the in-memory map and modify the ZAP once per entry. This reduces the number of calls to zap_increment_int() from "number of objects modified" to "number of owners/groups of modified files". This reduced the time spent in spa_sync() in the file create benchmark by ~33%, from 11 seconds to 7 seconds. Upstream bugs: DLPX-44799 Ported by: Ned Bass <bass6@llnl.gov> OpenZFS-issue: https://www.illumos.org/issues/6988 ZFSonLinux-issue: https://github.com/zfsonlinux/zfs/issues/4642 OpenZFS-commit: unmerged Porting notes: - Added curly braces around declaration of userquota_cache_t cache to quiet compiler warning; - Handled the userobj accounting the same way it proposed in this path. Signed-off-by: Jinshan Xiong <jinshan.xiong@intel.com>
2016-09-21 23:49:47 +03:00
typedef struct userquota_node {
/* must be in the first filed, see userquota_update_cache() */
char uqn_id[20 + DMU_OBJACCT_PREFIX_LEN];
int64_t uqn_delta;
avl_node_t uqn_node;
} userquota_node_t;
typedef struct userquota_cache {
avl_tree_t uqc_user_deltas;
avl_tree_t uqc_group_deltas;
Project Quota on ZFS Project quota is a new ZFS system space/object usage accounting and enforcement mechanism. Similar as user/group quota, project quota is another dimension of system quota. It bases on the new object attribute - project ID. Project ID is a numerical value to indicate to which project an object belongs. An object only can belong to one project though you (the object owner or privileged user) can change the object project ID via 'chattr -p' or 'zfs project [-s] -p' explicitly. The object also can inherit the project ID from its parent when created if the parent has the project inherit flag (that can be set via 'chattr +P' or 'zfs project -s [-p]'). By accounting the spaces/objects belong to the same project, we can know how many spaces/objects used by the project. And if we set the upper limit then we can control the spaces/objects that are consumed by such project. It is useful when multiple groups and users cooperate for the same project, or a user/group needs to participate in multiple projects. Support the following commands and functionalities: zfs set projectquota@project zfs set projectobjquota@project zfs get projectquota@project zfs get projectobjquota@project zfs get projectused@project zfs get projectobjused@project zfs projectspace zfs allow projectquota zfs allow projectobjquota zfs allow projectused zfs allow projectobjused zfs unallow projectquota zfs unallow projectobjquota zfs unallow projectused zfs unallow projectobjused chattr +/-P chattr -p project_id lsattr -p This patch also supports tree quota based on the project quota via "zfs project" commands set as following: zfs project [-d|-r] <file|directory ...> zfs project -C [-k] [-r] <file|directory ...> zfs project -c [-0] [-d|-r] [-p id] <file|directory ...> zfs project [-p id] [-r] [-s] <file|directory ...> For "df [-i] $DIR" command, if we set INHERIT (project ID) flag on the $DIR, then the proejct [obj]quota and [obj]used values for the $DIR's project ID will be shown as the total/free (avail) resource. Keep the same behavior as EXT4/XFS does. Reviewed-by: Andreas Dilger <andreas.dilger@intel.com> Reviewed-by Ned Bass <bass6@llnl.gov> Reviewed-by: Matthew Ahrens <mahrens@delphix.com> Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov> Signed-off-by: Fan Yong <fan.yong@intel.com> TEST_ZIMPORT_POOLS="zol-0.6.1 zol-0.6.2 master" Change-Id: Ib4f0544602e03fb61fd46a849d7ba51a6005693c Closes #6290
2018-02-14 01:54:54 +03:00
avl_tree_t uqc_project_deltas;
OpenZFS 6988 spa_sync() spends half its time in dmu_objset_do_userquota_updates Using a benchmark which creates 2 million files in one TXG, I observe that the thread running spa_sync() is on CPU almost the entire time we are syncing, and therefore can be a performance bottleneck. About 50% of the time in spa_sync() is in dmu_objset_do_userquota_updates(). The problem is that dmu_objset_do_userquota_updates() calls zap_increment_int(DMU_USERUSED_OBJECT) once for every file that was modified (or created). In this benchmark, all the files are owned by the same user/group, so all 2 million calls to zap_increment_int() are modifying the same entry in the zap. The same issue exists for the DMU_GROUPUSED_OBJECT. We should keep an in-memory map from user to space delta while we are syncing, and when we finish, iterate over the in-memory map and modify the ZAP once per entry. This reduces the number of calls to zap_increment_int() from "number of objects modified" to "number of owners/groups of modified files". This reduced the time spent in spa_sync() in the file create benchmark by ~33%, from 11 seconds to 7 seconds. Upstream bugs: DLPX-44799 Ported by: Ned Bass <bass6@llnl.gov> OpenZFS-issue: https://www.illumos.org/issues/6988 ZFSonLinux-issue: https://github.com/zfsonlinux/zfs/issues/4642 OpenZFS-commit: unmerged Porting notes: - Added curly braces around declaration of userquota_cache_t cache to quiet compiler warning; - Handled the userobj accounting the same way it proposed in this path. Signed-off-by: Jinshan Xiong <jinshan.xiong@intel.com>
2016-09-21 23:49:47 +03:00
} userquota_cache_t;
static int
userquota_compare(const void *l, const void *r)
{
const userquota_node_t *luqn = l;
const userquota_node_t *ruqn = r;
int rv;
OpenZFS 6988 spa_sync() spends half its time in dmu_objset_do_userquota_updates Using a benchmark which creates 2 million files in one TXG, I observe that the thread running spa_sync() is on CPU almost the entire time we are syncing, and therefore can be a performance bottleneck. About 50% of the time in spa_sync() is in dmu_objset_do_userquota_updates(). The problem is that dmu_objset_do_userquota_updates() calls zap_increment_int(DMU_USERUSED_OBJECT) once for every file that was modified (or created). In this benchmark, all the files are owned by the same user/group, so all 2 million calls to zap_increment_int() are modifying the same entry in the zap. The same issue exists for the DMU_GROUPUSED_OBJECT. We should keep an in-memory map from user to space delta while we are syncing, and when we finish, iterate over the in-memory map and modify the ZAP once per entry. This reduces the number of calls to zap_increment_int() from "number of objects modified" to "number of owners/groups of modified files". This reduced the time spent in spa_sync() in the file create benchmark by ~33%, from 11 seconds to 7 seconds. Upstream bugs: DLPX-44799 Ported by: Ned Bass <bass6@llnl.gov> OpenZFS-issue: https://www.illumos.org/issues/6988 ZFSonLinux-issue: https://github.com/zfsonlinux/zfs/issues/4642 OpenZFS-commit: unmerged Porting notes: - Added curly braces around declaration of userquota_cache_t cache to quiet compiler warning; - Handled the userobj accounting the same way it proposed in this path. Signed-off-by: Jinshan Xiong <jinshan.xiong@intel.com>
2016-09-21 23:49:47 +03:00
/*
* NB: can only access uqn_id because userquota_update_cache() doesn't
* pass in an entire userquota_node_t.
*/
rv = strcmp(luqn->uqn_id, ruqn->uqn_id);
Reduce loaded range tree memory usage This patch implements a new tree structure for ZFS, and uses it to store range trees more efficiently. The new structure is approximately a B-tree, though there are some small differences from the usual characterizations. The tree has core nodes and leaf nodes; each contain data elements, which the elements in the core nodes acting as separators between its children. The difference between core and leaf nodes is that the core nodes have an array of children, while leaf nodes don't. Every node in the tree may be only partially full; in most cases, they are all at least 50% full (in terms of element count) except for the root node, which can be less full. Underfull nodes will steal from their neighbors or merge to remain full enough, while overfull nodes will split in two. The data elements are contained in tree-controlled buffers; they are copied into these on insertion, and overwritten on deletion. This means that the elements are not independently allocated, which reduces overhead, but also means they can't be shared between trees (and also that pointers to them are only valid until a side-effectful tree operation occurs). The overhead varies based on how dense the tree is, but is usually on the order of about 50% of the element size; the per-node overheads are very small, and so don't make a significant difference. The trees can accept arbitrary records; they accept a size and a comparator to allow them to be used for a variety of purposes. The new trees replace the AVL trees used in the range trees today. Currently, the range_seg_t structure contains three 8 byte integers of payload and two 24 byte avl_tree_node_ts to handle its storage in both an offset-sorted tree and a size-sorted tree (total size: 64 bytes). In the new model, the range seg structures are usually two 4 byte integers, but a separate one needs to exist for the size-sorted and offset-sorted tree. Between the raw size, the 50% overhead, and the double storage, the new btrees are expected to use 8*1.5*2 = 24 bytes per record, or 33.3% as much memory as the AVL trees (this is for the purposes of storing metaslab range trees; for other purposes, like scrubs, they use ~50% as much memory). We reduced the size of the payload in the range segments by teaching range trees about starting offsets and shifts; since metaslabs have a fixed starting offset, and they all operate in terms of disk sectors, we can store the ranges using 4-byte integers as long as the size of the metaslab divided by the sector size is less than 2^32. For 512-byte sectors, this is a 2^41 (or 2TB) metaslab, which with the default settings corresponds to a 256PB disk. 4k sector disks can handle metaslabs up to 2^46 bytes, or 2^63 byte disks. Since we do not anticipate disks of this size in the near future, there should be almost no cases where metaslabs need 64-byte integers to store their ranges. We do still have the capability to store 64-byte integer ranges to account for cases where we are storing per-vdev (or per-dnode) trees, which could reasonably go above the limits discussed. We also do not store fill information in the compact version of the node, since it is only used for sorted scrub. We also optimized the metaslab loading process in various other ways to offset some inefficiencies in the btree model. While individual operations (find, insert, remove_from) are faster for the btree than they are for the avl tree, remove usually requires a find operation, while in the AVL tree model the element itself suffices. Some clever changes actually caused an overall speedup in metaslab loading; we use approximately 40% less cpu to load metaslabs in our tests on Illumos. Another memory and performance optimization was achieved by changing what is stored in the size-sorted trees. When a disk is heavily fragmented, the df algorithm used by default in ZFS will almost always find a number of small regions in its initial cursor-based search; it will usually only fall back to the size-sorted tree to find larger regions. If we increase the size of the cursor-based search slightly, and don't store segments that are smaller than a tunable size floor in the size-sorted tree, we can further cut memory usage down to below 20% of what the AVL trees store. This also results in further reductions in CPU time spent loading metaslabs. The 16KiB size floor was chosen because it results in substantial memory usage reduction while not usually resulting in situations where we can't find an appropriate chunk with the cursor and are forced to use an oversized chunk from the size-sorted tree. In addition, even if we do have to use an oversized chunk from the size-sorted tree, the chunk would be too small to use for ZIL allocations, so it isn't as big of a loss as it might otherwise be. And often, more small allocations will follow the initial one, and the cursor search will now find the remainder of the chunk we didn't use all of and use it for subsequent allocations. Practical testing has shown little or no change in fragmentation as a result of this change. If the size-sorted tree becomes empty while the offset sorted one still has entries, it will load all the entries from the offset sorted tree and disregard the size floor until it is unloaded again. This operation occurs rarely with the default setting, only on incredibly thoroughly fragmented pools. There are some other small changes to zdb to teach it to handle btrees, but nothing major. Reviewed-by: George Wilson <gwilson@delphix.com> Reviewed-by: Matt Ahrens <matt@delphix.com> Reviewed by: Sebastien Roy seb@delphix.com Reviewed-by: Igor Kozhukhov <igor@dilos.org> Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov> Signed-off-by: Paul Dagnelie <pcd@delphix.com> Closes #9181
2019-10-09 20:36:03 +03:00
return (TREE_ISIGN(rv));
OpenZFS 6988 spa_sync() spends half its time in dmu_objset_do_userquota_updates Using a benchmark which creates 2 million files in one TXG, I observe that the thread running spa_sync() is on CPU almost the entire time we are syncing, and therefore can be a performance bottleneck. About 50% of the time in spa_sync() is in dmu_objset_do_userquota_updates(). The problem is that dmu_objset_do_userquota_updates() calls zap_increment_int(DMU_USERUSED_OBJECT) once for every file that was modified (or created). In this benchmark, all the files are owned by the same user/group, so all 2 million calls to zap_increment_int() are modifying the same entry in the zap. The same issue exists for the DMU_GROUPUSED_OBJECT. We should keep an in-memory map from user to space delta while we are syncing, and when we finish, iterate over the in-memory map and modify the ZAP once per entry. This reduces the number of calls to zap_increment_int() from "number of objects modified" to "number of owners/groups of modified files". This reduced the time spent in spa_sync() in the file create benchmark by ~33%, from 11 seconds to 7 seconds. Upstream bugs: DLPX-44799 Ported by: Ned Bass <bass6@llnl.gov> OpenZFS-issue: https://www.illumos.org/issues/6988 ZFSonLinux-issue: https://github.com/zfsonlinux/zfs/issues/4642 OpenZFS-commit: unmerged Porting notes: - Added curly braces around declaration of userquota_cache_t cache to quiet compiler warning; - Handled the userobj accounting the same way it proposed in this path. Signed-off-by: Jinshan Xiong <jinshan.xiong@intel.com>
2016-09-21 23:49:47 +03:00
}
static void
do_userquota_cacheflush(objset_t *os, userquota_cache_t *cache, dmu_tx_t *tx)
{
void *cookie;
userquota_node_t *uqn;
ASSERT(dmu_tx_is_syncing(tx));
cookie = NULL;
while ((uqn = avl_destroy_nodes(&cache->uqc_user_deltas,
&cookie)) != NULL) {
/*
* os_userused_lock protects against concurrent calls to
* zap_increment_int(). It's needed because zap_increment_int()
* is not thread-safe (i.e. not atomic).
*/
mutex_enter(&os->os_userused_lock);
OpenZFS 6988 spa_sync() spends half its time in dmu_objset_do_userquota_updates Using a benchmark which creates 2 million files in one TXG, I observe that the thread running spa_sync() is on CPU almost the entire time we are syncing, and therefore can be a performance bottleneck. About 50% of the time in spa_sync() is in dmu_objset_do_userquota_updates(). The problem is that dmu_objset_do_userquota_updates() calls zap_increment_int(DMU_USERUSED_OBJECT) once for every file that was modified (or created). In this benchmark, all the files are owned by the same user/group, so all 2 million calls to zap_increment_int() are modifying the same entry in the zap. The same issue exists for the DMU_GROUPUSED_OBJECT. We should keep an in-memory map from user to space delta while we are syncing, and when we finish, iterate over the in-memory map and modify the ZAP once per entry. This reduces the number of calls to zap_increment_int() from "number of objects modified" to "number of owners/groups of modified files". This reduced the time spent in spa_sync() in the file create benchmark by ~33%, from 11 seconds to 7 seconds. Upstream bugs: DLPX-44799 Ported by: Ned Bass <bass6@llnl.gov> OpenZFS-issue: https://www.illumos.org/issues/6988 ZFSonLinux-issue: https://github.com/zfsonlinux/zfs/issues/4642 OpenZFS-commit: unmerged Porting notes: - Added curly braces around declaration of userquota_cache_t cache to quiet compiler warning; - Handled the userobj accounting the same way it proposed in this path. Signed-off-by: Jinshan Xiong <jinshan.xiong@intel.com>
2016-09-21 23:49:47 +03:00
VERIFY0(zap_increment(os, DMU_USERUSED_OBJECT,
uqn->uqn_id, uqn->uqn_delta, tx));
mutex_exit(&os->os_userused_lock);
OpenZFS 6988 spa_sync() spends half its time in dmu_objset_do_userquota_updates Using a benchmark which creates 2 million files in one TXG, I observe that the thread running spa_sync() is on CPU almost the entire time we are syncing, and therefore can be a performance bottleneck. About 50% of the time in spa_sync() is in dmu_objset_do_userquota_updates(). The problem is that dmu_objset_do_userquota_updates() calls zap_increment_int(DMU_USERUSED_OBJECT) once for every file that was modified (or created). In this benchmark, all the files are owned by the same user/group, so all 2 million calls to zap_increment_int() are modifying the same entry in the zap. The same issue exists for the DMU_GROUPUSED_OBJECT. We should keep an in-memory map from user to space delta while we are syncing, and when we finish, iterate over the in-memory map and modify the ZAP once per entry. This reduces the number of calls to zap_increment_int() from "number of objects modified" to "number of owners/groups of modified files". This reduced the time spent in spa_sync() in the file create benchmark by ~33%, from 11 seconds to 7 seconds. Upstream bugs: DLPX-44799 Ported by: Ned Bass <bass6@llnl.gov> OpenZFS-issue: https://www.illumos.org/issues/6988 ZFSonLinux-issue: https://github.com/zfsonlinux/zfs/issues/4642 OpenZFS-commit: unmerged Porting notes: - Added curly braces around declaration of userquota_cache_t cache to quiet compiler warning; - Handled the userobj accounting the same way it proposed in this path. Signed-off-by: Jinshan Xiong <jinshan.xiong@intel.com>
2016-09-21 23:49:47 +03:00
kmem_free(uqn, sizeof (*uqn));
}
avl_destroy(&cache->uqc_user_deltas);
cookie = NULL;
while ((uqn = avl_destroy_nodes(&cache->uqc_group_deltas,
&cookie)) != NULL) {
mutex_enter(&os->os_userused_lock);
OpenZFS 6988 spa_sync() spends half its time in dmu_objset_do_userquota_updates Using a benchmark which creates 2 million files in one TXG, I observe that the thread running spa_sync() is on CPU almost the entire time we are syncing, and therefore can be a performance bottleneck. About 50% of the time in spa_sync() is in dmu_objset_do_userquota_updates(). The problem is that dmu_objset_do_userquota_updates() calls zap_increment_int(DMU_USERUSED_OBJECT) once for every file that was modified (or created). In this benchmark, all the files are owned by the same user/group, so all 2 million calls to zap_increment_int() are modifying the same entry in the zap. The same issue exists for the DMU_GROUPUSED_OBJECT. We should keep an in-memory map from user to space delta while we are syncing, and when we finish, iterate over the in-memory map and modify the ZAP once per entry. This reduces the number of calls to zap_increment_int() from "number of objects modified" to "number of owners/groups of modified files". This reduced the time spent in spa_sync() in the file create benchmark by ~33%, from 11 seconds to 7 seconds. Upstream bugs: DLPX-44799 Ported by: Ned Bass <bass6@llnl.gov> OpenZFS-issue: https://www.illumos.org/issues/6988 ZFSonLinux-issue: https://github.com/zfsonlinux/zfs/issues/4642 OpenZFS-commit: unmerged Porting notes: - Added curly braces around declaration of userquota_cache_t cache to quiet compiler warning; - Handled the userobj accounting the same way it proposed in this path. Signed-off-by: Jinshan Xiong <jinshan.xiong@intel.com>
2016-09-21 23:49:47 +03:00
VERIFY0(zap_increment(os, DMU_GROUPUSED_OBJECT,
uqn->uqn_id, uqn->uqn_delta, tx));
mutex_exit(&os->os_userused_lock);
OpenZFS 6988 spa_sync() spends half its time in dmu_objset_do_userquota_updates Using a benchmark which creates 2 million files in one TXG, I observe that the thread running spa_sync() is on CPU almost the entire time we are syncing, and therefore can be a performance bottleneck. About 50% of the time in spa_sync() is in dmu_objset_do_userquota_updates(). The problem is that dmu_objset_do_userquota_updates() calls zap_increment_int(DMU_USERUSED_OBJECT) once for every file that was modified (or created). In this benchmark, all the files are owned by the same user/group, so all 2 million calls to zap_increment_int() are modifying the same entry in the zap. The same issue exists for the DMU_GROUPUSED_OBJECT. We should keep an in-memory map from user to space delta while we are syncing, and when we finish, iterate over the in-memory map and modify the ZAP once per entry. This reduces the number of calls to zap_increment_int() from "number of objects modified" to "number of owners/groups of modified files". This reduced the time spent in spa_sync() in the file create benchmark by ~33%, from 11 seconds to 7 seconds. Upstream bugs: DLPX-44799 Ported by: Ned Bass <bass6@llnl.gov> OpenZFS-issue: https://www.illumos.org/issues/6988 ZFSonLinux-issue: https://github.com/zfsonlinux/zfs/issues/4642 OpenZFS-commit: unmerged Porting notes: - Added curly braces around declaration of userquota_cache_t cache to quiet compiler warning; - Handled the userobj accounting the same way it proposed in this path. Signed-off-by: Jinshan Xiong <jinshan.xiong@intel.com>
2016-09-21 23:49:47 +03:00
kmem_free(uqn, sizeof (*uqn));
}
avl_destroy(&cache->uqc_group_deltas);
Project Quota on ZFS Project quota is a new ZFS system space/object usage accounting and enforcement mechanism. Similar as user/group quota, project quota is another dimension of system quota. It bases on the new object attribute - project ID. Project ID is a numerical value to indicate to which project an object belongs. An object only can belong to one project though you (the object owner or privileged user) can change the object project ID via 'chattr -p' or 'zfs project [-s] -p' explicitly. The object also can inherit the project ID from its parent when created if the parent has the project inherit flag (that can be set via 'chattr +P' or 'zfs project -s [-p]'). By accounting the spaces/objects belong to the same project, we can know how many spaces/objects used by the project. And if we set the upper limit then we can control the spaces/objects that are consumed by such project. It is useful when multiple groups and users cooperate for the same project, or a user/group needs to participate in multiple projects. Support the following commands and functionalities: zfs set projectquota@project zfs set projectobjquota@project zfs get projectquota@project zfs get projectobjquota@project zfs get projectused@project zfs get projectobjused@project zfs projectspace zfs allow projectquota zfs allow projectobjquota zfs allow projectused zfs allow projectobjused zfs unallow projectquota zfs unallow projectobjquota zfs unallow projectused zfs unallow projectobjused chattr +/-P chattr -p project_id lsattr -p This patch also supports tree quota based on the project quota via "zfs project" commands set as following: zfs project [-d|-r] <file|directory ...> zfs project -C [-k] [-r] <file|directory ...> zfs project -c [-0] [-d|-r] [-p id] <file|directory ...> zfs project [-p id] [-r] [-s] <file|directory ...> For "df [-i] $DIR" command, if we set INHERIT (project ID) flag on the $DIR, then the proejct [obj]quota and [obj]used values for the $DIR's project ID will be shown as the total/free (avail) resource. Keep the same behavior as EXT4/XFS does. Reviewed-by: Andreas Dilger <andreas.dilger@intel.com> Reviewed-by Ned Bass <bass6@llnl.gov> Reviewed-by: Matthew Ahrens <mahrens@delphix.com> Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov> Signed-off-by: Fan Yong <fan.yong@intel.com> TEST_ZIMPORT_POOLS="zol-0.6.1 zol-0.6.2 master" Change-Id: Ib4f0544602e03fb61fd46a849d7ba51a6005693c Closes #6290
2018-02-14 01:54:54 +03:00
if (dmu_objset_projectquota_enabled(os)) {
cookie = NULL;
while ((uqn = avl_destroy_nodes(&cache->uqc_project_deltas,
&cookie)) != NULL) {
mutex_enter(&os->os_userused_lock);
VERIFY0(zap_increment(os, DMU_PROJECTUSED_OBJECT,
uqn->uqn_id, uqn->uqn_delta, tx));
mutex_exit(&os->os_userused_lock);
kmem_free(uqn, sizeof (*uqn));
}
avl_destroy(&cache->uqc_project_deltas);
}
OpenZFS 6988 spa_sync() spends half its time in dmu_objset_do_userquota_updates Using a benchmark which creates 2 million files in one TXG, I observe that the thread running spa_sync() is on CPU almost the entire time we are syncing, and therefore can be a performance bottleneck. About 50% of the time in spa_sync() is in dmu_objset_do_userquota_updates(). The problem is that dmu_objset_do_userquota_updates() calls zap_increment_int(DMU_USERUSED_OBJECT) once for every file that was modified (or created). In this benchmark, all the files are owned by the same user/group, so all 2 million calls to zap_increment_int() are modifying the same entry in the zap. The same issue exists for the DMU_GROUPUSED_OBJECT. We should keep an in-memory map from user to space delta while we are syncing, and when we finish, iterate over the in-memory map and modify the ZAP once per entry. This reduces the number of calls to zap_increment_int() from "number of objects modified" to "number of owners/groups of modified files". This reduced the time spent in spa_sync() in the file create benchmark by ~33%, from 11 seconds to 7 seconds. Upstream bugs: DLPX-44799 Ported by: Ned Bass <bass6@llnl.gov> OpenZFS-issue: https://www.illumos.org/issues/6988 ZFSonLinux-issue: https://github.com/zfsonlinux/zfs/issues/4642 OpenZFS-commit: unmerged Porting notes: - Added curly braces around declaration of userquota_cache_t cache to quiet compiler warning; - Handled the userobj accounting the same way it proposed in this path. Signed-off-by: Jinshan Xiong <jinshan.xiong@intel.com>
2016-09-21 23:49:47 +03:00
}
static void
userquota_update_cache(avl_tree_t *avl, const char *id, int64_t delta)
{
userquota_node_t *uqn;
avl_index_t idx;
ASSERT(strlen(id) < sizeof (uqn->uqn_id));
/*
* Use id directly for searching because uqn_id is the first field of
* userquota_node_t and fields after uqn_id won't be accessed in
* avl_find().
*/
uqn = avl_find(avl, (const void *)id, &idx);
if (uqn == NULL) {
uqn = kmem_zalloc(sizeof (*uqn), KM_SLEEP);
strlcpy(uqn->uqn_id, id, sizeof (uqn->uqn_id));
OpenZFS 6988 spa_sync() spends half its time in dmu_objset_do_userquota_updates Using a benchmark which creates 2 million files in one TXG, I observe that the thread running spa_sync() is on CPU almost the entire time we are syncing, and therefore can be a performance bottleneck. About 50% of the time in spa_sync() is in dmu_objset_do_userquota_updates(). The problem is that dmu_objset_do_userquota_updates() calls zap_increment_int(DMU_USERUSED_OBJECT) once for every file that was modified (or created). In this benchmark, all the files are owned by the same user/group, so all 2 million calls to zap_increment_int() are modifying the same entry in the zap. The same issue exists for the DMU_GROUPUSED_OBJECT. We should keep an in-memory map from user to space delta while we are syncing, and when we finish, iterate over the in-memory map and modify the ZAP once per entry. This reduces the number of calls to zap_increment_int() from "number of objects modified" to "number of owners/groups of modified files". This reduced the time spent in spa_sync() in the file create benchmark by ~33%, from 11 seconds to 7 seconds. Upstream bugs: DLPX-44799 Ported by: Ned Bass <bass6@llnl.gov> OpenZFS-issue: https://www.illumos.org/issues/6988 ZFSonLinux-issue: https://github.com/zfsonlinux/zfs/issues/4642 OpenZFS-commit: unmerged Porting notes: - Added curly braces around declaration of userquota_cache_t cache to quiet compiler warning; - Handled the userobj accounting the same way it proposed in this path. Signed-off-by: Jinshan Xiong <jinshan.xiong@intel.com>
2016-09-21 23:49:47 +03:00
avl_insert(avl, uqn, idx);
}
uqn->uqn_delta += delta;
}
static void
Project Quota on ZFS Project quota is a new ZFS system space/object usage accounting and enforcement mechanism. Similar as user/group quota, project quota is another dimension of system quota. It bases on the new object attribute - project ID. Project ID is a numerical value to indicate to which project an object belongs. An object only can belong to one project though you (the object owner or privileged user) can change the object project ID via 'chattr -p' or 'zfs project [-s] -p' explicitly. The object also can inherit the project ID from its parent when created if the parent has the project inherit flag (that can be set via 'chattr +P' or 'zfs project -s [-p]'). By accounting the spaces/objects belong to the same project, we can know how many spaces/objects used by the project. And if we set the upper limit then we can control the spaces/objects that are consumed by such project. It is useful when multiple groups and users cooperate for the same project, or a user/group needs to participate in multiple projects. Support the following commands and functionalities: zfs set projectquota@project zfs set projectobjquota@project zfs get projectquota@project zfs get projectobjquota@project zfs get projectused@project zfs get projectobjused@project zfs projectspace zfs allow projectquota zfs allow projectobjquota zfs allow projectused zfs allow projectobjused zfs unallow projectquota zfs unallow projectobjquota zfs unallow projectused zfs unallow projectobjused chattr +/-P chattr -p project_id lsattr -p This patch also supports tree quota based on the project quota via "zfs project" commands set as following: zfs project [-d|-r] <file|directory ...> zfs project -C [-k] [-r] <file|directory ...> zfs project -c [-0] [-d|-r] [-p id] <file|directory ...> zfs project [-p id] [-r] [-s] <file|directory ...> For "df [-i] $DIR" command, if we set INHERIT (project ID) flag on the $DIR, then the proejct [obj]quota and [obj]used values for the $DIR's project ID will be shown as the total/free (avail) resource. Keep the same behavior as EXT4/XFS does. Reviewed-by: Andreas Dilger <andreas.dilger@intel.com> Reviewed-by Ned Bass <bass6@llnl.gov> Reviewed-by: Matthew Ahrens <mahrens@delphix.com> Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov> Signed-off-by: Fan Yong <fan.yong@intel.com> TEST_ZIMPORT_POOLS="zol-0.6.1 zol-0.6.2 master" Change-Id: Ib4f0544602e03fb61fd46a849d7ba51a6005693c Closes #6290
2018-02-14 01:54:54 +03:00
do_userquota_update(objset_t *os, userquota_cache_t *cache, uint64_t used,
uint64_t flags, uint64_t user, uint64_t group, uint64_t project,
boolean_t subtract)
{
Project Quota on ZFS Project quota is a new ZFS system space/object usage accounting and enforcement mechanism. Similar as user/group quota, project quota is another dimension of system quota. It bases on the new object attribute - project ID. Project ID is a numerical value to indicate to which project an object belongs. An object only can belong to one project though you (the object owner or privileged user) can change the object project ID via 'chattr -p' or 'zfs project [-s] -p' explicitly. The object also can inherit the project ID from its parent when created if the parent has the project inherit flag (that can be set via 'chattr +P' or 'zfs project -s [-p]'). By accounting the spaces/objects belong to the same project, we can know how many spaces/objects used by the project. And if we set the upper limit then we can control the spaces/objects that are consumed by such project. It is useful when multiple groups and users cooperate for the same project, or a user/group needs to participate in multiple projects. Support the following commands and functionalities: zfs set projectquota@project zfs set projectobjquota@project zfs get projectquota@project zfs get projectobjquota@project zfs get projectused@project zfs get projectobjused@project zfs projectspace zfs allow projectquota zfs allow projectobjquota zfs allow projectused zfs allow projectobjused zfs unallow projectquota zfs unallow projectobjquota zfs unallow projectused zfs unallow projectobjused chattr +/-P chattr -p project_id lsattr -p This patch also supports tree quota based on the project quota via "zfs project" commands set as following: zfs project [-d|-r] <file|directory ...> zfs project -C [-k] [-r] <file|directory ...> zfs project -c [-0] [-d|-r] [-p id] <file|directory ...> zfs project [-p id] [-r] [-s] <file|directory ...> For "df [-i] $DIR" command, if we set INHERIT (project ID) flag on the $DIR, then the proejct [obj]quota and [obj]used values for the $DIR's project ID will be shown as the total/free (avail) resource. Keep the same behavior as EXT4/XFS does. Reviewed-by: Andreas Dilger <andreas.dilger@intel.com> Reviewed-by Ned Bass <bass6@llnl.gov> Reviewed-by: Matthew Ahrens <mahrens@delphix.com> Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov> Signed-off-by: Fan Yong <fan.yong@intel.com> TEST_ZIMPORT_POOLS="zol-0.6.1 zol-0.6.2 master" Change-Id: Ib4f0544602e03fb61fd46a849d7ba51a6005693c Closes #6290
2018-02-14 01:54:54 +03:00
if (flags & DNODE_FLAG_USERUSED_ACCOUNTED) {
Implement large_dnode pool feature Justification ------------- This feature adds support for variable length dnodes. Our motivation is to eliminate the overhead associated with using spill blocks. Spill blocks are used to store system attribute data (i.e. file metadata) that does not fit in the dnode's bonus buffer. By allowing a larger bonus buffer area the use of a spill block can be avoided. Spill blocks potentially incur an additional read I/O for every dnode in a dnode block. As a worst case example, reading 32 dnodes from a 16k dnode block and all of the spill blocks could issue 33 separate reads. Now suppose those dnodes have size 1024 and therefore don't need spill blocks. Then the worst case number of blocks read is reduced to from 33 to two--one per dnode block. In practice spill blocks may tend to be co-located on disk with the dnode blocks so the reduction in I/O would not be this drastic. In a badly fragmented pool, however, the improvement could be significant. ZFS-on-Linux systems that make heavy use of extended attributes would benefit from this feature. In particular, ZFS-on-Linux supports the xattr=sa dataset property which allows file extended attribute data to be stored in the dnode bonus buffer as an alternative to the traditional directory-based format. Workloads such as SELinux and the Lustre distributed filesystem often store enough xattr data to force spill bocks when xattr=sa is in effect. Large dnodes may therefore provide a performance benefit to such systems. Other use cases that may benefit from this feature include files with large ACLs and symbolic links with long target names. Furthermore, this feature may be desirable on other platforms in case future applications or features are developed that could make use of a larger bonus buffer area. Implementation -------------- The size of a dnode may be a multiple of 512 bytes up to the size of a dnode block (currently 16384 bytes). A dn_extra_slots field was added to the current on-disk dnode_phys_t structure to describe the size of the physical dnode on disk. The 8 bits for this field were taken from the zero filled dn_pad2 field. The field represents how many "extra" dnode_phys_t slots a dnode consumes in its dnode block. This convention results in a value of 0 for 512 byte dnodes which preserves on-disk format compatibility with older software. Similarly, the in-memory dnode_t structure has a new dn_num_slots field to represent the total number of dnode_phys_t slots consumed on disk. Thus dn->dn_num_slots is 1 greater than the corresponding dnp->dn_extra_slots. This difference in convention was adopted because, unlike on-disk structures, backward compatibility is not a concern for in-memory objects, so we used a more natural way to represent size for a dnode_t. The default size for newly created dnodes is determined by the value of a new "dnodesize" dataset property. By default the property is set to "legacy" which is compatible with older software. Setting the property to "auto" will allow the filesystem to choose the most suitable dnode size. Currently this just sets the default dnode size to 1k, but future code improvements could dynamically choose a size based on observed workload patterns. Dnodes of varying sizes can coexist within the same dataset and even within the same dnode block. For example, to enable automatically-sized dnodes, run # zfs set dnodesize=auto tank/fish The user can also specify literal values for the dnodesize property. These are currently limited to powers of two from 1k to 16k. The power-of-2 limitation is only for simplicity of the user interface. Internally the implementation can handle any multiple of 512 up to 16k, and consumers of the DMU API can specify any legal dnode value. The size of a new dnode is determined at object allocation time and stored as a new field in the znode in-memory structure. New DMU interfaces are added to allow the consumer to specify the dnode size that a newly allocated object should use. Existing interfaces are unchanged to avoid having to update every call site and to preserve compatibility with external consumers such as Lustre. The new interfaces names are given below. The versions of these functions that don't take a dnodesize parameter now just call the _dnsize() versions with a dnodesize of 0, which means use the legacy dnode size. New DMU interfaces: dmu_object_alloc_dnsize() dmu_object_claim_dnsize() dmu_object_reclaim_dnsize() New ZAP interfaces: zap_create_dnsize() zap_create_norm_dnsize() zap_create_flags_dnsize() zap_create_claim_norm_dnsize() zap_create_link_dnsize() The constant DN_MAX_BONUSLEN is renamed to DN_OLD_MAX_BONUSLEN. The spa_maxdnodesize() function should be used to determine the maximum bonus length for a pool. These are a few noteworthy changes to key functions: * The prototype for dnode_hold_impl() now takes a "slots" parameter. When the DNODE_MUST_BE_FREE flag is set, this parameter is used to ensure the hole at the specified object offset is large enough to hold the dnode being created. The slots parameter is also used to ensure a dnode does not span multiple dnode blocks. In both of these cases, if a failure occurs, ENOSPC is returned. Keep in mind, these failure cases are only possible when using DNODE_MUST_BE_FREE. If the DNODE_MUST_BE_ALLOCATED flag is set, "slots" must be 0. dnode_hold_impl() will check if the requested dnode is already consumed as an extra dnode slot by an large dnode, in which case it returns ENOENT. * The function dmu_object_alloc() advances to the next dnode block if dnode_hold_impl() returns an error for a requested object. This is because the beginning of the next dnode block is the only location it can safely assume to either be a hole or a valid starting point for a dnode. * dnode_next_offset_level() and other functions that iterate through dnode blocks may no longer use a simple array indexing scheme. These now use the current dnode's dn_num_slots field to advance to the next dnode in the block. This is to ensure we properly skip the current dnode's bonus area and don't interpret it as a valid dnode. zdb --- The zdb command was updated to display a dnode's size under the "dnsize" column when the object is dumped. For ZIL create log records, zdb will now display the slot count for the object. ztest ----- Ztest chooses a random dnodesize for every newly created object. The random distribution is more heavily weighted toward small dnodes to better simulate real-world datasets. Unused bonus buffer space is filled with non-zero values computed from the object number, dataset id, offset, and generation number. This helps ensure that the dnode traversal code properly skips the interior regions of large dnodes, and that these interior regions are not overwritten by data belonging to other dnodes. A new test visits each object in a dataset. It verifies that the actual dnode size matches what was stored in the ztest block tag when it was created. It also verifies that the unused bonus buffer space is filled with the expected data patterns. ZFS Test Suite -------------- Added six new large dnode-specific tests, and integrated the dnodesize property into existing tests for zfs allow and send/recv. Send/Receive ------------ ZFS send streams for datasets containing large dnodes cannot be received on pools that don't support the large_dnode feature. A send stream with large dnodes sets a DMU_BACKUP_FEATURE_LARGE_DNODE flag which will be unrecognized by an incompatible receiving pool so that the zfs receive will fail gracefully. While not implemented here, it may be possible to generate a backward-compatible send stream from a dataset containing large dnodes. The implementation may be tricky, however, because the send object record for a large dnode would need to be resized to a 512 byte dnode, possibly kicking in a spill block in the process. This means we would need to construct a new SA layout and possibly register it in the SA layout object. The SA layout is normally just sent as an ordinary object record. But if we are constructing new layouts while generating the send stream we'd have to build the SA layout object dynamically and send it at the end of the stream. For sending and receiving between pools that do support large dnodes, the drr_object send record type is extended with a new field to store the dnode slot count. This field was repurposed from unused padding in the structure. ZIL Replay ---------- The dnode slot count is stored in the uppermost 8 bits of the lr_foid field. The bits were unused as the object id is currently capped at 48 bits. Resizing Dnodes --------------- It should be possible to resize a dnode when it is dirtied if the current dnodesize dataset property differs from the dnode's size, but this functionality is not currently implemented. Clearly a dnode can only grow if there are sufficient contiguous unused slots in the dnode block, but it should always be possible to shrink a dnode. Growing dnodes may be useful to reduce fragmentation in a pool with many spill blocks in use. Shrinking dnodes may be useful to allow sending a dataset to a pool that doesn't support the large_dnode feature. Feature Reference Counting -------------------------- The reference count for the large_dnode pool feature tracks the number of datasets that have ever contained a dnode of size larger than 512 bytes. The first time a large dnode is created in a dataset the dataset is converted to an extensible dataset. This is a one-way operation and the only way to decrement the feature count is to destroy the dataset, even if the dataset no longer contains any large dnodes. The complexity of reference counting on a per-dnode basis was too high, so we chose to track it on a per-dataset basis similarly to the large_block feature. Signed-off-by: Ned Bass <bass6@llnl.gov> Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov> Closes #3542
2016-03-17 04:25:34 +03:00
int64_t delta = DNODE_MIN_SIZE + used;
OpenZFS 6988 spa_sync() spends half its time in dmu_objset_do_userquota_updates Using a benchmark which creates 2 million files in one TXG, I observe that the thread running spa_sync() is on CPU almost the entire time we are syncing, and therefore can be a performance bottleneck. About 50% of the time in spa_sync() is in dmu_objset_do_userquota_updates(). The problem is that dmu_objset_do_userquota_updates() calls zap_increment_int(DMU_USERUSED_OBJECT) once for every file that was modified (or created). In this benchmark, all the files are owned by the same user/group, so all 2 million calls to zap_increment_int() are modifying the same entry in the zap. The same issue exists for the DMU_GROUPUSED_OBJECT. We should keep an in-memory map from user to space delta while we are syncing, and when we finish, iterate over the in-memory map and modify the ZAP once per entry. This reduces the number of calls to zap_increment_int() from "number of objects modified" to "number of owners/groups of modified files". This reduced the time spent in spa_sync() in the file create benchmark by ~33%, from 11 seconds to 7 seconds. Upstream bugs: DLPX-44799 Ported by: Ned Bass <bass6@llnl.gov> OpenZFS-issue: https://www.illumos.org/issues/6988 ZFSonLinux-issue: https://github.com/zfsonlinux/zfs/issues/4642 OpenZFS-commit: unmerged Porting notes: - Added curly braces around declaration of userquota_cache_t cache to quiet compiler warning; - Handled the userobj accounting the same way it proposed in this path. Signed-off-by: Jinshan Xiong <jinshan.xiong@intel.com>
2016-09-21 23:49:47 +03:00
char name[20];
if (subtract)
delta = -delta;
OpenZFS 6988 spa_sync() spends half its time in dmu_objset_do_userquota_updates Using a benchmark which creates 2 million files in one TXG, I observe that the thread running spa_sync() is on CPU almost the entire time we are syncing, and therefore can be a performance bottleneck. About 50% of the time in spa_sync() is in dmu_objset_do_userquota_updates(). The problem is that dmu_objset_do_userquota_updates() calls zap_increment_int(DMU_USERUSED_OBJECT) once for every file that was modified (or created). In this benchmark, all the files are owned by the same user/group, so all 2 million calls to zap_increment_int() are modifying the same entry in the zap. The same issue exists for the DMU_GROUPUSED_OBJECT. We should keep an in-memory map from user to space delta while we are syncing, and when we finish, iterate over the in-memory map and modify the ZAP once per entry. This reduces the number of calls to zap_increment_int() from "number of objects modified" to "number of owners/groups of modified files". This reduced the time spent in spa_sync() in the file create benchmark by ~33%, from 11 seconds to 7 seconds. Upstream bugs: DLPX-44799 Ported by: Ned Bass <bass6@llnl.gov> OpenZFS-issue: https://www.illumos.org/issues/6988 ZFSonLinux-issue: https://github.com/zfsonlinux/zfs/issues/4642 OpenZFS-commit: unmerged Porting notes: - Added curly braces around declaration of userquota_cache_t cache to quiet compiler warning; - Handled the userobj accounting the same way it proposed in this path. Signed-off-by: Jinshan Xiong <jinshan.xiong@intel.com>
2016-09-21 23:49:47 +03:00
(void) snprintf(name, sizeof (name), "%llx", (longlong_t)user);
OpenZFS 6988 spa_sync() spends half its time in dmu_objset_do_userquota_updates Using a benchmark which creates 2 million files in one TXG, I observe that the thread running spa_sync() is on CPU almost the entire time we are syncing, and therefore can be a performance bottleneck. About 50% of the time in spa_sync() is in dmu_objset_do_userquota_updates(). The problem is that dmu_objset_do_userquota_updates() calls zap_increment_int(DMU_USERUSED_OBJECT) once for every file that was modified (or created). In this benchmark, all the files are owned by the same user/group, so all 2 million calls to zap_increment_int() are modifying the same entry in the zap. The same issue exists for the DMU_GROUPUSED_OBJECT. We should keep an in-memory map from user to space delta while we are syncing, and when we finish, iterate over the in-memory map and modify the ZAP once per entry. This reduces the number of calls to zap_increment_int() from "number of objects modified" to "number of owners/groups of modified files". This reduced the time spent in spa_sync() in the file create benchmark by ~33%, from 11 seconds to 7 seconds. Upstream bugs: DLPX-44799 Ported by: Ned Bass <bass6@llnl.gov> OpenZFS-issue: https://www.illumos.org/issues/6988 ZFSonLinux-issue: https://github.com/zfsonlinux/zfs/issues/4642 OpenZFS-commit: unmerged Porting notes: - Added curly braces around declaration of userquota_cache_t cache to quiet compiler warning; - Handled the userobj accounting the same way it proposed in this path. Signed-off-by: Jinshan Xiong <jinshan.xiong@intel.com>
2016-09-21 23:49:47 +03:00
userquota_update_cache(&cache->uqc_user_deltas, name, delta);
(void) snprintf(name, sizeof (name), "%llx", (longlong_t)group);
OpenZFS 6988 spa_sync() spends half its time in dmu_objset_do_userquota_updates Using a benchmark which creates 2 million files in one TXG, I observe that the thread running spa_sync() is on CPU almost the entire time we are syncing, and therefore can be a performance bottleneck. About 50% of the time in spa_sync() is in dmu_objset_do_userquota_updates(). The problem is that dmu_objset_do_userquota_updates() calls zap_increment_int(DMU_USERUSED_OBJECT) once for every file that was modified (or created). In this benchmark, all the files are owned by the same user/group, so all 2 million calls to zap_increment_int() are modifying the same entry in the zap. The same issue exists for the DMU_GROUPUSED_OBJECT. We should keep an in-memory map from user to space delta while we are syncing, and when we finish, iterate over the in-memory map and modify the ZAP once per entry. This reduces the number of calls to zap_increment_int() from "number of objects modified" to "number of owners/groups of modified files". This reduced the time spent in spa_sync() in the file create benchmark by ~33%, from 11 seconds to 7 seconds. Upstream bugs: DLPX-44799 Ported by: Ned Bass <bass6@llnl.gov> OpenZFS-issue: https://www.illumos.org/issues/6988 ZFSonLinux-issue: https://github.com/zfsonlinux/zfs/issues/4642 OpenZFS-commit: unmerged Porting notes: - Added curly braces around declaration of userquota_cache_t cache to quiet compiler warning; - Handled the userobj accounting the same way it proposed in this path. Signed-off-by: Jinshan Xiong <jinshan.xiong@intel.com>
2016-09-21 23:49:47 +03:00
userquota_update_cache(&cache->uqc_group_deltas, name, delta);
Project Quota on ZFS Project quota is a new ZFS system space/object usage accounting and enforcement mechanism. Similar as user/group quota, project quota is another dimension of system quota. It bases on the new object attribute - project ID. Project ID is a numerical value to indicate to which project an object belongs. An object only can belong to one project though you (the object owner or privileged user) can change the object project ID via 'chattr -p' or 'zfs project [-s] -p' explicitly. The object also can inherit the project ID from its parent when created if the parent has the project inherit flag (that can be set via 'chattr +P' or 'zfs project -s [-p]'). By accounting the spaces/objects belong to the same project, we can know how many spaces/objects used by the project. And if we set the upper limit then we can control the spaces/objects that are consumed by such project. It is useful when multiple groups and users cooperate for the same project, or a user/group needs to participate in multiple projects. Support the following commands and functionalities: zfs set projectquota@project zfs set projectobjquota@project zfs get projectquota@project zfs get projectobjquota@project zfs get projectused@project zfs get projectobjused@project zfs projectspace zfs allow projectquota zfs allow projectobjquota zfs allow projectused zfs allow projectobjused zfs unallow projectquota zfs unallow projectobjquota zfs unallow projectused zfs unallow projectobjused chattr +/-P chattr -p project_id lsattr -p This patch also supports tree quota based on the project quota via "zfs project" commands set as following: zfs project [-d|-r] <file|directory ...> zfs project -C [-k] [-r] <file|directory ...> zfs project -c [-0] [-d|-r] [-p id] <file|directory ...> zfs project [-p id] [-r] [-s] <file|directory ...> For "df [-i] $DIR" command, if we set INHERIT (project ID) flag on the $DIR, then the proejct [obj]quota and [obj]used values for the $DIR's project ID will be shown as the total/free (avail) resource. Keep the same behavior as EXT4/XFS does. Reviewed-by: Andreas Dilger <andreas.dilger@intel.com> Reviewed-by Ned Bass <bass6@llnl.gov> Reviewed-by: Matthew Ahrens <mahrens@delphix.com> Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov> Signed-off-by: Fan Yong <fan.yong@intel.com> TEST_ZIMPORT_POOLS="zol-0.6.1 zol-0.6.2 master" Change-Id: Ib4f0544602e03fb61fd46a849d7ba51a6005693c Closes #6290
2018-02-14 01:54:54 +03:00
if (dmu_objset_projectquota_enabled(os)) {
(void) snprintf(name, sizeof (name), "%llx",
(longlong_t)project);
Project Quota on ZFS Project quota is a new ZFS system space/object usage accounting and enforcement mechanism. Similar as user/group quota, project quota is another dimension of system quota. It bases on the new object attribute - project ID. Project ID is a numerical value to indicate to which project an object belongs. An object only can belong to one project though you (the object owner or privileged user) can change the object project ID via 'chattr -p' or 'zfs project [-s] -p' explicitly. The object also can inherit the project ID from its parent when created if the parent has the project inherit flag (that can be set via 'chattr +P' or 'zfs project -s [-p]'). By accounting the spaces/objects belong to the same project, we can know how many spaces/objects used by the project. And if we set the upper limit then we can control the spaces/objects that are consumed by such project. It is useful when multiple groups and users cooperate for the same project, or a user/group needs to participate in multiple projects. Support the following commands and functionalities: zfs set projectquota@project zfs set projectobjquota@project zfs get projectquota@project zfs get projectobjquota@project zfs get projectused@project zfs get projectobjused@project zfs projectspace zfs allow projectquota zfs allow projectobjquota zfs allow projectused zfs allow projectobjused zfs unallow projectquota zfs unallow projectobjquota zfs unallow projectused zfs unallow projectobjused chattr +/-P chattr -p project_id lsattr -p This patch also supports tree quota based on the project quota via "zfs project" commands set as following: zfs project [-d|-r] <file|directory ...> zfs project -C [-k] [-r] <file|directory ...> zfs project -c [-0] [-d|-r] [-p id] <file|directory ...> zfs project [-p id] [-r] [-s] <file|directory ...> For "df [-i] $DIR" command, if we set INHERIT (project ID) flag on the $DIR, then the proejct [obj]quota and [obj]used values for the $DIR's project ID will be shown as the total/free (avail) resource. Keep the same behavior as EXT4/XFS does. Reviewed-by: Andreas Dilger <andreas.dilger@intel.com> Reviewed-by Ned Bass <bass6@llnl.gov> Reviewed-by: Matthew Ahrens <mahrens@delphix.com> Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov> Signed-off-by: Fan Yong <fan.yong@intel.com> TEST_ZIMPORT_POOLS="zol-0.6.1 zol-0.6.2 master" Change-Id: Ib4f0544602e03fb61fd46a849d7ba51a6005693c Closes #6290
2018-02-14 01:54:54 +03:00
userquota_update_cache(&cache->uqc_project_deltas,
name, delta);
}
}
}
static void
Project Quota on ZFS Project quota is a new ZFS system space/object usage accounting and enforcement mechanism. Similar as user/group quota, project quota is another dimension of system quota. It bases on the new object attribute - project ID. Project ID is a numerical value to indicate to which project an object belongs. An object only can belong to one project though you (the object owner or privileged user) can change the object project ID via 'chattr -p' or 'zfs project [-s] -p' explicitly. The object also can inherit the project ID from its parent when created if the parent has the project inherit flag (that can be set via 'chattr +P' or 'zfs project -s [-p]'). By accounting the spaces/objects belong to the same project, we can know how many spaces/objects used by the project. And if we set the upper limit then we can control the spaces/objects that are consumed by such project. It is useful when multiple groups and users cooperate for the same project, or a user/group needs to participate in multiple projects. Support the following commands and functionalities: zfs set projectquota@project zfs set projectobjquota@project zfs get projectquota@project zfs get projectobjquota@project zfs get projectused@project zfs get projectobjused@project zfs projectspace zfs allow projectquota zfs allow projectobjquota zfs allow projectused zfs allow projectobjused zfs unallow projectquota zfs unallow projectobjquota zfs unallow projectused zfs unallow projectobjused chattr +/-P chattr -p project_id lsattr -p This patch also supports tree quota based on the project quota via "zfs project" commands set as following: zfs project [-d|-r] <file|directory ...> zfs project -C [-k] [-r] <file|directory ...> zfs project -c [-0] [-d|-r] [-p id] <file|directory ...> zfs project [-p id] [-r] [-s] <file|directory ...> For "df [-i] $DIR" command, if we set INHERIT (project ID) flag on the $DIR, then the proejct [obj]quota and [obj]used values for the $DIR's project ID will be shown as the total/free (avail) resource. Keep the same behavior as EXT4/XFS does. Reviewed-by: Andreas Dilger <andreas.dilger@intel.com> Reviewed-by Ned Bass <bass6@llnl.gov> Reviewed-by: Matthew Ahrens <mahrens@delphix.com> Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov> Signed-off-by: Fan Yong <fan.yong@intel.com> TEST_ZIMPORT_POOLS="zol-0.6.1 zol-0.6.2 master" Change-Id: Ib4f0544602e03fb61fd46a849d7ba51a6005693c Closes #6290
2018-02-14 01:54:54 +03:00
do_userobjquota_update(objset_t *os, userquota_cache_t *cache, uint64_t flags,
uint64_t user, uint64_t group, uint64_t project, boolean_t subtract)
{
if (flags & DNODE_FLAG_USEROBJUSED_ACCOUNTED) {
char name[20 + DMU_OBJACCT_PREFIX_LEN];
OpenZFS 6988 spa_sync() spends half its time in dmu_objset_do_userquota_updates Using a benchmark which creates 2 million files in one TXG, I observe that the thread running spa_sync() is on CPU almost the entire time we are syncing, and therefore can be a performance bottleneck. About 50% of the time in spa_sync() is in dmu_objset_do_userquota_updates(). The problem is that dmu_objset_do_userquota_updates() calls zap_increment_int(DMU_USERUSED_OBJECT) once for every file that was modified (or created). In this benchmark, all the files are owned by the same user/group, so all 2 million calls to zap_increment_int() are modifying the same entry in the zap. The same issue exists for the DMU_GROUPUSED_OBJECT. We should keep an in-memory map from user to space delta while we are syncing, and when we finish, iterate over the in-memory map and modify the ZAP once per entry. This reduces the number of calls to zap_increment_int() from "number of objects modified" to "number of owners/groups of modified files". This reduced the time spent in spa_sync() in the file create benchmark by ~33%, from 11 seconds to 7 seconds. Upstream bugs: DLPX-44799 Ported by: Ned Bass <bass6@llnl.gov> OpenZFS-issue: https://www.illumos.org/issues/6988 ZFSonLinux-issue: https://github.com/zfsonlinux/zfs/issues/4642 OpenZFS-commit: unmerged Porting notes: - Added curly braces around declaration of userquota_cache_t cache to quiet compiler warning; - Handled the userobj accounting the same way it proposed in this path. Signed-off-by: Jinshan Xiong <jinshan.xiong@intel.com>
2016-09-21 23:49:47 +03:00
int delta = subtract ? -1 : 1;
(void) snprintf(name, sizeof (name), DMU_OBJACCT_PREFIX "%llx",
(longlong_t)user);
OpenZFS 6988 spa_sync() spends half its time in dmu_objset_do_userquota_updates Using a benchmark which creates 2 million files in one TXG, I observe that the thread running spa_sync() is on CPU almost the entire time we are syncing, and therefore can be a performance bottleneck. About 50% of the time in spa_sync() is in dmu_objset_do_userquota_updates(). The problem is that dmu_objset_do_userquota_updates() calls zap_increment_int(DMU_USERUSED_OBJECT) once for every file that was modified (or created). In this benchmark, all the files are owned by the same user/group, so all 2 million calls to zap_increment_int() are modifying the same entry in the zap. The same issue exists for the DMU_GROUPUSED_OBJECT. We should keep an in-memory map from user to space delta while we are syncing, and when we finish, iterate over the in-memory map and modify the ZAP once per entry. This reduces the number of calls to zap_increment_int() from "number of objects modified" to "number of owners/groups of modified files". This reduced the time spent in spa_sync() in the file create benchmark by ~33%, from 11 seconds to 7 seconds. Upstream bugs: DLPX-44799 Ported by: Ned Bass <bass6@llnl.gov> OpenZFS-issue: https://www.illumos.org/issues/6988 ZFSonLinux-issue: https://github.com/zfsonlinux/zfs/issues/4642 OpenZFS-commit: unmerged Porting notes: - Added curly braces around declaration of userquota_cache_t cache to quiet compiler warning; - Handled the userobj accounting the same way it proposed in this path. Signed-off-by: Jinshan Xiong <jinshan.xiong@intel.com>
2016-09-21 23:49:47 +03:00
userquota_update_cache(&cache->uqc_user_deltas, name, delta);
(void) snprintf(name, sizeof (name), DMU_OBJACCT_PREFIX "%llx",
(longlong_t)group);
OpenZFS 6988 spa_sync() spends half its time in dmu_objset_do_userquota_updates Using a benchmark which creates 2 million files in one TXG, I observe that the thread running spa_sync() is on CPU almost the entire time we are syncing, and therefore can be a performance bottleneck. About 50% of the time in spa_sync() is in dmu_objset_do_userquota_updates(). The problem is that dmu_objset_do_userquota_updates() calls zap_increment_int(DMU_USERUSED_OBJECT) once for every file that was modified (or created). In this benchmark, all the files are owned by the same user/group, so all 2 million calls to zap_increment_int() are modifying the same entry in the zap. The same issue exists for the DMU_GROUPUSED_OBJECT. We should keep an in-memory map from user to space delta while we are syncing, and when we finish, iterate over the in-memory map and modify the ZAP once per entry. This reduces the number of calls to zap_increment_int() from "number of objects modified" to "number of owners/groups of modified files". This reduced the time spent in spa_sync() in the file create benchmark by ~33%, from 11 seconds to 7 seconds. Upstream bugs: DLPX-44799 Ported by: Ned Bass <bass6@llnl.gov> OpenZFS-issue: https://www.illumos.org/issues/6988 ZFSonLinux-issue: https://github.com/zfsonlinux/zfs/issues/4642 OpenZFS-commit: unmerged Porting notes: - Added curly braces around declaration of userquota_cache_t cache to quiet compiler warning; - Handled the userobj accounting the same way it proposed in this path. Signed-off-by: Jinshan Xiong <jinshan.xiong@intel.com>
2016-09-21 23:49:47 +03:00
userquota_update_cache(&cache->uqc_group_deltas, name, delta);
Project Quota on ZFS Project quota is a new ZFS system space/object usage accounting and enforcement mechanism. Similar as user/group quota, project quota is another dimension of system quota. It bases on the new object attribute - project ID. Project ID is a numerical value to indicate to which project an object belongs. An object only can belong to one project though you (the object owner or privileged user) can change the object project ID via 'chattr -p' or 'zfs project [-s] -p' explicitly. The object also can inherit the project ID from its parent when created if the parent has the project inherit flag (that can be set via 'chattr +P' or 'zfs project -s [-p]'). By accounting the spaces/objects belong to the same project, we can know how many spaces/objects used by the project. And if we set the upper limit then we can control the spaces/objects that are consumed by such project. It is useful when multiple groups and users cooperate for the same project, or a user/group needs to participate in multiple projects. Support the following commands and functionalities: zfs set projectquota@project zfs set projectobjquota@project zfs get projectquota@project zfs get projectobjquota@project zfs get projectused@project zfs get projectobjused@project zfs projectspace zfs allow projectquota zfs allow projectobjquota zfs allow projectused zfs allow projectobjused zfs unallow projectquota zfs unallow projectobjquota zfs unallow projectused zfs unallow projectobjused chattr +/-P chattr -p project_id lsattr -p This patch also supports tree quota based on the project quota via "zfs project" commands set as following: zfs project [-d|-r] <file|directory ...> zfs project -C [-k] [-r] <file|directory ...> zfs project -c [-0] [-d|-r] [-p id] <file|directory ...> zfs project [-p id] [-r] [-s] <file|directory ...> For "df [-i] $DIR" command, if we set INHERIT (project ID) flag on the $DIR, then the proejct [obj]quota and [obj]used values for the $DIR's project ID will be shown as the total/free (avail) resource. Keep the same behavior as EXT4/XFS does. Reviewed-by: Andreas Dilger <andreas.dilger@intel.com> Reviewed-by Ned Bass <bass6@llnl.gov> Reviewed-by: Matthew Ahrens <mahrens@delphix.com> Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov> Signed-off-by: Fan Yong <fan.yong@intel.com> TEST_ZIMPORT_POOLS="zol-0.6.1 zol-0.6.2 master" Change-Id: Ib4f0544602e03fb61fd46a849d7ba51a6005693c Closes #6290
2018-02-14 01:54:54 +03:00
if (dmu_objset_projectquota_enabled(os)) {
(void) snprintf(name, sizeof (name),
DMU_OBJACCT_PREFIX "%llx", (longlong_t)project);
userquota_update_cache(&cache->uqc_project_deltas,
name, delta);
}
}
}
typedef struct userquota_updates_arg {
objset_t *uua_os;
int uua_sublist_idx;
dmu_tx_t *uua_tx;
} userquota_updates_arg_t;
static void
userquota_updates_task(void *arg)
2009-07-03 02:44:48 +04:00
{
userquota_updates_arg_t *uua = arg;
objset_t *os = uua->uua_os;
dmu_tx_t *tx = uua->uua_tx;
2009-07-03 02:44:48 +04:00
dnode_t *dn;
OpenZFS 6988 spa_sync() spends half its time in dmu_objset_do_userquota_updates Using a benchmark which creates 2 million files in one TXG, I observe that the thread running spa_sync() is on CPU almost the entire time we are syncing, and therefore can be a performance bottleneck. About 50% of the time in spa_sync() is in dmu_objset_do_userquota_updates(). The problem is that dmu_objset_do_userquota_updates() calls zap_increment_int(DMU_USERUSED_OBJECT) once for every file that was modified (or created). In this benchmark, all the files are owned by the same user/group, so all 2 million calls to zap_increment_int() are modifying the same entry in the zap. The same issue exists for the DMU_GROUPUSED_OBJECT. We should keep an in-memory map from user to space delta while we are syncing, and when we finish, iterate over the in-memory map and modify the ZAP once per entry. This reduces the number of calls to zap_increment_int() from "number of objects modified" to "number of owners/groups of modified files". This reduced the time spent in spa_sync() in the file create benchmark by ~33%, from 11 seconds to 7 seconds. Upstream bugs: DLPX-44799 Ported by: Ned Bass <bass6@llnl.gov> OpenZFS-issue: https://www.illumos.org/issues/6988 ZFSonLinux-issue: https://github.com/zfsonlinux/zfs/issues/4642 OpenZFS-commit: unmerged Porting notes: - Added curly braces around declaration of userquota_cache_t cache to quiet compiler warning; - Handled the userobj accounting the same way it proposed in this path. Signed-off-by: Jinshan Xiong <jinshan.xiong@intel.com>
2016-09-21 23:49:47 +03:00
userquota_cache_t cache = { { 0 } };
2009-07-03 02:44:48 +04:00
multilist_sublist_t *list =
multilist_sublist_lock(os->os_synced_dnodes, uua->uua_sublist_idx);
2009-07-03 02:44:48 +04:00
ASSERT(multilist_sublist_head(list) == NULL ||
dmu_objset_userused_enabled(os));
OpenZFS 6988 spa_sync() spends half its time in dmu_objset_do_userquota_updates Using a benchmark which creates 2 million files in one TXG, I observe that the thread running spa_sync() is on CPU almost the entire time we are syncing, and therefore can be a performance bottleneck. About 50% of the time in spa_sync() is in dmu_objset_do_userquota_updates(). The problem is that dmu_objset_do_userquota_updates() calls zap_increment_int(DMU_USERUSED_OBJECT) once for every file that was modified (or created). In this benchmark, all the files are owned by the same user/group, so all 2 million calls to zap_increment_int() are modifying the same entry in the zap. The same issue exists for the DMU_GROUPUSED_OBJECT. We should keep an in-memory map from user to space delta while we are syncing, and when we finish, iterate over the in-memory map and modify the ZAP once per entry. This reduces the number of calls to zap_increment_int() from "number of objects modified" to "number of owners/groups of modified files". This reduced the time spent in spa_sync() in the file create benchmark by ~33%, from 11 seconds to 7 seconds. Upstream bugs: DLPX-44799 Ported by: Ned Bass <bass6@llnl.gov> OpenZFS-issue: https://www.illumos.org/issues/6988 ZFSonLinux-issue: https://github.com/zfsonlinux/zfs/issues/4642 OpenZFS-commit: unmerged Porting notes: - Added curly braces around declaration of userquota_cache_t cache to quiet compiler warning; - Handled the userobj accounting the same way it proposed in this path. Signed-off-by: Jinshan Xiong <jinshan.xiong@intel.com>
2016-09-21 23:49:47 +03:00
avl_create(&cache.uqc_user_deltas, userquota_compare,
sizeof (userquota_node_t), offsetof(userquota_node_t, uqn_node));
avl_create(&cache.uqc_group_deltas, userquota_compare,
sizeof (userquota_node_t), offsetof(userquota_node_t, uqn_node));
Project Quota on ZFS Project quota is a new ZFS system space/object usage accounting and enforcement mechanism. Similar as user/group quota, project quota is another dimension of system quota. It bases on the new object attribute - project ID. Project ID is a numerical value to indicate to which project an object belongs. An object only can belong to one project though you (the object owner or privileged user) can change the object project ID via 'chattr -p' or 'zfs project [-s] -p' explicitly. The object also can inherit the project ID from its parent when created if the parent has the project inherit flag (that can be set via 'chattr +P' or 'zfs project -s [-p]'). By accounting the spaces/objects belong to the same project, we can know how many spaces/objects used by the project. And if we set the upper limit then we can control the spaces/objects that are consumed by such project. It is useful when multiple groups and users cooperate for the same project, or a user/group needs to participate in multiple projects. Support the following commands and functionalities: zfs set projectquota@project zfs set projectobjquota@project zfs get projectquota@project zfs get projectobjquota@project zfs get projectused@project zfs get projectobjused@project zfs projectspace zfs allow projectquota zfs allow projectobjquota zfs allow projectused zfs allow projectobjused zfs unallow projectquota zfs unallow projectobjquota zfs unallow projectused zfs unallow projectobjused chattr +/-P chattr -p project_id lsattr -p This patch also supports tree quota based on the project quota via "zfs project" commands set as following: zfs project [-d|-r] <file|directory ...> zfs project -C [-k] [-r] <file|directory ...> zfs project -c [-0] [-d|-r] [-p id] <file|directory ...> zfs project [-p id] [-r] [-s] <file|directory ...> For "df [-i] $DIR" command, if we set INHERIT (project ID) flag on the $DIR, then the proejct [obj]quota and [obj]used values for the $DIR's project ID will be shown as the total/free (avail) resource. Keep the same behavior as EXT4/XFS does. Reviewed-by: Andreas Dilger <andreas.dilger@intel.com> Reviewed-by Ned Bass <bass6@llnl.gov> Reviewed-by: Matthew Ahrens <mahrens@delphix.com> Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov> Signed-off-by: Fan Yong <fan.yong@intel.com> TEST_ZIMPORT_POOLS="zol-0.6.1 zol-0.6.2 master" Change-Id: Ib4f0544602e03fb61fd46a849d7ba51a6005693c Closes #6290
2018-02-14 01:54:54 +03:00
if (dmu_objset_projectquota_enabled(os))
avl_create(&cache.uqc_project_deltas, userquota_compare,
sizeof (userquota_node_t), offsetof(userquota_node_t,
uqn_node));
OpenZFS 6988 spa_sync() spends half its time in dmu_objset_do_userquota_updates Using a benchmark which creates 2 million files in one TXG, I observe that the thread running spa_sync() is on CPU almost the entire time we are syncing, and therefore can be a performance bottleneck. About 50% of the time in spa_sync() is in dmu_objset_do_userquota_updates(). The problem is that dmu_objset_do_userquota_updates() calls zap_increment_int(DMU_USERUSED_OBJECT) once for every file that was modified (or created). In this benchmark, all the files are owned by the same user/group, so all 2 million calls to zap_increment_int() are modifying the same entry in the zap. The same issue exists for the DMU_GROUPUSED_OBJECT. We should keep an in-memory map from user to space delta while we are syncing, and when we finish, iterate over the in-memory map and modify the ZAP once per entry. This reduces the number of calls to zap_increment_int() from "number of objects modified" to "number of owners/groups of modified files". This reduced the time spent in spa_sync() in the file create benchmark by ~33%, from 11 seconds to 7 seconds. Upstream bugs: DLPX-44799 Ported by: Ned Bass <bass6@llnl.gov> OpenZFS-issue: https://www.illumos.org/issues/6988 ZFSonLinux-issue: https://github.com/zfsonlinux/zfs/issues/4642 OpenZFS-commit: unmerged Porting notes: - Added curly braces around declaration of userquota_cache_t cache to quiet compiler warning; - Handled the userobj accounting the same way it proposed in this path. Signed-off-by: Jinshan Xiong <jinshan.xiong@intel.com>
2016-09-21 23:49:47 +03:00
while ((dn = multilist_sublist_head(list)) != NULL) {
int flags;
2009-07-03 02:44:48 +04:00
ASSERT(!DMU_OBJECT_IS_SPECIAL(dn->dn_object));
ASSERT(dn->dn_phys->dn_type == DMU_OT_NONE ||
dn->dn_phys->dn_flags &
DNODE_FLAG_USERUSED_ACCOUNTED);
flags = dn->dn_id_flags;
ASSERT(flags);
if (flags & DN_ID_OLD_EXIST) {
Project Quota on ZFS Project quota is a new ZFS system space/object usage accounting and enforcement mechanism. Similar as user/group quota, project quota is another dimension of system quota. It bases on the new object attribute - project ID. Project ID is a numerical value to indicate to which project an object belongs. An object only can belong to one project though you (the object owner or privileged user) can change the object project ID via 'chattr -p' or 'zfs project [-s] -p' explicitly. The object also can inherit the project ID from its parent when created if the parent has the project inherit flag (that can be set via 'chattr +P' or 'zfs project -s [-p]'). By accounting the spaces/objects belong to the same project, we can know how many spaces/objects used by the project. And if we set the upper limit then we can control the spaces/objects that are consumed by such project. It is useful when multiple groups and users cooperate for the same project, or a user/group needs to participate in multiple projects. Support the following commands and functionalities: zfs set projectquota@project zfs set projectobjquota@project zfs get projectquota@project zfs get projectobjquota@project zfs get projectused@project zfs get projectobjused@project zfs projectspace zfs allow projectquota zfs allow projectobjquota zfs allow projectused zfs allow projectobjused zfs unallow projectquota zfs unallow projectobjquota zfs unallow projectused zfs unallow projectobjused chattr +/-P chattr -p project_id lsattr -p This patch also supports tree quota based on the project quota via "zfs project" commands set as following: zfs project [-d|-r] <file|directory ...> zfs project -C [-k] [-r] <file|directory ...> zfs project -c [-0] [-d|-r] [-p id] <file|directory ...> zfs project [-p id] [-r] [-s] <file|directory ...> For "df [-i] $DIR" command, if we set INHERIT (project ID) flag on the $DIR, then the proejct [obj]quota and [obj]used values for the $DIR's project ID will be shown as the total/free (avail) resource. Keep the same behavior as EXT4/XFS does. Reviewed-by: Andreas Dilger <andreas.dilger@intel.com> Reviewed-by Ned Bass <bass6@llnl.gov> Reviewed-by: Matthew Ahrens <mahrens@delphix.com> Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov> Signed-off-by: Fan Yong <fan.yong@intel.com> TEST_ZIMPORT_POOLS="zol-0.6.1 zol-0.6.2 master" Change-Id: Ib4f0544602e03fb61fd46a849d7ba51a6005693c Closes #6290
2018-02-14 01:54:54 +03:00
do_userquota_update(os, &cache, dn->dn_oldused,
dn->dn_oldflags, dn->dn_olduid, dn->dn_oldgid,
dn->dn_oldprojid, B_TRUE);
do_userobjquota_update(os, &cache, dn->dn_oldflags,
dn->dn_olduid, dn->dn_oldgid,
dn->dn_oldprojid, B_TRUE);
}
if (flags & DN_ID_NEW_EXIST) {
Project Quota on ZFS Project quota is a new ZFS system space/object usage accounting and enforcement mechanism. Similar as user/group quota, project quota is another dimension of system quota. It bases on the new object attribute - project ID. Project ID is a numerical value to indicate to which project an object belongs. An object only can belong to one project though you (the object owner or privileged user) can change the object project ID via 'chattr -p' or 'zfs project [-s] -p' explicitly. The object also can inherit the project ID from its parent when created if the parent has the project inherit flag (that can be set via 'chattr +P' or 'zfs project -s [-p]'). By accounting the spaces/objects belong to the same project, we can know how many spaces/objects used by the project. And if we set the upper limit then we can control the spaces/objects that are consumed by such project. It is useful when multiple groups and users cooperate for the same project, or a user/group needs to participate in multiple projects. Support the following commands and functionalities: zfs set projectquota@project zfs set projectobjquota@project zfs get projectquota@project zfs get projectobjquota@project zfs get projectused@project zfs get projectobjused@project zfs projectspace zfs allow projectquota zfs allow projectobjquota zfs allow projectused zfs allow projectobjused zfs unallow projectquota zfs unallow projectobjquota zfs unallow projectused zfs unallow projectobjused chattr +/-P chattr -p project_id lsattr -p This patch also supports tree quota based on the project quota via "zfs project" commands set as following: zfs project [-d|-r] <file|directory ...> zfs project -C [-k] [-r] <file|directory ...> zfs project -c [-0] [-d|-r] [-p id] <file|directory ...> zfs project [-p id] [-r] [-s] <file|directory ...> For "df [-i] $DIR" command, if we set INHERIT (project ID) flag on the $DIR, then the proejct [obj]quota and [obj]used values for the $DIR's project ID will be shown as the total/free (avail) resource. Keep the same behavior as EXT4/XFS does. Reviewed-by: Andreas Dilger <andreas.dilger@intel.com> Reviewed-by Ned Bass <bass6@llnl.gov> Reviewed-by: Matthew Ahrens <mahrens@delphix.com> Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov> Signed-off-by: Fan Yong <fan.yong@intel.com> TEST_ZIMPORT_POOLS="zol-0.6.1 zol-0.6.2 master" Change-Id: Ib4f0544602e03fb61fd46a849d7ba51a6005693c Closes #6290
2018-02-14 01:54:54 +03:00
do_userquota_update(os, &cache,
OpenZFS 6988 spa_sync() spends half its time in dmu_objset_do_userquota_updates Using a benchmark which creates 2 million files in one TXG, I observe that the thread running spa_sync() is on CPU almost the entire time we are syncing, and therefore can be a performance bottleneck. About 50% of the time in spa_sync() is in dmu_objset_do_userquota_updates(). The problem is that dmu_objset_do_userquota_updates() calls zap_increment_int(DMU_USERUSED_OBJECT) once for every file that was modified (or created). In this benchmark, all the files are owned by the same user/group, so all 2 million calls to zap_increment_int() are modifying the same entry in the zap. The same issue exists for the DMU_GROUPUSED_OBJECT. We should keep an in-memory map from user to space delta while we are syncing, and when we finish, iterate over the in-memory map and modify the ZAP once per entry. This reduces the number of calls to zap_increment_int() from "number of objects modified" to "number of owners/groups of modified files". This reduced the time spent in spa_sync() in the file create benchmark by ~33%, from 11 seconds to 7 seconds. Upstream bugs: DLPX-44799 Ported by: Ned Bass <bass6@llnl.gov> OpenZFS-issue: https://www.illumos.org/issues/6988 ZFSonLinux-issue: https://github.com/zfsonlinux/zfs/issues/4642 OpenZFS-commit: unmerged Porting notes: - Added curly braces around declaration of userquota_cache_t cache to quiet compiler warning; - Handled the userobj accounting the same way it proposed in this path. Signed-off-by: Jinshan Xiong <jinshan.xiong@intel.com>
2016-09-21 23:49:47 +03:00
DN_USED_BYTES(dn->dn_phys), dn->dn_phys->dn_flags,
Project Quota on ZFS Project quota is a new ZFS system space/object usage accounting and enforcement mechanism. Similar as user/group quota, project quota is another dimension of system quota. It bases on the new object attribute - project ID. Project ID is a numerical value to indicate to which project an object belongs. An object only can belong to one project though you (the object owner or privileged user) can change the object project ID via 'chattr -p' or 'zfs project [-s] -p' explicitly. The object also can inherit the project ID from its parent when created if the parent has the project inherit flag (that can be set via 'chattr +P' or 'zfs project -s [-p]'). By accounting the spaces/objects belong to the same project, we can know how many spaces/objects used by the project. And if we set the upper limit then we can control the spaces/objects that are consumed by such project. It is useful when multiple groups and users cooperate for the same project, or a user/group needs to participate in multiple projects. Support the following commands and functionalities: zfs set projectquota@project zfs set projectobjquota@project zfs get projectquota@project zfs get projectobjquota@project zfs get projectused@project zfs get projectobjused@project zfs projectspace zfs allow projectquota zfs allow projectobjquota zfs allow projectused zfs allow projectobjused zfs unallow projectquota zfs unallow projectobjquota zfs unallow projectused zfs unallow projectobjused chattr +/-P chattr -p project_id lsattr -p This patch also supports tree quota based on the project quota via "zfs project" commands set as following: zfs project [-d|-r] <file|directory ...> zfs project -C [-k] [-r] <file|directory ...> zfs project -c [-0] [-d|-r] [-p id] <file|directory ...> zfs project [-p id] [-r] [-s] <file|directory ...> For "df [-i] $DIR" command, if we set INHERIT (project ID) flag on the $DIR, then the proejct [obj]quota and [obj]used values for the $DIR's project ID will be shown as the total/free (avail) resource. Keep the same behavior as EXT4/XFS does. Reviewed-by: Andreas Dilger <andreas.dilger@intel.com> Reviewed-by Ned Bass <bass6@llnl.gov> Reviewed-by: Matthew Ahrens <mahrens@delphix.com> Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov> Signed-off-by: Fan Yong <fan.yong@intel.com> TEST_ZIMPORT_POOLS="zol-0.6.1 zol-0.6.2 master" Change-Id: Ib4f0544602e03fb61fd46a849d7ba51a6005693c Closes #6290
2018-02-14 01:54:54 +03:00
dn->dn_newuid, dn->dn_newgid,
dn->dn_newprojid, B_FALSE);
do_userobjquota_update(os, &cache,
dn->dn_phys->dn_flags, dn->dn_newuid, dn->dn_newgid,
dn->dn_newprojid, B_FALSE);
}
mutex_enter(&dn->dn_mtx);
dn->dn_oldused = 0;
dn->dn_oldflags = 0;
if (dn->dn_id_flags & DN_ID_NEW_EXIST) {
dn->dn_olduid = dn->dn_newuid;
dn->dn_oldgid = dn->dn_newgid;
Project Quota on ZFS Project quota is a new ZFS system space/object usage accounting and enforcement mechanism. Similar as user/group quota, project quota is another dimension of system quota. It bases on the new object attribute - project ID. Project ID is a numerical value to indicate to which project an object belongs. An object only can belong to one project though you (the object owner or privileged user) can change the object project ID via 'chattr -p' or 'zfs project [-s] -p' explicitly. The object also can inherit the project ID from its parent when created if the parent has the project inherit flag (that can be set via 'chattr +P' or 'zfs project -s [-p]'). By accounting the spaces/objects belong to the same project, we can know how many spaces/objects used by the project. And if we set the upper limit then we can control the spaces/objects that are consumed by such project. It is useful when multiple groups and users cooperate for the same project, or a user/group needs to participate in multiple projects. Support the following commands and functionalities: zfs set projectquota@project zfs set projectobjquota@project zfs get projectquota@project zfs get projectobjquota@project zfs get projectused@project zfs get projectobjused@project zfs projectspace zfs allow projectquota zfs allow projectobjquota zfs allow projectused zfs allow projectobjused zfs unallow projectquota zfs unallow projectobjquota zfs unallow projectused zfs unallow projectobjused chattr +/-P chattr -p project_id lsattr -p This patch also supports tree quota based on the project quota via "zfs project" commands set as following: zfs project [-d|-r] <file|directory ...> zfs project -C [-k] [-r] <file|directory ...> zfs project -c [-0] [-d|-r] [-p id] <file|directory ...> zfs project [-p id] [-r] [-s] <file|directory ...> For "df [-i] $DIR" command, if we set INHERIT (project ID) flag on the $DIR, then the proejct [obj]quota and [obj]used values for the $DIR's project ID will be shown as the total/free (avail) resource. Keep the same behavior as EXT4/XFS does. Reviewed-by: Andreas Dilger <andreas.dilger@intel.com> Reviewed-by Ned Bass <bass6@llnl.gov> Reviewed-by: Matthew Ahrens <mahrens@delphix.com> Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov> Signed-off-by: Fan Yong <fan.yong@intel.com> TEST_ZIMPORT_POOLS="zol-0.6.1 zol-0.6.2 master" Change-Id: Ib4f0544602e03fb61fd46a849d7ba51a6005693c Closes #6290
2018-02-14 01:54:54 +03:00
dn->dn_oldprojid = dn->dn_newprojid;
dn->dn_id_flags |= DN_ID_OLD_EXIST;
if (dn->dn_bonuslen == 0)
dn->dn_id_flags |= DN_ID_CHKED_SPILL;
else
dn->dn_id_flags |= DN_ID_CHKED_BONUS;
}
dn->dn_id_flags &= ~(DN_ID_NEW_EXIST);
if (dn->dn_dirty_txg == spa_syncing_txg(os->os_spa))
dn->dn_dirty_txg = 0;
2009-07-03 02:44:48 +04:00
mutex_exit(&dn->dn_mtx);
multilist_sublist_remove(list, dn);
dnode_rele(dn, os->os_synced_dnodes);
2009-07-03 02:44:48 +04:00
}
OpenZFS 6988 spa_sync() spends half its time in dmu_objset_do_userquota_updates Using a benchmark which creates 2 million files in one TXG, I observe that the thread running spa_sync() is on CPU almost the entire time we are syncing, and therefore can be a performance bottleneck. About 50% of the time in spa_sync() is in dmu_objset_do_userquota_updates(). The problem is that dmu_objset_do_userquota_updates() calls zap_increment_int(DMU_USERUSED_OBJECT) once for every file that was modified (or created). In this benchmark, all the files are owned by the same user/group, so all 2 million calls to zap_increment_int() are modifying the same entry in the zap. The same issue exists for the DMU_GROUPUSED_OBJECT. We should keep an in-memory map from user to space delta while we are syncing, and when we finish, iterate over the in-memory map and modify the ZAP once per entry. This reduces the number of calls to zap_increment_int() from "number of objects modified" to "number of owners/groups of modified files". This reduced the time spent in spa_sync() in the file create benchmark by ~33%, from 11 seconds to 7 seconds. Upstream bugs: DLPX-44799 Ported by: Ned Bass <bass6@llnl.gov> OpenZFS-issue: https://www.illumos.org/issues/6988 ZFSonLinux-issue: https://github.com/zfsonlinux/zfs/issues/4642 OpenZFS-commit: unmerged Porting notes: - Added curly braces around declaration of userquota_cache_t cache to quiet compiler warning; - Handled the userobj accounting the same way it proposed in this path. Signed-off-by: Jinshan Xiong <jinshan.xiong@intel.com>
2016-09-21 23:49:47 +03:00
do_userquota_cacheflush(os, &cache, tx);
multilist_sublist_unlock(list);
kmem_free(uua, sizeof (*uua));
}
void
dmu_objset_do_userquota_updates(objset_t *os, dmu_tx_t *tx)
{
int num_sublists;
if (!dmu_objset_userused_enabled(os))
return;
/*
* If this is a raw receive just return and handle accounting
* later when we have the keys loaded. We also don't do user
* accounting during claiming since the datasets are not owned
* for the duration of claiming and this txg should only be
* used for recovery.
*/
Native Encryption for ZFS on Linux This change incorporates three major pieces: The first change is a keystore that manages wrapping and encryption keys for encrypted datasets. These commands mostly involve manipulating the new DSL Crypto Key ZAP Objects that live in the MOS. Each encrypted dataset has its own DSL Crypto Key that is protected with a user's key. This level of indirection allows users to change their keys without re-encrypting their entire datasets. The change implements the new subcommands "zfs load-key", "zfs unload-key" and "zfs change-key" which allow the user to manage their encryption keys and settings. In addition, several new flags and properties have been added to allow dataset creation and to make mounting and unmounting more convenient. The second piece of this patch provides the ability to encrypt, decyrpt, and authenticate protected datasets. Each object set maintains a Merkel tree of Message Authentication Codes that protect the lower layers, similarly to how checksums are maintained. This part impacts the zio layer, which handles the actual encryption and generation of MACs, as well as the ARC and DMU, which need to be able to handle encrypted buffers and protected data. The last addition is the ability to do raw, encrypted sends and receives. The idea here is to send raw encrypted and compressed data and receive it exactly as is on a backup system. This means that the dataset on the receiving system is protected using the same user key that is in use on the sending side. By doing so, datasets can be efficiently backed up to an untrusted system without fear of data being compromised. Reviewed by: Matthew Ahrens <mahrens@delphix.com> Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov> Reviewed-by: Jorgen Lundman <lundman@lundman.net> Signed-off-by: Tom Caputi <tcaputi@datto.com> Closes #494 Closes #5769
2017-08-14 20:36:48 +03:00
if (os->os_encrypted && dmu_objset_is_receiving(os))
return;
if (tx->tx_txg <= os->os_spa->spa_claim_max_txg)
return;
Project Quota on ZFS Project quota is a new ZFS system space/object usage accounting and enforcement mechanism. Similar as user/group quota, project quota is another dimension of system quota. It bases on the new object attribute - project ID. Project ID is a numerical value to indicate to which project an object belongs. An object only can belong to one project though you (the object owner or privileged user) can change the object project ID via 'chattr -p' or 'zfs project [-s] -p' explicitly. The object also can inherit the project ID from its parent when created if the parent has the project inherit flag (that can be set via 'chattr +P' or 'zfs project -s [-p]'). By accounting the spaces/objects belong to the same project, we can know how many spaces/objects used by the project. And if we set the upper limit then we can control the spaces/objects that are consumed by such project. It is useful when multiple groups and users cooperate for the same project, or a user/group needs to participate in multiple projects. Support the following commands and functionalities: zfs set projectquota@project zfs set projectobjquota@project zfs get projectquota@project zfs get projectobjquota@project zfs get projectused@project zfs get projectobjused@project zfs projectspace zfs allow projectquota zfs allow projectobjquota zfs allow projectused zfs allow projectobjused zfs unallow projectquota zfs unallow projectobjquota zfs unallow projectused zfs unallow projectobjused chattr +/-P chattr -p project_id lsattr -p This patch also supports tree quota based on the project quota via "zfs project" commands set as following: zfs project [-d|-r] <file|directory ...> zfs project -C [-k] [-r] <file|directory ...> zfs project -c [-0] [-d|-r] [-p id] <file|directory ...> zfs project [-p id] [-r] [-s] <file|directory ...> For "df [-i] $DIR" command, if we set INHERIT (project ID) flag on the $DIR, then the proejct [obj]quota and [obj]used values for the $DIR's project ID will be shown as the total/free (avail) resource. Keep the same behavior as EXT4/XFS does. Reviewed-by: Andreas Dilger <andreas.dilger@intel.com> Reviewed-by Ned Bass <bass6@llnl.gov> Reviewed-by: Matthew Ahrens <mahrens@delphix.com> Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov> Signed-off-by: Fan Yong <fan.yong@intel.com> TEST_ZIMPORT_POOLS="zol-0.6.1 zol-0.6.2 master" Change-Id: Ib4f0544602e03fb61fd46a849d7ba51a6005693c Closes #6290
2018-02-14 01:54:54 +03:00
/* Allocate the user/group/project used objects if necessary. */
if (DMU_USERUSED_DNODE(os)->dn_type == DMU_OT_NONE) {
VERIFY0(zap_create_claim(os,
DMU_USERUSED_OBJECT,
DMU_OT_USERGROUP_USED, DMU_OT_NONE, 0, tx));
VERIFY0(zap_create_claim(os,
DMU_GROUPUSED_OBJECT,
DMU_OT_USERGROUP_USED, DMU_OT_NONE, 0, tx));
}
Project Quota on ZFS Project quota is a new ZFS system space/object usage accounting and enforcement mechanism. Similar as user/group quota, project quota is another dimension of system quota. It bases on the new object attribute - project ID. Project ID is a numerical value to indicate to which project an object belongs. An object only can belong to one project though you (the object owner or privileged user) can change the object project ID via 'chattr -p' or 'zfs project [-s] -p' explicitly. The object also can inherit the project ID from its parent when created if the parent has the project inherit flag (that can be set via 'chattr +P' or 'zfs project -s [-p]'). By accounting the spaces/objects belong to the same project, we can know how many spaces/objects used by the project. And if we set the upper limit then we can control the spaces/objects that are consumed by such project. It is useful when multiple groups and users cooperate for the same project, or a user/group needs to participate in multiple projects. Support the following commands and functionalities: zfs set projectquota@project zfs set projectobjquota@project zfs get projectquota@project zfs get projectobjquota@project zfs get projectused@project zfs get projectobjused@project zfs projectspace zfs allow projectquota zfs allow projectobjquota zfs allow projectused zfs allow projectobjused zfs unallow projectquota zfs unallow projectobjquota zfs unallow projectused zfs unallow projectobjused chattr +/-P chattr -p project_id lsattr -p This patch also supports tree quota based on the project quota via "zfs project" commands set as following: zfs project [-d|-r] <file|directory ...> zfs project -C [-k] [-r] <file|directory ...> zfs project -c [-0] [-d|-r] [-p id] <file|directory ...> zfs project [-p id] [-r] [-s] <file|directory ...> For "df [-i] $DIR" command, if we set INHERIT (project ID) flag on the $DIR, then the proejct [obj]quota and [obj]used values for the $DIR's project ID will be shown as the total/free (avail) resource. Keep the same behavior as EXT4/XFS does. Reviewed-by: Andreas Dilger <andreas.dilger@intel.com> Reviewed-by Ned Bass <bass6@llnl.gov> Reviewed-by: Matthew Ahrens <mahrens@delphix.com> Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov> Signed-off-by: Fan Yong <fan.yong@intel.com> TEST_ZIMPORT_POOLS="zol-0.6.1 zol-0.6.2 master" Change-Id: Ib4f0544602e03fb61fd46a849d7ba51a6005693c Closes #6290
2018-02-14 01:54:54 +03:00
if (dmu_objset_projectquota_enabled(os) &&
DMU_PROJECTUSED_DNODE(os)->dn_type == DMU_OT_NONE) {
VERIFY0(zap_create_claim(os, DMU_PROJECTUSED_OBJECT,
DMU_OT_USERGROUP_USED, DMU_OT_NONE, 0, tx));
}
num_sublists = multilist_get_num_sublists(os->os_synced_dnodes);
for (int i = 0; i < num_sublists; i++) {
if (multilist_sublist_is_empty_idx(os->os_synced_dnodes, i))
continue;
userquota_updates_arg_t *uua =
kmem_alloc(sizeof (*uua), KM_SLEEP);
uua->uua_os = os;
uua->uua_sublist_idx = i;
uua->uua_tx = tx;
/* note: caller does taskq_wait() */
(void) taskq_dispatch(dmu_objset_pool(os)->dp_sync_taskq,
userquota_updates_task, uua, 0);
/* callback frees uua */
}
2009-07-03 02:44:48 +04:00
}
/*
* Returns a pointer to data to find uid/gid from
*
* If a dirty record for transaction group that is syncing can't
* be found then NULL is returned. In the NULL case it is assumed
* the uid/gid aren't changing.
*/
static void *
dmu_objset_userquota_find_data(dmu_buf_impl_t *db, dmu_tx_t *tx)
{
dbuf_dirty_record_t *dr;
void *data;
if (db->db_dirtycnt == 0)
return (db->db.db_data); /* Nothing is changing */
dr = dbuf_find_dirty_eq(db, tx->tx_txg);
if (dr == NULL) {
data = NULL;
} else {
dnode_t *dn;
DB_DNODE_ENTER(dr->dr_dbuf);
dn = DB_DNODE(dr->dr_dbuf);
if (dn->dn_bonuslen == 0 &&
dr->dr_dbuf->db_blkid == DMU_SPILL_BLKID)
data = dr->dt.dl.dr_data->b_data;
else
data = dr->dt.dl.dr_data;
DB_DNODE_EXIT(dr->dr_dbuf);
}
return (data);
}
void
dmu_objset_userquota_get_ids(dnode_t *dn, boolean_t before, dmu_tx_t *tx)
{
objset_t *os = dn->dn_objset;
void *data = NULL;
dmu_buf_impl_t *db = NULL;
int flags = dn->dn_id_flags;
int error;
boolean_t have_spill = B_FALSE;
if (!dmu_objset_userused_enabled(dn->dn_objset))
return;
Native Encryption for ZFS on Linux This change incorporates three major pieces: The first change is a keystore that manages wrapping and encryption keys for encrypted datasets. These commands mostly involve manipulating the new DSL Crypto Key ZAP Objects that live in the MOS. Each encrypted dataset has its own DSL Crypto Key that is protected with a user's key. This level of indirection allows users to change their keys without re-encrypting their entire datasets. The change implements the new subcommands "zfs load-key", "zfs unload-key" and "zfs change-key" which allow the user to manage their encryption keys and settings. In addition, several new flags and properties have been added to allow dataset creation and to make mounting and unmounting more convenient. The second piece of this patch provides the ability to encrypt, decyrpt, and authenticate protected datasets. Each object set maintains a Merkel tree of Message Authentication Codes that protect the lower layers, similarly to how checksums are maintained. This part impacts the zio layer, which handles the actual encryption and generation of MACs, as well as the ARC and DMU, which need to be able to handle encrypted buffers and protected data. The last addition is the ability to do raw, encrypted sends and receives. The idea here is to send raw encrypted and compressed data and receive it exactly as is on a backup system. This means that the dataset on the receiving system is protected using the same user key that is in use on the sending side. By doing so, datasets can be efficiently backed up to an untrusted system without fear of data being compromised. Reviewed by: Matthew Ahrens <mahrens@delphix.com> Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov> Reviewed-by: Jorgen Lundman <lundman@lundman.net> Signed-off-by: Tom Caputi <tcaputi@datto.com> Closes #494 Closes #5769
2017-08-14 20:36:48 +03:00
/*
* Raw receives introduce a problem with user accounting. Raw
* receives cannot update the user accounting info because the
* user ids and the sizes are encrypted. To guarantee that we
* never end up with bad user accounting, we simply disable it
* during raw receives. We also disable this for normal receives
* so that an incremental raw receive may be done on top of an
* existing non-raw receive.
*/
if (os->os_encrypted && dmu_objset_is_receiving(os))
return;
if (before && (flags & (DN_ID_CHKED_BONUS|DN_ID_OLD_EXIST|
DN_ID_CHKED_SPILL)))
return;
if (before && dn->dn_bonuslen != 0)
data = DN_BONUS(dn->dn_phys);
else if (!before && dn->dn_bonuslen != 0) {
if (dn->dn_bonus) {
db = dn->dn_bonus;
mutex_enter(&db->db_mtx);
data = dmu_objset_userquota_find_data(db, tx);
} else {
data = DN_BONUS(dn->dn_phys);
}
} else if (dn->dn_bonuslen == 0 && dn->dn_bonustype == DMU_OT_SA) {
int rf = 0;
if (RW_WRITE_HELD(&dn->dn_struct_rwlock))
rf |= DB_RF_HAVESTRUCT;
error = dmu_spill_hold_by_dnode(dn,
rf | DB_RF_MUST_SUCCEED,
FTAG, (dmu_buf_t **)&db);
ASSERT(error == 0);
mutex_enter(&db->db_mtx);
data = (before) ? db->db.db_data :
dmu_objset_userquota_find_data(db, tx);
have_spill = B_TRUE;
} else {
mutex_enter(&dn->dn_mtx);
dn->dn_id_flags |= DN_ID_CHKED_BONUS;
mutex_exit(&dn->dn_mtx);
return;
}
/*
* Must always call the callback in case the object
* type has changed and that type isn't an object type to track
*/
File incorrectly zeroed when receiving incremental stream that toggles -L Background: By increasing the recordsize property above the default of 128KB, a filesystem may have "large" blocks. By default, a send stream of such a filesystem does not contain large WRITE records, instead it decreases objects' block sizes to 128KB and splits the large blocks into 128KB blocks, allowing the large-block filesystem to be received by a system that does not support the `large_blocks` feature. A send stream generated by `zfs send -L` (or `--large-block`) preserves the large block size on the receiving system, by using large WRITE records. When receiving an incremental send stream for a filesystem with large blocks, if the send stream's -L flag was toggled, a bug is encountered in which the file's contents are incorrectly zeroed out. The contents of any blocks that were not modified by this send stream will be lost. "Toggled" means that the previous send used `-L`, but this incremental does not use `-L` (-L to no-L); or that the previous send did not use `-L`, but this incremental does use `-L` (no-L to -L). Changes: This commit addresses the problem with several changes to the semantics of zfs send/receive: 1. "-L to no-L" incrementals are rejected. If the previous send used `-L`, but this incremental does not use `-L`, the `zfs receive` will fail with this error message: incremental send stream requires -L (--large-block), to match previous receive. 2. "no-L to -L" incrementals are handled correctly, preserving the smaller (128KB) block size of any already-received files that used large blocks on the sending system but were split by `zfs send` without the `-L` flag. 3. A new send stream format flag is added, `SWITCH_TO_LARGE_BLOCKS`. This feature indicates that we can correctly handle "no-L to -L" incrementals. This flag is currently not set on any send streams. In the future, we intend for incremental send streams of snapshots that have large blocks to use `-L` by default, and these streams will also have the `SWITCH_TO_LARGE_BLOCKS` feature set. This ensures that streams from the default use of `zfs send` won't encounter the bug mentioned above, because they can't be received by software with the bug. Implementation notes: To facilitate accessing the ZPL's generation number, `zfs_space_delta_cb()` has been renamed to `zpl_get_file_info()` and restructured to fill in a struct with ZPL-specific info including owner and generation. In the "no-L to -L" case, if this is a compressed send stream (from `zfs send -cL`), large WRITE records that are being written to small (128KB) blocksize files need to be decompressed so that they can be written split up into multiple blocks. The zio pipeline will recompress each smaller block individually. A new test case, `send-L_toggle`, is added, which tests the "no-L to -L" case and verifies that we get an error for the "-L to no-L" case. Reviewed-by: Paul Dagnelie <pcd@delphix.com> Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov> Signed-off-by: Matthew Ahrens <mahrens@delphix.com> Closes #6224 Closes #10383
2020-06-09 20:41:01 +03:00
zfs_file_info_t zfi;
error = file_cbs[os->os_phys->os_type](dn->dn_bonustype, data, &zfi);
if (before) {
ASSERT(data);
dn->dn_olduid = zfi.zfi_user;
dn->dn_oldgid = zfi.zfi_group;
dn->dn_oldprojid = zfi.zfi_project;
} else if (data) {
dn->dn_newuid = zfi.zfi_user;
dn->dn_newgid = zfi.zfi_group;
dn->dn_newprojid = zfi.zfi_project;
}
/*
* Preserve existing uid/gid when the callback can't determine
* what the new uid/gid are and the callback returned EEXIST.
* The EEXIST error tells us to just use the existing uid/gid.
* If we don't know what the old values are then just assign
* them to 0, since that is a new file being created.
*/
if (!before && data == NULL && error == EEXIST) {
if (flags & DN_ID_OLD_EXIST) {
dn->dn_newuid = dn->dn_olduid;
dn->dn_newgid = dn->dn_oldgid;
dn->dn_newprojid = dn->dn_oldprojid;
} else {
dn->dn_newuid = 0;
dn->dn_newgid = 0;
Project Quota on ZFS Project quota is a new ZFS system space/object usage accounting and enforcement mechanism. Similar as user/group quota, project quota is another dimension of system quota. It bases on the new object attribute - project ID. Project ID is a numerical value to indicate to which project an object belongs. An object only can belong to one project though you (the object owner or privileged user) can change the object project ID via 'chattr -p' or 'zfs project [-s] -p' explicitly. The object also can inherit the project ID from its parent when created if the parent has the project inherit flag (that can be set via 'chattr +P' or 'zfs project -s [-p]'). By accounting the spaces/objects belong to the same project, we can know how many spaces/objects used by the project. And if we set the upper limit then we can control the spaces/objects that are consumed by such project. It is useful when multiple groups and users cooperate for the same project, or a user/group needs to participate in multiple projects. Support the following commands and functionalities: zfs set projectquota@project zfs set projectobjquota@project zfs get projectquota@project zfs get projectobjquota@project zfs get projectused@project zfs get projectobjused@project zfs projectspace zfs allow projectquota zfs allow projectobjquota zfs allow projectused zfs allow projectobjused zfs unallow projectquota zfs unallow projectobjquota zfs unallow projectused zfs unallow projectobjused chattr +/-P chattr -p project_id lsattr -p This patch also supports tree quota based on the project quota via "zfs project" commands set as following: zfs project [-d|-r] <file|directory ...> zfs project -C [-k] [-r] <file|directory ...> zfs project -c [-0] [-d|-r] [-p id] <file|directory ...> zfs project [-p id] [-r] [-s] <file|directory ...> For "df [-i] $DIR" command, if we set INHERIT (project ID) flag on the $DIR, then the proejct [obj]quota and [obj]used values for the $DIR's project ID will be shown as the total/free (avail) resource. Keep the same behavior as EXT4/XFS does. Reviewed-by: Andreas Dilger <andreas.dilger@intel.com> Reviewed-by Ned Bass <bass6@llnl.gov> Reviewed-by: Matthew Ahrens <mahrens@delphix.com> Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov> Signed-off-by: Fan Yong <fan.yong@intel.com> TEST_ZIMPORT_POOLS="zol-0.6.1 zol-0.6.2 master" Change-Id: Ib4f0544602e03fb61fd46a849d7ba51a6005693c Closes #6290
2018-02-14 01:54:54 +03:00
dn->dn_newprojid = ZFS_DEFAULT_PROJID;
}
error = 0;
}
if (db)
mutex_exit(&db->db_mtx);
mutex_enter(&dn->dn_mtx);
if (error == 0 && before)
dn->dn_id_flags |= DN_ID_OLD_EXIST;
if (error == 0 && !before)
dn->dn_id_flags |= DN_ID_NEW_EXIST;
if (have_spill) {
dn->dn_id_flags |= DN_ID_CHKED_SPILL;
} else {
dn->dn_id_flags |= DN_ID_CHKED_BONUS;
}
mutex_exit(&dn->dn_mtx);
if (have_spill)
dmu_buf_rele((dmu_buf_t *)db, FTAG);
}
2009-07-03 02:44:48 +04:00
boolean_t
dmu_objset_userspace_present(objset_t *os)
{
return (os->os_phys->os_flags &
2009-07-03 02:44:48 +04:00
OBJSET_FLAG_USERACCOUNTING_COMPLETE);
}
boolean_t
dmu_objset_userobjspace_present(objset_t *os)
{
return (os->os_phys->os_flags &
OBJSET_FLAG_USEROBJACCOUNTING_COMPLETE);
}
Project Quota on ZFS Project quota is a new ZFS system space/object usage accounting and enforcement mechanism. Similar as user/group quota, project quota is another dimension of system quota. It bases on the new object attribute - project ID. Project ID is a numerical value to indicate to which project an object belongs. An object only can belong to one project though you (the object owner or privileged user) can change the object project ID via 'chattr -p' or 'zfs project [-s] -p' explicitly. The object also can inherit the project ID from its parent when created if the parent has the project inherit flag (that can be set via 'chattr +P' or 'zfs project -s [-p]'). By accounting the spaces/objects belong to the same project, we can know how many spaces/objects used by the project. And if we set the upper limit then we can control the spaces/objects that are consumed by such project. It is useful when multiple groups and users cooperate for the same project, or a user/group needs to participate in multiple projects. Support the following commands and functionalities: zfs set projectquota@project zfs set projectobjquota@project zfs get projectquota@project zfs get projectobjquota@project zfs get projectused@project zfs get projectobjused@project zfs projectspace zfs allow projectquota zfs allow projectobjquota zfs allow projectused zfs allow projectobjused zfs unallow projectquota zfs unallow projectobjquota zfs unallow projectused zfs unallow projectobjused chattr +/-P chattr -p project_id lsattr -p This patch also supports tree quota based on the project quota via "zfs project" commands set as following: zfs project [-d|-r] <file|directory ...> zfs project -C [-k] [-r] <file|directory ...> zfs project -c [-0] [-d|-r] [-p id] <file|directory ...> zfs project [-p id] [-r] [-s] <file|directory ...> For "df [-i] $DIR" command, if we set INHERIT (project ID) flag on the $DIR, then the proejct [obj]quota and [obj]used values for the $DIR's project ID will be shown as the total/free (avail) resource. Keep the same behavior as EXT4/XFS does. Reviewed-by: Andreas Dilger <andreas.dilger@intel.com> Reviewed-by Ned Bass <bass6@llnl.gov> Reviewed-by: Matthew Ahrens <mahrens@delphix.com> Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov> Signed-off-by: Fan Yong <fan.yong@intel.com> TEST_ZIMPORT_POOLS="zol-0.6.1 zol-0.6.2 master" Change-Id: Ib4f0544602e03fb61fd46a849d7ba51a6005693c Closes #6290
2018-02-14 01:54:54 +03:00
boolean_t
dmu_objset_projectquota_present(objset_t *os)
{
return (os->os_phys->os_flags &
OBJSET_FLAG_PROJECTQUOTA_COMPLETE);
}
static int
dmu_objset_space_upgrade(objset_t *os)
2009-07-03 02:44:48 +04:00
{
uint64_t obj;
int err = 0;
/*
* We simply need to mark every object dirty, so that it will be
* synced out and now accounted. If this is called
* concurrently, or if we already did some work before crashing,
* that's fine, since we track each object's accounted state
* independently.
*/
for (obj = 0; err == 0; err = dmu_object_next(os, &obj, FALSE, 0)) {
2009-08-18 22:43:27 +04:00
dmu_tx_t *tx;
2009-07-03 02:44:48 +04:00
dmu_buf_t *db;
int objerr;
mutex_enter(&os->os_upgrade_lock);
if (os->os_upgrade_exit)
err = SET_ERROR(EINTR);
mutex_exit(&os->os_upgrade_lock);
if (err != 0)
return (err);
2009-07-03 02:44:48 +04:00
if (issig(JUSTLOOKING) && issig(FORREAL))
return (SET_ERROR(EINTR));
2009-07-03 02:44:48 +04:00
objerr = dmu_bonus_hold(os, obj, FTAG, &db);
if (objerr != 0)
2009-07-03 02:44:48 +04:00
continue;
2009-08-18 22:43:27 +04:00
tx = dmu_tx_create(os);
2009-07-03 02:44:48 +04:00
dmu_tx_hold_bonus(tx, obj);
objerr = dmu_tx_assign(tx, TXG_WAIT);
if (objerr != 0) {
dmu_buf_rele(db, FTAG);
2009-07-03 02:44:48 +04:00
dmu_tx_abort(tx);
continue;
}
dmu_buf_will_dirty(db, tx);
dmu_buf_rele(db, FTAG);
dmu_tx_commit(tx);
}
return (0);
}
int
dmu_objset_userspace_upgrade(objset_t *os)
{
int err = 0;
if (dmu_objset_userspace_present(os))
return (0);
if (dmu_objset_is_snapshot(os))
return (SET_ERROR(EINVAL));
if (!dmu_objset_userused_enabled(os))
return (SET_ERROR(ENOTSUP));
err = dmu_objset_space_upgrade(os);
if (err)
return (err);
2009-07-03 02:44:48 +04:00
os->os_flags |= OBJSET_FLAG_USERACCOUNTING_COMPLETE;
2009-07-03 02:44:48 +04:00
txg_wait_synced(dmu_objset_pool(os), 0);
return (0);
}
static int
Project Quota on ZFS Project quota is a new ZFS system space/object usage accounting and enforcement mechanism. Similar as user/group quota, project quota is another dimension of system quota. It bases on the new object attribute - project ID. Project ID is a numerical value to indicate to which project an object belongs. An object only can belong to one project though you (the object owner or privileged user) can change the object project ID via 'chattr -p' or 'zfs project [-s] -p' explicitly. The object also can inherit the project ID from its parent when created if the parent has the project inherit flag (that can be set via 'chattr +P' or 'zfs project -s [-p]'). By accounting the spaces/objects belong to the same project, we can know how many spaces/objects used by the project. And if we set the upper limit then we can control the spaces/objects that are consumed by such project. It is useful when multiple groups and users cooperate for the same project, or a user/group needs to participate in multiple projects. Support the following commands and functionalities: zfs set projectquota@project zfs set projectobjquota@project zfs get projectquota@project zfs get projectobjquota@project zfs get projectused@project zfs get projectobjused@project zfs projectspace zfs allow projectquota zfs allow projectobjquota zfs allow projectused zfs allow projectobjused zfs unallow projectquota zfs unallow projectobjquota zfs unallow projectused zfs unallow projectobjused chattr +/-P chattr -p project_id lsattr -p This patch also supports tree quota based on the project quota via "zfs project" commands set as following: zfs project [-d|-r] <file|directory ...> zfs project -C [-k] [-r] <file|directory ...> zfs project -c [-0] [-d|-r] [-p id] <file|directory ...> zfs project [-p id] [-r] [-s] <file|directory ...> For "df [-i] $DIR" command, if we set INHERIT (project ID) flag on the $DIR, then the proejct [obj]quota and [obj]used values for the $DIR's project ID will be shown as the total/free (avail) resource. Keep the same behavior as EXT4/XFS does. Reviewed-by: Andreas Dilger <andreas.dilger@intel.com> Reviewed-by Ned Bass <bass6@llnl.gov> Reviewed-by: Matthew Ahrens <mahrens@delphix.com> Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov> Signed-off-by: Fan Yong <fan.yong@intel.com> TEST_ZIMPORT_POOLS="zol-0.6.1 zol-0.6.2 master" Change-Id: Ib4f0544602e03fb61fd46a849d7ba51a6005693c Closes #6290
2018-02-14 01:54:54 +03:00
dmu_objset_id_quota_upgrade_cb(objset_t *os)
{
int err = 0;
Project Quota on ZFS Project quota is a new ZFS system space/object usage accounting and enforcement mechanism. Similar as user/group quota, project quota is another dimension of system quota. It bases on the new object attribute - project ID. Project ID is a numerical value to indicate to which project an object belongs. An object only can belong to one project though you (the object owner or privileged user) can change the object project ID via 'chattr -p' or 'zfs project [-s] -p' explicitly. The object also can inherit the project ID from its parent when created if the parent has the project inherit flag (that can be set via 'chattr +P' or 'zfs project -s [-p]'). By accounting the spaces/objects belong to the same project, we can know how many spaces/objects used by the project. And if we set the upper limit then we can control the spaces/objects that are consumed by such project. It is useful when multiple groups and users cooperate for the same project, or a user/group needs to participate in multiple projects. Support the following commands and functionalities: zfs set projectquota@project zfs set projectobjquota@project zfs get projectquota@project zfs get projectobjquota@project zfs get projectused@project zfs get projectobjused@project zfs projectspace zfs allow projectquota zfs allow projectobjquota zfs allow projectused zfs allow projectobjused zfs unallow projectquota zfs unallow projectobjquota zfs unallow projectused zfs unallow projectobjused chattr +/-P chattr -p project_id lsattr -p This patch also supports tree quota based on the project quota via "zfs project" commands set as following: zfs project [-d|-r] <file|directory ...> zfs project -C [-k] [-r] <file|directory ...> zfs project -c [-0] [-d|-r] [-p id] <file|directory ...> zfs project [-p id] [-r] [-s] <file|directory ...> For "df [-i] $DIR" command, if we set INHERIT (project ID) flag on the $DIR, then the proejct [obj]quota and [obj]used values for the $DIR's project ID will be shown as the total/free (avail) resource. Keep the same behavior as EXT4/XFS does. Reviewed-by: Andreas Dilger <andreas.dilger@intel.com> Reviewed-by Ned Bass <bass6@llnl.gov> Reviewed-by: Matthew Ahrens <mahrens@delphix.com> Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov> Signed-off-by: Fan Yong <fan.yong@intel.com> TEST_ZIMPORT_POOLS="zol-0.6.1 zol-0.6.2 master" Change-Id: Ib4f0544602e03fb61fd46a849d7ba51a6005693c Closes #6290
2018-02-14 01:54:54 +03:00
if (dmu_objset_userobjspace_present(os) &&
dmu_objset_projectquota_present(os))
return (0);
if (dmu_objset_is_snapshot(os))
return (SET_ERROR(EINVAL));
if (!dmu_objset_userobjused_enabled(os))
return (SET_ERROR(ENOTSUP));
Project Quota on ZFS Project quota is a new ZFS system space/object usage accounting and enforcement mechanism. Similar as user/group quota, project quota is another dimension of system quota. It bases on the new object attribute - project ID. Project ID is a numerical value to indicate to which project an object belongs. An object only can belong to one project though you (the object owner or privileged user) can change the object project ID via 'chattr -p' or 'zfs project [-s] -p' explicitly. The object also can inherit the project ID from its parent when created if the parent has the project inherit flag (that can be set via 'chattr +P' or 'zfs project -s [-p]'). By accounting the spaces/objects belong to the same project, we can know how many spaces/objects used by the project. And if we set the upper limit then we can control the spaces/objects that are consumed by such project. It is useful when multiple groups and users cooperate for the same project, or a user/group needs to participate in multiple projects. Support the following commands and functionalities: zfs set projectquota@project zfs set projectobjquota@project zfs get projectquota@project zfs get projectobjquota@project zfs get projectused@project zfs get projectobjused@project zfs projectspace zfs allow projectquota zfs allow projectobjquota zfs allow projectused zfs allow projectobjused zfs unallow projectquota zfs unallow projectobjquota zfs unallow projectused zfs unallow projectobjused chattr +/-P chattr -p project_id lsattr -p This patch also supports tree quota based on the project quota via "zfs project" commands set as following: zfs project [-d|-r] <file|directory ...> zfs project -C [-k] [-r] <file|directory ...> zfs project -c [-0] [-d|-r] [-p id] <file|directory ...> zfs project [-p id] [-r] [-s] <file|directory ...> For "df [-i] $DIR" command, if we set INHERIT (project ID) flag on the $DIR, then the proejct [obj]quota and [obj]used values for the $DIR's project ID will be shown as the total/free (avail) resource. Keep the same behavior as EXT4/XFS does. Reviewed-by: Andreas Dilger <andreas.dilger@intel.com> Reviewed-by Ned Bass <bass6@llnl.gov> Reviewed-by: Matthew Ahrens <mahrens@delphix.com> Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov> Signed-off-by: Fan Yong <fan.yong@intel.com> TEST_ZIMPORT_POOLS="zol-0.6.1 zol-0.6.2 master" Change-Id: Ib4f0544602e03fb61fd46a849d7ba51a6005693c Closes #6290
2018-02-14 01:54:54 +03:00
if (!dmu_objset_projectquota_enabled(os) &&
dmu_objset_userobjspace_present(os))
return (SET_ERROR(ENOTSUP));
dmu_objset_ds(os)->ds_feature_activation[
SPA_FEATURE_USEROBJ_ACCOUNTING] = (void *)B_TRUE;
Project Quota on ZFS Project quota is a new ZFS system space/object usage accounting and enforcement mechanism. Similar as user/group quota, project quota is another dimension of system quota. It bases on the new object attribute - project ID. Project ID is a numerical value to indicate to which project an object belongs. An object only can belong to one project though you (the object owner or privileged user) can change the object project ID via 'chattr -p' or 'zfs project [-s] -p' explicitly. The object also can inherit the project ID from its parent when created if the parent has the project inherit flag (that can be set via 'chattr +P' or 'zfs project -s [-p]'). By accounting the spaces/objects belong to the same project, we can know how many spaces/objects used by the project. And if we set the upper limit then we can control the spaces/objects that are consumed by such project. It is useful when multiple groups and users cooperate for the same project, or a user/group needs to participate in multiple projects. Support the following commands and functionalities: zfs set projectquota@project zfs set projectobjquota@project zfs get projectquota@project zfs get projectobjquota@project zfs get projectused@project zfs get projectobjused@project zfs projectspace zfs allow projectquota zfs allow projectobjquota zfs allow projectused zfs allow projectobjused zfs unallow projectquota zfs unallow projectobjquota zfs unallow projectused zfs unallow projectobjused chattr +/-P chattr -p project_id lsattr -p This patch also supports tree quota based on the project quota via "zfs project" commands set as following: zfs project [-d|-r] <file|directory ...> zfs project -C [-k] [-r] <file|directory ...> zfs project -c [-0] [-d|-r] [-p id] <file|directory ...> zfs project [-p id] [-r] [-s] <file|directory ...> For "df [-i] $DIR" command, if we set INHERIT (project ID) flag on the $DIR, then the proejct [obj]quota and [obj]used values for the $DIR's project ID will be shown as the total/free (avail) resource. Keep the same behavior as EXT4/XFS does. Reviewed-by: Andreas Dilger <andreas.dilger@intel.com> Reviewed-by Ned Bass <bass6@llnl.gov> Reviewed-by: Matthew Ahrens <mahrens@delphix.com> Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov> Signed-off-by: Fan Yong <fan.yong@intel.com> TEST_ZIMPORT_POOLS="zol-0.6.1 zol-0.6.2 master" Change-Id: Ib4f0544602e03fb61fd46a849d7ba51a6005693c Closes #6290
2018-02-14 01:54:54 +03:00
if (dmu_objset_projectquota_enabled(os))
dmu_objset_ds(os)->ds_feature_activation[
SPA_FEATURE_PROJECT_QUOTA] = (void *)B_TRUE;
err = dmu_objset_space_upgrade(os);
if (err)
return (err);
os->os_flags |= OBJSET_FLAG_USEROBJACCOUNTING_COMPLETE;
Project Quota on ZFS Project quota is a new ZFS system space/object usage accounting and enforcement mechanism. Similar as user/group quota, project quota is another dimension of system quota. It bases on the new object attribute - project ID. Project ID is a numerical value to indicate to which project an object belongs. An object only can belong to one project though you (the object owner or privileged user) can change the object project ID via 'chattr -p' or 'zfs project [-s] -p' explicitly. The object also can inherit the project ID from its parent when created if the parent has the project inherit flag (that can be set via 'chattr +P' or 'zfs project -s [-p]'). By accounting the spaces/objects belong to the same project, we can know how many spaces/objects used by the project. And if we set the upper limit then we can control the spaces/objects that are consumed by such project. It is useful when multiple groups and users cooperate for the same project, or a user/group needs to participate in multiple projects. Support the following commands and functionalities: zfs set projectquota@project zfs set projectobjquota@project zfs get projectquota@project zfs get projectobjquota@project zfs get projectused@project zfs get projectobjused@project zfs projectspace zfs allow projectquota zfs allow projectobjquota zfs allow projectused zfs allow projectobjused zfs unallow projectquota zfs unallow projectobjquota zfs unallow projectused zfs unallow projectobjused chattr +/-P chattr -p project_id lsattr -p This patch also supports tree quota based on the project quota via "zfs project" commands set as following: zfs project [-d|-r] <file|directory ...> zfs project -C [-k] [-r] <file|directory ...> zfs project -c [-0] [-d|-r] [-p id] <file|directory ...> zfs project [-p id] [-r] [-s] <file|directory ...> For "df [-i] $DIR" command, if we set INHERIT (project ID) flag on the $DIR, then the proejct [obj]quota and [obj]used values for the $DIR's project ID will be shown as the total/free (avail) resource. Keep the same behavior as EXT4/XFS does. Reviewed-by: Andreas Dilger <andreas.dilger@intel.com> Reviewed-by Ned Bass <bass6@llnl.gov> Reviewed-by: Matthew Ahrens <mahrens@delphix.com> Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov> Signed-off-by: Fan Yong <fan.yong@intel.com> TEST_ZIMPORT_POOLS="zol-0.6.1 zol-0.6.2 master" Change-Id: Ib4f0544602e03fb61fd46a849d7ba51a6005693c Closes #6290
2018-02-14 01:54:54 +03:00
if (dmu_objset_projectquota_enabled(os))
os->os_flags |= OBJSET_FLAG_PROJECTQUOTA_COMPLETE;
txg_wait_synced(dmu_objset_pool(os), 0);
return (0);
}
void
Project Quota on ZFS Project quota is a new ZFS system space/object usage accounting and enforcement mechanism. Similar as user/group quota, project quota is another dimension of system quota. It bases on the new object attribute - project ID. Project ID is a numerical value to indicate to which project an object belongs. An object only can belong to one project though you (the object owner or privileged user) can change the object project ID via 'chattr -p' or 'zfs project [-s] -p' explicitly. The object also can inherit the project ID from its parent when created if the parent has the project inherit flag (that can be set via 'chattr +P' or 'zfs project -s [-p]'). By accounting the spaces/objects belong to the same project, we can know how many spaces/objects used by the project. And if we set the upper limit then we can control the spaces/objects that are consumed by such project. It is useful when multiple groups and users cooperate for the same project, or a user/group needs to participate in multiple projects. Support the following commands and functionalities: zfs set projectquota@project zfs set projectobjquota@project zfs get projectquota@project zfs get projectobjquota@project zfs get projectused@project zfs get projectobjused@project zfs projectspace zfs allow projectquota zfs allow projectobjquota zfs allow projectused zfs allow projectobjused zfs unallow projectquota zfs unallow projectobjquota zfs unallow projectused zfs unallow projectobjused chattr +/-P chattr -p project_id lsattr -p This patch also supports tree quota based on the project quota via "zfs project" commands set as following: zfs project [-d|-r] <file|directory ...> zfs project -C [-k] [-r] <file|directory ...> zfs project -c [-0] [-d|-r] [-p id] <file|directory ...> zfs project [-p id] [-r] [-s] <file|directory ...> For "df [-i] $DIR" command, if we set INHERIT (project ID) flag on the $DIR, then the proejct [obj]quota and [obj]used values for the $DIR's project ID will be shown as the total/free (avail) resource. Keep the same behavior as EXT4/XFS does. Reviewed-by: Andreas Dilger <andreas.dilger@intel.com> Reviewed-by Ned Bass <bass6@llnl.gov> Reviewed-by: Matthew Ahrens <mahrens@delphix.com> Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov> Signed-off-by: Fan Yong <fan.yong@intel.com> TEST_ZIMPORT_POOLS="zol-0.6.1 zol-0.6.2 master" Change-Id: Ib4f0544602e03fb61fd46a849d7ba51a6005693c Closes #6290
2018-02-14 01:54:54 +03:00
dmu_objset_id_quota_upgrade(objset_t *os)
{
Project Quota on ZFS Project quota is a new ZFS system space/object usage accounting and enforcement mechanism. Similar as user/group quota, project quota is another dimension of system quota. It bases on the new object attribute - project ID. Project ID is a numerical value to indicate to which project an object belongs. An object only can belong to one project though you (the object owner or privileged user) can change the object project ID via 'chattr -p' or 'zfs project [-s] -p' explicitly. The object also can inherit the project ID from its parent when created if the parent has the project inherit flag (that can be set via 'chattr +P' or 'zfs project -s [-p]'). By accounting the spaces/objects belong to the same project, we can know how many spaces/objects used by the project. And if we set the upper limit then we can control the spaces/objects that are consumed by such project. It is useful when multiple groups and users cooperate for the same project, or a user/group needs to participate in multiple projects. Support the following commands and functionalities: zfs set projectquota@project zfs set projectobjquota@project zfs get projectquota@project zfs get projectobjquota@project zfs get projectused@project zfs get projectobjused@project zfs projectspace zfs allow projectquota zfs allow projectobjquota zfs allow projectused zfs allow projectobjused zfs unallow projectquota zfs unallow projectobjquota zfs unallow projectused zfs unallow projectobjused chattr +/-P chattr -p project_id lsattr -p This patch also supports tree quota based on the project quota via "zfs project" commands set as following: zfs project [-d|-r] <file|directory ...> zfs project -C [-k] [-r] <file|directory ...> zfs project -c [-0] [-d|-r] [-p id] <file|directory ...> zfs project [-p id] [-r] [-s] <file|directory ...> For "df [-i] $DIR" command, if we set INHERIT (project ID) flag on the $DIR, then the proejct [obj]quota and [obj]used values for the $DIR's project ID will be shown as the total/free (avail) resource. Keep the same behavior as EXT4/XFS does. Reviewed-by: Andreas Dilger <andreas.dilger@intel.com> Reviewed-by Ned Bass <bass6@llnl.gov> Reviewed-by: Matthew Ahrens <mahrens@delphix.com> Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov> Signed-off-by: Fan Yong <fan.yong@intel.com> TEST_ZIMPORT_POOLS="zol-0.6.1 zol-0.6.2 master" Change-Id: Ib4f0544602e03fb61fd46a849d7ba51a6005693c Closes #6290
2018-02-14 01:54:54 +03:00
dmu_objset_upgrade(os, dmu_objset_id_quota_upgrade_cb);
}
boolean_t
dmu_objset_userobjspace_upgradable(objset_t *os)
{
return (dmu_objset_type(os) == DMU_OST_ZFS &&
!dmu_objset_is_snapshot(os) &&
dmu_objset_userobjused_enabled(os) &&
!dmu_objset_userobjspace_present(os) &&
spa_writeable(dmu_objset_spa(os)));
}
Project Quota on ZFS Project quota is a new ZFS system space/object usage accounting and enforcement mechanism. Similar as user/group quota, project quota is another dimension of system quota. It bases on the new object attribute - project ID. Project ID is a numerical value to indicate to which project an object belongs. An object only can belong to one project though you (the object owner or privileged user) can change the object project ID via 'chattr -p' or 'zfs project [-s] -p' explicitly. The object also can inherit the project ID from its parent when created if the parent has the project inherit flag (that can be set via 'chattr +P' or 'zfs project -s [-p]'). By accounting the spaces/objects belong to the same project, we can know how many spaces/objects used by the project. And if we set the upper limit then we can control the spaces/objects that are consumed by such project. It is useful when multiple groups and users cooperate for the same project, or a user/group needs to participate in multiple projects. Support the following commands and functionalities: zfs set projectquota@project zfs set projectobjquota@project zfs get projectquota@project zfs get projectobjquota@project zfs get projectused@project zfs get projectobjused@project zfs projectspace zfs allow projectquota zfs allow projectobjquota zfs allow projectused zfs allow projectobjused zfs unallow projectquota zfs unallow projectobjquota zfs unallow projectused zfs unallow projectobjused chattr +/-P chattr -p project_id lsattr -p This patch also supports tree quota based on the project quota via "zfs project" commands set as following: zfs project [-d|-r] <file|directory ...> zfs project -C [-k] [-r] <file|directory ...> zfs project -c [-0] [-d|-r] [-p id] <file|directory ...> zfs project [-p id] [-r] [-s] <file|directory ...> For "df [-i] $DIR" command, if we set INHERIT (project ID) flag on the $DIR, then the proejct [obj]quota and [obj]used values for the $DIR's project ID will be shown as the total/free (avail) resource. Keep the same behavior as EXT4/XFS does. Reviewed-by: Andreas Dilger <andreas.dilger@intel.com> Reviewed-by Ned Bass <bass6@llnl.gov> Reviewed-by: Matthew Ahrens <mahrens@delphix.com> Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov> Signed-off-by: Fan Yong <fan.yong@intel.com> TEST_ZIMPORT_POOLS="zol-0.6.1 zol-0.6.2 master" Change-Id: Ib4f0544602e03fb61fd46a849d7ba51a6005693c Closes #6290
2018-02-14 01:54:54 +03:00
boolean_t
dmu_objset_projectquota_upgradable(objset_t *os)
{
return (dmu_objset_type(os) == DMU_OST_ZFS &&
!dmu_objset_is_snapshot(os) &&
dmu_objset_projectquota_enabled(os) &&
!dmu_objset_projectquota_present(os) &&
spa_writeable(dmu_objset_spa(os)));
Project Quota on ZFS Project quota is a new ZFS system space/object usage accounting and enforcement mechanism. Similar as user/group quota, project quota is another dimension of system quota. It bases on the new object attribute - project ID. Project ID is a numerical value to indicate to which project an object belongs. An object only can belong to one project though you (the object owner or privileged user) can change the object project ID via 'chattr -p' or 'zfs project [-s] -p' explicitly. The object also can inherit the project ID from its parent when created if the parent has the project inherit flag (that can be set via 'chattr +P' or 'zfs project -s [-p]'). By accounting the spaces/objects belong to the same project, we can know how many spaces/objects used by the project. And if we set the upper limit then we can control the spaces/objects that are consumed by such project. It is useful when multiple groups and users cooperate for the same project, or a user/group needs to participate in multiple projects. Support the following commands and functionalities: zfs set projectquota@project zfs set projectobjquota@project zfs get projectquota@project zfs get projectobjquota@project zfs get projectused@project zfs get projectobjused@project zfs projectspace zfs allow projectquota zfs allow projectobjquota zfs allow projectused zfs allow projectobjused zfs unallow projectquota zfs unallow projectobjquota zfs unallow projectused zfs unallow projectobjused chattr +/-P chattr -p project_id lsattr -p This patch also supports tree quota based on the project quota via "zfs project" commands set as following: zfs project [-d|-r] <file|directory ...> zfs project -C [-k] [-r] <file|directory ...> zfs project -c [-0] [-d|-r] [-p id] <file|directory ...> zfs project [-p id] [-r] [-s] <file|directory ...> For "df [-i] $DIR" command, if we set INHERIT (project ID) flag on the $DIR, then the proejct [obj]quota and [obj]used values for the $DIR's project ID will be shown as the total/free (avail) resource. Keep the same behavior as EXT4/XFS does. Reviewed-by: Andreas Dilger <andreas.dilger@intel.com> Reviewed-by Ned Bass <bass6@llnl.gov> Reviewed-by: Matthew Ahrens <mahrens@delphix.com> Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov> Signed-off-by: Fan Yong <fan.yong@intel.com> TEST_ZIMPORT_POOLS="zol-0.6.1 zol-0.6.2 master" Change-Id: Ib4f0544602e03fb61fd46a849d7ba51a6005693c Closes #6290
2018-02-14 01:54:54 +03:00
}
2008-11-20 23:01:55 +03:00
void
dmu_objset_space(objset_t *os, uint64_t *refdbytesp, uint64_t *availbytesp,
uint64_t *usedobjsp, uint64_t *availobjsp)
{
dsl_dataset_space(os->os_dsl_dataset, refdbytesp, availbytesp,
2008-11-20 23:01:55 +03:00
usedobjsp, availobjsp);
}
uint64_t
dmu_objset_fsid_guid(objset_t *os)
{
return (dsl_dataset_fsid_guid(os->os_dsl_dataset));
2008-11-20 23:01:55 +03:00
}
void
dmu_objset_fast_stat(objset_t *os, dmu_objset_stats_t *stat)
{
stat->dds_type = os->os_phys->os_type;
if (os->os_dsl_dataset)
dsl_dataset_fast_stat(os->os_dsl_dataset, stat);
2008-11-20 23:01:55 +03:00
}
void
dmu_objset_stats(objset_t *os, nvlist_t *nv)
{
ASSERT(os->os_dsl_dataset ||
os->os_phys->os_type == DMU_OST_META);
2008-11-20 23:01:55 +03:00
if (os->os_dsl_dataset != NULL)
dsl_dataset_stats(os->os_dsl_dataset, nv);
2008-11-20 23:01:55 +03:00
dsl_prop_nvlist_add_uint64(nv, ZFS_PROP_TYPE,
os->os_phys->os_type);
2009-07-03 02:44:48 +04:00
dsl_prop_nvlist_add_uint64(nv, ZFS_PROP_USERACCOUNTING,
dmu_objset_userspace_present(os));
2008-11-20 23:01:55 +03:00
}
int
dmu_objset_is_snapshot(objset_t *os)
{
if (os->os_dsl_dataset != NULL)
return (os->os_dsl_dataset->ds_is_snapshot);
2008-11-20 23:01:55 +03:00
else
return (B_FALSE);
}
int
dmu_snapshot_realname(objset_t *os, char *name, char *real, int maxlen,
boolean_t *conflict)
{
dsl_dataset_t *ds = os->os_dsl_dataset;
2008-11-20 23:01:55 +03:00
uint64_t ignored;
if (dsl_dataset_phys(ds)->ds_snapnames_zapobj == 0)
return (SET_ERROR(ENOENT));
2008-11-20 23:01:55 +03:00
return (zap_lookup_norm(ds->ds_dir->dd_pool->dp_meta_objset,
dsl_dataset_phys(ds)->ds_snapnames_zapobj, name, 8, 1, &ignored,
MT_NORMALIZE, real, maxlen, conflict));
2008-11-20 23:01:55 +03:00
}
int
dmu_snapshot_list_next(objset_t *os, int namelen, char *name,
uint64_t *idp, uint64_t *offp, boolean_t *case_conflict)
{
dsl_dataset_t *ds = os->os_dsl_dataset;
2008-11-20 23:01:55 +03:00
zap_cursor_t cursor;
zap_attribute_t attr;
ASSERT(dsl_pool_config_held(dmu_objset_pool(os)));
if (dsl_dataset_phys(ds)->ds_snapnames_zapobj == 0)
return (SET_ERROR(ENOENT));
2008-11-20 23:01:55 +03:00
zap_cursor_init_serialized(&cursor,
ds->ds_dir->dd_pool->dp_meta_objset,
dsl_dataset_phys(ds)->ds_snapnames_zapobj, *offp);
2008-11-20 23:01:55 +03:00
if (zap_cursor_retrieve(&cursor, &attr) != 0) {
zap_cursor_fini(&cursor);
return (SET_ERROR(ENOENT));
2008-11-20 23:01:55 +03:00
}
if (strlen(attr.za_name) + 1 > namelen) {
zap_cursor_fini(&cursor);
return (SET_ERROR(ENAMETOOLONG));
2008-11-20 23:01:55 +03:00
}
(void) strlcpy(name, attr.za_name, namelen);
2008-11-20 23:01:55 +03:00
if (idp)
*idp = attr.za_first_integer;
if (case_conflict)
*case_conflict = attr.za_normalization_conflict;
zap_cursor_advance(&cursor);
*offp = zap_cursor_serialize(&cursor);
zap_cursor_fini(&cursor);
return (0);
}
int
dmu_snapshot_lookup(objset_t *os, const char *name, uint64_t *value)
{
return (dsl_dataset_snap_lookup(os->os_dsl_dataset, name, value));
}
2008-11-20 23:01:55 +03:00
int
dmu_dir_list_next(objset_t *os, int namelen, char *name,
uint64_t *idp, uint64_t *offp)
{
dsl_dir_t *dd = os->os_dsl_dataset->ds_dir;
2008-11-20 23:01:55 +03:00
zap_cursor_t cursor;
zap_attribute_t attr;
/* there is no next dir on a snapshot! */
if (os->os_dsl_dataset->ds_object !=
dsl_dir_phys(dd)->dd_head_dataset_obj)
return (SET_ERROR(ENOENT));
2008-11-20 23:01:55 +03:00
zap_cursor_init_serialized(&cursor,
dd->dd_pool->dp_meta_objset,
dsl_dir_phys(dd)->dd_child_dir_zapobj, *offp);
2008-11-20 23:01:55 +03:00
if (zap_cursor_retrieve(&cursor, &attr) != 0) {
zap_cursor_fini(&cursor);
return (SET_ERROR(ENOENT));
2008-11-20 23:01:55 +03:00
}
if (strlen(attr.za_name) + 1 > namelen) {
zap_cursor_fini(&cursor);
return (SET_ERROR(ENAMETOOLONG));
2008-11-20 23:01:55 +03:00
}
(void) strlcpy(name, attr.za_name, namelen);
2008-11-20 23:01:55 +03:00
if (idp)
*idp = attr.za_first_integer;
zap_cursor_advance(&cursor);
*offp = zap_cursor_serialize(&cursor);
zap_cursor_fini(&cursor);
return (0);
}
typedef struct dmu_objset_find_ctx {
taskq_t *dc_tq;
dsl_pool_t *dc_dp;
uint64_t dc_ddobj;
2017-01-26 23:46:02 +03:00
char *dc_ddname; /* last component of ddobj's name */
int (*dc_func)(dsl_pool_t *, dsl_dataset_t *, void *);
void *dc_arg;
int dc_flags;
kmutex_t *dc_error_lock;
int *dc_error;
} dmu_objset_find_ctx_t;
static void
dmu_objset_find_dp_impl(dmu_objset_find_ctx_t *dcp)
{
dsl_pool_t *dp = dcp->dc_dp;
dsl_dir_t *dd;
dsl_dataset_t *ds;
zap_cursor_t zc;
zap_attribute_t *attr;
uint64_t thisobj;
int err = 0;
/* don't process if there already was an error */
if (*dcp->dc_error != 0)
goto out;
2017-01-26 23:46:02 +03:00
/*
* Note: passing the name (dc_ddname) here is optional, but it
* improves performance because we don't need to call
* zap_value_search() to determine the name.
*/
err = dsl_dir_hold_obj(dp, dcp->dc_ddobj, dcp->dc_ddname, FTAG, &dd);
if (err != 0)
goto out;
/* Don't visit hidden ($MOS & $ORIGIN) objsets. */
if (dd->dd_myname[0] == '$') {
dsl_dir_rele(dd, FTAG);
goto out;
}
thisobj = dsl_dir_phys(dd)->dd_head_dataset_obj;
attr = kmem_alloc(sizeof (zap_attribute_t), KM_SLEEP);
/*
* Iterate over all children.
*/
if (dcp->dc_flags & DS_FIND_CHILDREN) {
for (zap_cursor_init(&zc, dp->dp_meta_objset,
dsl_dir_phys(dd)->dd_child_dir_zapobj);
zap_cursor_retrieve(&zc, attr) == 0;
(void) zap_cursor_advance(&zc)) {
ASSERT3U(attr->za_integer_length, ==,
sizeof (uint64_t));
ASSERT3U(attr->za_num_integers, ==, 1);
dmu_objset_find_ctx_t *child_dcp =
2017-01-26 23:46:02 +03:00
kmem_alloc(sizeof (*child_dcp), KM_SLEEP);
*child_dcp = *dcp;
child_dcp->dc_ddobj = attr->za_first_integer;
2017-01-26 23:46:02 +03:00
child_dcp->dc_ddname = spa_strdup(attr->za_name);
if (dcp->dc_tq != NULL)
(void) taskq_dispatch(dcp->dc_tq,
dmu_objset_find_dp_cb, child_dcp, TQ_SLEEP);
else
dmu_objset_find_dp_impl(child_dcp);
}
zap_cursor_fini(&zc);
}
/*
* Iterate over all snapshots.
*/
if (dcp->dc_flags & DS_FIND_SNAPSHOTS) {
dsl_dataset_t *ds;
err = dsl_dataset_hold_obj(dp, thisobj, FTAG, &ds);
if (err == 0) {
uint64_t snapobj;
snapobj = dsl_dataset_phys(ds)->ds_snapnames_zapobj;
dsl_dataset_rele(ds, FTAG);
for (zap_cursor_init(&zc, dp->dp_meta_objset, snapobj);
zap_cursor_retrieve(&zc, attr) == 0;
(void) zap_cursor_advance(&zc)) {
ASSERT3U(attr->za_integer_length, ==,
sizeof (uint64_t));
ASSERT3U(attr->za_num_integers, ==, 1);
err = dsl_dataset_hold_obj(dp,
attr->za_first_integer, FTAG, &ds);
if (err != 0)
break;
err = dcp->dc_func(dp, ds, dcp->dc_arg);
dsl_dataset_rele(ds, FTAG);
if (err != 0)
break;
}
zap_cursor_fini(&zc);
}
}
kmem_free(attr, sizeof (zap_attribute_t));
2017-01-26 23:46:02 +03:00
if (err != 0) {
dsl_dir_rele(dd, FTAG);
goto out;
2017-01-26 23:46:02 +03:00
}
/*
* Apply to self.
*/
err = dsl_dataset_hold_obj(dp, thisobj, FTAG, &ds);
2017-01-26 23:46:02 +03:00
/*
* Note: we hold the dir while calling dsl_dataset_hold_obj() so
* that the dir will remain cached, and we won't have to re-instantiate
* it (which could be expensive due to finding its name via
* zap_value_search()).
*/
dsl_dir_rele(dd, FTAG);
if (err != 0)
goto out;
err = dcp->dc_func(dp, ds, dcp->dc_arg);
dsl_dataset_rele(ds, FTAG);
out:
if (err != 0) {
mutex_enter(dcp->dc_error_lock);
/* only keep first error */
if (*dcp->dc_error == 0)
*dcp->dc_error = err;
mutex_exit(dcp->dc_error_lock);
}
2017-01-26 23:46:02 +03:00
if (dcp->dc_ddname != NULL)
spa_strfree(dcp->dc_ddname);
kmem_free(dcp, sizeof (*dcp));
}
static void
dmu_objset_find_dp_cb(void *arg)
{
dmu_objset_find_ctx_t *dcp = arg;
dsl_pool_t *dp = dcp->dc_dp;
/*
* We need to get a pool_config_lock here, as there are several
* assert(pool_config_held) down the stack. Getting a lock via
* dsl_pool_config_enter is risky, as it might be stalled by a
* pending writer. This would deadlock, as the write lock can
* only be granted when our parent thread gives up the lock.
* The _prio interface gives us priority over a pending writer.
*/
dsl_pool_config_enter_prio(dp, FTAG);
dmu_objset_find_dp_impl(dcp);
dsl_pool_config_exit(dp, FTAG);
}
/*
* Find objsets under and including ddobj, call func(ds) on each.
* The order for the enumeration is completely undefined.
* func is called with dsl_pool_config held.
*/
int
dmu_objset_find_dp(dsl_pool_t *dp, uint64_t ddobj,
int func(dsl_pool_t *, dsl_dataset_t *, void *), void *arg, int flags)
{
int error = 0;
taskq_t *tq = NULL;
int ntasks;
dmu_objset_find_ctx_t *dcp;
kmutex_t err_lock;
mutex_init(&err_lock, NULL, MUTEX_DEFAULT, NULL);
dcp = kmem_alloc(sizeof (*dcp), KM_SLEEP);
dcp->dc_tq = NULL;
dcp->dc_dp = dp;
dcp->dc_ddobj = ddobj;
2017-01-26 23:46:02 +03:00
dcp->dc_ddname = NULL;
dcp->dc_func = func;
dcp->dc_arg = arg;
dcp->dc_flags = flags;
dcp->dc_error_lock = &err_lock;
dcp->dc_error = &error;
if ((flags & DS_FIND_SERIALIZE) || dsl_pool_config_held_writer(dp)) {
/*
* In case a write lock is held we can't make use of
* parallelism, as down the stack of the worker threads
* the lock is asserted via dsl_pool_config_held.
* In case of a read lock this is solved by getting a read
* lock in each worker thread, which isn't possible in case
* of a writer lock. So we fall back to the synchronous path
* here.
* In the future it might be possible to get some magic into
* dsl_pool_config_held in a way that it returns true for
* the worker threads so that a single lock held from this
* thread suffices. For now, stay single threaded.
*/
dmu_objset_find_dp_impl(dcp);
mutex_destroy(&err_lock);
return (error);
}
ntasks = dmu_find_threads;
if (ntasks == 0)
ntasks = vdev_count_leaves(dp->dp_spa) * 4;
Align thread priority with Linux defaults Under Linux filesystem threads responsible for handling I/O are normally created with the maximum priority. Non-I/O filesystem processes run with the default priority. ZFS should adopt the same priority scheme under Linux to maintain good performance and so that it will complete fairly when other Linux filesystems are active. The priorities have been updated to the following: $ ps -eLo rtprio,cls,pid,pri,nice,cmd | egrep 'z_|spl_|zvol|arc|dbu|meta' - TS 10743 19 -20 [spl_kmem_cache] - TS 10744 19 -20 [spl_system_task] - TS 10745 19 -20 [spl_dynamic_tas] - TS 10764 19 0 [dbu_evict] - TS 10765 19 0 [arc_prune] - TS 10766 19 0 [arc_reclaim] - TS 10767 19 0 [arc_user_evicts] - TS 10768 19 0 [l2arc_feed] - TS 10769 39 0 [z_unmount] - TS 10770 39 -20 [zvol] - TS 11011 39 -20 [z_null_iss] - TS 11012 39 -20 [z_null_int] - TS 11013 39 -20 [z_rd_iss] - TS 11014 39 -20 [z_rd_int_0] - TS 11022 38 -19 [z_wr_iss] - TS 11023 39 -20 [z_wr_iss_h] - TS 11024 39 -20 [z_wr_int_0] - TS 11032 39 -20 [z_wr_int_h] - TS 11033 39 -20 [z_fr_iss_0] - TS 11041 39 -20 [z_fr_int] - TS 11042 39 -20 [z_cl_iss] - TS 11043 39 -20 [z_cl_int] - TS 11044 39 -20 [z_ioctl_iss] - TS 11045 39 -20 [z_ioctl_int] - TS 11046 39 -20 [metaslab_group_] - TS 11050 19 0 [z_iput] - TS 11121 38 -19 [z_wr_iss] Note that under Linux the meaning of a processes priority is inverted with respect to illumos. High values on Linux indicate a _low_ priority while high value on illumos indicate a _high_ priority. In order to preserve the logical meaning of the minclsyspri and maxclsyspri macros when they are used by the illumos wrapper functions their values have been inverted. This way when changes are merged from upstream illumos we won't need to remember to invert the macro. It could also lead to confusion. This patch depends on https://github.com/zfsonlinux/spl/pull/466. Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov> Signed-off-by: Ned Bass <bass6@llnl.gov> Closes #3607
2015-07-24 20:08:31 +03:00
tq = taskq_create("dmu_objset_find", ntasks, maxclsyspri, ntasks,
INT_MAX, 0);
if (tq == NULL) {
kmem_free(dcp, sizeof (*dcp));
mutex_destroy(&err_lock);
return (SET_ERROR(ENOMEM));
}
dcp->dc_tq = tq;
/* dcp will be freed by task */
(void) taskq_dispatch(tq, dmu_objset_find_dp_cb, dcp, TQ_SLEEP);
/*
* PORTING: this code relies on the property of taskq_wait to wait
* until no more tasks are queued and no more tasks are active. As
* we always queue new tasks from within other tasks, task_wait
* reliably waits for the full recursion to finish, even though we
* enqueue new tasks after taskq_wait has been called.
* On platforms other than illumos, taskq_wait may not have this
* property.
*/
taskq_wait(tq);
taskq_destroy(tq);
mutex_destroy(&err_lock);
return (error);
}
/*
* Find all objsets under name, and for each, call 'func(child_name, arg)'.
* The dp_config_rwlock must not be held when this is called, and it
* will not be held when the callback is called.
* Therefore this function should only be used when the pool is not changing
* (e.g. in syncing context), or the callback can deal with the possible races.
*/
static int
dmu_objset_find_impl(spa_t *spa, const char *name,
int func(const char *, void *), void *arg, int flags)
2008-11-20 23:01:55 +03:00
{
dsl_dir_t *dd;
dsl_pool_t *dp = spa_get_dsl(spa);
dsl_dataset_t *ds;
2008-11-20 23:01:55 +03:00
zap_cursor_t zc;
zap_attribute_t *attr;
char *child;
uint64_t thisobj;
int err;
2008-11-20 23:01:55 +03:00
dsl_pool_config_enter(dp, FTAG);
err = dsl_dir_hold(dp, name, FTAG, &dd, NULL);
if (err != 0) {
dsl_pool_config_exit(dp, FTAG);
2008-11-20 23:01:55 +03:00
return (err);
}
2008-11-20 23:01:55 +03:00
/* Don't visit hidden ($MOS & $ORIGIN) objsets. */
if (dd->dd_myname[0] == '$') {
dsl_dir_rele(dd, FTAG);
dsl_pool_config_exit(dp, FTAG);
return (0);
}
thisobj = dsl_dir_phys(dd)->dd_head_dataset_obj;
attr = kmem_alloc(sizeof (zap_attribute_t), KM_SLEEP);
2008-11-20 23:01:55 +03:00
/*
* Iterate over all children.
*/
if (flags & DS_FIND_CHILDREN) {
for (zap_cursor_init(&zc, dp->dp_meta_objset,
dsl_dir_phys(dd)->dd_child_dir_zapobj);
2008-11-20 23:01:55 +03:00
zap_cursor_retrieve(&zc, attr) == 0;
(void) zap_cursor_advance(&zc)) {
ASSERT3U(attr->za_integer_length, ==,
sizeof (uint64_t));
ASSERT3U(attr->za_num_integers, ==, 1);
2008-11-20 23:01:55 +03:00
child = kmem_asprintf("%s/%s", name, attr->za_name);
dsl_pool_config_exit(dp, FTAG);
err = dmu_objset_find_impl(spa, child,
func, arg, flags);
dsl_pool_config_enter(dp, FTAG);
kmem_strfree(child);
if (err != 0)
2008-11-20 23:01:55 +03:00
break;
}
zap_cursor_fini(&zc);
if (err != 0) {
dsl_dir_rele(dd, FTAG);
dsl_pool_config_exit(dp, FTAG);
2008-11-20 23:01:55 +03:00
kmem_free(attr, sizeof (zap_attribute_t));
return (err);
}
}
/*
* Iterate over all snapshots.
*/
if (flags & DS_FIND_SNAPSHOTS) {
err = dsl_dataset_hold_obj(dp, thisobj, FTAG, &ds);
if (err == 0) {
uint64_t snapobj;
snapobj = dsl_dataset_phys(ds)->ds_snapnames_zapobj;
dsl_dataset_rele(ds, FTAG);
for (zap_cursor_init(&zc, dp->dp_meta_objset, snapobj);
zap_cursor_retrieve(&zc, attr) == 0;
(void) zap_cursor_advance(&zc)) {
ASSERT3U(attr->za_integer_length, ==,
sizeof (uint64_t));
ASSERT3U(attr->za_num_integers, ==, 1);
child = kmem_asprintf("%s@%s",
name, attr->za_name);
dsl_pool_config_exit(dp, FTAG);
err = func(child, arg);
dsl_pool_config_enter(dp, FTAG);
kmem_strfree(child);
if (err != 0)
break;
}
zap_cursor_fini(&zc);
2008-11-20 23:01:55 +03:00
}
}
dsl_dir_rele(dd, FTAG);
2008-11-20 23:01:55 +03:00
kmem_free(attr, sizeof (zap_attribute_t));
dsl_pool_config_exit(dp, FTAG);
2008-11-20 23:01:55 +03:00
if (err != 0)
2008-11-20 23:01:55 +03:00
return (err);
/* Apply to self. */
return (func(name, arg));
2008-11-20 23:01:55 +03:00
}
/*
* See comment above dmu_objset_find_impl().
*/
2009-02-18 23:51:31 +03:00
int
dmu_objset_find(const char *name, int func(const char *, void *), void *arg,
int flags)
2009-02-18 23:51:31 +03:00
{
spa_t *spa;
int error;
2009-02-18 23:51:31 +03:00
error = spa_open(name, &spa, FTAG);
if (error != 0)
return (error);
error = dmu_objset_find_impl(spa, name, func, arg, flags);
spa_close(spa, FTAG);
return (error);
2009-02-18 23:51:31 +03:00
}
Encryption Stability and On-Disk Format Fixes The on-disk format for encrypted datasets protects not only the encrypted and authenticated blocks themselves, but also the order and interpretation of these blocks. In order to make this work while maintaining the ability to do raw sends, the indirect bps maintain a secure checksum of all the MACs in the block below it along with a few other fields that determine how the data is interpreted. Unfortunately, the current on-disk format erroneously includes some fields which are not portable and thus cannot support raw sends. It is not possible to easily work around this issue due to a separate and much smaller bug which causes indirect blocks for encrypted dnodes to not be compressed, which conflicts with the previous bug. In addition, the current code generates incompatible on-disk formats on big endian and little endian systems due to an issue with how block pointers are authenticated. Finally, raw send streams do not currently include dn_maxblkid when sending both the metadnode and normal dnodes which are needed in order to ensure that we are correctly maintaining the portable objset MAC. This patch zero's out the offending fields when computing the bp MAC and ensures that these MACs are always calculated in little endian order (regardless of the host system's byte order). This patch also registers an errata for the old on-disk format, which we detect by adding a "version" field to newly created DSL Crypto Keys. We allow datasets without a version (version 0) to only be mounted for read so that they can easily be migrated. We also now include dn_maxblkid in raw send streams to ensure the MAC can be maintained correctly. This patch also contains minor bug fixes and cleanups. Reviewed-by: Jorgen Lundman <lundman@lundman.net> Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov> Reviewed by: Matthew Ahrens <mahrens@delphix.com> Signed-off-by: Tom Caputi <tcaputi@datto.com> Closes #6845 Closes #6864 Closes #7052
2017-11-08 22:12:59 +03:00
boolean_t
dmu_objset_incompatible_encryption_version(objset_t *os)
{
return (dsl_dir_incompatible_encryption_version(
os->os_dsl_dataset->ds_dir));
}
2008-11-20 23:01:55 +03:00
void
dmu_objset_set_user(objset_t *os, void *user_ptr)
{
ASSERT(MUTEX_HELD(&os->os_user_ptr_lock));
os->os_user_ptr = user_ptr;
2008-11-20 23:01:55 +03:00
}
void *
dmu_objset_get_user(objset_t *os)
{
ASSERT(MUTEX_HELD(&os->os_user_ptr_lock));
return (os->os_user_ptr);
2008-11-20 23:01:55 +03:00
}
/*
* Determine name of filesystem, given name of snapshot.
* buf must be at least ZFS_MAX_DATASET_NAME_LEN bytes
*/
int
dmu_fsname(const char *snapname, char *buf)
{
char *atp = strchr(snapname, '@');
if (atp == NULL)
return (SET_ERROR(EINVAL));
if (atp - snapname >= ZFS_MAX_DATASET_NAME_LEN)
return (SET_ERROR(ENAMETOOLONG));
(void) strlcpy(buf, snapname, atp - snapname + 1);
return (0);
}
OpenZFS 7793 - ztest fails assertion in dmu_tx_willuse_space Reviewed by: Steve Gonczi <steve.gonczi@delphix.com> Reviewed by: George Wilson <george.wilson@delphix.com> Reviewed by: Pavel Zakharov <pavel.zakharov@delphix.com> Ported-by: Brian Behlendorf <behlendorf1@llnl.gov> Background information: This assertion about tx_space_* verifies that we are not dirtying more stuff than we thought we would. We “need” to know how much we will dirty so that we can check if we should fail this transaction with ENOSPC/EDQUOT, in dmu_tx_assign(). While the transaction is open (i.e. between dmu_tx_assign() and dmu_tx_commit() — typically less than a millisecond), we call dbuf_dirty() on the exact blocks that will be modified. Once this happens, the temporary accounting in tx_space_* is unnecessary, because we know exactly what blocks are newly dirtied; we call dnode_willuse_space() to track this more exact accounting. The fundamental problem causing this bug is that dmu_tx_hold_*() relies on the current state in the DMU (e.g. dn_nlevels) to predict how much will be dirtied by this transaction, but this state can change before we actually perform the transaction (i.e. call dbuf_dirty()). This bug will be fixed by removing the assertion that the tx_space_* accounting is perfectly accurate (i.e. we never dirty more than was predicted by dmu_tx_hold_*()). By removing the requirement that this accounting be perfectly accurate, we can also vastly simplify it, e.g. removing most of the logic in dmu_tx_count_*(). The new tx space accounting will be very approximate, and may be more or less than what is actually dirtied. It will still be used to determine if this transaction will put us over quota. Transactions that are marked by dmu_tx_mark_netfree() will be excepted from this check. We won’t make an attempt to determine how much space will be freed by the transaction — this was rarely accurate enough to determine if a transaction should be permitted when we are over quota, which is why dmu_tx_mark_netfree() was introduced in 2014. We also won’t attempt to give “credit” when overwriting existing blocks, if those blocks may be freed. This allows us to remove the do_free_accounting logic in dbuf_dirty(), and associated routines. This logic attempted to predict what will be on disk when this txg syncs, to know if the overwritten block will be freed (i.e. exists, and has no snapshots). OpenZFS-issue: https://www.illumos.org/issues/7793 OpenZFS-commit: https://github.com/openzfs/openzfs/commit/3704e0a Upstream bugs: DLPX-32883a Closes #5804 Porting notes: - DNODE_SIZE replaced with DNODE_MIN_SIZE in dmu_tx_count_dnode(), Using the default dnode size would be slightly better. - DEBUG_DMU_TX wrappers and configure option removed. - Resolved _by_dnode() conflicts these changes have not yet been applied to OpenZFS.
2017-03-07 20:51:59 +03:00
/*
dmu_tx_wait() hang likely due to cv_signal() in dsl_pool_dirty_delta() Even though the bug's writeup (Github issue #9136) is very detailed, we still don't know exactly how we got to that state, thus I wasn't able to reproduce the bug. That said, we can make an educated guess combining the information on filled issue with the code. From the fact that `dp_dirty_total` was 0 (which is less than `zfs_dirty_data_max`) we know that there was one thread that set it to 0 and then signaled one of the waiters of `dp_spaceavail_cv` [see `dsl_pool_dirty_delta()` which is also the only place that `dp_dirty_total` is changed]. Thus, the only logical explaination then for the bug being hit is that the waiter that just got awaken didn't go through `dsl_pool_dirty_data()`. Given that this function is only called by `dsl_pool_dirty_space()` or `dsl_pool_undirty_space()` I can only think of two possible ways of the above scenario happening: [1] The waiter didn't call into any of the two functions - which I find highly unlikely (i.e. why wait on `dp_spaceavail_cv` to begin with?). [2] The waiter did call in one of the above function but it passed 0 as the space/delta to be dirtied (or undirtied) and then the callee returned immediately (e.g both `dsl_pool_dirty_space()` and `dsl_pool_undirty_space()` return immediately when space is 0). In any case and no matter how we got there, the easy fix would be to just broadcast to all waiters whenever `dp_dirty_total` hits 0. That said and given that we've never hit this before, it would make sense to think more on why the above situation occured. Attempting to mimic what Prakash was doing in the issue filed, I created a dataset with `sync=always` and started doing contiguous writes in a file within that dataset. I observed with DTrace that even though we update the pool's dirty data accounting when we would dirty stuff, the accounting wouldn't be decremented incrementally as we were done with the ZIOs of those writes (the reason being that `dbuf_write_physdone()` isn't be called as we go through the override code paths, and thus `dsl_pool_undirty_space()` is never called). As a result we'd have to wait until we get to `dsl_pool_sync()` where we zero out all dirty data accounting for the pool and the current TXG's metadata. In addition, as Matt noted and I later verified, the same issue would arise when using dedup. In both cases (sync & dedup) we shouldn't have to wait until `dsl_pool_sync()` zeros out the accounting data. According to the comment in that part of the code, the reasons why we do the zeroing, have nothing to do with what we observe: ```` /* * We have written all of the accounted dirty data, so our * dp_space_towrite should now be zero. However, some seldom-used * code paths do not adhere to this (e.g. dbuf_undirty(), also * rounding error in dbuf_write_physdone). * Shore up the accounting of any dirtied space now. */ dsl_pool_undirty_space(dp, dp->dp_dirty_pertxg[txg & TXG_MASK], txg); ```` Ideally what we want to do is to undirty in the accounting exactly what we dirty (I use the word ideally as we can still have rounding errors). This would make the behavior of the system more clear and predictable. Another interesting issue that I observed with DTrace was that we wouldn't update any of the pool's dirty data accounting whenever we would dirty and/or undirty MOS data. In addition, every time we would change the size of a dbuf through `dbuf_new_size()` we wouldn't update the accounted space dirtied in the appropriate dirty record, so when ZIOs are done we would undirty less that we dirtied from the pool's accounting point of view. For the first two issues observed (sync & dedup) this patch ensures that we still update the pool's accounting when we undirty data, regardless of the write being physical or not. For changes in the MOS, we first ensure to zero out the pool's dirty data accounting in `dsl_pool_sync()` after we synced the MOS. Then we can go ahead and enable the update of the pool's dirty data accounting wheneve we change MOS data. Another fix is that we now update the accounting explicitly for counting errors in `dbuf_write_done()`. Finally, `dbuf_new_size()` updates the accounted space of the appropriate dirty record correctly now. The problem is that we still don't know how the bug came up in the issue filled. That said the issues fixed seem to be very relevant, so instead of going with the broadcasting solution right away, I decided to leave this patch as is. Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov> Reviewed-by: Prakash Surya <prakash.surya@delphix.com> Signed-off-by: Serapheim Dimitropoulos <serapheim@delphix.com> External-issue: DLPX-47285 Closes #9137
2019-08-16 02:53:53 +03:00
* Call when we think we're going to write/free space in open context
* to track the amount of dirty data in the open txg, which is also the
* amount of memory that can not be evicted until this txg syncs.
*
* Note that there are two conditions where this can be called from
* syncing context:
*
* [1] When we just created the dataset, in which case we go on with
* updating any accounting of dirty data as usual.
* [2] When we are dirtying MOS data, in which case we only update the
* pool's accounting of dirty data.
OpenZFS 7793 - ztest fails assertion in dmu_tx_willuse_space Reviewed by: Steve Gonczi <steve.gonczi@delphix.com> Reviewed by: George Wilson <george.wilson@delphix.com> Reviewed by: Pavel Zakharov <pavel.zakharov@delphix.com> Ported-by: Brian Behlendorf <behlendorf1@llnl.gov> Background information: This assertion about tx_space_* verifies that we are not dirtying more stuff than we thought we would. We “need” to know how much we will dirty so that we can check if we should fail this transaction with ENOSPC/EDQUOT, in dmu_tx_assign(). While the transaction is open (i.e. between dmu_tx_assign() and dmu_tx_commit() — typically less than a millisecond), we call dbuf_dirty() on the exact blocks that will be modified. Once this happens, the temporary accounting in tx_space_* is unnecessary, because we know exactly what blocks are newly dirtied; we call dnode_willuse_space() to track this more exact accounting. The fundamental problem causing this bug is that dmu_tx_hold_*() relies on the current state in the DMU (e.g. dn_nlevels) to predict how much will be dirtied by this transaction, but this state can change before we actually perform the transaction (i.e. call dbuf_dirty()). This bug will be fixed by removing the assertion that the tx_space_* accounting is perfectly accurate (i.e. we never dirty more than was predicted by dmu_tx_hold_*()). By removing the requirement that this accounting be perfectly accurate, we can also vastly simplify it, e.g. removing most of the logic in dmu_tx_count_*(). The new tx space accounting will be very approximate, and may be more or less than what is actually dirtied. It will still be used to determine if this transaction will put us over quota. Transactions that are marked by dmu_tx_mark_netfree() will be excepted from this check. We won’t make an attempt to determine how much space will be freed by the transaction — this was rarely accurate enough to determine if a transaction should be permitted when we are over quota, which is why dmu_tx_mark_netfree() was introduced in 2014. We also won’t attempt to give “credit” when overwriting existing blocks, if those blocks may be freed. This allows us to remove the do_free_accounting logic in dbuf_dirty(), and associated routines. This logic attempted to predict what will be on disk when this txg syncs, to know if the overwritten block will be freed (i.e. exists, and has no snapshots). OpenZFS-issue: https://www.illumos.org/issues/7793 OpenZFS-commit: https://github.com/openzfs/openzfs/commit/3704e0a Upstream bugs: DLPX-32883a Closes #5804 Porting notes: - DNODE_SIZE replaced with DNODE_MIN_SIZE in dmu_tx_count_dnode(), Using the default dnode size would be slightly better. - DEBUG_DMU_TX wrappers and configure option removed. - Resolved _by_dnode() conflicts these changes have not yet been applied to OpenZFS.
2017-03-07 20:51:59 +03:00
*/
void
dmu_objset_willuse_space(objset_t *os, int64_t space, dmu_tx_t *tx)
{
dsl_dataset_t *ds = os->os_dsl_dataset;
int64_t aspace = spa_get_worst_case_asize(os->os_spa, space);
if (ds != NULL) {
dsl_dir_willuse_space(ds->ds_dir, aspace, tx);
}
dmu_tx_wait() hang likely due to cv_signal() in dsl_pool_dirty_delta() Even though the bug's writeup (Github issue #9136) is very detailed, we still don't know exactly how we got to that state, thus I wasn't able to reproduce the bug. That said, we can make an educated guess combining the information on filled issue with the code. From the fact that `dp_dirty_total` was 0 (which is less than `zfs_dirty_data_max`) we know that there was one thread that set it to 0 and then signaled one of the waiters of `dp_spaceavail_cv` [see `dsl_pool_dirty_delta()` which is also the only place that `dp_dirty_total` is changed]. Thus, the only logical explaination then for the bug being hit is that the waiter that just got awaken didn't go through `dsl_pool_dirty_data()`. Given that this function is only called by `dsl_pool_dirty_space()` or `dsl_pool_undirty_space()` I can only think of two possible ways of the above scenario happening: [1] The waiter didn't call into any of the two functions - which I find highly unlikely (i.e. why wait on `dp_spaceavail_cv` to begin with?). [2] The waiter did call in one of the above function but it passed 0 as the space/delta to be dirtied (or undirtied) and then the callee returned immediately (e.g both `dsl_pool_dirty_space()` and `dsl_pool_undirty_space()` return immediately when space is 0). In any case and no matter how we got there, the easy fix would be to just broadcast to all waiters whenever `dp_dirty_total` hits 0. That said and given that we've never hit this before, it would make sense to think more on why the above situation occured. Attempting to mimic what Prakash was doing in the issue filed, I created a dataset with `sync=always` and started doing contiguous writes in a file within that dataset. I observed with DTrace that even though we update the pool's dirty data accounting when we would dirty stuff, the accounting wouldn't be decremented incrementally as we were done with the ZIOs of those writes (the reason being that `dbuf_write_physdone()` isn't be called as we go through the override code paths, and thus `dsl_pool_undirty_space()` is never called). As a result we'd have to wait until we get to `dsl_pool_sync()` where we zero out all dirty data accounting for the pool and the current TXG's metadata. In addition, as Matt noted and I later verified, the same issue would arise when using dedup. In both cases (sync & dedup) we shouldn't have to wait until `dsl_pool_sync()` zeros out the accounting data. According to the comment in that part of the code, the reasons why we do the zeroing, have nothing to do with what we observe: ```` /* * We have written all of the accounted dirty data, so our * dp_space_towrite should now be zero. However, some seldom-used * code paths do not adhere to this (e.g. dbuf_undirty(), also * rounding error in dbuf_write_physdone). * Shore up the accounting of any dirtied space now. */ dsl_pool_undirty_space(dp, dp->dp_dirty_pertxg[txg & TXG_MASK], txg); ```` Ideally what we want to do is to undirty in the accounting exactly what we dirty (I use the word ideally as we can still have rounding errors). This would make the behavior of the system more clear and predictable. Another interesting issue that I observed with DTrace was that we wouldn't update any of the pool's dirty data accounting whenever we would dirty and/or undirty MOS data. In addition, every time we would change the size of a dbuf through `dbuf_new_size()` we wouldn't update the accounted space dirtied in the appropriate dirty record, so when ZIOs are done we would undirty less that we dirtied from the pool's accounting point of view. For the first two issues observed (sync & dedup) this patch ensures that we still update the pool's accounting when we undirty data, regardless of the write being physical or not. For changes in the MOS, we first ensure to zero out the pool's dirty data accounting in `dsl_pool_sync()` after we synced the MOS. Then we can go ahead and enable the update of the pool's dirty data accounting wheneve we change MOS data. Another fix is that we now update the accounting explicitly for counting errors in `dbuf_write_done()`. Finally, `dbuf_new_size()` updates the accounted space of the appropriate dirty record correctly now. The problem is that we still don't know how the bug came up in the issue filled. That said the issues fixed seem to be very relevant, so instead of going with the broadcasting solution right away, I decided to leave this patch as is. Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov> Reviewed-by: Prakash Surya <prakash.surya@delphix.com> Signed-off-by: Serapheim Dimitropoulos <serapheim@delphix.com> External-issue: DLPX-47285 Closes #9137
2019-08-16 02:53:53 +03:00
dsl_pool_dirty_space(dmu_tx_pool(tx), space, tx);
OpenZFS 7793 - ztest fails assertion in dmu_tx_willuse_space Reviewed by: Steve Gonczi <steve.gonczi@delphix.com> Reviewed by: George Wilson <george.wilson@delphix.com> Reviewed by: Pavel Zakharov <pavel.zakharov@delphix.com> Ported-by: Brian Behlendorf <behlendorf1@llnl.gov> Background information: This assertion about tx_space_* verifies that we are not dirtying more stuff than we thought we would. We “need” to know how much we will dirty so that we can check if we should fail this transaction with ENOSPC/EDQUOT, in dmu_tx_assign(). While the transaction is open (i.e. between dmu_tx_assign() and dmu_tx_commit() — typically less than a millisecond), we call dbuf_dirty() on the exact blocks that will be modified. Once this happens, the temporary accounting in tx_space_* is unnecessary, because we know exactly what blocks are newly dirtied; we call dnode_willuse_space() to track this more exact accounting. The fundamental problem causing this bug is that dmu_tx_hold_*() relies on the current state in the DMU (e.g. dn_nlevels) to predict how much will be dirtied by this transaction, but this state can change before we actually perform the transaction (i.e. call dbuf_dirty()). This bug will be fixed by removing the assertion that the tx_space_* accounting is perfectly accurate (i.e. we never dirty more than was predicted by dmu_tx_hold_*()). By removing the requirement that this accounting be perfectly accurate, we can also vastly simplify it, e.g. removing most of the logic in dmu_tx_count_*(). The new tx space accounting will be very approximate, and may be more or less than what is actually dirtied. It will still be used to determine if this transaction will put us over quota. Transactions that are marked by dmu_tx_mark_netfree() will be excepted from this check. We won’t make an attempt to determine how much space will be freed by the transaction — this was rarely accurate enough to determine if a transaction should be permitted when we are over quota, which is why dmu_tx_mark_netfree() was introduced in 2014. We also won’t attempt to give “credit” when overwriting existing blocks, if those blocks may be freed. This allows us to remove the do_free_accounting logic in dbuf_dirty(), and associated routines. This logic attempted to predict what will be on disk when this txg syncs, to know if the overwritten block will be freed (i.e. exists, and has no snapshots). OpenZFS-issue: https://www.illumos.org/issues/7793 OpenZFS-commit: https://github.com/openzfs/openzfs/commit/3704e0a Upstream bugs: DLPX-32883a Closes #5804 Porting notes: - DNODE_SIZE replaced with DNODE_MIN_SIZE in dmu_tx_count_dnode(), Using the default dnode size would be slightly better. - DEBUG_DMU_TX wrappers and configure option removed. - Resolved _by_dnode() conflicts these changes have not yet been applied to OpenZFS.
2017-03-07 20:51:59 +03:00
}
Update build system and packaging Minimal changes required to integrate the SPL sources in to the ZFS repository build infrastructure and packaging. Build system and packaging: * Renamed SPL_* autoconf m4 macros to ZFS_*. * Removed redundant SPL_* autoconf m4 macros. * Updated the RPM spec files to remove SPL package dependency. * The zfs package obsoletes the spl package, and the zfs-kmod package obsoletes the spl-kmod package. * The zfs-kmod-devel* packages were updated to add compatibility symlinks under /usr/src/spl-x.y.z until all dependent packages can be updated. They will be removed in a future release. * Updated copy-builtin script for in-kernel builds. * Updated DKMS package to include the spl.ko. * Updated stale AUTHORS file to include all contributors. * Updated stale COPYRIGHT and included the SPL as an exception. * Renamed README.markdown to README.md * Renamed OPENSOLARIS.LICENSE to LICENSE. * Renamed DISCLAIMER to NOTICE. Required code changes: * Removed redundant HAVE_SPL macro. * Removed _BOOT from nvpairs since it doesn't apply for Linux. * Initial header cleanup (removal of empty headers, refactoring). * Remove SPL repository clone/build from zimport.sh. * Use of DEFINE_RATELIMIT_STATE and DEFINE_SPINLOCK removed due to build issues when forcing C99 compilation. * Replaced legacy ACCESS_ONCE with READ_ONCE. * Include needed headers for `current` and `EXPORT_SYMBOL`. Reviewed-by: Tony Hutter <hutter2@llnl.gov> Reviewed-by: Olaf Faaland <faaland1@llnl.gov> Reviewed-by: Matthew Ahrens <mahrens@delphix.com> Reviewed-by: Pavel Zakharov <pavel.zakharov@delphix.com> Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov> TEST_ZIMPORT_SKIP="yes" Closes #7556
2018-02-16 04:53:18 +03:00
#if defined(_KERNEL)
EXPORT_SYMBOL(dmu_objset_zil);
EXPORT_SYMBOL(dmu_objset_pool);
EXPORT_SYMBOL(dmu_objset_ds);
EXPORT_SYMBOL(dmu_objset_type);
EXPORT_SYMBOL(dmu_objset_name);
EXPORT_SYMBOL(dmu_objset_hold);
Native Encryption for ZFS on Linux This change incorporates three major pieces: The first change is a keystore that manages wrapping and encryption keys for encrypted datasets. These commands mostly involve manipulating the new DSL Crypto Key ZAP Objects that live in the MOS. Each encrypted dataset has its own DSL Crypto Key that is protected with a user's key. This level of indirection allows users to change their keys without re-encrypting their entire datasets. The change implements the new subcommands "zfs load-key", "zfs unload-key" and "zfs change-key" which allow the user to manage their encryption keys and settings. In addition, several new flags and properties have been added to allow dataset creation and to make mounting and unmounting more convenient. The second piece of this patch provides the ability to encrypt, decyrpt, and authenticate protected datasets. Each object set maintains a Merkel tree of Message Authentication Codes that protect the lower layers, similarly to how checksums are maintained. This part impacts the zio layer, which handles the actual encryption and generation of MACs, as well as the ARC and DMU, which need to be able to handle encrypted buffers and protected data. The last addition is the ability to do raw, encrypted sends and receives. The idea here is to send raw encrypted and compressed data and receive it exactly as is on a backup system. This means that the dataset on the receiving system is protected using the same user key that is in use on the sending side. By doing so, datasets can be efficiently backed up to an untrusted system without fear of data being compromised. Reviewed by: Matthew Ahrens <mahrens@delphix.com> Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov> Reviewed-by: Jorgen Lundman <lundman@lundman.net> Signed-off-by: Tom Caputi <tcaputi@datto.com> Closes #494 Closes #5769
2017-08-14 20:36:48 +03:00
EXPORT_SYMBOL(dmu_objset_hold_flags);
EXPORT_SYMBOL(dmu_objset_own);
EXPORT_SYMBOL(dmu_objset_rele);
Native Encryption for ZFS on Linux This change incorporates three major pieces: The first change is a keystore that manages wrapping and encryption keys for encrypted datasets. These commands mostly involve manipulating the new DSL Crypto Key ZAP Objects that live in the MOS. Each encrypted dataset has its own DSL Crypto Key that is protected with a user's key. This level of indirection allows users to change their keys without re-encrypting their entire datasets. The change implements the new subcommands "zfs load-key", "zfs unload-key" and "zfs change-key" which allow the user to manage their encryption keys and settings. In addition, several new flags and properties have been added to allow dataset creation and to make mounting and unmounting more convenient. The second piece of this patch provides the ability to encrypt, decyrpt, and authenticate protected datasets. Each object set maintains a Merkel tree of Message Authentication Codes that protect the lower layers, similarly to how checksums are maintained. This part impacts the zio layer, which handles the actual encryption and generation of MACs, as well as the ARC and DMU, which need to be able to handle encrypted buffers and protected data. The last addition is the ability to do raw, encrypted sends and receives. The idea here is to send raw encrypted and compressed data and receive it exactly as is on a backup system. This means that the dataset on the receiving system is protected using the same user key that is in use on the sending side. By doing so, datasets can be efficiently backed up to an untrusted system without fear of data being compromised. Reviewed by: Matthew Ahrens <mahrens@delphix.com> Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov> Reviewed-by: Jorgen Lundman <lundman@lundman.net> Signed-off-by: Tom Caputi <tcaputi@datto.com> Closes #494 Closes #5769
2017-08-14 20:36:48 +03:00
EXPORT_SYMBOL(dmu_objset_rele_flags);
EXPORT_SYMBOL(dmu_objset_disown);
EXPORT_SYMBOL(dmu_objset_from_ds);
EXPORT_SYMBOL(dmu_objset_create);
EXPORT_SYMBOL(dmu_objset_clone);
EXPORT_SYMBOL(dmu_objset_stats);
EXPORT_SYMBOL(dmu_objset_fast_stat);
EXPORT_SYMBOL(dmu_objset_spa);
EXPORT_SYMBOL(dmu_objset_space);
EXPORT_SYMBOL(dmu_objset_fsid_guid);
EXPORT_SYMBOL(dmu_objset_find);
EXPORT_SYMBOL(dmu_objset_byteswap);
EXPORT_SYMBOL(dmu_objset_evict_dbufs);
EXPORT_SYMBOL(dmu_objset_snap_cmtime);
Implement large_dnode pool feature Justification ------------- This feature adds support for variable length dnodes. Our motivation is to eliminate the overhead associated with using spill blocks. Spill blocks are used to store system attribute data (i.e. file metadata) that does not fit in the dnode's bonus buffer. By allowing a larger bonus buffer area the use of a spill block can be avoided. Spill blocks potentially incur an additional read I/O for every dnode in a dnode block. As a worst case example, reading 32 dnodes from a 16k dnode block and all of the spill blocks could issue 33 separate reads. Now suppose those dnodes have size 1024 and therefore don't need spill blocks. Then the worst case number of blocks read is reduced to from 33 to two--one per dnode block. In practice spill blocks may tend to be co-located on disk with the dnode blocks so the reduction in I/O would not be this drastic. In a badly fragmented pool, however, the improvement could be significant. ZFS-on-Linux systems that make heavy use of extended attributes would benefit from this feature. In particular, ZFS-on-Linux supports the xattr=sa dataset property which allows file extended attribute data to be stored in the dnode bonus buffer as an alternative to the traditional directory-based format. Workloads such as SELinux and the Lustre distributed filesystem often store enough xattr data to force spill bocks when xattr=sa is in effect. Large dnodes may therefore provide a performance benefit to such systems. Other use cases that may benefit from this feature include files with large ACLs and symbolic links with long target names. Furthermore, this feature may be desirable on other platforms in case future applications or features are developed that could make use of a larger bonus buffer area. Implementation -------------- The size of a dnode may be a multiple of 512 bytes up to the size of a dnode block (currently 16384 bytes). A dn_extra_slots field was added to the current on-disk dnode_phys_t structure to describe the size of the physical dnode on disk. The 8 bits for this field were taken from the zero filled dn_pad2 field. The field represents how many "extra" dnode_phys_t slots a dnode consumes in its dnode block. This convention results in a value of 0 for 512 byte dnodes which preserves on-disk format compatibility with older software. Similarly, the in-memory dnode_t structure has a new dn_num_slots field to represent the total number of dnode_phys_t slots consumed on disk. Thus dn->dn_num_slots is 1 greater than the corresponding dnp->dn_extra_slots. This difference in convention was adopted because, unlike on-disk structures, backward compatibility is not a concern for in-memory objects, so we used a more natural way to represent size for a dnode_t. The default size for newly created dnodes is determined by the value of a new "dnodesize" dataset property. By default the property is set to "legacy" which is compatible with older software. Setting the property to "auto" will allow the filesystem to choose the most suitable dnode size. Currently this just sets the default dnode size to 1k, but future code improvements could dynamically choose a size based on observed workload patterns. Dnodes of varying sizes can coexist within the same dataset and even within the same dnode block. For example, to enable automatically-sized dnodes, run # zfs set dnodesize=auto tank/fish The user can also specify literal values for the dnodesize property. These are currently limited to powers of two from 1k to 16k. The power-of-2 limitation is only for simplicity of the user interface. Internally the implementation can handle any multiple of 512 up to 16k, and consumers of the DMU API can specify any legal dnode value. The size of a new dnode is determined at object allocation time and stored as a new field in the znode in-memory structure. New DMU interfaces are added to allow the consumer to specify the dnode size that a newly allocated object should use. Existing interfaces are unchanged to avoid having to update every call site and to preserve compatibility with external consumers such as Lustre. The new interfaces names are given below. The versions of these functions that don't take a dnodesize parameter now just call the _dnsize() versions with a dnodesize of 0, which means use the legacy dnode size. New DMU interfaces: dmu_object_alloc_dnsize() dmu_object_claim_dnsize() dmu_object_reclaim_dnsize() New ZAP interfaces: zap_create_dnsize() zap_create_norm_dnsize() zap_create_flags_dnsize() zap_create_claim_norm_dnsize() zap_create_link_dnsize() The constant DN_MAX_BONUSLEN is renamed to DN_OLD_MAX_BONUSLEN. The spa_maxdnodesize() function should be used to determine the maximum bonus length for a pool. These are a few noteworthy changes to key functions: * The prototype for dnode_hold_impl() now takes a "slots" parameter. When the DNODE_MUST_BE_FREE flag is set, this parameter is used to ensure the hole at the specified object offset is large enough to hold the dnode being created. The slots parameter is also used to ensure a dnode does not span multiple dnode blocks. In both of these cases, if a failure occurs, ENOSPC is returned. Keep in mind, these failure cases are only possible when using DNODE_MUST_BE_FREE. If the DNODE_MUST_BE_ALLOCATED flag is set, "slots" must be 0. dnode_hold_impl() will check if the requested dnode is already consumed as an extra dnode slot by an large dnode, in which case it returns ENOENT. * The function dmu_object_alloc() advances to the next dnode block if dnode_hold_impl() returns an error for a requested object. This is because the beginning of the next dnode block is the only location it can safely assume to either be a hole or a valid starting point for a dnode. * dnode_next_offset_level() and other functions that iterate through dnode blocks may no longer use a simple array indexing scheme. These now use the current dnode's dn_num_slots field to advance to the next dnode in the block. This is to ensure we properly skip the current dnode's bonus area and don't interpret it as a valid dnode. zdb --- The zdb command was updated to display a dnode's size under the "dnsize" column when the object is dumped. For ZIL create log records, zdb will now display the slot count for the object. ztest ----- Ztest chooses a random dnodesize for every newly created object. The random distribution is more heavily weighted toward small dnodes to better simulate real-world datasets. Unused bonus buffer space is filled with non-zero values computed from the object number, dataset id, offset, and generation number. This helps ensure that the dnode traversal code properly skips the interior regions of large dnodes, and that these interior regions are not overwritten by data belonging to other dnodes. A new test visits each object in a dataset. It verifies that the actual dnode size matches what was stored in the ztest block tag when it was created. It also verifies that the unused bonus buffer space is filled with the expected data patterns. ZFS Test Suite -------------- Added six new large dnode-specific tests, and integrated the dnodesize property into existing tests for zfs allow and send/recv. Send/Receive ------------ ZFS send streams for datasets containing large dnodes cannot be received on pools that don't support the large_dnode feature. A send stream with large dnodes sets a DMU_BACKUP_FEATURE_LARGE_DNODE flag which will be unrecognized by an incompatible receiving pool so that the zfs receive will fail gracefully. While not implemented here, it may be possible to generate a backward-compatible send stream from a dataset containing large dnodes. The implementation may be tricky, however, because the send object record for a large dnode would need to be resized to a 512 byte dnode, possibly kicking in a spill block in the process. This means we would need to construct a new SA layout and possibly register it in the SA layout object. The SA layout is normally just sent as an ordinary object record. But if we are constructing new layouts while generating the send stream we'd have to build the SA layout object dynamically and send it at the end of the stream. For sending and receiving between pools that do support large dnodes, the drr_object send record type is extended with a new field to store the dnode slot count. This field was repurposed from unused padding in the structure. ZIL Replay ---------- The dnode slot count is stored in the uppermost 8 bits of the lr_foid field. The bits were unused as the object id is currently capped at 48 bits. Resizing Dnodes --------------- It should be possible to resize a dnode when it is dirtied if the current dnodesize dataset property differs from the dnode's size, but this functionality is not currently implemented. Clearly a dnode can only grow if there are sufficient contiguous unused slots in the dnode block, but it should always be possible to shrink a dnode. Growing dnodes may be useful to reduce fragmentation in a pool with many spill blocks in use. Shrinking dnodes may be useful to allow sending a dataset to a pool that doesn't support the large_dnode feature. Feature Reference Counting -------------------------- The reference count for the large_dnode pool feature tracks the number of datasets that have ever contained a dnode of size larger than 512 bytes. The first time a large dnode is created in a dataset the dataset is converted to an extensible dataset. This is a one-way operation and the only way to decrement the feature count is to destroy the dataset, even if the dataset no longer contains any large dnodes. The complexity of reference counting on a per-dnode basis was too high, so we chose to track it on a per-dataset basis similarly to the large_block feature. Signed-off-by: Ned Bass <bass6@llnl.gov> Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov> Closes #3542
2016-03-17 04:25:34 +03:00
EXPORT_SYMBOL(dmu_objset_dnodesize);
EXPORT_SYMBOL(dmu_objset_sync);
EXPORT_SYMBOL(dmu_objset_is_dirty);
Native Encryption for ZFS on Linux This change incorporates three major pieces: The first change is a keystore that manages wrapping and encryption keys for encrypted datasets. These commands mostly involve manipulating the new DSL Crypto Key ZAP Objects that live in the MOS. Each encrypted dataset has its own DSL Crypto Key that is protected with a user's key. This level of indirection allows users to change their keys without re-encrypting their entire datasets. The change implements the new subcommands "zfs load-key", "zfs unload-key" and "zfs change-key" which allow the user to manage their encryption keys and settings. In addition, several new flags and properties have been added to allow dataset creation and to make mounting and unmounting more convenient. The second piece of this patch provides the ability to encrypt, decyrpt, and authenticate protected datasets. Each object set maintains a Merkel tree of Message Authentication Codes that protect the lower layers, similarly to how checksums are maintained. This part impacts the zio layer, which handles the actual encryption and generation of MACs, as well as the ARC and DMU, which need to be able to handle encrypted buffers and protected data. The last addition is the ability to do raw, encrypted sends and receives. The idea here is to send raw encrypted and compressed data and receive it exactly as is on a backup system. This means that the dataset on the receiving system is protected using the same user key that is in use on the sending side. By doing so, datasets can be efficiently backed up to an untrusted system without fear of data being compromised. Reviewed by: Matthew Ahrens <mahrens@delphix.com> Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov> Reviewed-by: Jorgen Lundman <lundman@lundman.net> Signed-off-by: Tom Caputi <tcaputi@datto.com> Closes #494 Closes #5769
2017-08-14 20:36:48 +03:00
EXPORT_SYMBOL(dmu_objset_create_impl_dnstats);
EXPORT_SYMBOL(dmu_objset_create_impl);
EXPORT_SYMBOL(dmu_objset_open_impl);
EXPORT_SYMBOL(dmu_objset_evict);
EXPORT_SYMBOL(dmu_objset_register_type);
EXPORT_SYMBOL(dmu_objset_do_userquota_updates);
EXPORT_SYMBOL(dmu_objset_userquota_get_ids);
EXPORT_SYMBOL(dmu_objset_userused_enabled);
EXPORT_SYMBOL(dmu_objset_userspace_upgrade);
EXPORT_SYMBOL(dmu_objset_userspace_present);
EXPORT_SYMBOL(dmu_objset_userobjused_enabled);
EXPORT_SYMBOL(dmu_objset_userobjspace_upgradable);
EXPORT_SYMBOL(dmu_objset_userobjspace_present);
Project Quota on ZFS Project quota is a new ZFS system space/object usage accounting and enforcement mechanism. Similar as user/group quota, project quota is another dimension of system quota. It bases on the new object attribute - project ID. Project ID is a numerical value to indicate to which project an object belongs. An object only can belong to one project though you (the object owner or privileged user) can change the object project ID via 'chattr -p' or 'zfs project [-s] -p' explicitly. The object also can inherit the project ID from its parent when created if the parent has the project inherit flag (that can be set via 'chattr +P' or 'zfs project -s [-p]'). By accounting the spaces/objects belong to the same project, we can know how many spaces/objects used by the project. And if we set the upper limit then we can control the spaces/objects that are consumed by such project. It is useful when multiple groups and users cooperate for the same project, or a user/group needs to participate in multiple projects. Support the following commands and functionalities: zfs set projectquota@project zfs set projectobjquota@project zfs get projectquota@project zfs get projectobjquota@project zfs get projectused@project zfs get projectobjused@project zfs projectspace zfs allow projectquota zfs allow projectobjquota zfs allow projectused zfs allow projectobjused zfs unallow projectquota zfs unallow projectobjquota zfs unallow projectused zfs unallow projectobjused chattr +/-P chattr -p project_id lsattr -p This patch also supports tree quota based on the project quota via "zfs project" commands set as following: zfs project [-d|-r] <file|directory ...> zfs project -C [-k] [-r] <file|directory ...> zfs project -c [-0] [-d|-r] [-p id] <file|directory ...> zfs project [-p id] [-r] [-s] <file|directory ...> For "df [-i] $DIR" command, if we set INHERIT (project ID) flag on the $DIR, then the proejct [obj]quota and [obj]used values for the $DIR's project ID will be shown as the total/free (avail) resource. Keep the same behavior as EXT4/XFS does. Reviewed-by: Andreas Dilger <andreas.dilger@intel.com> Reviewed-by Ned Bass <bass6@llnl.gov> Reviewed-by: Matthew Ahrens <mahrens@delphix.com> Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov> Signed-off-by: Fan Yong <fan.yong@intel.com> TEST_ZIMPORT_POOLS="zol-0.6.1 zol-0.6.2 master" Change-Id: Ib4f0544602e03fb61fd46a849d7ba51a6005693c Closes #6290
2018-02-14 01:54:54 +03:00
EXPORT_SYMBOL(dmu_objset_projectquota_enabled);
EXPORT_SYMBOL(dmu_objset_projectquota_present);
EXPORT_SYMBOL(dmu_objset_projectquota_upgradable);
EXPORT_SYMBOL(dmu_objset_id_quota_upgrade);
#endif